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Abstract— This work considers kinematic failure tolerance
when obstacles are present in the environment. An example is
given using a fully spatial redundant robot, the seven degree-
of-freedom Mitsubishi PA-10. This article addresses the issue
of finding a collision-free path such that a redundant robot
can successfully move from a start to a goal position and/or
orientation in the workspace despite any single locked-joint
failure at any time. An algorithm is presented that searches for a
continuous obstacle-free monotonic surface in the configuration
space that guarantees the existence of a solution. The method
discussed is based on the following assumptions: a robot is
redundant relative to its task, only a single locked-joint failure
occurs at any given time, the robot is capable of detecting a
joint failure and immediately locks the failed joint, and the
environment is static and known.

[. INTRODUCTION

Tasks carried out by robots in hazardous or remote envi-
ronments preclude human intervention. A robot failure in a
remote environment would mean an inability to immediately
complete a desired task and an unexpected delay due to robot
repair. In a hazardous environment, a robot failure during task
execution could also pose significant danger. It is therefore
helpful if a robot has the ability to gracefully recover from a
failure and continue, albeit in a degraded manner, to complete
the task at hand.

Failure-tolerant path planning is a robot motion planning
strategy that gives redundant robots the ability to gracefully
accommodate joint failures. This has been the focus of many
studies in the past decade. Most of these studies have involved
optimizing a robot configuration at a given time so that
any joint failure would have the least impact on the robot
operation. The earliest work on kinematic failure tolerance [1]
used the minimum singular value of the manipulator Jacobian
matrix as a worst-case measure of a robot’s tolerance to a
joint failure. The nature of robot joint failures that have been
studied include locked-joint [2]-[4] and free-swinging joint
failures [5]. A real-time implementation of kinematic failure
tolerance was demonstrated in [4].

Other studies related to enhancing a robot’s tolerance to
failure include: failure detection [6]-[8], low-level failure
avoidance and recoverability [9], [10], layered failure tolerance
control structure [11]-[13], failure tolerance by trajectory
planning [14], [15], and kinematic failure recovery [16].
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Fig. 1. The configuration space for a single degree of redundancy robot
shown with a start and a goal self-motion manifold. All the failure planes
corresponding to an obstacle-free start configuration, @, intersect a contin-
uous obstacle-free portion of the goal self-motion manifold, -y,. The failure
cube contains @5 and ~y,. The failure surface corresponding to 85, shown as
a web-like network of paths, is identified by connecting 8 to points on v,
via monotonic paths within the failure cube. Each node along -y, defines an
intersection with either a failure plane or a face of the failure cube.

Although the presence of obstacles in the environment
greatly affects a kinematic failure tolerance algorithm, this
issue has not been given much attention in the past. One
of the earliest works in this area [14] exhaustively checked
every possibility of failure at every instance in time as the
robot plans to move from a start to a goal workspace location
in order to guarantee collision-free paths for any joint failure
that may occur. However, the proposed method is prohibitively
expensive in terms of computation time. In more recent work
[17], a method was introduced that searches for a continuous
obstacle-free monotonic surface from the start to the goal in
the configuration space. The existence of this obstacle-free
surface guarantees that the given robot can successfully reach
a goal workspace position and/or orientation from an obstacle-
free start configuration despite any single locked-joint failure
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at any time, without exhaustively checking every possibility
of failure at every instance in time. In this work, the concept
presented in [17] is expanded from a planar three degree-of-
freedom robot to a seven degree-of-freedom redundant robot,
the Mitsubishi PA-10.

This work proceeds as follows. Section II defines some
important terms used in this paper. Section III states the
conditions that guarantee the existence of a solution and the
algorithm for finding a solution. Section IV presents methods
for generating monotonic paths to identify a monotonic failure
surface. Section V presents a global failure tolerance measure.
Section VI presents the Mitsubishi PA-10 robot example.
Lastly, Section VII gives the summary and conclusion of this
work.

II. DEFINITION OF TERMS

Let n denote the number of degrees of freedom (DOFs)
of a robot and let m denote the number of DOFs of a robot’s
workspace. A robot is said to be kinematically redundant when
n > m, and its degree of redundancy is » =n —m. For a
kinematically redundant robot, a given end-effector position
and/or orientation, denoted x, generally corresponds to an
infinite number of configurations in the configuration space
(C-space). The set of configurations in C-space that result in
the same x is called the pre-image of x, denoted f~!(x). The
pre-image can be written as a union of disjoint connected sets

“x) = Lj M. (1)

The symbol M, denotes the i-th r-dimensional self-motion
manifold in the inverse kinematic pre-image such that
M, N M, =0 when i # j, while n,, denotes the number
of self-motion manifolds [18].

