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Preface 

The science of ground water quality monitoring has advanced rapidly in the last decade. Field 
and laboratory techniques have been developed which allow uS to obtain reliable ground water 
quality data. Data is often collected, however, without a clear view of how it will be used. 
Ground water quality managers are beginning to realize the value of defining data analysis proce­
dures prior to data collection. This report presents a framework which practitioners can use to 
develop site specific data analysis protocols. The framework was used to write a data analysis 
protocol for an IBM semiconductor manufacturing facility in Hopewell Junction, New York. 

This report is quite similar to the author's Ph.D. dissertation which was published in 1992 under 
the direction of Dr. Robert C. Ward. Additional contributors to the dissertation include Dr. Harry 
F. Bell with IBM, Dr. Hariharan K. lyer with the Department of Statistics at Colorado State 
University, and Dr. Jim C. Loftis with the Department of Agricultural and Chemical Engineering at 
Colorado State University. The author is very grateful for their assistance, encouragement and 
technical expertise. 

Funding for this research was provided by IBM Corporation. IBM's generous contributions 
allowed us to conduct applied research on statistical analysis of ground water quality data. The 
project provided an excellent opportunity for cooperation between industry and academia. 

This report was typeset by CSWForms of Juneau, Alaska. The author greatly appreciates their 
patience and attention to detail. 
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Abstract 

Protocols for field sampling and laboratory 
analysis are used on a routine basis to produce 
reliable ground water quality data. Efforts are 
now being focused on providing decision 
makers with the information they need from 
that data. One method of extracting informa­
tion from data is statistical analysis. There are, 
however, no widely accepted protocols for sta­
tistically analyzing water quality data. Due to 
the wide variety of field conditions encoun­
tered in ground water monitoring, a general 
protocol would be of limited use. What is 
needed is a set of guidelines for writing data 
analysis protocols which are site specific. 

A framework for developing data analysis 
protocols is presented in this report. The 
framework is essentially a "how-to" manual 
for protocol writers. The focus of the frame­
work is analySis of ground water quality data 
at hazardous waste facilities. 

Detailed background information is provid­
ed for the framework. Four main issues which 
are addressed include: information goals, data 
record attributes, choice of statistical methods, 
and interpretation of statistical results. There is 
a great deal of confusion in the water quality 
community regarding these issues. This report 
does not attempt to resolve that confusion. 
instead, the goal is to sort out areas of conflict 
and uncertainty, and present them in a clear 
manner. Recommendations are provided 
where possible. 

The framework was used to write a data 
analysis protocol for an IBM semiconductor 
manufacturing plant in Hopewell Junction, 
New York. The combination of flexibility in 
the basic framework and the availability of 
detailed background information was quite 
effective. It allowed the data analysis protocol 
to be site specific and scientifically defensible. 

******* 

Nadine C. Adkins, Ph.D. 
Department of Agricultural and Chemical Engineering 
Colorado State University 
Fort Collins, Colorado 80523 
June 1993 
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Chapter 1 Introduction 

PROBLEM STATEMENT 

In response to rising environmental concern, 
the number of ground water quality monitor­
ing systems in the United States is steadily 
increasing. These monitoring systems are estab­
lished to meet regulatory as well as internal 
management needs, but rarely are those needs 
articulated in terms of the nature of information 
to be obtained or how the information is to be 
used in decision making. Consequently, large 
quantities of data are being collected without.a 
clear definition of program goals, data analysIS 
procedures, reporting formats or types of deci­
sions to be made. 

Ground water quality managers are becom­
ing increasingly aware of the need to develop 
documented strategies (i.e., protocols) for sta­
tistically analyzing data obtained from moni­
toring programs. Data analysis protocols 
(DAPs) help to ensure that data obtained from 
monitoring programs can be translated into 
useful information which meets program 
goals. Assessing the effectiveness of remedia­
tion efforts and detecting the presence of cont­
aminants are examples of program goals. 

Ground water quality regulations often con­
tain language similar to the following from the 
New York Code of Rules and Regulations: 

In conjunction with a corrective action program, 
the owner or operator must establish and imple­
ment a ground-water monitoring program to 
demonstrate the effectiveness of the correctIOn 
action program (Sec. 373-2.6.k.4 of 6NYCRR). 

Such regulatory directives usually do not in-
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clude details of how to analyze ground water 
quality data to assess the effectiven.ess of 
remediation efforts. It is left to the permIttee to 
decide how to analyze the data. Although a 
list of proposed statistical methods is generally 
included in the overall remediation plan sub­
mitted by the permittee, it is not standard 
practice to develop and implement da:a analy­
sis protocols. As a result, water qua~lty man­
agers often find themselves spendmg large 
quantities of money on monitoring programs 
which do not yield the information they need 
for decision making. 

Ward et al. (1990) have defined water quali­
ty monitoring systems in terms of the flow of 
information through the system. The flow of 
information begins with sample collection and 
ends with information utilization as shown 
below: 

1. Sample Collection 
2. Laboratory Analysis 
3. Data Handling 
4. Data Analysis 
5. Reporting 
6. Information Utilization 
The first three components deal primarily 

with data collection whereas the last three deal 
with information generation. Researchers have 
traditionally focused their efforts on data col­
lection issues. Research on data collection has 
been used to develop standard procedures for 
sample collection, laboratory analysis and data 
handling. The use of these standard proce­
dures has resulted in the collection of ground 
water quality data which has a high degree of 
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accuracy. Accurate data is, of course, a neces­
sary prerequisite to the generation of useful 
information. 

Water quality researchers and professionals 
are beginning to switch their focus away from 
data collection and towards information gen­
eration. Some research on information genera­
tion activities has already been conducted, 
particularly in the area of statistical analysis. 
The research is difficult to apply to monitoring 
system design, however, because it is so wide­
ly scattered. 

A few attempts have been made to produce 
standardized sets of procedures for informa­
tion generation known as "data analysis pro­
tocols." These data analysis protocols (OAPs), 
however, tend to be incomplete and / or too 
general to be useful to monitoring system 
designers. 

Due to the wide variety of information 
needs and site conditions, it is impractical to 
expect a single OAP to be suitable for all 
ground water quality monitoring systems. 
What is really needed is a framework that can 
be used to develop OAPs which are program 
specific. No generally acceptable design frame­
work for the development of ground water 
quality data analysis protocols exists today. 

OBJECTIVES 

The primary objective of this report is to 
present a framework for the development of 
ground water quality data analysis protocols. 
The protocols are intended to be program spe­
cific and should be written during the initial 
phases of monitoring system design. 
Application of the data analysis protocols 
should result in the generation of information 
which is employed in decision making. 

Four main components of the framework 
which are expanded upon in this report are: 

1. Identification of information goals. 
2. Handling of data record attributes. 
3. Choice of statistical analysis methods. 
4. Interpretation of statistical results. 
The second objective of this report is to 
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explore the concept of protocols by summariz­
ing an extensive literature review. 

A third objective is to demonstrate the prac­
tical application of the OAP design framework 
by presenting the results of a case study. The 
framework was used to write a data analysis 
protocol for an IBM plant in Hopewell 
Junction, New York. 

SCOPE 

The intended users of the framework are 
individuals who will write ground water quali­
ty OAPs for hazardous waste facilities. The 
framework can be used to develop OAPs for 
internal use and/ or for submittal to regulators. 

Economic factors are not specifically dis­
cussed in this report. It is reasonable to 
assume, however, that the use of data analysis 
protocols will produce economic benefits. 

The framework should only be used to 
develop OAPs for chemical ground water 
quality monitoring programs. Surface water 
quality and biological ground water quality 
were not considered in the formulation of the 
framework. 

Although the protocol design framework 
emphasizes the use of statistical methods of 
data analysis, there are situations where alterna­
tive methods may be more appropriate. 
Examples of several types of data analysis meth­
ods are given in the IBM data analysis protocol 
which is presented at the back of this report. 

This report does not describe the many com­
plexities which contribute to the formulation 
of water quality laws and regulations. Instead, 
it emphasizes how regulations should be 
addressed once they are promulgated. In par­
ticular, this report deals with ground water 
monitoring and data analYSis reqUirements 
which are placed on industrial facilities. 

OAPs developed from the framework 
should be written prior to data collection. 
Existing data, however, may be used for data 
characterization or to confirm analytes. 

It is assumed in this report that only high 
quality data is obtained from the laboratory. The 



production of high quality data has been a pri­
ority for several years in the field of water quali­
ty monitoring. The use of sampling protocols 
and laboratory analytical protocols (e.g., ASTM 
procedures) has become routine. Therefore, it is 
reasonable to assume that hazardous waste sites 
which have an effective QA/QC program will 
produce high quality data. 

The focus of this report is on the practical 
application of statistical methods. 

The framework is intended for development 
of DAPs which produce information on what 
the current state of water quality is. The 
framework is not designed to produce proto­
cols which address the question of why water 
quality is the way it is. 

There is a great deal of confusion and uncer­
tainty regarding the use of statistics in the 
analysis of water quality data. This report 
attempts to sort out and explain controversial 
statistical issues rather than resolve them. 

It is assumed in this report that readers pos­
sess a basic knowledge of statistics. If readers 
are not familiar with statistics, however, they 
should still be able understand the report by 
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referring to an introductory text and/or refer­
ences noted to contain explanatory detail. 

This report addresses the question of how to 
use statistical analysis to obtain information 
from data. It does not address the use of mod­
eling or risk assessment. Figure 1-1 shows the 
role of statistical analysis in relation to model­
ing and risk assessment. 

ORGANIZATION 

Protocols are discussed in Chapter 2. 
Chapters 3 through 5 cover the main aspects 
of the DAP framework: identification of infor­
mation goals, handling of data record attribut­
es, choice of statistical analysis methods, and 
interpretation of results. The DAP framework 
is presented in Chapter 6 and the case study is 
discussed in Chapter 7. Conclusions and rec­
ommendations for further work are given in 
the final chapter. The IBM data analysis proto­
col, which was developed for the case study, is 
presented on colored paper at the back of the 
report. 

DATA 

" .. " ... " ..... 

modeling STATISTI.CAL risk 
~-----·i~N~LYSIS •• ·~-----· assessment 

INFORMATION FOR DECISION MAKING 

Figure I-I. The role of statistical analysis in relation to modeling and risk assessment. 
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Chapter 2 protocols 

INTRODUCTION 

The tenn "protocol" is used in several ways. 
Many people think of a protocol in terms of 
diplomacy, either as a signed agreement 
between negotiating parties or as the proper 
rules of etiquette used by high officials. The 
accepted definition in scientific literature, 
though, is simply: a standardized set of proce­
dures for doing something. For example, in 
hydrology, there are protocols for constructing 
unit hydrographs and for designing culverts. 
The American Society for Testing and 
Materials (ASTM) publishes hundreds of pro­
tocols for laboratory and field testing of vari­
ous substances including water and soil. 

An evaluation of what can be learned from 
existing protocols is presented in the first part 
of this chapter, followed by a review of the 
data analysis protocol (DAP) concept in water 
quality monitoring. Then, the need for ground 
water quality DAPs is discussed. Finally, the 
advantages and characteristics of successful 
ground water quality DAPs are identified. 

PROTOCOLS IN THE LlTERATURE­
A CRITICAL REVIEW 

Objective 
A literature review of protocols from a vari­

ety of disciplines was conducted in order to 
gain a better understanding of how to develop 
ground water quality data analysis protocols. 
The review was not intended to be an exhaus-
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live or precise study, but rather a means to get 
a general feel for what makes a protocol suc­
cessful. 

Research Strategy 
References for the majority of articles 

included in this literature review were 
obtained from CDROM catalogs in the CSU 
research library (using "protocol" or "protocol 
development" as key words). References were 
acquired for a large variety of disciplines 
including microbiology, medicine, toxicology, 
zoology, environmental engineering, chemis­
try and anthropology. 

A few documents were reviewed which pre­
sented protocols but did not identify them as 
such. The Consumer Price Index: History and 
Techniques (U.S. Dept. of Labor, 1967) and 
Statistical Analysis of Ground-Water Monitoring 
Data at RCRA Facilities (U.s. EPA, 1989) are 
examples. 

Results 
The literature review yielded a surprisingly 

large amount of infonnation which can be used 
to develop ground water quality data analysis 
protocols. Many disciplines, such as medicine 
and biology, have been in existence longer than 
ground water engineering, and are further 
along in the standardization processes which 
lead to fonnulation of protocols. 

Observations from the literature review are 
presented below in a question and answer for­
mat. The applicability of these observations to 



the development and implementation of 
ground water quality DAPs is discussed. 

Q: What can one do to ensure the success of 
a protocol? 

A: 1. Gain an understanding of the problem -
In an article on bioassay protocols (Davis, 
1977), the author states "The obvious precur­
sor to standardization is a thorough knowl­
edge of the various chemical, physical and 
biological factors that affect bioassay 
results ... " This concept is applicable to writ­
ing a ground water quality DAP because sta­
tisticians are very adamant that the problem 
must be understood before statistical analy­
sis is conducted (Zahn and Isenberg, 1983). 

One approach to gaining understanding of a 
problem is to review the literature. Literature 
reviews were conducted for a nutritional risk 
screening protocol (Hedberg et ai., 1988), a haz­
ardous waste reactivity testing protocol 
(Wolbach et aI., 1984), and a protocol for mea­
suring hydrolysis rate constants in aqueous 
solutions (Ellington et al., 1988). 

Implementing a pilot study is another way of 
acquiring a better understanding of the prob­
lem before the final protocol is written (Duke 
and Merrill, 1981 and Schroder and Taylor, 
1980). In water quality monitoring, pilot stud­
ies are employed for data characterization, 
which in tum is used for choosing appropriate 
statistical methods. 

2. Work with others - The chances for success 
of a protocol are increased if several people are 
involved in its development. Two methods of 
involving others are to conduct a workshop 
and to circulate a draft of the protocol. 

Workshops are a commoniy used method for 
getting people together from a variety of disci­
plines to discuss complex issues. Workshops 
have been held to discuss the following: 
• Protocol standardization for Puget Sound, 

Washington (Armstrong and Becker, 1986). 
• Development of a scientific protocol for 
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ocean dumpsite designation (Reed and 
Bierman, 1983). 

• Protocol development for potable water 
reuse criteria (Cotruvo et al., 1982). 

Such an approach is appropriate for writing 
protocols which will be used on a regional or 
national basis. 

A few authors mentioned that they circulated a 
draft for comments before writing the final 
protocol (Armstrong and Becker, 1986; Reed 
and Bierman, 1983; and Schuk, 1986). This is a 
valuable approach to the development of just 
about any type of protocol. The chances of the 
protocol being accepted are increased if users 
and managers are involved in the development 
process. Also, extensive feedback minimizes 
the possibility of omissions or errors in the fin­
ished product. Finally, a protocol is by nature a 
consensus on how something should be done. 

Q: How focused are successful protocols? 

A: Most protocols encountered in the litera­
ture review are narrowly focused - Some 
examples are listed here: 
• A hospital radiation emergency protocol for 

Victoria General Hospital (Aldrich, 1988). 
• A pronghorn hand-rearing protocol for the 

Los Angeles Zoo (Brinkley, 1987). 
• An analytical protocol for the multimedia 

characterization of polychlorinated diben­
zodioxins and dibenzofurans by high-reso­
lution gas chromatography Ihigh-resolution 
mass spectrometry (Tondeur et aI., 1989). 

Because these protocols are narrowly focused, 
it is possible for the authors to be quite specif­
ic. A broadly focused protocol such as one for 
aquifer decision making (Canter and Knox, 
1986) is necessarily general. In fact, the author 
states "The procedure is not intended to be a 
set of explicit instructions, but rather a general 
approach which, when modified, could be 
applied to a wide variety of ground water pol­
lution problems." 

A ground water quality DAP would be the 
most effective if it were developed for a specif-
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ic monitoring program at a specific site. The 
OAP writer could then take into account the 
unique hydrogeologic conditions and informa­
tion goals. 

Q: What features enhance the clarity and use­
fulness of a protocol? 

A: 1. Flow charts - Flow charts are often used 
to visually convey the structure of all or part of 
a protocol (Reed and Bierman, 1983; Thomas, 
1987; and U.s. EPA, 1989). A reader can look at 
a well designed flowchart and quickly compre­
hend the basic organization of a process or pro­
cedure. An example of simple yet informative 
flow charts can be seen in a protocol which 
was developed for ocean disposal site designa­
tion (Reed and Bierman, 1983). 

2. Glossaries - An EPA handbook titled Proto­
cols for Short Term Toxicity Screening of 
Hazardous Waste Sites (Greene et ai., 1988) be­
gins with a glossary. There is enough confusion 
over statistical and water quality terminology 
that a glossary would surely be a welcome 
addition to a ground water quality OAP. 

3. Sample forms - An excellent example of the 
inclusion of sample forms in a protocol is the 
EPA document, Interim Protocol for Measuring 
Hydrolysis Rate Constants in Aqueous Solutions 
(Ellington et ai., 1988). The forms, which are 
presented as appendices, are for generation of 
data and for calculation of rate constants and 
activation energies. Inclusion of sample forms 
appears to be a simple and effective approach 
to ensure that protocol users generate data and 
perform calculations in a consistent manner. A 
similar approach may enhance the effective­
ness of ground water quality OAPs. 

Q: What are some recommendations for 
development of protocols? 

A: 1. C/early define program goals - The follow­
ing statement is made in an article which pre­
sents a framework for the development of pro­
tocols to monitor energy systems in buildings: 
"Perhaps the most critical activity to the success 
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of a mOnitoring project is correctly and accurate­
ly stating its goals, objectives, and the specific 
research questions to be answered" (Misuriello, 
1987). There is widespread agreement among 
water quality profeSSionals that it is important 
to clearly define the goals of ground water mon­
itoring programs. Statisticians also agree on the 
importance of well defined goals (Hunter, 1981). 
It would seem logical, therefore, that a protocol 
for the statistical analysis of ground water quali­
ty data should include a carefully thought out 
statement of program goals. 

2. Use accepted methods - Specification of 
accepted (i.e., proven and widely used) meth­
ods in protocols is promoted in several of the 
articles which were reviewed. For example, an 
article which presents a protocol for the identi­
fication of toxic fractions in industrial waste­
water influents, includes the following state­
ment: "To ensure practicality of the protocol as 
a routine procedure, the fractionation was 
based on simple and widely used laboratory 
techniques ... " (Gasith et ai., 1988). A similar 
statement is made in an article on the develop­
ment of bioassay protocols: "Finally, each test 
incorporated into the protocol was to be 
acceptable by the scientific community as 
valid, reliable and accurate with a sufficiently 
large existing data base to facilitate the inter­
pretation of results." 

Accepted statistical procedures should be 
specified in a ground water quality OAP to 
promote routine application of the protocol 
and to facilitate the interpretation of results. It 
should be remembered, however, that the use 
of statistics in analyzing water quality data is a 
rapidly advancing field. Methods which are 
"accepted" one year may be replaced by better 
methods the next year. 

3. Allow for revision - A large number of arti­
cles which were reviewed included statements 
indicating that the protocols should be revised 
as further knowledge is gained. For example, in 
reference to a protocol for testing microbiologi­
cal water purifiers: "[it] is intended to be a liv­
ing document, subject to revision and update as 



new knowledge and technology arise" (Schaub 
and Gerba, 1988). When discussing a protocol 
for determining lake acidification pathways, 
the author states " .. .it provides a general frame­
work which can be challenged and expanded 
upon through the addition of other evidence ... " 
(Marmorek et al. 1989). A protocol for biologi­
cal testing was revised and refined to solve 
problems revealed by pilot studies and imple­
mentation (Duke and Merrill, 1981). In refer­
ence to a pronghorn hand-rearing protocol: 
"Over the years we have made modifications to 
the original protocol as our needs and experi­
ence demanded" (Brinkley, 1987). 

Allowing for revision of ground water quality 
DAPs is advisable. As mentioned previously, 
the use of statistics to analyze ground water 
quality data is a rapidly evolving field. Also, 
as more data is obtained in a monitoring pro­
gram, it may become evident that a change in 
statistical methodology is appropriate. A sys­
tematic revision mechanism should be incor­
porated directly into the protocol to prevent 
haphazard and unauthorized changes. 

4. Acknowledge limitations - Some of the arti­
cles which were reviewed acknowledged 
limitations of the protocols. For example, in 
reference to a protocol for determining lake 
acidification pathways: "The protocol cannot, 
however, distinguish between low pH lakes 
which originally contained little DOC, and 
those which lost it" and "The decision proto­
col presented in this paper is still very prelimi­
nary" (Marmorek et ai., 1989). The author of a 
nutritional risk screening protocol states, 
"Although the screening program has proved 
to be an effective tool to identify patients at 
nutritional risk, it does not substitute for the 
dietician's clinical subjective experience" 
(Hedberg, et ai., 1989). 

It is important to acknowledge the limitations 
of a ground water quality DAP and the associ­
ated statistical procedures so that managers 
can take them into consideration when mak­
ing decisions. People tend to place more confi­
dence in statistical results than is warranted. 
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Q: What are some advantages of using proto­
cols? 

A: 1. Protocols save money - Many protocols 
are designed to save money. For example, 
when faced with budget cuts, the EPA devel­
oped a protocol to more efficiently designate 
sites for ocean waste disposal (Reed and 
Bierman, 1983). 

A ground water quality DAP can save money 
in several ways. For one thing, data is not col­
lected unless it is needed for a specific purpose. 
Also, the maximum amount of information is 
obtained from the data which is collected. 

2. Protocols save time - The need to conduct a 
project in a timely manner is a common motiva­
tor for protocol development. Scientists at the 
U.s. Department of Agriculture Eastern 
Research Center wrote a protocol for the accu­
mulation of fatty acid data from multiple tissue 
samples. The protocol was developed to "allow 
for an unbiased handling of the samples, prop­
er record-keeping, and-most importantly-the 
timely completion of an otherwise unmanage­
able task" (Maxwell and Marmer, 1983). 

A protocol for analyzing ground water quality 
data saves time because unnecessary data is 
not collected. Furthermore, time is not wasted 
"reinventing the wheel" whenever data needs 
to be analyzed. 

3. Protocols produce comparable results - A fre­
quently cited advantage of protocols is that data 
collected by different investigators can be com­
pared. At the start of a regional effort to protect 
and manage the environment of Puget Sound, it 
became apparent that data comparability would 
be a real problem because so many different 
approaches were being used to sample and ana­
lyze the same parameter (Becker and Arm­
strong, 1988). A series of protocols were written 
to alleviate this problem. As stated by the proto­
col authors, "Perhaps the best way to ensure 
that data collected during different studies are 
comparable is to encourage all investigators to 
use standardized sampling and analysis proto­
cols whenever possible." 
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The advantage of comparable results is per­
haps the most evident when monitoring is 
conducted by many different people on a 
regional basis. Comparable results are still an 
advantage, however, even when a ground 
water quality OAP is written for a specific 
monitoring program at a single site. Because a 
protocol documents how statistical analysis 
results are obtained, future investigators are 
able to determine if results can be compared. 

4. Reliable information is obtained - Several 
protocols are commended by their authors 
because they produce reliable information. 
Some examples are: 
• A protocol for measuring hydrolysis rate 

constants in aqueous solutions (Ellington et 
aI., 1988). 

• A protocol for measuring microbial transfor­
mation rate constants for suspended bacterial 
populations in aquatic systems (Steen, 1988). 

• A protocol for collection of saliva samples 
under field conditions (Lipson and Ellison, 
1987). 

The chances of reliable information being 
obtained from a ground water quality moni­
toring program are increased if a OAP is 
used. The process of writing a OAP forces the 
author to carefully consider which statistical 
methods to choose and how to interpret the 
results. This is in contrast to the haphazard, 
last-minute application of statistics which 
often occurs in water quality monitoring. 
OAPs also lead to more reliable information 
because they allow data analysis procedures to 
be audited. 

5. Reslilts are reprodllcible - A few authors 
cited reproducibility of results as an advantage 
of their protocol. For example, a treadmill pro­
tocol for measurement of aerobic parameters 
(Cowell, 1989) and a protocol for testing effects 
of toxic substances on plants (Thompson et aI., 
1981), both generate reproducible results. 

The generation of reproducible results is a sig­
nificant advantage of using ground water 
quality OAPs. Too often statistical conclusions 
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are reported in such a way that the reader has 
no idea of how they were obtained. The validi­
ty of results which are not reproducible is 
highly questionable. 

Summary 
Concepts from protocols in other diSCiplines 

can be used to develop protocols for analyzing 
ground water quality data. These concepts are 
summarized here. 

Prior to writing a final protocol, it is essen­
tial to understand the issue which is being 
addressed. Conducting a literature review or a 
pilot study are two ways to improve under­
standing . 

Working with other people generally con­
tributes to the acceptance and quality of the 
finished protocol. Input from others can be 
obtained by holding a workshop and! or circu­
lating a draft. 

The majority of successful protocols pre­
sented in the literature are narrowly focused. 

The clarity and usefulness of protocols can 
be enhanced with flow charts, glossaries and 
sample forms. 

Recommendations for developing a proto-
col include: 

• Clearly define program goals. 
• Use accepted methods. 
• Allow for revision. 
• Acknowledge limitations. 
Well designed protocols save time and 

money. Also, they produce comparable and 
reproducible results, as well as reliable infor­
mation. 

THE DATA ANALYSIS PROTOCOL 
CONCEPT IN WATER QUALITY 
MONITORING 

Protocols which deal with monitoring sys­
tem deSign, sampling, and laboratory analysis 
are routinely used for water quality monitor­
ing. Protocols to statistically analyze water 
quality data, however, are still in the early 
stages of development. 



Five documents which attempt to standard­
ize various facets of water quality data analy­
sis are reviewed here. The purpose of the 
review is to gain knowledge which may be 
helpful in developing DAPs for ground water 
quality monitoring programs at hazardous 
waste sites. The five documents are: 

1. Nonparametric Tests for Trend Detection 
in Water Quality Time Series (Berryman 
et a!., 1988). 

2. Methodology to Derive Water-Quality 
Trends for Use by the National Water 
Summary Program of the U.S. Geological 
Survey (Lanfear and Alexander, 1990). 

3. Water-Quality Data Analysis Protocol 
Development (Harcum, 1990). 

4. Groundwater Quality: A Data Analysis 
Protocol (Ward et a!., 1988). 

5. Statistical Analysis of Ground-Water 
Monitoring Data at RCRA Facilities: 
Interim Final Guidance (U.S. EPA, 1989). 

Nonparametric Tests for Trend Detection in 
Water Quality Time Series (Berryman et al., 
1988). The main objective of this paper is to 
present a method for systematically choosing 
the appropriate nonparametric statistical test 
for analyzing a particular time series. Selection 
of tests is based on the dependence and 
sources of dependence in the time series, and 
on whether the trend is monotonic or step. 

The protocol for selecting tests for monoton­
ic trends is presented in both narrative and 
flowchart form. It can be modified for use 
with step trends. 

The authors stress that the protocol is a gen­
eral guide which should not be "followed 
blindly" because user judgment is sometimes 
required. They point out that the role of user 
judgment will be diminished in the future as 
increased know ledge allows for better defini­
tion of test selection criteria. 

This paper is an excellent reference for any­
one who needs to write a DAP which includes 
time series analysis. The paper's emphasis, 
however, is strictly on data analysis. It does 
not address other critical aspects of DAPs such 
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as identification of information goals or 
reporting procedures. 

Methodology to Derive Water-Quality 
Trends for Use by the National Water 
Summary Program of the U.S. Geological 
Survey (Lanfear and Alexander, 1990). The 
USGS developed computer software to do the 
following: 

1. Objectively determine the suitability of a 
water quality record for trend testing. 

2. Decide whether to do a monthly, 
bimonthly or quarterly trend test. 

3. Prepare data for analysiS. 
4. Perform the Seasonal Kendall monotonic 

trend test and calculate the trend slope. 
5. Report the results. 
The software (i.e., protocol) was evaluated 

using data from four states. It was refined 
until it successfully dealt with all of the data 
records. After further testing and refinement, 
the protocol was used to conduct over 50,000 
trend tests on data collected from almost 3,000 
stations nationwide. 

Lanfear and Alexander make this statement 
regarding the protocol: "Perhaps the most 
important lesson to be learned from the expe­
riences of developing an automatic trend test 
is that software must be very 'smart' if it is to 
cope with the myriad ways in which water­
quality data are collected and recorded." 
Anyone who has dealt with statistical analysis 
of water quality data would probably agree 
with that observation. 

Water-Quality Data Analysis Protocol 
Development (Harcum, 1990). In his disserta­
tion, Harcum suggested that a water quality 
data analysis protocol should address five 
issues: 

1. Identification of information goals and 
transformation into water quality condi­
tions. 

2. Data handling. 
3. Identification of data record attributes. 
4. Water quality evaluation. 
5. Information reporting. 
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Harcum reviewed the literature and identi­
fied those data analysis procedures which 
have gained wide acceptance. He proposed 
that a data analysis protocol could be devel­
oped simply by combining those procedures. 
For example, most authors agree that the 
Mann-Kendall tau test (or variations) should 
be used for monotonic trend detection, and 
that the Sen slope estimator should be used for 
monotonic trend magnitude estimation. 

Harcum also proposed that a DAP could be 
developed by conducting simulation studies. 
Although he did not actually produce a protocol, 
Harcum conducted simulation studies which 
yielded important information which could be 
used in future protocol development efforts. 

From an economic standpoint, it is unrealis­
tic to expect monitoring system designers to 
conduct simulation studies for DAP develop­
ment. It is more practical for them to write 
protocols by combining procedures which 
have gained wide acceptance. 

Groundwater Quality: A Data Analysis 
Protocol (Ward et al., 1988). A data analysis 
protocol is presented which contains data 
preparation procedures, graphical evaluation 
techniques, and recommended statistical 
methods. The protocol was developed for 
analysis of ground water quality data at regu­
lated industrial facilities, but can be modified 
to analyze other environmental data. 

The protocol has several positive features. 
For one thing, it is easy to use and understand. 
Also, it uses flowcharts and demonstrates the 
application of the protocol with a case study. 

A disadvantage of the protocol is that it is 
aimed at industrial facilities in general, and is 
therefore too broadly focused for direct use in 
a specific monitoring program. Also, it does 
not explain the logic behind many of the rec­
ommendations which are given. 

Statistical Analysis of Ground-Water 
Monitoring Data at ReRA Facilities: Interim 
Final Guidance (U.S. EPA, 1989). This EPA 
document provides guidance on the selection, 
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use and interpretation of statistical methods 
to evaluate ground water quality monitoring 
data at RCRA (Resource Conservation and 
Recovery Act) facilities. The manual is a clari­
fication and expansion of amendments made 
to the RCRA regulations on October 11, 1988. 
Prior to those amendments, the regulations 
required that ground water data be analyzed 
by the Cochran's Approximation to the 
Behrens-Fisher Student's t-test (CABF). The 
1988 amendments eliminated the CABF pro­
cedure in favor of five different statistical 
methods. It is these five methods which are 
the main topic of discussion in the statistical 
guidance document. 

In many ways, this manual represents the 
state-of-the-art in ground water quality OAPs. It 
is the first (and only) widely accepted national 
effort to standardize the use of statistics in 
ground water quality monitOring. Several attrac­
tive features of the document are listed here: 

• The scope, purpose and intended users of 
the protocol are clearly defined. 

• Flowcharts and example calculations are 
used. 

• Background information is provided, 
such as an overview of the regulations. 

• Limitations of the protocol are stated. 
• A glossary of statistical terms is given. 
• Frequent references for further informa­

tion are provided. 
• The importance of considering environ­

mental factors such as hydrogeology and 
geochemistry in conjunction with statisti­
cal results is emphasized. 

• The importance of understanding statistical 
methods prior to using them is promoted. 

Even though the EPA statistical guidance 
document represents a major advancement 
over previous standardization efforts, there is 
still room for improvement. The document 
would be more practical if it could be used 
either as a program-specific protocol or as a 
framework for developing such protocols. It is 
too flexible and broadly focused to be used 
directly for a specifiC monitOring program, and 
it is not designed to be used as a framework for 



protocol development. Although the document 
emphasizes that site-specific factors must be 
taken into consideration when choosing, 
applying and interpreting statistical methods, 
it does not provide guidance on how to write a 
protocol which incorporates those factors. 

There are also some technical difficulties 
with the manual. It recommends parametric 
over nonparametric methods which is contra­
dictory to much of the current literature. (See 
discussion on nonparametric methods in 
Chapter 5.) Furthermore, it puts too much 
emphasis on hypothesis testing at the expense 
of estimation procedures, and it does not ade­
quately address the concept of statistical 
power (McBride, et aI., 1992). 

THE NEED FOR WATER QUALITY 
DATA ANALYSIS PROTOCOLS 

In the past, most research efforts in the area 
of water quality monitoring have been direct­
ed towards data collection rather than 
towards information generation. Attitudes are 
changing, however, and people are beginning 
to realize the importance of obtaining infor­
mation for decision-making. This attitude is 
reflected in a statement made by Schubel 
(1987) regarding estuarine environmental 
monitoring, "We should spend as much on 
analyzing data, converting them into informa­
tion and putting them in the hands of decision 
makers as we spend on collecting them." 

Many authors have recognized the need for 
standardized procedures to ensure that data 
obtained from monitoring programs can be 
translated into useful information which 
meets program goals. For example, the follow­
ing statement was made in a RCRA imple­
mentation study (U.S. EPA, 1990): 

We must define what the ReRA program wants to 
measure by developing enVironmentally based 
goals and objectives. Using these milestones, we 
must develop an information management plan 
that serves as the blueprint for collecting informa­
tion and for developing necessary systems ... We 
must assemble and analyze the data so that we 
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know where the greatest environmental risks from 
hazardous waste occur, and can measure the pro­
gram's success in terms of risks reduced or avoid­
ed, rather than the number of activities undertaken 
(permits issued, inspections performed, etc.). 

