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Letters

Errata to “A Study of Cloud Classification
with Neural Networks Using Spectral
and Textural Features”

Bin Tian, Mukhtiar A. Shaikh, Mahmood R. Azimi-Sadjadi,
Thomas H. Vonder Haar, and Donald L. Reinke

In the above papér Figs. 2, 5, and 6 were printed incorrectly.
Below are the correct figures.

a)
c) o

(b)
(@

T T T T T T

(
(
N\

E— Block a
Block b

e Block ¢
- Block d

\
\
AN

(b)

Fig. 5. Original GOES 8 Image (Time 15:45 UTC). (a) Visible channel. (b)
IR channel.
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Fig. 2. Some typical 8< 8 blocks in the GOES 8 satellite visible channel
images and their corresponding SVD values in log domain. Block (a) corre-
sponds to land while blocks (b)—(d) correspond to cumulus, stratocumulus,
and thin cirrus, respectively.
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A Study of Cloud Classification with Neural
Networks Using Spectral and Textural Features

Bin Tian, Mukhtiar A. Shaikh, Mahmood R. Azimi-Sadjadienior Member, IEEE,
Thomas H. Vonder Haar, and Donald L. Reinke

Abstract—The problem of cloud data classification from satel- In recent years, considerable research has been focused on
gte imalg_ery usitng nfeural tr)etworkshis COF)Sidelfed irll thij paper. the cloud classification area. A good review of the available

everal Image transformations sucn as singular value aecompo- H H ; :
sition (SVD)gand wavelet packet (WP) werg used to extract tﬁe schemgs is provided by Pankiewicz [1]. Generally, two broaq
salient spectral and textural features attributed to satellite cloud categories  of C_'f_’Ud_ feat_ures are most commonly used in
data in both visible and infrared (IR) channels. In addition, the the cloud classification field: spectral and textural features.
well-known gray-level cooccurrence matrix (GLCM) method and  The first class of features, which plays a more important
spectral features were examined for the sake of comparison. Two rgle for cloud classification, extracts the information on the

different neural-network paradigms namely probability neural . “
network (PNN) and unsupervised Kohonen self-organized feature cloud radiance in different spectral bands. Some of the most

map (SOM) were examined and their performance were also commonly used meth_ods in this category include thrgshold-
benchmarked on the geostationary operational environmental based schemes [2], histogram schemes [3], and multispectral
satellite (GOES) 8 data. Additionally, a postprocessing scheme approaches [4], [5]. The spectral features due to their physical
was developed which utilizes the contextual information in the importance (albedo, temperature) are proven to be effective

satellite images to improve the final classification accuracy. Over- and simple. However thev also encounter some problems
all, the performance of the PNN when used in conjunction pie. ' y P

with these feature extraction and postprocessing schemes showed€cause of the spectral similarities of certain features such
the potential of this neural-network-based cloud classification as ice cloud and snow. Other factors, such as moisture in

system. atmosphere, may also alter the multispectral characteristics
Index Terms—Cloud classification, feature extraction, neural and thus affecting the final judgement. The second category,
networks. i.e., textural features, distinguish certain types of clouds by

the spatial distribution characteristics of gray levels corre-
sponding to a region in one specific channel. While the
I. INTRODUCTION spectral characteristics of clouds may change, their textural
roperties are often distinct and tend to be less sensitive

UTOMATIC and accuratg clgssﬁmauon Of. clouds t 0 the effects of atmospheric attenuation or detector noise

enhance weather forecasting is one of the important aﬁ
|
i

L A 1. Most of the texture-based cloud classification methods
plications studied in meteorology. Computer-based automay (1

e . the past used statistical measures based on gray level
classification systems would help the forecaster in several ; . .
. o cooccurrence matrix (GLCM) [7] and its variant, such as
ways. The importance of this lies in the fact that large

guantities of satellite imagery e.g., 25 GB/day from each Y. level difference vector (G!‘DV)’ gray level difference
i i . . matrix (GLDM) and sum and difference histogram (SADH)
geostationary operational environmental satellite (GOES)

. o ) , [9]. For example, Welchet al. [8] used GLCM for
generated every day. Extracting cloud field information fro . .
. . . . o - feature extraction to classify stratocumulus, cumulus, and
these images using visual/manual interpretation is a tedious

and unreliable task and moreover the results are, to soClrrus clouds. Kuoet al. [9] used GLDV method to dif-

e . : :
extent, operator dependent. Therefore, highly efficient aﬁ%(entlate between clouds and ice/snow. Another important

robust cloud classification schemes are needed for autom&fic“P of textural extraction schemes explores the frequency

processing of satellite cloud imagery for climatological appllc— aracteristics of images. Garai al. [.10] have e>_<am|ned
cations the power spectrum of ocean cloud images while Gu and
Duncan [11] evaluated autocorrelation, textural edgeness and
the GLCM approach to obtain cloud textural information.
Manuscript received May 6, 1997; revised April 8, 1998 and October a—,hey.SUggeSted a combination of tethal measures in order to
1998. This work was sponsored as part of DOD Geoscience (Phase I1) prog@l@assify different cloud types. Gabor filter was also employed
UngefT_COmI:/?CtADéﬁHgﬁ 9'\;1 GRO4A20_- - Sadadi i the Department ffor cloud classification task by Lamest al. [6] and Du
. lian, AL alkn, . R. Azimi-Saadjadl are wi e Department o . .
Electrical Engineering, Colorado State University, Fort Collins, CO 8052[31'2]' Several comparauve studies of these fea.tures have been
USA. conducted by Parikh [13], Gu [11], and Ohanian [14] where
T. H. Vonder Haar and D. Reinke are with the COOperatiVe Institute fqhey suggested that GLCM pr0V|deS the best features for Cloud
Research in the Atmosphere (CIRA), Colorado State University, Fort Colling T oo . .
CO 80523 USA. Classification, while in [15] Gabor filters and Fourier features
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Fig. 1. Block diagram of the proposed cloud classification system.

