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ABSTRACT 
 

 
 

LEVERAGING OPERATIONAL USE DATA TO INFORM THE SYSTEMS ENGINEERING 

PROCESS OF FIELDED AEROSPACE DEFENSE SYSTEMS 

 

Inefficiencies in Department of Defense (DoD) Acquisition processes have been 

pervasive nearly as long as the DoD has existed.  Stakeholder communication issues, funding 

concerns, large and overly complex organizational structures all play a role in adding challenges 

to those tasked with fielding, operating, and sustaining a complex aerospace defense system. 

As legacy defense systems begin to age, logistics and other supportability element 

requirements may change over time.  While research literature supports the evidence that many 

stakeholders and senior leaders are aware of the issues and the DoD faces the impact those 

issues cause to mission performance, most research and attempts to improve the performance 

issues have been focused on high level restructuring of organizations or policy, processes, and 

procedures.  There has been little research dedicated to identifying ways for working level 

logisticians and systems engineers to improve performance by leveraging operational use data.    

This study proposes a practical approach for working level logisticians and engineers to 

identify relationships between operational use data and supply performance data. This research 

focuses on linking negative aircraft events (discrepancies) to the supply events (requisitions) 

that result in downtime. This approach utilizes standard statistical methods to analyze 

operations, maintenance, and supply data collected during the Operations and Sustainment 

(O&S) phase of the life cycle.  

Further, this research identifies methods consistent with industry systems engineering 

practices to create new feedback loops to better inform the systems engineering life cycle 

management process, update requirements, and iterate the design of the enterprise system as 

a holistic entity that includes the physical product and its supportability elements such as 



iii 
 

logistics, maintenance, facilities, etc.  The method identifies specific recommendations and 

actions for working level logisticians and systems engineers to prevent future downtime. The 

method is practical for the existing DoD organizational structure, and uses current DoD 

processes, all without increasing manpower or other resource needs. 

 



iv 
 

ACKNOWLEDGEMENTS 
 

 
 
I would like to thank Dr. Jeremy Daily and the rest of the dissertation committee, Dr. 

Gregory Marzolf, Dr. Erika Miller, and Dr. Daniel Wise for their support throughout this research 

project. I would also like to thank technical experts Mr. Russell Alford, Mr. Eric Jones, Mrs. Molly 

Statham, and Mr. William “Scott” Wrigley who provided the critical expertise on Air Force Life 

Cycle Management at the heart of this research. They are the best teachers, career guides, and 

mentors I have ever met.  They have instilled in me the desire to improve upon the work we do 

as Air Force civilians and, more importantly, the world we live in. Finally, I’d like to thank my 

family for having patience throughout this process.  I would not have had the energy, time, or 

resources to attempt this endeavor without the support of my husband Carl.  And despite all our 

“stakeholder disconnects”, he is my most critical “support element” in the “enterprise system” 

that is our life.  

 



v 
 

TABLE OF CONTENTS 
 
 
 

ABSTRACT ................................................................................................................................ II 
ACKNOWLEDGEMENTS ......................................................................................................... IV 
LIST OF TABLES ..................................................................................................................... VII 
LIST OF FIGURES ................................................................................................................. VIII 
LIST OF EQUATIONS ............................................................................................................... X 
CHAPTER 1 - INTRODUCTION ............................................................................................................................ 1 

1.1 Background................................................................................................................................ 1 
1.2 Problem Description .................................................................................................................. 1 
1.3 Need for a Solution .................................................................................................................... 3 

1.3.1 Performance Impacts ................................................................................................... 4 
1.4 Goals, Research Questions, and Contributions ........................................................................ 7 

1.4.1 Statement of Research Questions ............................................................................... 7 
1.4.2 Contributions ................................................................................................................ 8 
1.4.3 Assumptions / Limitations ............................................................................................. 8 
1.4.4 Definition of Terms ....................................................................................................... 9 

CHAPTER 2 - LITERATURE REVIEW AND EXISTING METHODS ........................................................................... 11 
2.1 USAF System Enterprise Metrics ............................................................................................ 11 
2.2 Evolution of Systems Engineering in the DoD ......................................................................... 13 

2.2.1 Waterfall Model ........................................................................................................... 15 
2.2.2 Spiral Model ................................................................................................................ 16 
2.2.3 Vee Model................................................................................................................... 18 

2.3 DoD Life Cycle Management Related Performance Issues .................................................... 19 
2.3.1 Funding Processes Influence Enterprise System Design .......................................... 21 
2.3.2 Cost Reduction Strategy Impacts to Performance ..................................................... 24 
2.3.3 Aging Aircraft Impact on Logistics Performance ........................................................ 27 
2.3.4 Procurement Decisions Impact on Logistics Performance ......................................... 31 
2.3.5 Operational Need Impact on Logistics Performance .................................................. 34 

2.4 Research on DoD System Performance Improvements ......................................................... 35 
2.4.1 Improving System Performance by Better Planning .................................................. 36 
2.4.2 Reverse Engineering Methods to Resolve Logistics Performance Issues ................. 36 
2.4.3 Using Data Analytics to Improve System Performance ............................................. 37 

2.5 Research on Predicting USAF Fleet Performance .................................................................. 39 
2.5.1 Studies Correlating USAF Metrics to Performance .................................................... 40 
2.5.2 Studies on USAF Logistics Performance ................................................................... 42 

2.6 Literature Review Summary .................................................................................................... 45 
CHAPTER 3 - RESEARCH METHOD .................................................................................................................. 46 

3.1 Feedback Processes During Operational Use ........................................................................ 47 
3.1.1 Proposed Systems Engineering Method .................................................................... 49 
3.1.1 Existing Feedback Processes .................................................................................... 58 
3.1.1.1 Issues with Standard Supply Forecasting .................................................................. 59 
3.1.1.2 Forecasting Data Bottlenecks..................................................................................... 60 
3.1.2 Proposed Additional Feedback Processes ................................................................. 62 

3.2 Data Identification .................................................................................................................... 65 
3.2.1 Metrics ........................................................................................................................ 65 
3.2.2 Data Sources .............................................................................................................. 66 
3.2.3 Operational, Maintenance, and Supply Data Relationships ....................................... 68 
3.2.4 Metrics from Operations ............................................................................................. 74 
3.2.5 Maintenance Metrics .................................................................................................. 76 
3.2.6 Supply Metrics ............................................................................................................ 77 
3.2.7 Work Around metrics .................................................................................................. 81 
3.2.8 Variable Reduction ..................................................................................................... 83 



vi 
 

3.2.8.1 Data Collection Limitations ......................................................................................... 83 
3.2.8.2 Dependent Variable .................................................................................................... 87 
3.2.8.3 Independent Variables ................................................................................................ 88 

3.3 Statistical Analyses .................................................................................................................. 89 
3.3.1 Basic Statistics Characteristics Review ...................................................................... 90 
3.3.2 Confidence Intervals and Hypothesis Tests ............................................................... 90 
3.3.3 Correlation Methods ................................................................................................... 91 
3.3.4 Multiple Linear Regression ......................................................................................... 93 
3.3.4.1 Checking for Linearity ................................................................................................. 94 
3.3.4.2 Checking for Multicollinearity ...................................................................................... 95 
3.3.4.3 Checking for Independence........................................................................................ 96 
3.3.4.4 Checking for Normality ............................................................................................... 98 
3.3.4.5 Checking for Homoscedasticity ................................................................................ 100 
3.3.4.6 Selecting the Best Model .......................................................................................... 100 
3.3.5 Pitfalls to Avoid ......................................................................................................... 103 

3.4 Case Study Reviews ............................................................................................................. 104 
CHAPTER 4 - RESEARCH RESULTS ............................................................................................................... 105 

4.1 Data Collection ...................................................................................................................... 105 
4.2 Mathematical Modeling .......................................................................................................... 106 

4.2.1 Model Limitations ...................................................................................................... 106 
4.2.2 Linearity .................................................................................................................... 107 
4.2.3 Multicollinearity ......................................................................................................... 108 
4.2.4 Normality................................................................................................................... 109 
4.2.5 Best Subset - Multiple Linear Regression ................................................................ 112 
4.2.6 Independence ........................................................................................................... 113 
4.2.7 Mathematical Modeling Summary ............................................................................ 118 

CHAPTER 5 - CASE STUDIES AND DISCUSSION .............................................................................................. 119 
5.1 Case Studies Selection ......................................................................................................... 120 

5.1.1 Computer Interface Unit ........................................................................................... 121 
5.1.2 Antenna Logic Converter .......................................................................................... 123 
5.1.3 Descent Reel ............................................................................................................ 125 
5.1.4 Pneumatic System Valve .......................................................................................... 127 
5.1.5 Servo Motor .............................................................................................................. 129 
5.1.6 Avionics Interface Unit .............................................................................................. 131 

5.2 Case Study Summary ............................................................................................................ 133 
CHAPTER 6 - CONCLUSION, RECOMMENDATIONS, AND FUTURE RESEARCH .................................................... 135 

6.1 Summary of Research ........................................................................................................... 135 
6.2 Recommendations ................................................................................................................. 137 
6.3 Future Research .................................................................................................................... 137 
6.4 Conclusion ............................................................................................................................. 138 

REFERENCES ....................................................................................................................... 141 
APPENDIX .............................................................................................................................. 160 

 

 

  



vii 
 

LIST OF TABLES 
 
 
 

Table 1: Metrics Linked by WUC or NSN .................................................................................................... 86 
Table 2: Metric Data Dictionary ................................................................................................................... 89 
Table 3: Model Ranking ............................................................................................................................ 112 
Table 4: Computer Interface Unit Correlation Across Time ...................................................................... 122 
Table 5: Antenna Logic Converter Correlation Across Time .................................................................... 124 
Table 6: Descent Reel Correlation Across Time ....................................................................................... 126 
Table 7: Valve Correlation Across Time ................................................................................................... 128 
Table 8: Servo Motor Correlation Across Time ......................................................................................... 130 
Table 9: Avionics Interface Unit Correlation Across Time ........................................................................ 132 
Table 10: Case Study Summary ............................................................................................................... 133 
Table 11: Operations, Supply, and Maintenance Metrics ......................................................................... 160 
Table 12: Pearson's Coefficient for Variables ........................................................................................... 164 

 
  



viii 
 

LIST OF FIGURES 
 
 

 
Figure 1: Notional DoD Organizational Structure Illustrating Organizational Separation ............................. 5 
Figure 2: Screenshot of USAF Policy Guidance Illustrating Functional Separation [20] .............................. 5 
Figure 3: Waterfall Model for Software Development ................................................................................. 15 
Figure 4: Spiral Model ................................................................................................................................. 17 
Figure 5: DoD Vee Model ............................................................................................................................ 18 
Figure 6: DoD Lifecycle Milestone Chart .................................................................................................... 20 
Figure 7: Life Cycle Model with Feedback Loops [23] ................................................................................ 21 
Figure 8: Congressional Budget Process, High Level Overview ................................................................ 23 
Figure 9: Bathtub Curve Diagram [74] ........................................................................................................ 30 
Figure 10: Comparison of Industry vs. USAF Systems Engineering Concepts .......................................... 48 
Figure 11: Operational Safety, Suitability, and Effectiveness (OSS&E) Responsibilities ........................... 50 
Figure 12: Sketch of Aircraft Skin and Antenna .......................................................................................... 52 
Figure 13: Piece of Aluminum Honeycomb Skin Panel, Photo by Amy Eddy ............................................ 52 
Figure 14: Old Cast Valve and New Machined Valve (Photo by Amy Eddy) .............................................. 53 
Figure 15: Top, 3D Printed Duct; Bottom, Original Duct with Rubber Boot ................................................ 55 
Figure 16: Proposed Feedback Model Diagram ......................................................................................... 57 
Figure 17: Comparison of Differences in Logistics Forecasting Processes ............................................... 60 
Figure 18: Inputs to Proposed Continuous Monitoring Systems Engineering Process .............................. 64 
Figure 19: Operational Use Cycle ............................................................................................................... 69 
Figure 20: Aircraft Operations, Maintenance, and Logistics Relationship Cycle ........................................ 71 
Figure 21: Examples of USAF Metrics Collected in O&S Phase ................................................................ 73 
Figure 22: Taxonomy of Common USAF Lagging Indicators ..................................................................... 74 
Figure 23: Aircraft Discrepancy Relationships ............................................................................................ 76 
Figure 24: Supply Metrics Relationships ..................................................................................................... 77 
Figure 25: Logistics Support Flow Chart [75] .............................................................................................. 82 
Figure 26: Overview of Parts Shortage Workarounds and Type of Data Generated ................................. 82 
Figure 27: Work Unit Code Taxonomy ........................................................................................................ 85 
Figure 28: Example Scatterplot Illustrating Linear Relationship ................................................................. 94 
Figure 29: Example Histogram of Normally Distributed Data ..................................................................... 98 
Figure 30: Initial Scatterplot, Linearity Check ........................................................................................... 107 
Figure 31: Correlation Matrix and Heat Map ............................................................................................. 108 
Figure 32: Distribution Plots ...................................................................................................................... 110 
Figure 33: Residuals by Row for Model 1 ................................................................................................. 113 
Figure 34: Scatterplots of Variables by 1st Order Lag ............................................................................... 114 
Figure 35: Scatterplots of Variables vs 1st Order Lagged Variable ........................................................... 114 
Figure 36: Augmented Dickey Fuller (ADF) Results with Autocorrelation Plots ....................................... 116 
Figure 37: Best Subset, with Lagged Variables ........................................................................................ 117 
Figure 38: MICAP and Canns Data for Computer Interface Unit .............................................................. 121 
Figure 39: MICAP (I) and Cann (N) for 62AK0, Antenna Logic Converter ............................................... 123 
Figure 40: MICAP (I) and Cann (N) for Descent Reel .............................................................................. 125 
Figure 41: MICAP (I) and Cann (N) for Pneumatic System Valve ............................................................ 127 
Figure 42: Graph of MICAP and Canns for Servo Motor .......................................................................... 129 
Figure 43: MICAP vs. Canns Data for Avionics Interface Unit .................................................................. 131 
Figure 44: MICAP (I) Normality Check ...................................................................................................... 165 
Figure 45: Canns (N) Normality Check ..................................................................................................... 166 
Figure 46: Breaks (N) Normality Check .................................................................................................... 167 
Figure 47: Air Aborts (N) Normality Check ................................................................................................ 168 
Figure 48: Ground Aborts (N) Normality Check ........................................................................................ 169 
Figure 49: Backorder Count Normality Check .......................................................................................... 170 
Figure 50: Best Subset Model Comparisons ............................................................................................ 171 
Figure 51: Best Subset Results: Model 1 and Model 2 ............................................................................. 172 



ix 
 

Figure 52: Normality Check, Model 4 (Lagged Variables) ........................................................................ 173 
 

  



x 
 

LIST OF EQUATIONS 
 
 
 

Equation 1: Aircraft Availability.................................................................................................................... 11 
Equation 2: Mission Capability .................................................................................................................... 11 
Equation 3: Not Mission Capable Supply Calculation ................................................................................. 75 
Equation 4: Total Not Mission Capable Supply (NA) Calculation ............................................................... 75 
Equation 5: Not Mission Capable Supply Calculation ................................................................................. 75 
Equation 6: Pearson's Coefficient of Correlation ........................................................................................ 92 
Equation 7: Multiple Regression Equation .................................................................................................. 93 
Equation 8: Durbin-Watson Equation .......................................................................................................... 96 
Equation 9: Autocorrelation Equation [149] ................................................................................................ 97 
Equation 10: Shapiro-Wilk Test .................................................................................................................. 99 
Equation 11: Akaike Information Criterion ................................................................................................ 101 
Equation 12: Bayesian Information Criterion ............................................................................................ 102 
Equation 13: Mallows Cp ........................................................................................................................... 102 
Equation 14: Final Regression Equation ................................................................................................... 118 

 
 



1 
 

Chapter 1 - Introduction 

The United States (US) Department of Defense (DoD) is well known for keeping systems in 

service for considerable periods of time.  For the US Air Force (USAF), fleets of aircraft models 

may be in service for decades, a considerable length of time for such highly complex systems 

faced with operating in challenging environments [1].  Methods for incorporating systems 

engineering processes into life cycle management strategies for aging systems like these are 

vital for continued system performance.  This dissertation will analyze methods to improve the 

performance of fielded aerospace defense systems by utilizing data collected in the operational 

use phase of the life cycle to inform the continuous systems engineering processes responsible 

for maintaining system performance.   

1.1 Background 

Aerospace defense systems tend to be large, complex, and involve many different 

stakeholders throughout their life cycles.  Changing battle environments, a large and often 

varied pool of stakeholders, inadequate sustainment strategies, and the often observed 

occurrence of long lead times spurred the DoD to focus on long term total life cycle 

management policies in its on-going battles to effectively acquire and operate defense systems 

[2]. The DoD continuously functions in an ever-changing battle environment with far-reaching 

operations spanning every continent around the globe.  The disruptions to operations can be 

difficult to predict, and the USAF must determine ways to maintain its standards of performance 

across all its systems. 

1.2 Problem Description 

One of the most glaringly obvious defects in the current DoD life cycle management 

methodology is a lack of executable feedback loops in most of its systems engineering 

processes, particularly as they relate to monitoring the impacts on system performance from 

non-physical attributes of the system.  Feedback loops help ensure communication for ongoing 
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learning and decision making throughout a system’s life cycle [3]. Since supportability elements 

such as logistics, training, facilities, and support equipment are managed, maintained, and 

operated by a variety of different stakeholders; connecting these critical elements to their impact 

on overall system performance can become challenging.  While there are many laws, policy 

guides, and handbooks that target data collection and storage, USAF life cycle feedback loops 

are discussed as theoretical concepts at best, or inflexible data reporting at worst.   

Actionable feedback in the form of recommendations or processes for monitoring, 

collecting, analyzing, and distributing operational use data with the intent to iterate and inform 

the systems engineering and life cycle management processes are almost non-existent.  To 

maintain overall system performance, all supportability elements related to system operations 

must also maintain performance standards, particularly as it relates to supportability elements 

outside of the physical product.  In particular, supply and logistics performance has a major 

impact on overall system performance, despite being external to the physical system design.  

According to a report from the Government Accountability Office (GAO), failure to meet 

performance goals can be attributed to logistical factors [4].  If supportability elements fail due to 

changes in the system or environment, appropriate feedback data must be incorporated into the 

systems engineering life cycle process to adequately adjust overall system design to 

accommodate the changes impacting performance.     

Since systems and their environment change over time, the lack of feedback data that 

identifies issues with the current system is a significant issue that must be addressed for 

successful life cycle management and performance.  Particularly for aging enterprise systems, 

feedback data loops that facilitate systems engineering processes and support total life cycle 

management should be clear and well defined.  Given the large footprint of the enterprise 

system that is required to support USAF aircraft fleets, the lack of clearly defined feedback 

loops may impede the ability to successfully iterate enterprise system designs to allow 

successful sustainment throughout the life cycle of an enterprise system. 
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1.3 Need for a Solution 

There are many documented issues with the current USAF approach to systems 

engineering life cycle management with primary drivers being poor performance of fielded 

systems and increasing cost concerns.  The interest from leaders to resolve life cycle 

management issues generally stems from their desire to fund, develop, and field enterprise 

systems more quickly.  Research indicates that this has been an on-going issue, spanning over 

the last several decades.   

A 1985 report indicated that long lead times were due to failure to consider for human 

factors, manpower, personnel, and training in the weapon system acquisition process [5].  This 

issue has been attributed to various root causes over the last decade, with few published 

resolutions for identified problems, particularly as they relate to end-of-life performance issues 

for USAF fleets.  Government Accountability Office (GA) reports, Congressional briefing 

transcripts, and the successive changes to military policy all indicate senior leaders in the 

government and military are aware of the problem facing life cycle management in the DoD and 

have been trying for years to fix it [6], [7], [8], [9], [10], [11].  Clearly, there is a problem with 

successful execution of life cycle management for DoD aerospace defense systems.   

Issues with a lack of feedback loops or an inability to successfully execute life cycle 

management and systems engineering processes may not appear significant at first glance.  

But reports indicate that this issue causes impacts to mission due to increased costs and 

resource requirements and, more importantly, results in decreased performance.  As of 2019, 

only three of forty-six aircraft met their annual mission capable goals at least 50% of the time 

[7], [12].  Given the continued increase in costs ([13], [14]) for Operation and Sustainment of 

legacy aircraft and the increasing lead times to procure and field new aircraft, a solution for 

better management of the late phases of the systems engineering life cycle are required.   
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1.3.1 Performance Impacts 

One major theme in analysis of DoD acquisition issues is the suitability of appropriate 

process and policy to support life cycle management.  By the early 1990’s, senior Air Force 

officials were already recognizing that lack of focus on a long-term strategic goal could be a 

detriment to DoD priorities [15].  This lack of focus on strategic operations, combined with 

changing battlefield needs and developing technology, have contributed to a cycle of ever-

changing process and policy guidance. As early as the 1960’s, experts cautioned that much of 

public policy is not subject to any sort of quantitative analysis and that the systems approach 

may never be a purely rational, objective scientific aid to decision making [16].  The report went 

on to say that any recommendations for systems engineering processes must be possible to 

implement or they hold little value to the Department. 

Despite this assertion, the continuous march of attempts to fix the policy guidance 

seems to have continued.  A 1998 report contains implementation plans to streamline the 

acquisition workforce, organization, and infrastructure in addition to a re-engineering of the 

product support process [17].  As is the case with many large organizations, the USAF has 

challenges that result in separation of stakeholders which can impede communication of critical 

information that impacts overall system performance.  The DoD is organizationally (chain of 

command), functionally (engineering, logistics, etc.), and geographically separated with 

operations that span the globe [11], [15], [18], [19].   
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Figure 1: Notional DoD Organizational Structure Illustrating Organizational Separation 

 

 

Figure 2: Screenshot of USAF Policy Guidance Illustrating Functional Separation [20] 
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In 2000, the Director of Defense Management Issues stated that various efforts for 

reengineering life cycle management and logistics management processes were incomplete 

and may not provide improved service and lower costs to the Department, and had taken steps 

towards reengineering its logistics processes but that the aspects of the plan were incomplete 

[6].  Problems with the plan included lack of controlled objectives making it difficult to link results 

to savings, lack of fully developed test plans, and lack of funding.  In 2003 the GAO stated that 

the DoD needed a clear and defined process for setting Aircraft Availability (AA) goals, and that 

performance issues were “caused by a complex combination of logistical and operational 

factors” [4].  And in 2005, the DoD established a Parts Management Reengineering Working 

Group which found that poor logistics planning and standardization in the early phases of life 

cycle management led to poor operational reliability and availability after fielding [21].   

By the mid-2010’s, a focus on total life cycle management was beginning to form.  In 

2014, a study was accomplished on the previous 10-years of Defense acquisition history.  This 

study asserted that post-September 11, 2001 DoD leadership acknowledged that the defense 

community was not where it needed to be, and “product support planning too often failed to 

occur in a timely manner, long-term sustainment execution skills were deemed inadequate and, 

although long espoused, a true focus on total life-cycle systems management was lacking” [2].  

The impact that logistics and supply have on the performance of weapon systems was 

becoming clear.  

The consensus of DoD, GAO, and Congressional reports during this timeframe 

confirmed that the life cycle management process for DoD enterprise systems did not achieve 

the primary goal of reducing costs, reducing time to fielding, or providing other benefits to the 

DoD and that much of this poor performance could be related to supply or logistics issues.  

Clearly, the need to have an efficient, standardized process had been identified, but the 

Department struggled with defining a new process and putting it into practice.  When combined 
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and considered as a complete history, these reports illustrate that senior DoD officials have 

been trying to resolve the life cycle management issue for decades.  Yet costs continue to 

increase, and performance remains short of Department goals.  

1.4 Goals, Research Questions, and Contributions 

The broad goal of this research is to determine whether systems engineers can leverage 

existing operational use data from fielded aerospace defense systems as data for feedback 

loops to inform the iterative life cycle management process in the operational and sustainment 

phase of currently fielded USAF aircraft fleets.  Given the large research area this goal covers, 

this research is further scoped to focus on those factors related to supply and logistics 

performance impacts on the weapon system.   Furthermore, the research will be scoped to 

identify actionable strategies that systems engineers at the working level can individually 

implement given the current policy and guidance. 

1.4.1 Statement of Research Questions 

To accomplish the goals outlined in the previous section, research questions were 

identified.  The specific research questions for this report are as follows:   

• What existing operational data can be leveraged as feedback to assess or improve 

performance of fielded systems? 

• What is a process framework for identifying applications of operational and logistics 

data for performance improvements? 

• What performance improvements to fielded  systems can be realized by utilizing 

the operational data and process framework? 

It is hypothesized that a link exists between USAF operational and maintenance data and 

logistics performance data; and that proper analysis and review of this data can be leveraged to 

positively influence system performance.  The expectation is that this research will contribute a 

set of specific recommendations or methods that working level systems engineers and 
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logisticians in the USAF can use to improve system performance. Research will determine what 

factors, if any, have impact on supply performance rates and what actions systems engineers 

can take to provide feedback to logistics stakeholders to positively influence enterprise system 

performance. 

1.4.2 Contributions 

The research contained herein will provide several contributions to the body of 

knowledge of systems engineering to improve upon existing processes related to life cycle 

management of complex aerospace defense systems.  This research provides a useful model 

for aircraft systems engineering processes tailored to the operations and sustainment phase of 

life cycle management.  The model connects the traditional systems engineering Vee-model 

with a continuous improvement loop to illustrate the criticality feedback loops amongst 

stakeholders.  The research also provides a new link between operational data and aircraft 

downtime, linking USAF operational data to logistics performance measures.  An innovative 

method to prioritize which subsystems to analyze now that a new data link has been 

established.  This method allows systems engineers to work within the existing constraints of 

manpower, time, and other resources.  Finally, this research demonstrates a novel ability to 

update logistics requirements by utilizing the newly identified data link between operational and 

logistics metrics.  This method connects stakeholders to each other and to the data, resulting in 

actions that will update requirements. 

1.4.3 Assumptions / Limitations 

 This research will be accomplished utilizing the existing USAF regulations and operating 

instructions that dictate how operational, maintenance, and logistics data is collected, stored, 

and used.  The data pulled from official repositories is assumed to be correct and complete.  

This research will not attempt to prove or disprove that the metrics collected or analyzed as 

required by regulation are the correct or best data to collect and analyze.  Additionally, while the 
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links and correlations between field data and logistics performance will be investigated, it is not 

the intent of this research to create a model to predict performance or to recommend changes to 

existing policy.  The goal of this research is to work within the existing DoD and USAF 

organizational policy and process framework by leveraging existing data collection systems, 

manpower, funding, and other resources to create actionable recommendations for feedback 

data to positively influence overall enterprise system performance by resolving specific parts 

issues at the lowest working level.  