Based on the above statement, it appears 
that the use of data analysis protocols on 
RCRA projects could be quite beneficial. A 
DAP contains "environmentally based goals 
and objectives," serves as an "information 
management plan," and provides a means to 
"assemble and analyze data" to provide useful 
insights on the environment. 

ADVANTAGES OF USING WATER 
QUALITY DATA ANALYSIS PROTO­
COLS 

The use of water quality data analysis pro­
tocols can provide the following benefits: 

1. Communication between monitoring sys­
tem designers, environmental managers, 
and regulators is improved. 

2. Continuity of data analysis in the face of 
employee turnover is facilitated. 

3. Existing knowledge about water quality 
variables is incorporated into the moni­
toring program. 

4. Scientific understanding plays a more 
important role in decision making. 

5. Monitoring system designers, environ­
mental managers, and regulators develop 
a better understanding of the role of statis­
tics in obtaining water quality information. 

6. The subjectivity of statistical analysis is 
attenuated because statistical methods are 
specified prior to data collection. 

7. Those involved in data collection develop 
an understanding of the importance of 
producing high quality data. For exam­
ple, a DAP may explain why data should 
not be censored in the laboratory. 

8. Economic benefits are realized because 
only data which contributes to useful 
information is collected. Also, the maxi­
mum amount of information is obtained 
from the data which is collected. 



2 Protocols 

9. Because they are well documented, data 
analysis procedures can be reviewed by 
many knowledgeable people. Too often 
these procedures exist only in someone's 
head. 

10. The monitoring system design is driven 
by information goals rather than by poli­
tics or short term crises. 

11. Data characterization is conducted only if 
it will contribute to the generation of use­
ful information. For example, demonstra­
tion of normality is necessary only if the 
data is to be analyzed by parametric sta­
tistical methods. 

12. Final decisions made during regulatory 
negotiations are put in writing. 

13. Future investigators will know exactly 
how statistical results were obtained. 

14. Water quality information is extracted 
from the data as soon as possible. It is 
often feasible to use a particular statisti­
cal method in the initial stages of moni­
toring and then switch to a more power­
ful method as additional data are 
collected. For example, time series plots 
may be used to "analyze" trends until 
enough data is available to apply formal 
trend tests and/or estimation proce­
dures. 

15. Reliable information is obtained because 
the choice of statistical methods and inter­
pretation of results are carefully consid­
ered when the protocol is written. 

16. Sampling frequencies are chosen based on 
information goals. 

CHARACTERISTICS OF EFFECTIVE 
WATER QUALITY DATA ANALYSIS 
PROTOCOLS 

Several characteristics of ground water 
quality data analysis protocols which con-
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tribute to their effectiveness are identified 
below. The characteristics were chosen based 
on a literature review of protocols, an exami­
nation of water quality data analysis protocols, 
discussions with water quality professionals, 
and personal judgment. 

1. OAPs should be narrowly focused. 
2. They should include features which 

enhance their clarity and usefulness such 
as sample forms, glossaries and flowcharts. 

3. Accepted statistical methods should be 
used. 

4. Protocol limitations should be stated. 
5. There should be agreement among users 

regarding content of the OAPs. 
6. OAPs should address the following topiCS: 

• Identification of information goals. 
• Handling of data record attributes. 
• Graphical presentation of data. 
• Choice of data analysis methods. 
• Interpretation of results. 
• Information reporting. 
• Protocol revision. 

CONCLUSIONS 

A literature review of protocols from a vari­
ety of disciplines was conducted in order to 
gain a better understanding of how to develop 
water quality data analysis protocols (OAPs). 
The review produced a significant amount of 
useful information which is summarized in 
this chapter. 

The data analysis protocol concept in water 
quality monitoring is examined by reviewing 
five documents which attempt to standardize 
various facets of water quality data analysiS. 
The need for water quality OAPs and advan­
tages of using them are discussed. Finally, sev­
eral characteristics which contribute to effective 
water quality data analysis protocols are listed. 



Chapter 3 
. Identifying Information Goals 
for 
Water Quality Monitoring Systems 

INTRODUCTION 

Infonnation goals provide the basis for data 
analysis protocols. Data attribute handling, 
choice of statistical analysis methods, interpre­
tation of results, and reporting are all depen­
dent on what we want to know about water 
quality conditions. 

The importance of infonnation goal identifi­
cation in the design of water quality monitor­
ing systems has been noted by many authors. 

... it is simply a waste of money to monitor with­
out a clear relationship between the information 
to be produced and its use within the manage­
ment agency's decision making process (Ward et 
al.,1990). 

A clear statement of the program's monitoring 
goals, objectives and environmental needs, includ­
ing both narrow and broader long·term needs, is 
perhaps the most important section of the 
[environmental monitoring] strategy (U.s. EPA, 
1985). 

Many monitoring programs are ineffective 
because they devote too little attention to the for· 
mulation of clear goals and objectives ... (NRC, 
1990). 

We must define what the RCRA program wants 
to measure by developing environmentally based 
goals and objectives (U.s. EPA, 1990). 

Identification of information goals is a three 
step process. First, regulatory information 
goals are identified by meeting with regulators 
and by reviewing regulations. Then, monitor­
ing infonnation goals are established. Finally, 
if statistical methods are used to achieve the 
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monitoring goals, specific statistical informa­
tion goals are developed. Regulatory, monitor­
ing and statistical infonnation goals are all dis­
cussed in this chapter. 

REGULATORY INFORMATION GOALS 

The Role of Conversation 
Discussions between monitoring system 

designers, environmental managers, and regu­
lators are essential to fonnulation of regulato­
ry infonnation goals. It is difficult for one per­
son to identify infonnation goals by simply 
reading the regulations. For one thing, envi­
ronmental regulations are not written in spe­
cific enough tenns to be used directly as infor­
mation goals. It is left up to regulators and 
industry representatives to decide, on a site 
specific basis, what information is needed 
from the monitoring system and what the 
monitoring system can produce. 

Secondly, regulations are frequently not 
based on a true understanding of the problem. 
This deficiency is reflected in a remark made 
by a staff assistant in the U.S. House of 
Representatives: "It is a complete and utter dis­
aster when you begin to look at the data upon 
which some people on Capitol Hill are talking 
about basing [ground water quality] regula­
tion-a crap shoot in many cases ... We went 
into this issue thinking we had this area pretty 
we II boxed in and I've personal! y come out so 
confused I don't know where to go next" 
(Nelson and Dowdy, 1988). An understanding 
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of the problem is necessary for the identifica­
tion of regulatory information goals, and as 
stated by Wurman (1989), "Conversations are 
organic: their very structure is a give-and-take 
that allows understanding to happen." 

Reviewing the Laws and Regulations 
Regulations should be thoroughly reviewed 

prior to defining information goals. It may 
also be beneficial to review the applicable 
statutes in order to gain further insight into 
the intent of the regulations. 

Despite the fact that laws and regulations 
can be vague and unscientific, it is important 
to review them carefully because they provide 
the basic "rules of the game." Although there 
is often plenty of room for negotiation, final 
water quality decisions must be made within 
the framework of the regulations. 

Statutes are published in the U. S. Code, a 
multi-volume set of books which is divided 
into 50 titles. Each title covers a broad subject 
area. Most laws which pertain to ground water 
monitoring, including RCRA and CERCLA, 
can be found in Title 42-The Public Health 
and Welfare. 

Federal agency regulations are printed in the 
Code of Federal Regulations (C.F.R.), which is also 
a multi-volume set of books divided into 50 
titles. EPA regulations are published in Title 
4O-Protection of the Environment. The c.F.R. 
is updated daily in the Federal Register. 

Resource Conservation and Recovery Act 
(RCRA) 

General. The Resource Conservation and 
Recovery Act (RCRA) regulates handling and 
disposal of solid waste from the point of gen­
eration to ultimate disposal a orgensen, 1989). 
RCRA is the first comprehensive piece of fed­
eral legislation which addresses the problems 
of hazardous waste (Hall et aI., 1987). 
Protection of ground water from hazardous 
waste leachates is covered in detail by RCRA. 

The first federal law which required envi­
ronmentally sound solid waste disposal prac­
tices was the Solid Waste Disposal Act 
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(SWDA) of 1965 (U.s. EPA, 1990). The SWDA 
was "amended" (virtually rewritten) in 1976 
by the Resource Conservation and Recovery 
Act. The acronym "RCRA" generally refers to 
the 1976 Act as codified and amended (Cooke 
et aI., 1987a). Major RCRA amendments 
include the Used Oil Recycling Act of 1980, the 
Solid Waste Disposal Act Amendments of 
1980, and the Hazardous and Solid Waste 
Amendments (HSWA) of 1984 (Cooke et ai., 
1987a). The HSWA of 1984 substantially 
broadened the scope and coverage of RCRA. 

Ground Water Quality Information Goals 
Expressed in the RCRA Statute. The RCRA 
statute [U.S. Code, Title 42, Sections 6901-
6991(i») mandates that EPA promulgate regu­
lations to require ground water quality moni­
toring systems at a variety of hazardous waste 
sites. 

One of the eleven major objectives of the 
RCRA statute refers to the preservation of 
water resources: 

The objectives of this chapter are to promote the 
protection of health and the environment and to 
conserve valuable material and energy resources 
by-promoting the demonstration, construction .. 
and application of solid waste management, 
resource recovery, and resource conservation sys­
tems which preserve and enhance the quality of 
air, water, and land resources. 

EPA is authorized to require the owner of a 
hazardous waste site which "may present a 
substantial hazard to human health or the 
environment, (to monitor) to ascertain the 
nature and extent of such hazard." It is clear 
that EPA had very little guidance on what the 
information goals of ground water quality 
monitoring should be. 

Ground Water Quality Information Goals 
Expressed in the RCRA Regulations. RCRA 
hazardous waste regulations which apply to 
treatment, storage and disposal (TSD) facilities 
will be discussed in this report. The TSD regu­
lations make up the most detailed and complex 
category of RCRA regulations (Hall et ai., 1987). 
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There are 1'50 ground water regulations for 
interim facilities and for permitted facilities. An 
interim facilitv is one which has not yet received 
a permit but has complied with certain generic 
performance standards allowing it to remain in 
operation (U.S. EPA, 1990). The owner or opera­
tor (referred to collectively as "owner") of an 
interim status facility is responsible for interpre­
tation and application of ground water regula­
tions, whereas the owner of a permitted facility 
can refer to site-specific details in the permit 
(Hall et aI., 1987). Ground water regulations and 
information goals for both categories of TSO 
facilities are described below. 

• Interim status TSD facilities 
Ground water regulations for interim status 

TSO facilities are set forth in Title 40 of the 
Code of Federal Regulations, Part 265, Subpart F. 
There are two stages of monitoring for interim 
facilities: detection and, if necessary, assess­
ment monitoring. 

For detection monitoring, the facility owner 
is required to monitor for three sets of parame­
ters: 

1. Parameters characterizing the suitability of 
ground water as a drinking water supply. 

2. Parameters establishing ground water 
quality. 

3. Parameters used as indicators of ground 
water contamination (indicator parame­
ters). 

If comparisons of indicator parameters 
between upgradient and downgradient wells 
show a significant increase (or pH decrease), 
then the owner must resample and verify the 
results. If the results are still significant, the 
owner is required to move into the assessment 
monitoring phase. 

During the assessment monitoring phase, the 
owner is required, at a minimum, to determine, 
"(i) The rate and extent of migration of the haz­
ardous waste or hazardous waste constituents 
in the ground water; and (ti) The concentrations 
of the hazardous waste or hazardous waste con­
stituents in the ground water." Based on these 
determinations, the owner must decide if haz-
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ardous waste or hazardous waste constituents 
from the facility have entered the ground water. 

The process of identifying ground water 
quality information goals can begin by review­
ing the following statements given in Section 
264 Subpart F of the RCRA regulations: 

... the owner ... must implement a ground-water 
monitoring program capable of determining the 
facility's impact on the quality of ground water in 
the uppermost aqUifer underlying the facility ... 

[The] number, locations and depths [of downgra­
dient monitoring wells] must ensure that they 
immediately detect any statistically Significant 
amounts of hazardous waste or hazardous waste 
constituents that migrate from the waste manage­
ment area to the uppermost aqUifer . 

[The owner is required to determine] (i) The rate 
and extent of migration of the hazardous waste or 
hazardous waste constituents in the ground 
water; and (ii) The concentrations of the haz­
ardous waste or hazardous waste constituents in 
the ground water. 

• Permitted TSO facilities 
Ground water regulations for permitted 1'50 

facilities are set forth in Title 40 of the Code of 
Federal Regulations, Part 264, Subpart F. There are 
three stages of monitoring for permitted facili­
ties: detection monitoring and, if necessary, 
compliance and corrective action monitoring. 

For detection monitoring the owner is 
required to monitor for "indicator parameters, 
waste constituents, or reaction products that 
provide a reliable indication of the presence of 
hazardous constituents in ground water." The 
parameters or constituents to be monitored are 
specified in the facility permit. If the owner 
determines that there is statistically significant 
evidence of contamination for the specified 
chemical parameters or hazardous con­
stituents, then he or she must "immediately 
sample the ground water in all monitoring 
wells and determine whether constituents in 
the list of Appendix IX of Part 264 are present, 
and if so, in what concentration." If Appendix 
IX hazardous constituents are detected (a sec­
ond analysis is permitted), then they will form 
the basis for compliance monitoring. 
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For compliance monitoring, the owner must 
continue to monitor for Appendix IX con­
stituents and for each chemical parameter or 
hazardous constituent listed in the permit. In 
addition, the owner must determine whether 
regulated units are in compliance with the 
ground water protection standard specified in 
the permit. If the ground water protection 
standard is violated, then the owner must sub­
mit a "plan for a ground water monitoring 
program that will demonstrate the effective­
ness of the corrective action." 

A corrective action monitoring program 
must be as effective as the compliance moni­
toring program in determining compliance 
with the ground water protection standard. In 
addition, it must be capable of "determining 
the success of a corrective action program." 

The following statements given in Section 
264 Subpart F of the RCRA regulations can be 
used to begin the process of identifying infor­
mation goals: 

The ground-water monitoring system must ... 
yield ground-water samples from the uppermost 
aqUifer that: (1) Represent the quality of back­
ground water that has not been affected by leak­
age from a regulated unit; ... (2) Represent the 
quality of ground water passing the point of com­
pliance; (3) Allow for the detection of contamina­
tion when constituents have migrated from the 
waste management area to the uppermost aqUifer. 

The ground-water monitoring program must ... 
ensure monitoring results that provide a reliable 
indication of ground-water quality below the 
waste management area. 

The sample size shall be as large as necessary to 
ensure with reasonable confidence that a contami­
nant release to ground water from a fadlity will 
be detected. 

Use of any of the following statistical methods 
must be protective of human health and the envi­
ronment ... (1) A parametric analysis of variance 
(ANOVA) followed by multiple comparison pro­
cedures to identify statistically significant evi­
dence of contamination. 

The owner or operator must monitor for indicator 
parameters (e.g., specific conductance, total 
organic carbon, or total organic halogen), waste 
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constituents, or reaction products that provide a 
reliable indication of the presence of hazardous 
constituents in ground water. 

The owner or operator must determine whether 
there is statistically significant evidence of 
increased contamination at each monitoring well 
at the compliance point ... 

'" the owner or operator must establish and 
implement a ground-water monitoring program 
to demonstrate the effectiveness of the corrective 
action program. 

Comprehensive Environmental Response, 
Compensation and Liability Act (CERCLA) 

General. The Comprehensive Environmen­
tal Response, Compensation and Liability Act 
(CERCLA or Superfund) established a pro­
gram to identify, investigate, clean up, and 
impose liability for abandoned hazardous 
waste sites (Cooke et al., 1987b). CERCLA was 
passed on December 11, 1980 and was amend­
ed by the Superfund Amendments and 
Reauthorization Act (SARA) on October 17, 
1986 (Hall et aI., 1990). One of the primary rea­
sons for enactment of Superfund was that 
RCRA does not authorize EPA to respond to 
toxic releases at abandoned hazardous waste 
sites (Glass, 1988). Except for the "imminent 
hazard" proviSions, RCRA does not deal with 
abandoned facilities (Hall et aI., 1990). 

The 1980 Superfund statute was a hastily 
drawn-up, compromise bill characterized by 
"numerous ambiguities, omissions, and poorly 
drafted provisions" (Cooke et al., 1987b). A 
major controversy over the statute become 
known as the "How Clean is Clean?" question 
because Congress did not adequately address 
cleanup standards (Brown, 1990). The 1986 
SARA reflects Congressional intent to resolve 
ambiguities in the 1980 statute. As well as 
modifying the existing legislation, SARA also 
added several provisions including a section 
on cleanup standards (Brown, 1990). The sec­
tion on cleanup standards, however, is primar­
ily narrative rather than quantitative and 
leaves EPA considerable discretion to fill in the 
details. 
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Ground Water Quality Information Goals 
Expressed in the CERCLA Statute. The CER­
CLA statute (as revised by SARA) may be 
found in the U.S. Code, TItle 42, Sections 9601-
9675. Section 9605 requires EPA to incorporate 
the provisions of SARA which relate to remedi­
al action, into the National Contingency Plan 
(NCP). Specifically, CERCLA states that the 
NCP " ... shall establish procedures and stan­
dards for responding to releases of hazardous 
substances, pollutants, and contaminants ... " 

Ground water quality information goals are 
referred to in the following statements given 
in the CERCLA statute: 

In assessing alternative remedial actions, the 
President shall, at a minimum, take into account: 
... (B) the goals, objectives, and requirements of 
the Solid Waste Disposal Act. 

Such remedial action shall require a level or stan­
dard of control which at least attains Maximum 
Contaminant Level Goals established under the 
Safe Drinking Water Act ... and water quality crite­
ria established under section 304 or 303 of the 
Clean Water Act [where relevant and appropriate]. 

In determining whether or not any water quality 
criteria under the Clean Water Act is relevant and 
appropriate ... , the President shall consider the 
designated or potential use of the surface or 
groundwater ... 

As with RCRA, it is evident that EPA had lim­
ited guidance on what the information goals 
of ground water quality monitoring should be. 

Ground Water Quality Information Goals 
Expressed in the CERCLA Regulations. CER­
CLA implementation policy is codified by EPA 
in the National Contingency Pian (NCP) (U.S. 
EPA, 1988). The NCP specifies procedures, cri­
teria and responsibilities for conducting 
response actions at Superfund sites (Cooke et 
ai., 1987b). The most recent revision of the 
NCP can be found in Title 40 of the Code of 
Federal Regulations, Part 300. 

In general, CERCLA does not contain the 
detailed type of regulations which are in 
RCRA. Instead, CERCLA uses broad terminol­
ogy to outline the organizational structure and 
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procedures for responding to releases. 
Procedures for responding to hazardous sub­
stance release will be briefly discussed here in 
terms of the applications of ground water 
quality monitoring. 

Hazardous substance response is addressed 
in Subpart E of the NCr. There are two types 
of responses at Superfund sites: removal 
action or remedial action. Removal action 
refers to the "the cleanup or removal of 
released hazardous substances from the envi­
ronment." Remedial action refers to a perma­
nent remedy which is taken instead of, or in 
addition to, a removal action. Ground water 
monitoring generally plays less of a role for 
removal action than it does for remedial 
action. If the decision has been made to imple­
ment removal action and there will be a plan­
ning period of at least six months, then a sam­
pling and analysis plan is required for any 
environmental monitoring which is conduct­
ed. The plan "shall provide a process for 
obtaining data of sufficient quality and quanti­
ty to satisfy data needs." 

The NCP outlines several steps in the reme-
dial action process. The steps are as follows: 

1. Remedial site evaluation. 
2. Remedial investigation. 
3. Feasibility study. 
4. Remedy selection. 
5. Remedial design/ remedial action. 
The remedial site evaluation involves data 

collection and evaluation of releases of haz­
ardous substances, pollutants, or contami­
nants. Although existing data is relied upon 
heavily at this stage, limited field sampling 
may also be necessary. A sampling and analy­
sis plan is required if field sampling is con­
ducted. 

The purpose of the next step, remedial 
investigation (RI), is to "determine the nature 
and extent of the problem presented by the 
release." Because data collection and site char­
acterization are emphasized in the RI, ground 
water monitoring often plays a large role. 

The main objective of the feasibility study is 
to "develop and evaluate options for remedial 
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action." The feasibility study should make use 
of data gathered in the remedial investigation. 
Information from the feasibility study is then 
used to select a remedial action which pro­
vides the best balance of trade-offs based on 
several criteria. 

The remedial design results in a "detailed 
set of plans and specifications for implementa­
tion of the remedial action." A ground water 
monitoring network design may be included 
in the plans. Once the remedial action is in 
operation, ground water monitoring may be 
needed to assess the progress of remediation. 

The following statements given in the NCr 
can be used to begin the process of identifying 
information goals: 

The national goal of the remedy selection process 
is to select remedies that are protective of human 
health and the environment, that maintain protec­
tion over time, and that minimize untreated 
waste. 

[One of EPA's expectations which should be con­
sidered in developing appropriate remedial alter­
natives is tol return usable ground waters to their 
beneficial uses wherever practical, within a time 
frame that is reasonable given the particular cir­
cumstances of the site. 

The purpose of the remedial investigation {RII is 
to collect data necessary to adequately character­
ize the site for the purpose of developing and 
evaluating effective remedial alternatives . 

... a restoration activity will be considered admin­
istratively "complete" when: (i) Measures restore 
ground- or surface-water quality to a level that 
assures protection of human health and the envi­
ronment; ... 

MONITORING INFORMATION GOALS 

Monitoring information goals are qualita­
tive statements which describe specific infor­
mation expectations of the monitoring pro­
gram. They provide the underlying frame­
work around which the data analysis protocol 
is organized. 

MOnitoring information goals are more spe­
cific than regulatory information goals. For 
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example, a regulatory goal may be: assess 
progress of remediation, and the correspond­
ing monitoring goals may be: determine the 
lateral extent of contamination plumes and 
determine the mass of contaminants removed 
from each remediation area. 

Monitoring goals do not always have to cor­
respond to a regulatory goal. In some cases, 
management may need information from the 
monitoring program which is not required by 
law. Statistical goals generally evolve from the 
monitoring goals as the means for obtaining 
desired information are developed. 

Although identification of monitoring infor­
mation goals is site specific, there are a few 
underlying principles which are relevant in 
almost all situations. These are discussed here: 

1. Involve others in the formulation of moni­
toring information goals. 

During the process of formulating infor­
mation goals, the DAr writer should 
request input from others who are involved 
in the monitoring program. These may 
include regulators, managers, field sam­
plers, chemists and environmental compli­
ance staff. The chances for a successful pro­
tocol are greatly increased if a consensus can 
be reached regarding the content of moni­
toring information goals. 

2. Don't include statistical terminology in the 
statement of monitoring information 
goals. 

There are two main reasons why statistics 
should not be included in the statement of 
monitoring information goals. First, moni­
toring information goals are intended to be 
clear, concise statements which can be easily 
understood and debated by anyone who is 
involved in the monitoring program. Many 
people are not comfortable with the lan­
guage of statistics. 

The second and most important reason to 
exclude statistical terminology is that statis­
tics is a tool for achieving the monitoring 
information goaL It is not part of the goal 
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itself. For example, a monitoring goal may 
be: determine if concentrations of TCE at 
Well A are higher than background levels. 
Once the mOnitoring goal is established, sta­
tistics can be used to quantify the probabili­
ty that a given concentration difference for a 
given sample size is due to chance. 

3. Be prepared to revise. 
Formulation of information goals is a 

dynamic process. Ongoing communication 
between individuals involved with the moni­
toring program will most likely result in 
changes to the originally drafted goals. 
Economics can also be a factor. Once the 
goals are identified, it may become evident 
that there is not enough money available to 
achieve them all. Further revision of monitor­
ing information goals may then be necessary. 

STATISTICAL INFORMATION GOALS 

Statistical information goals are complete, 
detailed statements which describe statistical 
intent. An example is: detect monotonic, grad­
ual trends in TCE concentrations equal to the 
standard deviation of the detrended data at 
the 95 percent significance level over a five 
year period of quarterly sampling. 

Statistical information goals for hypothesis 
tests should include three of the following 
parameters: 

• Samp Ie size. 
• Significance level. 
• Probability that a given difference will be 

detected (i.e. power). 
• Magnitude of the differences to be detected. 

Assuming that the population standard devia­
tion can be estimated, the above parameters 
are related in such a way that any three of 
them will define the fourth. 

Ideally, a data analYSis protocol should be 
written prior to sample collection. If this is 
done, sampling size can be tailored to meet 
statistical information goals. The power can be 
determined for a particular sampling frequen-
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cy, and if it is not acceptable, the frequency can 
be adjusted. If the samples have already been 
collected, however, the protocol writer has 
limited control over power. 

l! is sometimes difficult to formulate a statisti­
cal information goal which closely matches the 
monitoring goal when using standard methods 
of hypothesis testing. For example, it is conven­
tional for the null hypothesis to reflect the status 
quo of "no difference." The actual hypothesis of 
interest, however, may be whether a particular 
variable falls inside or outside a range of practi­
cal importance. Issues related to hypothesis test­
ing are addressed in Chapter 5. 

Although the components of a statistical 
information goal will vary depending on the 
statistical method which is chosen, there are two 
principles which are generally applicable. First, 
the statistical information goal should be specif­
ic and complete. Secondly, it should reflect the 
monitoring goal as closely as possible given the 
restrictions of the statistical method. 

CONCLUSIONS 

The development of DAPs should be driven 
by the information goals. Decisions on how to 
handle data attributes, which statistical methods 
to use, and how to interpret and report results 
should be consistent with information goals. 

The process of identifying information goals 
is highly dependent upon communication 
between DAP users. It is a process which 
involves asking questions, sharing ideas, and 
developing an understanding of the problem. 

Of the three types of information goals 
which were discussed (regulatory, monitoring 
and statistical), regulatory information goals 
are the most difficult to identify because the 
pertinent regulations may be vague and com­
plex. Monitoring information goals, however, 
are the most important because they form the 
under/ying framework of the data analysis 
protocol. Statistical information goals should 
be specific and complete, reflecting the moni­
toring goals as closely as possible. 



Chapter 4 
Hand ling Attri butes of 
Water Quality Data Records 

INTRODUCTION 

Data record attributes are characteristics of 
data which can complicate statistical analysis 
(Bell and Delong, 1988). The following data 
record attributes are discussed in this chapter: 

• multiple observations 
• outliers 
• changing sampling frequencies 
• missing values 
• nonnormality 
• seasonali ty 
• censoring 
• serial correlation 
The attributes are generally discussed in 

order of their complexity. Nonnormality, sea­
sonality, censoring and serial correlation are 
given the most emphasis. 

MULTIPLE OBSERVATIONS 

Multiple observations occur when more 
than one analytical result is recorded for the 
same time period. This generally happens 
when replicate samples are collected for 
QA/QC purposes. QA/QC data should be 
stored and analyzed with the rest of the data. 
If a single value is needed for statistical analy­
sis, the multiple values should be averaged. 

OUTLIERS 

Outliers are values which are obviously 
higher or lower than the majority of data. They 
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may be caused by (Helsel and Hirsch, 1992): 
• A measurement or recording error. 
• An observation from a population not sim­

ilar to that of most of the data. 
• A rare event from a single skewed popula-

tion. 
Outliers which result from either of the last 
two causes are true observations and should 
not be discarded. 

Erroneous observations may be the result of 
several factors including sample contamina­
tion, failure of laboratory equipment, mistakes 
by the chemist, or sloppy data entry. Statistical 
methods can give misleading information 
when erroneous observations are included in 
the data analysis. If there is evidence to show 
that an outlier is an erroneous observation, it 
should be discarded. Otherwise, it should be 
retained and used in statistical analysis appli­
cations along with the other data (Harcum, 
1990). Erroneous observations can be reduced 
with an aggressive QA/QC program. 

CHANGING SAMPLING FREQUENCIES 

A variety of factors can cause changing 
sampling frequencies. Some of these factors 
are: 

• Increased or decreased funding. 
• Changing regulatory requirements due to 

employee turnover in the regulators' 
offices . 

• Modified management priorities resulting 
from the discovery of new contaminants. 
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Statistical methods which require equally 
spaced sampling intervals are not directly 
applicable to data which has been collected 
with changing sampling frequencies. The 
alternatives are to collapse or to exclude data 
so that all observations are equally spaced. 
Collapsing data will cause the periods with 
higher sampling frequencies to have lower 
variances. Excluding data causes information 
loss. 

Changing sampling frequencies should be 
prevented because of the difficulties they 
cause for statistical analysis. Writing a data 
analysis protocol prior to startup of the moni­
toring program is a crucial step towards pre­
vention. The DAP will help to ensure that 
sampling frequencies are chosen based on 
careful, long-range planning rather than spur­
of-the-moment decisions. Also, the DAP can 
be used to educate managers and regulators of 
the importance of equally spaced samples. 

MISSING VALUES 

Missing values can be either random or sys­
tematic (Harcum, 1990). Random missing val­
ues may occur due to factors such as equip­
ment failure, misplaced samples or test results, 
inclement weather, employee illness or war. 
Systematic missing values are often weather 
dependent. For example, wells may consis­
tently dry up during the summer or be inac­
cessible during the winter. Changing sampling 
frequencies also result in systematic missing 
values (Lettenmaier et aI., 1991). 

Some statistical analysis techniques which 
require regularly spaced samples in time or 
equal sample sizes, cannot be applied to data 
records which have missing values. 
Nonparametric methods can usually accom­
modate random missing data. Systematic 
missing values, however, can present special 
problems (Lettenmaier et aI., 1991). 

Replacing missing values with numerical 
estimates is not recommended due to possible 
bias of statistical results. For most situations, 
the best alternative is to use nonparametric 

21 

methods which can accommodate missing 
data. If there is a large percentage of missing 
values in a data record or if the missing values 
are systematic, the best alternative may be to 
collapse the data prior to statistical analysis. 

Harcum (1990) investigated the effect of 
missing values on trend detection. He 
addressed the following question: "How many 
missing values are needed in a data set before 
it is necessary to collapse the data from 
monthly to quarterly values?" Harcum made 
the following conclusions: 

• When applying the Mann-Kendall tau or 
Seasonal Kendall tau tests, collapse 
monthly data to quarterly values if more 
than 50 percent of the monthly data are 
missing. 

• When applying the Seasonal Kendall tau 
test with correction for serial correlation, 
collapse monthly data to quarterly values 
if more than 40 percent of the monthly 
data are missing. 

• When there are only five years of record 
and more than 50 percent missing values, 
there is not a good alternative. 

Harcum's recommendations are the most 
relevant to someone who is attempting to ana­
lyze existing data. A data analysis protocol 
writer should not have to deal with such large 
percentages of missing values if the monitor­
ing program is well planned and operated. 

Every effort should be made to prevent 
missing values because of the complications 
they cause for statistical analysis. An effective 
QA/QC program is necessary. Also, those 
involved in field sampling and laboratory 
analysis should realize the importance of pre­
venting missing values. 

NONNORMALITY 

Introduction 
Water quality data are frequently right 

skewed and therefore violate the assumption 
of normality. Most parametric statistical meth­
ods which are used to analyze water quality 
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data assume that the data are normally distrib­
uted. The power of such methods is sacrificed 
if the assumption of normality is violated. 

To avoid the problem of loss of power due 
to nonnormal data, investigators are turning to 
nonparametric techniques. For some applica­
tions, however, non parametric methods are 
not available. Also, regulations may require 
that parametric approaches be used. If para­
metric approaches are used, the distribution of 
the data should be investigated. 

Distributional Characteristics of Water 
Quality Data 

It is common for water quality data to be 
nonnormally distributed. They are often right 
(positive) skewed because they have a lower 
bound of zero with infrequent high values. 
The presence of nondetects accentuates right 
skewness. 

Several investigations of the distributional 
properties of water quality data records have 
been conducted. Some of these studies are 
summarized here. 

Montgomery et al. (1987) examined 172 
ground water quality records for normality.' 
They found that 106 (62 percent) of the records 
were nonnormally distributed. The nonnormal 
records tended to be right skewed with the 
degree of skewness varying widely. 

Gilliom and Helsel (1986) examined the sta­
tistical characteristics of trace constituent con­
centrations in samples collected at U.S. 
Geological Survey river water quality moni­
toring stations. For 482 uncensored data sets, 
sample skewness ranged from -0.8 to 5.2 with 
a median of 1.8. Only 6 percent of the values 
were negative. A normal distribution is, by 
definition, symmetric and therefore has a 
skewness of zero. Gilliom and Helsel's results 
show that water quality data are frequently 
right skewed. 

Loftis et al. (1989) checked water quality 
records from lakes for normality.2 They found 
that only about 20 percent of the records dis­
played significant nonnorrnality. They repeat­
ed their analysis after log transforming the 
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data and also after removing quarterly means. 
(Log transformations can sometimes make 
data more normal, and removing quarterly 
means can decrease the influence of seasonali­
ty thereby increasing the power of tests to 
detect nonnormality.) The authors concluded 
that neither action had much effect on the per­
centage of records which appeared to be non­
normal. 

Effects of Nonnormality on Statistical 
Analysis 

Two undesirable effects can occur when sig­
nificance tests which assume normality are 
app lied to nonnormal data. The first effect is a 
distortion of Type [ error (Snedecor and 
Cochran, 1989). For example, if the nominal 
significance level is set at 0.05 and the null 
hypothesis is true, Ho should be rejected 5 per­
cent of the time. If the assumption of normali­
ty is not satisfied, however, Ho may be rejected 
perhaps 3.6 percent or 8.5 percent of the time. 