extraction scheme determined at this time. Therefore, there imathis paper, one possible solution is to adapt the neural
need to develop efficient feature extraction schemes for clondtwork to accommodate these changes [22]. Consequently,
data analysis. it is important for the neural networks to have fast learning
Another important issue in the cloud data analysis is trability in order to adapt to the temporal changes. Based on this
choice of an appropriate classifier. There are basically twonsideration, two neural-network classifiers are examined in
types of classifiers; traditional classifiers which include: lirthis paper. The original PNN is improved by using Gaussian
ear discriminant, maximum likelihood and k-nearest neigtixture models to provide much faster convergence than the
bor classifiers, and the neural-network classifiers which iBPNN-based solution. Using this scheme the computational
clude: multilayer backpropagation neural network (BPNN¥ost in the testing phase is also greatly reduced. Owing to the
self-organizing map (SOM) and probability neural networf@ct that in most of the situations the truth maps of the clouds
(PNN), etc. Owing to the fact that the characteristics @nd background may not be available or reliable and further
clouds are highly variable and difficult to classify, neurdhuge amount of satellite images are generally encountered,
network classifiers through their adaptive learning nature offéfsupervised Kohonen network solution is also exploited.
attractive and computationally very efficient alternatives. L8 order to further improve the classification accuracy of
et al.[16] used a three-layer BPNN for cloud classification ofie proposed cloud classification system, a postprocessing
LANDSAT multispectral scanning system (MSS) data whilgcheme is designed which utilizes the rich spatial contextual
PNN was examined by Bankesat al. [17] for classification of information in the satellite imagery. Finally, the effectiveness
AVHRR imagery. In [18], traditional linear discrimination andof the proposed system is analyzed on the GOES 8 satellite
two neural-network classifiers namely BPNN and PNN wefata, and various feature extraction schemes and classifiers
comparatively studied for the classification of polar cloud¥ere benchmarked.
and surface. The results showed that BPNN-based solution
achieved the highest classification accuracy, while PNN falls
behind within a very small accuracy range. It is worthy to Il. FEATURE EXTRACTION SCHEMES
mention that the BPNN-based scheme was extremely time FOR CLOUD CLASSIFICATION

consuming in the training phase compared to the one-pasgeatyre extraction is an important stage for any pat-
noniterative PNN training approach [17]. On the other hanghyn recognition task especially for cloud classification,
the price one pays for this one-pass training approach is tif{ce clouds are highly variable and it is difficult to find
potentially a very large network can be formed. This leads fjiaple and robust features. According to the study in
increased storage and computational cost in the testing phgs)  trained meteorologists mainly rely on six criteria in
when compared with that of the BPNN-based solution. TRgsual interpretation of cloud images. These are brightness,
unsupervised Kohonen SOM has also been examined for claggtyre, size, shape, organization and shadow effects. The
classification [19]-[21]. brightness corresponds to the spectral features, which can
In this paper, a neural-network-based cloud classificatiganerally be extracted rather easily. Textural features are those
system is proposed (see the block diagram in Fig. 1). SevegBhracteristics such as smoothness, fineness and coarseness or
image transformation schemes namely singular value decogertain pattern associated with an image [7]. They reflect
position (SVD) and wavelet packets (WP's) were exploiteghe local spatial distribution property in a certain region.
to extract salient features of the cloud data. In addition, thge spectral and textural features are most widely used in
conventional GLCM-based statistical features were also usggtomatic cloud classification. Other features such as size,
for the purpose of benchmarking. The features from both teeape and organization information attribute to the large-
visible and IR channels were then combined together asédale or global spatial distribution. Generally, these features
fed to a neural-network classifier. However, these featurage calculated after an image has been segmented [1]. The
do not remain consistent and vary at different time of théhadow information is the most difficult one for analysis and
day and season. For example, certain types of clouds mt&s not been fully exploited.
look different in the visible channel due to the sun angle In the following, two feature extraction schemes, namely
changes. On the other hand, land and low-level clouds c8¥D and WP’s are briefly reviewed. These schemes can
be heated up during the daytime thus looking different in thextract features which contain contributions from both the
IR channel. Although the temporal issue is not considerspectral and textural aspects.
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Fig. 2. Some typica8 x 8 blocks in the GOES 8 satellite visible channel images and their corresponding SVD values in log domain. Block (a) corresponds
to land while blocks (b)—(d) correspond to cumulus, stratocumulus, and thin cirrus, respectively.

A. Singular Value Decomposition (SVD) Scheme the textural features. Another important property of the SVD
SVD is a very powerful tool in image restoration poWefeatures is that they are not sensitive to the orientation of the

spectrum estimation and data reduction compression areas. {E}§ure, since the imag&™ and its transpose have the same
one of the best candidates for dealing with sets of equationsS§t Of singular values. _ _ _

matrices that are either singular or ill-conditioned as it provides OVverall. singular values provide the energy information of
quantitative information about the structure of the system H}¢ Image as well as the knowledge of how the energy is

linear equations. In image processing, SVD has been shofligtributed over the subspace. They contain the contributions
to have excellent energy-packing ability [25]. from both the spectral and textural aspects of the image.

Let us consider alV x M image X where N > M. It is
possible to represent this image in theimensional subspaceB- 2-D Wavelet Transform (WT) and
where r is the rank of X, andr < M. Let U = XX7 Wavelet Packets (WP) Schemes
and V' = X'X, be nonnegative, symmetric matrices with The 2-D wavelet transform (WT) is a straightforward exten-
same eigenvalues, Az, ---, A, where it is assumed thatsjon of the 1-D case [26]-[29]. It can be viewed as performing
At 2 A2 = Az = -+ > A These eigenvalues are calledhe 1-D WT first along thes direction then along they
the singular values ok Now, if we form matricest and®  direction. In the first level of decomposition, any given image
from the corresponding eigenvectorsiéfandV, then X can z(m,n) is decomposed into one low-pass approximation and
be diagonalized as three added detail images which contain high-frequency infor-
mation of the image in the vertical, horizontal and diagonal
directions [28]. Like in the one-dimensional (1-D) case, such
where A i the dagonal ma ie, s CPErSlon canbe epesieay appled o ch subimage eadng
diag[VAs, Vs, - V] Alternatively, we have sition [30]. 2-D WP decomposition provides a powerful tool
A=0TXx0. (2) to analyze the content of images with a good localization
property both in the spatial and frequency domains. When
Basically, the eigenvalues or singular valyes}/_, repre- an image goes through WP decomposition process, a full-
sent the energy of imag& projected on each subspace. Thetructure tree of subimages may be formed. The subimages
singular values and their distribution which carry certain usefirl the same decomposition level provide the multiple looks of
information about the content ok, vary drastically from the original image at different frequency band. At the higher
image to image. For an image with random textural conteméyvels, the resolution in the frequency domain will increase
e.g., white noise, its energy will spread over all the singulavhile the spatial resolution is gradually degraded. A block of
values. On the other hand, for a smooth image with no textuséze M x M in the original image will correspond to a reduced
the first singular value will be dominant while all the othersize block(M/2") x (M /2") at the decomposition level For
are almost zero. Fig. 2 shows some typical blocks of sizer8gions with different textural content, their spectra exhibit
x 8 in the GOES 8 satellite visible channel image and thaiifferent characteristics which in turn will be reflected in the
corresponding eight singular values. In most of the cases, #ergy distribution of the subimages through the tree structure
first (largest) singular value roughly corresponds to the mef80], [31]. Consequently, the energy in all the subimages can
of the image thus closely relating to the spectral features, while computed to form a feature vector. However, in order to
all the other singular values provide detailed information abotgmove the redundancy in the features, a feature selection
the spatial content of the image which somewhat relates goocedure is needed to identify only a few nodes in the

X = TADT 1)



TIAN et al. STUDY OF CLOUD CLASSIFICATION WITH NEURAL NETWORKS 141

full tree which possess the best discriminatory ability for oy Layer A
the subsequent classification. This feature selection process
is briefly described in Section IV-B.

