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ABSTRACT OF DISSERTATION 

MODELING SPATIO-TEMPORAL SYSTEMS WITH SKEW RADIAL BASIS 

FUNCTIONS: THEORY, ALGORITHMS AND APPLICATIONS 

The discovery of knowledge in large data sets can often be formulated as a problem 

in nonlinear function approximation. The inherent challenge in such an approach is 

that the data is often high dimensional, scattered and sparse. Given a limited number 

of exemplars one would like to construct models that can generalize to new regions or 

events. Additionally, underlying physical processes may not be stationary and the nature 

of the nonlinear relationships may evolve. Ideally, a good model would be adaptive and 

remain valid over extended regions in space and time. 

In this work we propose a new Radial Basis Function (RBF) algorithm for construct­

ing nonlinear models from high-dimensional scattered data. The algorithm progresses 

iteratively adding a new function at each step to refine the model. The placement of 

the functions is driven by one or more statistical hypotheses tests that reveal geomet­

ric structure in the data when it fails. At each step the added function is fit to data 

contained in a spatio-temporally defined local region to determine the parameters, in 

particular, the scale of the local model. Unlike prior techniques for nonlinear function 

fitting over scattered data, the proposed method requires no ad hoc parameters and it 

behaves effectively like a black box. Thus, the number of basis functions required for 

an accurate fit is determined automatically by the algorithm. An extension of the algo­

rithms to multivariate case, i.e., the dimension of the range of the mapping is greater 
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or equal to two, is also carried out. This approach produces more parsimonious mod­

els by exploiting the correlation among the various range dimensions. The convergence 

properties of the algorithms are shown from different prospectives. 

To further enhance the order and conditioning of the models we introduce sev­

eral new compactly supported RBFs for approximating functions in Lp(Rd) via over-

determined least squares. We also propose a skew-radial basis function expansion for the 

empirical model fitting problem to achieve more accuracy and lower model orders. This 

is accomplished by modulating or skewing, each RBF by an asymmetric shape function 

which increases the number of degrees of freedom available to fit the data. We show that 

if the original RBF interpolation problem is positive definite, then so is the skew-radial 

basis function when it is viewed as a bounded perturbation of the RBF. 

We illustrate the utility of the theoretic and algorithmic innovations via several 

applications including modeling data on manifolds, prediction of financial and chaotic 

time-series and prediction of the maximum wind intensity of a hurricane. In addition, 

the skew-radial basis functions are shown to provide good approximations to data with 

jumps. While the algorithms presented here are in the context of RBFs, in principle 

they can be employed with other methods for function approximation such as multi­

layer perceptrons. 

Arthur(Arta) Amir Jamshidi 
Department of Mathematics 
Colorado State University 
Fort Collins, Colorado 80523 
Summer, 2008 
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Chapter 1 

I N T R O D U C T I O N 

1.1 Knowledge Discovery and Empirical Modeling 

The process of knowledge discovery may be viewed as an interacting combination of 

human experience, cognition, observation and analysis. Whether knowledge is acquired 

by researchers trained in the application of the Scientific Method or more informally 

driven by everyday experiences, the process almost always involves the collection of 

data in some form or another. This description loosely depicts how progress is made 

through understanding our environment and applies equally well to knowledge discovery 

in, e.g., the Bronze Age, the Renaissance and for the purposes of our current interest, the 

Information Age. The field of information technology coupled with the digital revolution 

associated with the widespread availability of inexpensive data collection devices has 

completely transformed the landscape of knowledge discovery. 

Researchers are now confronted by large sets of empirical observations of phenomena 

for interest often with no domain specific theory, e.g., a conservation law, to guide their 

investigation. The challenge is to determine relationships amongst the data that reveal 

phenomena, or knowledge, of interest. We will argue from a geometric perspective below 

that these relationships are often nonlinear and require the application of mathematical 

ideas to extract them. This motivates the basic topic of this dissertation, i.e., the problem 

of extracting nonlinear relationships in large high-dimensional and potentially scattered 

data sets. 