The second effect which can occur when sig­
nificance tests which assume normality are 
applied to nonnormal data is loss of power 
(Conover and [man, 1976 and Helsel, 1987). 
Low power is a potentially serious problem 
because important changes or differences in 
water quality may go unrecognized. 

When tests are said to be robust against 
nonnormality, it generally means that nonnor­
mality does not cause much distortion of Type 
[ error (Conover and !man, 1976). For exam­
ple, because the nominal significance level of 

, Montgomery et al. (1987) used frequency his­
tograms, normal probability plots, the chi-squared 
goodness-of-fit test, and the skewness test to examine 
data records for normality. They used a significance 
level of 5% for the two hypothesis tests. 

2 Loftis et al. (1989) used two hypothesis tests to 
check for the presence of nonnormality. The null and 
alternative hypotheses for each test were: (1) Ho: 
skewness = 0 and H.: skewness * 0, and (2) Ho: kurto­
sis = 3.0 and H.: kurtosis * O. Both tests were applied 
at Significance levels of 10% and 2% (Le., 5% and 1% 
for each tail). 
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the t-test is preserved for large sample sizes, 
the t-test is often cited as being robust against 
nonnormality. This statement ignores the loss 
of power which can occur when the assump­
tion of normality is not satisfied (Helsel, 
1987). 

Ways to Deal With Nonnormality 
Potentially nonnormal data can be dealt 

with the following ways: 
• Use nonparametric statistical methods. 
• Test for normality and if the data is nor­

mal, use parametric methods. 
• Test for normality and if the data is non­

normal, use transformations. Proceed with 
parametric analysis if the transformed data 
is normal. 

• Do a sensitivity analysis to examine the 
effects of nonnormality on the test you 
want to use. If the effects are acceptable, 
proceed with the test. 

The first alternative, using nonparametric 
methods, has become the most accepted 
approach to statistically analyzing water quali­
ty data. One reason that non parametric meth­
ods are so popular is because they do not 
assume normality. (Additional advantages are 
discussed in Chapter 5.) Hollander and Wolfe 
(1973) made the following statement regarding 
the efficiency" of nonparametric methods: 

More often than not, the nonparametric proce­
dures are only slightly less efficient than their nor­
mal theory competitors when the underlying pop­
ulations are normal (the home court of normal 
theory methods), and they can be mildly and 
wildly more efficient than these competitors when 
the underlying populations are not normal. 

Bradley (1968) and Hirsch et al. (1991) have 
made similar conclusions regarding the effi­
ciency of nonparametric methods. 

The normality of data sets should be investi­
gated prior to conducting parametric tests .. If 
the data is shown to be nonnormal, transfor­
mations can be calculated and the data reexam­
ined for normality (Helsel, 1987). If the data is 
still nonnormal or if transformations are not 
desirable, a sensitivity analysis can be conduct-
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ed to quantify the effects of violating the nor­
mality assumption (Hirsch and Slack, 1984). 

There are at least two problems associated 
with tests for normality. One problem is that 
the tests have very low power for small «30) 
sample sizes (Helsel and Hirsch, 1988). This 
means that only extreme cases of nonnormali­
ty will be detected if the sample size is small. 
The second problem is that even if a test for 
normality has adequate power, acceptance of 
the null hypothesis does not prove that the 
data is normal (Helsel and Hirsch, 1992 and 
Montgomery and Reckhow, 1984). It merely 
indicates that there is not enough evidence to 
indicate nonnormality. 

Transformations are generally not desirable 
for multiple data sets (Hirsch et aI., 1991). 
Each data set should be examined separately 
to choose the best transformation. This can be 
quite time consuming. Also, if several trans­
formations are chosen, it can be difficult to 
compare statistical analysis results between 
data sets. Another drawback of transforma­
tions is that the transformed data must be test­
ed for normality (Helsel, 1987). It is not safe to 
assume that transformed data is automatically 
normal and therefore acceptable for analysis 
by parametric methods. 

In some situations, it may be appropriate to 
conduct a sensitivity analysis to quantify the 
effects of nonnormality on a particular para­
metric statistical method (Hirsch and Slack, 
1984). This is a costly approach, however, and 
may only be practical when very important 
data sets are analyzed by methods which do 
not have a nonparametric alternative. 

3 Efficiency is defined by Bradley (1968) as na rela­
tive term comparing the power of one test with that 
of a second test which acts as a standard of compari­
son ... " 

4 Methods to test for normality are presented in 
Chapter 5. They are also discussed in Harris et al. 
(1987) and Helsel and Hirsch (1992). 
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Recommendations 
The best approach for dealing with potential 

nonnormality in ground water quality data 
records is to use nonparametric statistical 
methods. In general, parametric methods 
should not be used unless the data can be 
shown to be normally distributed. 

SEASONALITY 

Introduction 
Seasonality is an important data characteris­

tic which should be addressed in ground 
water quality DAPs. As with serial correlation, 
there are no clear-cut, generally accepted 
guidelines on how seasonality should be dealt 
with when analyzing water quality data. This 
uncertainty regarding seasonality is evident in 
the EPA document Statistical Analysis of 
Ground-Water Monitoring Data at RCRA 
Facilities (U.s. EPA, 1989). Rather than proVid­
ing guidelines on how to deal with it, the EPA 
document refers the reader to a professional 
statistician if seasonality is suspected.' 

Seasonality in ground water quality vari­
ables can be caused by changes in several fac­
tors including infiltration from streams, appli­
cation of fertilizers, percolation from storm 
events, and irrigation practices (Montgomery 
et ai., 1987). Seasonality is the most prevalent 
in data collected from shallow or highly per­
meable aquifers (Montgomery et al., 1987). 

Definition 
Seasonality is the change in distribution of 

water quality variables which can be attrib­
uted to the time of year. A "season" can be any 
specified period of time but is generally one 
month (12 seasons per year) or three months (4 
seasons per year). Seasonality mayor may not 
occur as a consistent pattern. 

Effects of Seasonality 
Seasonality increases the variance of water 

quality data, thereby increasing the width of 
confidence intervals in estimation procedures 
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and decreasing the power of hypothesis tests. 
The majority of research which addresses the 
effects of seasonality on statistical analysis of 
water quality data, does so in terms of trend 
analysis. Seasonality can be important, howev­
er, in any statistical procedure which assumes 
stationary central tendency and dispersion. 

Detecting Seasonality 
Several approaches to checking for the pres­

ence of seasonality in water quality data are 
listed here: 

1. Visually inspect a plot of concentrations 
versus time (Montgomery et al., 1987). 

2. Look for annual cycles in a correlogram. 
Details on how to construct and interpret 
correlograms are given in Loftis et al. 
(1989). 

3. Determine if there are physical factors 
such as a shallow or permeable aquifer 
which could lead to seasonality (Ward 
and Loftis, 1989). 

4. Construct a box and whiskers plot for 
each season (Montgomery et ai., 1987). If 
the boxes do not overlap, then seasonality 
is probably a major source of data varia­
tion (Ward and Loftis, 1989). 

5. Group the data according to season and 
calculate the mean for each season. Then 
calculate the ratio of maximum to mini­
mum mean. The higher the ratio, the 
greater the seasonality. This can also be 
done with the standard deviation. (Loftis 
et a\., 1989). 

6. Group the data according to season and 
conduct a Kruskal-Wallis or ANOVA test 
(Montgomery et ai., 1987). 

The above methods involve a great deal of 
subjectivity. For example, one person may 
examine a time series and say that seasonality 

S The EPA document (U.S. EPA, 1989) does include 
tentative recommendations on how to correct for sea­
sonality when using control charts. The recommen­
dations are summarized, however, by referring the 
reader to a professional statistician. 
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is present whereas someone else may look at 
the same time series and conclude that there is 
no significant seasonality. Even hypothesis 
tests (option #6) provide questionable results 
regarding seasonality, primarily due to the 
effects of sample size." 

Ways of Dealing With Seasonality 
For both hypothesis testing and estimation, 

there are two commonly used approaches for 
dealing with seasonality in water quality data: 
(1) performing seasonal transformations prior 
to data analysis, or (2) using procedures which 
account for seasonality. 

Some authors recommend that the presence 
of seasonality be verified in each individual 
data record prior to application of either of the 
two approaches for dealing with seasonality. 
Other authors recommend that historical data 
records be examined and, if seasonality 
appears to be a significant factor, treat all sub­
sequent data records as being seasonal. 

A selection of publications which address 
ways of dealing with seasonality are discussed 
in the following paragraphs. 

Groundwater Quality: A Data Analysis 
Protocol (Ward et al., 1988). In their data 
analysis protocol, Ward et al. recommend that 

special methods for dealing with seasonality 
be app lied only if the presence 0 f seasonality 
has been verified in the data record to be ana­
lyzed. Recommendations regarding ways of 
dealing with seasonality which are incorporat­
ed into the protocol are summarized in Table 
4-1. 

Notice that for trend analysis and medians 
comparison of independent data, the authors 
recommend using deseasonalized data (i.e., 
seasonal transformations) in conjunction with 
methods which do not account for seasonality. 
For excursion analysis (i.e., testing for a shift 
in concentration over a short time frame), they 
recommend using the original data with meth­
ods which do account for seasonality. Another 
important item shown in Table 4-1 is that sea­
sonality is not a factor for medians comparison 
of paired data. 

Techniques of Trend Analysis for Monthly 
Water Quality Data (Hirsch et al., 1982). This 
article describes the development of the 
Seasonal Kendall test which is the most com-

6 See Chapter 5 for information on the difficulties 
involved with using hypotheses tests. 

Table 4·1. Methods for dealing with seasonality (Ward et al., 1988). 

trend analysis 

medians comparison: 
independent data 

medians comparison: 
paired data 

excursion analysis 

Kendall Tau 

Mann Whitney 

Wilcoxon signed rank 

compute p by season 

compute overall p 
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.·.~nality 

present deseasonalized 

absent original 

present deseasonalized 

absent original 

not applicable original 

original 
present 

absent 
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monly used method for trend detection in sea­
sonal water quality data. The Seasonal Kendall 
slope estimator, an estimator of trend magni­
tude for time series which display seasonality, 
is also described.7 

The authors used Monte Carlo simulations 
to compare the Seasonal Kendall test to: (1) 
linear regression on the original data, and (2) 
linear regresSion on deseasonalized data. They 
found that linear regression on the original 
data is the best method to use if the data is 
known to be normal and nonseasonal. If the 
data is shown via statistical tests to be normal 
and seasonal, the best method is linear regres­
sion on deseasonalized data. They concluded, 
however, that the Seasonal Kendall test is the 
best overall method for trend detection 
because water quality data is usually nonnor­
mally distributed and often seasonal. They 
also pointed out that tests for detecting non­
normality and seasonality are unsatisfactory 
particularly for small data sets. The Seasonal 
Kendall test has the added advantage over lin­
ear regression methods of being able to handle 
missing values and nondetects. 

An Evaluation of Trend Detection 
Techniques for Use in Water Quality 
Monitoring Programs (Loftis et al., 1989). 
Loftis et al. used Monte Carlo simulations to 
compare several methods of trend analysis, all 
of which handle seasonality in some way. 
Those methods are: 

• Analysis of covariance (ANOCOV). 
• Modified t-test. 
• Kendall-tau following removal of seasonal 

means. 
• Seasonal Kendall. 
• Seasonal Kendall with serial correlation 

correction.s 

• ANOCOV on ranks. 
• Modified "t" on ranks. 
Loftis et al. created data records with differ­

ent patterns and magnitudes of seasonality in 
both the mean and standard deviation. They 
also generated records with no seasonality. 
Out of the seven candidate tests, the authors 
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recommended ANOCOV on ranks and the 
Seasonal Kendall test because they appeared 
to have the highest power. 

Loftis et al. noted that ANOCOV on ranks 
has the benefit of being insensitive to the pat­
tern and magnitude of seasonal change in 
variance. Also, ANOCOV on ranks can be con­
ducted by using any statistical program which 
is capable of doing multiple linear regreSSion. 
Finally, the ANOCOV method can be 
improved, if desired, by adding covariates to 
achieve better power or to model trends more 
accurately. 

The Seasonal Kendall test has been used 
extensively to analyze water quality data. 
Also, it performs better than ANOCOV on 
ranks in the presence of serial correlation. For 
these reasons, the authors concluded that they 
have a slight preference for the Seasonal 
Kendall test. 

Multivariate Tests for Trend in Water 
Quality (Loftis et al., 1991c). Loftis et al. 
recently investigated the use of multivariate 
methods for analyzing seasonal, serially inde­
pendent water quality data.' They used Monte 
Carlo simulations to compare the performance 
of the following tests applied to 10 and 20 year 
data records. 

• A method based on work by Sen and Puri 
(1977) (SP). 

• Multivariate analysis of variance (MANO­
VA). 

7 Applications of the Seasonal Kendall test and the 
Seasonal Kendall slope estimator are documented in 
Alexander and Smith (1988), Lanfear and Alexander 
(1990), Walker (1991), and Lettenmaier et al. (1991). 

'The Seasonal Kendall test with correction for seri­
al correlation is discussed in the section on serial cor­
relation in this chapter. 

9 Multivariate methods for serially correlated sea­
sonal data are discussed in the section on serial corre­
lation in this chapter. 



Handling Attributes of Water Quality Data Records 4 

• A modified version of the covariance 
eigenvalue test!O which assumes indepen­
dence between seasons (i.e., no serial cor­
relation) (MCE). 

• A modified version of the covariance 
inversion test" which assumes indepen­
dence between seasons (MCn· 

The authors found that for normal errors, 
MANOVA had the highest power overall fol­
lowed very closely by the SP test. The MCE 
and MCI tests trailed behind in terms of power. 

For lognormal errors, the SP test performed 
as well or better than the MCE and MCI tests. 
MANOVA had the lowest power. 

Multivariate Trend Testing of Lake Water 
Quality (Loftis et al., 1991b). Loftis et al. used 
Monte Carlo simulations to compare univari­
ate and multivariate methods for detecting 
trends in seasonal water quality data. They 
considered only normal, serially independent 
errors in their study. 

The authors found that MANOVA and the 
MCI test were "generally more powerful than 
their univariate counterparts applied using the 
Bonferroni inequality."" Recommendations 
given by Loftis et al. are as follows: 

Based on these results we can make a very posi­
tive recommendation for general application of 
multivariate approaches ... Of the two multivariate 
methods studied, we recommend the Mel test for 
routine applications because of its robust perfor­
mance (as demonstrated elsewhere for rank-based 
methods in general) and its Simplicity. 

Recommendations 
Some general recommendations regarding 

the issue of how to deal with seasonality when 
analyzing ground water quality data are pre­
sented here. The recommendations are based 
on the preceding discussion, personal judg­
ment, and conversations with researchers and 
practitioners involved in ground water data 
analysis. 

1. Determine whether seasonality is signifi­
cant by examining historical data records. 
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Then, based on that examination, assume 
that all subsequent data records will 
either be seasonal or nonseasonal and 
write the data analysis protocol accord­
ingly. The alternative to this approach is 
to evaluate each new data record individ­
ually for the presence of seasonality. This 
alternative has two major drawbacks: (1) 
the methods which are available to detect 
seasonality involve a great deal of subjec­
tivity, particularly for small sample sizes, 
and (2) evaluating each new data record 
individually is time consuming. In addi­
tion, comparability of statistical results is 
enhanced if the same statistical analYSis 
technique is used throughout the study. If 
data records are evaluated individually, 
this implies that at least two statistical 
methods will be employed, i.e., one which 
deals with seasonality and one which 
doesn't. 

2. Avoid using seasonal transformations 
whenever possible. Instead, use proce­
dures which deal with seasonality direct­
ly. Seasonal transformations change the 
original data and may remove important 
information. Also, it can be difficult to 
interpret estimations made from trans­
formed data. 

3. If the information goal is to compare dis­
tributions, design the sampling program 
so that data can be paired. Seasonality is 
not an issue for tests which use paired 

10 The covariance eigenvalue test is discussed in 
the section on serial correlation in this chapter. 

11 The covariance inversion test is discussed in the 
section on serial correlation in this chapter. 

12 The Ilunivariate counterparts" are ANOV A and 
the Seasonal Kendall test respectively. The 
Bonferroni inequality is used to control the overall 
significance level by performing K univariate tests at 
a significance level of u/K for each test. 
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observations such as the Wilcoxon signed 
rank test. In addition, tests which used 
paired data are more powerful than those 
which use independent data. 

4. Use the Seasonal Kendall test if seasonali­
ty is suspected and the information goal 
is to detect trend. The Seasonal Kendall 
test has been used extensively to analyze 
water quality data. Also, it has been 
shown to have equivalent or higher 
power than alternative methods. The 
Seasonal Kendall test can easily handle 
missing, censored or tied data values. 

5. Keep informed of new developments in 
the use of multivariate procedures for 
trend analysis of seasonal water quality 
data. Recent studies on lake water quality 
data have shown multivariate methods to 
be superior to multiple applications of 
univariate tests. 

CENSORING 

Introduction 
Censoring occurs when chemists or data 

users replace numerical test results with quali­
tative statements. Factors which may lead to 
censoring include a lack of confidence in the 
numerical result and fear that the data may be 
misused. 

Terminology surrounding censoring is 
inconsistent, confusing and controversial. 
There is a question of whether or not censor­
ing should even occur because it complicates 
statistical analysis and causes information 
loss. Several methods are available, however, 
to statistically analyze censored data. 

A data analysis protocol writer needs to 
address several items regarding censoring 
including: 

• Should the laboratory be allowed to censor 
analytical results? 

• If detection limits or codes are used for 
reporting data, how are they defined? 
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• If data is censored by the laboratory, what 
statistical methods should be used to ana­
lyze it? 

• How should low-level data be reported by 
the data user? 

Definition and Causes of Censoring 
Censoring is the rep Iacement of numerical 

laboratory measurements with qualitative 
explanations such as NO, <T, less than LOD, 
or U. In water quality analysis, censoring gen­
erally occurs at very low concentration levels 
where measurement reliability is in question. 

Censoring can occur at two stages. The 
chemist may censor laboratory results in 
reports to the data user, and the data user may 
censor results in reports to management or 
regulatory agencies. 

Lambert et al. (1991) listed the following 
factors which can lead to censoring by the 
chemist: 

• The signal produced by the pollutant is 
too small for the instrumentation to dis­
criminate from background noise. 

• The instrumentation registers a low Signal, 
but the chemist decides that "unpolluted" 
environmental samples could give a simi­
lar signal. 

• A signal is registered, but certain criteria 
which identify the compound are not met. 

• The measurement lies below a threshold 
set by a client or laboratory. 

Censoring by the data user generally arises 
out of concern that individual data values will 
be misinterpreted. For example, a result of 0.10 
ppb of TCE could cause alarm even if is well 
below the method detection limit. Negative 
results may cause people to doubt the overall 
integrity of the monitoring program. 

If a single analyte is censored at more than 
one level, the data set is said to be "multiply cen­
sored." Multiple censoring Can happen when: (1) 
various analytical methods are used for different 
ranges of contaminant concentration, (2) the 
amount of sample dilution varies, or (3) detec­
tion limits decrease over time due to improved 
technology (Millard and Devere!, 1988). 
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Definition of Detection Limits 
Detection limits are boundaries set up by 

chemists based on criteria given to them by the 
data user. The criteria may include acceptable 
levels of Type I and Type II error. Detection 
limits help to describe the uncertainty associat­
ed with detecting low-level contaminants. 
They are an aid to interpreting the significance 
of single data values, whereas statistical analy­
sis is more appropriate for interpreting a group 
of values. 

Detection limits are the most useful if they 
are determined separately for each complete 
analytical protocol and each individual conta­
minant. A complete analytical protocol is a 
documented procedure which includes all 
steps in the measurement process beginning 
with sample preparation and ending with data 
presentation. 

There is a great deal of disagreement among 
scientists on how detection limits should be 
determined, what they mean, and how they 
should be used." The confusion is evident in a 

statement made by a committee which studied 
ACS and ASTM approaches to detection limits: 
" ... attempts by our task force on low-level data 
to make a rigorous conceptual and statistical 
comparison of the approaches have been 
unsuccessful. Even similar terms are defined in 
different, non-comparable ways, and additional 
terms and concepts are used which are unique 
to each approach" (Brossman et al., 1988). 

Most of the currently accepted definitions of 
detection limits have a statistical basis and can 
be placed into one of three categories: limits 
based on Type I error, limits based on Type II 
error, and "other" (Table 4-2). Frequently used 
definitions are presented in Table 4-3. Limits 
based on Type I and Type II errors are dis­
cussed below using the ASTM definitions. 

The criterion of detection (COD), which is 

13 The main authority on the subject of confusion 
over detection limits appears to be Currie (1968 and 
1988). 

Table 4-2. Umits for describing statistical properties of low-level data. 

ACS 
(Keith, 1991) 

ASTM 
(ASTM, 1990) 

EPA 
(CFR,1991) 

Private 
Consultants for 
Love Canal Study 

(Lambert et al., 
1991) 

. LitnitsBased On Limits Based·On 
• • • ".lYpe I En'Or lYpe II El'I"Qr 

LOD -limit of 
detection, or 

MOL-method 
detection limit 

COD - criterion 
of detection 

MDL-merhod 
detection limit 

C - decision 
liihit 

RDL - reliable 
detection limit 

LOD - limit of 
detection 

o - detection 
li;Ut 
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Other Limits 

LOQ.-limit of 
quanurauon 

PQ L - practical 
quantitation limit 

. 'Additi~rihl' 
·'R.M!ince,· 

(Keith, 1983) 

(Porter and Ward, 
1991) 

(Kirchmer, 1988) 

(Wilson, 1973) 

(Glaser et al., 
1981) 
(Keith, 1991) 

(Currie, 1968) 

(Currie, 1988) 
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Table 4-3. Definitions of limits for describing statistical properties of low-level data 

··.···.··.··t:l!hlt.·.····· .... 

LOO' 

RDL 

LOQ 

COD 

LaO" 

MOL 

The lowes[ concencra[ion level which can be de<ermined 
sca[isrically differen< from a blank a[ a specified level of 
confidence (Kei[h. 1991). 

The concentration level at which a detection decision is 
extremely likely to be made correctly (Kei[h. 1991). 

The level above which quantitative results may be obtained 
with a specified degree of confidence (Keith. 1991). 

The minimum quantiry (analy[ical result) which must be 
observed before it can be stated that a substance has been 
discerned with an acceptable probabiliry that the statement 
is true (ASTM. 1990). 

A concentration of twice the criterion of detection when it 
has been decided that the risk of making a Type II error is 
to be equal to a Type I error (ASTM. 1990). 

The minimum concentration of a substance that can be 
measured and reported with 99 percen< confidence that the 
analyte concentration is greater than zero and is deter~ 
mined from analysis of a sample in a given rnarrix contain­
ing the analyte (CFR. 1991). 

The lowes< level which can be reliably achieved within 
PQL specified limits of precision and accuracy during routine 

operation conditions (Keith. 1991) . 

• as defined by ACS, •• as defined by ASTM 

Often set at 3cr. 

Often set at 6cr. 
RDL; 2 LaD' if a ;~. 

Often set at lOcr. 

The COD muse always be 
accompanied by the scated 
probabiliry (ASTM. 1990). 

LOO"; 2 COD if a ;~. 

Based on variabiliry of ana­
lyce response ra[her than 
blank response (Kirchmer. 
1988). 

based on Type I error, is used to answer the 
question: is the substance present? The COO 
can be described in tenns of a hypothesis test: 

three analytical approaches presented in the 
guidelines. The relationship between the COD, 
a and the pdf of Ho are shown in Figure 4-1. 

Ho: the concentration is equal to zero 
H,: the concentration is greater than zero 
acceptable Type I error = a 
critical value = COD 

If an analytical result is greater than the 
COD, the substance is assumed to be present. 
If the result is less than the COD, there is not 
enough evidence to claim that the substance is 
present. 

The location of the COD can be detennined 
from the pdf of Ho' the standard deviation of 
the analytical process, and the choice of a. If 
ASTM guidelines are followed, the pdf of Ho is 
assumed to be normal and the standard devia­
tion of the process is determined by one of 
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The limit of detection (LaD), which is based 
on Type II error according to the ASTM defini­
tion, is used to answer the question: what is 
the lowest concentration which can be reli­
ably detected at a specific significance level? 
The LaD can also be described in terms of a 
hypothesis test: 

Ho: the concentration is equal to zero 
H,: the concentration is greater than zero 
acceptable Type I error = ex 
acceptable Type II error = ~, where 1 - ~ = LaD 
critical value = COD 

The location of the LaD can be determined 
from the pdf of H" the standard deviation of 
the analytical process, the choice of ~, and the 



Handling Attributes of Water Quality Data Records 4 

True analyte concentration = 0 

Probabilty 

Concentration COD 

Figure 4-1. Graphic depiction of the relationship between the criterion of detection (COD). (}. and the 
PDF of H,. 

Probabilty 

(}. 

Concentration COD=LOD 

Figure 4-2. Graphic depiction of the relationship between the criterion of detection (COD). (}. and 13 
when COD = LaD. 

Probabilty 

Concentration 

Figure 4·3. Graphic depiction of the relationship between the criterion of detection (COD). limit of 
detection (LaD). (}. and 13 when (}. = 13. 
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location of the COD. ASTM assumes that the 
pdf of H, is normally distributed and that the 
standard deviation is independent of concen­
tration. 

The relationship between the COD, LOD, a 
and 13 is shown in Figure 4-2 for the case of 
LOD = COD, and in Figure 4-3 for the case of 
a = 13. Notice that when LOD = COD, 13 is very 
high (0.5), and when C! = 13, LOD = 2 COD. 

The third category of detection limits (i.e., 
"other"), includes unique terms such as the 
LOQ and PQL which don't fit well into either 
of the first two categories. Both terms are 
defined in Table 4-3. 

The Effects of Censoring on Statistical 
Analysis 

Information loss is the most commonly cited 
effect of censoring. Porter and Ward (1991) 
examined the loss of information caused by 
measurement noise and calibration, and com­
pared it with information loss attributable to 
censoring. They found that, for the conditions 
they studied, uncensored samples provide 
more information about the central tendency of 
a parent distribution than censored data when 
censoring exceeds approximately 50 percent. 
Gilliom et al. (1984) examined the effects of cen­
soring on trend detection capability. They con­
cluded that: "For all classes of data evaluated, 
trends were most effectively detected in uncen­
sored data as compared to censored data even 
when the data censored were highly unreliable. 
Thus, censoring data at any concentration level 
may eliminate valuable information." 

The effects of censoring on statistical analy­
sis of water quality data depend on: (1) the 
degree of censoring, (2) the statistical method 
being employed, and (3) the quality of the data 
which has been censored. 

As the degree of censoring increases, the 
usefulness of methods for censored data 
(MCDs) declines. For example, the power of 
tests to detect trend decreases as the percent­
age of censoring increases (Gilliom et ai., 
1984). Also, when severe (close to 50 percent 
or more) censoring occurs, hypothesis tests 
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have little power to detect differences in cen­
tral tendency (Helsel. 1990). Porter et a\. (1988) 
showed that confidence intervals for the esti­
mates of the population mean get wider as the 
amount of censoring increases. Many of the 
MCDs simply cannot be used if censoring 
exceeds 50 percent (Helsel. 1990). 

The effects of censoring on statistical analy­
sis are also dependent on the statistical 
approach which is chosen. If simple substitu­
tion is used prior to estimation of summary 
statistics, the estimates may exhibit positive or 
negative bias depending on the substituted 
value. Substitution can strongly influence the 
results of hypothesis tests. For example, a 
hypothesis test may declare a Significant differ­
ence if NOs are replaced by zero, but no signif­
icant difference if NOs are replaced by the 
MOL. Deletion of censored values can cause 
hypothesis tests to have "little or no meaning" 
(Helsel. 1990). 

The third factor which influences the effects 
of censored data on statistical analysiS is the 
quality of the data (Gilliom et aI., 1984 and 
Taylor, 1988). If the analytical process used to 
generate the data was not in statistical control 
or if the bias is not predictable, then censoring 
may actually improve the results of statistical 
analysis. The obvious problem, however, is 
that factors which cause poor quality low-level 
data may also invalidate the higher concentra­
tion results. 

Reporting Low-Level Data 
Current recommendations which address 

how chemists should report their data are very 
much in favor of the no-censoring approach. 
Some of those recommendation are discussed 
here. 

ASTM (1990) recommends that any instru­
ment response below the COD (including neg­
ative values) be reported in conjunction with 
the "T" code. If no response is obtained, the 
"W" code should be reported along with the 
concentration which corresponds to the small­
est increment which can be read on the analyt­
ical device. 
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In 1983, ACS recommended that, "Signals 
below 3a should be reported as 'not detected' 
(NO) and the limit of detection should be 
given in parentheses" (Keith, 1983). In 1991, 
however, one of the major authors of the ACS 
guidelines effectively reversed this position by 
recommending that laboratories report all 
measurements (Keith, 1991). Keith (1991) also 
recommended that values below 30 be 
flagged, and that the MOL or LOD be reported 
with all measurements. 

The RCRA Ground Water Monitoring 
Technical Enforcement Guidance Document 
(U.S. EPA, 1985) states the following: "It is 
unacceptable to report only qualitative infor­
mation values that were measured below a 
limit of detection. The technical reviewer must 
ensure that numerical values accompany the 
LT designation, so that the data are available 
for analysis." 

The opinion that chemists should not censor 
data is also widely held among individuals. 
For example, see Lambert et al. (1991), 
McNichols and Davis (1988), Porter (1986), 

and Porter et al. (1988). The most widely held 
view seems to be that chemists should report 
measured concentration values together with a 
statement of uncertainty such as detection lim­
its or confidence intervals. 

Reporting of analytical results by data users 
is addressed by Keith (1991). He advocates the 
use of censoring if "the data user detennines 
that the data may potentially be taken and 
used beyond the limits defining its measure­
ment reliability." 

Methods for Statistically Analyzing 
Censored Data 

If the decision is made to request censored 
data from the laboratory, the data analysis 
protocol writer needs to become familiar with 
the various methods for censored data 
(MCDs). Recommendations given by Helsel 
and Hirsch (1992) regarding MCDs are sum­
marized in Table 4-4. Methods for estimating 
summary statistics of censored data sets are 
discussed in the following references: El­
Shaarawi (1989), Gilbert (1987), Harcum 

Table 4.4. Recommended methods for statistical analysis of censored data. Adapted from Helsel and Hirsch ( 1992) . 

•••• ..••... .••.•..•• '.' ' ..•.••.• < .· •••••.• ·Applicatlon 
•••• 

' ............. .' 
..Heth~j" 

•••••••••••••••• 

........• 

mean and standard deviation 0 robust probabiliry plot 
estimation of summary 

0 robust probabiliry plot statistics percentiles 
0 MLE 

compare two groups 0 rank sum test 

hypothesis testing: compare> two groups 0 Kruskal-Wallis test 

single detection limit 0 rank sum test 
>50% censoring 0 Kruskal-Wallis test 

• contingency tables 

hypothesis testing: compare two groups 0 tabit regression 

multiple detection limits compare> two groups 0 tobit regression 

<20% censoring 
0 Kendall's robust line 
0 tobit regression 

20% - 50% censoring 
0 tobit regression regresslOn 
• logistic regression 

> 50% censoring • logistic regression 
0 contingency tables 
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(1990), Newman et a1. (1989), and Porter and 
Ward (1991). Methods for analyzing multiply 
censored data sets are provided in Hughes 
and Millard (1988) and Millard and Deverel 
(1988). Porter (1986) is an informative source 
for a variety of MCDs. 

Recommendations 
Recommendations regarding censoring are 

as follows: 

1. Don't allow laboratory personnel to cen­
sor data. Instead, have them report the 
measured concentration values together 
with statements of uncertainty such as 
detection limits or confidence intervals. 

2. Use the uncensored results in statistical 
calculations. 

3. If the potential exists for misinterpreta­
tion of low level data, consider using cen­
soring in reports to management, regula­
tors or the public. 

4. If detection limits are used for any reason, 
make sure that both the determination 
and definition of the limits are well docu­
mented. 

5. If MCDs are used, choose methods which 
are appropriate for the degree of censor­
ing and the information goal, and which 
are robust to the assumption of normality. 
Also, be aware of the potential effects of 
censored data on the results of statistical 
analysis. 

6. Keep informed of the latest developments 
in analysis and interpretation of low-level 
data. 

SERIAL CORRELATION 

Introduction 
Water quality monitoring is often estab­

lished in a sequential fashion through time. 
Samples may provide redundant information 
if they are taken dose together relative to the 
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time period of interest. This redundancy of 
information is referred to as serial correlation. 
Serial correlation only becomes an issue when 
data is analyzed by statistical methods. It is 
not an intrinsic property of the data. 

Serial correlation is one of the most difficult 
issues which a protocol writer has to deal 
with. There is widespread uncertainty and 
controversy over how serial correlation should 
be handled when analyzing ground water 
quality data. Although serial correlation has 
been studied extensively by theoretical statisti­
cians, the practical application of this research 
is poorly developed. 

Definition 
Serial correlation is generally thought of as 

redundancy of information between adjacent 
observations in a time series. It can also occur 
between every other observation, every third 
observation and so on. 

Positive serial correlation is characterized 
by the tendency for high values to follow high 
values and low values to follow low values. 
Negative serial correlation occurs when high 
values consistently follow low values and low 
values follow high ones. Only positive serial 
correlation will be addressed in the following 
discussion because water quality data is much 
more likely to exhibit positive than negative 
serial correlation. 