Pattern Layer ()

I1l. N EURAL-NETWORK CLASSIFIERS
AND POST PROCESSING SCHEME

Summation Layer

Two different neural-network classifiers namely Kohonen
SOM and PNN were studied for the cloud classificatio'gig 3. The structure of PNN
problem. The reader is referred to [32] and [33] for review on™ ™ '
Kohonen SOM. In the following section the PNN [34], [35]
is briefly discussed. The renowned expectation maximization . i
(EM) [36] is used for the efficient training of PNN. In order 1N€ original PNN structure proposed by Specht in [34],

to further improve the classification accuracy, a postprocessifig? direct implementation OT the above estimator. It consists
approach is also developed to utilize the rich spatial conted} three feedforward layers: input layer, pattern layer, and
information in the satellite imagery. summation layer [34] which are shown in Fig. 3. The input

layer accepts the feature vectors and supplies them to all the
A. Probability Neural Network (PNN) neurons in the pattern layer. The_ pattern layer consist& of
o _ _ pools of pattern neurons, whef¢ is the number of patterns.
The original PNN, which was proposed by Specht in [34]n each pooli,i = 1,---, K, there areN; number of pattern

is a direct neural-network implementation of the Parzen nofeurons. For the input feature vectgy the output of each
parametric probability density function (PDF) estimation [37pattern neuron is

and Bayes classification rule. It can be considered as a special

case of the radial basis function neural networks. Compari gy w o) = 1 exp _(y— w§j>)T(y - ng))
with the well-known BPNN-based solution, PNN has a ver@ T N;(2m)d/ 204 202
fast one-pass learning scheme, and can be retrained or updated (5)

on-line. It was also reported in [35] that PNN and BPNN '
have comparable generalization ability in classifying unknommherewg’) is the weight vector of thgth neuron in theith
patterns. pool, and the nonlinear functiofi(-) represents the activation
For an input patterne, the so-called optimum Bayesianfunction of the neurons. There are totally neurons in the
classification strategy is to make the decision in such a waymmation layer where thi¢h neuronj = 1, - -, K, forms the
that the “expected risk” is minimized. For the “0-1" cosweighed sum of all the outputs from tlih pool in the pattern
function [38] which is generally used for pattern recognitior@ayer. The weights of the summation layer are determined by
the Bayes classifier will lead to the maximuanposteriori the decision cost function and tleepriori class distribution.
(MAP) classifier [37], i.e., For the “0-1" cost function and uniforra priori distribution,
the weights will be one for all the neurons in the summation
C(z) = argmax P(z|e;)P(c;)  1=1,2,---,K  (3) Jayer. For the input pattery of unknown class, the final
“ decision will be made by a simple comparison of all the
where C(z) is the class of inpuk which belongs tofc;,: = outputs, i.e.,
1,.-- K}, P(c;) is thea priori class distribution, an®d(x|c; . . .
is the a}prio(ri ionditional distribution for class;. GenEar|aII3/, yEan, MO>0;, iFk 4 ke[l K]
the unknown class distributiod(c;), is decided by analyzing  Comparing (4) and (5), it can easily be observed that
the physical nature of the problem, and is assumed to #f output of PNN will be proportional to tha posteriori
uniformly distributed here without loss of generality. The keyropapility Whenwgk) - xz(k) (under the condition that the
issue for the implementation of this Bayesian classifier is {gejghts of the summation layer are properly assigned based
extract the conditional distributions from the training data se{p, the a priori class distribution). So the training phase of
In [37], Parzen proved tha(z|c;) can be estimated from all pNN s very straightforward. For each new training sample
the samples in the training set which belong to the class 5 pelonging to class;, the training process is nothing but
When a Gaussian kernel is adopted, the Parzen PDF estima@ing a new neuron in thi¢h pool of the pattern layer, with
can be represented by [34] the weight vector equal te.

One drawback of the original PNN is that potentially a
very large network will be formed since every training pattern
will need to be stored. This leads to extensive storage and

(4) computational requirements during the testing phase. One
natural way to improve the PNN is to reduce the number
wheren; is the number of samples in the training set belong tf neurons, i.e., use fewer kernels but place them at optimal
C|aSSci,:l:§]) represents thgth sample belonging to class,d places. The scheme in [39] uses learning vector quantization
is the input vector dimension and is called the “smoothin@VQ) schemes for clustering the training samples. In [40],
factor.” Streitet al.improved the PNN by using finite Gaussian mixture

i UNT )
_ 1 (y—=z") y—=z")
p(y|cz) - Ni(27r)d/20-d ;exp — 252
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model. This scheme is adopted in this paper and briefynd not affected by the parameter set of the other classes.

described below. The maximization of the log-likelihood function can be done
For any class;,i = 1,---, K, suppose that the class conusing the gradient descent scheme. However, a more efficient
ditional distribution is modeled approximately by a Gaussiamay is to use the well-known EM approach [36]. This method
mixture, i.e., which is used here helps to achieve the ML estimation via
M, iterative computation when the observations can be viewed as
p(xle;) = Zﬁjipji(z? 156 S50) (6) incompllete'data. There are two_ m.ajor steps in this approach:
ot the estimation (E) step and maximization (M) step. The E step

) ) . extends the likelihood function to the unobserved variables,
where M; is the number of Gaussian components in class then computes an expectation with respect to them using the
and 7;;'s are the weights of the components which satisfyyrrent estimate of the parameter set. In the M step, the

the _con_straintEj‘ﬁl_ mji = 1,pji(=; /v‘jiazjf) denote the new parameter set is obtained by maximizing the resultant
multivariate Gaussian density function of thith component expectation function. These two steps are iterated until the
in classc; and we have convergence is reached. The reader is referred to [36] for the

(@ g, 50 detail description on EM algorithm. Generally, this training
Pyi\®; fji> &ji 1 process converges much faster than the BPNN-based approach.
= oy 2 To improve the final classification accuracy, a postprocessing
(2m)%/2[25] method is developed in the following section.
1 _
- exp {——(w — i) 2w — uji)} (7