1.2 Nonlinear ity 

One can provide a long list of examples of nonlinear phenomenon in nature. Chaos, 

for example, requires both nonlinearity and three dimensions to exist. Additionally, we 

can refer to evidence such as nonlinear optical phenomena, nonlinear wave interactions, 

nonlinear fluid-structure interactions and many others. However, we propose to motivate 

the need for nonlinear models from a perspective involving mathematical constructions 

that are inherently nonlinear. 

For example, the modeling of a manifold or the representation of data as a graph 

of a function, (x,f(x)), with / being the nonlinear relation. Related to these prob­

lems is the implementation of Whitney's theorem, [29, 30] which proves, under certain 

circumstances, the existence of a nonlinear inverse mapping for (perfect) manifold recon­

struction. Additionally one may envision constructing an atlas of charts from empirical 

data as a representation. Problems of this type arise in sampling theory on manifolds. 

Takens' theorem also provides evidence of a nonlinear mapping from a sampled scalar 

value to a representation of the data manifold up to a diffeomorphism. This moti­

vates another large class of problems, i.e., prediction via time-delayed embeddings, i.e., 

x-n+i = f(xn,....,Xi). Additionally, we may consider mappings between two manifolds, 

M. and J\f given by M. = /(AT), [16]. In terms of mathematical modeling of physical 

systems we are concerned with estimating / in the system x' = f{x), where x' represents 

the time evolution and the nonlinear relation / is the vector field providing instructions 

[31]. In addition to these mathematical constructions, there are the general problems 

of classification and regression, see e.g., [145, 65, 134]. These are more classically the 

arenas in which researchers have developed approaches for nonlinear approximation. We 

expand on our motivations below. 
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1.3 Data on Manifolds 

Our geometric viewpoint for this problem arises from the fact that many apparently 

complicated physical phenomena exhibit self-organization, a tendency that reveals itself 

by the formation of coherent structures or patterns in data. The effect of the self-

organization may be interpreted as a tendency for the data from the process to cluster in 

small volumes of the total space. From a state space perspective this coherency suggests 

the possible existence of a manifold, or a fractal set embedded in a manifold, of dimension 

much smaller than the ambient space. In this setting, the emphasis is on developing a 

practical mathematical theory and algorithms for modeling the data, i.e., constructing 

qualitatively equivalent representations, for example, up to a diffeomorphism [89]. Our 

main interest in this problem relates to representing data on a manifold as the graph of 

a function [29, 30] and the reduction of dynamical systems [31]. 

The problem of the representation of data on manifolds is further suggested by 

Taken's embedding theorem. Roughly speaking, Taken's theorem states that a scalar 

observable from data on an m dimensional manifold may be time-delay embedded into 

2m + 1 dimensions effectively reconstructing the manifold up to a diffeomorphism, [135]. 

Interesting questions may be addressed within this framework, e.g., are two scalar ob-

servables generated by the same process? Can we find smooth mappings between their 

reconstructed manifolds? 

1.4 Whitney's Theorem 

Given an assumption data may reside on a manifold, Whitney's theorem provides a 

guide to data modeling which includes the construction of a nonlinear inverse mapping. 

Whitney's theorem states that an m dimensional manifold may be embedded in a linear 

subspace of dimension 2m + 1, [146]. Further, the reduction is linear and the recon­

struction is nonlinear. A new dimension reduction approach that employs secant based 

projections is developed in [29, 30]. This is a global method of dimension reduction. New 
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algorithms and optimality criteria for computing the good parameterizing subspaces and 

hence estimates for the dimension of the manifold are given in [29, 30]. It has been shown 

that the reduction mapping should be bilipschitz (and hence dimension preserving) with 

optimized Lipschitz constants. These ideas are illustrated on sample PDEs, such as the 

Kuramoto-Sivashinksy Equation where known manifold dimensions were computed ac­

curately. Here the appropriate modes, and hence parameterizing scales, for representing 

the problem, are determined such that the data in the reduced space is (at least) a diffeo-

morphic copy of the raw data. To be able to go back to the space of raw data nonlinear 

maps are required. There is no explicit construction of such maps in Whitney's theorem. 