Effects of Serial Correlation 
Estimation. Confidence intervals for esti­

mates of long-term parameters will be wider if 
the data is serially correlated than if it is inde­
pendent. Thus, a larger sample size is needed 
for correlated data than independent data to 
achieve the same level of precision (Le., the 
same confidence interval Width) (Ward et aI., 
1990). 

The phrase "long-term" refers to a character­
istic estimated from data covering only a small 
portion of the time period of interest (Loftis et 
ai., 1991a). For example, a person may want to 
estimate the annual mean concentration of 
selenium for the past 40 years. If the process is 
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assumed to be stationary, the long-term mean 
can be calculated by averaging samples taken 
at fixed intervals for a year. 

The assumption of stationarity, however, is 
unrealistic for most water quality applications 
(Loftis et aI., 1991a). It implies that the mean, 
variance, and level of serial correlation are the 
same throughout the time series (Gilbert, 
1987). The phrase "short-term" refers to a 
characteristic estimated from data extending 
over the time period of interest (Loftis et aI., 
1991a). For example, a person may be interest­
ed in the mean concentration of selenium for a 
particular year. The short-term mean annual 
concentration can be calculated by averaging 
samples taken at fixed intervals for that year. 
This estimate of the mean will have a narrow­
er confidence interval when the data is serially 
correlated than when it is independent (Loftis 
et aI., 1991a). 

In most references, a clear distinction is not 
made between long-term and short-term esti­
mates of parameters. Sample size and variance 
equations which account for serial correlation 
are generally derived based on long-term esti­
mates (for example, see Gilbert, 1987 p. 38). 
There are sample size equations which 
account for serial correlation when the infor­
mation goal is to estimate short-term charac­
teristics. These equations, however, are rather 
complex and are not widely published (Loftis 
et aI., 1991a). The appropriateness of long­
term versus short-term parameter estimates 
for describing water quality data is an area 
which needs further research. 

Hypothesis Testing. Serial correlation can 
distort the results of any statistical test which 
assumes stochastic independence of observa­
tions. Most hypothesis tests, including the 
nonparametric versions, have this assumption. 

The most commonly cited effect of positive 
serial correlation on hypothesis tests is infla­
tion of the Type I error." In other words, for a 
true null hypothesis, tests will reject the 
hypothesis at a higher rate than the nominal 
significance level (usually set at 5 percent). 
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The end result is that the number of "false 
positives" are higher than they should be. 

Characterizing Serial Correlation 
Three facets of characterizing serial correla­

tion are discussed here: (1) choosing a model, 
(2) calculating the magnitude of serial correla­
tion, and (3) testing for significance of serial 
correlation." 

The simplest and most commonly used 
model for analyzing serial correlation in 
ground water quality time series is the lag 1 
Markov model or AR(I). The model accounts 
for redundancy in the random term of adja­
cent observations (Harris, 1988).1' 

If the Markov (AR) model is chosen, serial 
correlation magnitude can be quantified by 
estimating the serial correlation coefficient, 
a(k). a(k) ranges from 0 to 1 for positive corre­
lation and from 0 to -1 for negative correlation. 
"0" is no correlation and "k" refers to the lag. 

Equations for estimating a(k) are given in 
Box and Jenkins (1970) and are applied to 
water quality data in Loftis et a!. (1989), 
Montgomery et al. (1987), and Sanders et al. 
(1983). Harris (1988) and Close (1989) investi-

14 Inflation of the Type I error in the presence of 
positive serial correlation has been noted for several 
types of tests including: Mann-Kendall and Seasonal 
Kendall tests (Harcum, 1990); t, sign and Wilcoxon 
tests (El-Shaarawi and Damsleth, 1988); hypothesis 
tests based on rank correlation coefficients such as 
Spearman's rho and Kendall's tau (Keller-McNulty 
and McNulty, 1987); multiple comparison procedures 
(Pavur, 1988); and ANOVA (Scariano and 
Davenport, 1987). 

15 It is commonly recommended that systematic 
characteristics such as seasonality and trend be 
removed from the time series prior to examination of 
serial correlation (Berryman, 1988; Montgomery and 
Reckhow, 1984; and Phillips et aI., 1989). Careful 
thought should precede removal of systematic char­
acteristics, however, so that valuable information is 
not discarded. 

16 Additional information on model fitting can be 
obtained from Box and Jenkins (1970). 
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gated the accuracy of estimates of the lag 1 
serial correlation coefficient. They both found 
the estimates to be too low. Harris (1988) tried 
using a procedure developed by Quenouille 
(1949) to correct for bias. She found the proce­
dure to be unsatisfactory. Close (1989) tested a 
method presented in Wallis and O'Connell 
(1972) to correct for bias in small samples 
(n<100). Monte Carlo simulations showed that 
the bias correction greatly improves the esti­
mate of a(1), particularly for small sample 
sizes (Close, 1989). 

One way to test for the significance of AR(k) 
serial correlation is to compare the estimated 
correlation coefficient to a confidence interval. 
If the estimate falls outside the interval, the 
correlation is significant (Harris et aI., 1987). A 
graphical analog to this procedure is the cor­
relogram. A correlogram is a plot of ark) ver­
sus k for all lags k (Phillips et aI., 1989). 
Confidence intervals are displayed as horizon­
tal lines on the correlogram. 

Harris et al. (1987) examined the power of 
the "confidence interval approach" to detect 
significant correlation of the AR(I) type. They 
found the power to be very low for small sam­
ple sizes. For example, the power to detect ser­
ial correlation in an AR(I) process with a(l) = 
0.3 and n = 20 is only 0.26. Harris et al. (1987) 
concluded that "roughly speaking, it is not 
likely that moderate amounts of serial correla­
tion can be detected in quarterly ground-water 
data without at least 10 years of sampling." 
Consequently, serial correlation is frequently 
not accounted for in ground water data analy­
sis procedures. 

Another method for determining the signifi­
cance of lag 1 Markov serial correlation is the 
rank von Neumann test (Gilbert, 1987). Harris 
(1988) compared the empirical power of the 
rank von Neumann test to that of the confi­
dence interval approach described above. She 
found the rank von Neumann test to be more 
powerful. 

Ways of Dealing With Serial Correlation 
Disregard It. One option for dealing with 
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serial correlation is to acknowledge that it 
exists but don't make any adjustments in sta­
tistical calculations to account for it. The impli­
cations of this approach were introduced in 
the section on "effects of serial correlation." 

Recall that positive serial correlation will 
tend to inflate the Type I error, thereby result­
ing in "false positives." This is generally an 
undesirable situation. In some instances, how­
ever, it may be appropriate to use a test which 
"mistakes" serial correlation for trend. 

It is important to realize that the difference 
between serial correlation and trend is really 
one of scale (Loftis et aI., 1991a). For example, 
a five year drift towards higher (or lower) val­
ues would probably be modeled as serial cor­
relation if the period of record were 30 years, 
and as trend if the period of record were only 
five years. If short term trends (relative to the 
length of record) are of interest from a man­
agement point of view, it may be appropriate 
to "ignore" serial correlation and use an unad­
justed test, accepting that some error has been 
introduced due to violation of the indepen­
dence assumption. 

Another consequence of disregarding serial 
correlation is that the confidence intervals on 
estimates of long-term parameters will be nar­
rower than they should be. This is an undesir­
able situation because it may lead to overcon­
fidence in the estimate. Conversely, the confi­
dence intervals on estimates of short-term 
parameters wi1l be wider than they should be. 

Serial correlation also distorts sample size 
calculations. If the goal is to estimate long term 
characteristics, the consequences of ignoring 
serial correlation are underestimation of sample 
size. On the other hand, if the goal is to esti­
mate short term characteristics, the presence of 
serial correlation will lead to overestimation of 
sample size. Although this is a safe scenario in 
that changes or differences will be easily detect­
ed, it can be expensive because unnecessary 
sampling and analysis is conducted. 

Avoid It. A commonly used tactic for deal­
ing with serial correlation is to avoid it by sam-
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piing so infrequently that serial correlation is 
insignificant. Montgomery et al. (1987) ana­
lyzed 118 quarterly ground water quality data 
records from sites in California, Colorado and 
Illinois. They found that only 17 of the well 
records exhibited significant serial correlation 
at the 5 percent significance level. The general 
consensus seems to be that most serial correla­
tion in ground water quality data can be avoid­
ed by taking quarterly samples (Harcum, 1990; 
Sara and Gibbons, 1991; and Ward et aI., 1988). 

The RCRA guidance document for statisti­
cal analysis of ground water data (U.S. EPA, 
1989) contains a chapter on how to choose 
sampling intervals using the Darcy equation. 
Sampling intervals based on that method 
range from daily to monthly. Although the 
intent of the method is to set sampling fre­
quencies which will result in independent 
data, it has been shown in the literature that 
monthly ground water samples can exhibit 
high degrees of serial correlation (Close, 1987). 
Given such a discrepancy, it is apparent that 
this subject needs further research. 

If data has already been collected, an 
approach similar to sampling infrequently is 
to collapse (i.e., combine) observations until 
they are no longer serially correlated. For 
example, monthly observations could be col­
lapsed to quarterly values. Harcum (1990) rec­
ommends using the mean to collapse data 
which has normally distributed errors, and the 
median for data which has lognormally dis­
tribu ted errors. 

One advantage of using collapsed data val­
ues is that they have a lower variance and 
therefore a higher precision than single values 
(Ward et al, 1988). For example, quarterly 
averages will be more precise than a single 
quarterly observation (Ward et aI., 1988). In 
general, this advantage does not outweigh the 
costs involved in collecting extra data. 

Use Adjusted Tests. Another alternative for 
dealing with serial correlation is to use adjust­
ed tests. Three types of adjusted tests are dis­
cussed here: (1) a method for using the Mann-
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Whitney and Spearman's rho tests in the pres­
ence of lag 1 Markov serial correlation, (2) a 
modification of the Seasonal Kendall test so 
that it could be used with serially correlated 
data, and (3) extensions of the Seasonal 
Kendall test for use with multivariate serially 
correlated data. 

Know ledge of the persistence structure of 
the time series is required in order to use any 
of these adjusted tests. This can present a 
problem because large data sets are needed to 
characterize serial correlation. To circumvent 
this problem, existing data is sometimes used 
to estimate serial correlation. 

• Adjustments for the Mann-Whitney and 
Spearman's rho tests 

Lettenmaier (1976) developed a method for 
using the Mann-Whitney and Spearman's rho 
tests in the presence of lag 1 Markov serial cor­
relation. Montgomery and Reckhow (1984) 
describe Lettenmaier's method in a clear and 
concise manner. A summary of that descrip­
tion is given below: 

Step 1. Calculate the test statistic using the 
Mann-Whitney test for linear trends or the 
Spearman's rho test for step trends. 
Step 2. Calculate the modified critical level. 
Step 3. Compare the modified critical level 
to the test statistic calculated in step 1. The 
null hypothesis is accepted or rejected 
under the same circumstances as for inde­
pendent data. 

The power can then be calculated using the 
concept of "equivalent independent sample 
size.1I17 

17 Lettenmaier (1976) introduced the concept of 
"equivalent sample size" for water quality trend evalu­
ation. [He based his research on work done by Bailey 
and Hammersley (1946).] For a given serially correlat­
ed time series, one can calculate the equivalent inde­
pendent sample size which will provide the same 
amount of information as the correlated time series. 
For example, if weekly samples are collected (S2/year), 
the effective independent sample size may only be 
3O/year due to the presence of serial ~orrelation. 
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Step 1. Calculate the equivalent indepen­
dent sample size. 
Step 2. Calculate the trend number. 
Step 3. Calculate the power. 
A major drawback of the adjusted Mann­

Whitney and Spearman's rho tests is that errors 
in estimation of the lag 1 serial correlation coef­
ficient can have a large impact on test results. 
Because accurate characterization of serial cor­
relation in water quality data is difficult (or 
sometimes impossible) to achieve, these adjust­
ed tests should not be included in a data analy­
sis protocol as routine procedures. They may be 
useful, however, as exploratory techniques in 
the initial stages of writing a OAP. 

• Modified Seasonal Kendall test 
Hirsch and Slack (1984) adjusted the 

Seasonal Kendall test so that it is robust 
against serial correlation. The modified test 
preserves the Type I error in the presence of 
serial correlation except in cases where the 
data records are short or have high levels of 
perSistence (Harcum, 1990; Hirsch and Slack, 
1984; and Loftis and Taylor, 1989). As men­
tioned previously, serial correlation causes 
most tests to have inflated significance !eve Is 
(Le., a high rate of false positives). 

Researchers have found that the modified 
Seasonal Kendall test has low power in some 
situations. Harcum (1990) showed that if there 
is no serial correlation, the modified test has 
lower power than either the Mann-Kendall or 
Seasonal Kendall tests. He noted that this dif­
ference in power decreases with increasing 
record length. Hirsch and Slack (1984) also 
found that the modified test is less powerful 
than the original Seasonal Kendall test when 
there is no serial correlation. Loftis and Taylor 
(1989) conducted extensive simulation studies 
on seven different trend detection tests. They 
concluded that the modified test is "much less 
powerful than the other tests except for very 
large trend magnitudes and/or long data 
records." 

Recommendations made by several authors 
regarding the use of the modified Seasonal 
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Kendall test are summarized below: 
1. Hirsch and Slack (1984) recommend that 

the test be used for data which arise from 
a stationary ARMA(I,I) process, with AR 
parameter F $ 0.6 and a record length of 
at least 10 years of monthly data. 

2. Harcum (1990) recommends that the mod­
ified test be used on the original (monthly 
noncollapsed) data when there are ten or 
more years of data and serial correlation. 
He found that the significance level is pre­
served for ten or more years of data for 
"all but the highest level of serial correla­
tion." The highest level of serial correla­
tion he used was u(l) = 0.8, whereas the 
second highest was u(l) = 0.6. 

3. Loftis and Taylor (1989) do not recom­
mend using the modified test for routine 
application unless the data records are 
very long, "say> 20 years of quarterly 
data." They point out that the modified 
Seasonal Kendall test may "ignore" 
trends of moderate magnitude and dura­
tion which may be important from a 
management point of view. For example, 
a 30 year record could contain several 5 
year trends, bu t unless a long term trend 
is present, the null hypothesis would not 
be rejected by the modified Seasonal 
Kendall test. Instead, the modified test 
would attribute the 5 year trends to serial 
correlation. 

• Multivariate tests 
A single multivariate test can be applied to a 

whole group of parameters rather than 
applying univariate tests to each individual 
parameter. Loftis et al. (1991 b) recommend the 
use of multivariate rather than univariate tests 
because multivariate tests usually have superior 
power. 

The use of multivariate testing methods to 
analyze water quality data is increasing. One 
reason for this increased popularity is that more 
water quality parameters are being analyzed in 
response to stricter regulations. Many of the 
parameters can be grouped together based on 
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their chemical compositions. Examples of such 
groups are common ions, nutrients and trace 
metals. 

Lettenmaier (1988) and Loftis et al. (1991c) 
performed Monte Carlo simulations on three 
types of multivariate tests which are able to 
handle serial correlation. These tests are dis­
cussed below: 

1. Covariance Sum (CS) Test: This is a mul­
tivariate extension of the univariate 
Seasonal Kendall test. If all trends are in 
the same direction, this is the most pow­
erful of the three tests. The CS test has 
low power, however, when both positive 
and negative trends are present. 

2. Covariance Inversion (el) Test: This 
method is based on work by Dietz and 
Killeen (1981). Lettenmaier (1988) and 
Loftis et al. (1991c) showed that the CI 
test has very low power in most situa­
tions. Unlike the CS test, it is not nega­
tively affected by trends of different 
Signs. 

3. Covariance Eigenvalue (CE) Test: The CE 
method was developed by Lettenmaier 
(1988) in an effort to improve the power of 
the CI test. Lettenmaier (1988) and Loftis 
et al. (1991c) demonstrated that the CE 
test generally has much better power than 
the CI test. The power of the CE test is not 
negatively affected by trends of different 
sign. 

Recommendations 
Despite the controversy and uncertainty 

which surrounds the issue of how to deal with 
serial correlation when analyzing ground 
water quality data, it is possible to make some 
general recommendations. 

1. Unless there is enough evidence to justify 
using a more complex model, assume that 
serial correlation can be described by a 
lag 1 Markov model. 

2. For sample sizes less than 100, adjust esti­
mates of the correlation coefficient, a(l), 
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for bias using the method demonstrated 
in Close (1989). 

3. To determine the significance of AR(k) 
serial correlation, use a correlogram or 
compare the correlation coefficient to a 
confidence interval. Use the rank von 
Neumann test to determine the signifi­
cance of AR(1) serial correlation. 

4. Be aware that serial correlation can occur 
even in quarterly data records resulting in 
a higher level of false positives than is 
indicated by the nominal significance 
level. 

5. State the time scale of interest when esti­
mating parameters, conducting hypothe­
sis tests, and determining sample sizes. 
The importance of serial correlation is 
dependent on the time scale of interest. 

6. Consider the possibility of sampling 
monthly at the beginning of a monitoring 
program to enable earlier characteriza­
tion of serial correlation. Monthly values 
can be collapsed to quarterly values for 
the purposes of detecting differences or 
changes. 

7. Don't use adjusted Mann-Whitney or 
Spearman's rho tests as routine proce­
dures in a data analysis protocol. 

8. Use the adjusted Seasonal Kendall test 
only for long data records with low to 
moderate serial correlation. Remember 
that the adjusted test will have lower 
power than most unadjusted tests when 
there is no serial correlation present. Also, 
be aware that the adjusted Seasonal 
Kendall test will tend to ignore short term 
trends which may be important from a 
management standpoint. 

9. When serial correlation is present and it is 
appropriate to use multivariate tests, use 
the covariance sum method if trends are 
homogenous and the covariance eigen­
value method if trends are of different 
signs. 
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CONCLUSIONS 

Data record attributes are characteristics of 
data which can complicate statistical analysis. 
Several attributes of water quality data records 
were reviewed in this chapter. 

Multiple observations generally occur 
when replicate samples are collected for 
QA/QC purposes. If a single value is needed 
for statistical analysis, the multiple values 
should be averaged. 

Outliers can either be true observations or 
erroneus results. If there is evidence to show 
that an outlier is an erroneous observation, it 
should be discarded. Otherwise, it should be 
retained and used in statistical analysis appli­
catIOns along with the other data. Erroneous 
observations can be reduced with an aggres­
sive QA/QC program. 

Changing sampling frequencies should be 
prevented because of the difficulties they 
cause for statistical analysis. Writing a data 
analysis protocol prior to startup of the moni­
toring program is an important step towards 
prevention. 

Some statistical analysis techniques cannot 
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be applied to data records which have missing 
values. An effective QAIQC program can 
reduce the number of missing values. 

. Wa.ter quality data is usually nonnormally 
dIstrIbuted. Tests which assume normality 
may have a distorted Type I error and/or low 
power when applied to nonnormal data. A 
simple solution to this problem is to use non­
parametric methods. 

Tests which effectively accommodate sea­
sonal data have been developed. In general, it 
is better to use these methods than to attempt 
to remove seasonality. 

Censoring of water quality data can cause 
problems with statistical analysis methods. 
These difficulties can be avoided by requesting 
the laboratory to not censor the data. 

Serial correlation is probably the most diffi­
cult attribute to understand and deal with. The 
distinction between serial correlation and trend 
is poorly understood. Also, the effects of serial 
correlation on statistical analysis depend on 
whether the investigator is interested in short­
term or long-term parameters, which is anoth­
er poorly understood topic. Finally, there are 
no methods of dealing with serial correlation 



Chapter 5 

Statistical Analysis of 
Water Quality Data: 
Choosing Methods and 
Analyzing Results 

INTRODUCTION 

A DAP writer should know how to choose 
and apply statistical data analysis methods, 
and interpret statistical results. Choosing 
methods and interpreting results is the focus 
of this chapter. Application of statistical meth­
ods, that is, the step-by-step mechanics of con­
ducting the procedures, is described extensive­
I y in other sources and is not covered here. 

This chapter begins with an overview of the 
general aspects of choosing statistical meth­
ods. Separate sections are then devoted to 
graphical techniques, point estimation, inter­
val estimation, and hypothesis testing. Each 
section includes brief summaries of some of 
the more commonly used procedures for ana­
lyzing water quality data. In addition, the sec­
tions on interval estimation and hypothesis 
testing contain detailed discussions on inter­
pretation of statistical results. 

CHOOSING STATISTICAL ANALYSIS 
METHODS 

Introduction 
Three elements which must be considered 

when choosing methods to statistically ana­
l yze water quality data are: 

1. Monitoring information goals. 
2. Data record attributes. 
3. Characteristics of the proposed data 

analysis method. 
All three elements are discussed below. 

It should be emphasized that this discussion 
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addresses only one form of data analysis: sta­
tistics. Depending on the monitoring informa­
tion goal. however, other forms of data analy­
sis such as physical modeling or simple calcu­
lation procedures may be more appropriate. In 
general. statistical data analysis uses the laws 
of probability in conjunction with information 
regarding the random nature of water quality 
variables to provide an understanding of cur­
rent water quality conditions. 

Monitoring Information Goals 
The first step in choosing a statistical data 

analysis method is to decide on a general sta­
tistical approach which matches the monitor­
ing information goal. Several possible statisti­
cal approaches for analyzing water quality 
data are listed here: 

• Compare two dependent groups. 
• Compare two independent groups. 
• Compare more than two dependent groups. 
• Compare more than two independent 

groups. 
• Determine the correlation between two 

continuous variables. 
• Examine the relationship between two 

continuous variables. 
• Observe and/or quantify behavior over 

time. 
• Compare categorical data. 
• Examine the relationship between continu­

ous and categOrical data. 
• Estimate population distributional charac­

teristics (e.g., mean, standard deviation). 
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• Verify frequency distribution assumptions 
(e.g., normality, equal variances). 

• Estimate the probability that a single data 
value comes from a specific population. 

• Estimate the probability that an interval 
contains the population value. 

• Examine dependence structures in a data 
record (e.g., seasonality, serial correlation). 

Once a statistical approach is selected, a specif­
ic method can be chosen based on data record 
attributes and the characteristics of candidate 
methods. 

Data Record Attributes 
The importance of considering data record 

attributes when choosing methods to statisti­
cally analyze water quality data is widely rec­
ognized. For example, section 25-8-204.5 of the 
Colorado Water Quality Control Act states: "In 
establishing water quality standards using sta­
tistical methodologies or in requiring the use 
of statistical methodologies for permit or 
enforcement purposes, statistical methodolo­
gies used must be based on assumptions that 
are compatible with the water quality data" 
(CDOH,1992). 

The following data record attributes were 
discussed in Chapter 4: 

• multiple observations 
• outliers 
• changing sampling frequencies 
• missing values 
• nonnormality 
• seasonality 
• censoring 
• serial correlation 

Each attribute will be briefly addressed here in 
terms of its relationship to choosing statistical 
analysis methods. More detailed information 
is presented in Chapter 4. 

In the case of multiple observations and 
changing sampling frequencies, the data 
should be adjusted to match the statistical 
method rather than vice versa. Multiple values 
should be averaged if a single value is needed 
for statistical analysis. Data which was collect­
ed with changing sampling frequencies should 
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be collapsed or excluded prior to using statis­
tical methods which require equally spaced 
sampling intervals. 

The choice of statistical method for data 
which contains outliers should be based on the 
information goal. Parametric procedures 
should be used if the magnitude of outliers is 
important. This will usually occur when deal­
ing with units of mass. For most water quality 
applications, however, it is preferable to 
downplay the influence of outliers by using 
nonparametric methods. Nonparametric 
methods are also useful for analyzing data sets 
which contain missing values. 

Water quality data is often nonnormally dis­
tributed. Tests which assume normality may 
have a distorted Type I error and/ or low power 
when applied to nonnormal data. Water quality 
data analysts frequently use nonparametric 
methods to circumvent this problem. 

Statistical tests have been developed which 
effectively accommodate seasonal data. In gen­
eral, it is better to use these methods than to 
attempt to remove seasonality. The Seasonal 
Kendall test or ANOCOV on ranks can be used 
if the information goal is to detect trend. If the 
information goal is to compare distributions, it 
is best to design the sampling program so that 
data can be paired. Seasonality is not an issue 
for tests which use paired observations such as 
the Wilcoxon Signed rank test. In addition, 
tests which used paired data are more power­
ful than those which use independent data. 

Censoring can be eliminated by requesting 
laboratory personnel to not censor data. Not 
all water quality managers, however, sub­
scribe to the no-censoring approach. If that is 
the case, the DAP writer must choose statisti­
cal methods which can handle the expected 
proportion of censored data. 

When serial correlation is present and it is 
appropriate to use multivariate trend tests, the 
covariance sum method can be used for homo­
geneous trends and the covariance eigenvalue 
method can be used for trends of different 
signs. The most common test for analyzing 
serially correlated univariate data is the 
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adjusted Seasonal Kendall test. The adjusted 
test should only be used for long data records 
with low to moderate serial correlation. It is 
not appropriate to use the adjusted Mann­
Whitney or Spearman's rho tests as routine 
procedures in a DAP because errors in estima­
tion of the lag 1 serial correlation coefficient 
can have a large impact on test results. 

Consideration of data record attributes 
when choosing a statistical analysis method 
can present a "chicken-and-egg" problem for 
the DAP writer. A major theme of DAPs is that 
data analysis methods are chosen prior to data 
collection. How then, can attributes be identi­
fied and used to choose statistical methods if 
the data has not yet been collected? 

Nonnormality, seasonality and serial corre­
lation can be predicted by examining historical 
data records from the same site or even at a 
similar site. 

An alternative to inspecting historical data 
records is to write a conditional data analysis 
protocol. Two or more options could be pro­
vided for statistically analyzing monitoring 
data. After the data is collected, an option 
could then be chosen based on observed data 
characteristics. There are two problems with 
this approach: (1) subjectivity and complexity 
of the protocol is increased, and (2) ground 
water quality data is often difficult to charac­
terize from small sample sizes. 

Characteristics of the Data Analysis Method 
Point Estimation. The performance of esti­

mators is often gauged by their precision and 
bias (Berthouex and Hau, 1991). Precision 
refers to variability. A precise estimator has 
the ability to estimate a population parameter 
which is very close to the true population 
value from just one sample (Zar, 1984). This 
property is particularly important in ground 
water quality monitoring because repeated 
samplings are prohibitively expensive. 

The second criterion which is commonly 
used to evaluate estimator performance is the 
degree of bias. Bias refers to inaccuracy caused 
by persistent error. If a large number of sam-
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pies are collected from one population, esti­
mates of population parameters will eventual­
ly converge to the true value if the estimator is 
unbiased. A biased estimator will be consis­
tently too high or too low regardless of sample 
size. (Zar, 1984) 

Hypothesis Tests. The performance of 
hypothesis tests is frequently gauged by true 
significance level and/or power (e.g., Conover, 
1976; Harcum, 1990; and Loftis et aI., 1989). The 
true significance level is determined with simu­
lation studies. Tests are conducted on a large 
number of data sequences obtained from a pop­
ulation which meets the criteria of the null 
hypothesis. For example, if the purpose of the 
test is to detect trend, the true significance level 
would be determined by testing samples from a 
population which has no trend. The true signifi­
cance level is the percentage of times that the 
null hypotheSiS is rejected (Loftis and Taylor, 
1989). It is compared to the nominal signifi­
cance level which is preassigned to the test and 
is commonly equal to 5 percent. The most desir­
able situation occurs when the true and nomi­
nal significance levels are equal (Montgomery 
and Loftis, 1987). If they are not equal, the true 
significance level will be unknown in actual 
(non-simulated) conditions. Incorrect conclu­
sions cou ld therefore be reached. 

Some authors believe that power-the ability 
to detect departures from the null hypothesis-­
is the most important indicator of performance 
(e.g., Helsel and Hirsch, 1988). Parametric pro­
cedures can have low power if they are applied 
to nonnormal data (Helsel, 1987). This loss of 
power is critical from a water quality standpoint 
because it may result in nondetection of impor­
tant differences or changes. Nonparametric pro­
cedures are often used because they are more 
powerful than their parametric counterparts for 
data which is nonnormally distributed. 

The relative power of two test methods can 
be determined by simulation studies. Each test 
is applied to a large number of samples 
obtained from a population with a known 
departure from the null hypothesis. If test A 
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has a significantly higher proportion of 
detects" than test B, then test A is said to be the 
most powerful (Harcum, 1990). It is not valid 
to compare the power of tests which have dif­
ferent true significance levels (Harcum, 1990). 

Nonparametric Methods 
Nonpararnetric methods for estimation and 

hypothesis testing are frequently chosen to 
statistically analyze water quality data. Several 
characteristics of non parametric methods 
which make them practical for water quality 
data analysis are listed here: 

• They are more powerful than their para­
metric counterparts for data sets which are 
nonnormally distributed. \9 

• Nonparametric procedures are resistant to 
outliers. 

• They can be used to analyze data records 
which contain some censored values. 

• They are usually easier to understand and 
apply than their parametric counterparts. 

• Nonparametric methods can handle miss­
ing values. 

• They can be applied to ordinal and some-
times nominal data. 

References which discuss the advantages of 
nonparametric methods include: Daniel (1991), 
Gibbons (1985), Helsel (1987), and Hollander 
and Wolfe (1973). 

Validity of Simulation Studies 
Many recommendations presented in the lit­

erature regarding choice of statistical methods 
are based on simulation studies. These recom­
mendations should be viewed with discretion 
for a couple of reasons. The researcher has 
total control over the conditions of the study, 
including such factors as distribution shape, 
type and magnitude of trends, and sample 
size. If conditions in nature do not match those 
of the simulation study (they never will exact­
ly), then recommendations based on the study 
may not apply. Consequently, it is advanta­
geous for DAP writers to review the condi­
tions of the original simulation study. 

Also, the criteria which researchers use to 
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evaluate the effectiveness of statistical meth­
ods may have flaws which are not yet realized. 
DAP writers should, therefore, keep informed 
of the latest advances in statistical analysis of 
water quality data and be prepared to revise 
their protocols accordingly. 

Additional Considerations 
Although information goals, data attributes 

and method characteristics are the most fre­
quently dted considerations for choosing statis­
tical methods, other factors may also be impor­
tant. One factor is the time scale of interest. This 
can be particularly critical if the data is serially 
correlated (Loftis et ai., 1991a). 

Economics, politics and regulatory require­
ments commonly affect the choice of statistical 
data analysis methods. 

Another consideration is the number of data 
sets to be analyzed. If only a few data sets are 
to be analyzed, it may be appropriate to use 
sophisticated statistical techniques such as 
multiple linear regression. Simpler methods 
may be preferable, however, if a large number 
of data sets are expected (Loftis et ai., 1987).\9 

The importance of results can playa role in 
choice of statistical methods. For example, if a 
general awareness of water quality behavior 
over time is all that is needed, complex time 
series analysis would be inappropriate. 

Any factors which influence the choice of 
statistical data analYSis methods should be 
stated in the DAP. 

GRAPHICAL METHODS 

Introduction 
Graphical methods are used by water quali­

ty data analysts for a variety of applications 

18 A "detect" is a statistically significant result. The 
test is able to detect the departure from the null 
hypothesis. 

19 Chapter 4 includes a detailed discussion of this 
topic. 
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such as: 
1. Tools for choosing statistical analysis 

techniques. 
2. A means to interpret statistical results. 
3. "Stand-alone" data analysis methods. 
4. A format for presenting information. 
Application #1 should not be included as a 

routine procedure in a data analysis protocol 
because an underlying philosophy of DAPs is 
that statistical methods should be chosen prior 
to data collection. A DAP writer could, how­
ever, use graphical techniques to understand 
the general characteristics of water quality 
data which has already been collected at the 
site. This would provide the writer with valu­
able information regarding the type of statisti­
cal analysis methods which should be speci­
fied in the DAP. 

Applications #2, #3 and #4 are appropriate 
for use in data analysis protocols. The impor­
tance of application #2, using graphical meth­
ods to interpret statistical results, is empha­
sized in many texts. For example, Ward et a1. 
(1990) assert: "In general, it is recommended 
that a first step in data analysis would be to 
look at data in a graphical format in order to 
gain an understanding of water quality behav­
ior which can be used in interpreting statistical 
results." Helsel and Hirsch (1992) make a simi­
lar statement: "Computing statistical measures 
without looking at a plot is an invitation to 
misunderstanding data ... " 

In some cases, data can be analyzed by 
graphical techniques alone (Le., application 
#3). Graphical methods are particularly useful 
for analyzing limited data records. For exam­
ple, a time series plot can be more informative 
and less misleading than a formal time series 
analysis if data records are short. 

Application #4, using graphical methods to 
present information, will not be specifically 
addressed here. Almost any graphical method 
which is useful for analyzing data and inter­
preting results, however, can also be used to 
present information. Presentation graphiCS are 
examined in Helsel and Hirsch (1992, chapter 
16), Schmid (1983), and Tufte (1983 and 1990). 
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A few of the most effective and practical 
graphical techniques are discussed herein. The 
following topics are addressed for each 
method: (1) potential applications, (2) types of 
information produced, (3) benefits and draw­
backs, and (4) modifications. In most cases, the 
actual mechanics of constructing the graph are 
not given, but appropriate references are 
included. Graphical methods for analyzing 
multivariate data are not covered. References 
which address graphs for multivariate data 
include Hem (1985) and Helsel and Hirsch 
(1992). 

Examples of completed graphs are provided 
for most techniques. 2D The same data set­
hypothetical magneSium concentrations-was 
used for Figures 5-1 through 5-5. The right­
skewed nature of the data is evident in all five 
figures. 