1.4.4 Definition of Terms 

There is no single agreed upon definition of a system.  The Institute of Electrical and 

Electronics Engineers (IEEE) defines a system as “a combination of interacting elements 

organized to achieve one or more stated purposes” [22].  The International Council on Systems 

Engineering (INCOSE) defines a system as “a system is a purposeful whole that consists of 

interacting parts” [3].  Blanchard and Fabrycky define a system as “an assemblage or 

combination of functionally related elements or parts forming a unitary whole”, and that not 

every combination of parts, methods, or procedures is considered a system.  These authors 

further state that systems are made of components (the parts of a system), attributes (properties 

such as characteristics, configuration, qualities, power, constraints, and state, and relationships 

(which link components to other components) [23].   

For the purposes of this paper, when discussing an aerospace defense system, the term 

“enterprise system” will be used.  An enterprise system is defined herein as a collection of 

resources comprising the manufacturing, operations, maintenance, and logistics capabilities that 

participate in the systems engineering life cycle to include the people, products, and processes 

that support the system.  The term “enterprise” was chosen, in lieu of the standard “system” or 

“system of systems”, to highlight the complexity of all the various capabilities and resources 

required when continuing to operate and sustain aging legacy aerospace defense systems.  The 
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term “enterprise” is used to focus the reader on the concept that a system is more than just its 

physical software or hardware component parts, but instead includes all the people and 

capabilities necessary to sustain that system for the entirety of its lifecycle.  It is important to 

note that these capabilities may also be considered systems in their own right.  The term 

“supportability elements” will be used to describe all of the factors, systems, knowledge, and 

other resources that play a role in the performance of the aircraft system but aren’t part of the 

actual hardware or software of the configured end-item.   
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Chapter 2 - Literature Review and Existing Methods 

To identify a methodical approach to resolution of the issue identified in Chapter 1, an 

investigation of relevant U.S. law, DoD and USAF policy documentation, and independent 

research regarding DoD system performance was accomplished.   

2.1 USAF System Enterprise Metrics  

Since the purpose of this research is to ultimately identify feedback loops that help 

exploit early warning signs of issues to prevent negative performance impacts, it is prudent to 

first review how the USAF measures performance.  The primary means of measuring aerospace 

defense enterprise systems for aircraft are two metrics: Aircraft Availability (AA) and Mission 

Capability (MC).  The AA and MC rates for an aircraft are the primary measure used by the DoD 

to determine an aircraft’s long-term performance and are the preferred statistic used to 

determine the operational readiness in the USAF fleet [24][25].  The Air Force reports on its 

standard targets for both AA and MC, which vary by aircraft type called a mission design series 

(MDS) [26].  But AA and MC metrics have been declining over the past decade, and the 

operational performance of MDS’s with them [12]. 

𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝐴𝐴) 𝑅𝑎𝑡𝑒 = 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝐶𝑎𝑝𝑎𝑏𝑙𝑒 𝐻𝑜𝑢𝑟𝑠𝑇𝑜𝑡𝑎𝑙 𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝐻𝑜𝑢𝑟𝑠  ×  100 % 

Equation 1: Aircraft Availability 

 

𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝐶𝑎𝑝𝑎𝑏𝑙𝑒 (𝑀𝐶) 𝑅𝑎𝑡𝑒 =  (𝐹𝑢𝑙𝑙𝑦 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝐶𝑎𝑝𝑎𝑏𝑙𝑒 + 𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝐶𝑎𝑝𝑎𝑏𝑙𝑒 𝐻𝑜𝑢𝑟𝑠)𝑃𝑜𝑠𝑒𝑠𝑠𝑒𝑑 𝐻𝑜𝑢𝑟𝑠  × 100% 

Equation 2: Mission Capability 

 

At the basic level, AA rates are a percentage of the time aircraft are available to 

accomplish the mission, compared to the total number of hours available to all aircraft in the 

fleet in a year.  AA rates are a measure of how many aircraft are ready to fly, regardless of the 

reason they may be down, be it scheduled or unscheduled maintenance.  Similarly, MC rates 
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are the percentage of time aircraft are available at the unit level compared to the total number of 

hours in possession of the operational unit.  Unlike AA, MC rates exclude aircraft scheduled to 

be down for heavy depot maintenance activities and only include aircraft inventory hours of the 

aircraft possessed by operational units. 

MC rates are a good indicator of operational readiness at the unit level.  Aircraft in 

possession of operational units are expected to fly missions, whether they are scheduled 

months or mere minutes in advance.  Meanwhile, AA rates are an indicator of the health of the 

fleet, and a fleet’s holistic operational readiness.  The issue is that neither AA or MC provides 

insight into factors that prevent aircraft from being mission ready [27].   To truly understand 

these metrics, it is vital that the various components that make-up the metrics are understood. 

There are two types of metrics related to aircraft maintenance and operational 

performance: lagging and leading.  Lagging indicators show firmly established trends, and 

typically do not correlate to a specific event such as an aborted mission or backordered part.  

Rather, lagging indicators are used to help senior leaders accomplish an “apples to apples” 

comparison amongst different aircraft model types and performance standards.  Leading 

indicators typically show problems with aircraft performance immediately, with no time lag 

between the negative event, such as an aborted mission or backordered part, and serve as 

early warnings to problems that may escalate over time.  Leading indicators are a direct 

reflection of the operational unit’s ability to execute its mission [28]. 

According to Rainey, “Leading indicators are those that directly impact maintenance’s 

capability to provide resources to execute the mission. Lagging indicators show firmly 

established trends” [25].  Leading indicators generally are the first indicator of a problem or 

issue, and lagging indicators show the trends over time.  Since the cornerstones of aircraft 

maintenance are Aircraft Availability (AA) and Mission Capable (MC) rates, metrics related to 

those areas are prime candidates to include as the performance indicator variable serving as 

the dependent variable.   
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Leading indicators include metrics such as failures, break rates, ground aborts, air 

aborts, flying schedule effectiveness, mission deviations, and other similar metrics.  It should be 

noted that many texts and research regarding statistical methods related to prediction models 

and regression techniques warn against data mining, or selecting variables because they are 

“easy” to analyze.  Therefore, the metrics will be reviewed prior to formal statistical analyses to 

determine which can be reasonably identified as a determining factor in the output variable.   

2.2 Evolution of Systems Engineering in the DoD 

Complex systems have existed almost since the beginning of recorded history.  The Great 

Pyramid of Giza, Hanging Gardens of Babylon, Roman aqueducts, and other ancient wonders 

were either created by complex construction systems or are considered complex systems 

themselves.  Schlager writes that “the first need for systems engineering was felt when it was 

discovered that satisfactory components do not necessarily combine to produce a satisfactory 

system” [29].  As systems become more complex, the need for systems engineering is more 

easily recognized.   

This is particularly true for the aerospace defense industry.  According to INCOSE, one of 

the key milestones for the modern origin of systems engineering dates back to the mid-1930’s 

with the analysis of a British air defense system [3].  The complexity of aerospace defense 

systems and the modern need for documented systems engineering processes have developed 

together over the last several decades.  Many systems engineering methods and processes 

were created in direct response to the need to manage complexity and change [3].   

In the DoD, systems engineering policy guidance has similarly evolved over the past 

several decades.  This evolution began as a concentrated effort by the DoD in the mid-1980’s 

when it established the DoD Under Secretary for Acquisition with a focus on developing better 

life cycle management strategies [30].  The US had seen a significant increase in the time, 
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effort, and cost to deploy new enterprise systems than in previous decades, and the slowdowns 

were occurring at a time when technological development was changing rapidly [31].   

Systems engineering as a function, or even a career field, came as the result of the 

Defense Acquisition Workforce Improvement Act (DAWIA) of 1990.  Soon after incorporation of 

DAWIA into law, Defense Acquisition University (DAU) was established and competency-based 

training was required for what the DoD termed “acquisition professionals [30].  Systems 

engineering was a key topic of training and education for senior technical personnel.  Early 

versions of DoD training identified systems engineering as “consisting of two distinct disciplines: 

the technical knowledge domain in which the systems engineer operates, and systems 

engineering management” [32].  

Regardless of commercial industry or aerospace defense sector, most scholars agree that 

systems engineering is required to successfully translate a user’s needs into a definition of a 

system to build the final product.  While the exact execution strategy may depend on company 

or industry, and has certainly evolved over time, a successful systems engineering strategy is 

required to ensure complex systems and products are successful.  

Most commercial industries agree that life cycle management was first developed to 

reduce the total cost ownership of complex systems.  Additionally, studies have shown that “a 

significant part of the system is characterized by a high intensity of changes based on the 

changing functional requirements of the customer’s stakeholders” [33].  In other words, systems 

change as they progress along their natural life cycle and our systems engineering processes 

need to accommodate those changes to ensure successful life cycle management throughout 

the entirety of the system’s existence.  If designers can ever hope to manage life cycle costs, 

systems engineers must actively manage the requirements of the system.  The study of this 

topic has produced several different methods and models to assist with successful execution of 

systems engineering processes during the life cycle of a product or enterprise system. 
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2.2.1 Waterfall Model 

 The Waterfall model was originally used for software development and was developed 

by Royce in the 1970’s [3].  It gets its name from its sequential development process in which a 

project “flows” through a series of steps, phases, or stages.  The Waterfall model is a very linear 

process, with each life cycle stage sequentially following the previous stage.   

 

Figure 3: Waterfall Model for Software Development 

 

Depending on the industry or author, the model usually contains between five to eight 

steps in a series of phased activities [23].  Since the process is very linear, functionally there is 

minimal focus on iterating the process to refine the final product.   Feedback and feedback loops 

are discussed as a concept, but very little in either the graphical models or the text discussion 

provides actionable steps to assist with collecting feedback and incorporating it into the process.  

The Waterfall method in particular, based on its graphical representation, significantly 

contributes to the misconception that systems engineering is a single pass through the life cycle 
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management model or, at best, a method that’s iterations cease once the system reaches its 

operational phase. 

There is priceless information, data, and system insight that should be exchanged 

between life cycle stages in order to ensure adequate system and requirements definition 

across the enterprise system [3].  One of the top ten assumptions of systems engineering is that 

traditional systems engineering is a sequential approach [34].  But the purpose of feedback is to 

help facilitate the flow of data between the sequential stages of the process.  Clearly, this 

indicates the process is not unidirectional, as most sequential models illustrate.  

The DoD adopted the waterfall method soon after it was developed.  However, it was 

quickly apparent that the waterfall process model could easily fall victim to the pitfalls of 

complex organizational structures and complex technology.  The DoD was particularly hindered 

by a culture and acquisition policy that favored “large programs, high-level oversight, and a very 

deliberate, serial approach” [35]. This inhibited the DoD’s ability to quickly develop and field 

systems, particularly as they related to complex products.  The waterfall method’s lack of 

iteration, to provide feedback from later stages throughout the life cycle of the system offers a 

significant deficiency in DoD life cycle management and was soon dropped as the preferred 

method of DoD acquisition. 

2.2.2 Spiral Model 

 The Spiral system process model was developed in the mid-1980’s by Boehm to 

introduce a risk-driven approach into the project development process [23].  The DoD 

implementation came about in the early 2000’s, as a way to attempt to manage the ever 

increasing costs of weapon system management [36].  The spiral model has similar phases to 

the more linear waterfall method but incorporates the use of feedback with iterative loops.  The 

draw to the spiral model was that the incremental requirements allowed project managers to 

mitigate uncertainties in long-range requirements, mitigate uncertainties in funding, and 
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incorporate evolutionary technology (which is always developing) at later stages of the program 

[37].  Customers could refine their requirements iteratively through product development, and 

features could be released in phases.   

 

Figure 4: Spiral Model 

 

However, users of this model quickly realized that there were serious pitfalls in its 

execution, and the spiral method was not necessarily useful for all types of projects.  

Communication and feedback must be continuous, the logistics community must buy into having 
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multiple configurations in the field, and the user must be able to accept fielding a less capable 

solution in the beginning of the project [38].  The DoD, with its large logistics community and 

rigid policies and processes regarding procurement of spare parts, modified technology, and 

other resources struggled to successfully implement the spiral methodology.  Ultimately, the 

DoD moved away from spiral acquisition and termed it the “death spiral” of acquisition methods  

[8], [36], [38]. 

2.2.3 Vee Model 

The Vee process model was developed by Forsberg and Mooz and has similar 

sequences and phases as the waterfall method.   

 

Figure 5: DoD Vee Model 

 

The difference is that the phases are broken out into two sides of a Vee: Decomposition 

and Definition along the left hand side, and Integration and Verification along the right hand side 
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[39].  The Vee model is the most common form of systems engineering life cycle management 

and is widely used today. Variations on the Vee model have also been developed.   

For example, the German Association of Engineers developed a Vee-model with an 

additional phase in the middle.  The three phases are decomposition on the left of the Vee, 

domain-specific design processes in the middle of the Vee, and verification/validation on the 

right hand side of the vee [40].  Subsequent changes and updates have occurred over the years 

[41], but the Vee-model has remained true to its core purpose, which was to define the 

interactions between the early and later stages of the life cycle model.  The Vee model does a 

much better job of illustrating the connections between the various life cycle management 

phases.  But it still fails to fully integrate the concept of feedback loops as actionable steps in 

the process.  

2.3 DoD Life Cycle Management Related Performance Issues 

Life Cycle Management (LCM) is the active engagement of all stakeholders of a system 

between the time it begins to operate until it is decommissioned and removed from use [42].  

The idea of life cycle management, or product life cycle management, is not a new concept for 

the DoD.  Incorporating logistics considerations into the design process with the intent of 

reducing cost over the life of an entire system has been around in some form of official policy 

since 1964 [43].  More recently, life cycle management has been the focus of many DoD 

initiatives since the late 1990’s.  As policy evolved, the DoD attempted to define life cycle 

management with the goal of focusing on the total cost ownership to provide and support high 

quality goods and services required by the warfighter [17].  The approach to successful life cycle 

management in the DoD has changed over time, and the DoD and its sub-organizations have 

accumulated a multitude of policy, regulation, and guidance information for assist systems 

engineers with life cycle management tasks.   
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The DoD has created its own unique process to fit the needs of defense acquisitions.  

Life cycle management and product support are Congressionally mandated and required by 

law.  This method utilizes a milestone based life cycle management process, specific to the 

DoD, complete with training provided by Defense Acquisition University (DAU) which was 

created for the sole purpose of educating the DoD acquisition and life cycle management 

workforce [44]. 

 

Figure 6: DoD Lifecycle Milestone Chart 

 

The DoD defines the life cycle of a system using the term “cradle to grave” terms which 

includes the development, procurement, operation, support, and disposal phases of life cycle 

management [6].  DAU defines the term life cycle as “All phases of the system's life including 

research, development, test, and evaluation (RDT&E), production, deployment (inventory), 

operations and support (O&S), and disposal” [45].  Clearly, there is an understanding that a 

product’s life cycle is more than just its development and production.  But issues arise during 

the O&S phase when changes to supportability elements and operating environment begin to 

impact system performance.  While there is no physical change to the aircraft system, the 

enterprise system which facilitates operations of the physical product may experience changes 

that impact overall system performance.  

A better life cycle management model has been refined in recent years that provides a 

systems engineering approach cyclical approach combined with traditional serial life cycle 

model phases utilizing the introduction of feedback from each phase or stage to the previous 
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phase or stage.  Blanchard and Fabrycky [23] have created an model diagram that best 

illustrates this concept. 

 

Figure 7: Life Cycle Model with Feedback Loops [23] 

 

The USAF’s inability to deviate from the DoD prescribed life cycle model, serial in 

nature, has contributed to the performance issues many complex or enterprise systems face in 

the later stages of their lifetime.  Research regarding DoD and USAF systems engineering and 

life cycle management policies and processes and the impacts or causes that prevent those 

policies and processes from being successful are explored in the following sections. 

2.3.1 Funding Processes Influence Enterprise System Design 

One contributing factor to the neglection of robust feedback loops is the influence of the 

DoD’s funding process on enterprise systems.  The DoD’s long-standing tradition of focusing on 

the Material Solution Analysis (MSA) phase and the Engineering & Manufacturing Development 

(EMD) phases of the life cycle for cost savings measures versus the Operations and 
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Sustainment (O&S) phase can cause issues in the later phases of the life cycle, primarily due to 

the way in which major enterprise systems are funded.  The term “an act of Congress” literally 

describes why the focus on development and production gets such high-level media attention: 

Congress must approve and pass a budget for each specific development of a new enterprise 

system [46].  Congress achieves this by allocating funds by appropriation category, which 

dictates what type of work the funds may pay for.    

Congress then provides budget authority to the Department of Defense, usually through 

the annual Defense Appropriations Act, which specifies each appropriation that may be used 

[47].  New programs in the Research, Development, Testing & Evaluation (RDT&E) phase of 

the DoD life cycle milestone process get a significant level of scrutiny [48].  DoD programs are 

funded directly by Congress and appear as line items in their budget [46], [49], [50].  This 

process for funding programs leads to an uneven level of attention on the procurement and 

development phases and tends to neglect workload in the O&S phases of the enterprise system 

life cycle.  For example, appropriation category Operations and Maintenance (O&M) 3400 

funding is used to pay for civilian salaries, travel, training, maintenance, the procurement of 

parts and components (aircraft parts and office supplies), and facility operations [49].  When 

senior military leaders must inform the U.S. Congress on costs, status, and schedules, for new 

development acquisitions, the life cycle management focus can be disproportionately applied to 

the early phases of a program. This leads to increased costs and inefficient sustainment 

methods [51].   
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Figure 8: Congressional Budget Process, High Level Overview 

 

Sustainment costs are separate from new procurement and tend to be segmented into 

several sub-categories and usually appear on reports and budgets as a single line item [46].  

There is something of an intangible prestige within the program management and logistics 

community to be able to point to the Congressional budget’s line item of their development 

program and say, “that’s my program”.  This is simply not attainable for personnel who work on 

programs in the sustainment phase, due to the nature of the funding protocols.  Instead, legacy 

systems that are already fielded and in use are in the Operations and Maintenance (O&M) 

category.  This category includes costs such as civilian salaries, travel funds, construction 

projects, training and education, recruiting, depot maintenance, spare parts, and base 

operations support. [47].  While there are reliability, availability, and maintainability projects 

included in the O&M funding, they are buried into other categories and do not appear as their 

own budget line items at a higher level.  For example, the budget may be broken out by O&M 

costs for a specific fighter jet, and even further broken out for sustaining engineering costs, but 

each specific reliability improvement project will not be listed [46].   

By their very nature and lack of glamor, O&M funded projects, which includes the 

programs in the O&S phase of life cycle management, generally do not get the level of scrutiny 
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and attention that an investment program would receive.  In 2010, an article published by the 

Institute of Electrical and Electronics Engineers (IEEE) Annual Reliability and Maintainability 

Symposium stated that “one of the major unintended consequences of Acquisition Reform 

efforts during the 1990s was a reduction in rigor of sustainment planning and effectiveness 

throughout materiel development programs” [52].  Additionally, a GAO report warned that 

acquisition professionals should focus on total ownership cost, particularly operating and 

support costs, as a performance objective for major weapon systems [53].  Similarly, a Defense 

Science Board task force identified that the single most important step necessary to system 

performance is a viable systems engineering strategy to include Reliability, Availability, and 

Maintainability (RAM) programs in the O&S phase [19].  But none of these reports or articles 

identified specific ways to plan for change in the form of feedback data for critical stakeholders. 

And while they do highlight why planning for non-physical aspects of the system is critical in the 

O&S phase, they stop short of recommending a shift of Congressional budgetary focus, and 

thus the problem persists to this day.   

2.3.2 Cost Reduction Strategy Impacts to Performance 

The Congressional funding process isn’t the only factor that contributes to the DoD’s 

focus on the procurement phase of the life cycle.  Since the budget process appears to be here 

to stay, the DoD next turned to making the existing acquisition process more efficient.  The 

nature of the military’s procurement focus started shifting in the early 1990’s with the collapse of 

the Soviet Union and the end of the Cold War.  As a result of the collapse, the DoD identified a 

need to modernize the armed forces to meet new and modern threats.  Given the length of time 

it takes to successfully fund, design, build, and field an enterprise system, the DoD had to 

evolve quickly to respond to the new threats of the modern era [54].  One of the ways it 

accomplished that was to focus the procurement of new systems, particularly the upfront cost 

and speed at which they could be procured [55], [56].  It certainly makes sense to focus on 
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fielding new systems as quickly as possible, particularly given today’s battle environment that 

includes cyberspace and the challenges of staying relevant in a quickly changing world [57], 

[35].   

But the focus on investment cost as a separate discussion from total life cycle ownership 

costs proved to be a poor strategy.  A GAO report indicated that fully 72% of enterprise system 

costs are associated with operation, maintenance, and disposal [53].  Additionally, focusing on 

the early stages of life cycle management once again yielded poor performance in the latter 

stages of the system lifespan.  This is evidenced by, shortages of spare parts and equipment, 

and is illustrated by the growing O&S costs due to poor planning at such a significant amount 

that it has impeded the DoD’s buying power [58].   

A report by Rand Corporation examined methods to compare O&S costs of various 

aircraft [59].  This metric is commonly known as Cost Per Flying Hour (CPFH).  According to 

Rand, “CPFH is widely used by the military services….to budget resources to achieve aircrew 

proficiency” [59].  The calculation of this metric can be quite controversial.  The Rand report 

includes the DoD debates on whether CPFH should be a O&S straight cost per total flying hours 

vs. some type of normalized metric whereby other considerations are included.  These 

considerations could be things such as aircraft in scheduled maintenance being removed from 

the calculation, or whether weapon system costs not strictly in the O&S budget should be 

included (such as major modifications).  But this report focuses solely on providing the optimum 

method to compare different aircraft fleets and neglects to account for the additional costs of 

modernization, which are included in the budgeting that occurs for new developments and not 

O&S costs.  Once again, the rift between development and sustainment costs, caused by the 

Congressional budget process, has impacted the DoD’s understanding of total ownership cost.  

The report fails to address total ownership costs to include modernization costs (i.e., 

development costs) that arise due to unavoidable requirements changes that occur naturally 
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throughout an enterprise systems lifetime (be it from supply, support equipment, training, or 

physical product modernization).    

The focus on reducing early costs also has a negative impact on lifetime performance.  

One study identified that organizations tend to focus on identifying major cost drivers and 

instituting various changes to reduce ownership cost of those high drivers, but by doing so risk 

increased costs later in the life cycle [60].  The DoD also fallen into this trap, by reducing costs 

in the “procurement” phases which focus on material development, technology maturation, and 

manufacturing, as way to drive down total ownership costs.  When viewed from a fiscal data 

context, it makes sense.  If the current year’s budget biggest line item is weapon system 

procurement, cutting that line item makes the current year budget much less.  Due to the way 

the DoD creates its budget, the high dollar value acquisition costs of new development projects 

are an easy target to focus on for cost reduction.  One GAO report asserted the issue with this 

approach is it results in insufficient data on operations and maintenance strategies and costs, 

which drive up total life cycle costs and impact the system’s ability to perform once it is fielded 

[53].  

This is a particularly concerning state of affairs, given that systems change over the 

lifetime and adequate O&S phase funding (and planning) is required for the enterprise system’s 

continued performance.  According to INCOSE, requirements change over time, and change is 

inevitable [3].  Therefore, it is unrealistic to assume that a system’s needs, particularly 

something as complex as an enterprise system, needs will remain static over decades of use.  

But continuously changing requirements can effect cost, scheduled, and performance of a 

project or system [61].  Given the DoD’s lengthy modification process, aerospace defense 

enterprise systems are likely to experience informal requirements changes.  An informal 

requirements change is defined as any change in requirements initiated by any stakeholder that 

bypass most of the policies or controls imposed by a formal change management process [62].  



27 
 

Even a simple technical order change can seem incredibly long.  Many aircraft fleets in 

the Air Force inventory were fielded when technical orders (T.O.s) were paper-based instruction 

manuals.   As early as 1997, the Air Force made attempts to convert its paper based T.O. 

system to a digital version in order to speed up the change process [63].  But according to the 

most current guidance for Air Force Technical Change Management processes, routine 

changes may take up to 365 days to incorporate into technical orders [64].   

Logistics workarounds to supply difficulties, such as repair or cannibalization, can have 

significant impacts on the performance of the aircraft or the logistics requirements for the life 

cycle management process.  One study found that “even if the quality of components is 

sufficient for reuse, it is difficult to put them into production without scheduled collection” [65].  

Additionally, several studies have been conducted on specific aircraft types (i.e. C-5A, C-21A, 

KC-135, etc.) to analyze the complex problem of optimum time to retire a fleet, in part based on 

the severity of logistics problems [66] [8].  None address the root cause issues that prevent the 

life cycle management process from anticipating and adapting to the changing requirements of 

complex enterprise systems. 

2.3.3 Aging Aircraft Impact on Logistics Performance 

While the increase in O&S costs can partially be attributed to a focus on procurement 

leading to fewer resources for sustainment planning, a significant additional factor in rising cost 

is the age of the DoD fleet.  It is no secret that U.S. military fleets are aging faster than they are 

being replaced.  A GAO report indicated that the average age of aircraft in the U.S. military fleet 

was 29.1 years and rising, with 21 unique aircraft fleet averaging 40 years or older [1][7].  Given 

the complexity of funding, contracts to award replacement capabilities, and the significant lack 

of strategic planning in past years, it is no wonder the USAF fleet continues to age. 

The commercial airline industry faces the same challenges for aircraft aging but seems 

to approach the issue in a much more quantitative approach.  A 2013 Boeing study indicated 
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that most commercial aircraft fleets have a strategically planned withdrawal from service [67].  

While data indicates that commercial aircraft, on average, are slightly younger than their DoD 

counterparts, commercial aircraft are, on average, approximately 27 years of age [67].  This is a 

very similar age to the Air Force’s average 29.1 years.  The key difference is that with 

commercial fleets “various industry entities, including airlines, airplane financiers, leasing at 

airplane leasing companies, airplane manufacturers, and aviation suppliers, all use specialized 

definitions of the strategic plan to retire based on multiple parameters of interest specific to the 

entity (e.g., business model, fleet planning, geographical operation factors, local economic 

conditions, acquisition timing, etc.)” [67].  In other words, the industry identifies what is most 

profitable for aircraft retirement, and then accepts that strategy.  By contrast, the DoD’s bottom 

line is not easily equated to profit and is instead defined in terms of “Air Superiority” or “Mission 

Success”.  These goals are much harder to quantify, and the decision to retire aircraft or aircraft 

fleets becomes much more subjective.  Various lobbyists influence our public policy and which 

in turn influences fleet funding.  As a result, retirement decisions can become a less than 

objective decision with politicians advocating for projects that benefit their own constituents [54]. 

One major issue with aging aircraft is the cost of their sustainment.  A DoD study 

indicated that, historically, planners have relied on the retirement of older aircraft to free up 

funds for maintenance and operations of newer aircraft [10].  Due to the way in which the U.S. 

government forecasts planned expenditures, shortfalls in budgets can only be resolved by 

moving funds from other initiatives.  Alternatively, planners can simply accept the lack of 

resources and accept a decrease in aircraft availability which appears to be the strategy for 

older fleets [10].  This strategy works around the funding shortfalls at the expense of system 

performance, and there is no recommended strategy to do both. 