2 B. Post Processing

wherep;; andX;; are the mean vector and covariance matrix In the above discussion each block in the satellite images is
of the jth Gaussian component for class respectively. The processed separately without considering the spatial neighbor-
Gaussian mixture model described in (6) and (7) can also beod context. However, there is rich context information in
easily mapped to the PNN structure shown in Fig. 3. Sintkeese images i.e., some classes are likely to span over a region
M, is generally much smaller than the number of trainingnstead of appearing in isolated blocks. Proper utilization of
samples belong to clagsN;, the pattern layer of the PNN such contextual information can help to improve the final
is therefore substantially simplified than its original versiortlassification accuracy. Therefore, a postprocessing scheme
The price paid for this simplification is that the noniterativeimilar to that in [42] is developed here in order to take
training procedure will no longer exist. Instead, the weightsdvantage of the contextual information.
of the PNN i.e., the parameter sets of the mixture model for For any blocks in the image, where = (k,I) is the
each class, need to be estimated from the training data setoordination vector of that block(r) denotes the correspond-
Let A; = {mji, 14, Eﬁ}j‘il denote the parameter set used ting feature vector while”(z(r)) refers to its physical class
describe the mixture model of clagsandA = {);}£, denote which belongs to the label sefic;,cz, -+, ¢, }. Moreover,
the whole parameter space for the PNN. There are sevesal can define a spatial neighborhood fefr) as H(r) =
criteria available which can be used to estimate If we {z(r +wv)|v € U} whereV is the neighborhood set. Fig. 4(a)
assume that the parameterstirare unknown fixed quantities, shows one typical example &. Cy (r) = {C(r +v)|v € ¥}
the ML estimation method is a suitable choice. Now suppose used to represent the class label {r). For simplicity
that the training samples drawn independently from the featuwwe assume that all the contextual information for black
space form the seX, which can be further separated inkd is conveyed by the classes of its spatial neighborhood, i.e.,
subsetX;,i = 1,---, K, in which all the samples belong toCx(r). Now, we can define a spatial context classifier for
classc;. The ML estimation of the parameter sé&tis then post processing of the images, i.e.,
given by .
p C(z(r)) = arg max P(c;|x(r), Cu(r)) i=1,--- K.
A" = arg max H H p(x|ei; A). (8) (10)
A =1 ELEX,
. - . .. Comparing with the general classifier in (3), this new classifier
For the computational efficiency, generally we will maximize, s into account not only the feature vector in black

the equivalent log-likelihood, i.e., but also the class information in its neighborhood, i.e, the

K context information. For simplicity, we drop the block position
A" = arg max Z Z log[p(z|c;; A)] variabler in the sequel. Using Bayes rule, we get
A i=1 TEX,
P(z|c;,Cy)P(c;|C
K P(C7‘,|$,CH) _ ($|C H) (C | H)
= arg max Z Z log[p(z|ci; A:)]- 9) P(z|Ch).
A S zex,

It is reasonable to assume that the distribution of the feature
The last step in the above equation is arrived at baseector is solely dependent on its own class label and not

upon the assumption that the conditional probability of clasdfected by its spatial neighborhood, i.eB(z|c;,Cx) =

¢; is totally decided by the parameter set of that class, P(z|c;). Also, notice thatP(x|Cyr) is the same for all classes,



TIAN et al. STUDY OF CLOUD CLASSIFICATION WITH NEURAL NETWORKS 143

iteratively. In this case, the satellite image is initially classified
I:l Type O ysing the PNN and the initial results are recorded. In the post
processing, the initial classification results are used to replace

[:":‘ Type 1 the unknown neighborhood class and a new classified image is
generated using (11). This process can be repeated and at each
D iteration the resultant image of the previous iteration is used
Type 2 to provide the neighborhood class information. The process
I:I stops when the class differences between the resultant images
®) in two consecutive iterations are negligible. In our experiment,

) ) ) ) this error goal was set to five blocks per image.
Fig. 4. (a) Blockr and its spatial neighborhood blocks (shaded) v. In

this casep € ¥ = {(-1,0),(0,—1),(0,1),(1,0)}. (b) Three types of
cliques for the spatial neighborhood in 4(a). IV. SIMULATION RESULTS AND DISCUSSIONS
In this section, the proposed cloud classification system
is examined on the GOES 8 satellite image data set. This

then the spatial context classifier in (10) becomes data set and the process of labeling are first introduced. The
NN ‘ ‘ preprocessing procedure of these data, feature extraction and
Cfz) = algcfnax Plalei)Plei|Cr)- (1) selection processes are also described. In order to select the

" . most suitable classifier and the set of features for this cloud
Thle fe(;;\tur_e veﬁtor conditional pmbab'“ﬁ(x'cﬁ.) Ea; be %al' classification problem, several neural-network paradigms and
culated using the PNN. MoreoveR(c;|Cr), which describes yierent sets of features are benchmarked without considering

th_e spat?al f:onFext conditional PrOba*?”“Y’ can b_e mod_eled We context information. Finally, the postprocessing scheme is
Gibbs distribution [43]. The Gibbs distribution is equ'vale”fmplemented and the final results are provided

to Markov random field modeling and has been widely used
in the image processing area. The spatial context conditiorAaI

probability can be expressed in the form of [43] GOES-8 Sateliite Imagery

1 The cloud data analyzed in this study was obtained from the

Pe|Cy) = e YenCn) (12) GOES 8 satellite that carries five channel sensors. This study

Z was carried out only using two channels, namely channel 1

whereZ is a normalization constant artdis called the energy (visible) and channel 4 (IR) since these channels are commonly

function given by used in almost all the other meteorological satellites. Never-
Uler Cr) — v o 13 theless, the system can be easily expanded to accommodate
(ci,Cn) = Z w(ci, Cn) 13)  more channels, if necessary. Totally six pairs of images were
WeENer,

used in these tests. Since the purpose of this study was to
Vw(ci,Cy) is called the “potential function” of the classexamine the performance of cloud classification system for
configuration{c;, Cy} on a clique W. A so-called clique is acertain areas without considering the temporal changes of the
set of block locations where any pair of distinct indices in théata. These images covered the same geographical regions
set are neighbors to each other. For the spatial neighborh@wdl were obtained during almost the same period of the day.
shown in Fig. 4(a), there are totally three types of cliquespecifically, they were collected on May 1, 1995 and May 5,
that are shown in Fig. 4(b)N¢ denotes the set of all 1995 from 15:45 UT&to 17:45 UTC. One typical image pair
possible cliques for current class configuration. The form & shown in Fig. 5. These images with spatial resolution of
potential functionV,,, is very important since it specifics the512 x 512 pixels cover mid-west and most of the eastern part
context information between adjacent blocks. In this papef the United States extending from the Rocky Mountains to
the potential function suggested in [42] was adopted. It ibe Atlantic coast. The region spreads over mountains, plains,
shown in [42] that after some simplifications the spatial contebakes, and coastal areas where clouds have some specific
conditional probability can be given by features. Lake Michigan is in the upper right corner and
—28(m—2) Florida is located in the lower part with Gulf of Mexico in
Plei|Cn) = Ac (14)  the lower center of the image. There are a variety of cloud
wherem is the number of occurrence of classin Cj, A YP€S in this image. For example, there are some thin cirrus in
is a constant which is the same for all classes ahds the left middle part, cirrostratus in the right middle part and
a parameter describing the interactions between classedoyy/middle-level clouds (stratocumulus and altostratus) in the
adjacent blocksj3 = 0 corresponds to the situation wher&€Nter part as well as water and land areas. _
no context information is available for the classification. Since the ground truth is not available and reliable, two
On the other hand, a larger value @f indicates stronger meteorologists were asked to identify all possible cloud types
class correlation in the neighborhood. Generally, homogendisWell as the background areas based on the visual inspection
regions are more favored in the postprocessing. and other related information. This was accomplished with