Histograms 
Histograms are a common graphical tech­

nique for displaying the frequency distribu­
tion of either discrete or continuous data." 
Histograms consist of several vertical bars, 
usually of equal width and variable height. 
The area of each bar is proportional to the 
number or fraction of data points falling into 
one of several categories or intervals (Helsel 
and Hirsch, 1992). A typical histogram is 
shown in F igu re 5-1. 

Histograms are useful for portraying the gen­
eral shape and spread of sample distributions. 
They are not appropriate for detailed analyses. 

Discrete data is better suited for analysis by 
histograms than is continuous data. Forcing 
continuous data into discrete groups can con­
ceal important properties of the distribution. 
Furthermore, the visual impression of his-

20 All graphs for the section on graphical methods 
were generated on Statgraphics® v.s. 

21 Some authors use the term "histogram" for con­
tinuous data and "bar graphs" for discrete data (e.g., 
Weinberg and Goldberg, 1990). 
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Figure 5.3. Stem and leaf diagram. 
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tograms constructed from continuous data is 
dependent upon the number of intervals 
which are chosen. Discrete data often has nat­
ural groupings such as "the number of water­
supply wells exceeding some critical yield 
grouped by geologic unit" (Helsel and Hirsch, 
1992). 

Histograms are the most appropriate for 
observing a single set of data. They are too 
imprecise to be of much value for comparing 
multiple data sets. If they are used to compare 
two or more groups of data, however, they 
should be arranged one above the other rather 
than side-by-side or overlapping (Helsel and 
Hirsch, 1992). 

A variation of the histogram is the 
rootogram which was developed by Tukey in 
1972 (Wainer and Thissen, 1981). The areas of 
the vertical bars in a rootogram are propor­
tional to the square root of the counts rather 
than the counts themselves because the roots 
are usually better behaved statistically (Wainer 
and Thissen, 1981). Both histograms and 
rootograms can be hung from the best-fitting 
normal distribution rather than plotted from 
the horizontal axis (Statgraphics®, 1991 and 
Waiver and Thissen, 1981). If the data are nor­
mally distributed, the bottoms of the bars will 
be randomly scattered closely about the hori­
zontal axis (Statgraphics", 1991). A hanging 
histogram is depicted in Figure 5-2. 

Stem and Leaf Diagrams 
Stem and leaf diagrams resemble labeled 

histograms on their sides. They display more 
information than a histogram, however, 
because each data value is plotted individual­
ly. Stem and leaf diagrams are the most useful 
for analyzing single, small data sets. They can 
only be applied to continuous data. An exam­
ple of a stem and leaf diagram is presented in 
Figure 5-3. 

Wainer and Thissen (1981) describe stem 
and leaf diagrams as "the most important 
device for the analysis of small batches of 
numbers to appear since the t-test." Stem and 
leaf diagrams allow the data analyst to do the 
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following: 
• Visually examine the distributional prop-

erties of the data. 
• Calculate the range of data values. 
• Check for gaps and outliers. 
• Compute order statistics. 
There are many different ways to construct 

stem and leaf diagrams. They are quite versatile 
and can easily be modified for a particular 
application. A comprehensive reference on con­
structing different types of stem and leaf dia­
grams is Tukey (1977). A simple explanation of 
how to produce a basic stem and leaf diagram 
is presented in Weinberg and Goldberg (1990). 

Boxplots 
Boxplots-often called box-and-whisker 

plots-provide a concise summary of several 
basic data characteristics. They are particularly 
useful for comparing changes in distributional 
characteristics of multiple data sets. Because 
they are highly informative, yet simple to con­
struct and interpret, boxp lots have become a 
popular graphical method in many disci­
plines. They are widely used among water 
quality practitioners. 22 

Numerous variations of the boxplot have 
been developed." The most commonly used 
version is probably the standard boxplot. A 
standard boxplot is shown in Figure 5-4 and 
its construction is briefly described here. The 
description is based primarily on work by 
Helsel and Hirsch (1992) and Velleman and 
Hoaglin (1981). 

22 Applications of boxplots can be seen in: Barton 
et al. (1987), Dubrovsky and Deverel (1989), Hirsch 
and Gilroy (1985), Howell and El-Shaarawi (1991), 
Kinnamon (1993), Mcleod, et al. (1983), Montgomery 
et al. (1987), Newell et al. (1990), and Richards (1989). 

2J References which describe variations of the box­
plot include: Becketti and Gould (1987), Benjamini 
(1988), Tukey (1977), Vellernan and Hoaglin (1981), 
and Ward et al. (1990). Frigge et al. (1989) discuss the 
variety of definitions used for boxplots in statistical 
software packages. 
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The standard boxplot is divided into several 
regions. The box itself contains the center 50 
percent of the data (i.e., the interquartile 
range). Assuming the box is constructed hori­
zontally as shown in Figure 5-4, the median is 
indicated as a vertical line within the box. The 
left end of the box is the 25th percentile and 
the right end is the 75th percentile. The inner 
fences are located at a distance of 1.5 times the 
width of the interquartile (IQ) range from 
either end of the box. The outer fences are 
located at a distance of 3.0 times the width of 
the IQ range from either end of the box. The 
fences are not actually marked on the box­
plots, but are used to classify individual data 
points as described below. 

Horizontal lines-sometimes called 
whiskers-extend from either end of the box 
to the outermost value within the inner fence. 
Data points which fall between the inner and 
outer fence are called "outside values" and are 
individually plotted (Velleman and Hoaglin, 
1981). Outside values occur fewer than one 
time in 100 for a normal distribution (Helsel 
and Hirsch, 1992). Data points which falI out­
side the outer fence are calIed "far outside" 
values and are plotted individually with a dif­
ferent symbol than what is used for the out­
side values (Velleman and Hoaglin, 1981). Far 
outside values occur less than once in 300,000 
times if the distribution is normal (Helsel and 
Hirsch,1992). 

For a single data set, boxplots provide infor-
mation regarding: 

• Central tendency. 
• Spread. 
• Skewness. 
• The presence or absence of possible out-

liers. 
For multiple data sets, boxplots indicate how 
data distributions change over time and 
between locations. 

Probability Plots 
Probability plots are used to observe the 

goodness-of-fit between a set of data and a 
theoretical distribution such as the normal, 
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lognormal or gamma distributions (Helsel and 
Hirsch, 1992). Although similar information 
can be obtained from histograms, deviations 
from a straight line are easier to see than devi­
ations from a curved line (Helsel and Hirsch, 
1992). 

Probability plots can be produced by plot­
ting quantiles of the sample data against quan­
tiles of the standardized theoretical distribu­
tion. Alternatively, they can be plotted on 
probability paper. Statgraphics@ follows the 
"probability paper" approach (see Figure 5-5). 
Details of both types of probability plot con­
struction are presented in Helsel and Hirsch 
(1992). 

Probability plots are most commonly used 
to compare data to the normal distribution. 
Departures from normality show up as partic­
ular patterns on a normal probability plot. If 
the plot is arranged so that the horizontal axis 
represents the variable of interest as shown in 
Figure 5-5, the following rule of thumb can be 
used: outliers at the left side of the plot will 
tend to fall above the linear pattern of the 
data, and outliers at the right side of the plot 
will tend to falI below the linear pattern. (The 
opposite is true if axes are arranged as shown 
in Helsel and Hirsch, 1992). 

Based on this rule of thumb, the following 
interpretations can be made: 

• Right skewed data will have a concave 
pattern as shown in Figure 5-5. 

• Left skewed data will have a convex pat­
tern. 

• Data with heavy tails" will have an "5" 
shaped pattern . 

• Data with light tails will have a reversed 
"5" shaped pattern. 

These interpretations are in general agreement 
with du Toit et al. (1986). 

Normal probability plots are the graphic ana­
log to the probability plot correlation coefficient 

24 "Heavy tails /I refers to the occurrence of more 
data points in the tails than would be expected for a 
normal distribution. 
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test (Helsel and Hirsch, 1992). The two tech­
niques are quite effective when used in con­
junction with one another. The Shapiro-Wilk 
test is also related to probability plots (Helsel 
and Hirsch, 1992). 

Time Series Plots 
TllTIe series plots are simply graphs of time 

versus a variable such as nitrate concentration. 
They allow the data analyst to visually exam­
ine the time series for the following (McBride 
and Loftis, 1991 and Phillips et aI., 1989): 

• Seasonal variation. 
• Trends in all or part of the data. 
• Presence of extreme values. 
• Homogeneity of data. 
• Completeness of the data record. 
• Serial correlation (to a certain extent). 
TllTIe series plots are generally used in con­

junction with quantitative statistical tech­
niques. Quantitative techniques, however, can 
be misleading if applied to short data records. 
Time series plots are an excellent "stand 
alone" approach for analyzing short data 
records, particularly if data characteristics are 
poorly defined. 

A technique known as smoothing can be 
used to eliminate some of the variability in the 
data, thereby making trends and cycles easier 
to detect. Smooths are intuitively appealing 
because they are calculated solely from the 
data. A model is not assumed. They are partic­
ularly useful for making sense out of large 
amounts of data.25 Fox et al. (1990) used a type 
of smooth known as LOWESS to observe 
trends in freshwater inflow to San Francisco 
Bay from the Sacramento-San Joaquin Delta. 

ESTIMATION 

Point Estimation 
A point estimate is a single number "best 

guess" of some characteristic of the popula­
tion. A function which is used to obtain an 
estimate is called an estimator. Most point esti­
mates can be transformed into interval esti-
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mates merely by adding confidence intervals. 
Selected point estimators which are used for 

the analysis of water quality data are present­
ed in Tables 5-1, 5-2 and 5-3. Table 5-1 includes 
estimators for distributional properties. Table 
5-2 summarizes estimators for the difference in 
location based on two samples. Estimators for 
correlation, linear dependence and trend are 
presented in Table 5-3. Hypothesis tests which 
are commonly used in conjunction with a spe­
cific estimator are identified in the tables. 

Interval Estimation 
Introduction. There are three main types of 

interval estimation procedures: 
1. Confidence intervals. 
2 Prediction intervals. 
3. Tolerance intervals. 

Definitions and applications of each type of 
procedure are presented below, with refer­
ences for further information. 

Confidence Intervals. Confidence intervals 
are used routinely in the analysis of water 
quality data. A confidence interval is "a state­
ment of the probability or likelihood that the 
interval contains the true population value" 
(Helsel and Hirsch, 1992). For example, a data 
analyst can be 95 percent confident that the 
true population parameter falls between the 
upper and lower limits of a 95 percent confi­
dence interval." 

Confidence intervals are generally used in 
conjunction with point estimates. Equations for 
calculating confidence limits have been devel­
oped for most of the estimators listed in Tables 
5-1, 5-2 and 5-3. The width of the confidence 
interval indicates how much reliance should be 
placed on the point estimate. Similar informa­
tion can be obtained from the yeslno results of 

25 See Helsel and Hirsch (1992) and Tukey (1977) 
for additional information on smooths. 

26 An excellent discussion on the interpretation of 
confidence intervals is presented in Jaeger (1990). 



5 Statistical Analysis of Water Quality Data: Choosing Methods and Analyzing Results 

Table 5-1. Estimators of distributional properties. 

mean 

median 

standard deviation 

interquartile range 

coefficien t 
of skewness 

quartile skew 
coefficient 

quantiles 

proportions 

measure of 
location 

measure of 
location 

measure of 
spread 

measure of 
spread 

measure of 
symmetry 

measure of 
symmetry 

Appropriate for computing units of 
mass. 

Resistant to outliers. 

Unstable and inflated in the presence 
of outliers. 

Resistant to outliers. 

Outliers can produce misleading 
results. 

Resistant to outliers. Uses only central 
50 percent of data. 

Xr, the pth quantile = that value below 
which lies 100p% of the population. 
Percentile = 100 x quantile 

p" = the proportion of the population 
which exceeds the value X.' 

Table 5-2. Estimators of difference in location based on two samples. 

Estimator or 
Property To Be 

Estimated· .. ·. 

difference 
between mean 
values 

Hodges-Lehmann 
estimator 

mean difference 

Hodges-Lehmann 
estimator 

median difference 

.. ,::':::',:.:':::':,:,::,::,:,: ... ', 

P.t>~Ii~ati~n • Comments ................ .... ... .' . .., . 

independent 
samples Used with the two-sample t-test. 

independent The median of all possible pairwise 

samples differences between the two samples. 
Nonparametric. Used with the rank-sum test. 

dependent' 
samples 

Applicable where differences are 
symmetric and normally distributed. Used 
with the paired t-test. 

dependent' 
The median of all allowable pairwise 

samples avera8es. Nonparametric. Used with the 
signe -rank test. 

dependent' Used with the sign test. 
samples Nonparametric. 

• "Dependent" refers to samples which can be paired. 
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Helsel and 
Hirsch, 1992 

" 

" 

" 

Gilbert, 1987 
Berthouex and 
Hau, 1991 

Gilbert, 1987 

••••••••••• 
> ••.....•..••.. 

Helsel and 
Hirsch, 1992 

Hollander and 
Wolfe, 1973 

Helsel and 
Hirsch, 1992 

Hollander and 
Wolfe, 1973 

Helsel and 
Hirsch, 1992 



Statistical Analysis of Water Quality Data: Choosing Methods and Analyzing Results 5 

Table 5-3. Estimators of linear dependence and monotonic trend. 

Ildm;¢i)r9r i · .•.•..••.•....•.•..•..•..•..•..•........•..•. ··.·.·.·.··i ..•.•.•••.•.•.•..•..•..•.....•.....•.....•.....•......•.....•. 
P ............. ········Tb a ~ ....... ···Ikad .•. ·. O.··.R.·.· .• • .•.•. ···· •.. ·········>··c66161.6q···· 
r£1m'~drrL .... Jt· ....•......•... 

The following can be estimated: 
ordinary least 
squares (OiS) 
regression' 

linear 
dependence 

slope, intercept, y given Xi' residuals for 
observation i, and mean square error. 
Assumes that residuals are normally 
distributed. 

Helsel and 
Hirsch, 1992 

Theil slope 
estimator'" 

linear 
dependence 

More efficient than the OiS estimator when 
residuals are nonnormal. Nonparametric. 
Used with the Theil test for slope. 

Helsel and 
Hirsch, 1992 
Dietz, 1989 
Hollander and 
Wolfe, 1973 

Sen slope 
estimator 

monotonic 
trend 

Measures monotonic relationships. 
Nonparametric. Allows missing values. 
Used with the Mann-Kendall test. 

Gilbert, 1987 

Seasonal Kendall 
slope estimator 

monotonic 
trend 

Similar to the Sen slope estimator. 
Accounts for seasonality. Used with the 
Seasonal Kendall test. 

Gilbert, 1987 

II- Can be used as a measure of trend magnitude if explanatory variable is time_ 

a hypotheSis test accompanied by the appro­
priate operating characteristic curve (Natrella, 
1972). Confidence intervals, however, are much 
easier to construct and interpret than operating 
characteristic curves. Another important 
advantage is that confidence intervals, unlike 
operation characteristic curves, are presented 
in the same units as the original observations 
(Natrella, 1972). 

Confidence intervals are also used to detect 
outliers, for constructing quality control charts, 
and for determining sample sizes necessary to 
achieve a stated level of precision (Helsel and 
Hirsch, 1992). Control charts are discussed in 
the IBM data analysis protocol. 

Tolerance Intervals and Prediction Intervals. 
Tolerance and prediction intervals are both used 
in ground water data analysis to determine 
whether a new monitoring result is consistent 
with background levels. These two methods 
allow concentration values to be considered 
individually while still keeping the false posi-

55 

tive rate at a reasonable level (Gibbons, 1991a). 
Contrary to what is stated in the RCRA sta­

tistical guidance document (U.s. EPA, 1989), 
there are important differences between toler­
ance intervals and prediction intervals. These 
differences should be considered when decid­
ing which of the two procedures to use. 

Tolerance and prediction intervals can be 
either one-side or two-sided. For the purposes 
of this discussion, one-sided intervals will be 
assumed because they are appropriate for 
determining if a ground water contaminant is 
higher than background levels. The following 
discussion is based primarily on a paper by 
Gibbons (1991a). 

A tolerance interval states that a given per­
centage of all future measurements will fall in 
the interval with a specified level of confidence, 
if in fact, there is no difference from back­
ground levels. Therefore, a one-sided, 95 per­
cent tolerance interval with 99 percent coverage 
means that a data analyst can be 95 percent 
confident that 99 percent of all future measure-
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ments in an uncontaminated well will fall in (or 
below) the interval. 

There are two key points in the definition of 
tolerance intervals. First, tolerance intervals 
allow a specified number of false positives. In 
the example given above, the analyst could be 
95 percent confident that 1 of the next 100 mea­
surements will be a false positive. Secondly, tol­
erance intervals are independent of the future 
number of measurements. The "coverage" (99 
percent in the above example) refers to a speci­
fied proportion of the entire population. 

A prediction interval states that all of a 
given number of future measurements will 
fall in the interval with a specified level of con­
fidence, if in fact, there is no difference from 
background levels. Therefore, a one-sided, 95 
percent prediction interval constructed for the 
case of k = 20, means that the analyst can be 95 
percent confident that all of the next 20 mea­
surements from an uncontaminated well will 
fall in (or below) the interval. 

There are two important pOints in the defin­
ition of prediction intervals. The first is that no 
false positives are allowed. The price which is 
paid for this 100 percent coverage (i.e., no false 
positives) is an elevated false negative rate. In 
other words, important differences may not be 
detected. The second key point is that the 
width of the prediction interval depends on 
the number of future measurements for which 
it was constructed. The interval is narrower 
for fewer measurements. This feature makes 
prediction intervals appropriate for small 
monitoring programs. 

Gibbons (1991a) developed a procedure 
using both tolerance and prediction limits 
which is particularly useful for situations where 
a large number of statistical comparisons are 
conducted on a regular basis. The procedure 
takes advantage of the strong points of both 
approaches and minimizes their weaknesses. 
Basically, Gibbons recommends that a tolerance 
interval be used initially, followed by the use of 
a prediction interval on results obtained from 
wells which failed the initial analysis. 

Additional references on tolerance and pre-
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diction intervals which may be useful to the 
DAP writer include: Gibbons (1987a, 1987b, 
1990, 1991b), Gibbons and Baker (1991), Helsel 
and Hirsch (1992), Loftis et al. (1987), Mee 
(1990), and Sara and Gibbons (1991). 

HYPOTHESIS TESTING 

Introduction 
Hypothesis testing is used extensively in the 

analysis of water quality data. Like estimation, 
hypothesis testing provides a means for con­
sistency. Each analyst who uses the same data 
and the same test will come up with identical 
answers. Unlike estimation, hypothesis testing 
provides yes/ no answers regarding the statis­
tical significance of the evidence. "P-values" 
are a measure of strength of that evidence. 

Hypothesis testing has historically been the 
basis for statistical inference. Researchers from 
many disciplines, however, are beginning to 
question the value of hypothesis tests (e.g. 
Graybill and Iyer, 1993). A few authors recom­
mend abandoning them altogether in favor of 
interval estimation procedures. The most com­
mon opinion, though, seems to be that 
hypothesis tests are important tools if they are 
applied correctly. 

The following discussion is organized 
around the steps involved in conducting a 
hypothesis test. These steps are: 

1. Choose the appropriate test. 
2. Establish the null and alternative 

hypotheses. 
3. Decide on an acceptable value for <1.. 

4. Compute the test statistic from the data. 
5. Compute the p-value. 
6. Reject the null hypothesis if p ~ <1.. 

7. Report the results. 
8. Interpret the results. 

Choose the Appropriate Test 
The general principles involved in choosing a 

statistical analysis method were reviewed at the 
start of this chapter. Specific hypothesis tests 
which are used to analyze water quality data 
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are presented in Tables 5-4 thru 5-8. Although 
the tables are not exhaustive, they do contain 
the majority of hypothesis tests routinely used 
for water quality data analysis. 

data and then choose a one-sided or two-sided 
test. Typical alternative hypotheses are: 

• The difference in means", 0 (two-sided). 
• The correlation coefficient", 0 (tWO-Sided). 

Establish the Null and Alternative 
Hypotheses 

• The slope coefficient> 0 (one-sided). 
• The lag 1 serial correlation coefficient > 0 

(one-sided). 
The null hypothesis, Ho' is the hypothesis 

which is being tested. It is generally formulat­
ed to represent the status quo of no change or 
differenceY Some examples of typical null 
hypotheses are: 

27 There has been some debate over the validity of 
formulating the null hypothesis to represent the sta­
tus quo of no change or difference. Usually. the real 
hypothesis of interest in water quality is whether a 
particular variable falls inside or outside a range of 
practical importance (McBride et al.. 1992). A similar 
situation occurs in the area of bioequivalence testing. 
Several authors in that field have criticized tradition­
al hypothesis testing methods and have suggested 
alternatives such as the eqUivalence test (Anderson 
and Hauck, 1983 and Patel and Gupta.19M). McBride 
et al. (1992) discuss the use of equivalence tests to 
analyze water quality data. 

• The difference in means = O. 
• The correlation coefficient = O. 
• The slope coefficient = O. 
• The lag 1 serial correlation coefficient = O. 
The alternative hypothesis, H" represents a 

deviation from the status quo. H, can be either 
one-sided or two-sided depending on the 
information goal. It is not valid to look at the 

Table 5-4. Tests for goodness of fit. 

skewness test 

Lillefors test 

Shapiro-Wilk test 

probability plot 
correlation 
coefficient 
(PPCC) test 

chi-square test 

Kolmogorov test 

'. '.Applkation 

normality 

normality 

normality 

normality 

goodness­
of-fit 

goodness­
of-fit 

Comments' 

A simple test which works well for 
groundwater quality data analysis. 
Higher power than the chi-square test. 

Similar to the Kolmogorov test. Test statistic 
can be found graphically. 

A powerful test which is related to the 
PPCC test and normal probability plot. 
More complex than the skewness test. 

Results can be visually illustrated on a 
probability plot, the graphic analog to the 
PPCC test. 

Well known and versatile test. Less 
powerful at detecting nonnormality than 
most tests specifically designed for that 
purpose. 

Preferable to chi-square test when dealing 
with continuous data and/ or small sample 
sizes. 
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Harris et ai., 
1987 
Snedecor and 
Cochran, 1989 

Conover, 1980 

Conover, 1980 
Harris et aI., 
1987 

Helsel and 
Hirsch, 1992 

Harris et aI., 
1987 
Conover, 1980 

Conover, 1980 
Zar,1984 
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Table 5-5. Tests for location-two samples. 

······•·· •• ·•· •• ··.·.··TeSt\ .• ••·•···•·•· .•• • •• APpileijjQI'I.·····i····· ..........• ·········e~mm"'I1~····· ·.·····.····.···~ .... c~ .... ·· 
t-test independent Properties have been widely studied. Less 

powerful than the rank-sum test when samples data are nonnormally distributed. 

independent Also called the Wilcoxon rank sum, Mann-
Whitney, or Wilcoxon-Mann-Whitney test. samples Nonparametric. 

rank-sum test 

paired !-test dependent* 
samples 

More powerful than the t-test when there is 
pairwise correlation. Assumes that 
differences are normally distributed. 

dependent' Assumes that the differences are 
samples symmetrically distributed. Nonparametric. signed-rank test 

sign test dependent> 
samples 

More generally a'llicable than the paired 
t-test or the signe -rank test. Easy to 
compute. Less powerful than the signed 
rank test. Nonparametric . 

• "Dependent" refers to samples which can be paired. 

Table 5-6. Tests for location-more than two samples. 

one-factor 
ANOVA 

Kruskal-Wallis 
test 

two-factor 
ANOVA without 
replication 

median aligned 
ranksANOVA 
(MARA) 

Friedman test 

multiple 
comparisons 
procedures 

Application 

independent 
samples 

independent 
samples 

dependent" 
samples 

dependent" 
samples 

dependent" 
samples 

Comments 

Widely used test. Assumes that all data 
groups have identical variances and are 
normally distributed. 

N0I6arametric equivalent of the one-factor 
AN VA. Extension of the rank-sum test. 
Distributions of each data set are assumed to 
be identical in shape. 

The traditional parametric test for 
randomized complete block design. 

An extension of the signed ranks test. 
N onparametric. 

The most common nonparametric test used 
for the randomized complete block design. 
An extension of the sign test. 

Used only after an ANOVA-type test has 
been run which indicates a significant 
difference. Parametric and nonparametric 
versions are available . 

• "Dependent" refers to samples which can be paired. 
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Helsel and 
Hirsch, 1988 
Zar,1984 

Conover, 1980 
Hollander and 
Wolfe, 1973 

Helsel and 
Hirsch, 1992 
Zar, 1984 

Conover, 1980 
Hollander and 
Wolfe, 1973 

Conover, 1980 
Gilbert, 1987 

Refer'ence···.····· 
Helsel and 
Hirsch, 1992 
Zar, 1984 

Hollander and 
Wolfe, 1973 
Gilbert, 1987 

Helsel and 
Hirsch, 1992 
Zar,1984 

Helsel and 
Hirsch, 1992 

Conover, 1980 
Hollander and 
Wolfe, 1973 

Helsel and 
Hirsch, 1992 
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Table 5·7 . Tests for linear dependence and monotonic trend. 

•..• ?~ .. · .. ·~··.i ............... ·i···· .. · . ... ····i ••• ...... 
ordinary least linear The slope and intercept can be tested for Helsel and squares (OLS) dependence departure from zero. Assumes that Hirsch, 1992 residuals are., Iy distributed. 

Unlike the 015, the Theil test is not strongly Helsel and 
Theil test for linear affected by outliers, and residuals can be Hirsch,1992 
slope dependence nonnonnally distributed. Nonparametric. Hollander and 

Wolfe. 1973 

Mann·Kendall monotonic Missin~ values and non-detects are 
Gilbert, 1987 
Helsel and test trend allowe . Nonparametric. Hirsch, 1992 

Seasonal Kendall monotonic An adaption of the Mann-Kendall test Gilbert, 1987 

test trend which accounts for seasonality. Widely Hirsch et aI., 
used for water data .1. i~ 1982 

Multivariate tests are more powerful than 
repeated applications of univariate tests. 
MANOVA best for independent data with 

multivariate monotonic nonnal errors and Sen-Puri test best for Loftis et aI., 

trend tests trend independent data with lognonnal errors. 1991b and 
CS test best for serially dependent data 1991c 
with homogenous trends. CE test best for 
serially depend~!'t data with trends in both 
directions. See 4 . 

• Can be used as a test for trend if explanatory variable is time. 

If a one-sided test is chosen, the hypotheses 
should be written in a fonnat which is mutual­
ly exclusive. For example, if H, is: the slope 
coefficient is > 0, then Ho should be: the slope 
coefficient is ::; O. 

which management is willing to take of mak­
ing Type I and Type II errors. A larger value of 
a. will mean a larger number of false positives 
and a smaller number of false negatives. 

Decide on an Acceptable Value for a. 
The significance level, a., is the probability 

of making a Type I error. Type I error is the 
rejection of the null hypothesis when it is true. 
If the null hypothesis is true and a. is set equal 
to 0.05, the null hypothesis will be rejected 5 
times in 100 due to chance alone. 

Data analysts are free to set a. at whatever 
value they choose. The value of a., however, 
inversely affects the value of 13, the Type II 
error. Type II error is the acceptance of the null 
hypothesis when it is false. 

The choice of a. should be based on the risk 
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Compute the Test Statistic from the Data 
Calculation of the test statistic is dependent 

on the particular test which is chosen. There is 
usually only one way to calculate the test sta­
tistic for parametric procedures. Many non­
parametric procedures, however, have three 
versions, all of which have different equations 
for detennining the test statistic. 

The three versions of nonparametric tests 
are: 

1. Exact test. 
2. Large sample approximation. 
3. Rank transfonnation test. 

The exact version produces exact rather than 
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Table 5-8. Tests for correlation, equal variance and serial dependence. 

Pearson's r 

Kendall's tau 

Spearman's rho 

F-test 

squared ranks 
test 

rank von 
Neuman test 

confidence 
interval for r(k) 

correlation 

correlation 

correlation 

equal 
variances 

equal 
variances 

serial 
dependence 

serial 
dependence 

Measures linear relationships. Not 
resistant to outliers. Assumes constant 
variance. 

Measures monotonic relationships. 
Nonparametric. 

Measures monotonic relationships. 
Nonparametric. Exact p-values should be 
used for n < 20. Spearman's p tends to be a 
larger number than Kendall's t but the 
results of both tests are similar. 

Severely affected by nonnormal 
distributions. 

Nonparametric. Can be modified for use 
with more than two samples. 

Tests for the presence of lag 1 serial 
correlation. Nonparametric. 

Lag 1 serial correlation is significant if r(l) 
falls outside the confidence interval. 

Helsel and 
Hirsch,1992 

Conover, 1980 
Helsel and 
Hirsch, 1992 

Conover, 1980 
Helsel and 
Hirsch, 1992 

Zar, 1984 

Conover, 1980 

Gilbert, 1987 
Harris, 1988 

Harris et aI., 
1987 

approximate results. The test statistic is com­
pared to a table of quantiles which are calcu­
lated separately for every sample size or com­
bination of sample sizes. Exact tests should be 
used for small sample sizes. 

The large sample approximation can be 
used for large sample sizes (usually> 30). This 
test version assumes that the test statistic fol­
lows a particular distribution such as the nor­
mal distribution. The data analyst can com­
pare the calculated test statistic with a table for 
the assumed distribution, thus eliminating the 
need for huge tables which include exact val­
ues for large sample sizes. 

the rank transformation test. Equations devel­
oped for parametric procedures are used to 
calculate the test statistic from ranks of the 
data. P-values are then determined in the 
same manner as for the parametric test. The 
rank transformation version is useful in situa­
tions where a nonparametric analog is not 
available for a parametric test. This can occur 
if a nonparametric version has never been 
developed, such as for the multiple-factor 
ANOVA, or if the nonparametric version in 
not included in the statistical software which 
is being used. 

Most computer programs use large sample 
approximations for all sample sizes. This prac­
tice can introduce significant error. If sample 
sizes are small, the test statistic should be 
obtained from the program output and com­
pared manually to a table of exact p-values. 

The third version of non parametric tests is 
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Compute the P-value 
The p-value is the smallest level of signifi­

cance which would have allowed the null 
hypothesis to be rejected (Iman and Conover, 
1983). P-values are obtained from tables and 
are based on the value of the test statistic. 
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Reject the Null Hypothesis if p ::;; Ct. 

Once the p-value is detennined it should be 
compared to the significance level, Ct.. Reject Ho 
If p ::;; Ct.. Otherwise, accept Ho' 

Report the Resu Its 
The following infonnation should be includ­

ed when reporting the results of a hypothesis 
test: 

• The name of the test which was used. 
• The chosen significance level. 
• Whether Ho was accepted or rejected. 
• The p-value. 
• The sample size. 
• The data themselves or the location of the 

data. 
Some authors believe that an operating charac­
teristic curve should also be included when 
reporting the results of a hypothesis test. 

Interpret the Results 
When interpreting the results of hypothesis 

tests, it is helpful to know that five parameters 
are interrelated in such a way that the estab­
lishment of any four of them determines the 
fifth (O'Brien and Shapiro, 1972). These para­
meters are: 

1. Sample size. 
2. Significance level. 
3. Power. 
4. Magnitude of the differences. 
5. Population standard deviation. 

This information is also useful for designing a 
samplmg program (Smith and McBride, 1990). 
The relationship between these five parame­
ters can be best understood by examining 
operating characteristic curves like the ones 
shown in Ward et aI. (1990). 

There are four possible results which can be 
obtained from hypothesis testing. These are 
shown in Table 5-9 and discussed in the fol­
lowing paragraphs. 

If the results of a hypothesis test indicate 
that there is not a significant difference, this 
can mean one of two things: (1) small differ­
ences exist and they are not statistically signifi­
cant, or (2) large differences exist but they are 
not statistically significant. #1 represents a cor­
rect decision whereas #2 is incorrect. #2 usual­
ly occurs because the sample size is too small, 
the power of the test is too low, or the popula­
han standard deviation is too high. 

On the other hand, if results indicate that 
there is a significant difference, this can mean: 

Table 5-9. Decisions in hypothesis testing. Adapted from Iman and Conover (1983). 

correct decision 
probability of correct decision 

= 1 - Ct. 

Type I error 
probability of Type I error = Ct. 

(significance level) 

Type II error 
probability of Type II error = ~ 

correct decision 
probability of correct decision 

= 1 - ~ (power) 

• Ho is never exactly true for continuous variables. Some difference always exists. 
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(1) large differences exist and they are statisti­
cally Significant, or (2) small differences exist 
but they are statistically significant. Again, #1 
represents a correct decision whereas #2 is 
incorrect. #2 can occur if sample sizes are very 
large or the significance level has been set at a 
very low level. 

Another key point pertains to statistical ver­
sus practical significance. Even if the hypothe­
sis test is correct in declaring a large difference 
to be statistically significant, the difference is 
not necessarily significant or important from a 
water quality standpoint. This issue has been 
brought up by authors in a variety of disci­
plines including: pharmacy (Patel and Gupta, 
1984), biology (Jones and Matloff, 1986 and 
Perry, 1986) and public health (Brown and 
Mikkelsen, 1990 and Ononoff and Boden, 1987). 

The p-value is a critical component of 
hypothesis test results. Some authors recom­
mend that only the p-value be reported so that 
a reader can make his or her own decision 
regarding significance. For two samples of the 
same size, a smaller p-value indicates a higher 
probability that the observed effect is "real" 
(i.e., that it can be attributed to something 
other than chance). The p-value also provides 
an indication of the confidence with which the 
null hypothesis is accepted or rejected. For 
example, if the p-value is only slightly larger or 
smaller than the significance level, the decision 
to accept or reject Ho is somewhat borderline. 