Another issue for aging aircraft is difficulty with continued sustainment over decades of 

life.  In the last few decades, the world has seen technology grow by leaps and bounds.  A 

legacy system needs older technology for its continued use and operation.  Maintenance and 
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operations require both human capital and materials which must be acquired, trained, and 

deployed in order to support legacy aircraft [10].   

As an enterprise system ages, it becomes increasingly difficult to find the human capital 

and materials to acquire for continued operation.  This is the core issue under investigation and 

the driver that prompted this research.  Experts that designed, developed, maintained, and 

operated the system for decades begin to age out of the workforce.  A GAO study indicated that 

effective management processes and tools are needed to ensure that new technologies can be 

transitioned successfully to operators [68].  Integration with legacy fielded systems can be 

complex, and the study did not provide specifics on how to integrate new technologies given the 

constraints of the existing funding and management framework.  

Use of a system over several decades also highlights issues when processes and 

planning don’t account for the natural end of life of component parts, business software, support 

equipment, and other supportability elements.  Most engineers would probably agree that any 

system lasting 40, 50, or even 60 years is likely a well-designed and reliable system.  There are 

many systems that last 4 or 5 years and are considered successful and inherently reliable.  For 

example, Nokia made a famously indestructible phone that has popular culture marveling at its 

longevity.  This was accomplished in an industry were systems are frequently place every few 

years or even annually [69]!  If a complex system such as an aircraft lasts 40, 50, or 60 years, 

logic would assert that it is an inherently reliable physical design.  But this is not generally the 

case for USAF systems.  The Air Force measures success in terms of Aircraft Availability (AA) 

and Mission Capable (MC) rates.  Many of the Air Force’s aging fleets no longer meet their AA 

and MC goals [1], [7].  Reports on this topic often imply poor AA is due to bad design [14], [7]. 

However, this assertion assumes that all causes of aircraft downtime are related to the 

physical product.  It is critical, at this point, to distinguish between the reliability in the technical 

design of a physical product, and the reliability of the enterprise system and its supportability 

elements.  If a physical design is inherently reliable, the proof of which is supported by its long 
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performance history, engineers should be take extra care to truly identify the root cause of the 

grounding issue for the aircraft.  If the technical design of the system has been proven to work 

for decades, it may be the enterprise system, not the physical components, that has become the 

limiting factor in enterprise system performance as opposed to the physical design. 

People may conclude that if a part breaks it is unreliable.  But for complex aircraft 

systems with a proven use history, this is typically not the case.  What performance evaluators 

actually observe is the natural end of life of component parts and subsystems [70].  This is 

easily recognizable if engineers plot failure rates over time.  For most physical mechanical 

systems, the resulting graphical diagram will resemble a bathtub with the largest quantity of 

failures occurring at the beginning of the life cycle (i.e., infant mortality), or at the end of the life 

cycle.  Most mass-produced items will follow this basic curve [71], [72], [73], [74]. 

 

Figure 9: Bathtub Curve Diagram [74] 
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Unfortunately, USAF acquisition professionals may believe that when an aircraft system 

experiences an increased quantity of failures it can only be due to an inherent design flaw within 

the component part or sub-system and recommend a redesign.  But the true issue may reside 

somewhere else within the enterprise system.  Parts failing as a natural part of their life cycle 

should be expected and adequately planned for; and the logistics community should be 

providing replacement parts as part of normal life cycle sustainment activities.  If there are 

reasons the logistics community cannot provide parts, those reasons should be identified and 

adjudicated prior to making the decision to redesign or replace the entire enterprise system (or 

even its component parts) with something new.  After all, if the root cause issue is not 

addressed the community runs the risk of fielding a new item that is also unsupportable.  A 

recent analysis of alternatives to reverse engineering as a solution to lack of component parts 

supports the assertion that systems engineers should address the root cause issue and not 

focus on the physical product redesign as a stand-alone solution [75].  However, the analysis 

stopped short of recommending specific actions to prevent degradation of system performance 

due to issues with enterprise systems due to age. 

2.3.4 Procurement Decisions Impact on Logistics Performance 

Component parts and subsystems also play a role in determining the sustainment needs 

of complex enterprise systems in the aerospace defense industry.  One initiative to reduce O&S 

costs was the push for the aerospace defense industry to utilize Commercial-Off-the-Shelf 

(COTS) products.  The problem with COTS is the significant differences in the product life-cycle 

estimates.  There is a discrepancy between industry, which expects a 4-7 year product life cycle 

in commercial electronics systems, and the military, which expects a 25-30 lifecycle for its 

enterprise systems [76].  This significant difference in lifecycle requirements can be felt for all 

the sub-systems, component parts, and processes and external systems that help sustain an 

aircraft fleet: support equipment, training, facilities, test equipment, logistics systems, inventory, 
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etc.  Modifications to an enterprise system can take decades to implement, which makes it 

difficult to accommodate commercial industry life expectancies [46].   

The DoD Diminishing Manufacturing Sources and Material Shortages (DMSMS) 

guidebook states that “COTS items pose a significant problem to weapon systems” because of 

the likelihood that the product line will be discontinued prior to the retirement of the enterprise 

system [77].  The guidebook highlights that one of the side-effects of procuring COTS items is 

that users typically do not get a technical data package when the item is purchased.  If the OEM 

ever decides to cancel a product line because it is not profitable, users are left scrambling to 

find replacement systems and/or parts.   This issue can be prevalent with DoD enterprise 

systems because of the differences in product life cycle expectations mentioned previously.   

For example, very often COTS parts are chosen at the time of design due to a generally 

low cost compared to custom parts in the development phase.  However, if industry use 

decreases over time and the Original Equipment Manufacturer (OEM) chooses to stop 

production, the DoD becomes the sole user of an item, and the COTS component has now 

become a liability towards long term sustainment needs.  This poses a significant risk for the 

government, and the subsystem or component part has now become Government unique which 

can cause both airworthiness issue and forced modifications [78].   

The COTS issue also impacts management of aircraft fleets in other areas, such as 

airworthiness. The Federal Aviation Administration (FAA) defines the airworthiness certification 

process as encompassing a review of any proposed designs and methods used to show that 

the designs comply with standards, ground and test flights to demonstrate the aircraft meets 

standards, and evaluations to determine the required maintenance and operational suitability for 

aircraft inducted into service [79]. For military aircraft, which in many cases are not FAA 

certified, the Airworthiness process is the responsibility of the airworthiness authority for the 

enterprise system, or aircraft fleet.  By regulation, the airworthiness authority has to be of a 

separate organization of the acquisition program and operational units in order to present an 
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objective assessment of airworthiness, safety of flight risk, and to provide overall engineering 

oversight for the airworthiness process [80].   

The problem of airworthiness stems from changes to system design that occur when 

COTS products go obsolete.  Changes made by an OEM force recertification of aircraft for 

airworthiness, which can include both ground and flight testing in addition to analyses, off-

aircraft tests, and reviews [78].  This can be a very costly and time-consuming endeavor.  

Similarly, changes to the enterprise system to encompass new designs when products go 

obsolete also necessitate recertification.  A simple change in a component part can have huge 

ramifications for the sustainment costs and timeline of a military aircraft fleet.   

Smaller fleet sizes compound the issues of obsolescence and the use of COTS items.  

Commercial airlines have relatively large aircraft fleets compared to the military.  American 

Airlines has two hundred sixty-six Boeing 737’s, and over two hundred Airbus A321’s [81].  

Additionally, while total quantity of other fleet models may be smaller (dozens instead of 

hundreds), these commercial aircraft share component parts and fleet size worldwide including 

other airlines raises the numbers significantly.  For example, American Airlines has less than 

fifty Boeing 787’s, but worldwide Boeing has produced over 800 of this aircraft model flying 

1900 routes in 150 countries [82].  A commercial aircraft typically has multiple customers, which 

helps reduce the risk of product line obsolescence.  The more customers, and the more likely an 

OEM will provide support and component parts during its life cycle to ensure its customer base 

remains satisfied with customer support.   

But the DoD has shown a trend over the last several years of buying fewer, but more 

specialized aircraft fleets [83].  The DoD’s Fiscal Year 2021 (FY21) budget estimates included 

data of total force size dating back as far as 1940.  A review of this data indicates that the Air 

Force has been reducing its total manpower over the last few decades as well [48].  The 

changes to both fleet inventory and manpower have been reduced over the last several 

decades.  Additionally, the Air Force is not buying enough new aircraft to keep its fleet inventory 
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at a steady-state [84].  There is a correlation between fleet size and operating cost that helps 

inform procurement decisions in the Air Force.  The CPFH metric referenced previously, while 

useful in comparing model to model aircraft costs, does not capture the Air Force inventory’s 

fixed costs, which are not linear [85].  Fixed costs are those costs that the Air Force incurs 

simply for owning and operating each model of aircraft, regardless of the size of the model fleet 

(e.g., 1 aircraft or 100 aircraft).  But fixed costs are an important part of overall life cycle costs.  

And as fleet sizes shrink, the fixed costs per aircraft or per flying hour will also increase. A 2018 

study by MITRE corporation indicates that “per aircraft O&S costs rise dramatically when fleets 

are smaller than approximately 150 aircraft” [85].   

But the structure of the Air Force fleet has changed over the past several decades.  

Gone is the WWII era framework, when specific aircraft types were produced by the hundreds 

or even thousands.  During the post September 11th build-up, the Air Force did not grow its 

manpower and equipment, as did some of the other DoD agencies.  Instead, the Air Force had 

fewer new acquisitions compared to its programmed retirements, resulting in a reduction in 

aircraft inventory, [86].   

2.3.5 Operational Need Impact on Logistics Performance 

Logistics deficiencies also play a major role in issues with the current DoD life cycle 

management processes.  A common principle in the logistics management community is to 

focus on costs themselves or the reduction of the logistics footprint to reduce costs.  Regulation 

and policy support this concept, with overarching regulatory guidance requiring that managers 

adopt practices that “reduce cycle time and cost” of subsystems and component parts [87].  The 

directive to reduce costs can sometimes be at odds with long term sustainment needs given the 

DoD’s unique requirements.  For example, commercial airlines are used in a consistent 

predictable pattern.  Their routes are predetermined, and the quantity of passengers is 

scheduled ahead of flights.  Additionally, if the commercial airline industry suddenly saw a surge 
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in the demand for flights, they are under no obligation to meet that demand.  If an increase in 

passenger flight demand is not profitable or attainable, airline companies will simply choose not 

to schedule additional flights (and perhaps even raise ticket prices to capitalize on the increased 

demand).   

But the aerospace defense industry does not have that luxury.  DoD policy directs that 

materiel management should be conducted in response to warfighter needs in both peacetime 

and war requirements, and should balance the trade-offs for risk to mission success and total 

cost [88].  The quantity of flights may rise or lower depending on the current operational 

environment need.  And while forecasting, strategic outlooks, and planning certainly occurs, it 

would be impossible to know the exact quantity, time, and type of support of all required 

missions in the future. 

Given the unpredictable nature of warfare, and the complexity of enterprise systems, 

one can see the scope of the supportability and logistics problem that the DoD faces.  Logistics 

and supply chain elements must support all aspects of the enterprise system, not just the 

aircraft or end-item, and accomplish that supportability with unknown timeframes and quantity 

requirements.  Additionally, all procurement is accomplished while adhering to restrictive policy 

and laws that are aimed to prevent fraud, waste, or abuse of federal tax dollars [49], [50]. Even 

with intense planning, the scope of unknowns is significant.   

2.4 Research on DoD System Performance Improvements 

While research on life cycle management processes, requirements management, and 

other policy and procedure type topics is critical to successful performance of an enterprise 

system, adjusting strategies once the system is fielded is also a relevant topic.  Given the age of 

many of the USAF’s enterprise systems, it is prudent to review research focused on improving 

performance of legacy fielded systems.  The following sections detail the academic and industry 

research found on this topic. 
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2.4.1 Improving System Performance by Better Planning 

Cohen researched the question of publishing public strategic-planning documents in an 

era where overhead and administrative costs are under public pressure to be cut completely [9].  

The planning for product support that is required to ensure adequate feedback loops are 

present in an enterprise system could be considered an administrative overhead cost.  So 

perhaps the public pressure to reduce this cost could be a cause of DoD’s approach to life cycle 

management strategy.  But while the report identifies long term planning strategies and some of 

the costs associated with those strategies as a panacea to this issue, it does not identify how 

parts obsolescence strategies, reverse engineering efforts, or other policies and approaches to 

address long term life cycle management impact long term planning decisions. 

A 2011 report indicated that the total cost of sustainment activities for the Air Force 

exceeds the operating costs of commercial aviation companies such as American Airlines and 

Delta Airlines [11].  The report goes on to assert that about $100 billion of the DoD budget is 

procurement of new development systems, but that 70% of an enterprise system’s costs occur 

in the O&S phase of the life cycle.  This means that the $100 billion quoted above is only 30% of 

the cost of the new weapon systems under development!  While this report does an excellent 

job of highlighting the importance of adequate planning for the cost of the O&S phase, it is too 

broad to focus on specific strategies, and it does not address the issues caused by changes to 

enterprise system supportability elements unrelated to the physical product end-item.  

2.4.2 Reverse Engineering Methods to Resolve Logistics Performance Issues 

When early phase life cycle costs are reduced by shortchanging O&S phase planning, 

the impacts to supportability elements are almost inevitable.  When parts are no longer 

procurable, reverse engineering emerges as a favored method to resolve logistics problems.  

Parts obsolescence and reverse engineering efforts have been an on-going issue for some 

time, as illustrated in a 1989 report by Bakhshi and Worthington [89]. This report asserts that the 
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costs for reverse engineering are significant and can continue to grow as a weapon system 

ages.  The report recommends focusing on high priority reverse engineering efforts to get the 

most return on investment for the Army and the purpose of the report was primarily to validate 

the reported savings due to reverse engineering efforts.  In that regard, the report falls short of 

identifying how to leverage field and use data to inform efforts or force cost savings from a data 

informed designed. 

Thompson, Owen, and Germain provided a report that focuses specifically on reverse 

engineering of mechanical parts as a work around to supply shortages [90].  The research 

provides insight to extraction of information about each part from 3-Dimensional (3D) 

scanned/sensed data, and the complications of producing highly accurate models using this 

data.  But the report does not address utilizing field use and maintenance data to help inform 

the reverse engineering process, nor does it identify costs or return on investment associated 

with reverse engineering. 

Chang and Siddique reported on “Reengineering and Fast Manufacturing for Impact-

Induced Fatigue and Fracture Problems in Aging Aircrafts” [91]. Aircraft skin panels and 

secondary structure are notoriously hard to reverse engineer, since older aircraft were 

manufactured using mylar or point cloud data instead of modern computer aided design (CAD).  

While the scope of research is focused on structural fatigue/fracture components, the methods 

used to feed the reverse engineering process potentially apply to other types of components in 

aerospace defense systems.  However, the research is limited to physical parts, parametric 

solid models, and optimal design characteristics using available manufacturing machines.  

There was no consideration of using field and use data to inform the reverse engineering effort. 

2.4.3 Using Data Analytics to Improve System Performance 

Given the nature of the issues facing today’s aerospace defense operators and 

maintainers, it would seem prudent to utilize legacy field data to inform the life cycle 
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management process.  But that does not appear to be taking place in the current framework of 

DoD life cycle management.  Anton, McKernan, Munson et al. provided a deeper dive into the 

Department of Defense’s use of data analytics in acquisition processes [92].  They found that 

the DoD spends an estimated $15 billion per year on analytic work and about $3B per year on 

information systems directly related to acquisition.  The report asserts that the DoD is exploring 

how to assess program performance at the mission level to further inform the acquisition 

process.  The report did an excellent job of identifying the current information gaps within the 

DoD as they relate to using field data to inform repair vs. replace decisions but stopped short of 

identifying how to utilize the existing data analytics to inform those decisions, prevent issues 

from occurring, or even use the data to solve real-time problems. 

An article by Armstrong analyzes system integration and the use of data to drive this 

process [93].  This research addressed the impacts of integration on system characteristics that 

typically get overlooked, such as reliability or maintainability.  It identifies that often stakeholders 

are primarily concerned about the function of the system as it relates to the stated requirements, 

but the impacts of secondary conditions can often significantly impact a system’s success once 

fielded.  While the article does a good job of identifying the issues with overlooking secondary 

characteristics early in the life cycle, it stops short of determining how to use a system’s existing 

field service data to inform the integration efforts of the future. 

The article “Big Data in the Aerospace Industry by Badea, Zamfiroiu, et. al addresses the 

need for large volume data analysis in the aerospace industry [94]. Many of the issues identified 

in the article (such as migrating data from old databases, lack of appropriate database 

management tools, and lack of appropriate processing capability) are common in the DoD.  The 

crux of the issue is the sheer volume of data generated in today’s world.  The article uses the 

example that the average Boeing 737 generates 20 terabytes of information per hour.  Today’s 

aerospace industry struggles to capture, store, process, and make meaningful decisions from 

that data.  The article provides information about current data systems, and opportunities to use 
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data in the future, but fails to describe how to take field service data to make decisions (and 

what type of decisions) in the aerospace industry. 

Opare provided research on “System Verification through Reliability, Availability, 

Maintainability (RAM) Analysis & Technology Readiness Levels (TRLs)” [95].  The paper 

outlines the use of a RAM roadmap to ensure system milestones in development and 

maturation are adequate to meet system goals.  The research indicates that best results can be 

found when the analytical/simulation tool used to track availability is tailored based on the 

maturation level of the system.  This paper focuses on the nuclear energy industry and doesn’t 

apply directly to the aerospace industry although the RAM concepts should be similar.  But the 

article stops short of addressing RAM needs or data in sustainment, when parts obsolescence 

will increasingly become problematic and costly.   

The New Department of Defense (DoD) Guide for Achieving and Assessing RAM by 

Jackson, Tabbagh, et al. identifies an area of primary concern that US Defense systems have 

often been found to have insufficient RAM performance during OT&E [96].  The research states 

that in the operations and support phase (i.e., sustainment phase), the most important use of 

RAM data is to facilitate the retention of RAM capability and enable improvements in the design.  

Unfortunately, the report assumes that systems will utilize the “design spiral” type of systems 

engineering.  While the research identifies the importance of RAM in the sustainment phase, it 

stops short of defining how to use RAM data specifically to inform reverse engineering or repair 

vs. replace decisions. 

2.5 Research on Predicting USAF Fleet Performance  

There are numerous examples of mathematical analyses, academic studies, and other 

statistical research techniques related to forecasting multiple regression data sets for almost 

every imaginable application.  Several of these examples are related to USAF metrics and 

supply concerns, in addition to many more related to total aircraft performance with Aircraft 
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Availability being the primary focus.  Most of these methods focus on creating multiple 

prediction models, then testing the models, ranking their performance, and choosing a result 

based on the comparison.  Predictive analytics as it relates to aircraft performance and the 

studies involved in those areas generally take a similar approach. 

2.5.1 Studies Correlating USAF Metrics to Performance 

Many analyses, research, and reports focused on optimizing aircraft schedules, 

maintenance schedules, policy, and other factors to predict or accommodate AA rates.  The 

focus of most research is from a prediction viewpoint.  Authors try to discover what influences 

the final AA metric, and how to predict it or recommendations involve improving AA by exploiting 

known influencing metrics to prevent degradation of AA, MC rates, or any other performance 

metric.  But there is little research that recommends identifying the root cause of drivers early in 

the failure process to prevent the negative factor from occurring in the first place. 

Inman et al studied the timing of the introduction of new technology to legacy fielded 

weapon systems related to fighter aircraft in the USAF fleet.  Using multivariate methods, 

collected data compared Mach number, mean time between failure (MTBF), and several other 

factors to create a predictive model to determine the first flight of fighter aircraft.  Predicting an 

aircraft’s first flight may be a useful tool for predicting a product’s date of release which allows 

the USAF to adjust schedules and plan mission accordingly. The study compared the use of 

Technology Forecasting using Data Envelopment Analysis (TFDEA) combined with classical 

regression-based modeling methods.  This is another example of utilizing forecasting methods 

and multivariate data sets in applications related to USAF fleets to create real world applications 

[97].  While the study shows how the data collected by the USAF can be used in predictive 

models successfully, it does not cover the topic area of logistics performance as it relates to 

aircraft performance. 
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Hobbs and Williamson studied factors related to aircraft performance from a safety 

perspective.  This research reviewed over 600 safety occurrences involving aircraft 

maintenance, compiled the types of errors, and identified the contributing factors leading to poor 

performance.  Links were identified specifically related to human factors such as rule violations, 

memory lapse, and fatigue.  This research serves to illustrate that it is more than simply 

reliability or poor optimization of system resources that may lead to poor aircraft performance 

[98].   

Carrol and Malins analyzed the justification of converting to a model-based systems 

engineering (MBSE) approach from legacy document-based systems engineering (DBSE) 

approaches [99].  The report focuses on defense, space, and complex systems and concludes 

that utilizing MBSE early in a life cycle has profound benefits.  While the report does take cost 

into consideration it does not address the cost or return on investment of converting DBSE to 

MBSE, nor does it address how to leverage O&S data to inform the SE model of either type. 

Jordan et. al provided thorough study of the KC-135R Stratotanker aircraft availability 

performance over a period of 7 years [100].  The research utilized more than 2700 unique data 

points with 72 different supply, logistics, operational, and maintenance metrics.  The analyses 

asserted that small fleets with high tasking rates would see higher trends than other units of 

similar characteristics but fewer mission taskings.   The research concluded that the results of 

the analysis cannot replace human judgement based on the environment or conditions at the 

time a decision is required.  The research did not review other aircraft in the USAF fleet, nor did 

it attempt to identify causal relationships, or actionable methods by which to improve AA.  While 

knowing which factors directly relate to AA are important, it is more important that systems 

engineers can use the information to take action to improve performance across the fleet.  The 

research recommended that the USAF utilize the results to tailor fleet scheduling based on 

future AA predictions.  In other words, instead of trying to improve AA, schedule around it!  

While this indeed may help optimize mission and maintenance schedules, the criticality of USAF 
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assets and equipment, particularly during emergency or global political events, means that there 

are times when we cannot subjugate the mission to the aircraft schedule.  

Fry accomplished a study utilizing the AA formula to determine where to spend 

Operations and Maintenance (O&M) funding [101].  This funding is a specific acquisition 

category with code 3400.  This category is the primary source of funding weapon systems in the 

O&S phase of the life cycle.  The study shows that some aircraft fleets have AA drivers that are 

influenced by O&M funding levels more than others and concludes that decision makers should 

focus funds on metrics that both drive AA and are influenced by funding levels.  While this study 

does show that metrics can be data mined for multiple regression purposes, it does not create 

actionable recommendations for personnel on how to improve performance, rather it 

recommends focusing funds on areas that influence performance the most.   

D’Amato also accomplished a study related to funding [102].  The author investigated 

the relationship between funding levels and readiness levels specifically as it relates to depot 

level funding and downtime hours associated with depot maintenance.  The analysis ultimately 

did not find any conclusive relationship between downtime hours and funding.  The author 

recommended that adjusting for autocorrelation in the model was very difficult due to the 

complexity of the relationships between variables.   

2.5.2 Studies on USAF Logistics Performance 

Multiple studies have reviewed factors that influence aircraft availability, supply 

performance, not mission capable rates and other metrics surrounding performance related to 

the logistics impact on USAF fleets.  Most of these studies use multivariate methods, regression 

techniques, structural equation modeling, and other advanced mathematical analyses to draw 

conclusions about the driving factors regarding fleet performance.  In fact, there have been 

many studies that show some of these relationships. 
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Harper utilized agent based modeling and simulation (ABMS) to develop a framework for 

the risk management of supply chain performance [103].  The author utilized supply 

performance drivers specifically for consumable (not repairable) items of supply.  The study 

focused on integrating software agents to perform the data mining required to generate 

simulations that highlight risks to the supply chain.  But this study did not address the impacts to 

overall enterprise system performance or create recommendations for logisticians to take action 

based on the model’s predictions.  

Chapa performed a high level analysis of what variables influence Aircraft Availability 

(AA) and utilized multiple regression analysis to determining influencing factors for the KC-135R 

[104].  The author included dependent variables using metrics related to personnel and staffing, 

environment, reliability and maintainability, operations and maintenance, and logistics 

operations.  The study identified 10 variables that are correlated to KC-135 performance.  The 

author also proved that operational funding levels for the aircraft did not appear to correlate to 

its AA performance.  But the author did not address what actions personnel should take to 

prevent negative performance or improve the existing performance. 

Gehret explored improving readiness levels by improving the supply chain for 

management of low-demand component parts [105].  The study proposed two frameworks to 

improve the supply chain’s stock management policy, which is part of the overarching life cycle 

management strategy.  The analysis then focused on test cases in the A-10C and B-1 fleets.  

The author created a mathematical model that would generate risk and reliability scores as they 

relate to supply chain demand, which will allow the stock manager to make better decisions in 

supply forecasting.  But the analysis stopped short of tying supply directly to AA, nor did it 

address tying supply forecasting to actual aircraft events. 

Weber researched the impact of fulfillment errors on military operations [106].  The 

research investigated correlations between supply discrepancy reports on readiness metrics 

such as cannibalizations, not mission capable rates, AA, and other supply drivers.  The results 
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showed improvement in some metrics if supply discrepancy reduction strategies were 

implemented.  The research did not address how to prevent downtime or discrepancies.  

Femano studied supply chain resiliency and strategies to improve it [107].  The author 

utilizes a theory of constraints framework to categorize resiliency strategies and examined the 

links between those strategies and supply performance.  The study focused on F-15 aircraft 

historical mission capable rates as the dependent variable of a multivariate analysis.  The paper 

concluded that utilizing non-lateral suppliers and slower surface shipping modes for MICAP 

parts decreased supply resilience and validated recommended strategies such as decreased 

recovery response time that can improve supply performance.  Femano fell short because the 

research did not connect supply performance to AA or mission capable rates. 

Pendley researched the factors that influence C-17 aircraft mission capability rates [108].  

The author utilized structural equation modeling to evaluate relationships between mission 

capable rates and other variables.  While the author did identify some new correlations 

previously ignored, the research did not attempt to identify causal relationships or strategies for 

preventing downtime. 

Haynes researched logistics forecasting models to predict Mission Capability (MC) rates 

[109].  Results provided insight into why tracking AA vs. (MC) rates may provide better 

forecasting for mission needs.  The author accomplished a linear regression to determine 

correlations between the independent variables and MC and AA rates, and compared those 

findings to surveys done by personnel who work USAF logistics.  The research showed 

discrepancies between what local commanders measured for performance vs. true correlation 

of metrics.  The study did not indicate what actions should be taken to prevent downtime drivers 

altogether. 



45 
 

2.6 Literature Review Summary 

The literature review shows a significant amount of research that asserts the need for 

robust DoD life cycle management processes with feedback loops.  Both industry and 

government policy guides assert the need for effective systems engineering processes that 

connect stakeholders.  There is also a large amount of research regarding the correlation of 

metrics or data to system performance, but none recommend specific ways to accomplish this 

feat, except in rare instances that aren’t directly related to aircraft availability or mission 

capability.   