Another issue for implementing the classifier in (11) is thdf'® aid of a computer software package developed solely
the class of neighborhood;;, is unknown in practice. This for this purpose. Totally ten cloud/background classes were

can be circumvented by performing the postprocessing schem@eJTC stands for Universal Time Code.
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(b)
Fig. 5. Original GOES 8 Image (Time 15:45 UTC). (a) Visible channel. (b) IR channel.

TABLE |
NUMBER OF BLocks FOR EACH CLOUD/BACKGROUND CLASS IN THE LABELED DATA SETS

Warm | Cold | Warm | Cold | Stratus | Low | Strato- [ Alto- | Cirro- | Cirrus
Land | Land | Water | Water (St) [Cumulus{Cumulus| Stratus | Stratus | (Ci)
(WLnd)| (CLnd) | (WW1r) | (CWtr) (Cu) (Sc) (As) (Cs)
826 534 540 92 410 823 1185 569 1351 4259

found, which are: warm land (WLnd), cold land (CLnd), warm
water(WWtr), cold water (CWtr), stratus (St) cumulus (Cu),
altostratus (As), stratocumulus (Sc), cirrus(Ci) and cirrostratus
(Cs). It should be mentioned that the way meteorologists label
images differs from that of the neural-network classification
system. That is, instead of labeling each block, they first try
to identity certain regions and then assign that whole area into
one category. As a result, it is possible that some blocks in
that region may belong to different classes since the labeling
is done based upon global information. Additionally, some re-
gions have mixed cloud types hence making the classification
task difficult. The regions labeled by the experts were further
divided into small blocks of size & 8 corresponding to an
area of size 32 knx 32 km. The labeled results of the satellitég- 6. Cloud/backgroud classes labeled by meteorologists.

image pair in Fig. 5 are shown in Fig. 6. All the labeled blocks

formed the data set for our benchmarking. Half of the blocks

randomly drawn from this data set were used for the traininge classification accuracy due to the finite sample size. The
of the classifier while the rest were used for the testing asdquential forward floating selection (SFFS) algorithm used
performance analysis. Table | gives the total numbers of blocks [8] was employed which provides a deterministic single

for each cloud/background type. solution leading to a suboptimal feature set. At every step,
this method searches the remaining feature space iteratively
B. Feature Extraction and Selection and selects one feature at a time to make the new enlarged

In order to reduce the dimensionality of the data and extrd€@tUre set which maximizes the “distance” among different
the pertinent features for cloud classification, several featf@sses. In this paper, the Bhattacharya distance was used to
extraction methods were investigated in this study. Besides fhgasure the class separability. Jeiral. [44] reported optimal
SVD features and WP features discussed above, the widegfformance for SFFS scheme among all the other methods
used GLCM-based statistical features and spectral featuteey tested.
were also implemented for the sake of comparison. For the SVD approach, a total of 16 singular values were

To remove the redundancy in these features, a feat@dracted, eight from every & 8 block in each channel.
selection process was performed. This not only reduces tHewever, after the feature selection process, only six features
training time for the classifier but also may help to improvevere chosen for the subsequent classification process. These
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TABLE I
ConFusioN MATRIX FOR ORIGINAL PNN QLAssIFIER UsING SVD FeATURE (%). (Row—NEURAL-NETWORK
REsuULTS COLUMN-EXPERTS LABELLING. OVERALL CLASSIFICATION RATE |s 83.4%)

WLnd | CLnd [WWur | CWu St Cu As Ci Cs Sc
WLnd | 98.8 0.2 0.5 0 0 0 0 0.5 0 0
CLnd 0.4 96.6 0.4 0 0 1.9 0 0.7 0 0
WWir 0 0.7 98.9 0 0 0.4 0 0 0 0
CWtr 0 8.7 0 80.4 0 0 2.2 8.7 0 0
St 0 0.5 0 0 82.9 4.4 10.2 1 0 1
Cu 2.2 1.7 0.7 0.2 29 78.3 1.9 2.2 0 9.7
As 0 0 0 0 12.3 1.8 59.5 4.2 1.1 21.1
Ci 1.2 0.8 0.5 0.3 0.6 0.9 1.9 84.2 8.8 0.8
Cs 0.3 0.1 0 0 0.3 0.1 0.7 18.1 80 0.3
Sc 0.8 0 0.2 0 3 7.1 10.1 2 0.5 76.2

correspond to the first, third, and fifth singular values in theccuracy rates alone may not fully reflect the performance of
visible channel and the first, third, and sixth ones in the Ite classifiers. Visual inspection of the final results is also an
channel. important criterion that was used in the evaluation process.
The 2-D WP approach was applied to the whole imag&/hat follows is the detailed discussion of the results and
Haar wavelet [28] was adopted here for its extreme simpliciperformance of each classifier.
and computational efficiency. A three-level decomposition was1) PNN Classifier: Both the traditional PNN and the mod-
carried out and a full tree with a total of 85 nodes was gendfied PNN (Section 1lI-A) were implemented. The traditional
ated for each channel. The energy of the region correspondiPigN was trained by the one-pass noniterative scheme, i.e,
to 8 x 8 blocks in the original image was calculated foadding neurons in the pattern layer with weights equal to the
each subimage which formed the primary feature set. Aftetining samples. The smoothing parameter was determined
feature selection process, totally ten energy components wes@erimentally to ber = 7. It was found that classification
chosen; seven components from the visible channel and thresult is not sensitive to the choice of this parameter as long
from the IR channel. Specifically, these were the energy & it is not too smal{s < 1). Table Il shows the classification
subimages [0,1], [1,1], [1,2], [2,3], [2,11], [3,1] and [3,42] ofresults in terms of the confusion matrix for the original
the visible channel and [0,1], [1,1] and [3,1] of the IR channekNN. The results indicate that good classification (over 90%)
where the notatiofi, j] represents thgth subimage in théth  were obtained for most background classes except cold water
decomposition level. (CWitr), for which the poor performance is partly attributed
For the GLCM scheme [8], the gray level resolution wag the lack of enough samples as well as the similarities
reduced to only 16 in order to reduce the storage and COopktween the cold land and cold water types. For the high
putational requirements. Four most popular textural featur@svel cloud classes, i.e., cirrus and cirrustratus, it was observed
namely contrast, correlation, entropy, and homogeneity, waffyt most misclassifications occurred between them. This is
calculated for each image setting the interpixel distance eqgghected since some cirrus blocks exhibit the features similar
to one in all the four orientations, i.e., 0, 45, 90, and145- o those of cirrustratus if they are thick and smooth enough.
nally, directionality was suppressed by averaging the extracigdthe data set there are also some very thin cirrus samples
features over four directions to produce isotropically averaggghich span over the Gulf of Mexico (lower-left corner in
measures. These four GLCM features were extracted from b@i‘ila_ 5). Owing to the thin nature of the cirrus, the region