CONCLUSIONS 

Three factors to consider when choosing 
methods to statistically analyze water quality 
data are: 

1. MOnitoring information goals. 
2. Data record attributes. 
3. Characteristics of the proposed data 

analysis method. 
Nonparametric methods for estimation and 
hypothesis testing are frequently chosen to 
statistically analyze water quaIi ty data. 
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Graphical methods can be included in a 
DAP to interpret statistical results, analyze 
data, or present information. Data should 
always be viewed in a graphical format 
regardless of how the data is analyzed. 

A point estimate is a single number "best 
guess" of some characteristic of the popula­
tion. Most point estimates can be transformed 
into interval estimates merely by adding confi­
dence intervals. 

The three main types of interval estimation 
procedures are confidence intervals, predic­
tion intervals, and tolerance intervals. There 
are important differences between prediction 
and tolerance intervals which should be 
understood by the DAP writer. 

The width of a confidence interval indicates 
how much reliance should be placed on the 
point estimate. Similar information can be 
obtained from the yes I no results of a hypothe­
sis test accompanied by the appropriate oper­
ating characteristic curve. Confidence inter­
vals, however, are easier to construct and 
interpret than operating characteristic curves. 

Hypothesis tests are conducted using the 
following steps: 

1. Choose the appropriate test. 
2. Establish the null and alternative 

hypotheses. 
3. Decide on an acceptable value for a.. 
4. Compute the test statistic from the data. 
5. Compute the p-value. 
6. Reject the null hypothesis if p :> a.. 
7. Report the results. 
8. Interpret the results. 
Although hypothesis tests have historically 

been the basis for statistical inference, there are 
many researchers who are beginning to ques­
tion their value. A few authors recommend 
abandoning them altogether in favor of inter­
val estimation procedures. The most common 
opinion, though, seems to be that hypothesis 
tests are important tools if they are applied 
correctly. 



Chapter 6 
A Framework for Development of 
Ground Water Quality 
Data Analysis Protocols 

INTRODUCTION 

The framework presented in this chapter is 
essentially a "how to" manual for DAP writ­
ers. Although the framework was developed 
for hazardous waste facilities, it can be modi­
fied for other situations such as municipal 
solid waste landfills. DAPs produced from the 
framework are to be written prior to sample 
collection. Existing data, however, can be used 
for characterization purposes or to confirm 
analytes. 

The DAP design framework was developed 
with simplicity in mind. It is intended to be 
brief and easy to use. For this reason, detailed 
background material was relegated to Chapters 
3,4andS. 

COMPONENTSOFTHEFRAM~ORK 

Define the Problem 
The first step towards writing a data analy­

sis protocol is to define the problem. Review 
all existing information on site hydrology, 
geology and water quality. Become familiar 
with current remediation activities and regula­
tory requirements. In some cases, a pilot study 
may be appropriate. 

Galn Support for the Protocol 
The support of users, management, and reg­

ulators is critical to the success of a DAP. 
Gaining support for the protocol is an ongoing 
process which begins prior to protocol devel-
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opment. Possible approaches for obtaining 
support are as follows: 

• Relate the advantages of a protocol. 
Mention that state and federal agencies, as 
well as private industry, are beginning to 
use water quality DAPs. 

• Involve others in the development process 
by arranging meetings and circulating 
draft copies of the protocol. 

• Include the DAP in the company's audit 
process. 

• Back up recommendations presented in 
the protocol with scientific evidence from 
the literature, and provide references for 
further information. 

Write the Introduction 
The introduction sets the stage for the proto­

col. It should include purpose, scope, intended 
users, and limitations. 

Include Procedures for Data Handling 
Data handling procedures address the com­

puterization of data, data validation, and 
preparation of data for analysis. If the DAP 
writer can verify that data handling proce­
dures are already well documented and rou­
tinely implemented, it may not be necessary to 
include them in the DAP. In most cases, how­
ever, data analysis procedures are poorly 
defined. 

State Information Goals 
Identifying information goals may well be 

the most crucial step in writing a data analysis 
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protocol. It is worth spending extra time on 
this task. The three types of information goals 
are: regulatory, monitoring, and statistical. 
Details on identifying information goals are 
presented in Chapter 3. 

Specify Procedures for Handling Data 
Record Attributes 

Viable options for dealing with data record 
attributes are presented below. Further details 
are available in Chapter 4. 

1. Multiple Observations 
• Average data. 
• Discard only if evidence is available to 

show that the observation is erroneous. 

2. Outliers 
• Use nonparametric methods. 
• Discard only if evidence is available to 

show that the observation is erroneous. 

3. Changing Sampling Frequencies 
• Prevent them from occurring! 
• Collapse data. 
• Exclude data. 

4. Missing Values 
• Prevent them from occurring! 
• Use methods which account for them. 
• Collapse data. 

5. Nonnormality 
• Use nonparametric methods! 
• Confirm normality prior to using para­

metric methods. 
• Use transformations to obtain normali­

ty prior to using parametric methods. 

6. Seasonality 
• Use methods which account for it! 
• Pair data values" 
• Disregard it and be aware of the conse­

quences (reduction of power). 

7. Censoring 
• Request that data from the laboratory 

not be censored .. 
• If data is censored, use procedures 

which are robust to the assumption of 
normality, appropriate for the infor-
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mation goal, and suitable for the per­
centage of censored values. 

8. Serial Correlation 
• Avoid it by sampling infrequently. 
• Disregard it and be aware of the conse­

quences (usually an increase in false 
positives). 

• Use methods which account for it. 

Choose Data Analysis Methods 
If statistical methods are chosen, base the 

choice on: 
• Information goals. 
• Data record attributes. 
• Characteristics of the statistical method. 

This topiC is addressed in detail in Chapter 5. 
Examples of graphical techniques, tables of 
estimators, and tables of hypothesis tests are 
provided. 

Describe How Statistical Results Should 
Be Interpreted 

Always recommend that data be viewed 
graphically to aid in the interpretation process. 
Also, describe the basic information contribu­
tion of each statistical method. For example, if 
tolerance intervals are chosen, explain their 
information contribution as follows: 

A tolerance interval states that a given percentage 
of all future measurements will fall in the interval 
with a specified level of confidence, if in fact, there 
is no difference from background levels. 

If hypothesis tests are used, explain their 
limitations. It may help to state that five para­
meters--sample size, significance level, power, 
the magnitude of the differences, and the pop­
ulation standard deviation-are interrelated in 
such a way that the establishment of any four 
of them determines the fifth. This relationship 
can be further defined by displaying an oper­
ating characteristic curve. The interpretation of 
statistical analysis results is further discussed 
in Chapter 5. 

• Preferred option for most applications. 
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Specify Reporting Procedures 
An effective way to specify reporting proce­

dures in a DAP is to present actual samples of 
how the data is to be reported. This approach 
was used in the case study. 

In many instances, it may be appropriate to 
recommend the use of graphical presentation 
methods. Many of the graphical analysis proce­
dures presented in Chapter 5 can also be used 
for presentation. 

If censoring terms, such as "less than MDL", 
are used to report data, the terms should be 
clearly defined. 

The statistical method should always be 
identified when statistical results are reported. 
Details on how to report the results of hypoth­
esis tests are presented in Chapter 5. 

Discuss How the Results of Statistical 
Analysis Should Be Utilized In Decision 
Making 

DAPs should include explanations of how 
the results of statistical analyses will be used to 
achieve the information goals. Examples of 
these types of explanations are provided in the 
case study for information goals #2, #3 and #7. 

It is important to emphasize in the informa­
tion utilization section that statistical results 
should not be tied directly to decision making. 
Statistical results should be considered in con­
junction with many other factors such as 
hydrogeology, flow patterns, and contaminant 
transport behavior. 

Prepare a Summary Sheet for Each 
Information Goal 

A practical strategy for organizing data 
analysis protocols is to prepare a summary 
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sheet for each information goal. This approach 
was very effective for the case study. Details 
which are specific to each information goal, 
such as sampling frequencies, wells to be sam­
pled and compounds to be analyzed, can be 
included in the summary sheets. 

State Procedures for Reviewing the 
Protocol 

Data analysis protocols should be reviewed 
periodically by the DAP writer (or a worthy 
successor) and revised if necessary. Procedures 
for reviewing the protocol could address: 

• Period of time between reviews. 
• Special situations which would warrant a 

review. 
• Format for documenting revisions. 
• Qualifications required of the reviewer. 
• Factors to consider during the review such 

as current research, amended regulations, 
and new information obtained from recent 
monitoring data. 

Include Items to Clarify the Protocol 
Numerous items can be added to data analy-

sis protocols to enhance their clarity, such as: 
• Calculation procedures (see case study). 
• Glossary of terms used in protocol. 
• Flow chart showing organization of protocol. 
• Procedures for utilizing existing data. 

SUMMARY 

The main subject headings for the DAP 
framework are listed in Figure 6-1. The figure 
allows the overall structure of the framework 
to be seen at a glance. 
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• Define the problem 

• Gain support for the protocol 

• Write the introduction 

• Include procedures for data handling 

• State information goals 

• Specify procedures for handling data record attributes 

• Choose data analysis methods 

• Describe how statistical results should be interpreted 

• Specify reporting procedures 

• Discuss how the results of statistical analysis should be 
utilized in decision making 

• Prepare a summary sheet for each information goal 

• State procedures for reviewing the protocol 

• Include items to clarify the protocol 

Figure 6-1. Main components of the framework for development of data analysis protocols for ground 
water quality monitoring systems. 
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Chapter 7 
Appl ication of the 
Design Framework­
A Case Study 

INTRODUCTION 

The framework presented in Chapter 6 has 
been used to develop a data analysis protocol 
for the IBM semiconductor manufacturing 
facility in Hopewell J unction,28 New York. The 
protocol will be included as an appendix to 
IBM's NYS (New York State) 373 permit which 
is currently being written. Development of the 
DAP represents part of IBM's continuing effort 
to design and operate a state-of-the-art ground 
water quality monitoring program. 

Objectives of this chapter are as follows: 
1. Provide background information which 

pertains to IBM's ground water monitor­
ing program. 

2. Discuss the 373 permitting process and its 
relationship to the DAP. 

3. Describe how each step of the framework 
was used to write the DAP. 

The IBM data analysis protocol is presented 
at the back of this report. 

BACKGROUND 

Site Description (Ward et al., 1990) 
The IBM facility is one of the largest semi­

conductor manufacturing plants in the world. 
The plant began operations in 1963. Currently, 
there are about 4 million square feet of build­
ings and 10,000 employees at the site. The site 
covers 750 acres in a semi-rural area in south­
eastern New York. It is surrounded on three 
sides by homes and a high school. 
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ApproXimately 2 million gallons of water 
are used per day at the IBM site. The water 
comes entirely from ground water sources 
because there is no nearby municipal water 
supply. IBM treats all of its own water both 
before and after use. 

Ground water contamination problems at the 
site are due primarily to the presence of chlori­
nated hydrocarbons including Di-, Tri- and 
Tetra-chloroethenes. 1,l,2,2-tetrachloroethene is 
the most commonly occurring compound. 
Chlorinated hydrocarbons are solvents which 
are heavily used in the manufacturing of semi­
conductors. 

Most of the contaminants are assumed to 
have entered the ground water between 1963 
and 1978. Sources of the contaminants have 
been identified as leaks from buried solvent 
storage tanks and transporter pipes, seepage 
from a former construction debris landfill and 
two former fire brigade training areas, and 
spills associated with solvent handling. 

IBM has virtually eliminated further ground 
water contamination from the above sources. 
Solvents are stored in double-walled tanks 
which are located above ground in concrete 
catch basins. Many of the pipes have been 
replaced with double-walled pipes on trestles. 
Solvent handling areas are underlain with con­
crete, and fire training practices are environ-

28 Although the IBM facility is located in Hopewell 
Junction, it is known as the IBM East Fishkill facility. 
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to design and operate a state-of-the-art ground 
water quality monitoring program. 

Objectives of this chapter are as follows: 
1. Provide background information which 

pertains to IBM's ground water monitor­
ing program. 

2. Discuss the 373 permitting process and its 
relationship to the DAP. 

3. Describe how each step of the framework 
was used to write the DAP. 

The IBM data analysis protocol is presented 
at the back of this report. 

BACKGROUND 

Site Description (Ward et al., 1990) 
The IBM facility is one of the largest semi­

conductor manufacturing plants in the world. 
The plant began operations in 1963. Currently, 
there are about 4 million square feet of build­
ings and 10,000 employees at the site. The site 
covers 750 acres in a semi-rural area in south­
eastern New York. It is surrounded on three 
sides by homes and a high school. 
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ApproXimately 2 million gallons of water 
are used per day at the IBM site. The water 
comes entirely from ground water sources 
because there is no nearby municipal water 
supply. IBM treats all of its own water both 
before and after use. 

Ground water contamination problems at the 
site are due primarily to the presence of chlori­
nated hydrocarbons including Di-, Tri- and 
Tetra-chloroethenes. 1,l,2,2-tetrachloroethene is 
the most commonly occurring compound. 
Chlorinated hydrocarbons are solvents which 
are heavily used in the manufacturing of semi­
conductors. 

Most of the contaminants are assumed to 
have entered the ground water between 1963 
and 1978. Sources of the contaminants have 
been identified as leaks from buried solvent 
storage tanks and transporter pipes, seepage 
from a former construction debris landfill and 
two former fire brigade training areas, and 
spills associated with solvent handling. 

IBM has virtually eliminated further ground 
water contamination from the above sources. 
Solvents are stored in double-walled tanks 
which are located above ground in concrete 
catch basins. Many of the pipes have been 
replaced with double-walled pipes on trestles. 
Solvent handling areas are underlain with con­
crete, and fire training practices are environ-

28 Although the IBM facility is located in Hopewell 
Junction, it is known as the IBM East Fishkill facility. 
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mentally safe. Also, 20,000 yards of material 
from the former construction debris landfill 
have been excavated and placed in a secure 
hazardous waste depository. The area is now 
filled with clean soils and capped with clay. 

IBM currently operates a state-of-the-art 
ground water remediation program. Contaminat­
ed water is pumped from the ground and treated 
with air stripping and/ or granulated carbon. 
Approximately one million gallons of water are 
pumped and treated daily. 

Monitoring Program 
Ground water at the IBM site has been mon­

itored regularly since 1979. Major changes 
occurred in the monitoring system in 1982 and 
1986. The initial monitoring program, the 1982 
and 1986 modifications, and the monitoring 
system as it exists today are briefly discussed 
in the following paragraphs. 

The initial monitoring effort which began in 
1979 produced data of low quality. The data 
record contained many missing values and 
non-detects. In addition, sampling frequencies 
were inconsistent and data variability was 
high. The monitoring system design was not 
documented. Sampling and laboratory analy­
sis were conducted by contractors. 

IBM closely evaluated the monitoring sys­
tem design and operation in 1982. The follow­
ing modifications were made: 

• IBM took over the field sampling and lab­
oratory analysis. 

• The monitoring system design was docu­
mented. 

• Computerization of data was improved. 
• Sampling points were grouped according 

to information goal (Le. site perimeter, con­
taminated areas, and general coverage). 

• Emphasis was placed on analyzing com­
pounds associated with IBM's prior activi­
ties at the site. 

• Sampling frequencies were determined 
based on importance of location and his­
torical variability. 

• A data verification protocol was imple­
mented to identify outliers and confirm 
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their validity. 
• Reporting formats were specified. 
• Quality control in the laboratory and field 

was given high priority. 
• The monitoring system design document 

specified that data should be periodically 
evaluated to substantiate the original 
assumptions used in the design. 

Additional refinements were made to the 
monitoring system in 1986 to increase the 
information content of the water quality data. 

Although the 1982 modifications resulted in 
higher quality data with fewer missing values, 
more consistent sampling frequencies and less 
variability, the problem of nondetects still 
existed. IBM decided to follow the recommen­
dations provided by Porter (1986) and ASTM 
04210-83, and not censor their data. The labo­
ratory was asked to report all the readings 
together with an estimate of the measurement 
error. 

Data variability was further reduced at 
some of the key wells. Dedicated pumps were 
installed and a bladder system was used to 
seal off the portion of the aquifer which was 
being sampled. 

Data analysis revealed that additional wells 
were needed at some locations. New wells 
were added to fill in knowledge gaps, to 
address new concerns, and to monitor proper­
ty which was added to the site. 

The ground water monitoring system today 
includes over 550 wells and piezometers. 
Approximately 100 of the wells are routinely 
sampled for water quality. More than 2000 
samples are analyzed yearly for volatile organ­
ic compounds. Priority pollutant, inorganic, 
radiological, and bacteriological analyses are 
conducted on some of the samples. Ground 
water level measurements are taken at all 
monitoring wells and piezometers. 

Regulatory Requirements 
The site's ground water monitoring and 

remediation activities have been conducted 
under an "Order-on-Consent" signed by IBM 
and the New York State Department of 
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Environmental Conservation (NYSDEC) in 
1981. IBM is currently in the process of obtain­
ing a permit under Part 373, Title 6 of the New 
York Code of Rules and Regulations. The Part 373 
permit, once granted, will regulate ground 
water activities at the site. 

Specifically, section 373-2.6.k.4 of 6NYCRR 
requires that: "In conjunction with a corrective 
action program, the owner or operator must 
establish and implement a ground-water mon­
itoring program to demonstrate the effective­
ness of the corrective action program." The 
regulatory basis for IBM's ground water moni­
toring program is further explained in the data 
analysis protocol at the back of this report. 

373 PERMITTING PROCESS 

Initial Submittal of the Ground Water 
Monitoring Proposal 

IBM submitted the first draft of their ground 
water monitoring proposal on June 5, 1992. At 
that time, the data analysis protocol had not 
yet been developed. 

The ground water monitoring proposal con-
tained information on the following: 

• Well locations. 
• Sampling frequencies. 
• Information objectives. 
• Statistical approaches. 
• Reporting procedures. 
• Actions to be taken based on laboratory 

and statistical results. 
Similar information was later incorporated 
into the DAP in a more detailed format. 

The initial submittal was written primarily 
by IBM with minimal input from NYSDEC. 

Negotiations Between NYSOeC and IBM 
Regarding Modifications to the Initial 
Ground Water Monitoring Proposal 

Several meetings were held between IBM 
and NYSDEC to discuss modifications to the 
initial submittal of the ground water monitor­
ing proposal. Those negotiations are summa­
rized below: 
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• Nomenclature of wells was one of the main 
topics of discussion. In their initial submittal, 
IBM labeled several wells as "detection mon­
itoring" wells. Although the name accurate­
ly describes the function of the wells, it con­
flicts with the regulatory definition of detec­
tion monitoring. To avoid future confusion 
over nomenclature, IBM agreed to rename 
the wells. On a similar note, IBM agreed to 
rename the "West Complex" wells as the 
"West Complex Detection Monitoring" 
wells, because they meet the regulatory defi­
nition of detection monitoring. 

• Sampling frequencies were also a matter of 
debate. Frequencies proposed by IBM in the 
initial submittal ranged from monthly at the 
more critical wells to yearly for AppendiX 33 
sampling. NYSDEC agreed that Appendix 
33 sampling should occur annually as per 
regulations. They felt, however, that the 
semi-annual sampling frequencies proposed 
by IBM should be changed to quarterly. 

IBM explained their philosophy of choosing 
sampling frequencies which are consistent 
with regulatory requirements and meet 
information goals. They also conducted a 
detailed study to examine the information 
content of data collected at various sam­
pling frequencies. NYSDEC agreed that it is 
better to have a combination of monthly, 
quarterly, and semi-annual frequencies 
which are based on factors such as risk and 
historical water quality, than to have across­
the-board quarterly sampling. 

• NYSDEC was of the opinion that a few wells 
should be added to the monitoring system. 
IBM agreed to add some of the wells. 

• NYSDEC was undecided on whether infor­
mation concerning wells in areas undergo­
ing active investigation should be located in 
the body of the pennit or in the appendices. 
Their most recent decision was that it should 
be placed in the body. 
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• NYSDEC wanted IBM to write a summary 
report of the areas under investigation. IBM 
agreed to write the report. 

The DAP design framework was used to 
write a data analysis protocol during the time 
that NYSDEC and IBM were negotiating the 
ground water monitoring proposal. The proto­
col proved to be a useful tool for the negotia­
tions because it is quite specific. Also, the DAP 
helped focus attention on information goals 
rather than on data quantity. 

Another tool used for negotiations was a 
spreadsheet which compared sampling fre­
quencies and locations initially proposed by 
IBM to those preferred by NYSDEC. The 
spreadsheet is presented in Adkins (1992). 

Final Submittal of the Ground Water 
Monitoring Proposal 

The final ground water monitoring proposal 
had not yet been submitted at the time this 
report was published. It is expected that the 
final proposal will be similar in format to the 
initial proposal. The content will reflect results 
of negotiations between IBM and NYSDEC. 

The final ground water monitoring proposal 
will be placed in the body of the 373 permit, 
and the DAP will be included as an appendix. 
The DAP is quite detailed and may require 
periodic revision. It is much easier to revise 
information in the appendices than in the 
body of the permit. 

EVALUATION OF THE FRAMEWORK 

The framework provided valuable guidance 
for writing a data analYSis protocol for the 
IBM facility. The combination of flexibility in 
the basic framework and detailed background 
information was quite effective. It allowed the 
DAP to be site specific and scientifically defen­
sible. 

Use of the framework to develop the IBM 
ground water quality data analysis protocol is 
briefly described in the following paragraphs. 
The discussion is structured around the main 
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components of the DAP framework which are 
listed in Figure 6-1. 

Define the Problem. Extensive work had 
already been conducted at the IBM site to 
define the problem, so very little additional 
work was required for this first step. 

Gain Support for the Protocol. Support for the 
protocol was gained by holding company 
meetings. The concept of a DAP was intro­
duced and potential advantages were out­
lined. Participants included field samplers, 
water quality staff and managers, and labora­
tory personnel. Many practical suggestions 
were offered at the meetings. 

Support was also attained by circulating 
rough drafts of the DAP during various stages 
of the development process. 

Write the Introduction. Topics addressed in 
the introduction include: 

• purpose 
• advantages 
• authors 
• scope 
• intended users 
• organization 

Limitations were not discussed in the intro­
duction because they were addressed in other 
sections of the protocol. 

Include Procedures for Data Handling. Data 
handling procedures are well established at the 
IBM site. Additional guidance and documenta­
tion in this area is unnecessary. Therefore, data 
handling procedures were not included in the 
DAP. 

State Information Goals. Regulatory informa­
tion goals were defined by reviewing legisla­
tion and by conversing with regulators. An 
outline of applicable laws and regulations was 
included in the protocol to guide the reader 
through the legislative maze. 

A considerable amount of effort was devot­
ed to formulating monitoring information 
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goals. The effort paid off. Regulators and 
water quality managers were able to get a 
clear picture of what information would be 
obtained from the monitoring program. This 
enabled them to identify concerns which had 
been overlooked or improperly emphasized. 
Also, monitoring information goals proved to 
be a convenient basis for organizing the proto­
col. 

Details of the protocol such as sampling fre­
quencies and data analysis methods were 
specified on a summary sheet for each moni­
toring information goal. The goals were num­
bered so they could be easily referenced 
throughout the protocol. 

Detailed statistical information goals were 
stated on the sample calculation sheets. 

Specify Procedures for Handling Data Record 
Attributes. Background information provided 
in the framework was very useful for writing 
this section of the protocol. 

Choose Data Analysis Methods. Statistical pro­
cedures were chosen for only four of the 
twelve monitOring information goals. (One of 
the four procedures was graphical.) This 
rather surprising lack of emphasis on statistics 
can be partially attributed to the regulators' 
concerns. Regulators are primarily concerned 
that contaminated ground water is contained, 
collected and treated. Direct comparison with 
fixed limits is often all that is needed to ensure 
that contaminated water is being contained. 
Pump readings and calculations of contami­
nant mass provide information regarding col­
lection and treatment. 

Another reason for not using statistical 
methods is the potential for misinterpretation 
of results by those not directly involved in the 
monitoring program. For example, upward 
trends in contaminant levels may be associated 
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with unsuccessful remediation efforts when, in 
fact, they could actually be indicative of effec­
tive remediation. 

In situations where statistical analysis meth­
ods were chosen, the recommendations pro­
vided by the framework were closely followed. 

Describe How Statistical Results Should Be 
Interpreted. Interpretation of results was 
described for each statistical method. Difficul­
ties related to interpretation of hypothesis tests 
were not an issue because estimation was cho­
sen instead of hypothesis testing. 

Specify Reporting Procedures. Reporting pro­
cedures were specified by including samples 
of reporting formats. 

DisCllss How the ReSllItS of Statistical Analysis 
Should Be Utilized in Decision Making. 
Information utilization was addressed primar­
ily in the DAP summary sheets. It was also 
discussed in Appendix E which describes the 
data analysis methods in detail. 

Prepare a Summary Sheet Jor Each Information 
Goal. Summary sheets were an effective means 
of organizing and conveying the myriad of 
details associated with each of the twelve 
monitoring information goals. 

State Procedures for Reviewing the Protocol. 
Procedures were given for reviewing and 
updating the protocol. Recommendations pro­
vided by the DAP framework were closely fol­
lowed. 

Include Items to Clarify the Data Analysis 
Protocol. Calculation procedures were clearly 
presented in the protocol, and forms were pro­
vided for implementing statistical procedures. 
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SUMMARY 

In response to rising environmental concern, 
the number of ground water quality monitor­
ing systems in the United States is steadily 
increasing. Large amounts of money are spent 
collecting water samples and analyzing them 
in the laboratory. Despite these expenditures, 
however, managers often find that water quali­
ty data does not provide them with the infor­
mation they need for decision making. 

The inability of water quality data to pro­
vide information can usually be traced to a 
lack of planning in the early stages of monitor­
ing system design. Data is frequently collected 
without a clear definition of program goals, 
data analysis procedures, reporting formats or 
types of decisions to be made. 

It is now apparent that more information 
can be obtained at a lower cost if documented 
strategies for data analysis are developed prior 
to sample collection. These documented strate­
gies, known as "data analysis protocols," help 
to ensure that all data obtained from monitor­
ing programs can be translated into useful 
information which meets program goals. 

Due to the wide variety of information 
needs and field conditions which are encoun­
tered in ground water monitoring, a generic 
data analysis protocol (DAP) would be of lim­
ited use. What is really needed is a design 
framework for developing DAPs which are 
program specific. There are currently no gen­
erally accepted guidelines on how to write 
water quality data analysis protocols. 
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The primary objective of this report is to 
present a framework for the development of 
ground water quality DAPs. Protocols devel­
oped using this framework are intended to be 
program specific and should be written during 
the initial stages of monitoring system design. 

The design framework emphasizes statisti­
cal data analysis, which uses the laws of prob­
~bility in conjunction with information regard-
109 the random nature of water quality vari­
ab les to provide an understanding of current 
water quality conditions. 

Four main components of the framework 
include: 

1. Identification of information goals. 
2. Handling of data record attributes. 
3. Choice of statistical analysis methods. 
4. Interpretation of statistical results. 
The development of DAPs should be driven 

by the information goals. Decisions on how to 
handle data attributes, which statistical meth­
ods to use, and how to interpret and report 
results should be consistent with information 
goals. 

Identification of information goals is a three 
step process. First, regulatory information 
goals are identified by meeting with regulators 
and by reviewing regulations. Then, monitor­
ing information goals are established. Finally, 
if statistical methods are used to achieve the 
monitoring goals, specific statistical informa­
tion goals are developed. 

Data record attributes are characteristics of 
data which can complicate statistical analysis. 
These include: 



• multiple observations 
• outliers 
• changing sampling frequencies 
• missing values 
• nonnormality 
• seasonality 
• censoring 
• serial correlation 
Three factors to consider when choosing 

methods to analyze water quality data are: 
1. Monitoring information goals. 
2. Data record attributes. 
3. Characteristics of the proposed data 

analysis method. 
Nonparametric methods for estimation and 
hypothesis testing are frequently chosen to 
statistically analyze water quality data. 

Graphical methods can be included in a 
DAP to interpret statistical results, analyze 
data, or present information. Data should 
always be viewed in a graphical format 
regardless of how the data is analyzed. 

A point estimate is a Single number "best 
guess" of some characteristic of the popula­
tion. Most point estimates can be transformed 
into interval estimates merely by adding confi­
dence intervals. 

The three main types of interval estimation 
procedures are prediction intervals, tolerance 
intervals, and confidence intervals. There are 
important differences between prediction and 
tolerance intervals which should be under­
stood by the DAP writer. The width of a confi­
dence interval indicates how much reliance 
should be placed on the point estimate. 
Similar information can be obtained from the 
yes/no results of a hypotheSis test accompa­
nied by the appropriate operating characteris­
tic curve. Confidence intervals, however, are 
easier to construct and interpret than operat­
ing characteristic curves. 

Historically, hypothesis tests have been the 
basis for statistical inference; however, many 
researchers are beginning to question their 
value. A few authors recommend abandoning 
them altogether in favor of interval estimation 
procedures. The most common opinion, 
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though, seems to be that hypotheses tests are 
important tools if they are applied correctly. 

The DAP design framework presented in 
Chapter 6 is essentially a "how-to" manual 
providing clear and concise guidelines for pro­
tocol writers. 

The DAP design framework was used to 
develop a data analysis protocol for the IBM 
semiconductor manufacturing facility in 
Hopewell Junction, New York. The framework 
provided valuable guidance for writing the 
IBM data analysis protocol. The combination 
of flexibility in the basic framework and 
detailed background information was quite 
effective. It allowed the DAP to be site specific 
and scientifically defensible. 

CONCLUSIONS 

A framework for the development of 
ground water quality data analysis protocols 
is presented in this report. The framework 
describes the thought processes which should 
be followed when writing a DAP. Background 
information for the framework is presented in 
an organized and readable fashion. 

Practical application of the framework is 
demonstrated by using it to write a DAP for 
the IBM semiconductor manufacturing plant 
in Hopewell Junction, New York. The IBM 
case study shows that DAPs can be an effec­
tive means for ensuring that required informa­
tion is obtained from monitoring programs. 
The IBM data analysis protocol focuses atten­
tion on information goals, and emphasizes the 
information content of data rather than data 
quantity. 

RECOMMENDATIONS FOR FURTHER 
WORK 

1. hnprove the framework which is 
presented here by: 
•. Refining it when additional informa­

tion on the statistical analysis of water 
quality data becomes available. 
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• Conducting more case studies. 
• Coding it as a computerized expert sys­

tem. 

2. Develop frameworks for writing proto­
cols which address: 
• Analysis of existing data. 
• Analysis of poor quality data. 
• Information utilization. 
• Information presentation. 

3. Expand research on these topics: 
• The validity of hypothesis tests. 
• The validity of sampling quarterly to 

avoid serial correlation. 
• The relationship between serial corre­

lation and time scale. 
• Estimation of short-term versus long-

74 

term parameters. 
• Data visualization and spatial relation­

ships. 

4. Explore additional statistical data analysis 
methods such as equivalence tests. 

CONCLUDING REMARKS 

It is hoped that the framework presented in 
this report will elicit discussions among water 
quality professionals regarding standardization 
and use of statistical procedures. The frame­
work is intended to be a sound starting point 
rather than the final word on how to write 
ground water quality data analysis protocols. 
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Data Analysis Protocol for Ground Water Quality Monitoring: IBM East Fishkill Facility 

I. INTRODUCTION 

A. Purpose 
A protocol for using data analysis methods 

to obtain information from IBM's ground water 
monitoring program is presented in this docu­
ment. The data analySiS protocol (DAP) will 
help to ensure that all collected c;lata has a spec­
ified purpose, and that statistics is properly 
used in both a theoretical and practical sense. 

It is anticipated that the DAP will provide 
numerous benefits including: 

1. Those involved in data collection will 
develop a better understanding of the 
importance of producing high quality data. 

2. The subjectivity of statistical analysis will 
be attenuated because statistical methods 
will be specified prior to data collection. 

3. Economic benefits will be realized 
because only data which contributes to 
useful information will be collected. 

4. Continuity of data analysis in the event of 
employee turnover will be facilitated. 

5. Data analysis methods will be correctly 
applied, resulting in reliable information. 

6. Because they are well documented, data 
analysis procedures will be auditable. 

7. Individuals who are involved with man­
agement and operation of the monitoring 
program will have a basis for communi­
cation. 

8. Water quality information will be extract­
ed from the data as soon as possible. 

9. Monitoring system operation will be dri­
ven by information goals rather than by 
politiCS or short term crises. 

The DAP was written by Colorado State 
University researchers and IBM ground water 
staff using a framework developed by Adkins 
(1992). The protocol represents IBM's philoso­
phy to "meet or exceed all regulatory require­
ments." It also meets RCRA goals of being pro­
tective of human health and the environment. 

a.Scope 
The original intent of the DAP was to pro­

vide guidelines for using statistical methods to 
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analyze ground water quality data. Soon after 
development of the protocol started, however, 
it become apparent that the scope should be 
expanded to include non-statistical methods. 
It also became evident that certain aspects of 
network deSign, such as sampling frequ~cies 
and compounds to be analyzed, should be 
included in the protocol. 

The primary intended users of the DAP are 
ground water professionals at the IBM East 
Fishkill Facility. General managers, field sam­
plers and laboratory personnel should also 
find the protocol useful. 

The DAP addresses monitoring primarily 
from a long-term management point of view. 
DAPs for investigative studies will be written 
separately. 