Most of the research reviewed in this section focuses on predicting one of the various 

performance measures used in the O&S phase of major weapon systems.  The assertions 

behind most of the existing research is that the DoD schedules missions, maintenance, and 

operations based on the predicted performance regardless of the original performance goals, 

operational need, or inherent reliability of the physical system.  If the goal is increased 

performance, these approaches don’t meet the need.  The next chapter will lay out a proposed 

method and approach to identify early predictors of downtime in order to leverage systems 

engineering life cycle management process to establish the necessary feedback loops that will 

prevent downtime drivers. 
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Chapter 3 - Research Method 

This chapter discusses the framework for analysis conducted in this research effort.  The 

purpose of this research is to identify indicators, or early warning flags, to help maintainers and 

systems engineers ultimately prevent aircraft downtime.  Therefore, the precise relationship 

between metrics or performance measures does not need to be specifically determined.  

Rather, the mathematical model will be used to determine whether certain events or metrics are 

good indicators for potential downtime drivers, allowing systems engineers to further investigate 

failures and execute feedback to the logistics personnel who can take action to prevent 

downtime related to supply issues. Therefore, the methods used in the study are a combination 

of quantitative mathematical modeling, along with a review of the processes surrounding life 

cycle management in the USAF. 

Aircraft performance data has frequently served as the source for research questions 

regarding MC rates, AA rates, and other aircraft performance evaluators [10],[129],[130].  These 

research techniques use linear regression, multiple regression, and non-linear regression 

techniques to analyze possible causal or non-causal models of the relationships among the 

proposed variables.  The methodology for this document’s research attempts a similar approach 

to achieve a different outcome: the use of statistical modeling at an aggregated Air Force level 

to drive changes to systems engineering processes to impact overall performance.  The intent is 

to identify metrics that can be reviewed real-time to scope the workload of systems engineers to 

analyze aircraft failures real time.     

Instead of modeling the data to predict future performance, this research attempts to 

determine which metrics, if any, are related via causal relationship to specific negative 

performance events in a way that USAF personnel can take action to intervene prior to aircraft 

grounding events.  In this way, the research hopes to improve aircraft performance even when 

all factors impacting that performance are not fully understood.  The proposed methodology to 

gain insight into the stated research questions is as follows: 
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• Create a model framework to facilitate systems engineering activities in Operations & 

Sustainment (O&S) phase. 

o Identify failure modes in existing guidance and processes; develop process model 

to address gaps is methodology. 

• Accomplish statistical analyses to link operational data to negative aircraft 

performance. 

o Identify data sources and aggregate data; identify relationships between 

operational data and supply performance. 

• Develop method to prioritize system analysis based on the new data links. 

o Review DoD analysis guidelines; identify constraints in analysis processes; 

develop prioritization procedures. 

• Develop method to inform stakeholders to update supply demand requirements. 

o Review DoD supply demand forecasting and new requirement documentation 

policies; identify processes to exploit. 

• Validate findings and results with case studies from aircraft performance data. 

o Implement the process model using the new data link to prioritize case studies; 

analyze data to determine validity. 

 

3.1 Feedback Processes During Operational Use 

In commercial and academic circles, the purpose of the systems engineering life cycle 

management process can be simplified as starting with a user need and ending with a user 

validated enterprise system.  According to INCOSE, “Verification ensures you built the system 

right, Validation ensures you built the right system” [3].  In the DoD, user validation occurs 

during Operational Test and Evaluation (OT&E).  The Vee Model illustrates this objective 

visually.  Verification and validation activities start at the lowest level, component parts, and 
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progress to the subsystem, system, and finally enterprise system level.  At each step going up 

the right-hand side of the Vee Model, there is a corresponding feedback stream to check 

performance against the original requirements.   

One issue that many DoD life cycle managers assume is that operational verification or 

testing occurs at a single point in time, or at least within a defined timeframe.  Even the DoD’s 

life cycle milestone chart identifies Operational Test and Evaluation (OT&E) as a single task that 

has a beginning and an end within a phase of the life cycle [44].  For simple products, with an 

identified service life expectation and static operating environment, this approach makes sense.  

Any variety of household goods or everyday products are expected to serve out their useful life 

and be discarded upon consumption.  Mechanical pencils, shoes, household appliances, even 

modern technology such as laptops or cell phones are expected to have a life limit which 

eventually necessitates the replacement of the product.  In fact, the Defense Acquisition 

University’s (DAU) glossary describes “Major System” as a combination of the elements 

INCOSE includes, but excluding construction or other improvements and cites both a federal 

law and DoD Instruction regulation as the source of this information [110] 

 

Figure 10: Comparison of Industry vs. USAF Systems Engineering Concepts 
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But complex products, such as aerospace defense enterprise systems, operate in 

dynamic environments.  Life limit expectations aren’t always static and as discussed in the 

literature review there are external influences that may cause the original life expectancy or 

even operational goals to change over time.  A company like Delta Airlines may easily plan for 

replacement of its fleets, but the decision to retire an aircraft literally takes an Act of Congress, 

with all the political maneuverings associated with such a high level attention topic [49] [111]. 

The ability to discard an aerospace defense enterprise system is much more complicated than 

even comparable commercial systems that serve similar functions, simply due to the way in 

which DoD systems are funded, procured, and used.  Therefore, a tailored approach to systems 

engineering and feedback processes is required. 

3.1.1 Proposed Systems Engineering Method 

To successfully operate, an enterprise system must be operationally feasible.  

Accomplishing operational feasibility in the early stages of system design is required to field an 

initial operating capability.  But as an enterprise system ages, its operational environment or 

customer needs may also change.  These changes are likely to affect elements of the enterprise 

system that are critical to its operation, but often overlooked because they are not part of the 

hardware or software that directly supports the user’s need.  Although system designers tend to 

focus on electrical, mechanical, structural, software, and related engineering areas as 

embodying the primary purpose of the system, these areas and components are not sufficient 

on their own to successfully operate an enterprise system.   

According to Blanchard and Fabrycky, operational behaviors are dependent on the non-

traditional engineering parameters that surround supportability elements, which they call 

operational feasibility elements.  They assert that “consideration of these parameters during the 

design of a system is essential if the desired operational behaviors are to be realized” [4].  As 

shown in the previous figure, industry and academic systems engineers identify operational 
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feasibility elements or categories as: Reliability, Maintainability, Usability, Supportability, 

Producibility, and Affordability.  As previously stated, DoD in acquisition guidance does not 

recognize these elements are part of the “system”.  But the USAF engineering guidance 

regarding Operational Safety, Suitability, and Effectiveness (OSS&E) does acknowledge that 

these factors are critical to the successful operation of a major weapon system, and essential to 

achieving mission goals [112].  A high-level overview of OSS&E systems engineering duties and 

responsibilities is shown in the figure below. 

 

Figure 11: Operational Safety, Suitability, and Effectiveness (OSS&E) Responsibilities 

 

These regulations give systems engineering in the USAF the responsibility to account for 

supportability impacts to system performance, but not the authority for the processes, 

manpower, and other resources involved in successful implementation of that responsibility.  

Processes related to adequately forecasting and supplying sub-systems and components parts 

to operational units is one of these non-traditional engineering parameters.  The processes and 
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feedback loops regarding supply are critical to adequate parts planning, which is critical to 

adequate supply inventory and stocking, which is critical to meeting aircraft component part 

demand during the O&S phase.     

One example of the impact that support elements have on system performance is an 

example related to training, requirements management, and stakeholder disconnects.  Many 

older aircraft are manufactured using bonded aluminum honeycomb structural panels as the 

aircraft skin.  This type of material is very strong compared to its weight.  It is similar in structure 

to carboard; a honeycomb core is bonded to two skin panels.  This was considered cutting edge 

technology in the 1960’s and there are many USAF inventory aircraft that are still in use today 

that were designed using this concept.  But modern aircraft utilize fiberglass or composite skin 

panels.  And, indeed, there is significant manpower savings associated with composite skin 

repairs vs. the original methods used on bonded aluminum honeycomb panels.  There are even 

methods and procedures to utilize fiberglass repairs on old aluminum structure.  One such 

repair was attempted for a corroded skin panel on an aging aircraft in the USAF fleet inventory.  

Maintenance requested permission to utilize a fiberglass repair on one such corroded skin 

panel.  The structural engineer responsible for authorizing repairs reviewed the drawings, 

technical reports, and other aircraft information to review the request.  In this case, the aircraft 

was approaching 60 years of age, and many of the original engineering reports were 

handwritten.  In addition to understanding the technical aspect of structural repairs, engineers 

had to understand how to search and find information in the mass repository of data that existed 

without the digital and automated links we expect in today’s modern work.  In this case, the 

engineer determined a fiberglass repair was a structurally sound approach in this case.  

Unfortunately, unbeknownst to the structural engineer, the skin panel served as a grounding 

surface for an antenna that mounts onto the skin panel after assembly.  Since the structural 

engineer and the electrical engineer were organizationally separated, and the requirements 

were not linked in any way, the repair was authorized despite the fact that it would cause the 
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radar system to fail during functional test.  Similarly, the technicians who installed the skin panel 

are not radar technicians and were unaware of the issue with the type of skin panel repaired 

that was used.  It took many manhours of troubleshooting to identify the root cause issue due to 

significant stove piping of functional expertise.  This issue is shown in the figures below. 

 

Figure 12: Sketch of Aircraft Skin and Antenna 

 

 

Figure 13: Piece of Aluminum Honeycomb Skin Panel, Photo by Amy Eddy 
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Eddy and Daily [75] provide an example of the criticality of operational feasibility 

elements related to manufacturability.  In decades past, casting was a cost-effective way to 

manufacture large quantities of parts.  As aircraft age, eventually those parts will need to be 

replaced, either due to end of life failures or from external damage, loss, etc.  In this example, a 

manufacturer refused to bid on a valve that was still in use on an older aircraft.  Supply 

personnel originally requested that engineering qualify a new manufacturer since the old one 

refused to bid.  Qualification of new sources can be extremely complex (due to airworthiness 

concerns) and time consuming.  Instead, engineering requested the vendor provide more 

information on why it could not supply parts.  The vendor asserted that it could still provide 

parts, but that it was not cost effective to meet the original design requirement of casting the 

valve housings.  Modern manufacturers use Computer Numerical Control (CNC) machining and 

have largely automated manufacturing of these type of parts.  The engineer, logistician, and 

vendor were able to work together to identify a manufacturing change that would still meet the 

functional need of the aircraft, but made the process cost effective for the vendor.  This is 

illustrated in the figure below: 

 

Figure 14: Old Cast Valve and New Machined Valve (Photo by Amy Eddy) 

 

A final example is the impact of maintainability on system performance.  Aircraft in the 

USAF fleet are used past their original life limits or retirement dates.  This is accomplished by 



54 
 

undergoing a Service Life Assessment Program (SLAP) and a Service Life Extension Program 

(SLEP) and is documented in Air Force Instruction (AFI) 63-140, Aircraft Structural Integrity 

Programs.  The focus of the program is to “reset” the service life and activities include analyzing 

critical components and safety of flight systems to ensure that the right maintenance and 

logistics footprints exist to safely extend the life of the aircraft.  However, rarely does a 

SLAP/SLEP initiative look at ALL components and parts of an aircraft.  For time, cost, and 

resource concerns, the focus is typically on impacts to airworthiness or to address the current 

capability or reliability problems.  This can cause unintended consequences since the entire 

enterprise system must remain functional for the extended life of the system.   

In the example shown below, the original legacy duct was installed in an inconvenient 

location on the aircraft [75].  During the original service life, this was not much of an issue since 

these ducts rarely failed.  But as the system aged, more replacements were required and the 

custom sized rubber boot in the center was frequently out of stock due to low demand.  Systems 

engineers evaluated the root cause issue and consulted with logisticians who advised that due 

to such sporadic demand the rubber boot would be difficult to keep stocked.  Given this 

constraint of the USAF supply system, engineers identified a new technology perfectly suited for 

on-demand manufacturing: 3D printing.  There have been several research studies identifying 

the positive benefits of additive manufacturing both in the aircraft industry and others [113], 

[114], [115], [116], [117], [118].  The original duct and final solution are shown below: 
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Figure 15: Top, 3D Printed Duct; Bottom, Original Duct with Rubber Boot 

 

Enterprise systems identify and attempt to mitigate uncertainty and risk during the 

development phase of the life cycle [119].  It is at this stage that plans and strategies are 

developed with the intent to last the enterprise system throughout its life cycle.  But it is 

unreasonable to expect that users, customers, systems engineers, logisticians, program 

managers, and other experts could possibly anticipate every possible outcome that may occur 

during a system’s life cycle, adequately plan for the potential realization of risks, and 

successfully execute mitigation strategies should those risks occur.  This is particularly true for 

aerospace defense systems, which are already incredibly complex and may last five to six 

decades before retirement and operate in a dynamic battlefield environment.   
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This research proposes that the true validation of an enterprise system is proven 

by its performance throughout the operational phase of its life cycle.  The answer to 

INCOSE’s question “Did we build the right system?” is demonstrated in the system’s continued 

ability to perform its mission throughout its life cycle.  In other words, the verification activity at 

the operational enterprise system level should never fully end.  As the system is used, 

maintained, and sustained, systems engineers should continually monitor the data gathered 

from the operational phase (the right-hand side of the Vee Model) and evaluate that data 

against the originating specifications and requirements documents (the left-hand side of the Vee 

Model).   

With acceptance of this assertion, it becomes clear that the monitoring that occurs in the 

O&S phase is a validation process, and there should exist feedback loops and processes such 

that stakeholders using and operating the system can communicate its performance to the 

appropriate stakeholders that can take action to change and update the enterprise system.  The 

enterprise system is continuously evaluated to ensure it still meets user needs.    Since the 

environment in which aerospace defense systems operate is constantly changing, systems 

engineers should continuously validate that the system remains, using the words of INCOSE, 

“the right system” for the user need.   

Eddy and Daily illustrated how a continuous validation loop effectively turns the O&S 

phase of an enterprise system into an on-going, continuously monitored, validation effort [120].  

The traditional DoD Vee-model gets an update that reflects the ongoing validation tasks: 
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Figure 16: Proposed Feedback Model Diagram 

 

For example, the proposed addition to the systems engineering process Vee model is to 

add continuous tasks to 1) Monitor Performance, 2) Analyze Operational Data, and 3) Develop 

Solutions to any issues that are preventing aircraft performance.  The operational data in 

question are the collected metrics on performance or operations, maintenance, and supply 

actions.  Since the goal of this research is to prevent downtime events due to lack of parts or 

logistics issues, it is prudent to choose a performance metric related to logistics and supply that 

is also tied to aircraft downtime.  Documentation in the form of forms, database entries, and 

aircraft records occur at each step in the process, all of which can be found in a variety of USAF 

regulations [121], [45], [122].  
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For DoD logistics, the most logical place to find data to implement the proposed method 

is to leverage the data being collected at the tactical level that documents supply workarounds.  

Cannibalization rates, procurement data, local manufacturing information and other logistics 

data should be used to inform logisticians that support the enterprise system that a failure of the 

support system has occurred.  Systems engineers can utilize early warning indicators to do a 

thorough review of system component parts, failure modes, and end of life calculations.  This 

information can then be fed back into the already established processes for documenting 

change to supply demand.  Logisticians can then adjust their procurement forecasts with the 

data and work to provide items of supply.  This research will focus on capturing information from 

workarounds to supply issues as well as early indicators from logistics, maintenance, and 

operations leading indicators.  These metrics may indicate that a larger supply issue may be 

realized in the future.   

3.1.1 Existing Feedback Processes 

The organization responsible for managing an enterprise system often has little or no 

official budgetary authority over all the elements that combine to make up the system.  The 

many organizations that manage, maintain, or operate the various elements required to keep an 

enterprise system operational have competing priorities, budgets, schedules, and leadership 

chains of command which can complicate any enterprise system decision [87].  As a result, 

when issues occur in operational feasibility parameters the user that experiences the failure 

may not have a clear line of communication to supporters that can help resolve the issue.   

This lack of communication illustrates the missing feedback loops in from the operational 

user to the systems engineers tasked with providing an operational enterprise system.  

Exacerbating the issue is the sheer size of the DoD organization.  As noted in the literature 

review, the DoD’s cumbersome organizational structure frequently stovepipe’s different career 

functional areas (such as maintenance and supply) making informal feedback almost non-
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existent [123], [11], [53].  There is also a variety of research asserting the need for stakeholders 

to establish robust systems engineering and life cycle management processes specifically to 

avoid organizational inefficiencies [124], [125].  To develop strategies for improving issues 

related to these challenges, we must first consider what the existing process looks like. 

3.1.1.1 Issues with Standard Supply Forecasting 

Given no other inputs, logisticians are required to forecast parts based on the previous 

two-year history of demand.  This requirement is established in the Federal Acquisition 

Regulation (FAR), DoD policy guidance, and USAF policy guidance [126], [88], [50].  This type 

of forecasting strategy works well for high demand, frequently used components parts with 

established manufacturers.  This method does not work well for items with sporadic demand, or 

ones that have not been procured since initial fielding.   

There are, however, existing feedback loops established that would allow logisticians to 

utilize other sources of data for procurement.  One such process is identified in the Air Force’s 

AFI63-143, Centralized Asset Management (CAM) regulation.  This regulation provides a 

process and forum for engineering to identify issues affecting the maintenance of AF weapon 

systems that may adversely affect airworthiness.  It directs personnel to validate maintenance 

requirements, and stipulates that existing requirements may be updated based on changes to 

the enterprise system [127].  There are many sub-processes in this guidance document, but this 

research focuses on processes related to support of existing maintenance and use 

requirements, called the Logistics Requirements Development Process (LRDP).  This process 

dictates that stakeholders identify all the logistics requirements for maintenance activities.  It is 

through this process that engineers could assist logisticians with better data for forecasting 

parts.  A comparison of these two processes is in the figure below. 



60 
 

 

Figure 17: Comparison of Differences in Logistics Forecasting Processes 

 

One issue that impacts logistics is the potential in older fleets to experience part demand 

aligned with the natural end-of-life of component parts as defined by traditional bathtub curves.  

The potential impact on logistics performance from this issue is staggering.  But senior leaders 

are well aware of this problem, which is reflected in the advent of the Diminishing Manufacturing 

Sources and Material Shortages (DMSMS) programs and policy guidance within the DoD [128].  

The purpose of these programs is to ensure that older parts have adequate replacement 

strategies to provide assets to the weapon systems they support [129].  This is another type of 

feedback loop available when component parts are identified as having supportability issues.  

Engineers can make recommendations through DMSMS programming to get parts reverse 

engineered as needed.   

3.1.1.2 Forecasting Data Bottlenecks 

Given that feedback loops to provide additional data for logisticians exist, and feedback 

loops to help engineers prioritize pending DMSMS issues also exist, why then do weapon 

systems experience parts shortages?  This issue essentially boils down to the availability of 

manpower to generate the necessary data to support logistics procurement actions.  Policy 
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guidance dictates that supporting data must be provided in order to violate the supply policy of 

forecasting based on the most recent two-year history [88], [127].  In order to provide this level 

of documentation, reliability analyses showing the impending predicted failures must be 

provided by engineering to logistics personnel. 

The LRDP guidance was largely built upon the idea that Reliability Centered 

Maintenance (RCM) was the preferred failure analysis and forecasting strategy for logistics and 

maintenance programs.  Historically, aircraft were designed to fly-to-failure for most component 

parts, with the exception of Critical Safety Items (CSI) which were generally time-changed to 

specifically avoid unexpected failure.  Unfortunately, this strategy leads to the realization of 

unscheduled maintenance quite frequently.  Over the past several decades, the Air Force has 

attempted to mirror commercial aviation’s Condition Based Maintenance Plus (CBM+) and 

Maintenance Steering Group Three (MSG3) type maintenance strategies.  CBM+ attempts to 

use Automated Intelligence (AI) to identify potential early warning flags that parts are about to 

fail.  CBM+ is usually executed in conjunction with an existing RCM program to add condition-

based inspections during scheduled maintenance [125].   

CBM+ works best when data specifically related to system performance (i.e. from 

sensors or on-board diagnostics) is available and aging aircraft fleets do not always have this 

type of data available [130].  Given the long lead times of Air Force supply, predicted failures 

would have to be identified years in advance to adequately plan for parts.  MSG3 works slightly 

better for older aircraft fleets since its approach is to identify the systems required for flight and 

the failure modes most likely to impact flight operations (i.e., cancelled flights).  The 

maintenance strategy is designed to remove and replace parts before they fail, which prevents 

unscheduled downtime [131].  This is a better approach for older aircraft in terms of the ability to 

plan for supply concerns, however it does lead to an abundance of scheduled downtime at the 

cost of aircraft availability.   



62 
 

RCM policy dictates that parts be reviewed from the component level and build upward 

to determine reliability [132].  This guidance requires that systems engineers review RCM data 

every two years, to ensure requirements are adequately captured.  In an ideal world, this 

strategy would work well.  Systems engineers would review cycle data, original design 

specifications, usage data, life limit data in addition to all of the metrics generated by operations, 

maintenance, and supply to do a thorough review of the expected life expectancies of 

component parts in order to provide supply forecasting data.   

Unfortunately, this is not possible given the current staffing of systems engineers.  

Systems engineers largely reside in the Air Force Life Cycle Management Center (AFLCMC) in 

the System Program Office (SPO) assigned to weapon systems.  This author has resided in 

three different SPO’s in the last 20 years, and none were ever staffed above 45 engineers.  

Even if engineers could produce RCM analysis a day working 7 days a week, they could only 

produce a little over 32,000 analyses per year.  Given that the typical aircraft has hundreds of 

thousands of parts, it is not realistic to expect systems engineers to accomplish RCM analysis to 

the detailed level necessary for parts forecasting.  The fact that these engineers are also 

responsible for the day-to-day fault isolation, emergency field requests, procurement technical 

data package reviews, deficiency reporting, technical order and manual creation and updating, 

and modification programs, makes the issue even worse.  Engineering has become a bottleneck 

for providing the required data to support logistics procurement actions.  Additionally, even if the 

engineering manpower to accomplish this massive effort magically appeared today, the 

bottleneck would simply move to logistics personnel for being understaffed to execute all the 

new procurement requirements.   

3.1.2 Proposed Additional Feedback Processes 

Since staffing and manpower is not something working level logisticians or systems 

engineers can control, the next best step would be to prioritize the maintenance and demand 
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data analyses that do get accomplished. If systems engineers employ a continuous monitoring 

of fielded operational systems for validation of the user’s need, there is the potential to exploit 

field data to help prioritize the analyses sent to logisticians to update demand forecasts. 

Similar to the theories behind Condition Based Maintenance Plus (CBM+), systems 

engineers and logisticians could employ a conditions-based logistics approach.  Utilize the 

existing operational use data to determine if there exist early warning flags that identify when 

parts are about to become high downtime drivers before the downtime is realized in the field.  

These indicators could then be used to prioritize which systems or component parts get formally 

analyzed to justify alternative logistics actions and artificially add demand requirements to 

historical records as required by logistics policy.   

Using the proposed modified vee-model with continuous validation loops, the specifics 

on what types of data and information need to be identified are illustrated in the figure below. 
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Figure 18: Inputs to Proposed Continuous Monitoring Systems Engineering Process 

 

In an ideal world, the data and processes required to successfully monitor an operational 

system to identify issues before they impede operations would be identified early in the design 

process.  Most legacy fielded systems in the DoD operate in an enterprise system that has rigid 

data collection and reporting processes which are generally standardized across each military 

department [88],[59].  Users at the working level tasked with operating the system, and systems 

engineers tasked with supporting the user’s mission are unlikely to affect much change on 

policy that is created at a much higher organizational level.  The proposed method above 

acknowledges the limitations on personnel who support systems that are already fielded.  With 

this method, systems engineers can identify critical data from support element stakeholders, 
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prioritize the issues that are impacting system performance and achievement of mission goals, 

and provide specific analysis or data directly to the stakeholders that can take action to change 

a requirement. Therefore, this dissertation will focus on data already identified and collected by 

the DoD for its enterprise systems that can be leveraged to assist with system engineering 

decision making.   

3.2 Data Identification 

The DoD has identified itself as a data-centric organization and that data is a strategic 

asset that should be leveraged for both strategic and tactical advantage [133].  The DoD uses 

its data to make informed business decisions, to gain advantage on the battlefield, and most 

importantly to improve DoD management [133].  If the DoD hopes to make improvements to life 

cycle management of aging aerospace defense systems, leveraging this data to inform the 

systems engineering processes that help execute life cycle management is critical to its 

success. 

3.2.1 Metrics 

As identified in this document’s literature review, there are many regulations, policy, and 

guidance documents that dictate maintainers, operators, logistic managers, program managers, 

and various other career fields collect data.  Research via the literature review of factors 

influencing aircraft availability, mission capable rates, schedule optimization, and performance 

prediction models was accomplished to help identify data pertaining to the research topic.  The 

proposed approach for this research is to determine what data is an early indicator of poor 

logistics performance, and then identify methods to provide feedback to the logisticians to take 

action to prevent parts shortages.  

For the purposes of this research, metrics are defined at the simplest level as 

characteristics of a system that indicate the system’s status, configuration, or performance 

either at a certain point in time or as a historical trend.  Some metrics are measurable, with units 
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of measure such as quantity, inches, or hours.  Some metrics indicate a status, such as an 

aircraft being Mission Capable (MC) or Not Mission Capable (NMC) and are not measured from 

the aircraft but are counted and usually displayed as sum, count, or average.  An actionable 

metric is defined specifically for this research as a metric resulting from an observable event, 

directly related to enterprise system performance, for which root cause can be determined, and 

resulting in downtime hours being accumulated.  For example, an aircraft grounding is a specific 

event that results in downtime hours.  The aircraft records can be reviewed to determine the 

root cause of each grounding event such as a sub-system failure (e.g. engine flameout) or 

external environment incident (bird strike).   

The impacts from the events that cause downtime may be permanent or temporary, and 

some may even be considered routine (e.g. events like scheduled maintenance).  Metrics such 

as total hours or rates are not as useful to this research as those related to incidents or 

occurrences.  This is because historical trends, averages, and totals generally cannot be broken 

down into specific root causes.  If root causes cannot be determined, determining the fix or 

performance improvement initiative becomes much more difficult.  For this reason, the research 

will focus on instances or occurrences of metric related data.  Leading indicators are likely good 

candidates for inclusion in the mathematical model.  Lagging metrics show trends in aircraft 

performance over time, but do not indicate a specific issue traceable to a specific aircraft or 

event that caused downtime [24].   

3.2.2 Data Sources 

The previous sections of this chapter identify the mathematical and statistical methods to 

evaluate a set of data and build representative mathematical models.    The data source for this 

analysis is the Logistic Installations and Mission Support – Enterprise View (LIMS-EV) data 

repository.  This system is used by the Air Force to report and review data metrics related to 

many different functional areas.  Data under review for the purpose of the analyses contained 
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herein was collected via LIMS-EV.  Aircraft performance data was retrieved from the LIMS-EV 

repository for the entirety of the USAF fleet (all tail numbers, all models).   