We propose to use RBFs to construct such maps. High quality nonlinear functions are 

needed to more fully realize the implementation of Whitney's theorem on real data. 

1.5 Manifold Learning and Charts 

Manifold learning is a growing area of research given the importance of geometry-

not just statistics-in the analysis of data. In short, manifold learning is concerned with 

the local representation of data as an atlas of charts, see, e.g., [91, 62, 63]. These data 

models coalesce local (parametric or nonparametric) models to obtain a globally valid 

nonlinear embedding function. More recently, nonlinear mappings from a high dimen­

sional sample space to a low dimensional vector space effectively recovering an internal 

coordinate system for the manifold from which the data is sampled, is considered in 

[27]. This algorithm employs a mapping that preserves local geometric relations in the 

manifold and is pseudo-invertible. Decomposition of the sample data into locally linear 

low-dimensional patches, merging these patches into a single low dimensional coordi­

nate system via stochastic optimization processes and computation of the forward and 

reverse mappings between the sample and coordinate spaces is also studied in [27]. In 

[127], the local linear models are represented by a mixture of factor analyzers, and the 

global coordination of these models is achieved by adding a regularizing term to the 
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standard maximum likelihood objective function favoring models whose internal coordi­

nate systems are aligned in a consistent way. As a result the internal coordinates change 

smoothly as one traverses a connected path on the manifold even when the path crosses 

the domains of many different local models. To get an efficient algorithm that allows 

separate local models to learn consistent global representations, an automatic alignment 

procedure which maps the disparate internal representations learned by several local di­

mensionality reduction experts into a single coherent global coordinate system for the 

original data space is studied in [136]. In this method one local model is centered on each 

training point so its scaling is the same as that of local linear embedding (LLE), [126], 

and Isomap, [137]. Another approach for manifold learning based on aligning mixtures 

of linear models is proposed in [139]. 

In general, in this setup we expect that our data set X, although lying in the high-

dimensional space M.N, will have a much lower dimension k; and therefore we would 

obtain an optimal dimensionality-reducing mapping if we could construct the analogue 

of "charts" on X. Although we expect that our data sets will not always be manifolds, 

we have found this chart construction to be an excellent paradigm. We propose to use 

optimal linear charts functions fa, in the sense that fa is a linear mapping from the 

ambient space M.N containing the data set X to the model space Rfc. In this sense the 

mapping fa can be viewed as an optimal projection locally, and there is a large literature 

on the construction of such projections; for a summary see [89]. The requirement that 

the projection function be a chart mapping, i.e., that it have a local inverse, is made by 

enforcing an explicit construction of the inverse mapping fa^1. The construction of (p^1 

is achieved via a radial basis function, the training of which is effected by learning the 

identity function on Ui, after composing with the pre-determined projection mapping 

fa. This local method based on constructing an altas of charts affords the encoding 

dimension m [62, 63]. This prior work employs a tree-based approach to partition the 
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manifold and singular value decomposition is used to estimate local dimension and use 

MLPs for the inverse mappings. 

The basic algorithm described above again has the need for the construction of a 

nonlinear mapping from data at its heart. We propose that the highly developed RBF 

algorithm presented in this dissertation will provide an important component to work in 

manifold learning. 

1.6 A Brief History 

In this section we provide a brief overview of data fitting. Details and references to 

current literature are provided in chapters that follow. 