C. Organization 
The majority of detailed information in the 

protocol is presented as appendices. Appendix 
A consists of DAP summary sheets which 
comprise the supporting structure for the rest 
of the protocol. Protocol organization is clearly 
shown in the table of contents. 

II. INFORMATION GOALS 

A. Regulatory Infonnation Goals 
Regulatory information goals were identi­

fied by reviewing legislation and by convers­
ing with regulators. An outline of applicable 
laws and regulations is presented in Figure 1. 
The regulatory information goals which were 
identified are as follows: 

• Preserve and enhance the quality of water 
resources. 

• Protect human health and the environment. 
• Determine background water quality. 
• Characterize the extent, composition, con­

centration and movement of contaminant 
releases. 

• Prevent eontaminants from migrating off­
site. 

• Demonstrate the effectiveness of corrective 
action. 
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U.S. Code 
Title 42: The Public Health and Welfare 

Chapter 82: Solid Waste Disposal 
Subchapter III: Hazardous Waste Management 

Section 6924: Standards applicable to owners and operators of hazardous waste 
treatment, storage, and disposal facilities 

(p) Ground water monitoring 
Section 6926: Authorized State hazardous waste programs 

(b) Authorization of State programs 

The State of New York was given authorization to manage their own hazardous waste 
program on May 15, 1986 (51 Federal Register 17737). 

Code of Federal Regulations 
Title 40: Protection of Environment 

Chapter 1: Environmental Protection Agency 
Subchapter I: Solid Wastes 

Part 264: Standards for owners and operators of hazardous waste treatment, 
storage, and disposal facilities 

Part 271: Requirements for authorization of State hazardous waste programs 

New York Environmental Conservation Law 
Article Zl: Waste and Refuse 

Title 9: Industrial Hazardous Waste Management 
Section 27-0911: Standards applicable to owners and operators of hazardous waste 

treatment, storage, and disposal facilities 

New York Code of Rules and Regulations 
Title 6: Environmental Conservation 

Subpart 373-2: Final status standards for owners and operators of hazardous waste 
treatment, storage, and disposal facilities 

Section 373-26: Releases from solid waste management units 
(I) Corrective action for solid waste management units 

New York Permit Writers' Guide 
373 Generic (5/14/91) 

Module III: Corrective Action Requirements for Solid Waste Management Units and 
Areas of Concern 

E.: Corrective Action Requirements 

Figure I. Laws and regulations governing ground water quality monitoring at the IBM East Fishkill facillt)c 
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B. Monitoring Information Goals 
Monitoring information goals which were 

identified for the data analysis protocol are 
listed here. Summary sheets for each informa­
tion goal are presented in Appendix A. 

#1. Ensure adequacy of the treatment facility 
by screening for the presence of new 
compounds. 

#2. Ensure adequacy of the treatment facility 
by detecting changes in input concentra­
tions. 

#3. Determine the lateral extent of contami­
nation plumes. 

#4. Determine the mass of contaminants 
removed at each remediation area. 

#5. Characterize contaminant concentrations 
over time within the plumes. 

#6. Determine the hydraulic effectiveness of 
remediation. 

#7. Measure water quality down-gradient of 
AOCs where flow may pass across a site 
boundary. 

#8. Confirm previous monitoring results 
which indicate that contaminants are not 
migrating offsite from onsite. 

#9. Confirm previous monitoring results 
which indicate that contaminants are not 
migrating onsite from offsite. 

#10. Ensure that all chemicals of concern are 
properly identified and monitored. 

# 11. Provide a qualitative basis for compari­
son with data from "Appendix 33" moni­
toring of contaminated wells. 

#12. Provide data for investigative studies 
associated with the NYS Part 373 
Corrective Action Program. 

C. Statistical Information Goals 
Statistical methods were chosen to analyze 

data for three of the monitOring information 
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goals. Those methods are described in detail in 
Appendix E. Statistical information goals are 
restated here for monitoring goals #2, #3 and 
#7 respectively. 

• Immediately detect concentrations which 
are ~ 4cr above the target mean. Quickly 
detect perSistent changes in concentration 
which are ~ 1.50 above the target mean. 

• Estimate the magnitude of the difference 
between the current two years of concen­
tration data and the previous two years of 
concentration data. Determine a 90 percent 
confidence interval for the estimate. 

• On an annual basis, estimate the 95 per­
cent confidence interval of the true popu­
lation median concentration. 

III. DATA RECORD ATTRIBUTES 

A. General 
Data record attributes are characteristics of 

data which can complicate statistical analysis 
(Bell and Delong, 1988). The following data 
record attributes are addressed in this protocol: 

• multiple observations 
• outliers 
• changing sampling frequencies 
• missing values 
• nonnormality 
• seasonality 
• censoring 
• serial correlation 

B. Hultiple Observations 
Multiple observations occur when replicate 

samples are collected for QA/\X:. purposes. If 
a single value is needed for statistical analysis, 
the multiple values will be averaged. 

C. Outliers 
Outliers are values which are obviously 

higher or lower than the majority of the data 
set. Unless there is evidence to show that they 
are erroneous, outliers will be retained and 
analyzed with the rest of the data. 
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D. Changing Sampling Frequencies 
Most statistical methods which examine the 

behavior of water quality data over time 
require equally spaced samples. Consistency 
of sampling intervals with past data was con­
sidered when frequencies were chosen for the 
OAP. Future information needs were also 
appraised. Although some changing sampling 
frequencies are anticipated at the IBM site, 
they are not expected to affect any of the data 
analysis procedures recommended in the OAP. 

E. Missing Values 
Some statistical analysis techniques which 

require equal sample sizes or regularly spaced 
samples in time, cannot be applied to data 
records which have missing values. A great 
deal of effort is made at the East Fishkill facili­
ty to avoid missing values because of the inter­
ference they cause with data analysis methods. 
It is IBM's policy to not replace missing values 
with any type of numerical response. If miss­
ing values appear to have a significant impact 
on a particular data analysis method, an 
appropriate note will accompany the results. 

F. Nonnormality 
Nonnormality is a common characteristic of 

water quality variables. Water quality data is 
often right-skewed because it has a lower 
bound of zero, many values near the detection 
limit, and infrequent high values. 

Characterization studies conducted on 
ground water quality data from the IBM East 
Fishkill site indicate that the data has slight to 
moderate nonnormality. Specific information 
on how nonnormality will be handled when 
statistically analyzing ground water quality 
data is presented in section N.E. 

G. Seasonality 
Seasonality is the change in distribution of 

water quality variables which can be attrib­
uted to the time of year. A "season" can be any 
specified period of time but is generally one 
month (twelve seasons per year) or three 
months (four seasons per year). Seasonality 
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mayor may not occur as a consistent pattern. 
Characterization studies conducted on ground 
water quality data from the IBM East Fishkill 
site indicate that moderate seasonality is pre­
sent in data collected from the shallow aquifer. 
In general, IBM has dealt with seasonality 
according to recommendations provided in 
Ward et al. (1988). Specific information on how 
seasonality will be handled when statistically 
analyzing ground water quality data is pre­
sented in section N. E. 

H. Censoring 
IBM has not censored laboratory data 

since 1986. This noncensoring approach is 
recommended by Porter (1986), Porter et al. 
(1988), Ward et al. {1988}, and ASTM Method 
04210-83. IBM's laboratory reports the actual 
readings together with an estimate of mea­
surement error. The uncensored laboratory 
measurements are used for all data calcula­
tions, and the results are rounded to the 
appropriate number of significant figures 
prior to reporting. 

I. Serial correlation 
Serial correlation is generally thought of as 

redundancy of information between adjacent 
observations in a time series. Serial correlation 
causes data to violate the assumption of inde­
pendence which underlies most statistical 
methods. 

Characterization studies conducted on 
ground water quality data from the IBM East 
Fishkill site indicate that serial correlation is 
minimal for quarterly sampling frequencies. 
Specific information on how serial correlation 
will be handled is presented in section N.E. 

1'1. DATA ANALYSIS METHODS 

A. General 
Several questions dealing with information 

goals, data characteristics, and data analysis 
method characteristics' were addressed during 
the process of choosing data analysis methods. 
Some of the questions are listed here: 
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Information Goals 
• What do we want to know? 
• How soon do we need to know it? 
• What degree of accuracy is appropriate? 

Data Record Attributes 
• What can historical data tell us about data 

record attributes? 
• How should we deal with data record 

attributes? 
• How can we prevent missing values and 

changing sampling frequencies? 
Characteristics of the Data Analysis Method 

• Is the data analysis method easy to under-
stand? 

• Is it widely accepted? 
• Does it tell us what we need to know? 
Data analysis methods which were chosen 

are discussed below. Advantages and limita­
tions of the techniques are summarized, and 
the rationale used to choose them is described. 
Technical details, such as calculation proce­
dures, are presented in Appendix E. For pur­
poses of the following discussion, the methods 
are divided into four categories: 

• Computational. 
• Graphical. 
• Direct comparison with fixed limits. 
• Statistical. 

IS- Computational Methods 
Strictly computational procedures (Le., 

those involving calculations but not statistics) 
were chosen for information goal #4: determine 
the 7IUlS5 of contaminants removed at each remedia­
tion area. 

C. Graphical Methods 
Plots of concentration versus time were 

selected to analyze data for information goal 
#5: characterize contaminant concentrations over 
time within the plumes. This qualitative, graphi­
cal approach was chosen because it provides 
information on general patterns of contami­
nant behavior. Quantitative trend analysis, 
such as estimation of trend magnitude or 
determination of statistical significance, is not 
needed at this time. It may, however, be appro-
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priate in the future when data records are 
longer, and when the relationship between 
remediation effectiveness and trend is better 
understood. Current data collection prac­
tices-fixed interval sampling, no censoring 
and virtually no missing values-produce the 
type of data which is needed for quantitative 
trend analysis should the need arise. 

Data collected for information goal #6: deter­
mine the hydraulic effectiveness of remediation, 
will be converted into information by plotting 
the water levels on a site map and construct­
ing contours of the water table. 

D. Direct Comparison With Fixed Limits 
Direct comparison with fixed limits was 

selected as a technique to analyze data for five 
of the twelve information goals. The method 
involves comparison of individual concentra­
tion values to fixed limits without the use of 
statistics. 

The five information goals for. which direct 
comparison will be used are listed in Table 1. 
Fixed limits which have been set for each goal 
are also listed. 

The method of direct comparison with fixed 
limits was chosen for the information goals 
listed in Table 1 because it was felt that action 
should be taken if a single verified value falls 
above the specified limits. Recommended 
action for each information goal is described 
in Appendix A. 

E. Statistical Methods 
E.I Control Charts 

Control chart methods were chosen to ana­
lyze data for information goal #2: ensure ade­
quacy of the treatment facility by detecting changes 
in input concentrations. 

Control charts are graphical representations 
of statistical quality control procedures. They 
consist of a horizontal line corresponding to 
the average value of the characteristic in ques­
tion, together with upper and/ or lower con­
trol limits (Marriott, 1990). Most commonly, 
the horizontal axis is in units of time and the 
vertical axis is in units of standard deviation. 

• 
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Table I. Information goals and flxed limits for direct comparison. 

#1: Ensure adequacy of the treatment facility by screening for 
MOL the presence of new compounds. 

#7: Measure water quality down-gradient of AOC's where flow 
2xMOL may pass across a site boundary.' 

#8: Confirm previous monitoring results which indicate that 
GWPS contaminants are not migrating offsite from onsite. 

#9: Confirm previous monitoring results which indicate that GWPS 
contaminants are not migrating onsite from offsite. 

#10: Ensure that all chemicals of concern are properly identified MOL 
and monitored. 

"Interval estimation is the primary procedure chosen for information goal #7 (see the "statistical methods" 
section). Comparison with fixed limits was chosen as a secondary method to ensure that very high values are 
dealt with immediately. 

Sampling results or statistics of sampling 
results are plotted sequentially on the chart. If 
a plotted point falls outside the limits, the 
process is said to be out of control. 

"Out of control" simply means that statisti­
cally unusual variation from normal perfor­
mance has been detected (Berthouex et aI., 
1978). Action taken in response to an out of 
control signal may consist of increasing the 
retention time in a clarifier, adjusting manu­
facturing equipment, or just taking a closer 
look at the data. 

Control charts have traditionally been used 
for process quality control in the manufactur­
ing industry. In the field of water quality man­
agement, control charts are used to monitor 
sewage treatment plant effluent (Berthouex 
and Hunter, 1975; Berthouex et ai., 1978; and 
Vaughan and Russell, 1983) and to analyze 
water quality data at RCRA sites (U.S. EPA, 
1989 and Starks and Flatman, 1991). 

Environmental quality data often violates 
the underlying assumptions of control charts 
by exhibiting serial correlation, seasonality, 
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nonconstant variance and nonnormal distribu­
tions (Berthouex et aI., 1978). Complications 
arising from "messy" data are exacerbated by 
the small sample sizes encountered in ground 
water quality monitoring. Research which 
addresses these issues is still in its early stages. 
The results of control chart analysis of ground 
water quality data are therefore subject to a 
high degree of uncertainty and should be used 
accordingly. It would be inappropriate to base 
major environmental decisions on the results 
of control chart analyses. 

If their limitations are acknowledged, how­
ever, control charts can be an effective tool for 
quickly detecting shifts in water quality. They 
are versatile and easy to use. Most important­
ly, they proVide an ongoing visual account of 
water quality. Research has shown that shifts 
in quality are often more readily apparent on 
CUSUM control charts than on time series 
plots (Hockman and Lucas, 1987). 

Results of control chart analyses will be used 
as a tool to optimize the efficiency of IBM's 
ground water treatment facilities. Results will 
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not be used as the basis for regulatory action. 
The decision was made to employ a control 

chart procedure known as the "combined 
Shewart-CUSUM method" (Lucas, 1982) to 
analyze data for information goal #2. Large 
shifts in concentration values are detected by 
Shewart limits, whereas small changes which 
persist are detected by CUSUM limits. The 
combined Shewart-CUSUM method is easier 
to apply than other control chart methods 
which provide similar results (Lucas, 1982). 
Details of the procedure are presented in 
Appendix E-t. 

Evaluation of existing data indicates that 
low to moderate amounts of serial correlation, 
seasonality and nonnormality should be 
expected in the data which is to be analyzed 
by control chart methods. Serial correlation 
and seasonality increase the probability of 
Type I error (i.e., false positives) (Loftis et aI., 
1987 and U.s. EPA, 1989). The effects of non­
normality depend on the actual distribution 
which is present (Schilling and Nelson, 1976). 

No special adjustments will be made to the 
combined Shewart-CUSUM method to 
account for serial correlation, seasonality or 
non normality. This decision was based on 
three factors: 

1. Adjustments may complicate the method 
thereby making it more difficult to under­
stand from an intuitive point of view. 

2. Modifications which involve data trans­
formations can decrease information con­
tent of the data and/or make visual 
inspection of the data less effective. 

3. Modifications to account for data record 
attributes may affect the results of control 
charts in ways which are not well under­
stood. 

E.2 Interval Estimation of the Difference in 
Medians 

Interval estimation was one of the methods 
chosen to determine the lateral extent of contamina­
tion plumes (information goal #3). An interval 
estimate of the difference between medians for 
the current two years of data and the previous 
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two years of data will be made for each key com­
pound (or for each sum of key compounds). The 
estimates will indicate whether or not concentra­
tions have changed enough in the well to war­
rant relocation of the plume boundary. (A more 
detailed explanation of how plume boundaries 
will be drawn is given in the summary sheet for 
information goal #3.) 

An interval estimate is an intuitively 
appealing way of presenting information. The 
width of the confidence interval indicates how 
much reliance should be placed on the esti­
mate. Similar information can be obtained 
from the yes/no results of a hypothesis test 
accompanied by the appropriate operating 
characteristic curve (Natrella, 1972). Operating 
characteristics curves, however, are difficult to 
construct and interpret. 

The particular estimator chosen for informa­
tion goal #3 is the Hodges-Lehmann estimator 
(Hodges and Lehmann, 1963). It is simply the 
median of all pairwise differences between the 
two groups. The Hodges-Lehmann estimator 
was chosen because it is robust in the presence 
of serial correlation, seasonality and nonnor­
mality, all of which may be present in small to 
moderate amounts (Hirsch, 1988). Details of 
the procedure are given in Appendix E-2. 

E.J Interval Estimation of the Median 
Interval estimation of the median was the 

method selected to analyze data for informa­
tion goal #7: measure water quality down-gradi­
ent of AGes where flow may pass across a site 
boundary. Interval estimates of the median will 
be made on a yearly basis and compared to 
the ground water protection standard (GWPS). 
Action will be taken if the entire interval is 
above the GWPS. 

A statistical approach was chosen instead of 
direct comparison because some of the com­
pounds are expected to be present at levels 
above the MOL. Direct comparison is appro­
priate when the main objective is to detect 
compounds which have not previously been 
found in a particular well. The objective here, 
however, is to determine if any compounds 
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are present at levels above the GWPS, while 
accounting for distributional variability. 

Details of the interval estimation procedure 
are presented in Appendix E-3. 

V. CRITERIA FOR CHOOSING 
COMPOUNDS FOR LABORATORY 
ANALYSIS, DATA SUMMARIZATION AND 
DATA ANALYSIS 

A. Routinely Monitored Compounds 
All samples will be analyzed for the "rou­

tinely monitored compounds" which are listed 
in Table C-2. Results will be reported as raw 
data. 

B. Selected Compounds 
A procedure which employed boxplots was 

used to decide which of the routinely moni­
tored compounds should be designated as 
"selected compounds." Boxplots were con­
structed for data from the second quarter of 
1989 through the first quarter of 1991. The data 
represented either single compounds or 
groups of compounds. Compounds (or groups 
of compounds) whose upper fence fell above 
the ground water protection standard (usually 
SJ.l/L) were designated as selected com­
pounds. 

Selected compounds are listed in Table C-3. 
Results of analyses of selected compounds will 
be reported as summary statistics. 

C. Key Compounds 
Key compounds are those routinely moni­

tored compounds which are examined by spe­
cial data analysis techniques. Key compounds 
vary according to area as shown in Table C-4. 
They were chosen based on concentration, 
importance, and their ability to meet informa­
tion goals. 

VI. CRITERIA FOR CHOOSING 
SAMPLING INTERVALS 

Factors which were considered when choos­
ing sampling intervals for the data analysis 
protocol included: 
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• Regulatory requirements and guidance, 
which generally recommended a minimum 
of semi-annual sampling. 

• Monitoring and statistical information 
goals. 

• Historical water quality records for the well 
and adjacent points. 

• Location of the well and direction of ground 
water flow. 

• Risk to human health and the environment. 

VII. PROCEDURES FOR REVIEWING THE 
DATA ANALYSIS PROTOCQL 

The data analysis protocol will be reviewed 
once every two years. It will be reviewed more 
frequently if any of the following occur: 

• New regulations are promulgated which 
affect the content of the DAP. 

• It becomes evident that a section of the 
DAP is invalid. 

• A particular revision would greatly 
improve the effectiveness of the DAP. 

Minor revisions will be saved for the next 
scheduled review. 

Protocol review will be overseen by the 
ground water quality program manager. The 
manager will sign-off on all revisions. 

Factors which will be considered during the 
reviews include current research, amended 
regulations, and new information obtained 
from recent monitoring data. 

All revisions made to the data analysis pro­
tocol will be thoroughly documented and, if 
necessary, reported to NYSDEC. Each revision 
will have the following heading: 

GROUND WATER QUALITY DATA 
ANALYSIS PROTOCOL REVISION 
Date: 
Author: 
Approved by: 
Summary of Revision: 

All copies of the DAP will be kept in loose­
leaf notebooks to facilitate the revision 
process. Revision sheets will be placed at the 
back of the protocol. Sections of the protocol 
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which are no longer applicable will be crossed 
outbutnot~oved. 

With a loose-leaf format, the potential exists 
for sheets to be lost or disorganized. To remedy 
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Appendix A Data Analysis Protocol Summary Sheets 

INFORMATION GOAL #1: Ensure adequacy of the treatment facility by screening for the pres­
ence of new' compounds. 

Compounds To Be Analyzed: "Appendix 33" compounds (Table C -1). 

Well Type: Extraction wells 

Number of Wells To Be Sampled: 7 

Sampling Frequency: 1 per year for 3 years 

Data Analysis Procedures: 

Concentrations will be compared with the method detection limit (MOL). 

Actions To Be Taken Based On Laboratory Results: 

If a new compound is detected at or above the MOL, the well will be resampled. If the concen­
tration is still at or above the MOL, then the presence of the compound is confirmed', and: 

(1) The pertinent well, compound and concentration will be reported to the New York State 
Department of Environmental Conservation (NYSDEq within seven days of confirmation. 

(2) If necessary, adjustments will be made to the treatment system to account for the presence of 
the new compound. 

(3) If the new compound is not already included in the list of routinely monitored compounds 
(Table C-2), a decision will be made regarding whether or not to add it to the list. The deci­
sion will be based on several factors including the concentration of the compound in relation 
to the GWPS, and the location and direction of ground water flow. 

Reporting: 

Results will be presented in the first semi-annual report which is written subsequent to 
sampling as follows: 

(1) Results of all laboratory analyses will be reported in a raw data format. 

(2) If a resample is conducted and the compound of interest is no longer at or above the MOL, 
then the original analysis will be labeled "invalid." 

(3) If a resample is conducted and the presence of the compound is confirmed, both analyses 
will be considered valid and the pertinent well, compound and concentrations will be report­
ed separately from the raw data. 

1 "New" compounds are those which have not been previously detected and confirmed in a particular well. 

, Organics will be analyzed by GC/MS where applicable in order to yield positive qualitative identification. 
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Data Analysis Protocol Summary Sheets Appendix A 

INFORMATION GOAL #2: Ensure adequacy of the treatment fatility by detecting changes in 
input concentrations. 

Compounds To Be Analyzed: Routinely monitored compounds (Table C-2). 

Well Type: Extraction wells 

Number Of Wells To Be Sampled: 12 

Sampling Frequency: 12 per year 

Data Analysis Procedures: 

All key compounds (Table C-4) will be tracked by control chart methods3 subsequent to each 
sampling episode (i.e., 12 times per year). If concentrations are found to be "out of control," the 
data will be inspected more closely and, if necessary, adjustments will be made to the treatment 
system to account for increased concentrations of the compound. 

Actions To Be Taken Based On Laboratory Results: 

Concentrations of all key compounds will be tracked by control chart methods as described 
above. 

Reporting: 

Results will be presented in the first semi-annual report which is written subsequent to sam­
pling as follows: 

(1) Results of all laboratory analyses will be reported as raw data. 

(2) Summary statistics from analyses of selected compounds (Table C-3) will be presented. 

(3) Control charts constructed from concentrations of key compounds will be presented as 
shown in Figure 0-1. 

(4) Any adjustments made to the treatment system resulting from the presence of "out of con­
trol" compounds will be discussed. 

(5) If any compounds are added to the list of key compounds, the data and rationale which sup­
port the addition will be supplied. 

3 Details of control chart methods which will be used to track concentrations for process control are presented 
in Appendix E-l. 
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Appendix A Data Analysis Protocol Summary Sheets 

INFORMATION GOAL #3: Detennine the lateral extent of contamination plumes. 

Compounds To Be Analyzed: Routinely monitored compounds (Table C-2). 

Well Type: Wells near plume perimeters. 

Number Of Wells To Be Sampled: 87 

Sampling Frequency: 2,4 or 12 per year. 

Data Analysis Procedures: 

The following procedures will be conducted on a yearly basis: 

(1) Annual medians of key compounds (Table C-4) (or sums of key compounds) will be plotted 
on a site map. 

(2) An interval estimate of the difference between medians for the current two years of data and 
the previous two years of data will be made for each key compound (or for each sum of key 
compounds). The estimates will indicate whether or not concentrations have changed 
enough in the well to warrant relocation of the plume boundary. Details of this statistical 
procedure are presented in Appendix E-2 

(3) Plume boundaries will be drawn based on personal judgment and the above information. 
Knowledge of flow direction, site hydrogeology, and contaminant transport behavior will 
support "personal judgment" decisions. 

Actions To Be Taken Based On Laboratory Results: 

None 

Reporting: 

Results will be presented in each annual report as follows: 

(1) Results of all laboratory analyses will be reported as raw data. 

(2) Summary statistics from analyses of selected compounds (Table C-3) will be presented. 

(3) Annual medians of key compounds (or sums of key compounds) will be plotted on a site 
map. 

(4) Interval estimates of the differences in medians between the current two years data and the 
previous two years data will be given for each key compound (or for each sum of key com­
pounds) (see Figure 0-2). 

(5) Plume boundaries for all six Areas of Concern (AOCs) will be drawn on a site map. Plume 
boundaries are defined as an annual median concentration equal to 5!l/L of one key com­
pound or sum of key compounds. 
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Data Analysis Protocol Summary Sheets Appendix A 

INFORMATION GOAL #4: Determine the mass of contaminants removed at each remediation 
area. 

Compounds To Be Analyzed: Routinely monitored compounds (Table C-2). 

WelllYPe To Be Sampled: Extraction wells 

Number Of Wells To Be Sampled: 11 

Sampling Frequency: 12 per year 

Data Analysis Procedures: 

The volume of water pumped will be multiplied by the concentrations of each key compound 
(Table C-4) to obtain the mass of contaminants removed. 

Actions To Be Taken Based On Laboratory Results: 

None 

Reporting: 

Results will be presented in each annual report as follows: 

(1) Results of all laboratory analyses will be reported as raw data. 

(2) Summary statistics from analyses of selected compounds (Table C-3) will be presented. 

(3) Masses of contaminants removed, as well as volume and concentration data used calculate 
the masses, will be reported. 
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Appendix A Data Analysis Protocol Summary Sheets 

INFORMATION GOAL IS: Characterize contaminant concentrations over time within the 
plumes. 

Compounds To Be Analyzed: Routinely monitored compounds (Table C-2). 

Well Type To Be Sampled: Wells within the plumes. 

Number Of Wells To Be Sampled: 11 

Sampling Frequency. 2 or 12 per year. 

Data Analysis Procedures: 

Plots of time versus concentration will be constructed for all key compounds (Table C-4). The 
plots will be observed in order to improve current understanding of the relationship between 
remediation efforts and contaminant behavior. 

Actions To Be Taken Based On Laboratory Results: 

None 

Reporting: 

Results will be presented in each annual report as follows: 

(1) Results of all laboratory analyses will be reported as raw data. 

(2) Summary statistics from analyses of selected compounds (Table C-3) will be presented. 

(3) Plots of time versus concentration for key compounds will be provided (see Figure D-3). 
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Data Analysis Protocol Summary Sheets Appendix A 

INFORMATION GOAL #6: Determine the hydraulic effectiveness of remediation. 

Compounds To Be Analyzed: Not applicable because only water elevations will be 
measured. 

Well Type To Be Sampled: All onsite (i.e., main site and west complex) monitoring wells. 

Number Of Wells To Be Sampled.: 149 

Sampling Frequency: 4 per year 

Data Analysis Procedures: 

Water elevations will be used to construct contour maps of the water table. If necessary, pump­
ing will be adjusted based information provided by the contour maps. 

Actions To Be Taken Based On Laboratory Results: 

None 

Reporting: 

Results will be presented in each annual report as follows: 

(1) All water elevations measured in monitoring wells will be reported in a raw data format. 

(2) Contour plots of water table elevations will be provided. 
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Appendix A Data Analysis Protocol Summary Sheets 

INFORMATION GOAL #7: Measure water quality down-gradient of AOCs where flow may 
pass across a site boundary. 

Compounds To Be Analyzed: Routinely monitored compounds (Table C-2). 

Well Type To Be Sampled: Wells which are both near the property boundary and down­
gradient of an AOC. 

Number Of Wells To Be Sampled: 6 

Sampling Frequency: 4 or 12 per year. 

Data Analysis Procedures: 

On a yearly basis, concentrations will be compared to the Ground Water Protection Standard 
(GWPS) using interval estimation. Details of the estimation procedure are presented in 
Appendix E-3. 

If data analysis procedures indicate that the GWPS has been exceeded, IBM will attempt to 
determine the reason for the change in ground water quality, as well as implications of the 
change in terms of protection of human health and the environment. Corrective action will be 
taken if necessary. 

Actions To Be Taken Based On Laboratory Results: 

If a compound is detected which is at least twice the level of the GWPS, the well will be resam­
pled. If the concentration is still at or above twice the GWPS, then the concentration is con­
firmed, and: 

(1) The pertinent well, compound and concentration will be reported to NYSDEC within seven 
days of confirmation. 

(2) IBM will attempt to determine the reason for the change in ground water quality, as well as 
implications of the change in terms of protection of human health and the environment. 
Corrective action will be taken if necessary. 

Reporting: 

Results will be presented in each annual report as follows: 

(1) Results of all laboratory analyses will be reported as raw data. 

(2) Summary statistics from analyses of selected compounds (Table C-3) will be presented. 

(3) If a resampie is conducted and the compound of interest is no longer at or above twice the 
GWPS, then the original analysis will be labeled "invalid." 

(4) If a resample is conducted and the concentration is confirmed, both analyses will be consid­
ered valid and the pertinent well, compound and concentrations will be reported separately 
from the raw data. 

(5) Interval estimates of annual concentration medians will be given for all routinely monitored 
compounds (see Figure D-4). 

(6) Documentation will be provided regarding actions, decisions or observations made as the 
result of either: (a) the discovery of interval estimates of annual medians which exceed the 
GWPS, or (b) the discovery of concentrations above twice the GWPS. 
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Data Analysis Protocol Summary Sheets Appendix A 

INFORMATION GOAL #8: Confirm previous monitoring results which indicate that contami­
nants are not migrating offsite from onsite. 

Compounds To Be Analyzed: Routinely monitored compounds (Table C-2). 

Well Type To Be Sampled: Clean wells located near the property boundary. 

Number Of Wells To Be Sampled: 14 

Sampling Frequency: 2 per year 

Data Analysis Procedures: 

Concentrations will be compared with the GWPS. 

Actions To Be Taken Based On Laboratory Results: 

If a compound is detected at or above the GWPS, the well will be resampled. If the concentra­
tion is still at or above the GWPS, then the concentration is confirmed, and: 

(1) The pertinent well, compound and concentration will be reported to NYSDEC within seven 
days of confirmation. 

(2) IBM will immediately attempt to determine the reason for the change in ground water quali­
ty, as well as implications of the change in terms of protection of human nealth and the envi­
ronment. Corrective action will be taken if necessary. 

(3) If appropriate, the well may be redesignated as a well for meeting goal #7. 

Reporting: 

Results will be presented in each semi-annual report as follows: 

(1) Results of all laboratory analyses will be reported as raw data. 

(2) If a resample is conducted and the compound of interest is no longer at or above the GWPS, 
then the original analysis will be labeled "invalid." 

(3) If a resample is conducted and the presence of the compound is confirmed, both analyses 
will be considered valid and the pertinent well, compound and concentrations will be report­
ed separately from the raw data. 

(4) Any actions, decisions or observations made as the result of discovery of concentrations 
above the GWPS will be reported. 

(5) Summary statistics from analyses of selected compounds (Table C-3) will be presented. 
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Appendix A Data Analysis Protocol Summary Sheets 

INFORMATION GOAL #9: Confirm previous monitoring results which indicate that contami­
nants are not migrating onsite from offsite. 

Compounds To Be Analyzed: Routinely monitored compounds (Table C-2). 

Well Type To Be Sampled: Clean wells located near the property boundary. 

Number Of Wells To Be Sampled: 8 

Sampling Frequency: 2 per year 

Data Analysis Procedures: 

Concentrations will be compared with the GWPS. 

Actions To Be Taken Based On Laboratory Results: 

If a compound is detected at or above the GWPS, the well will be resampled. If the concentra­
tion is still at or above the GWPS, then the concentration is confirmed, and: 

(1) The pertinent well, compound and concentration will be reported to NYSDEC within seven 
days of confirmation. 

(2) IBM will immediately attempt to determine the reason for the change in ground water quali­
ty, as well as implications of the change in terms of protection of human health and the envi­
ronment. 

Reporting: 

Results will be presented in each semi-annual report as follows: 

(1) Results of all laboratory analyses will be reported as raw data. 

(2) If a resample is conducted and the compound of interest is no longer at or above the GWPS, 
then the original analysis will be labeled "invalid." 

(3) If a resample is conducted and the presence of the compound is confirmed, both analyses 
will be considered valid and the pertinent well, compound and concentrations will be report­
ed separately from the raw data. 

(4) Any actions, decisions or observations made as the result of discovery of concentrations 
above the GWPS will be reported. 

(5) Summary statistics from analyses of selected compounds (Table C-3) will be presented. 
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Data Analysis Protocol Summary Sheets Appendix A 

INFORMATION GOAL #10: Ensure that all chemicals of concern are properly identified and 
monitored. 

Compounds To Be Analyzed: "Appendix 33" compounds (Table C-1). 

Well Type To Be Sampled: Wells within the plumes. 

Number Of Wells To Be Sampled: 8 

Sampling Frequency: 1 per year for 3 years. 

Data Analysis Procedures: 

Concentrations will be compared with the MOL. 

Actions To Be Taken Based On Laboratory Results: 

If an additional' compound is detected at or above the MOL, the well will be resampled. If the 
concentration is still at or above the MOL, then the presence of the compound is confirmed, and: 

(1) The pertinent well, compound and concentration will be reported to NYSDEC within seven 
days of confirmation. 

(2) The well will be sampled for two quarters following the original confirmation. Laboratory 
results will be reported to NYSDEC. 