The LIMS-EV system uses a database framework created using software SAP SE 

corporation called Web Intelligence (Webi).  Data sources from all over the DoD and USAF are 

collected and compiled in LIMS-EV.  These metrics are available via the LIMS-EV Weapon 

System View, Office of the Secretary of Defense (OSD), and Logistics View module.  Subsets of 

this data are displayed on the Weapon System Dashboard module which is utilized to create 

overview charts on system performance.  These metrics are listed in the appendix and 

designated as leading, lagging, or neither as identified by USAF policy documents. 

The data surrounding logistics and maintenance records are hand entered by 

logisticians or maintainers [26], [121].  While more modern sensor data and performance data 

may be automated straight from aircraft data storage into systems for the analyst to review, 

much of the day-to-day activities surrounding logistics and maintenance activities still depend on 

a human operator entering information into a system.  For the purposes of this research, the 

analyst assumes the data collected and entered in the LIMS-EV repository accurately reflects 

the observed information in the field.    

Maintenance metrics are tracked daily for all aircraft (by tail number, location, etc.).  

Units are responsible for recording the data into the system of record.  Since there are multiple 

systems utilized for capturing maintenance, operational, and supply data, LIMS-EV consolidates 

the information into one data repository but segregates the data into different collections called 

universes.   Definitions and formulas for these metrics are not available in the repository or 

through queries, but are available through a variety of published USAF policy and guidance 

[121], [134], [45], [24].  The prudent analyst should research the metrics required prior to 

building queries in LIMS-EV to avoid metric confusion. 

It should be noted that LIMS-EV has some significant limitations with respect to 

collecting operational data.  The databases that feed into LIMS-EV are typically established by 
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career field (e.g., logistics or maintainers) and data is limited to the inputs of chosen by those 

experts.  Supply and logistics data is inherently collected by date, by requisition number, or by 

National Stock Number (NSN), with logistics performance metrics center around timeliness for 

filling open requisitions.  The goal for logisticians is to provide parts quickly, so this makes 

sense from a performance review standpoint.  Maintainers and operators, on the other hand, 

focus on aircraft and specific events that cause downtime.  Their data is generally collected by 

aircraft tail number, fleet type, operating location, or operational status and is typically organized 

by Work Unit Code (WUC) an identifier that categorizes the event by the sub-system or 

component part on the aircraft.  While both approaches make sense given the performance 

measures for individuals in each career field, it makes correlating aircraft events to supply 

events quite difficult.   

This causes issues when pulling data across multiple repositories that have been 

consolidated into LIMS-EV.  Filters that are inherent in operational data may be missing from 

supply or logistics data and vice versa.  It is difficult to pull supply metrics and correlate to 

specific aircraft, yet exceedingly easy to pull such metrics over a specific timeframe.  

Essentially, the supply and logistics data cannot be organized by aircraft type or serial number 

only by date; the weapon system data can be organized by aircraft type, serial number, or date.  

The common organizer is date; therefore, the dataset herein will be limited to timeseries 

organization rather than by aircraft model series and type.   

3.2.3 Operational, Maintenance, and Supply Data Relationships 

When an incident or event causes an aircraft to become not mission capable, other 

processes are implemented to restore that aircraft to service and metrics recorded at each step 

of the process.  LIMS-EV returned approximately 200 available metrics that measure weapon 

systems in some way.  This data includes leading indicators, lagging indicators, maintenance 

metrics, supply metrics, and operational metrics.  Including all these potential metrics into 
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statistical software for modeling would be an imprudent approach with results that would be 

difficult to interpret.  Not because statistical software is unable to handle large data sets, but 

because the causal relationships become harder to identify when multiple related variables are 

used in the model.  Additionally, utilizing all available data sets simply because they are 

available is data mining without context, and is considered poor statistical technique [135].  

To determine the most likely metrics that influence downtime related to supply, we must 

first understand some basic principles of aircraft and mission operation to identify potential data 

to exploit for the purposes of this research.  Aircraft are operated and undergo scheduled 

maintenance as part of routine procedures.  Systems engineers track and monitor fleets to 

identify any issues that may impede operational use or maintenance.  When issues are 

identified, a root cause analysis is accomplished to identify factors that may be impacting 

performance.  Stakeholders prioritize the deficiencies and apply resources to those with the 

biggest return on investment for aircraft performance.  The resolution for the deficiency is 

implemented, and the aircraft is restored to operational use and maintenance.   

 

Figure 19: Operational Use Cycle 
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 The nature of operations is such that there are always deficiencies that need attention, 

but some have more impact on performance than others.  For example, a faulty coffee cup 

holder on transport vehicle will not impact performance in the same way that aircraft engine 

malfunction would. The basic use cycle flows as follows: 

1) Aircraft are operated, used, and maintained. 

2) Stakeholders monitor their area of responsibility for performance metrics against pre-

specified standards. 

3)  When events occur that prevent operational use and maintenance, stakeholders 

accomplish research, data mining, inspections, and other avenues to determine the root 

cause of the issue preventing or impeding the performance of operational use. 

4) Deficiencies are prioritized based on their impact on mission need, and funding 

resources applied accordingly. 

5)  Corrective actions and solutions are developed. 

6) The aircraft is restored to operational use. 

The process above is generic and can be applied to any industry or product.  It boils to 

using a system, monitoring its performance, and resolving issues that impede performance.  

This process can be tailored to specific areas or stakeholders.  For example, let’s consider the 

logistics functional area as it relates to performance of aircraft systems.   
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Figure 20: Aircraft Operations, Maintenance, and Logistics Relationship Cycle 

 

This is very similar to the previous figure, but it has been tailored specifically to identify 

the relationships between the different stakeholders (operators, maintainers, and logisticians) 

that are all critical to the performance of the enterprise system that support aircraft.  This figure 

illustrates the following process. 

1) Aircraft are operated and used. 

2) A discrepancy occurs which causes negative performance to the aircraft. 

3)  Maintenance inspects to determine the cause of the poor performance. 

4) Parts are ordered as required. 

5)  The aircraft is returned to service 

6) Aircraft are once again operated. 

But what happens when there is an issue that impedes performance?  For example, 

what if supply does not have the parts that are required?  The cycle would be broken, and 

aircraft would become unusable.  This is a significant issue that plagues many stakeholders and 

enterprise systems.  If we apply the proposed feedback method from the previous section, we 
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should identify ways to monitor operations, analyze operational data, and develop solutions to 

any performance impacts.  To successfully implement this process, systems engineers should 

identify what operational data may indicate future performance issues, analyze that data to 

identify useful information, and submit that data to the critical stakeholders that can take action 

to update requirements. 

A key takeaway from this process description is to realize that impacts to performance 

are expected, and processes to identify and resolve those deficiencies are built into nearly every 

organization, career field, and functional area across the board.  This is illustrated in the various 

policies that stipulate the appropriate procedures to follow when impacts to performance are 

realized by the Warfighter [136], [137], [138], [88], [126].  To summarize, the proposed new 

feedback process entails systems engineers utilizing existing operational use and maintenance 

data to identify trends associated with future downtime related to logistics issues.  This data can 

then be used to prioritize analyses related required to provide logistics with justification to 

procure additional parts.  Data could be incorporated into the existing Logistics Requirements 

Development Process (LRDP) and Reliability Centered Maintenance (RCM) process. 

Given the large amounts of available metrics surrounding USAF operations, logistics, 

and maintenance, it is appropriate to determine the best approach for factor reduction to avoid 

data mining.  Factor reduction involves reducing large amounts of potential independent 

variables into a smaller, focused group that is statistically relevant.  There are hundreds, if not 

thousands, of various metrics available for research and review residing in the LIMS-EV 

repository.  But identifying a mathematical expression that can predict the dependent variable is 

not the goal of the research.  Rather, once an explanatory variable is identified, this research 

strives to determine ways to exploit the relationship and take action to prevent mission 

performance degradation. This purpose influences the approach to factor reduction.  

With that in mind, it is critical to identify factors that, once identified, allow systems 

engineers to act in order to improve, not predict, performance.  If causal relationships are 
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identified but no action can be taken to prevent their negative impact on performance, the 

research becomes less useful for operators and maintainers.  To facilitate this goal, the first step 

for factor reduction will be to review the type of metrics available for analysis.  As discussed in 

the previous section, lagging vs. leading indicators are already identified in Air Force literature 

for maintenance, primarily in the Maintenance Metrics Handbook [21].  This guide also briefly 

touches on available leading indicators for logistics. 

Instead, before modeling any relationships mathematical, a review of how metrics are 

related to the process of operating aircraft should be accomplished.  A very high-level 

categorization of some of the types of metrics collected during operational use is shown below: 

 

Figure 21: Examples of USAF Metrics Collected in O&S Phase 

 

Additionally, many metrics are reported in hours, rates (either per sortie, fleet size, or 

total aircraft inventory hours), number, quantity, occurrence, or incident.  While these metrics do 

create additional data sets and indeed may provide different insights to performance based on 
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how they are analyzed, ultimately this research focuses on actionable data that personnel can 

use to prevent negative downtime drivers.   

3.2.4 Metrics from Operations  

 Aircraft Use & Operations is generally captured by monitoring leading indicators from 

aircraft sensor data and flight profiles, or lagging indicators that measure broader performance 

trends.  Aircraft sensor data is varied across fleets, and there is no standardization in the types, 

quality, or even location of the data collected.  This is due to the wide and varied types and ages 

of aircraft fleets across the USAF.  Aircraft that are approaching 60 years old simply do not have 

the sensor technology of newer fleets.  Since the intent of this study is to utilize existing data, 

sensor and flight profile data will be excluded since it is not standardized across the USAF. 

Lagging indicators, on the other hand, are standardized across USAF fleets.  These 

metrics are calculated as directed by policy guidance.  There are many studies from a variety of 

sources including Government Accountability Office (GAO) reports, academic studies, and third-

party contractor studies surrounding the DoD and its logistics community.  A high-level overview 

of Not Mission Capable lagging indicators is shown below: 

 

Figure 22: Taxonomy of Common USAF Lagging Indicators 
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The formulas used to calculate these lagging indicators are based on the aircraft status.  

When an aircraft is experiencing downtime, it is required to have a status code assigned that 

tracks why the aircraft is down.  While the taxonomy above illustrates the basic relationship and 

breakdown of the lagging indicators, many of the relationships are too difficult to explain 

graphically.  Most lagging metrics are calculated by using the hours related to NMC downtime 

for various categories.  A sample of common supply and logistics lagging indicator formulas are 

shown below, calculated in accordance with the guidance in a variety of policy manuals [45].   

 

𝑇𝑁𝑀𝐶𝑆 𝑅𝑎𝑡𝑒 = 𝑁𝑀𝐶𝑆 + 𝑁𝑀𝐶𝐵𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑑  ×  100% 

Equation 3: Not Mission Capable Supply Calculation 

  

𝑁𝑀𝐶𝑆(𝑁𝐴) Rate = 𝑁𝑀𝐶𝑆(𝑁𝐴)𝑇𝑜𝑡𝑎𝑙 𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦  ×  100% 

Equation 4: Total Not Mission Capable Supply (NA) Calculation 

 𝑁𝑀𝐶𝑆 𝑅𝑎𝑡𝑒 = 𝑁𝑀𝐶𝑆𝑇𝑜𝑡𝑎𝑙 𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦  ×  100% 

Equation 5: Not Mission Capable Supply Calculation 

 

Hours reported with the “NA” designator are the sum of hours for aircraft in combat 

status, test support, airlift, operational support, special missions, etc.  Hours reported without 

the “NA” designator include all hours assigned to that category regardless of aircraft status.  

This means aircraft awaiting maintenance, in heavy depot maintenance, being transferred from 

one location or owning unit to another, those awaiting maintenance determination, and those 

awaiting retirement consideration are all included in the non-NA hour summation [24].  

Possessed hours only include aircraft that are in the possession of the owning unit.  Total 
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Aircraft Inventory Hours are essentially all hours accumulated by an aircraft fleet, with limited 

exception for those in disposal or other similar statuses.   

3.2.5 Maintenance Metrics 

Aircraft maintenance typically occurs in one of two ways: 1) it is scheduled as part of routine 

operations, or 2) it is unscheduled (e.g., broke unexpectedly).  Whether scheduled or 

unscheduled, aircraft maintenance drives certain metrics such as downtime hours (NMC hours) 

and maintenance man-hours.  Additionally, records of aircraft discrepancies (sometimes called 

“write-ups”) are often created during this period.  The relationships amongst the available 

variables may or may not be evident.  An example of the varied relationships amongst aircraft 

discrepancy and maintenance metrics are shown below: 

 

Figure 23: Aircraft Discrepancy Relationships 
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3.2.6 Supply Metrics 

Supply metrics are captured when maintenance puts parts on order.  While there are 

special cases where parts may be ordered without an immediate maintenance need, those 

instances are special cases and orders generally have a lower priority code than real-time 

needed parts [137].  For example, a logistician might review historical usage data and determine 

that the maintenance demand combined with the lead time or other influencing factors may 

indicate the need to set stock levels as a buffer to keep up with sporadic demand.  Supply 

metrics are captured when a part is requisitioned, regardless of the priority code.  Everything 

starts with a requisition number with additional meta data captured such as date, national stock 

number, order priority codes, requestor location, etc.  The Figure below illustrates the 

relationship amongst a few of the more closely related supply metrics:

 

Figure 24: Supply Metrics Relationships 
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Leading indicators will be reviewed to determine which is the best indicator of supply 

performance and will serve as the effect variable (dependent variable) in the mathematical 

model.  Lagging indicators will be reviewed to determine which are most likely to help assist 

systems engineers as an early warning system to prevent downtime and will serve as the 

independent variables (predictor variables) in the mathematical model.  The research question 

under investigation is to determine whether events maintainers and operators experience in the 

field can be used as predictors for future supply downtime drivers.  Therefore, metrics selected 

for review as independent variables shall be limited to those that can be reviewed for specific 

occurrences related to aircraft performance, such that a root cause could be reviewed, 

analyzed, identified, and resolved.   

A review of the data available in LIMS-EV indicated there are thousands of metrics 

collected across both the logistics, performance, and maintenance.  While all these metrics may 

have some influential relationship on aircraft performance, the overlap of available metrics and 

complexity of the interactions would require much more study and investigation.  Additionally, 

the purpose of this research is not to create a predictive model, but rather to identify causal 

relationships that can be exploited to prevent aircraft grounding events.  Rather than blindly 

applying mathematical analyses to all available metrics, a review of the taxonomy of the 

sequence of events that leads to aircraft downtime will be reviewed first. 

To understand the DoD procurement process as it relates to refreshing the stock of 

subsystem and component parts in supply, one must first understand the National Stock 

Number (NSN) framework.  An NSN is a number that relates to an item of supply that is 

procured, stocked, and issued.  It is a sixteen digit numeric sequence, and is tied through 

various databases to an item description, name, manufacturer’s part number, pricing, and 

characteristics [139].  Establishing an NSN is a process known as cataloging.  Cataloging of an 

NSN can occur at any point along a system’s life cycle.  But the most well-known and labor-
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intensive time is when an NSN begins to transition to an operational status.  At this stage in the 

life cycle management process the DoD agency, more specifically the weapon system program 

office, will identify the spare parts needed to maintain the system throughout its life cycle.  One 

issue that occurs is that all resources necessary to operate and maintain an enterprise system 

do not necessarily reside within a single program office.  This can lead to a mismatch of 

provisioning for the various support activities that may lead the enterprise system to ultimately 

fail at a much later date. 

Additionally, an NSN is not a manufacturer’s part number and does identify as a 

controlled, configured item.  Specific items, that are configuration controlled and available to 

manufacture, are identified by a part number (P/N) and Commercial and Government Entity 

(CAGE) identification number.  The P/N and CAGE will both be included on any technical data 

that defines the configuration of an item, such as a drawing or model.  There are 17 million 

active NSNs, identifying items of supply for the DoD inventory.  About 10 million additional 

NSNs are inactive.  And the NSNs represent over 42 million part numbers from millions of 

suppliers all over the world [139].  That is an incredibly large inventory to manage, particularly 

when DoD mission success is dependent on the ability of logisticians to have parts available 

whenever the mission dictates.   

Aerospace defense policy and guidance dictates what types of logistics data are 

captured and reviewed.  In accordance with the Federal Acquisition Regulation and DoD 

policies, logisticians are required to review historical usage data prior to establishing the 

requirement for a purchase of refreshment items for DoD supply.  Generally, logisticians review 

two years of historical purchases to calculate the required quantity of items to last the next two 

years.  While some procedures do exist to procure more stock, such as lifetime buys, 

justification is required, and a higher-level review and approval process must first be 

accomplished.  While the supply refresh procurement process isn’t precisely automated, cursory 

reviews of supply data prior to sending for rote replenishment stock is part of the process.  If the 
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military departments do not submit updated information for NSNs in the database, item 

managers will continue with replenishment based on past history [126].   

One issue that is commonly faced is that highly reliable parts are prone to be listed as 

“inactive” in the DoD NSN inventory.  An inactive part is defined as “an item without a demand in 

the last 5 years for which no current or future requirements are anticipated” [126].  If a weapon 

system is in use for 5 years and has component parts that have not failed or required routine 

replacements, those NSNs are likely to be removed from the active inventory and the stock 

disposed.  On the surface, a policy that automatically removes inventory from supply after a 

specified period of inactive time may make sense.  After all, stocking items that aren’t being 

used can have storage fees as well as taking the time of personnel to manage the inventory, 

accomplish reviews, and provide periodic data for audits.  And the costs are quite high.  One 

report indicated that the Defense Logistics Agency (DLA) disposed of over $1 billion in excess 

inventory items in a single year, which is about 14% of annual sales in the same period [140].  

But issues arise when the flow of data from those providing tactical support to the 

enterprise system (either operators, maintainers, engineers, or logisticians) doesn’t provide the 

necessary information for strategic logisticians to update their forecasting information.  Previous 

studies have recommended that tighter collaboration with DoD services and DLA supply chain 

managers could be beneficial in both forecasting existing items and phasing out items that are 

no longer needed [140].  The study suggested that developing a process or repository for 

engineering changes could help in supply chain decision making.  This information that could be 

leveraged to help inform the life cycle management process as feedback from system use. 

Personnel providing tactical support to the enterprise system, be it as an operator, 

maintainer, engineer, or logistician, will know exactly when the supply chain failed to provide a 

part because they are involved in the process above to find a resolution to the issue.  After all, 

the resolutions illustrated in the Logistics Support Flow Chart are documented processes 
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supported by policy [88].  Therefore, there are only a finite number of courses of action that can 

successfully restore a weapon system to its full capability of a required part is not available.   

Requisitions, order history, backorders, etc. are the current method by which the 

logisticians get feedback from operational units regarding supply issues.  This means that the 

first-time logisticians are informed of an issue that occurs when operators or maintainers order a 

component part.  This can be problematic considering the increasing age of most USAF fleets 

and the impact of component parts that are nearing their natural end of life.  Logisticians and 

Systems Engineers alike simply do not have the time or manpower to provide an in-depth 

review of all potential items that may experience increased demand on supply.   

3.2.7 Work Around metrics 

As aircraft fleets age, issues with supply and the logistics responsibility to provide spare 

parts and raw material can increase.  If a new part is no longer procurable, there are limited 

options for maintenance and logisticians to resolve the lack of parts.  And as parts age and fail 

in new and interesting ways, the existing technical manuals may not be sufficient to address all 

the problems faced by maintainers.  But the lengthy change process may lead to fielded 

systems being modified without documentation.  If a part is not procured or manufactured, 

logisticians have no choice but to either repair the part, cannibalize the part, or reverse engineer 

it to develop new sources.  The flow chart below was used to help logisticians and engineers at 

Robins Air Force Base to resolve parts shortage issues: 
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Figure 25: Logistics Support Flow Chart [75] 

 

 

Figure 26: Overview of Parts Shortage Workarounds and Type of Data Generated 

 

Based on this diagram, potential metrics that may make good candidates to include in a 

mathematical regression are metrics related to Requisitions, Backorders, Cancelled Backorders, 

ETAR – Engineering Technical Assistance Request 
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and MICAPs since these all correlate to events tied to aircraft discrepancies, operational events, 

or maintenance actions. 

3.2.8 Variable Reduction 

Of the approximately 200 metrics identified in the LIMS-EV repository related to 

maintenance, operations, and supply, over one hundred are lagging metrics available for 

consideration as the dependent variable, although many of these are subsets or related to other 

metrics in this category.  Since the focus of this research are impacts to aircraft downtime 

caused by lack of supply or component parts (reference the previously discussed research 

questions), a metric closely related to downtime events on the aircraft would be the best choice 

to utilize in a mathematical model.  A list of leading indicators was compiled using USAF supply 

guides and maintenance metric guides in addition to the list of identified records created as a 

review of supply records, aircraft records, and work around records. 

Excluding the lagging indicators removes the majority of the initial data metrics from the 

candidate list.  Additionally, excluding rates and hour metrics whenever possible in favor of 

counts, occurrences, or incidents also significantly reduces the potential metrics available for 

mathematical modeling.  Finally, some of the leading indicators are not actionable.  For 

example, aircraft sometimes get diverted from their normal flying schedule to participate in 

exercises related to training or capability demonstrations.  While those deviations do impact 

performance, and they are identified as a leading indicator of poor schedule performance, they 

are not something that working level personnel can take action to prevent.  Therefore, leading 

indicators that are not actionable by maintenance, operations, or supply personnel will also be 

removed.   

3.2.8.1 Data Collection Limitations 

The LIMS-EV repository had no linkages between supply data universe and weapon 

system data universe.  This created issues when attempting to collect data for the variables 
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identified in the previous chapter for mathematical modeling.  When a maintenance action 

occurs and a part is ordered, the common linking dataset is the Part Number, which correlates 

to a National Stock Number (NSN) used by supply to track parts and requisitions, and a Work 

Unit Code (WUC) used by maintenance to identify the system with the discrepancy. 

Unfortunately, there is no Air Force level correlation matrix between WUC and NSN, or 

even WUC and part number in most cases.  WUC’s identify a system as described by the 

maintainer’s technical manual.  While this sometimes does correlate to a part number, the intent 

of the system is not to reinvent a part number identification system but rather to allow 

maintainers to quickly identify the system with the discrepancy for later analysis by engineers.  

The system is similar to American Transport Association (ATA) coding system and uses a 

compatible referencing standard.  WUC’s are defined by MIL-DTL-38769, and definitions unique 

to each weapon system are identified that systems 00-06 series technical order.  WUC’s are 

structured in a 5-digit alpha-numeric format.  The first two characters of the WUC identify the 

end-item or major sub-system of the overarching weapon system, with the remaining 3 digits 

using zeroes as place holders.  For example, 11000 is commonly used as the WUC for airframe 

structure, 13 for landing gear, 14 for flight controls, and so on.  The WUC’s primary purpose is 

to identify all the work that a unit accomplishes with respect to maintenance or action taken 

against an aircraft.  It is not used to order or identify parts.  An illustration of how WUC’s are 

broken out is shown below: 
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Figure 27: Work Unit Code Taxonomy 

 

Some systems engineers have created their own cheat sheets that link part number or 

NSN to WUC’s as identified by the aircraft maintenance manuals, others have created this list 

more formally and integrated it into custom analysis software as part of digital transformation 

efforts.  But there is no Air Force level guide that cross references WUC to NSN.  Attempts to 

automate the generation of a WUC to NSN cross-reference proved impossible through LIMS-

EV.  First, while all weapon systems use WUC’s, they do not all use the same codes for the 

same lower-level sub-system and component parts leading to an inability to aggregate data by 

WUC across the USAF fleet.  Additionally, the information required to determine the cross-

reference is frequently in non-searchable scanned engineering reports or technical orders that 

do not have meta data (the page of the manual is an image, not searchable text).  Next, to 

identify the part number associated with a WUC, the analyst must review the technical manual 

for the right system and select the associated WUC only by the title (WUC descriptions do not 

include part numbers).  Many times, the part number name/title may not match the WUC 

designator exactly, and the analyst will make judgement calls as to the appropriate system to 
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use.  Finally, as previously stated, the purpose of the WUC was never to track parts and WUC’s 

do not exist for all parts on an aircraft.  Rather, major end items, line replaceable units, or larger 

commodity assemblies typically get their own WUC.  But non-repairable disposable items may 

not. 

Another issue was realized in the research of potential supply data available in LIMS-EV.  

While NSN is the commonly used data item to track parts, most of the supply database 

architecture is focused on document number, which uniquely identifies each individual 

requisition.  Meta data such as initiation date, order location, and NSN are included as part of 

that record, but the supply universe in LIMS-EV does not always link this information to 

performance measures not associated with a specific requisition (mainly lagging indicators such 

as wait time). It was also discovered that Backorder Cancellations are not a metric commonly 

tracked.  Trends for backorder cancellations could be pulled related to date or timeframe.  And 

single item records could be manually reviewed to determine if the document number had been 

cancelled.  But records related to how many times an order had been cancelled for a unique 

NSN or WUC could not be generated.  Neither did all cancelled backorders have dates 

associated with the cancellation, further clouding the data.   

These issues all had a significant impact on the approach to creating a mathematical 

model for the aggregated data with the intent to test the results of the model against unique 

case studies by NSN.  The mathematical model will be limited to metric variables where either a 

WUC or NSN cross reference can be positively determined through a use of aircraft 

maintenance and supply data in LIMS-EV.  This reduces the potential variable list to:  

Table 1: Metrics Linked by WUC or NSN 

Air Abort (N) Canns (N) 

Backorder Count Ground Abort (N) 

Backorder Days MICAP (I) 

Breaks (N)  
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3.2.8.2 Dependent Variable 

Since the focus of research is supply performance, a supply or logistics related 

performance metric should be chosen as the Independent Variable (IV), or effect variable, for 

the mathematical model.  The author interviewed several logisticians at varying levels in the Air 

Force Life Cycle Management Center (AFLCMC) to request opinions on the best metrics to 

track logistics performance.  All responded that the metric the logistics community tracks most 

closely related to aircraft performance are TNMCS, NMCS, and current MICAP instances.  All 

identify NMCS, TNMCS and MICAPs as a key indicators to measure overall supply chain health 

as it relates to the overall goal of Aircraft Availability [141], [101], [104].  A follow-up with the Air 

Force Sustainment Center’s (AFSC’s) Director of Engineering (DoE) confirmed that TNMCS 

trends are a hot topic for the lagging indicator and MICAP occurrences, specific to each weapon 

system, were frequently reviewed as action items and briefed to senior leaders on weekly status 

reports.  Additionally, the AFSC Data Analytics organization also provided insight into LIMS-EV 

and confirmed that TNMCS, MICAPS and NMCS were often referred to performance metrics for 

overall system performance.  Additionally, MICAPs are considering the leading indicator for real-

time logistics related concerns [24].  