the visible and IR images and then fused together to formpas the averaged temperature of both the cirrus and warm
combined feature vector. Since both the SVD and WP featukggter. ie. it is much warmer than the general cirrus and
contain the spectral information, for the sake of fairness goks similar to the cold water and some of the low clouds.
benchmarking the mean of the block in both channels wefgjis aiso causes misclassifications. The classification accuracy
also included in the feature vector. The resultant feature VECHBF the low and middle level clouds namely stratus (St)

is of dimension ten and no further feature selection procesgmylus (Cu), stratocumulus (Sc), and altostratus (As) ranges
was applied. Additionally, a feature set which only includegyoung 60-83%. Some of the most confusing pairs include
the spectral mformat!on was generated which contained 8¢ orsus As, Cu versus Sc, and especially Sc versus As.
mean of each block in the two channels. Although the middle level (As) clouds generally are colder
than the lower level clouds, such difference may become
less prominent if considering the background temperature

The performance of different kinds of neural-network clasariation. For example, some Altostraturs samples in the Gulf
sifiers namely PNN and SOM were first examined for thef Mexico may have similar temperature as the low clouds
classification accuracy. The extracted SVD features were usedhe far North. On the other hand, the texture of (Sc) are
for this comparison due to the simplicity of this scheme. Notomehow in between those of (St)/(As) and Cu types. Some
that since only parts of the images labeled by the meteorologssball blocks of Sc have smooth texture like St/As while other
were used for benchmarking and performance comparison, titecks are very similar to Cu.

C. Comparison Study of Different Classifiers
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TABLE 1l
CoNFusioN MATRIX FOR THE MoDIFIED PNN QLAssIFIER UsING SVD FeATURES (%). (Row—NEURAL-NETWORK
ResuLTs CoLUMN—EXPERTS LABELLING. OVERALL CLASSIFICATION RATE Is 83.8%)

WLnd | CLnd | WWir | CWir St Cu As Ci Cs Sc

WLnd | 97.3 0.7 0 0 0 1.5 0 0.5 0 0

CLnd 1.9 92.9 0 0 0 4.1 0 1.1 0 0

WWir 0.7 1.5 90 0 0.7 3.3 0 3.7 0 0

CWir 0 0 0 84.8 0 2.2 0 10.9 2.2 0
St 0 0 0 0 74.6 4.4 14.6 0.5 0 5.9
Cu 0 0 0 0 1 84.2 1.9 1.9 0.5 10.5
As 0 0.4 0 0 3.2 3.2 66.2 3.9 0.7 22.5
C; 0.5 0.8 0.3 0.2 0.2 1 1.5 85.5 9.2 0.8
Cs 0 0 0 0.1 0.1 1.2 15.6 82.5 0.4
Sc 0.2 0 0 0 1 8.6 13.9 1.5 0.5 74.3

termine (exactly) priori. In this study, three SOM networks,
referred to as SOM1, SOM2 and SOM3, with different number
of output neurons, namely, 10, 30, and 50 were tested. For
each SOM network, different neighborhood functions were
experimented, and the best one was chosen based on the clas-
sification accuracy. For SOM1, this wasx52 neighborhood
while for SOM2 and SOM3 these were 1 30 and 10x

5, respectively. Note that mxn neighborhood implies that the
neurones are arranged in a mxn grid in two dimensions. The
training data set for the SOM consists of 8192 samples which
were randomly chosen from the six image pairs. Each SOM
was initialized using the convex combination method [46].
The training process of SOM was separated into two phases.
In the global ordering phase which corresponds to the first
1000 epochs, the learning rate decreased linearly from 0.9 to

For the modified PNN, several network structures witA-45, while the size of the neighborhood was kept large. Such a
different number of Gaussian components in each class wJe learning rate and neighborhood size can help to form the
examined. A pruning operation was also performed during tfPological ordering network. In the fine tuning phase which
training process if the weight of certain Gaussian compondakes 19000 epochs, the learning rate decays exponentially
was less than 0.005. The best structure was chosen based®® 0.45 to zero while the neighborhood is linearly reduced
the classification accuracies, however, this does not imply ti4til finally will contain just the winner neuron after 2000
the structure is theoretically optimal. Table Ill presents thPochs. After the training is completed, the output neurons
classification accuracies of the modified PNN. It was founiiere further mapped to the corresponding cloud/background
that this PNN achieved slightly better results than that &fass based on a labeling data set. This labeling set is a subset
the original PNN. The overall classification rate has increas@fi the training data set for PNN classifier. The reason being
from 83.4 to 83.8%. Moreover, the structure of neural netwoiR the original PNN training set the number of samples for
is greatly simplified. There were totally 5297 pattern neuror@gch class was not equal, e.g., there were only 92 samples for
in the original PNN in contrast to only 94 neurons in théhe cold water class in contrast to 4259 samples in the cirrus
modified PNN. Consequently, the computational and storagl@ss. If this set was used for labeling the SOM networks,
requirements in the testing phase are greatly reduced. Tthe resultant SOM would have been significantly biased to
color-coded image based on SVD features and the modifiéag cirrus class while the cold water type might have been
PNN classifier is shown in Fig. 7. Visual inspection of thigeglected. In order to circumvent this problem, we require
result indicates that different cloud/background areas are wéhat the maximum number of samples in each class of the
separated. This agrees with the meteorologist labeling with tadeling set does not exceed 500. For those classes in the old
exception of some isolated error blocks. Other error blockNN training set which had more samples than this limit, we
occurred at the border of cloud and background areas wheagdomly chose 500 samples. All SOM networks were labeled
features in one block are the mixture of different physicaising this new data set.
classes. Overall, the resultant classified image show moreThe classification rates for the three SOM topologies are
promise of the system than indicated by the classification ratgs/en in Table IV. The results of SOM1 were very poor mainly

2) Kohonen SOM:SOM is an unsupervised network whichbecause ten neurons was inadequate to represent all the clusters
clusters the inputs into certain prespecified number of um the feature space. For example, there was no neuron to
known categories. The optimal number of output neuromepresent the CWtr, St, and As classes so the classification
(categories) is highly problem dependent and difficult to deates for these classes were zero! Increasing the number of