(3) A decision will be made regarding whether or not to place the additional compound on the 
list of routinely monitored compounds (i.e., Table C-2). The decision will be based on several 
factors including the concentration of the compound in relation to the GWPS, and the loca­
tion and direction of ground water flow. 

Reporting: 

Results will be presented in the first semi-annual report which is written subsequent to sam­
pling as follows: 

(1) Results of all laboratory analyses will be reported in a raw data format. 

(2) If a resample is conducted and the compound of interest is no longer at or above the MOL, 
then the original analysis will be labeled "invalid." 

(3) If a resample is conducted and the presence of the compound is confirmed, both analyses 
will be considered valid and the pertinent well, compound and concentrations will be report­
ed separately from the raw data. 

4 "Additional" refers to compounds other than those which are routinely monitored (i.~. other than those 
compounds listed in Table C-2). 
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Appendix A Data Analysis Protocol Summary Sheets 

INFORMATION GOAL #11: Provide a qualitative basis for comparison with data from 
"Appendix 33" monitoring of contaminated wells. 

Compounds To Be Analyzed: "Appendix 33" compounds (Table C-l). 

Well Type To Be Sampled: Clean wells located away from AOCs. 

Number Of Wells To Be Sampled: 2 

Sampling Frequency: 1 per year for 3 years. 

Data Analysis Procedures: 

To be determined. 

Actions To Be Taken Based On Laboratory Results: 

None 

Reporting: 

Results will be presented in the first semi-annual report which is written subsequent to sam­
pling as follows: 

(1) Results of all laboratory analyses will be reported in a raw data format. 
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Data Analysis Protocol Summary Sheets Appendix A 

INFORMATION GOAL #12: Provide data for investigative studies associated with the NYS Part 
373 Corrective Action Program. 

Compounds To Be Analyzed: Routinely monitored compounds (Table C-2). 

Well Type To Be Sampled: Wells in areas under investigation. 

Number Of Wells To Be Sampled: 64 

Sampling Frequency: 4 per year 

Data Analysis Procedures: 

To be detennined.' 

Actions To Be Taken Based On Laboratory Results: 

None 

Reporting: 

Results will be presented in the first semi-annual report which is written subsequent to sam­
pling as follows: 

(1) Results of all laboratory analyses will be reported as raw data. 

(2) Summary statistics from analyses of selected compounds (Table C-3) will be presented. 

(3) A summary of project status will be provided. 

(4) Annual medians of key compound(s) will be plotted on a site map. 

S A separate data analysis protocol will be written for each Remedial Facilities Investigation (RFI) work 
plan. 
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Appendix B Sampling Frequencies 

Table B-1. Sampling frequencies (per year)--<lrea A remediation area. 

007 4 

998 2 4 

999 2 4 

720 2 4 

761 2 4 

99 2 4 

763 2 4 

204 2 4 

714 4 1 

1 12 4 

16 2 2 4 

103 2 2 4 

104 2 2 4 

744 4 4 

745 4 

15 4 

706 4 1 
5W 4 12 

Table B-2. Sampling frequencies (per year)-9rea B remediation area. 

064 4 4 4 
065 4 4 4 

863 GAC 
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Sampling Frequencies Appendix B 

Table B-3. Sampling frequencies (per year}-area C remediation area. 

561 2 4 

4 1 

053 2 4 

054 2 4 

932 2 4 

944 2 4 

943 2 4 

Table B-4. Sampling frequencies (per year}-area D remediation area. 

1 4 

757 4 4 

067 4 

066 
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Appendix B Sampling Frequencies 

Table B·S. Sampling frequencies (per year)-SEQ remediation area. 

552 4 4 1 
543 4 4 

545 4 4 

990 12 4 12 
987 12 4 12 
520 4 4 

502 4 4 

503 4 

859 4 4 

860 4 4 

861 4 4 

4 
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Sampling Frequencies Appendix B 

Table 8-6. Sampling frequencies (per year)_rea C B/330 investigative area. 

_II 
574 4 1 

178 4 4 

576 4 4 

921 4 2 
922 4 _2_ 
923 4 2 
924 4 2 
954 4 2 
955 4 2 
956 4 2 
957 4 2 
965 4 2 
966 4 2 
941 4 2 

PW-7 1 12 12 12 12 4 

572 4 1 
181 4 1 4 

756 4 4 

062 4 4 

063 4 4 

061 4 4 

059 4 4 

060 4 4 

143 4 2 
145 ! 2 
146 4 2 
929 4 2 
930 4 2 
931 4 2 
953 4 2 
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Appendix B Sampling Frequencies 

Table B-7. Sampling frequencies (per year)-building 322 investigative area. 

740 4 4 

766 4 4 

767 4 4 

768 4 4 

769 4 4 

770 4 4 
771 4 4 

7n 4 4 
773 4 4 

754 4 4 

755 4 4 

792 4 4 

793 4 4 

781 4 4 

203 4 4 

151 4 4 

949 4 4 

743 4 4 
161 4 4 

35 4 4 
68 4 4 
774 4 4 
775 4 4 
791 4 4 
789 4 4 
202 4 4 
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Sampling Frequencies Appendix B 

Table B·8. Sampling frequencies (per year)-bedrock aquifer. 

1-PW·I _g 12 12 12 4 
PW·2 1 12 12 12 12 4 

PW-4 1 12 12 12 12 4 

PW.S/SA 12 12 12 12 4 

PW-6 12 12 4 

PW·7 1 12 12 12 12 4 

,PW.9 (when on) 12 12 12 12 4 

GAC.lnput 1 12 4 

113 4 4 

535 4 4 

958 4 4 

4 4 

963 4 4 

4 4 

521 4 4 

857 4 4 

858 4 4 

166 2 4 2 

167 2 4 2 . 

087 2 4 2 

085 2 4 2 
722 2 4 

711 2 4 

105 2 4 

106 2 4 

70-4 2 4 

108 2 4 

109 2 4 

2 4 1 
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Appendix B Sampling Frequencies 

Table B·8. Sampling frequencies (per year)-bedrock aquifer. continued. 

966 2 4 

564 2 4 

563 _2 4 

559 2 4 
932 2 4 

944 2 4 
943 2 4 

145 2 4 
146 2 4 

929 2 4 
930 2 4 

931 2 4 

941 2 4 1 

953 2 4 

143 2 4 

156 2 4 

945 2 4 
952 2 4 
737 2 4 

742 2 4 
173 2 4 

150 2 4 2 
n9 2 4 2 

na 2 4 2 
m 2 4 2 
739 2 4 
716 2 4 1 
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Table B·9. Sampling frequencies (per year)-west complex. 

407 1 
408 1 

Note: Monitoring wells for information goal #8 were selected after the initial submittal of the ground­
water monitoring proposal and are therefore not included in the Appendix B tables. 
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Appendix C Categories of Compounds 

Table C·I. Appendix 33 compounds. 

Appendix 33, found in 6 NYCRR Subpart 373-21
, is a list of 17 inorganic compounds 

and 202 organic compounds. Various sections of the Subpart 373-2 regulations require 
that ground water samples be analyzed for the presence of Appendix 33 compounds. The 
regulations also describe actions which should be taken if Appendix 33 compounds are 
confirmed to be present. 

Appendix 33 provides the compound's chemical name, the Chemical Abstracts Service 
Registry Number, the Chemical Abstracts Service Index Name, suggested analytical meth­
ods, and Practical Quantitation Limits (PQL's). Regulatory requirements pertain only to 
the list of substances. The analytical methods and PQL's are given solely for information 
purposes. 

t New York State Department of Environmental Conservation, Final Status StandJzrds for Owners and Operators of 
Hazardous Waste Treatment, Storage and Disposal Facilities, Albany, NY, January 31, 1992. 

Table C-2. Routinely monitored compounds. 

Ii i ................... . i? .. i····i·.···?· .. \ii •• · .•. ·•·.· --Acetone 67-64-1 

Benzene2 71-43-2 

Bromochloromethane 74-97-5 

Chlorobenzene2 108-90-7 

Chloroethane 75-00-3 

Chloroform 67-66-3 
Chloromethane 74-87-3 
Dibromochioromethane 124-48-1 

1,2-Dibromoethane 106-93-4 

l,2-Dichlorobenzene2 95-50-1 

l,3-Dichlorobenzene2 541-73-1 
1,4-Dichlorobenzene2 106-46-7 

Dichlorodifluoromethane 12)2 75-71-8 

11 LL _2 75-35-4 "v~~,~. 

ds-1,2-Dichloroethene2 156-59-2 
'1"_ '?-T)jchloL~::hcllc 156-60-5 
1~n;, 142-28-9 
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Table C-2. Routinely monitored compounds. continued. 

""." ... "".--, 
~, 

Trichlorotrifluoroethane \rr"UII 113 or Freon TF)' 

Hexachlorobutadiene 
T. .•• L 

.~~.~ 

~1 .. .,n., 

••• LL J lene Chloride2 

M<:thfl-t-Butyl Ether 

,.I"n" 

D. .It. nzene u-•• vt'! w"'., 
1,1,2,2-Tetrachloroethene' 

THF 
Toluene 

1,2,3-Trichlorobenzene2 

1,2,4-Trichlorobenzene' 

1,1,2-Trichloroethene 

Trichlorofluoromethane 

1,2,4-' 

l,3,5-'mm 

Vfnyl Chloride2 
m_)(v1.,n., 

n_)(v1"n" 

U,l-Trichloroethane 

"'" 

Ll_nir l. 
L""'O:: 

l'_nir l. 

1.'_ni, ".2,2-Triflu 

Chromium (total\' 

Fluoride2 

Zinc (tota]l' 

2 Listed in Table C-3. 

3 CAS # for F1ourine. 

11) 

(~reon ""'b\2 
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100-41-4 

76-13-1 

87-68-3 

98-82-8 

99-878-6 

75-09-2 

1634-04-4 

106-44-5 

103-65-1 

127-18-4 

109-99-9 

108-88-3 

95-63-6 

96-18-4 

79-01-6 

·75-69-4 

95-63-6 

108-67-8 

75-01-4 

108-38-3 

106-42-3 

95-47-6 

71-55-6 

104-51-8 

135-98-8 

75-34-3 

107-06-2 

354-23-4 

7440-47-3 

7782-41-43 

7440-66-6 



Appendix C Categories of Compounds 

Table C-3. Selected compounds. 

Benzene 8021 

Chlorobenzene 8021 

1,2-Dichlorobenzene6 8021 

1,2,3-Trichlorobenzene 8021 

1,2,4-Trichlorobenzene 8021 

1,3-Dichlorobenzene 8021 

1,4-Dichlorobenzene6 8021 

Dichlorodifluoromethane 8021 

1,1-Dichloroethene 8021 

Chloride 8021 

8021 

Chloride 8021 

1,2 -Dichloro-1 ,2,2-Trifl uoroethane 8021 

1,1,2,2-Tetrach loroethene 8021 

Trichlorotrifluoroethane (Freon 11 8021 

8021 

ds-1,2-Dichloroethene 8021 

Fluoride7 45OO-FC· 

Chromium 7191 

Zinc 6010 

• EPA Method SW-846. Method SOlO or S020 may be substituted for method 8021. 

5 Ground water protection concentrations for corrective measures. 

• The sum of 1,2-Dichlorobenzene and 1,4-Dichlorobenzene must be S 4.7 ~g/L. 

7 Area IIA" and Area lie". 

0.7 

5.0 

4.7 

5.0 

5.0 

5.0 

4.7 

5.0 

5.0 

5.0 

5.0 

2.0 

5.0 

5.0 

5.0 

5.0 

5.0 

1500.0 

SO.O 

300.0 

• APHA, AWWA, WPCF, American Public Health Association. 1989. Standard Methods for the Examination of 
Water and Wastewater. 17th ed., Washington, DC, p. 4.,<j7. 

10 Area "e". 
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Table C-4. Key compound •. 

Area A remediation area 

Area B remediation area 

Area C remediation area 

Area D remediation area 

SEQ remediation area 

Area C B/330 investigative area 

Building 322 investigative area 

Bedrock aquifer 
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Tetrachloroethene 

Trichloroethene 
cis-l,2-Dichloroethene 

Tetrachloroethene 

Tetrachloroethene 

Trichloroethene 
cis-1,2-Dichloroethene 

Vinyl Chloride 

Freon TF 

Tetrachloroethene 

Trichloroethene 

cis-1,2 -Dichloroethene 

Tetrachloroethene 

Trichloroethene 

cis-1,2-Dichloroethene 

Tetrachloroethene 

Trichloroethene 

cis-1,2-Dichloroethene 

Vinyl Chloride 
Freon TF 

Freon TF 

Freon 123a 

Tetrachloroethene 
Trichloroethene 

cis-1,2-Dichloroethene 

Freon TF 

Freon 123a 

Tetrachloroethene 

liichloroethene 

cis-1,2-Dichloroethene 
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Appendix D Reporting Formats 

Combined Shewart-CUSUM Control Chart 
TETRA concentrations (lJglL)measured at Well PW#4 from 1/92 to 9/92 

6.-----------------------------, 

.S; 
c: o 
'; -2 
~ -c: 
~ 
c: 

8-4 r---------------------------------~ 

Jan Mar May Jul 
Month 

Sep Nov 

mean=111.7 SO=18.5 k=O.75 h=4.5 SCL=4.0 

SCl 

h 

-- CUSUM High 

--.- CUSUM low 

-- Shewart 

Figure 0-1. Reporting format for combined Shewart-CUSUM control chart. 

· ••. /, ••. i0r •• ·.;·~ : .• ~.: •..•••.••••.••••.••••••••• ! ••••••••••••••••••••••..••••••.••............. ···········1 .• ·.( •• ••···•····•· ,J:_ 
016 CEOC 88-89 4 90-91 4 0.95 89 -0.5 2.4 

Figure 0-1. Reporting format for Hodges-Lehmann estimates and confidence intervals. 
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Time Series Plot 
TETRA concentrations measured at Well PW#4 during 1991 

180 ........................................................................................................................................................................... . 

160 ................................................................. . ............................................................................................................... . 

i 140 

.~ 
~ 120 -c: 
(]) 
to 8 100 ....... _ ............... - ... _- ................ _ ....... :;.> •• _-

1/1 211 3/1 4/1 5/1 611 7/1 8/1 9/1 10/1 11/1 1211 1/1 

Date (month/day) 

Figure 0-3. Reporting format for time series plots. 

PW#4 TRICE 1986 12 2.1 2.4 

Figure 0-4. Reporting format for Interval estimates of the median. 
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Appendix E-l 
Combined Shewart-CUSUM 
Control Charts 

INTRODUCTION 

The design and implementation of combined 
Shewart-CUSUM control charts is described in 
this appendix. Definitions of terms and para­
meters are presented first, followed by design 
procedures. The procedures are then used to 
design the control chart scheme for informa­
tion goal #2: ensure adequacy of the treatment 
facility by detecting changes in input concentra­
tions. Implementation procedures are outlined 
and then applied to data obtained from the 
IBM East Fishkill facility. Finally, a table of ref­
erences for control charts is given. 

It is assumed that each contaminant at each 
well will be tracked separately. It is also 
assumed that. for the most part, only one 
observation will be obtained per sampling 
event. Equations are provided, however, 
which accommodate average values obtained 
from multiple observations obtained for quali­
ty control purposes. 

DEFINITIONS OF TERMS 

ARL (average run length): The average num­
ber of samples before an out-of-control signal 
is obtained. The ARL should be large when 
the process is close to the target value and 
small when the process has shifted too far 
from the target value. 

FIR (fast initial response) feature: Assigning 
a value greater than 0 to the CUSUM "head­
start value", So' 
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out-of-control: The situation which exists 
when the process has shifted too far from the 
target value. 

two-in-a-row rule: A process is declared out­
of -control only if two out-of-control signals are 
obtained in succession. 

DEFINITIONS OF PARAMETERS 

J.I Estimate of the population mean. It is 
used as the target value for the Shewart­
CUSUM quality control scheme. 

Estimate of the population standard 
deviation. 

SCL Shewart control limit. 

k A parameter of the CUSUM scheme 
known as the "reference value." 

h A parameter of the CUSUM scheme 
known as the "decision interval." 

The deviation to be detected by the 
CUSUM scheme. 

Sn; The CUSUM statistic at time = i for 
positive shifts. 

5u The CUSUM statistic at time = i for 
negative shifts. 

50 The CUSUM statistic at time = O. Also 
known as the "headstart value." 
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The ith observation for both the 
Shewart and CUSUM schemes. It rep­
resents a single reading. 

The ith observation for both the 
Shewart and CUSUM schemes. It rep­
resents the average from a number of 
observations. 

The standardized value of the ith 
observation (or average of observa­
tions). It is plotted on the control chart 
and compared to the SCL. It is also 
used in calculating SHi and Su' 

DESIGN PROCEDURES 

1. Use the worksheet shown in Figure E-l to 
design the control chart. 

2. State the monitoring information goal, 
monitoring approach, and statistical infor­
mation goal. 

3. Decide whether to use one-sided or two­
sided charts. Two-sided control charts 
should be used if both increases and 
decreases in concentration are of interest. 

4. Choose a value for SCL. 

5. Choose a value for k. For a given in-con­
trol ARL, the quickest detection is obtained 
whenk=M2. 

6. Choose a value for h. h can be chosen 
from a table of average run lengths (ARLs). 
The value of h should be selected to give 
the desired ARL when the process is in­
control and when it is out-of-control. 

7. Choose a value for So' If the FIR feature is 
not used, S, = O. If the FIR feature is used, 
5, is frequently set at h/2. The FIR feature 
should be implemented if it is felt that the 
process is likely to be out-of-control at 
startup or after a restart following a control 
action. 

8. Decide whether or not to use the two-in­
a-row rule. The two-in-a-row rule is rec-
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ommended for situations where outliers 
are likely. It is particularly suitable if only 
single observations rather than an average 
of observations are used, because the 
effects of an outlier will be smoothed out if 
averages are taken. 

The two outliers do not have to be from the 
same side of the distribution. Although a 
suspected outlier on the high side followed 
by a suspected outlier on the low side may 
not indicate a shift in the process mean, it 
would indicate the need for closer exami­
nation of water quality data. 

APPLICATION OF DESIGN 
PROCEDURES 

The above procedures were used to design 
the control chart for information goal #2. The 
design is summarized in Figure E-2. 

IMPLEMENTATION PROCEDURES 

1. Use the worksheet in Figure E-3 to imple­
ment the control chart. 

2. Calculate f.l and G from historical data. 
Use data which was collected when the 
system was operating within desirable lim­
its. Outliers, as well as data which is part 
of an obvious trend, should not be used. 
Precision of the estimates will increase 
with increasing sample size. 

3. Construct the control chart. The horizon­
tal axis should be in units of time and the 
vertical axis in standardized concentration 
units. Draw in the upper Shewart limit at 
SCL, lower Shewart limit at -SCL, upper 
CUSUM limit at h, and lower CUSUM 
limit at -h. 

4. Calculate: 

Zi = (¥i - f.l)( G for a single observation 
Zi = (Yi - f.l)/ G for multiple observations 
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5. Calculate: 

SH; = max [0, (Z; - k) + SHO_!)] 
Su = max [0, (-Zi - k) + SLO_I)] 

6. Plot Z;, SHi and -Su on the control chart. 

7. An out-of-control signal is given if I Z, I <! 
SCL or if SHi or Su <! h. 

8. Declare the process out-of-control if two 
out-of-control signals occur in succession. 

9. If any parameters of the control chart are 
modified, SHi and Su should be reset to O. 

APPUCATION OF IMPLEMENTATION 
PROCEDURES 

The above procedures were used to imple­
ment the control chart which was designed for 
information goal #2. Implementation is sum­
marized in Figure E-4. 

UPDATING AND REVISING 
PROCEDURES 

There are three situations where the 
Shewart-CUSUM control chart may need to be 
updated or revised. 

1. Recalculate /J and u after the process is 
declared out-of-control. Control charts 
were traditionally used for industrial or 
manufacturing purposes. If a control chart 
indicated that a process was out-of-control, 
adjustments were made to the process itself. 
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The scenario is somewhat different for the 
information goal stated here because the 
"process" cannot be modified. Input con­
centrations are monitored to ensure ade­
quacy of the treatment system. If the con­
trol chart indicates that the process is out­
of-control, the treatment system or perhaps 
the flow are adjusted, not the input con­
centrations. 

For example, if the control chart indicates a 
persistent increase in TETRA concentra­
tions, the treatment system may have to be 
modified to handle the larger concentra­
tions. At that point it might be appropriate 
to revise /J (and perhaps a) prior to restart­
ing the control chart. 

For the information goal listed here, f.l and 
u will be examined and, if necessary, recal­
culated after each out-of-control episode. 

2. Improve the precision of /J and u as more 
data becomes available. New data should 
periodically be combined with the original 
data which was used to calculate /J and u. 
The parameters can then be updated. For 
the information goal listed here, /J and u 
will be updated annually. 

3. Revise control chart parameters to better 
serve information needs. There are many 
ways to revise Shewart-CUSUM control 
charts to meet information needs. For 
example, if the control chart is too sensi­
tive, values of SCL, hand/or k can be 
increased. This type of revision will be 
conducted according to section VII of the 
data analysis protocol. 
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Worksheet for Designing Shewart·CUSUM Control Charts 

Monitoring Information Goal: 

Monitoring Approach: 

Statistical Information Goal: 

One-sided or Two-sided? 

Decision Rule: 

Comments: 

Figure E·I. Worksheet for designing combined Shewart-CUSUM control charts. 
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Worksheet for Designing Shewart·CUSUM Control Charts 

Monitoring Information Goal: Ensure adequacy of the treatment facility by 

detecting increases in input concentrations. 

Monitoring Approach: Detect increases in mean concentration over time which 

are moderate and persistent or large and sudden. 

Statistical Information Goal: Irrmediately detect concentrat ions which are ~ 40" 
above the target mean. Quickly detect persistent changes in concentration 
which are ~ 1.50" above the target mean. 

One-sided or Two-sided? two-sided 

SCL 4.0 information goal 

k 0.75 k = 6./2: 6. = 1.5 as per 
information goal 

h 4.5 Part 1, Table 2 in Lucas (1982 ) 

So 0.0 process not likely to be out-
of-control at startup 

Decision Rule: two-in-a-row rule 

Comments: The two-in-a-row rule was chosen because outliers are likely. 

Figure E·2. Design of combined Shewart-CUSUM control chart for information goal #2. 
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Worksheet for Implementing Shewart·CUSUM Control Charts 

Well 1#: Compound: 

f.l= a= 

Feb 

Mar 

Apr 

May 

Jun 

Jul 
Aug 

Sep 

Oct 

Nov 

Dec 

Comments: 

Figure E·3. Worksheet for implementing combined Shewart-CUSUM control charts. 
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Worksheet for Implementing Shewart-CUSUM Control Charts 

Well #: EW#4 Compound: Tetrachloroethene (TETRA) 

Ii = 111. 7 j.lg/L (j = 18.5 j.lg/L 

01-28-91 115.5 06-24-91 100.5 11-20-91 97.2 

02-15-91 116.3 07-31-91 118.6 12-09-91 133.2 

03-11-91 95.1 08-29-91 115.6 

04-24-91 89.8 09-23-91 158.4 

05-29-91 99.4 10-23-91 100.3 

Jan 165.0 2 . 88 2 .13 2 . 1 - 3 . 63 0 

Feb 116.4 0.25 -0.50 1.6 -1.00 0 

Mar 137.0 1.36 0.61 2.2 -2.11 0 
Apr 112.0 0.02 -0.73 1.5 -0.77 0 

May 94.6 -0.92 -1.67 0 0.17 0.2 
Jun 133.1 1.16 0.41 0.4 -1.91 0 
Jul 115.8 0.22 -0.53 0 -0.97 a 

Aug 102.5 -=0.50 -1.25 0 -0.25 0 
Sep 145.4 1.82 1.07 1.1 -2.57 0 
Oct 

Nov 

Dec 

Comments: Z" SRi and -Sw are plotted on the control chart shown in 
Figure E-5. No out-of-control signals occurred. 

Figure E-4. Implementation of combined Shewart-CUSUM control chart for information goal #2. 
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Combined Shewart-CUSUM Control Chart 
TETRA concentrations (lJglL)measured at Well PW#4 from 1/92 to 9/92 

6.-----------------------------~ 

'" ''l§ 4 
:::l 
-c 
CD 
N 
'E 2 
{g 

! en 0 -H.--'-_~4~;::::::,;~_4_ ........ ----___.j 
.S 
6 
~ -2 
~ -c:: 
fl 
c:: 

8-4 r-------------------------------~ 

Jan Mar May Jul Sep Nov 
Month 

mean=111.7 SD=18.5 k=O.75 h=4.5 SCL=4.0 

Figure E·5. Plot of Shewart-CUSUM data from Figure E-4. 
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SCl 

h 

-- CUSUM High 

--.- CUSUM low 

-- Shewart 
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REFERENCES 

Berthouex and Hunter, 
1975 

Berthouex et aI., 1978 

Bissell, 1984 

Cheremisinoff, 1988 

Hockman and Lucas, 
1987 

Lucas, 1982 

Lucas, 1985 

Lucas and Crosier, 1982 

Page, 1954 and 1961 

Schilling and Nelson, 
1976 

Starks, 1989 

Starks and Flatman, 
1991 

U.S. EPA, 1989 

Vasilopoulos and 
Stamboulis, 1978 

Vaughan and Russell, 
1983 

Discusses the use of Shewart charts for monitoring sewage treatment 
plants. 

Examines the effect of data record attributes on the use of Shewart and 
CUSUM charts for monitoring sewage treatment plants. 

Evaluates the performance of control charts in the presence of serial 
correlation. 

Describes how to construct control charts using Lotus 1-2-3"'. 

A well-written explanation of CUSUM schemes. Also describes how 
use MINITAB'" to construct CUSUM charts. 

An excellent article on combined Shewart-CUSUM control charts. 

Discusses the FIR feature and the two-in-a-row rule. 

Discusses the two-in-a-row rule. 

Describes the development of the CUSUM scheme. 

Examines the effect of nonnormality on the control limits of Shewart 
charts. 

Evaluates the use of control chart methods for RCRA sites. 

Basically the same as Starks, 1989. 

Section 7 is devoted to the use of control charts at RCRA facilities. 

Describes how to modify control chart limits in the presence of data 
correlation. 

Discusses the use of control charts to monitor point source discharge. 
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Appendix E-2 
The Hodges-Lehmann Estimator 
and Confidence Interval 

INTRODUCTION 

The Hodges-Lehmann estimator, &, is a 
nonparametric estimate of the difference 
between two independent groups. & is the 
median of all possible pairwise differences 
between the x and y values. 

DEFINITIONS OF PARAMETERS 

A Hodges-Lehmann estimator: 
& = median [Xi - yJ 

Xi The ith observation of group 1. 

Yi The ith observation of group 2. 

n The number of observations in group 1. 

m The number of observations in group 2. 

N The number of pairwise differences: 
N=nxm. 

x· The critical value from a table for the 
rank sum test. Used to calculate R] and 
R. for small sample sizes. 

Zen The critical value from a table of stan­
dard normal quantiles. Used to calcu­
late R1 and R. for large sample sizes. 

The rank of the pairwise difference 
which is the lower confidence limit of 11. 

The rank of the pairwise difference 
which is the upper confidence limit of 11. 
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CLr The lower confidence limit of &. 

CL. The upper confidence limit of /:,.. 

INFORMATION GOALS 

Monitoring Information Goal: Determine the 
lateral extent of contamination plumes. 

Statistical Approach: Compare recent concen­
tration measurements to older measurements 
to see how much change there has been in 
contaminant concentration. 

Statistical Information Goal: Estimate the 
magnitude of the difference between the current 
two years of concentration data and the previ­
ous two years of concentration data. Determine 
a 90 percent confidence interval for the estimate. 

CALCULATION PROCEDURES 

1. Calculate all pairwise differences. 

2. Rank the pairwise differences from small­
est to largest. 

3. Calculate the median of the pairwise dif­
ferences. This is the Hodges-Lehmann esti­
mator. 

4. If m + n S; 20, go to step 5. Otherwise, go to 
step 7. 

5. Refer to a table of quantiles for the rank 
sum statistic. Find the critical value x· near­
est to al2. 
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6. Calculate: 

R 
• n(n+l) 

1=X- 2 

7. Refer to a table of standard normal quan­
tiles. Find Z a!2' 

EXAMPLE 

Well #: 016 

Compound: cis-1,2-Dichloroethene (CEDC) 

8. Calculate: 

N-Z J N(n+m+ 1) 
R _ a/2 3 

1- 2 

9. Find the pairwise differences which corre­
spond to R1 and R". These values are CLI 
and CL", the upper and lower bounds of 
the confidence interval. The true difference 
will lie between CLI and CL" an average of 
(100-a) percent of the time. 

...•........•.....•...•..•..•..•.. ~....................ri~I'C'.(lIg1Ll·· ... . .•...•.•...•..•.•.••.. clab! ....... ··.·»concW(pglt.ji· 
03-03-88 7.9 03-01-90 5.4 

09-08-88 6.4 09-06-90 5.8 

03-08-89 6.8 03-07-91 5.5 
09-14-89 5.5 09-09-91 6.9 

2.5 1.4 -1.4 1.0 

2.1 1.0 -0.5 1.0 

2.4 1.3 -0.3 1.0 

1.0 -0.1 -0.1 1.3 

1.0 0.1 0.0 1.4 

0.6 -0.3 0.1 2.1 

0.9 0.0 0.6 2.4 
-0.5 -1.4 0.9 2.5 
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median: (0.9 + 1.0)/2 = 0.95 pg/L 

x'= 12 (for €X = 0.114) 

R. = 15 

CLr= -0.5 pg/L CL.=2.4 pg/L 

A= 0.95 with an 89 percent confidence interval of -0.5 to 2.4. 

REFERENCES 

Ii··. ,::.\ >.:.'.:: •.• '.' .. . . ' .... ::.' ......... : .. '.' ....... : .... , ..... :. 

Helsel and Hirsch, 1992 Explains the Hodges-Lehmann estimator and confidence interval. 
Includes tables (Table B4). 

Hirsch, 1988 Examines robustness of the Hodges-Lehmann estimator. Develops the 
seasonal Hodges-lehmann estimator. 

Hodges and Lehmann, Presents the original development of the Hodges-lehmann estimator. 
1%3 

Hollander and Wolfe, Explains the Hodges-Lehmann estimator and confidence interval. 
1973 Includes tables (Table AS). 
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INTRODUCTION 

A nonparametric interval estimate of the 
true population median is described here. The 
estimate is calculated using the binomial dis­
tribution. 

DEFINITIONS OF PARAMETERS 

Xi The ith observation of the sample. 

n The number of observations in the 
sample. 

x' The critical value from a table for the 
sign test (or a binomial table). Used to 
calculate Rl and R. for small sample 
sizes. 

Zan. The critical value from a table of stan­
dard normal quantiles. Used to calcu­
late Rl and R. for large sample sizes. 

Rl The rank of the observation which is 
the lower confidence limit of Co.s' 

The rank of the observation which is 
the upper confidence limit of Cos 

COos The true population median. 

CLI The lower confidence limit of Cos 

CLu The upper confidence limit of Cos 
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INFORMATION GOALS 

Monitoring Information Goal: Measure 
water quality down-gradient of AOCs where 
flow may pass across a site boundary. 

Statistical Approach: Determine the range of 
concentrations which will contain the true 
population median a large percent of the time. 

Statistical Information Goal: On an annual 
basis, estimate the 95 percent confidence inter­
val of the true population median concentra­
tion. 

CALCULATION PROCEDURES 

1. Rank the sample observations from small­
est to largest. 

2. If n :::; 20, go to step 3. Otherwise go to step 5. 

3. Refer to a table of quantiles for the sign test 
statistic. (If a binomial table is used, enter it 
at the p = 0.5 column). find the critical value 
x' nearest to a/2. 

4. Calculate: 

R =n-x'=x • 
5. Refer to a table of standard normal quantiles. 

FindZa12. 
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6. Calculate: 

EXAMPLE 

Well #: FW#4 

Compound: Trichloroethene (TRICE) 

01-13-86 2.4 

02-19-86 2.6 

03-11-86 2.1 

2.0 

05-14-86 2.3 
06-19-86 2.2 

2.0 2.4 

2.1 2.4 

2.1 2.4 

2.2 2.4 

2.2 2.6 

2.3 2.6 

Interval Estimate of the Median Appendix E-3 

7. Find the observations which correspond to 
Rl and R.. These values are CLI and CL", the 
upper and lower bounds of the confidence 
interval. The true population median will lie 
between CLI and CL. an average of (IOO-a) 
percent of the time. 

8. Declare the concentrations out of compliance 
if the entire confidence interval lies above the 
GWPS (see Figure E-6). 

07-02-86 2.4 

08-06-86 2.2 

09-25-86 2.6 

10-27-86 2.4 

11-24-86 2.4 

12-16-86 2.1 

x' = 2 (for a = 0.0193) 

R, = 3 R = 10 • 
CL I = 2.1 j.lg/L CL.= 2.4 j.lg!L 

The 96 percent confi&lnce interval of tlla true pcJp\Uation D*1ian is 2.1 to 2.4. 
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10 

8 

c 
o 6 
~ -c 
Q) 
u 
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() 

2 

o 

Interval Estimates of the Population Median 

I 

~ 

group 1 group 2 

Groups 1 and 2 are in compliance. 
Group 3 is out of compliance. 

group 3 

GWPS 

Figure E-6. Comparison of confidence intervals to the ground water protectlon standard (GWPS). 

REFERENCES 

Helsel and Hirsch, 1992 Explains how to obtain the nonparametric interval estimate of the 
median. Includes tables (Table BS). 
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