MICAP hours are simply an accumulation of the quantity of hours a weapon system has 

been down for MICAP related parts issues over the queried period.  MICAP incidents indicates 

the number of items that were identified as MICAP incidents during that timeframe.  TNMCS is a 

tempting choice because it is limited to aircraft of operational units and its propensity to be used 

to determine overall supply health due to its ability to show historical trends.  But the TNMCS 

metric makes it difficult to isolate factors related to only supply issues, since its formula includes 

NMCB hours (which is a combination of supply and maintenance related issues).  NMCS (NA) is 

also a trending metric and does not indicate negative actions or events on aircraft that could be 

prevented or resolved.  Therefore, for the purposes of this research, the MICAP category will be 

chosen.   



88 
 

Since the intent is to prevent any downtime hours at all, it logically flows that all MICAP 

hours should be prevented.  However, the documentation of a MICAP hour is not an event by 

itself.  A MICAP incident, MICAP (I) must first occur for hours to accumulate.  At this point, it is 

important to understand how the category of MICAP is applied to parts in supply.  A MICAP 

refers to a specific requisition, or order for parts, in the logistics system.  MICAP hours, by the 

very definition of how the lagging indicators TNMCS and NMCS are calculated, drive supply 

performance.  Based on the review of impacts and drivers to the logistics and maintenance 

processes, and the comparison of the various MICAP metric types, MICAP (I), will be the 

chosen dependent variable. By preventing MICAP incidents, systems engineers will be 

preventing NMC downtime hours associated with logistics. 

3.2.8.3 Independent Variables  

There are many aircraft operational use and maintenance records and data that tie to a 

specific serial number or negative event that prevents aircraft operation.  But logistics records 

focus on national stock number (NSN) as the driving identification characteristic and can’t be 

tied directly to policy.  In fact, DoD and USAF policies don’t even require that logistics processes 

and data repositories monitor links to aircraft records [6], [53], [75], [77].    

The remaining variables, reduced from the original list of 200 and excluding the 

dependent variable MICAP(I), will serve as the starting point for statistical analyses and become 

our potential list of influencing variables, or IV’s.  The next table identifies the final list of all 

variables and their definitions. 
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Table 2: Metric Data Dictionary 

Metric Description 

Air Abort (N) 
An aircraft discrepancy identified by operations during airborne missions; 
Indicates a sortie could not continue its primary or alternate mission 

Backorder Count 
Number of requisitions assigned backorder codes, indicating no available 
stock in supply, calculated per time period or by date 

Backorder Days 
Sum of days accumulated for requisitions assigned backorder codes, 
calculated by timeframe or by date 

Breaks (N) 
Discrepancy assigned by tail number to aircraft that land with a status of 
Code-3 (Code 3 indicates major discrepancies in mission essential equipment 
that may require extensive repair or replacement prior to mission assignment) 

CANN (N) 
Cannibalization, a removal of a serviceable part from a weapon system to 
replace an unserviceable part on another system 

Ground Abort (N) 
An aircraft discrepancy categorized by maintenance, operations, HQ, 
weather, or other factors and occurs preventing a scheduled airborne mission 

 

All these metrics are leading indicators that link to a specific event such as a failure of 

equipment, a deviation from flying schedule, a recurrence of a failure, a backorder, or other 

event.  The data from LIMS-EV will be reviewed at an aggregated USAF level, to avoid any 

concerns with operational security.   

3.3 Statistical Analyses 

This type of data investigation usually starts with a correlation analysis between 

variables.  From there, linear regression, multiple linear regression, and non-linear regression 

techniques can be used to create a model of the data that is most often used for predictive 

purposes.  For this research, we are exploring the mathematical relationships between the data 

collected from operational use and maintenance to determine the relationships between aircraft 

event and weapon system performance as it relates to supply chain and logistics concerns to 

better understand where feedback loops in the systems engineering process should be added.  

The analysis software used in this research is a combination of JMP: Statistical Software 

Version 17, Student Subscription; Microsoft Excel, and STATA 17.0.  Graphics, charts, tables, 

and other information were also created with these software tools.   
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The statistical analyses used for this research are not new.  Therefore, only high-level 

overviews of the mathematical methods used are covered in this dissertation.  There are many 

textbooks, articles, and websites devoted to the statistics field of study and the references listed 

for the following methods are just a small sampling of what research is available.  Creating a 

predictive model for aircraft performance is not the purpose of this research. It should be noted 

that the resulting mathematical model of this data will never be a true model.  The assumption 

that there is no missing data from regression techniques will almost certainly be violated, given 

the research identified in the previous sections of this report.  Factors such as manpower, 

funding, training, and economic or political factors will almost certainly influence aircraft 

performance.  For the purposes of this study, it is understood that the assumption of no missing 

information is likely to be violated given the complexity of factors involved that may impact 

mission capability in the field.  Like healthcare industries where data is highly variably and there 

are many influencing factors on patient health, this acceptance of missing information should 

not deter the research.    

3.3.1 Basic Statistics Characteristics Review 

When analyzing data sets, it is prudent to review the basic characteristics of that data 

set to get an idea for its behavior.  Basic statistics include calculations and values such as: 

maximum, minimum, mean, median, distribution, skewness, kurtosis, constant of variance, 

standard deviation, etc. Formulas and definitions of these terms abound in textbooks and 

academic research related to statistics.   

3.3.2 Confidence Intervals and Hypothesis Tests 

The confidence level is a statistic that represents the chances that the calculated value 

is correct.  In general, confidence intervals are calculated using the mean of the estimated value 

plus or minus the variation (or error) that occurs in the estimate.  Confidence intervals use data 

from a sample to estimate parameters for a given population or data set. Hypothesis tests use 
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sample data to test a specified hypothesis, and either accept or reject it for that data set.  For 

many statistical calculations, the analyst identifies a null hypothesis and either accepts or rejects 

it based on the results of the calculations [135].  The alpha statistic, α, is the significance level 

used to calculate the confidence level.  The confidence level is typically calculated as 1- α.  For 

example, in a statistical analysis where α = 0.05, there is a 95% probability of accepting the null 

hypothesis when the null hypothesis is true, and a 5% probability of rejecting the null hypothesis 

when the null hypothesis is true.  Alpha values range from 0 to 1 [142].  

Similarly, p-value is the probability of obtaining a result as extreme as, or more extreme 

than, the result obtained when the null hypothesis is true.  The p-value of a data set is typically 

calculated based on the test statistic used for the analysis.  In general, the analyst will calculate 

the test statistic based on the data set, determine the critical values of the test statistic 

(determined from a reference table and usually based on sample size and the selected alpha), 

calculate the p-value (the percentage of values on the table that fall beyond the test statistic).  If 

the p-value is low, meaning less than the selected alpha level, it indicates that the null 

hypothesis is not true and must be rejected [135].    

The method of applying a confidence level to test statistics opens the door for a small 

chance that the analyst will get the result incorrect.  A Type I error occurs when the analyst 

rejects the null hypothesis when the null hypothesis is true.  Reducing the value of alpha can 

help avoid a Type I error.  A Type II error occurs when the analyst accepts the null hypothesis 

when the null hypothesis is false. Sample size is a large factor in the occurrence of Type II 

errors, and a larger sample size will help avoid Type II errors [135].    

3.3.3 Correlation Methods 

One of the most used methods for reviewing correlation between two variables is the 

Pearson product moment coefficient of correlation. Correlation measures the strength and 
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direction of linear relationships between two variables [135].  The assumptions when applying 

Pearson’s correlation to datasets are [143] : 

• Variables are continuous. 

• There is a linear relationship between the two variables. 

• Each case (data point) is independent and unrelated to other cases. 

• Each variable is normally distributed. 

• The data is randomly sampled from the population. 

• There are no outliers. 

The Pearson’s coefficient, r, is a numerical descriptive measure of the strength and 

direction of two variables, x and y, and is computed as follows [135], [143], [144]: 

𝒓𝒙𝒚 = ∑ (𝒙𝒊 −  �̅�)(𝒚𝒊 −  �̅�)𝒏𝒊=𝟏√(𝒙𝒊 −  �̅�)𝟐 ∗  (𝒚𝒊 − �̅�)𝟐   
Where, 

x̅ is the mean of the x variable data. 

y̅ is the mean of the y variable data. 

Equation 6: Pearson's Coefficient of Correlation 

 

Analysis of the r-value between data sets can provide insight into relationships between 

those data sets.  The closer the r-values to zero, the weaker the linear relations.  An r-value of -

1 indicates a perfect negative correlation where values of the two variables are negatively 

proportional.  An r-value of +1 indicates a perfect correlation where values are directly 

proportional to each other.  Since Pearson’s Correlation method only applies to variables that 

are linearly related, does not address causal relations, and does not provide insight into the 

magnitude of influence once variable has on another, this method will only be used as a starting 

point when reviewing the research data set.  Cohen’s Rule of Thumb for correlation strength 
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indicates a weak relationship for r-values = +/-0.8, moderate relationships for r-values = +/-0.5, 

and weak relationships for r-values +/- 0.2 [145].   

3.3.4 Multiple Linear Regression 

Linear regression is a technique to form models centered on linear correlation between a 

dependent variable, y, and one or more independent variables xi.  Simple linear regression 

relates the independent y-variable (IV) to a single dependent x-variable (DV).  Multiple 

regression relates the IV to multiple DV’s.  The multiple linear regression model is 

mathematically expressed as follows: 𝑦 = 𝛽0 +  𝛽0𝑥0 + 𝛽1𝑥1 + ⋯ 𝛽𝑘𝑥𝑘 +  𝜖 

Where, for i = n observations 

  y = dependent variable 

  xk = independent variable 

  β0 = y-intercept (constant term) 

  βk = slope coefficients for each DV 

  k = number of independent variables 

  ϵ = the variation in y that is not explained by the model 

Equation 7: Multiple Regression Equation 

  

In multiple regression, each slope coefficient is interpreted as the estimated change in 

the DV corresponding to a one unit change in the IV, assuming all the other variables are held 

constant.  This technique provides much more insight into relationships between IV and DV’s 

than a simple correlation analysis.  However, there are assumptions that must be true to 

effectively utilize multiple regression as a statistical tool.  Those assumptions are: 

• Linearity: the relationship between IV and DV is linear 
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• Multicollinearity: there is little or no multicollinearity or serial correlation; the DV’s 

are not correlated to one another 

• Independence: each observation is independent of the others 

• Normality: the distribution of the IV and DV is normal, as are their residual error 

• Homoscedasticity: the variance in error is constant along the values of the DV 

3.3.4.1 Checking for Linearity  

Checking for linearity is generally as simple as checking a scatter plot of the residuals 

vs. the predicted values or the observed vs. predicted values, which is part of the standard 

regression data output from most statistical software.  Scatter plots should show points 

distributed in a straight line with a slope pattern, with a roughly constant variance (distance from 

the line) [146] .   A typical linear relationship scatterplot will appear as follows: 

  

Figure 28: Example Scatterplot Illustrating Linear Relationship 
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A bowed pattern in the scatter plot indicates a simple slope-intercept model can be 

improved.  If nonlinear characteristics are observed, it is critical that the analyst adjust the model 

to accommodate the nonlinear relationships.  The analyst could consider applying a nonlinear 

transformation to the dependent or independent variables, such as a logarithmic transformation.  

Another possibility is to add an additional regressor that is a function of the original, such as 

squaring the independent variable (so adding x and x2 into the regression model).  Piecewise 

linear regression is also an approach in some cases.  This approach segments the data set to 

address only the ranges of the independent variable that show linear trends with the dependent 

variables [135].   

3.3.4.2 Checking for Multicollinearity 

Sometimes, IV’s can be related to both the DV and other IV’s.  When this occurs, it is 

called multicollinearity.  Multicollinearity is a concerning feature of variables included in a 

regression model because it can skew the models results.  In an ideal world, the IV correlates to 

all of the DV’s, but the DV’s do not correlate to each other [135].  Multicollinearity is a problem 

because it undermines or masks the statistical significance of an IV as it relates to the DV.   

Multicollinearity can be tested by calculating the Pearson’s Correlation Coefficient which 

is visually represented with scatter plots of the two variables.  Another way to check for 

multicollinearity is to check for the Variance Inflation Factor (VIF), which identifies how much 

two variables correlate.  The range for VIF starts at 1 and has no upper limit.  Therefore, the 

lower the VIF, the more likely that the model has avoided multicollinearity.  A general rule of 

thumb is a VIF more than 10 indicates a problem with multicollinearity [147].  If multicollinearity 

is detected, removing variables with higher levels of VIF is one way to eliminate the issue.  

Other methods include removing the mean of the variable from each observation, a method 

known as centering the data [135]. 
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Each regression model will be reviewed for VIF, if the value exceeds 10 the correlation 

matrix will be reviewed for that independent variable to determine which of the other 

independent variables has the highest Pearson r.  Those two independent variables will be 

compared to the dependent variable by using r-squared values.  The variable with the highest r-

squared will be kept in the model and the other discarded. 

3.3.4.3 Checking for Independence 

Independence of observations of each data set is also called autocorrelation.  There is 

nothing inherently wrong with autocorrelation in a data set, but it can be problematic for utilizing 

linear regression techniques.  Autocorrelation can become problematic if the independent 

observations of a data set are too dependent on one another, thus not providing adequate 

information to successfully model the system.  An example of this is stock market prices.  Prices 

may not vary much day-to-day, but researchers are interested in larger trends over longer 

periods of time to identify relationships between independent variables and stock prices.   

If the assumption of independence is violated, the standard errors of the slope 

coefficients which relate the IV’s to the DV can be underestimated which could lead an analyst 

to conclude that certain IV’s are more statistically significant than they really are [148], [149].  

The Durbin-Watson statistic is a test for autocorrelation for statistical models [150].  The test is 

conducted by checking for correlation amongst the residual error.  Visually, the analyst can 

graph a scatterplot of the residuals vs. time.  Randomness in the plot indicates no dependency 

while patterns indicate that autocorrelation is present.  The Durbin-Watson test statistic is: 

𝑑 =  ∑ (𝑒𝑡 −  𝑒𝑡−1)2 𝑇𝑡=2 ∑ 𝑒𝑡2𝑇𝑡=1  

Where, 

  T = total number of observations 

  et = the residual for a specific observation from the model 

Equation 8: Durbin-Watson Equation 
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The Durbin-Watson test uses a null hypothesis, H0, that there is no correlation amongst 

residuals and the alternative hypothesis, HA that the residuals are correlated.  Durbin Watson 

tests return a test statistic in the range of 0 to 4, with 2 being the ideal [151].  As a rule of thumb, 

if d is between 1.5 and 2.5, the statistical assumption is that there is not a serious 

autocorrelation problem [150].  Values related to datasets categorized by number of 

observations and number of regressor variables can also be utilized using Durbin Watson tables 

[154].  If the Durbin-Watson statistic is outside of limits, it is assumed that autocorrelation is an 

issue that must be addressed.  There are several options to address autocorrelation: checking 

for misspecification of pcredictor variables (i.e., identifying a linear relationship when it is 

exponential), transforming the variables using Cochrane-Orcutt or Hildreth-Lu processes, 

adding a time-lag variable of the IV or DV to the model, or even restructuring observations to 

avoid known autocorrelation issues such as with time-series data.   

To further evaluate the relationship between time and the various metrics and datasets, 

the autocorrelation function (ACF) and time series cross correlation values should also be 

calculated.  Autocorrelation is sometimes known as serial correlation in discrete time case, 

compares the correlated values of a function vs. it’s lagged value.   𝑟𝑘 =  𝑐𝑘𝑐0 

   Where, 

    ck = correlation value at lag k 

    k = the number of time units (e.g. lags) 

Equation 9: Autocorrelation Equation [149] 

 

ACF graphs show the correlation values at each lag (1 time period, 2 time periods, etc.) 

to graphically depict the autocorrelations. The blue curves represent twice lag standard error (± 

2 standard errors).  Time series cross correlation plots are simply the Pearson’s r-value 
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(reference the Correlation Methods section of this dissertation) calculated at each lagged value 

for the dependent variable.  In this way, cross correlation graphs illustrate the correlation at 

each lag and show the maximum and minimum values.  Additionally, any seasonality (repeated 

trends over a specific cycle timeframe) will be shown.  When evaluating time series data, it is 

important to check for independence and identify any trends that may appear as a result of time-

based influence. 

3.3.4.4 Checking for Normality 

Checking for normality can be as simple as creating a visual representation of the data 

set via a histogram shown in the following figure. 

  

Figure 29: Example Histogram of Normally Distributed Data 

 

Creating a Normal Quantile Plot is another way to visually check for normality.  If the 

data approximates a straight line, the analyst can conclude that the data reasonably 

approximates a normal distribution [152].  The Shapiro-Wilk Test is a way to mathematically 

calculate if a random sample comes from a normally distributed data set.  The Shapiro-Wilk test 
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uses a null hypothesis, H0, that a variable is normally distributed in the data population and the 

alternative hypothesis, HA that the data set is not normally distributed.  The Shapiro Wilk test is 

calculated using the equation below: 

𝑊 =  (∑ 𝑎𝑖  𝑥𝑖𝑛𝑖=1 )2∑ (𝑎𝑖 −  �̅�)2𝑛𝑖=1  

Where, 

  xi = are the ordered independent variable sample observations 

  ai = are constants generated from the covariances, variances, and means 

  n = the number of observations (sample size) 

Equation 10: Shapiro-Wilk Test 

The larger the W statistic, the more likely the model is not correct.  If the probability, p, 

that W is less than the alpha of our confidence interval, we reject the null hypothesis that the 

data is normally distributed.  If the p-value is greater than alpha, then the null hypothesis is 

accepted, and we conclude that the data set is normally distributed.  The values for skewness (a 

measure of symmetry to determine if the data is shifted left or right of center) and kurtosis 

(measures the curve of the data to determine if it is peaked or flattened) are also checked for 

during this process [153].  While Shapiro-Wilk is generally used for small sample sizes of less 

than 50, research has shown it can handle sample sizes are large as 2000 [154]. 

Other indicators of normality include skewness and kurtosis.  Skewness is a measure of 

how symmetrical the distribution is and kurtosis is a measure of the tall or thin (sometimes 

called the peakedness) the distribution is [153]. Skewness is in between -0.5 and 0.5 and 

kurtosis values between -1 and 1, indicate data with normal univariate distribution [117], [145].   

Violations of normality often occur when the linearity assumption is also made [155], 

[146].  Data transformations, trimming the data to remove outliers (which then gives the 

remaining model a reduced range for which it is applicable), ignoring non-normality based on 

the concept of the Centra Limit Theorem (which states that given a sufficiently large sample 
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size, the sampling distribution of the man for a variable will approximate a normal distribution), 

and even bootstrapping the dataset (resampling the data to replace outliers) are all ways to 

address non-normality in a data set [156], [135].   

There are several research studies and academic tests that indicate normality 

distribution for both dependent and independent variable is not a requirement for regression 

[157][155][158].  The errors after modeling should be normally distributed to draw valid 

conclusions to include coefficient validity, hypothesis testing, etc.  However, the presence of 

extremely skewed variables or variables with very large tails of outliers could significantly 

influence distribution of the variables.  If the residuals are not normal, the analyst cannot employ 

the use of t-tests to determine significance of the variable and justify its inclusion in the model.  

Without normality of residuals, the research analyst cannot conclude that a variable is significant 

to the outcome, dependent, variable or not [159].  This may make it prudent to transform the 

data to avoid harmful effects in the model. 

3.3.4.5 Checking for Homoscedasticity 

Homoscedasticity is the concept of constant variance when reviewing errors.  This can 

be as related to time (in the case of time series data), related the predicted value vs. the actual 

value, and as it relates to any IV the model uses [146].  Homoscedasticity is diagnosed when 

reviewing scatter plots of residual values versus predicted values (or residual values versus 

time).  Generating plots of the residuals vs. the independent variables also assists the analyst 

when looking for consistency.  Variance should be constant across these graphs [135].  If the 

homoscedasticity criteria are violated, the analyst can apply similar methods to resolve as 

already discussed in the linearity and normality sections of this document. 

3.3.4.6 Selecting the Best Model 

There are several ways to compare regression models.   Akaike Information Criterion 

(AIC), Bayesian Information Criterion (BIC), Mallows Cp, and R-Squared values.  It should be 
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noted that the model with the best R2 value is the model with the most independent variables, 

due to the way in which R2 is calculated [151].   

AIC is an estimator of prediction error and is one of the many ways to compare 

regression models and evaluate their fit.  AIC attempts to evaluate models by determining an 

estimate of a constant plus the relative distance between the unknown true likelihood function of 

the data and the fitted model [135].  This type of evaluator is called a penalized-likelihood 

information method.  Using this method, the analyst attempts to compensate for a tendency to 

add independent variables to increase accuracy (resulting in increased R2 values) which can 

overfit a model.  Generally, the AIC value is calculated as follows: 

 

𝐴𝐼𝐶𝑐 = −2logL + 2k + 2𝑘(𝑘 + 1)𝑛 − (𝑘 + 1) 𝑤ℎ𝑒𝑟𝑒, 𝑛 = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑘 = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝐿 = 𝑡ℎ𝑒 log 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 −2 ∗ logL = n ∗ ln(𝑆𝑆𝐸𝑛 ) 𝑆𝑆𝐸 = 𝑡ℎ𝑒 𝑆𝑢𝑚 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 

Equation 11: Akaike Information Criterion 

 

A lower AIC score determines superior goodness of fit for model comparison.  For 

goodness of fit, lower AIC values indicate the model is less likely to be overfitted.  Overfitting is 

of serious concern to analysts.  Overfitting is a scenario which occurs when using the highest R2 

value as the evaluation method.  Overfitting in a regression model results from analysts 

including as many predictor variables as possible.  This serves to help the model match the 

existing training data, but typically proves less accurate using test or real-world data [153]. 
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BIC is another evaluation statistic and is like AIC.  The difference is BIC penalizes 

models more for additional regressors (independent variables) than AIC does [135].  The BIC 

value is calculated as follows: 𝐵𝐼𝐶 = −2logL + 2k𝑙𝑛(𝑛) 𝑤ℎ𝑒𝑟𝑒, 𝑛 = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑘 = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝐿 = 𝑡ℎ𝑒 log 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 −2 ∗ logL = n ∗ ln(𝑆𝑆𝐸𝑛 ) 𝑆𝑆𝐸 = 𝑡ℎ𝑒 𝑆𝑢𝑚 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 

Equation 12: Bayesian Information Criterion 

 

Mallows Cp is another statistic that can also help compare regression models.  This 

evaluator attempts to estimate the size of the bias that is introduced into the model by having an 

underspecified model (missing regressors).  For Mallows C
p
 calculation 

𝐶𝑝 =  
𝑆𝑆𝐸𝑝𝑀𝑆𝐸𝑘 + 2(𝑝 + 1) − 𝑛 

Where,  𝑆𝑆𝐸𝑝 = sum of squared errors for the reduced model 

𝑀𝑆𝐸𝑘 = mean square error for the full model (aka RMSE
2

)  

k = # of independent variables present 

p = # of independent variables in the reduced model  

n = number of observations (data points in for independent variables) 

Equation 13: Mallows Cp 
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For ideal state, Mallows C
p
 = p + 1, Example, if the subset model being evaluated has 

p=5, the Ideal Mallows C
5
 = 5 + 1 = 6.  Actual models C

p
 value will vary, but the procedure is to 

choose the model with the value that gets closest to the ideal.  But Mallows values can have 

some bias.  When the C
p
 value is ... 

• Near k+1, the bias is small (next to none) 

• Much greater than k+1, the bias is substantial. 

• Below k+1, it is due to sampling error; interpret as no bias. 

• If all models return a large value, some regressors may be missing from the analysis. 

• If several models have close to ideal Mallows numbers, choose the one with the 

least amount of regressors, since the goal of Mallows is simple models. 

• For the largest model containing all the candidate predictors, C
p
 = k+1 (always), 

therefore it is inappropriate to evaluate a full model with all candidate variables using 

Mallows C
p
 

Finally, one of the most common methods to evaluate models is to choose the model 

with the highest R2 or adjusted R2.  Generally, R2 is a good measure of how the model fits 

dependent variables but does not take into consideration over fitting.  Overfitted models may fit 

the training data very well but will perform badly with testing data.  Adjusted R2 penalizes 

additional independent variables and adjusts the metric accordingly.  In summary, models can 

be compared using AIC (lowest value is preferred), BIC (lowest value is preferred), Mallows Cp 

(closest to k+1 is preferred), and adjusted R2 (highest value is preferred).   

3.3.5 Pitfalls to Avoid 

An important pitfall to avoid when analyzing data is pre-determining the outcome and 

drawing weak conclusions from the data to support the hypotheses of the researcher.  

According to Rumsey, this is called “data mining”, where the analyst looks for any possible 
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relationship they can find and then stating their results after the fact [135].  The pitfalls of data 

mining as a concept are also highlighted in Air Force policy.  In the USAF’s Maintenance 

Metrics handbook, caution is advised when analyzing metrics [25].  The handbook states that 

over-emphasizing the improvement of a particular metric while ignoring the root cause of a 

problem may cause unintended consequences that improve the overall metric, but ultimately do 

not resolve the issue.   

Colloquially, this concept is called “metric-driven behavior”.  The handbook goes on to 

say that metrics are indicators that should be viewed in aggregate, used to identify trends, and 

not necessarily become pass/fail indicators [25].  This author asserts that metrics should be 

used to understand where potential problem areas may be, and to help identify the resources 

needed to investigate the root cause of issues that impede system performance. 

3.4 Case Study Reviews 

Once the mathematical model has identified potential indicators, case study 

methodology will be utilized to confirm relationships between events in the field and downtime 

due to supply issues.  This method was chosen due to its ability to provide a broader approach 

to examine the relationship between impediments to aircraft performance, and the supply 

drivers that contribute to aircraft status.  Case studies on 3 separate known supply issues will be 

reviewed to confirm or reject the mathematical model’s selection of the predictor variables.  A 

review of the historical predictor variables prior to the realization of aircraft downtime due to 

supply issues will be reviewed.   

It should once again be noted that the mathematical model resulting from this research 

will not be used to predict future aircraft downtime.  Rather, the predictor variables indicated by 

the model will be selected in order to help systems engineers and logisticians focus manpower 

and resources for their already established review methods.    
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Chapter 4 - Research Results 

This chapter details the results accomplished from applying the method described in 

Chapter 3.  Mathematical models were created to identify metrics closely linked to negative 

supply performance, specifically MICAP Incidents.  Due to operational security concerns, the 

raw data tables will not be published with this research, but the data is available through LIMS-

EV.  A review of the data available in LIMS-EV based on the list identified in the previous 

chapter was accomplished.  Aggregated data includes metrics that include data from all fielded 

weapon systems, which utilize data systems that feed into LIMS-EV.  It should be noted that 

new development programs early in the stages of life cycle development typically do not utilize 

LIMS-EV systems until after the low-rate initial production phase.  