Fig. 7. Classification results using modified PNN with SVD featuers.
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TABLE IV
CLASSIFICATION ACCURACY FOR THREE SOM'’s wiTH OuTPUT NEURONS 10, 30,AND 50, RESPECTIVELY (%)

WLnd | CLnd | WWtr | CWtr | St Cu As Ci Cs Sc Overall
Accuracy
SOM1 96.9 43.1 85.2 0 0 60.8 0 68.8 | 729 828 65.0
SOM2 | 94.9 84.6 98.9 | 76.1 376|613 275 732 | 7471715 72.0
SOM3 | 98.8 90.6 97.8 | 783 | 55.6 | 68.6 | 23.2 71.6 | 80.6 | 80.7 74.8

TABLE V
CONFUSION MATRIX FOR SOM2 WITH SVD FEATURES (%). (Row—NEURAL NETWORK
ResuLTs CoLUMN—EXPERTS LABELLING. OVERALL CLASSIFICATION RATE Is 72.0%)

WLnd | Cnd [WWir | CWir St Cu As Ci Cs Sc
WLnd | 949 1.7 34 0 0 0 0 0 0 0
CLnd 0 84.6 1.9 1.9 0 10.1 0 1.5 0 0
WWitr 1.1 0 98.9 0 0 0 0 0 0 0
CWtr 0 15.2 0 76.1 0 0 0 8.7 0 0
St 0 2.4 0 0 37.6 24.9 22 4.9 0 8.3
Cu 10.7 10.5 1.9 0.2 0.5 61.3 1.7 4.6 0 8.5
As 0 0 0 0 5.3 12.7 27.5 0.7 0.4 53.5
Ci 2 2.1 3.3 1.6 3 3.8 0.7 73.2 8.4 1.8
Cs 0 0 0 0 2.1 0.1 4.3 17.9 74.7 0.9
Sc 1.2 0.2 0.7 0 4.6 10.8 10.3 0.8 0 71.5

output neurons to 30 certainly help to improve the overall
classification accuracy from to 65.0 to 72.0% since for each
class there was at least one neuron to represent it. Howeve! ,
there was only a slight improvement when the number of *
neurons was further increased to 50. Although SOM3 with
50 neurons can more accurately represent the clusters in th
feature space than the SOM2 with 30 neurons, the formec
clusters may not necessarily correspond to the physical label: ]
used by meteorologist. In other words, the physical classes /g & .
may not form distinct clusters in the feature space. This
explains the reason for no significant improvement in the
classification accuracy.

Comparing to PNN, SOM did not achieve high classification
accuracy owing to the unsupervised learning nature of thify. 8. Classification results using SOM2 and SVD features.
network. The confusion matrix for SOM2 is provided in
Table V. The color-coded image classified using SOM2 and
the SVD features is shown in Fig. 8. Visual inspection of thi

e

T =

Warm Land
Cold Land
Warm Water
Cold Waier
Siratus
Cumuglos
Alpstrarus
Cirrus
Cirrustratus
stratocumols

. . - . . PNN. The classification accuracy for the WP and GLCM
image can easily reveal significant errors in classification. Og?e provided in Tables VI and VII, respectively. Comparing

benefit in using SOM network is that the classified imag%ﬁith the results of SVD in Table Ill, it was found that WP

will more likely to hgve very smooth mu_tgally ex_clu.swe. clags nd GLCM-based statistical features achieved similar results,
boundaries comparing with other classifiers. This is prlman@

due to the fact that each “natural cluster” is mapped to onec:)th fall slightly behind SVD results as far as the overall
cloud/background class as a whole PP accuracy is concerned. If the classification rate of each class
From the above discussion PNN-is found to be the betti ranalyzed separately, the SVD features performed the best for
choice in terms of both the clz;lssification accuracy and visJ _altostraFus, cirrostratus, s_trat_ogumglus "J!”d the background,
inspection. The modified version of the PNN slightly outpely—v lle WP IS the best _at discriminating cirrus and GLCM
formed the original one with much less computational ar{gatures achieved the highest rate for the stratus and cumulus

storage costs. SOM's do not provide satisfactory classificatiffPeS- NO feature set performed consistently the best on all
acouracies. the categories. Moreover, the altostratus and cold water are

the most difficult classes for all the three schemes.
The use of spectral feature alone was also examined on the
effectiveness of the cloud classification system. The classifica-
Besides the SVD features discussed above, various featuies accuracies are given in Table VIII. The overall accuracy is
including GLCM, WP and spectral features were investigatetthe worst among all the examined features. Since all the other
The classifier used for this comparison study was the modifieghtures contain both the textural and spectral information, this

D. Comparison Study of Different Features
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TABLE VI
ConFusioN MATRIX FOR WP FEATURES UsiNG MobIFIED PNN QLAsSIFIER (%). (Row—NEURAL-NETWORK
REsuLTS CoLUMN—EXPERTS LABELLING. OVERALL CLASSIFICATION RATE Is 81.2%)

WLnd | CLnd | WWtr | CWir St Cu As Ci Cs Sc

WLnd | 92.7 0.7 0 0 0 2.9 0 2.9 0 0.7

CLnd 4.9 82 0 0 0 3 0 10.1 0 0

WwWtr | 12.6 1.9 83.3 0 0 0.4 0 1.9 0 0
CWitr 4.3 2.2 0 56.5 0 2.2 2.2 23.9 4.3 4.3
St 0 0 0 0 75.6 2 15.6 0.5 0 6.3
Cu 1.7 0 0 0 0.2 80 4.6 1.9 0 114
As 0 0 0 0 4.6 2.5 64.1 6 1.8 21.1
Ci 0.8 0.6 0 0 0 0.8 2.3 85.8 9 0.7
Cs 0 0 0 0 0.1 0 1.6 20 77.9 0.3
Sc 0.2 0 0 0 2.7 6.6 16 1.9 0.3 72.3

TABLE VII

CoNFusioN MATRIX FOR GLCM FeaTURES UsING MobpIFIED PNN QLASSIFIER (%). (Row—NEURAL-NETWORK
ResuLTs CoLUMN—EXPERTS LABELLING. OVERALL CLASSIFICATION RATE Is 80.5%)

WLnd | CLnd |WWitr | CWir St Cu As Ci Cs Sc
WLnd | 97.1 0.5 0.5 0 0 1.2 0 0.7 0 0
CLnd 1.9 92.1 0 0 0 2.2 0 3.7 0 0
WWir | 189 0.7 77.8 0 1.1 1.5 0 0 0 0
CWir 0 2.2 17.4 39.1 4.3 2.2 2.2 30.4 2.2 0
St 0 0 0 0 82.4 0.5 6.3 1 0 9.8
Cu 0.7 0.2 0.2 0 1.2 88.6 1.9 1.7 0.2 5.1
As 0 0 0 0 11.6 2.5 40.1 4.2 35 38
Ci 1.3 0.1 0.4 0 1.1 1 1.6 64.7 9 0.7
Cs 0 0 0 0 0.4 0.1 1.3 19.1 71.6 1.3
Sc¢ 0.2 0 0 0 4.2 7.1 159 1.5 1.4 69.8