A start self-motion manifold, denoted M, corresponds to a
start position and/or orientation, denoted x,, while a goal self-
motion manifold, denoted M, corresponds to a goal position
and/or orientation, denoted x,. Fig. 1 shows a pair of single
dimensional start and goal self-motion manifolds for a robot
with » = 1. The dark portions of the self-motion manifolds
denote configurations of the robot that are in contact with
obstacles. A continuous obstacle-free portion of the goal self-
motion manifold is denoted -, while an obstacle-free start
configuration is denoted 6. A point on 7y, is denoted 6.

A failure hyperplane, denoted H;, is an (n—1)-dimensional
hyperplane resulting from a locked-joint failure of joint 4.
A failure hyperplane associated with 6, denoted H;(6y), is
given by

Hz(ei) = {0 | 0; = 981’} )
where 0; denotes the i-th component of 6 in a failure-induced
C-space and 6,; denotes the i-th component of 8. Fig. 1
shows @, with its corresponding failure planes.

A failure hypercube, denoted V, is a hypervolume in C-
space that contains a 65 and a <, such that the failure

el
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Fig. 2. A monotonic surface is defined as a surface where there are no closed
contours along the intersection with any plane parallel to its failure planes.
A monotonic surface has no internal local minima or maxima with regard to
any 6;-axis.

hyperplane H;(85) intersects ~y, for i = 1,...,n. A failure
hypercube associated with €5 and -, has the form

V:{0|9H;§9i§9ﬂgfori:1,...,n}. (3)

Thus, a failure hypercube is composed of all configurations
whose joint component 6#; lies within the bounds of the
lower bounding failure hyperplane, denoted H!, and upper
bounding failure hyperplane, denoted HY, for ¢ = 1,...,n
whose locations are defined by the Values of 0Hz and HHu
respectively. Two bounding failure hyperplanes are defined by
the failure hyperplanes associated with 6 that first intersects
Ygs denoted HO(G ), and that last intersects Vg denoted
H1(0 ). All the other failure hyperplanes intersect «y, within
the bounds of these two bounding failure hyperplanes. The
rest of the bounding failure hyperplanes are defined by the
extremal points of ~,, namely, the lower bounding failure
hyperplane,

H; = {6 | 05 = min(y,)}, )
and the upper bounding failure hyperplane,
Hi' = {0 | 0uy = max(v)}- (5)

Note that the entire volume of a failure hypercube is not
typically obstacle free.

A failure surface, denoted S, is a continuous obstacle-
free monotonic surface within a failure hypercube, V, that
contains @5 and is bounded by three curves: y,, an obstacle-
free monotonic curve lying in H?(6y), and an obstacle-free
monotonic curve lying in Hj(6,). Fig. 1 shows a web-like
network of paths that represent a failure surface within a
failure cube. It is identified by connecting monotonic paths
from 65 to points on <y,. Straight-line connections are used
to check for continuity of obstacle-free space between paths.
The intersection of a monotonic surface with any hyperplane
parallel to its failure hyperplane is a non-closed curve. Thus
a monotonic surface, as shown in Fig. 2, does not have any
local internal minima or maxima with regard to any 6;-axis.

III. CONDITIONS FOR THE EXISTENCE OF A SOLUTION
AND ALGORITHM

In this section, two conditions are presented that would
guarantee the existence of a solution to kinematic failure toler-
ance with obstacle avoidance. The algorithm of the proposed
method is also presented.
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A. Conditions

A necessary condition is derived to identify the set of
feasible @,’s and eliminate those that are not feasible.

Necessary Condition. A given obstacle-free start configu-
ration, 6, is considered a feasible start configuration if all the
corresponding failure hyperplanes associated with @ intersect
a continuous obstacle-free portion of the goal self-motion
manifold, Vg0 that is,

H;(0,)N~y, #0, forall i =1,...,n. (6)

This ensures a possibility of reaching -, despite a joint
failure at 6,. Note that this is equivalent to x, being in
the fault-tolerant workspace [3] of x,. From all the feasible
configurations, a sufficient condition is derived that guarantees
the existence of a solution.

Sufficient Condition. Consider a given failure hypercube,
V, containing a feasible obstacle-free start configuration, 6,
and a continuous obstacle-free portion of the goal self-motion
manifold, Vg If a failure surface, S, which is a continuous
obstacle-free monotonic surface inside the failure hypercube,
V, exists, then an obstacle-free path to the goal is guaranteed
for any single locked-joint failure at any given time despite
the presence of obstacles in the workspace.