The beginnings of empirical data fitting may be traced to Gauss's work on using 

least squares to construct linear models. In general, linear models are only capable of 

representing phenomena where the principle of superposition holds true. Additionally, 

approximating nonlinear phenomena with piecewise linear models suffer from lack of 

smoothness. More recently A. Einstein used correlation structure of data for time series 

analysis, [39, 50, 150]. Other instances of data analysis in the beginning of the twentieth 

century can be found in, e.g., [107, 109, 59]. Over the last two decades we have seen a 

tremendous growth in this area motivated by new ideas for computing nonlinear models, 

see, e.g., [32, 121, 122]. Certainly neural networks designed for function approximation 

and the solution of the curse of dimensionality have attracted significant attention [145, 

128]. In nonlinear models one of the most critical questions is associated with model order 

determination, i.e., how many nonlinear functions are needed to minimally represent the 

data. In general there are three main approaches to determine the complexity of a neural 

network for function approximation: penalized likelihood, [133, 4], predictive assessment, 

[55], and growing and pruning techniques, [47, 43, 38]. In this dissertation we focus on 

constructing a growing and pruning technique for nonlinear function approximation. We 

employ hypotheses tests to evaluate if any geometric structure resides in the residuals 
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of the data. The autocorrelation test for IID noise provides an excellent tool for this 

approach. 

1.7 Open Problems to Be Addressed 

In this dissertation a comprehensive set of questions associated with nonlinear model 

fitting from data are addressed, including: 

• How can the need for ad hoc, or user adjusted, parameters be eliminated? 

• How should algorithms differ when the data is temporal, spatial or spatio-temporal? 

• What are the mathematical properties of convergence of the algorithm? 

• What mathematical criteria are important to design functions with improved gen­

eralization? 

• How can we better approximate data with jumps, or severely asymmetric data in 

general? 

• What are optimal ways to extend the algorithm to ranges in higher dimensions? 

• How do these algorithms work on real world data? 

• How can we adapt the models in real time? 

1.8 The Organization of the Dissertation 

The organization of this dissertation is as follows: Chapter 2 provides the univari­

ate black box radial basis function algorithm for nonlinear function fitting. Relevant 

literature is reviewed. The superior performance of the algorithm in comparison to the 

current state of the art is shown. Chapter 3 introduces new compactly supported RBFs 

for least square function fitting. Connections to the current literature of compactly 

supported RBFs is given. Chapter 4 introduces skew-radial basis functions and shows 
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their superior performance in function fitting. In Chapter 5, the theoretical and technical 

background of the algorithm is described and its convergence properties are investigated. 

A multivariate extension to the algorithm is provided in Chapter 6. Finally, Chapter 7 

summarizes the contributions of this work and discusses future work. 

This dissertation includes chapters that are actual papers that have appeared [72, 

71], have been submitted [69] or about to be submitted [70, 68]. Since these papers are 

designed to be self-contained there is some minor duplication in the presentation. 
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Chapter 2 

TOWARDS A BLACK BOX ALGORITHM FOR N O N L I N E A R 

F U N C T I O N A P P R O X I M A T I O N OVER HIGH-DIMENSIONAL 

D O M A I N S 

Abstract We propose an algorithm for constructing nonlinear models from high-

dimensional scattered data. The algorithm progresses iteratively adding a new function 

at each step to refine the model. The placement of the functions is driven by a statistical 

hypothesis test that reveals geometric structure when it fails. At each step the added 

function is fit to data contained in a spatio-temporally defined local region to determine 

the parameters, in particular, the scale of the local model. Unlike currently available 

techniques for nonlinear function fitting over scattered data, the proposed method re­

quires no ad hoc parameters. Thus, the number of basis functions required for an accurate 

fit is determined automatically by the algorithm. We illustrate the approach using sev­

eral illustrative problems including modeling data on manifolds and the prediction of 

financial time-series. The algorithm is presented in the context of radial basis functions 

but in principle can be employed with other methods for function approximation such 

as multi-layer perceptrons. 