4.1 Data Collection 

Operational and maintenance data was collected from the LIMS-EV repository over the 

designated period.  Aircraft and Operational metrics are stored in the Weapon Systems View 

module of LIMS-EV.  This data module provides the capability for the user to retrieve metric for 

any aircraft type, time, location, deployment status, and a multitude of other factors.  Data is 

easily filterable by aircraft model type or timeframe.  For the purposes of this analysis, data for 

all fleets was aggregated over the previously stated timeframe.  While the aggregation of this 

data may skew the results of the regression analyses, it is required to protect operational 

security concerns.  Additionally, the purpose of this research is to identify feedback loops for all 

aircraft fleets and model types.  Aggregating the data helps support the idea that this method 

will be applicable across the USAF fleets, regardless of model type.  Data was pulled from the 

period of March 2013 through March 2023.   

The data was then split into training and test data.  The training data (first six years of 

data) will be used to create the model.  The test data (last four years of data) will be used to 

validate the model with case studies.  A custom report was created utilizing LIMS-EV Business 
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Object (BOBJ) report function.  Object queries were then created to gather data from several 

different data universes.  An aggregated report utilizing LIMS-EV OSD and WSV universes 

returned data query results.   

4.2 Mathematical Modeling 

4.2.1 Model Limitations 

Aircraft performance metrics have many influencing factors, and many cannot be 

adequately captured in existing metrics.  This means that mathematical models will be 

incomplete or inaccurate.  Additionally, the variability in the datasets can produce some extreme 

outliers.  For example, a MICAP is a backorder that causes an aircraft to be mission incapable.  

If maintenance orders a part which is not immediately available, it gets backordered.  The 

backorder ages as time goes on.  If the aircraft is scheduled for a mission and the part is still 

unavailable, the backorder then gets coded as a MICAP.  MICAP orders can vary in 

measurement from 0 to an infinite (in theory) number of hours.  The extraordinarily large 

variance in this data population may influence and distort the results and error rates of any 

mathematical models developed from the data set.  Given the nature of what a MICAP is, and 

its presumed influence on downtime due to supply issues, it must be included in any model that 

is attempting to predict supply performance metrics.   

In addition to variance, multicollinearity is expected for the dataset in question.  Certain 

groups of metrics are known to be related, and mathematical methods will help down-select 

which of each group to utilize in the model.  For example, cancelled backorders and MICAPS 

are both subsets of backorders, which is a subset of the metric total requisitions.  The recur 

metric is a subset of repeat metric, which is a subset of breaks, which is a subset of failures.  

Backorder lines is the total number of requisitions on backorder (one backorder line may have a 

quantity of 10 parts), and backorder quantity is the total number of individual parts on order (the 
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sum of the quantities of all the backorder line items).  The multicollinearity involved if a model 

was built from such closely related data would be astronomical.   

Therefore, it is critical to once again assert that this model will not be suitable for 

predictive purposes.  Instead, this model will be used to identify potential early warning 

indicators for specific parts shortages that lie in the future.  The purpose is, of course, to give 

systems engineers, logisticians, and maintainers enough time to execute supply alternatives to 

parts with long lead times. 

4.2.2 Linearity 

A simple scatter plot of the available variables against one another was accomplished to 

determine if linear relationships exist.  As expected, the scatter plots indicate that there is an 

extraordinary amount of variance in the data sets, but some trends do begin to appear. These 

plots also create a way to visual check which variable more closely approximates a linear 

relationship to the independent variable.   

 

Figure 30: Initial Scatterplot, Linearity Check 

 

As shown in the scatterplot matrix, some of the candidate variables show a linear 

relationship to MICAP(I), while others appear to have either none or very weak relationships 

with MICAP(I).  None show egregious non-linear curves, although both Backorder Days and 

Backorder Count may either have some non-linear tendencies or outliers.  And both Air and 

Ground Aborts appear to have very weak relationships with MICAP. 
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4.2.3 Multicollinearity 

A check of the Pearson’s coefficient can reveal correlation between the dependent and 

independent variables, along with any correlated independent variables amongst other 

independent variables.  A heat map of the variables with density ellipses is shown below: 

 

 

Figure 31: Correlation Matrix and Heat Map 

 

The calculated Pearson’s coefficient correlation values are listed in the Appendix.  The 

corresponding correlation matrix for the dependent variables can be found in the appendix.  For 

variables that are correlated with an absolute value greater than 0.8, one of the variables should 
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be excluded from the model, or risk multicollinearity issues.  To determine which metric to drop, 

the correlation values between the independent variable and MICAP (I) was compared for each, 

and the lowest dropped.  In this case, Backorder Days and Backorder Count are highly 

correlated with a Pearson’s Coefficient of 0.947, which confirms the assessment from the initial 

regression indicated by high VIF values.  Backorder Days Pearson R is 0.62, and Backorder 

Count is 0.68, so Backorder Days was dropped from the model and Backorder Count was 

retained. 

This approach was used to compare the remaining variables, but none reached the 0.8 

threshold with each other (although some are very close).  This leaves the following candidate 

list available for regression: 

• Air Abort (N) 

• Breaks (N) 

• Canns (N) 

• Ground Aborts (N) 

• Backorder Count 

 

4.2.4 Normality 

Moving forward with the analysis requires a check for the type of distribution of the 

dataset variables.  As previously discussed, normality is not necessarily required for the 

distribution of the raw data set, but normality of the residual errors is required.  Additionally, 

datasets with non-normal distributions or extreme skewness or kurtosis may impact the 

distribution of the residuals.  And several of the statistical tests used to validate regression 

models require normal distributions.  Therefore, every attempt will be made to normalize the 

data prior to including it in the model.  The graphical representation of each variable’s 

distribution is shown below. 
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Figure 32: Distribution Plots 

 

The histogram illustrates that MICAP (I) is indeed normally distributed.  Skewness and 

Kurtosis values for each variable were also reviewed.  If  the skewness is in between -0.5 and 

0.5, the data can be assumed to be fairly symmetrical with its positive value indicating that the 

right tail is slightly larger than the left tail of the distribution [135], [160].  For data with kurtosis 

values between -1 and 1, the data supports normal univariate distribution [135], [161].  The 

coefficient of variance indicates there is some variance in the dataset, which was predicted 

based on the large variety of aircraft and operational patterns that is included.   Additionally, the 

Shapiro-Wilk tests was utilized to verify results.  For Shapiro Wilk, high values of p indicate that 

the null hypothesis (the data is normally distributed) can be accepted.  All were identified as 

within the limits of statistics related to normal distribution of data except for Backorder Count.     

Analyses of this type were conducted on all the variables to ascertain normality.  

Statistical summaries, plots and test results for all variables are in the Appendix.  Nearly all the 

variables show results that indicate normally distributed data.  However, both the Shapiro-Wilk 
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and Anderson Darling tests were out of significance limit for p-values, indicating the presence of 

non-normality for Backorder Count.   

It is important to note that according to the Central Limit Theorem (CLT), when the 

sample size is large enough, the distribution of the errors need not follow a normal distribution.  

The question of how large sample size should be to apply the rules of the CLT varies by 

researcher.  Ranges of sample size anywhere from 15 to 50 by various researcher [135], [156].  

With 72 data points, this dataset clearly exceeds those values.  But these rules of thumb should 

only be applied if the sample size of the dataset accommodates the quantity of independent 

variables in the model.  The issue is that when non-normality is observed, there are two 

potential reasons.  The first is that there is non-normality in errors, in which case the results 

regarding the relationship and significance of p-values may be inaccurate.  Second, the 

relationship between X and y may not be linear, which means a linear regression is not 

appropriate.  And third, even if the model errors are normal, and the relationship is linear, if the 

dataset is not normal the tests to ensure regressor predictor variable significance change 

dramatically, since many of those tests require normal distribution.  In the first case, a large 

enough sample size to apply the CLT overcomes the issue.  But in the others, non-normality 

would continue to be a problem for the model and likely lead to inaccurate inferences. 

Additionally, there are approximately 62,000 Backorders per month.  Several 

transformations were attempted including log, square root, inverse, etc. but none changed the 

distribution significantly towards a normal profile.  There are other, more complicated 

transformations available such as Box-Cox, but it would add complexity to the model.  Given 

that there are about 76,000 backorders per month and only 1200 engineers in the entirety of 

AFLCMC charged with providing weapon system support, the quantity of backorders is almost 

insurmountable in terms of being able to review them all [162].  To make Backorders a target 

metric to track and act upon, there would have to be additional screening criteria to scope the 
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workload.  Additionally, MICAP(I) is a subset of Backorder Count, which is adding noise to the 

model.  For these reasons, Backorder Count will be removed from consideration for the model.   

4.2.5 Best Subset - Multiple Linear Regression 

A best subset evaluation runs all possible models for the regression. It would be nearly 

impossible to accomplish with larger potential independent variables, but since the candidates 

were reduced via analysis of process and availability via the data repository, modern statistical 

software can easily accomplish analysis via this method.  The total number of variations is 2k, 

where k is the number of independent variables.  Given the advances in technology, statistical 

software can run hundreds, or even thousands of possible model simulations.  Even on a 

standard home-use computer, the small quantity of independent variables for this analysis 

indicates that a Best Subset approach utilizing least squares regression should be attempted.  

The model results are as follows: 

The models were reviewed to determine which had the best AICc values, BIC values, 

Mallows Cp values and R2 values.  It should be noted that the model with the best R2 value is 

the model with the most independent variables, due to the way in which R2 is calculated.  The 

subsequent analysis recommended different models based on the identified independent 

variables and evaluation criteria.  The resulting calculations can be seen in the appendix.  The 

results for the best models are listed in the table below: 

Table 3: Model Ranking 

 Model Ranking 

1 Canns (N), Air Aborts (N), Ground Aborts (N) Best R2 and RMSE 

3 Canns (N) 
Best for AICc BIC, and 
Mallows Cp 

 

Since the statically software makes it convenient, all three models were created.  

Results are in the appendix. Models did not pass significance tests for all of the independent 
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variables.  Specifically, Air Aborts and Ground Aborts were shown to be statistically insignificant.  

Model 3 passed in terms of significance for the independent variable, but a plot of the residuals 

by row indicates that autocorrelation is still an issue, as did the Durbin Watson test.     

 

Figure 33: Residuals by Row for Model 1 

 

4.2.6 Independence 

The models above indicated auto-correlation is an issue and it must be addressed 

before proceeding otherwise the model violates the assumption of independent observations.  

This can be confirmed by accomplishing a statistical test for 1st order autocorrelation, the 

Durbin-Watson test.  Since the values for the Durbin-Watson tests for all three test models are 

outside the rule of thumb for the test value (1.5 < d < 2.5), autocorrelation is confirmed as 

present in these models. 

Since we have a time series dataset, these models violate the independence 

assumption of linear regression, and the Durbin-Watson test of the model above confirms that 

theory.  Since the Durbin-Watson test returned d<1, the is cause for concern of positive serial 

correlation. Positive autocorrelation means an increase in the previous observation is correlated 

to an increase in the current observation.  To check how severe the autocorrelation is, scatter 

plots were created of the metrics by row (date) to inspect for patterns: 
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Figure 34: Scatterplots of Variables by 1st Order Lag 

 

These plots indicate MICAP (I) has significant time-based trending, but Canns (N) and 

Air Aborts also show indication of a linear relationship with time.  Breaks and Ground Aborts (N) 

show little, if any, trending based on time.  Another way to determine if autocorrelation exists is 

to plot the variable against its lag.  Below are graphs of the variables against their lags. 

  

Figure 35: Scatterplots of Variables vs 1st Order Lagged Variable 



115 
 

Again, the graphs confirm that there is significant correlation related to time for Air 

Aborts (N), Canns (N), and MICAP (I).  Ground Aborts (N) and Breaks (N) do not appear to 

have many, if any, trends related to date or timeframe.  Returning to the previously researched 

taxonomy of how aircraft metrics are related, it is known that maintenance discrepancies occur 

prior to parts being ordered.  Additionally, part requisitions (orders) can turn into backorders, 

which in turn convert to MICAPs depending on their impact to operations.  Given these 

relationships, it makes sense to explore correlations between MICAP (I) and the lagged values 

of MICAP, CANN. 

Since we have a confirmed autocorrelation, the next step is to determine whether the 

data is stationary or not.  A stationary time series is one whose properties do not depend on the 

time at which the series is observed [150].  For example, data with seasonal trends is non-

stationary.  The Augmented Dickey-Fuller (ADF) test is used to determine stationarity by a 

method focused on the unit-root of the data set [161].  Trends are another concern in time 

series data.  Time series data with trends are constantly increasing or decreasing.  Generally 

trends should be removed from the data prior to modeling or forecasting [163]. 

To resolve the issue of autocorrelation, the data should be evaluated as time series 

using Augmented Dickey-Fuller (ADF) testing and by reviewing the autocorrelation function (AC) 

and partial ACF plots.  JMP does this easily with a Time Series capability module, then returns 

the results of all three parts of the ADF test (Tau values for Zero Mean ADF, Single Mean ADF, 

and Trend ADF).  The estimated critical values of our sample size using Dickey-Fuller Tables 

are Zero Mean -1.95, Single Mean -2.93, and Trend -3.5.  The Zero Mean ADF is checked for 

the residuals, because their mean is zero, indicates that the test value is much more negative 

than the critical value (which is expected to be negative) and therefore we can reject the null 

hypothesis that a unit root exists and conclude that the data is stationary.   
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Figure 36: Augmented Dickey Fuller (ADF) Results with Autocorrelation Plots 

 

While confirmation of stationarity is good news because additional more complex 

transformations are not required, the model still must be adjusted to resolve the autocorrelation.  

To adjust for the autocorrelation and create a model that can pass the Durbin-Watson test, the 

lagged value of each variable was created, and regressed using the same stepwise procedure.  

The best models were generated and evaluated in the same process used previously.  The best 

possible model based on these statistics is:  
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Figure 37: Best Subset, with Lagged Variables 

 

This model shows significance for variables Canns (N), Lag MICAP (I) and Lag Canns 

(N).  To check for autocorrelation, the significance limit is retrieved from Durbin Watson tables, 

with a k-value of 4 representing the 3 regressor variables, a dL = 1.494 and dU = 1.785, at 5% 

significant [164].  Since the calculated Durbin Watson values are within the bounds of dL and 

dU, we can accept the null hypothesis that there are no unit roots, and the model does not have 

autocorrelation.   A plot of the residuals confirms normality for the model, as does the Shapiro-

Wilk test.  The results of the normality check for this model are in the Appendix. 
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The resulting equation based on this analysis includes regressor variables for the lag of 

MICAP(I), the lag of Canns(N) and the basic Canns(N) variable.  This yields the following 

equation: 𝑀𝐼𝐶𝐴𝑃(𝐼) = 4207.12 + 0.41 ∗ 𝐿𝑎𝑔𝑀𝐼𝐶𝐴𝑃(𝐼) − 1.88 ∗ 𝐿𝑎𝑔𝐶𝑎𝑛𝑛𝑠(𝑁) + 4.73 ∗ 𝐶𝑎𝑛𝑛𝑠(𝑁) 

Equation 14: Final Regression Equation 

 

4.2.7 Mathematical Modeling Summary 

The results of the mathematical and statistical analysis resulted in a multiple linear 

regression model that indicates statistical significance in the relationship between Canns (N) 

and MICAP (I).  While this model is acknowledged as incomplete with missing influential factors, 

the identification of a relationship between Canns and MICAP will be explored using case 

studies to validate the relationship and to determine what, if any, alterations to feedback data or 

process would help prevent MICAPs in the future by preventing Canns. While the lagged 

variables, adjustment for autocorrelation, normality, etc. are all critical parts of the model 

building process, those terms exist to help adjust the model to be better at predicting Y values 

based on independent variables input.  Since this research never intended to produce a reliable 

predictor model, the adjustor variables for lag are not as valuable as the positive identification of 

the relationship between Canns (N) and MICAP (I).    
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Chapter 5 - Case Studies and Discussion 

To identify appropriate case studies, specific items of supply with high cannibalization 

quantities were examined.  Quantities of Canns (N) and MICAP (I) were graphed over time to 

visually illustrate sequence of events for cannibalizations and MICAP occurrences.  It should be 

noted that since the testing data was identified for a specific timeframe independent of an item’s 

logistics demand cycle, variations in the cannibalization and MICAP relationships in terms of the 

graphical illustration are to be expected.  For example, the timeframe chosen could potentially 

begin at a point when MICAPs are high and could potentially exclude the timeframe where 

Canns first appeared.  Similarly, the timeframe chosen may show the start of a trend of 

cannibalizations, but not extend far enough in the future to show MICAP occurrences.   

It is also important that the test data be separate from the training data to preserve data 

integrity.  Therefore, the timeframe used for the original regression model will be excluded from 

the case study data set (i.e., test data).  To combat the ambiguity that visual representations of 

Canns (N) and MICAP (I) may display as graphed over time, the time series cross correlation 

values were calculated and graphed for each case study.  The maximum correlation at the 

indicated lag time is the anticipated time gained for logisticians to determine a resolution for the 

lack of parts in supply.   

A 2015 study indicated that the average production lead time for aviation parts is 

approximately 150 days, which is just less than 4 months [140].  If the correlated lagged value 

between Canns (N) and MICAP (I) is 4 months or larger, logisticians in theory would have 

enough time to get parts new parts in supply.  Additionally, any amount of positive lag buys time 

for operators, logisticians, maintainers, and engineers to determine an acceptable resolution to 

an impending supply issue.  Data for specific lead time for each unique item is not available to 

the public and therefore is not included in this analysis but could be a potential topic for future 

research. 
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5.1 Case Studies Selection 

The case studies in this section were chosen for their high Canns (N) quantities.  It 

should be noted that the range for “high” can vary from component to component, or weapon 

system to weapon system and is influenced by characteristics such as fleet size, quantity 

required per aircraft, life cycle or shelf-life intervals, and maintenance schedules.  While the 

aggregated USAF fleet data analyzed in the previous chapter showed thousands of MICAPs 

and Canns each month, these numbers are cumulative for the entire USAF fleet.  There are 

millions of component items available for review, and the larger number identified in the 

previous chapter will be much reduced for specific item analyses.   

Additionally, there is a limit to the number of cannibalization requests that units can 

execute.  After all, aircraft need to fly to accomplish their mission and if an item is cannibalized 

aircraft may be grounded until the item is reinstalled.  Therefore, cannibalization occurrences 

are likely to be limited to the number of aircraft down for otherwise scheduled maintenance, a 

number which will vary significantly per aircraft model.  A cannibalization in an aircraft fleet with 

only 10 aircraft will have very different impacts to performance than a cannibalization in an 

aircraft fleet with 100 aircraft.  As such, the case studies in this section were selected by utilizing 

the LIMS-EV top Cann (N) drivers list, which is generated from the supply chain headquarters 

office as a “hot topic” list under review of senior leaders.   

Data for case studies was retrieved from LIMS-EV.  This data is independent from the 

aggregated USAF fleet data used to create the initial regression model. The testing data covers 

a new timeframe of March 2019 through March 2023, a span which was not included in the 

original training data set.  Since this period covers the COVID-19 pandemic, it is anticipated that 

not all correlations may be supportive of the results from the statistical model.  While the results 

of the mathematical analysis are important, this research is less concerned with whether the 

statistical model predicts the MICAP (I) quantities and focuses on whether there is a trend 

between Canns (N) and MICAP (I), and whether or not monitoring Canns (N) information can be 
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leveraged to prevent negative aircraft events in the future.  Case studies are analyses of 

specific items of supply and their Canns (N) and MICAP (I) data trends over time.  For each 

case study item, LIMS-EV returned results for Canns (N) and MICAP (I) quantities during the 

specified timeframe.  The remainder of this chapter provides the results from that analysis.   

5.1.1 Computer Interface Unit 

The first component, a Computer Interface Unit, was chosen as a case study due to its 

listing as a top work unit code driver for Canns (N) occurrences.  This graph corroborates a 

positive relationship between Canns and MICAPs, specifically for this item of supply. 

 

Figure 38: MICAP and Canns Data for Computer Interface Unit 

 

As seen in the figure above, in early 2019 the fleet experiences Canns (N) occurrences 

and MICAP (I) occurrences which both go to zero before starting a period of sporadic 

occurrences.  After a relatively quiet period starting in late 2021, similar profiling occurs again 

beginning in 2022 and continuing through 2023. This indicates a cycle of having no parts on the 
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shelf, followed by increases in Canns (N), followed by increases in MICAP (I), followed by a 

resolution of the parts issue (trends downward until zero) until the cycle repeats itself.  This 

information can be leveraged by the systems engineer and logisticians to create a replacement 

schedule and demand forecasting for the item. 

To validate the trends that are visually illustrated in the previous graph, the correlation 

coefficient for each lagged timeframe (one month, two months, and so on) was calculated as 

described in Chapter 4.  Using this information, analysts can determine the maximum 

correlation value between Canns (N) and MICAP (I) and identify time-period lag at which the 

maximum correlation value occurs.  This indicates the most common time delay for this specific 

item of supply.  Results are shown in the table below. 

Table 4: Computer Interface Unit Correlation Across Time 

 

Lag 
Pearson’s 

Correlation 
Correlation vs. Lag 

-12 -0.1636  
-11 -0.1737  
-10 -0.2322  
-9 -0.1710  
-8 -0.0298  
-7 -0.0429  
-6 -0.0792  
-5 -0.1182  
-4 0.0281  
-3 -0.0640  
-2 0.0766  
-1 0.1457  
0 0.1563  
1 0.0919  
2 0.1277  
3 0.2271  
4 0.1806  
5 0.0445  
6 0.4305  
7 0.5401  
8 0.2823  
9 0.2649  
10 0.1393  
11 0.0992  
12 0.1062  
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Based on the correlation values calculated at each unique lagged time-period, the 

maximum highest correlation for this data set occurs at a lag of 7 months.  In a real-world 

setting, this information means that engineering analysts and logisticians would have a 7-month 

delay from the first occurrence of a cannibalization and its corresponding MICAP aircraft 

grounding event.  Compared to the average lead time of 4 months to produce an item, in this 

specific case if analysts had notified logisticians of the potential for a MICAP occurrence could 

have prevented an aircraft being listed as Not Mission Capable which would have a positive 

influence on overall fleet performance. 

5.1.2 Antenna Logic Converter   

The next item under review is an Antenna Logic Converter.   

 

Figure 39: MICAP (I) and Cann (N) for 62AK0,Antenna Logic Converter 

 

This item clearly has had on-going supply issue that began prior to the start of the data 

set.  The overarching trend of MICAP (I) events following Cann (N) events is upheld with this 
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data.  The cannibalization rate appears to be mostly steady state, and as a result MICAP (I) 

begins to accumulate.  This indicates that the level of cannibalization events is not enough to 

keep up with the demand of parts and MICAP (I) begins to outpace Cann (N).  This assumption 

is supported by a very narrow range of Canns (N); the maximum amount never exceeds a 

quantity of 3, while the number of MICAP (I) is unbounded.  The correlation between Cann (N) 

and MICAP (I) is validated by calculating the correlation values at each time-period lag.  The 

corresponding correlation vs. lag data is shown in the table below: 

Table 5: Antenna Logic Converter Correlation Across Time 

 

The table above verifies that the highest correlation occurs at a lag of 5 months.  The 

information from the graph and table above indicates that there is a lag between 

cannibalizations and MICAP occurrences at about the 5-month mark.  Compared to the average 

Lag 
Pearson’s 

Correlation 
Correlation vs. Lag 

-12 0.0376  
-11 0.0282  
-10 0.0382  
-9 0.1072  
-8 0.1140  
-7 0.2420  
-6 0.3214  
-5 0.3196  
-4 0.2741  
-3 0.1819  
-2 0.2549  
-1 0.2878  
0 0.3125  
1 0.2558  
2 0.1914  
3 0.2236  
4 0.2497  
5 0.3452  
6 0.3291  
7 0.2900  
8 0.1807  
9 0.1089  
10 0.1454  
11 0.0664  
12 -0.0061  
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production lead time of 4 months, analysts would have enough time to prepare for the potential 

demand on supply and work with suppliers to meet the future demand.   

5.1.3 Descent Reel 

The data below relates the logistics profile of an aircraft descent reel, which is used as 

emergency egress equipment for aircrew.  This type of part typically has a static life limit (i.e., an 

expiration date) independent of flight hours or functionality of the item.  Shelf life or expiration 

dates will effect the cannibalization profile of items since maintenance cannot cannibalize 

indefinitely unless new stock with un-expired dates are entered into the supply chain.  A graph 

of Canns (N) and MICAP (I) for descent reels is shown below. 

 

Figure 40: MICAP (I) and Cann (N) for Descent Reel 

 

This profile of MICAP (I) and Cann (N) events does an excellent job of illustrating how 

cannibalization events tend to be the precursor to MICAP (I) events.  There are a few 

0

5

10

15

20

25

30

35

201903 202003 202103 202203 202303

Q
U

A
N

T
IT

Y

MONTH

Canns (N) MICAP Incidents



126 
 

cannibalization events in early 2020 which result in a small blip of MICAP (I) events about 12 

months later.  Then MICAP (I) events begin to occur more frequently beginning in mid-2022 and 

accumulate quickly as cannibalization support can no longer keep up with the MICAP (I) 

demand.  This information is supported by the correlation calculations shown below. 

Table 6: Descent Reel Correlation Across Time 

 

The table above clearly shows a maximum correlation value at the 11-month lag time-

period.  This corresponds to other information logisticians provided about the descent reels, 

which is that they are check for expiration date once a year, similar to other safety equipment on 

the aircraft.  If the descent reel is within 12 months of expiration, a requisition is submitted to 

replace the item.  While technically the descent reel can be re-installed until the date fully 

expires, the corresponding requisition will trigger demand on the system and eventually go 

MICAP if it remains unfulfilled.  The logistician involved had a note related to this item stating 

Lag 
Pearson’s 

Correlation 
Correlation vs. Lag 

-12 -0.0716  
-11 -0.0680  
-10 -0.0868  
-9 -0.0303  
-8 -0.0164  
-7 -0.0093  
-6 -0.0198  
-5 0.0500  
-4 0.0562  
-3 0.1115  
-2 0.0739  
-1 0.1509  
0 0.2045  
1 0.1342  
2 0.2358  
3 0.2790  
4 0.2888  
5 0.2788  
6 0.2744  
7 0.2674  
8 0.3559  
9 0.3107  
10 0.4651  
11 0.5692  
12 0.3044  
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that several batch purchases had been procured over the last decade, and that Canns and 

MICAPs tend to occur in batches due to the non-random expiration dates of the most recently 

procured items.   

In a real-world situation, an analyst that identifies a potential MICAP issue based on a 

cannibalization request 11-months prior to the predicted event could easily beat the average 

production lead time of 4 months.  This would positively impact aircraft performance rates and 

avoid Not Mission Capable hours for downtime due to MICAP occurrences. 

5.1.4 Pneumatic System Valve 

The component part reviewed below is a pneumatic system valve.  The graph illustrates 

a significant period of Canns (N) events that occurred for a short time and then were followed by 

MICAP (I) events.   