B. Algorithm

The step-by-step procedure for implementing failure-
tolerant path planning with obstacle avoidance is enumerated
in the following.

1. Determine M, and M, from the given x, and xg,
respectively.

2. Identify 65 and 7,.

3. Check for intersections of the failure hyperplane H;(8y)
with 7, for i = 1,...,n. (Note that this step uses the
necessary condition in Section III-A).

4. Check for the existence of a failure surface, S. This is
done by generating monotonic paths from feasible 8 to
points on 7y,. Straight-line connections between paths
are used to check for the continuity of obstacle-free
space between paths. The resulting obstacle-free web of
paths represents the failure surface, S. (This step utilizes
the sufficient condition in Section III-A).

Techniques presented in [19]-[21] could be used to check
for collision-free space in monotonic path generation. The
specific technique used in this work for monotonic path
generation is discussed in the following section. Given that
S exists, to move from x, towards x,, the manipulator
configuration traverses from 6, along the continuous web of
paths that represents S toward -,. Because S is known to be
collision free, as long as the manipulator configuration remains
on the surface, the manipulator would be free from collision
and at the same time it can reach the goal for any single
locked-joint failure at any time. If no S exists, then it is not
guaranteed that the robot can successfully complete its task
for any single locked-joint failure with the given obstacles in
the environment.

The computational complexity of the proposed algorithm
is highly dependent on the method used for computing the
start and goal self-motion manifolds, and the method used for
collision detection. For r» = 1, the computational complexity
is O(mn?) + O(mnp) where p is the number of obstacles
in the workspace. The first term is the contribution for the
computation of the self-motion manifolds, while the second
term is the contribution due to collision detection.

IV. GENERATING MONOTONIC PATHS

Parametric monotonic polynomials p(t) are used to generate
paths from 6 to ,. Three types of parametric monotonic
polynomials are used: linear, quadratic, and cubic.

A polynomial p(t) is monotonic on a region of interest
provided that its derivative, p’(t), does not change sign in
that region. In particular, a polynomial p(t) is monotonic on
[0, 1] provided that the zeros of p’(¢) do not occur in the open
interval (0,1). A linear parametric equation p(t) = at + b
is monotonic throughout because its derivative p/(t) = b is
constant.

A. Generating Monotonic Quadratic Polynomials

It is easy to see that any quadratic polynomial p(t) satisfying
the constraints p(0) = 6,; and p(1) = 6y, has the form

p(t) = 05:(1 —t) + 04t + at(l —t) (7)

where the parameter « can be any real number and 0,; denotes
the i-th component of 8,. Now a polynomial is monotonic on
the closed interval [0, 1] if and only if its derivative does not
change sign on the open interval (0, 1). Since the derivative
of a quadratic polynomial represents the equation of a line, it
follows that we only need to check the endpoints of the interval
[0, 1] to determine the set of a’s that makes (7) monotonic on
[0, 1]. Therefore, for (7) to be monotonic on [0, 1], p’(0) =
04i—0s;+a and p'(1) = 04 —0s; — o should not have opposite
signs. This is clearly true if and only if |a| < |8, — 0.

B. Generating Monotonic Cubic Polynomials

There are two cases characterizing when p(t) is a cubic
polynomial that is monotonic on [0, 1] with end conditions
p(0) = 05; and p(1) = 6.

Case 1. The roots of p’(t) are complex or occur as a
double root. This occurs if and only if p(¢) is monotonic
everywhere. In this case p/(t) = K (t2 + 2at + a® + b?) where
a is any real number and b > 0. We can parameterize a and
b by a=tan¢; for —7/2 < ¢1 < 7/2 and b= tan ¢y for
0 < ¢pg < 7/2. Integrating p’(¢) and taking into account the
endpoints we obtain

2t3 + 3at? + 6(a? + b)t
2+ 3a + 6(a? + b?)

Case 2. The roots of p'(t) are real and do not occur
in (0,1). Then p/(t) = K(t — t1)(t — t2) where t; € (0,1),
i = 1,2. There are three subcases: (2a) t1,t3 € (—00,0]; (2b)
t1 € (—00,0] and t3 € [1,00); and (2¢) ¢1,t2 € [1,00). These
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cases can be parameterized in a manner similar to that used in
Case 1. Integrating p’(¢) and satisfying the endpoint conditions
gives

263 — 3(t1 + ta)t? + 6t1tat

t) = (0gi — Oss
p(t) = (6, ) 3t T t) T 6t

+ 0. 9)

V. A GLOBAL KINEMATIC FAILURE TOLERANCE
MEASURE

In this section, we will present a global kinematic failure
tolerance measure which is derived from the self-motion
manifold of a manipulator. Based on this measure, an estimate
can be deduced as to how tolerant a given manipulator would
be to any joint failure throughout its workspace. It can also
determine if a given manipulator is always intolerant to a
specific joint failure for any configuration.