2.1 Introduction 

The problem of extracting nonlinear relationships in large high-dimensional scat­

tered data sets is of central importance across fields of science, engineering and math­

ematics. The beginnings of empirical data fitting may be traced to Gauss's work on 



using least squares to construct linear models. Over the last two decades we have seen a 

tremendous growth in this area motivated by new ideas for computing nonlinear models, 

see, e.g., [32, 145, 128, 121, 122]. Today, diverse areas such as machine learning, optimal 

control, and mathematical modeling of physical systems often rely significantly on the 

ability to construct relationships from data. Subsequently there have been a multitude of 

applications including financial time-series analysis, voice recognition, failure prediction 

and artificial intelligence all of which provide evidence for the importance of nonlinear 

function approximation algorithms. Our interest in this problem relates to representing 

data on a manifold as the graph of a function [29, 30] and the reduction of dynamical 

systems [31]. 

A common element in empirical data fitting applications is that the complexity 

of the required model including the number and scale of representation functions is not 

known a priori and must be determined as efficiently as possible. A variety of approaches 

have been proposed to determine the number of model functions, i.e., the model order 

problem. A generally accepted measure of quality of such data fitting algorithms is that 

the resulting models generalize well to testing data, i.e., data associated with the same 

process but that was not used to construct the model. This requirement is essentially 

that the data not be overfit by a model with too many parameters or underfit by a model 

with too few parameters. 

One general approach to this problem is known as regularization, i.e., fitting a 

smooth function through the data set using a modified optimization problem that pe­

nalizes variation [138]. A standard technique for enforcing regularization constraints is 

via cross-validation [51, 141]. Such methods involve partitioning the data into subsets of 

training, validation and testing data; for details see, e.g., [55]. 

Additionally, a variety of model growing and pruning algorithms have been sug­

gested, e.g., the upstart algorithm in [47], cascade correlation [43], optimal brain dam­

age [38] and the resource allocating network (RAN) proposed by Piatt [118]. Statistical 
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methods have also been proposed that include, e.g., Akaike information criteria (AIC), 

Bayesian information criteria (BIC), minimum description length (MDL) [133, 4] and 

Bayesian model comparison [101]. In [124, 104, 58] the issue of selecting the number of 

basis functions with growing and pruning algorithms from a Bayesian prospective have 

been studied. In [7], a hierarchical full Bayesian model for RBFs is proposed. The max­

imum marginal likelihood of the data has also been used to determine RBF parameters 

[112]. For a more complete list of references the reader is referred to [66]. 

In general, model order determination via both regularization and growing and 

pruning algorithms can be computationally intensive and data hungry. More importantly, 

however, is that these algorithms do not explicitly exploit the geometric and statistical 

structure of the residuals during the training procedure. In addition, many algorithms in 

the literature require that anywhere from a few to a dozen ad hoc parameters be tuned 

for each data set under consideration. 

This chapter presents an approach for the model order determination problem free 

of ad hoc parameters. The algorithm is based on detecting any structure in the model 

residuals. As in previous work [5, 6] on which this algorithm is based, such structure 

is quantified via a statistical hypothesis test to determine whether the residuals are 

IID. The main contribution of this chapter is the implementation of the algorithm over 

higher dimensional domains using a spatio-temporal ball rather than a temporal window 

for constructing local training sets. This innovation is particularly critical if the data 

is periodic or quasi-periodic or, more generally, resides on a manifold. Further, a new 

initialization procedure is adopted that greatly accelerates the optimization algorithms. 

To illustrate the absence of ad hoc parameters, diverse data sets are fit without making 

any changes to the algorithm. In particular, no parameters are varied, or tuned, across 

data sets. 

While we use radial basis functions to demonstrate the algorithms, the methodology 

holds for other function fitting problems. In particular, these methods may be applied 
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directly to multi-layer perceptrons. Also, we restrict the scope of the presentation to the 

case of batch data and will present extensions to the on-line algorithm elsewhere. 

The organization of this chapter is as follows: Section 2.2 reviews the radial basis 

function approach for multiscale approximation of scattered data. Section 2.3 develops 

the background for the hypothesis test for IID noise. Section 2.4 introduces the algorithm 

including the concept of spatio-temporal windowing and appropriate stopping criteria. 