 

Figure 41: MICAP (I) and Cann (N) for Pneumatic System Valve 
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It is interesting to note that the quantity of MICAP (I) increased quickly once the Canns 

(N) events dropped off. If maintainers were unable to cannibalize additional parts due to mission 

needs, the lack of resolution for MICAPs by fulfilling orders with cannibalized parts would yield 

an accumulation of MICAP (I) events.  The information visually represented in the graph above 

can be verified with a statistical calculation of correlation values shown in the table below: 

Table 7: Valve Correlation Across Time 

 

The table above indicates a maximum correlation coefficient at a lag of 10 months.  

Once again, a lag of this length easily exceeds the average production lead time of 4 months.  

In a real-world scenario, manufacturers would have more than double the amount of time 

required to produce parts to fulfill the demand placed on the supply system. 

Lag 
Pearson’s 

Correlation 
Correlation vs. Lag 

-12 0.0195  
-11 -0.1037  
-10 0.1088  
-9 0.1229  
-8 0.1167  
-7 0.0036  
-6 0.0330  
-5 0.0413  
-4 -0.0361  
-3 0.1866  
-2 0.1244  
-1 0.1182  
0 0.1628  
1 0.1894  
2 0.2370  
3 0.0710  
4 0.1899  
5 0.2165  
6 0.2075  
7 0.2697  
8 0.1036  
9 0.3439  
10 0.3559  
11 0.1332  
12 0.2020  
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5.1.5 Servo Motor 

The graph below illustrates the data for an aircraft servo motor.    Cann (N) and MICAP 

(I) data over the pre-determined time-period is shown in the graph below. 

 

Figure 42: Graph of MICAP and Canns for Servo Motor 

 

While some minor correlation between Cann (N) and MICAP(I) exists in the dataset 

shown in the previous figure, it is not quite as clear a pattern as in the other case study 

examples.  For this case study example, it is important to note that the pattern of 

cannibalizations appears to be trending downward at the start of the time-period under review.  

This may indicate that the item of supply had previously experienced a demand that out-paced 

the existing supply posture.  As with the previous example, this could skew the results of the 

graphs, although a weak correlation does appear to be visually present.  Reviewing the 

correlation and lag time-period data will help identify whether a mathematical relationship exists 

and results from that analysis are shown in the table below: 
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Table 8: Servo Motor Correlation Across Time 

 

The maximum correlation occurs at a lag of 2-months.  The table above also illustrates 

how short cycle lags can echo in the preceding or following time-periods (lags of 4, 6, 8, 

respectively.  While a 2-month lag time-period does give analysts and logisticians some 

additional lead time prior to the occurrence of MICAP (I), a lag of only 2 months does not 

exceed the average production lead time of 4 months for most aircraft parts and therefore would 

not fully prevent Not Mission Capable hours accumulating when MICAPs occur.  However, any 

warning, regardless of the how far in advance it occurs, could potentially save time on the back 

end of MICAP hour accumulation.  In a real-world scenario knowing a potential issue is pending 

would still save nearly two months of lead time for working on a resolution to the supply issue. 

Lag 
Pearson’s 

Correlation 
Correlation vs. Lag 

-12 -0.0622  
-11 -0.1564  
-10 -0.0633  
-9 -0.2027  
-8 0.0898  
-7 0.0363  
-6 0.2464  
-5 0.1505  
-4 0.2723  
-3 -0.0138  
-2 0.4062  
-1 0.0898  
0 0.4201  
1 0.2505  
2 0.4678  
3 0.1256  
4 0.3747  
5 0.0529  
6 0.2425  
7 0.1227  
8 0.2568  
9 -0.0578  
10 0.0084  
11 -0.0800  
12 0.0017  
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5.1.6 Avionics Interface Unit 

The final item under review is identified as an avionics interface unit (AIU).  The 

occurrences of Canns (N) and MICAP (I) for the AIU are shown below: 

 

Figure 43: MICAP vs. Canns Data for Avionics Interface Unit 

 

At first glance, the graphical data visually indicates a trend of cannibalizations and 

MICAPs.  Canns (N) began in early 2019 and continued over the next few months until MICAP 

(I) occurrences began to follow.  Since the cannibalizations continued through the entire time-

period, the MICAP (I) occurrences also continue throughout the remainder of the time-period.  

As with previous examples MICAP (I) occurrences tend to accumulate at a quick rate once 

Canns (N) begin to occur.  This indicates an on-going issue getting appropriate quantities of 

component parts in supply.  In this case, the maximum upper boundary of cannibalizations is 
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illustrated in the previous graph, the correlation coefficient for each lagged timeframe was 

calculated.  The results for the dataset with results are shown in the table below. 

Table 9: Avionics Interface Unit Correlation Across Time 

 

Based on the correlation values calculated at each unique lagged time-period, we can 

conclude that the maximum highest correlation for this testing data set occurs at a lag of 0.  This 

indicates that MICAPs are occurring so frequently that the cannibalization occurrences have 

very little influence, if any at all on the overall MICAP (I) occurrence rate.  This phenomenon can 

occur when the demand for the item out-paces the availability of aircraft to cannibalization to 

fulfill demand of aircraft not in a scheduled maintenance status.  As stated previously, items that 

are not good candidates for cannibalization, items that are unique to aircraft with small fleet 

sizes, or items where demand out paces the availability of cannibalizations may all fall into this 

category and produce a similar effect.  Since this case study was pulled from a list of high 

Lag 
Pearson’s 

Correlation 
Correlation vs. Lag 

-12 0.1611  
-11 0.1443  
-10 -0.0023  
-9 -0.0599  
-8 0.0658  
-7 0.1701  
-6 -0.0131  
-5 -0.0007  
-4 -0.1105  
-3 -0.0224  
-2 0.0848  
-1 0.1461  
0 0.3491  
1 0.0759  
2 0.2607  
3 0.0932  
4 0.1330  
5 0.0047  
6 -0.1488  
7 0.0936  
8 -0.1107  
9 0.1623  
10 -0.0595  
11 0.1346  
12 -0.0304  
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MICAP (I) drivers (not high cannibalizations), it suggests that waiting until MICAPs begin to 

accrue to address supply issues is not ideal. 

In a real-world setting, this information indicates that the on-going demand far outpaces 

the availability to fulfill that demand with a cannibalized item and system analysts should look for 

other ways to meet mission needs that include the expected downtime and lack of parts in their 

considerations.  With an average lag of 0 months between Canns (N) and MICAP (I) 

occurrences waiting until MICAP (I) events occur to act is imprudent.   

5.2 Case Study Summary 

This section summarizes the findings of the case studies listed in the previous sections.  

Recall that the average lead time for aircraft components is 4 months.  The calculated lag 

results from each case study are compared to the 4 months average lag to determine whether 

cannibalization data would be useful in preventing downtime. The findings re shown in the table 

below. 

Table 10: Case Study Summary 

Item 
Calculated 

Lag 
Is Lag Greater than 4-month 

Production Lead Time? 
Prevent Not Mission 
Capable Downtime? 

Computer Interface Unit 7 months Yes Yes 
Antenna Logic Converter 5 months Yes Yes 

Descent Reel 11months Yes Yes 
Pneumatic System Valve 10 months Yes Yes 

Servo Motor 2 months No Partially 
Avionics Interface Unit 0 months No No 

 

The results above are clear, in most cases using cannibalization occurrences as a 

trigger to begin supply workarounds and begin the logistics requisition process would prevent a 

MICAP from occurring and thus prevent Not Mission Capable (NMC) downtime due to supply 

(i.e., MICAP occurrences).  In 4 out of 6 cases, a MICAP event would have been completely 

prevented.  In 1 out of 6 cases, the logisticians would have gained 2 months, or approximately 

50%, of the required production lead time.  In 1 out of 6 cases, the MICAP occurrences were 
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already so frequent that the lag between cannibalizations and MICAPs is zero.  This illustrates 

that some parts cannot benefit from this method if there are already on-going sever supply 

issues where cannibalizations and MICAPs are frequent and consistent occurrences.  

However, a four-month period of downtime due to production lead time equates to 2,880 

Not Mission Capable Supply (NMCS) downtime hours.  With the 4 case studies above, and the 

1 case study that partially prevents downtime, a total of 12,960 total NMCS downtime hours 

could have been avoided.  Senior leaders tend to view downtime hours in terms of aircraft 

availability per year.  As an equivalent, 12,960 downtime hours is the equivalent of 1.5 aircraft in 

service for an entire year.   
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Chapter 6 - Conclusion, Recommendations, and Future Research 

It is nearly impossible to predict every disruption to aircraft operations an enterprise 

system may face over its lifetime.  Working level logisticians and engineers require actionable 

recommendations for specific supply chain issues to mitigate the issues of changes to 

supportability element factors.  The research presented herein identified a process whereby 

systems engineers can identify potential supply issues before downtime occurs.  This allows 

decision making at the lowest organizational level to assist operators, maintainers, logisticians, 

and systems engineers with the ability to adapt to changing environments and execute their 

mission. 

6.1 Summary of Research 

Chapter 1 introduced supporting information that identified an issue with DoD systems 

engineering life cycle management processes.  Despite many higher-level efforts to improve 

both organizational structure and management processes, industry experts agree that the 

process does not function efficiently.  This is primarily due to the fact that the complexity of 

organizational structure, inflexibility of procurement law and regulations, and long-life spans of 

enterprise systems all coalesce into a myriad of influencing factors that impact overall aircraft 

performance.  Much of the training or improvement efforts are aimed at improving processes at 

a higher level, training guidance for the work force, or for realigning organizational structure to 

facilitate communication issues. 

Chapter 2 is built on the research by quantifying the impact of the problem and 

identifying what improvements had been attempted in the past.  Industry experts all agree that 

weapon system performance is impacted by inefficient organizational structure, acquisition 

policy, and regulatory processes.  This Chapter also identified research for this topic from both 

third party external to the Government industry organizations as well as the academic 

community and professional organizations.   But most of this research focused on improving 
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lagging indicators in the form of long-term trend performance monitoring.  There was very little 

research on improving leading indicators, and none on specifically leveraging data collected 

from on-aircraft leading indicator performance events to leading indicator supply metrics.   

Chapter 3 provided a detailed methodology to gather data generated during operations, 

particularly data that spans different career fields, regulatory guidance, and stakeholder 

ownership.  It was surprising to learn that so few performance metrics can be linked directly to 

negative events on aircraft.  And even fewer metrics can be linked to both negative aircraft 

events and negative supply events.  Then, a statistical method was identified to determine 

potential relationships amongst the various performance metrics, focusing on operational use 

data and supply chain logistics data.  This statistical method was used to determine which 

metrics to focus manpower and attention on, since resource constraints prevent reviewing all 

the data all the time.  This chapter also identified potential ways to incorporate this information 

into existing feedback loops for systems engineers to inform supply of impending parts 

shortages, primarily leveraging the Logistics Requirements Development Process (LRDP) and 

Reliability Centered Maintenance (RCM) policy and processes which are already required and 

utilized. 

Chapter 4 provided the results of the statistical modeling and data analytics process.  

The results indicated that there is a link between Cann (N) occurrences and MICAP (I) drivers 

for negative aircraft downtime events.  Evidence suggests that this relationship in the data can 

be exploited to help working level logisticians and engineers prevent downtime drivers. 

Chapter 5 discussed the application of these results.  The top drivers for both MICAP (I) 

and Cann (N) were reviewed to compare results from the proposed model and causal 

relationship to data utilized in the original statistical analyses.   The research upheld the 

mathematical analysis results that indicated a relationship between Canns (N) occurrences and 

MICAP (I) drivers.  This chapter also recommended real-world steps that working level systems 

engineers can take to prevent downtime drivers.  Finally, the research for each case study that 
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identified the item-unique lag time between cannibalizations and MICAP supply downtime hours 

was quantified via a time series cross correlation graph which identified the specific lag for each 

item.  This item specific lag time was compared to the average production lead time for aircraft 

parts procurement to determine whether monitoring cannibalizations would serve as appropriate 

lead time for logisticians to potentially get parts in supply.   

6.2 Recommendations 

For immediate action at the working level, systems engineers tasked with the review of 

maintenance actions under the LRDP framework or with component part analysis under RCM 

policy should take action to review operational use data as part of on-going life cycle validation 

procedures.  This data can help provide insight into component related downtime and can shed 

light on any potential supply issues that may be on the horizon.  Since analysis of component 

failure is already within the scope of their normal life cycle management activities, this review of 

Canns (N) data can be incorporated with ease to existing processes.  Once identified, this 

information should be shared with logisticians through LRDP regularly bill of work reviews, or via 

the item manager assigned to the NSN.  Logisticians should act when they receive this 

information to update their forecasting levels as part of regular file maintenance and forecasting 

efforts that happen continually throughout the years. 

6.3 Future Research 

For future research, process designers and systems architects should review the 

collection and digital links between operational use data, maintenance data, and supply chain 

data.  It became clear from this research that most supportability elements such as logistics, 

training, and even maintenance records have performance measures or metrics that do not link 

to operational need or performance of the physical product (aircraft), let alone are included in 

the formally documented requirements for that physical system.  Going forward, the Air Force 

needs to recognize that all career fields and supportability elements exist to support the 
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overarching mission, and ultimately provide support to the operators and physical products that 

execute that mission.  The missing relationship links between supportability elements and the 

Warfighter causes communication issues, lack of understanding of how workload impacts 

performance, and inefficiencies in life cycle management processes.  Future research should 

explore what the appropriate measures and metrics are that link all areas of operations, 

logistics, and maintenance to performance of the product (aircraft) or mission (operational 

need). 

As the Air Force develops the next generation of physical products such as aircraft or 

support equipment, digital systems, intelligence networks, and organizational frameworks it 

should focus on linking all activities to mission need and enterprise system requirements.  The 

Air Force should look at the enterprise system holistically to develop metrics and data analytics 

programs that link all supportability elements directly to the performance of the product they are 

supporting.  The Air Force should consider updating its data collection policies to mandate that 

data collected be tied to the operational need and linked to performance of both the physical 

products and supportability elements, and the whole enterprise system.  There is both process 

research and database development research that should be accomplished to determine the 

best path forward to accomplish these goals.  While this research has provided a method to 

work around the gaps in communication between organizations, career fields, and data systems 

a more holistic approach to weapon system life cycle management from an enterprise system 

level would benefit all systems within the Air Force. 

6.4 Conclusion 

The results of the feedback process analysis, operational data, logistics data, and 

aircraft records along with the results of the mathematical model and case studies show a 

definitive link between Cannibalizations and parts shortages in the field.  This research has 

accomplished the following: 
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• Synthesized a useful model for aircraft systems engineering process for operations 

and sustainment phase activities. 

o Connected Systems Engineering Vee with continuous improvement leveraging 

existing Government data processes. 

• Created a new link between operational and logistics data. 

o Operational Data: Cannibalizations (Cann) 

o Logistics Data: Mission Impaired Capability Awaiting Parts (MICAP) 

• Developed an innovative method to prioritize systems engineering manpower for 

performance data analyses.  

o Prioritize systems or components with the highest Cann rates. 

• Demonstrated a novel ability to update supply requirements and leverage the 

Centralized Asset Management (CAM) process to do so. 

o Engineers analyze parts with large cannibalization occurrences, inform 

stakeholders of future demand forecasting impacts. 

o Logisticians update appropriate supply inventory requirements. 

With the newly developed process for continually monitoring system performance for 

each supportability element, systems engineers and other stakeholders can investigate their 

own operational data to tie performance to each support element.  In addition to the 

accomplishments above, the research questions were answered: 

• What existing operational data that can be leveraged as feedback to assess or 

improve performance of fielded systems? 

o Cannibalization data can be used to start parts shortage mitigation earlier.   

o In the example case studies, all examples would either prevent downtime 

completely or reduce downtime by allowing supply to procure items in 

anticipation of demand.  However, the research concluded that items already 
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experiencing high levels of MICAPs or cannibalizations would benefit less from 

this technique. 

• What is a process framework for identifying applications of operational and logistics 

data for performance improvements? 

o Continuous validation of stakeholder requirements as part of the Systems 

Engineering Vee model. Systems Engineers can utilize cannibalization data to 

prioritize review of items at risk for causing Not Mission Capable Supply (NMCS) 

downtime; and can provide this information as feedback to logisticians via the 

existing Logistics Requirements Development Process (LRDP) which is a 

required process for all aircraft fleets. 

• What performance improvements to fielded systems can be realized by utilizing the 

operational data and process framework? 

o The Case Studies validate the method of using Cannibalization data to prevent 

downtime due to parts shortages.   

o In 4 of the 6 case study examples, downtime would have been completely 

prevented at value of approximately 4 months per item equating to 2,880 

downtime hours avoided per item.   

o In 1 of the 6 case studies a gain of two months, which is 50% of the downtime 

prescribed to production lead time.   

o This equates to 12,960 downtime hours prevented by using the prescribed 

method (equates to 1.5 aircraft per year). 

The methods determined by this research utilize existing DoD processes for logistics 

forecasting, systems engineering analysis, and data collection.  Implementing these methods 

will improve fleet performance without major changes to organization or regulatory requirements 

and allows systems engineers to use proven data methods to support logistics requirements. 
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Appendix 

Table 11: Operations, Supply, and Maintenance Metrics 

Metric Category Type 

12 Hour Fix (%) Leading Mx 

12 Hour Fix (N) Leading Mx 
24 Hour Fix (%) Leading Mx 
24 Hour Fix (N) Leading Mx 
8 Hour Fix (%) Leading Mx 
8 Hour Fix (N) Leading Mx 

Actions - 6 (No Defect) (N) Neither Mx 
Adj Sorties Scheduled (N) Neither Operations 
Administrative Lead Time Lagging Supply 
Air Abort (%) Leading Operations 
Air Abort (N) Leading Operations 
ASD (H) Neither Operations 
ATC Deviations (N) Neither Operations 

Available (%) Lagging Performance 
Available (H) Lagging Performance 
Available (N) Lagging Performance 
Available Attain (%) Neither Operations 
Available Std (%) Neither Operations 

Backorder Count Leading Supply 

Backorder Days Leading Supply 
Breaks (%) Leading Mx 
Breaks (N) Leading Mx 
Cann Hours (H) Leading Supply 
Cann Rate Hours (%) Leading Mx 
Cann Rate Sorties (%) Leading Mx 

Cann Rate Sorties Std (%) Neither Mx 
Cann (N) Leading Supply 
Cat 1 Hangar Queen (N) Neither Mx 
Cat 2 Hangar Queen (N) Neither Mx 
Cat 3 Hangar Queen (N) Neither Mx 

Customer Wait Time (Avg) Lagging Supply 
Customer Wait Time (Days) Lagging Supply 

Cx BO Neither Supply 
Depot (%) Lagging Performance 
Depot (H) Lagging Performance 
Depot (N) Lagging Performance 
Depot Attain (%) Neither Performance 

Exercise Deviations (N) Leading Operations 
Failures - 1 (Inherent) (N) Leading Mx 
Failures - 2 (Induced) (N) Neither Mx 
Ferry Count (N) Neither Operations 
Flying hours / TAI by Month (H) Neither Operations 

FMC (%) Lagging Performance 
FMC (H) Lagging Performance 
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Metric Category Type 

FMC (N) Lagging Performance 
FSE (%) Leading Operations 
GAA Deviations (N) Leading Operations 
GAB Deviations (N) Leading Operations 
GAC Deviations (N) Leading Operations 
Ground Abort (%) Leading Operations 
Ground Abort (MX) (%) Leading Mx 

Ground Abort (MX) (N) Leading Mx 
Ground Abort (N) Leading Mx 
HHQ Deviations (N) Leading Operations 
Hours Flown (H) Neither Operations 
Issue Effectiveness Rate Lagging Supply 

MC (%) Lagging Performance 
MC (H) Lagging Performance 
MC (N) Lagging Performance 
MC Goal (%) Neither Operations 
MC Std (%) Neither Operations 

MICAP (H) Leading Supply 

MICAP (I) Leading Supply 

MMH / FH (Total) (N) Lagging Mx 
MMH / FH (Unit) (N) Lagging Mx 
MTBF - 1 (Inherent) (H) Lagging Mx 
MTBF - 2 (Induced) (H) Lagging Mx 
MTBM - 6 (No Defect) (H) Lagging Mx 

MTBM Total (H) Lagging Mx 
MTX Deviations (%) Leading Mx 
MTX Deviations (N) Leading Mx 
NMC (%) Lagging Performance 
NMC (H) Lagging Performance 
NMC (N) Lagging Performance 
NMCB (%) Lagging Performance 

NMCB (H) Lagging Performance 
NMCB (N) Lagging Performance 
NMCB (NA) (%) Lagging Performance 
NMCB (NA) (H) Lagging Performance 
NMCB (NA) (N) Lagging Performance 

NMCB (NA) Attain (%) Neither Performance 
NMCBS (%) Lagging Performance 
NMCBS (H) Lagging Performance 
NMCBS (N) Lagging Performance 
NMCBSA (%) Lagging Performance 
NMCBSA (H) Lagging Performance 
NMCBSA (N) Lagging Performance 

NMCBU (%) Lagging Performance 
NMCBU (H) Lagging Performance 
NMCBU (N) Lagging Performance 
NMCBUA (%) Lagging Performance 
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Metric Category Type 

NMCBUA (H) Lagging Performance 
NMCBUA (N) Lagging Performance 
NMCM (%) Lagging Performance 
NMCM (H) Lagging Performance 
NMCM (N) Lagging Performance 
NMCM (NA) (%) Lagging Performance 
NMCM (NA) (H) Lagging Performance 

NMCM (NA) (N) Lagging Performance 
NMCM (NA) Attain (%) Neither Performance 
NMCMS (%) Lagging Performance 
NMCMS (H) Lagging Performance 
NMCMS (N) Lagging Performance 

NMCMSA (%) Lagging Performance 
NMCMSA (H) Lagging Performance 
NMCMSA (N) Lagging Performance 
NMCMU (%) Lagging Performance 
NMCMU (H) Lagging Performance 
NMCMU (N) Lagging Performance 
NMCMUA (%) Lagging Performance 

NMCMUA (H) Lagging Performance 
NMCMUA (N) Lagging Performance 
NMCS (%) Lagging Performance 
NMCS (H) Lagging Performance 
NMCS (N) Lagging Performance 

NMCS (NA) (%) Lagging Performance 
NMCS (NA) (H) Lagging Performance 
NMCS (NA) (N) Lagging Performance 
NMCS (NA) Attain (%) Neither Performance 
NMCSA (%) Lagging Performance 
NMCSA (H) Lagging Performance 
NMCSA (N) Lagging Performance 

Off Equip MHs (H) Neither Mx 
Off Equip MHs General (H) Neither Mx 
Off Equip MHs Unit (H) Neither Mx 
On Equip MHs (H) Neither Mx 
On Equip MHs General (H) Neither Mx 

On Equip MHs Unit (H) Neither Mx 
OPS Deviations (%) Leading Operations 
OPS Deviations (N) Leading Operations 
OTH Deviations (N) Leading Operations 
PMC (%) Lagging Performance 
PMC (H) Lagging Performance 
PMC (N) Lagging Performance 

PMCB (%) Lagging Performance 
PMCB (H) Lagging Performance 
PMCB (N) Lagging Performance 
PMCM (%) Lagging Performance 
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Metric Category Type 

PMCM (H) Lagging Performance 
PMCM (N) Lagging Performance 
PMCS (%) Lagging Performance 
PMCS (H) Lagging Performance 
PMCS (N) Lagging Performance 
PRD (N) Leading Operations 
Production Lead Time Lagging Supply 

Recur (%) Leading Mx 
Recur (N) Leading Mx 
Repeat (%) Leading Mx 
Repeat (N) Leading Mx 
Requisitions Leading Supply 

Sorties / TAI by Month (N) Neither Operations 
Sorties Flown (N) Neither Operations 
Sorties Scheduled (N) Neither Operations 
Stock Effectiveness Rate Lagging Supply 
SUP Deviations (N) Leading Operations 
Support General MHs (H) Neither Mx 
SYM Deviations (N) Leading Operations 

TAI (H) Neither Operations 
TAI (N) Neither Operations 
TMMHs (H) Lagging Mx 
TNMC (%) Lagging Performance 
TNMC (H) Lagging Performance 

TNMC (N) Lagging Performance 
TNMCM (%) Lagging Performance 
TNMCM (H) Lagging Performance 
TNMCM (N) Lagging Performance 
TNMCM Goal (%) Neither Performance 
TNMCM Std (%) Neither Performance 
TNMCS (%) Lagging Performance 

TNMCS (H) Lagging Performance 
TNMCS (N) Lagging Performance 
TNMCS Goal (%) Lagging Performance 
TNMCS Std (%) Neither Performance 
Total Abort (%) Neither Performance 

Total Abort (N) Leading  
Total Actions (N) Neither Mx 

Total Backorders - Lines Neither Supply 

Total Backorders - Units Neither Supply 
Total Issues w/Requisition - 
Lines Neither Supply 
Total Issues w/Requisitions 
(Units) Neither Supply 

Total MAJCOM Deviations (N) Leading Operations 
Total Repair Cycle Time Lagging Supply 
TPMCM (%) Lagging Performance 
TPMCM (H) Lagging Performance 
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Metric Category Type 

TPMCM (N) Lagging Performance 
TPMCS (%) Lagging Performance 
TPMCS (H) Lagging Performance 
TPMCS (N) Lagging Performance 
Unit Possessed (H) Lagging Operations 
Unit Possessed (N) Lagging Operations 
UNPR (%) Lagging Operations 

UPNR (H) Lagging Operations 
UPNR (N) Lagging Operations 
UPNR Attain (%) Neither Operations 
USE / FH (H) Lagging Operations 
USE / Sorties (N) Lagging Operations 

UTE Adds (N) Neither Operations 
UTE Cancellations (N) Neither Operations 
WXX Deviations (N) Leading Operations 

 

 

Table 12: Pearson's Coefficient for Variables 

 MICAP (I) Canns (N) Breaks (N) Air Aborts (N) 
Ground 

Aborts (N) 

Backorder 

Days 

Backorder 

Count 

MICAP (I) 1.0000 0.8394 0.5788 0.1943 0.4232 0.6212 0.6831 

Canns (N) 0.8394 1.0000 0.7060 0.2849 0.4345 0.3568 0.4578 

Breaks (N) 0.5788 0.7060 1.0000 0.5923 0.6203 0.0368 0.0962 

Air Aborts (N) 0.1943 0.2849 0.5923 1.0000 0.6046 -0.2748 -0.2181 

Ground Aborts (N) 0.4232 0.4345 0.6203 0.6046 1.0000 0.2131 0.1849 

Backorder Days 0.6212 0.3568 0.0368 -0.2748 0.2131 1.0000 0.9568 

Backorder Count 0.6831 0.4578 0.0962 -0.2181 0.1849 0.9568 1.0000 
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Figure 44: MICAP (I) Normality Check 
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Figure 45: Canns (N) Normality Check 
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Figure 46: Breaks (N) Normality Check 
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Figure 47: Air Aborts (N) Normality Check 
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Figure 48: Ground Aborts (N) Normality Check 
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Figure 49: Backorder Count Normality Check 
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Figure 50: Best Subset Model Comparisons 
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Figure 51: Best Subset Results: Model 1 and Model 2 
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Figure 52: Normality Check, Model 4 (Lagged Variables) 

 

 

 