A self-motion manifold, M, can be derived by integrating
the null space component, A/(J), of the manipulator Jacobian
matrix, J(8). The singular value decomposition (SVD) of J(8)
can be used to compute the null space matrix, N ;, which
represents N (J). Generically, the dimension of N ; is equal
to r. Each column of N ;, defined as ﬁ{“, where k=1,...,r,
forms an orthonormal basis of AV/(J). For r = 1, Ny is a
vector and can be expressed as 1.

It has been shown in [2] that, for 7 = 1, a configuration 6
is intolerant to a joint ¢ failure if the null vector component
n.y; = 0. If this is true for all configurations, then the robot is
globally intolerant to an ¢-th joint failure. A joint’s tolerance
to failure is related to its range of values in the self-motion
manifold. The larger the change in a joint’s value, the greater
tolerance there will be to a failure in that joint. A joint whose
value is constant throughout the self-motion manifold is a
globally failure intolerant joint and is a critical manipulator
joint.

A global kinematic failure tolerance measure 7 can be
derived by using the range of each joint’s excursion in the
self-motion manifold. The joint with the minimum range of
excursion determines the worst-case global failure tolerance
measure

Tmin = min (|A8;])

1<i<n

(10)

where A0; is the maximum excursion of joint 4 as it spans
the self-motion manifold. (This is the same as the bounding
box discussed in [3].) Other possible global failure tolerance
measures include the square root of the sum of squares of each
joint’s maximum excursion in the self-motion manifold

Y

Tave =

or the ratio of the joint with the least maximum excursion with
that of the joint with the largest maximum excursion in the
self-motion manifold

min <<, (|Ab;|)

ra iO = T A~ 12
Tratio = ai<izn (1A (12)
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Fig. 3.  The Mitsubishi PA-10 workspace with 10 randomly generated
spherical obstacles of diameter 0.254 m (10 in) for the corresponding X
and x4 shown. The corresponding solutions are shown in Table I. The first
three vector components are the desired positions in units of meters. The
last three vector components are the desired orientations in units of degrees
expressed in terms of Euler angles using System I as discussed in [22].

or the product of each joint’s maximum excursion in the self-

motion manifold
n

Torod = | [ 1203

i=1

13)

Normally, this range can vary from zero to some finite non-
negative value. It would be computationally expensive to find
the exact value of 7 for a given robot because one would
need to evaluate the whole space of the self-motion manifold.
However, if 7,,,;,, = 0, then Af; = 0 for some ¢ and the robot
is globally intolerant to a failure of joint 7, i.e., a critical
manipulator joint. A good redundant manipulator design that
considers failure tolerance is a design with a large global
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TABLE I
THE SET OF SOLUTIONS FOR THE EXAMPLES SHOWN IN FIG. 3 WITH THEIR CORRESPONDING FEASIBLE OBSTACLE-FREE START CONFIGURATION, 0.
THE FAILURE HYPERPLANE H;(65) INTERSECTS -y, AT PARAMETERIZATION INTERVAL [0, 1].

Fig. 3 Feasible Obstacle-Free Start Configuration, 6 Failure Hyperplane H;(0,) Intersecting Yg
01 052 053 04 O 056 6, | Hi Hy Hs Hy; Hs Hg Hy
(a) -11.5 751 438 492 468 -1179 274 10 06 02 na 04 08 00
(b) -64  -76.6  50.7 521 330 1101 287 | 00 08 02 na 04 06 10
(© -0.5 17.5 2357 -876 151 -1281 191.1 | 06 08 10 na 04 02 00

failure tolerance measure 7. Such a design would allow a larger
range of values in the manipulator’s self-motion manifold and
increases the likelihood of satisfying the necessary condition
in Section III-A.

There is a rare exception that a robot can still be failure
tolerant to a joint ¢ failure when 7,,;, = 0 due to Af; = 0.
This happens when the projections of the start and goal self-
motion manifolds along the critical manipulator joint % axis
coincide with each other. This means that for the robot to
move from x, to X,4, joint ¢ needs to be at this fixed angle
where the manifolds’ projections coincide, thus, a locked-joint
failure at joint ¢ would still make the robot tolerant to a joint ¢
failure.