TABLE VIII
CONFUSION MATRIX FOR THE SPECTRAL FEATURE ALONE UsING MoDIFIED PNN QLASSIFIER (%0).
(Row—NEURAL-NETWORK RESULTS COLUMN—EXPERTS LABELLING. OVERALL CLASSIFICATION RATE Is 75.5%)

WLnd | CLnd [ WWtr | CWir St Cu As Ci Cs Sc
WLnd | 964 0.5 0.2 0 0 2.9 0 0 0 0
CLnd 0.4 94 0 0 0 5.6 0 0 0 0
WWir 0 0.7 98.9 0 0 0.4 0 0 0 0
CWitr 0 4.3 0 80.1 0 0 0 6.5 0 0
St 0 4.4 0 0 83.4 3.4 7.8 0 0 1
Cu 6.1 10.9 1.5 0 12.9 56.7 1.9 29 0 7.1
As 0 0.4 0 0 18.3 5.3 52.5 0.7 0.4 225
Ci 1 2.6 2 1.4 23 3.8 1.1 719 134 0.4
Cs 0 0 0 0 1 0.1 1.3 154 82.1 0
Sc 1 0.2 0 0 5.6 6.9 18.1 0.5 0 67.7

observation may indicate the contribution of textural featuré&®s in classification accuracy was achieved. Furthermore, the
in cloud classification. improvement was found to be somewhat consistent for all
Overall, the SVD provides better class discrimination amongdividual classes, ranging from 0.6% for warm land class
the examined features followed by the WP, GLCM-basag nearly 7% for stratocumulus and cumulus classes. Fig. 9
statistical features and lastly the spectral features alone. Alsghws the postprocessed color-coded image corresponding

considering the storage and computational requiremen_ts, thethe original color-coded image shown in Fig. 7. As can
SVD approach was found to be the most preferred choice 9 observed, after postprocessing a large number of the

this study. isolated blocks are removed leading to more homogeneous
E. Results of Postprocessing Approach regions. Moreover, the boundaries between different classes

To account for the spatial contextual information in th8'€ now mo_re distinct. _The_ results conform bett_e [ to the
satellite imagery, the postprocessing scheme in Section 1118%Pe"tS labeling resuits in Fig. 6. The postprocessing effects
was examined. The satellite images were initially classifid refation to the choice of parametgrwas also investigated.
using the modified PNN based on the SVD features. TH&Ple X presents the overall classification rate versusotice
postprocessing scheme was then applied to the output of Hat 7 = 0 implies that no postprocessing was applied. It
PNN classifier. Table IX gives the resultant cloud classifivas found that largep3 will lead to higher classification
cation accuracies. The parametgrin (14) was chosen to accuracy. However, this does not necessarily mean la¥ger
be 0.35 in this process. Comparing to the results withoist better. As we discussed before, largemdicates stronger
postprocessing given in Table Ill, an overall improvement aflass correlation in the neighborhood which favors more
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TABLE IX
CoNFUsION MATRIX AFTER PosT PROCESSING (%) (3 = 0.35). (Row—NEURAL-NETWORK
ResuLTs CoLUMN—EXPERTS LABELLING. OVERALL CLASSIFICATION RATE Is 86.3%)

WLnd | CLnd | WWtr | CWtr St Cu As Ci Cs Sc
WLnd | 98.1 0.5 0 0 0 1 0 0.5 0 0
CLnd 0 95.9 0 0 0 2.2 0 1.1 0 0.7
Wwtr [ 0.7 0.4 92.6 0 0.7 2.6 0 3 0 0
CWu 0 0 0 87 0 2.2 0 10.9 0 0
St 0 0 0 0 81 3.4 11.7 1 0 29
Cu 0 0 0 0 0.5 91.2 0.5 24 0.5 4.9
As 0 04 0 0 2.5 2.8 72.5 39 0.7 17.3
Ci 0.5 0.3 0.3 0.1 0.1 09 0.8 91.9 4.8 0.3
Cs 0 0 0 0.1 0 0.1 0.7 15 83.7 0.3
Sc 0.2 0 0 0 0.8 7.8 8.3 1.2 0.5 81.3
TABLE X
THE OVERALL CLASSIFICATION ACCURACY AFTER POST PROCESSING(%). THE SVD FEATURES AND SIMPLIFIED PNN WEREUSED. 3 = 0 IMPLIES NO POSTPROCESSING
B 0 0.05 0.15 0.25 0.35 0.5 0.75 1 1.5
Accuracy | 83.8 85.2 87 88 88.8 89.6 90.9 91.3 91.7

may not necessarily correspond (match) to the real-world
classes defined by meteorologists, the classification accuracy
rates may not be meaningful. Overall, the PNN was found
to provide the best solution for the cloud classification. A
postprocessing approach was also developed which utilizes
the spatial contextual information in the satellite imagery in
order to improve the classification accuracy. Additionally,
four different sets of features namely SVD, WP, GLCM and
spectral were studied and their performance was compared.
It was found that the spectral features alone can discriminate
different clouds with reasonable accuracy while adding textural
information can help to further improve the classification
performance. SVD and WP achieved almost similar results
while GLCM falls slightly behind. Nevertheless, none of
these feature sets provide consistently good discrimination
_ _ ) ability for all cloud/background classes. Future work should
homogenous regions as the isolated blocks in the color-codgg,de searching for a new powerful and robust feature
image will be removed. Since most of the classification.erro&traction scheme and a self-adaptation scheme for the PNN to
occurred separately, such postprocessing can help to incregs&mmodate significant temporal, geographical and seasonal

the accuracy. However, iff is too large, the image will be changes in satellite imagery sequences. A temporal updating

ove_r-sm_o_othed and the clouds in small s_cale regions will Nngtheme has recently been introduced in [22].

be identified. As a result, the choice of this parameter presents

a tradeoff between accuracy and smoothing effects. In our

testing, the visual examination of all the postprocessed images

led to the optimal choice of = 0.35. [1] G. S. Pankiewicz, “Pattern recognition techniques for identification of

cloud and cloud systemsNeteorol. Appl. vol. 2, pp. 257-271, Sept.

1995,

[2] W. E. Shenk and R. J. Holub, “A multispectral cloud type identification
method developed for nimbus 3 mrir measuremenkdgh. Weather

-

Fig. 9. Classification results after postprocessing of Fig,37= 0.35).
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