VI. PA-10 SEVEN DOF REDUNDANT ROBOT EXAMPLE

The Mitsubishi PA-10 robot is not fully a kinematically
failure-tolerant robot because the null space component of
joint four is zero, i.e.,

njs =0, (14)

throughout the entire C-space. Thus, the PA-10 has a worst-
case global failure tolerance measure 7,,;, = 0 due to joint
four and is intolerant to a joint four failure. A good failure-
tolerant robot design includes link offsets which help in
creating excursion in the manipulator’s self-motion manifold.
For the PA-10, the axes of the shoulder, i.e., joints one, two,
and three meet at a common point as do the axes of the wrist,
i.e., joints five, six, and seven. Because joint four is the only
joint that can alter the distance between these two common
points, it is a critical manipulator joint. Hence, the PA-10 is
intolerant to a joint four failure. However, we chose to present
the PA-10 as an example because it is the most common
commercially available fully spatial redundant robot on the
market. In this section, we will show that if joint four does not
fail, the PA-10 is failure tolerant to a single locked-joint failure
of any of the remaining six joints. In the following examples,
the simulation program for the PA-10 does not consider the
joint limits and self collision. The end-effector offset from the
wrist link is set at 0.3 m.

Ten spherical obstacles with a diameter of 0.254 m (10 in)
are randomly placed in the PA-10 workspace with a given set
of x, and x,. The equivalent M, and M, are then computed
and the corresponding 6 and ~y, are respectively determined.
A candidate (65,7, ) pair that satisfies the necessary condition
is identified when the failure hyperplane H;(0) intersects

goal self-
motion
manifold

|
s

_/

motion
manifold

goal self-
motion
"' Tg manifold —

motion 1 %
manifold e

0

start self-

goal self-
motion
manifold

start self-
motion
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Fig. 4. The failure surface for example (a), shown as a web of paths in the
configuration space, with projections from joint axes 1 and 3, 2 and 7, and 5
and 6. The projections are shown in the same scale with units of radians. The
bold curves represent portions of Mg, while the less thick curves represent
portions of M . The axes shown are translated from the origin to the feasible
0;. Its corresponding g is the curve between the points labeled “0” and “17.

v, for i = 1,...,n. Using this (6,7,) pair, the algorithm
searches for the existence of a failure surface, 8. This is done
by connecting 6 to points on .. For each point on 7,
the algorithm first attempts to use a linear path. If the linear
path is not obstacle free, it tries to use a monotonic quadratic
path using the possible values of « in (7) until an obstacle-
free monotonic quadratic path is found. When all the possible
values of « are tried and no such path can be found, the
algorithm discards this (05,~y,) pair and uses the next (65,~,,)
pair that satisfies the necessary condition. If all such pairs are
exhausted without completing a failure surface, S, then the
algorithm terminates with a message that is was unsuccessful.
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Fig. 5.
going through a portion of ~, for example (c).

Snapshots of the Mitsubishi PA-10 robot amongst obstacles while

To check for continuity of free space between connected
paths, straight-line connections between paths are used. If the
path connections from 65 to all points on ~, parameterized
between [0,1] and the straight-line connections between paths
are obstacle free, a failure surface, S, is successfully identified.

Three examples are shown in Fig. 3 where the corre-
sponding failure surfaces, S, are successfully found. The first
example shows the PA-10 with a start and goal end-effector
orientations facing downward with the corresponding desired
positions. The second example shows a start and goal end-
effector orientations facing forward, while the third example
shows a start end-effector orientation facing downward and an
arbitrary final end-effector orientation for the corresponding
desired positions. The set of solutions are shown in Table I
with the corresponding feasible . The failure hyperplane
H,(85) intersects y,, at the shown values of «, parameterized
on the interval [0, 1]. Recall that the failure hyperplane corre-
sponding to joint four, H4(6,), does not intersect 7, which
thus makes joint four a critical manipulator joint. Fig. 4 shows
the corresponding failure surface, S, for example (a). Fig. 5
shows snapshots of the PA-10 amongst obstacles while going
through a portion of -y, in example (c).

VII. SUMMARY AND CONCLUSION

This work considers the problem of guaranteeing failure
tolerance when obstacles are present in the environment. It
has been shown that it is possible to guarantee that a robot
can successfully reach the goal workspace position and/or
orientation, x4, despite any single locked-joint failure without
exhaustively checking every possibility of failure at every
instance in time. Conditions were formulated that guarantee
the existence of a solution. An algorithm was presented that
searches for a continuous obstacle-free monotonic surface in
the configuration space, called a failure surface, S, whose
existence guarantees the solution. A global failure tolerance

measure was also defined that can determine if a robot is
globally failure intolerant to a particular joint failure.
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