Section 2.5 demonstrates the performance and robustness of the system using different 

data sets. Finally, Section 2.6 provides some concluding remarks and discusses future 

work. For the purposes of keeping this chapter self-contained we present some background 

details of the algorithm proposed in [5, 6] and [66]. 

2.2 Radial Basis Functions 

Radial Basis Functions (RBFs) were introduced for the function approximation 

problem as an alternative to multilayer perceptrons [32]. Part of their appeal is the 

variety of efficient algorithms available for their construction. In the extreme, the basis 

functions may be selected randomly (following the distribution of the data) with fixed 

scales. In this instance the resulting optimization problem is simply an over-determined 

least squares problem to determine the expansion coefficients. One may improve on this 

approach at modest expense by employing a clustering algorithm to determine the ba­

sis function centers [108]. Furthermore, RBFs may be adapted with rank one updates 

or down-dates [111, 113]. Over the years RBFs have been used successfully to solve a 

wide-range of function approximation and pattern classification problems [22, 66]. More 

recently, RBFs have been proposed as a tool for the simulation of partial differential 

equations, see, e.g., [1]. 

An RBF expansion is a linear summation of special nonlinear basis functions. In 

general, an RBF is a mapping / : R™ —> Rm that is represented by 

K 

f(x) = Ax + aQ + ^2ak<l>k(\\x-ck\\w), (2-1) 
fc=i 
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where x is an input pattern, 4>k is the fcth RBF centered at location c^, and a^ denotes 

the weight for fcth RBF and A is an m x n matrix. The term W denotes the parameters 

in the weighted inner product 

\\x\\w = \/xTWx. 

The term Ax + OCQ affords an affine transformation of the data and is useful so that the 

nonlinear terms are not attempting to fit flat regions. More general polynomials may be 

used for this purpose [130]. As usual, the dimensions of the input n and output m are 

specified by the dimensions of the input-output pairs. 

The general training problem for the RBF is the determination of the unknown 

parameters: {A,ak,Ck,W,K}. The focus of this chapter is to determine an optimal 

value for K, i.e., the model order. Of course optimizing K depends on high quality 

values for the remaining parameters and we propose algorithms for this purpose. 

The requirements of the RBF expansion are the same as standard data fitting prob­

lems, i.e., given a set of L input-output pairs {(xi,yi)}f=1, X = {xi}f=1 and y = {yi}f=1, 

the goal is to find the underlying mapping / such that yi = f{x{). In the standard 

situation we have more data than equations so we can't expect to satisfy each equation 

exactly. Thus the problem is to minimize the cost function 

1 L 

E(A, ak, ck, W,K) = -Y,\\ f(*i) ~ Vi f, 
z=i 

where now the metric || • || is generally the Euclidean inner product and is distinct from 

the W-weighted inner product used to compute the contributions of the basis functions. 

One of the attractive features of RBFs is the variety of basis functions available for 

the expansion. In particular, these functions come in both local and global flavors and 

include 

4>{r) E {exp(—r2),r,r2 I n r , r 3 } . 

These functions satisfy the criteria of RBFs as described in [122] and the associated 

approximation theorem states that if V is a compact subset of Rd, then every continuous 
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real valued function on V can be approximated uniformly by linear combinations of RBFs 

with centers in V. In this study we restrict our attention to (local) Gaussian RBFs, i.e., 

4>{r) = exp(—r2) but the algorithm works in principle for any admissible RBF. We 

have also recently proposed several candidates for compact RBFs that have excellent 

conditioning properties associated with the overdetermined least squares problem [71] or 

Chapter 3. 

We note that in function approximation problems one must distinguish whether 

the data, for which a model is desired, is available at the outset or whether the data 

becomes available as the model is being built. In keeping with standard terminology we 

refer to these problems as batch and on-line training, respectively. In this chapter we are 

specifically interested in learning input/output relationships from batch data. 

2.3 Testing for Structure in Model Residuals 

As indicated earlier, one can infer essential information about an empirical model 

by examining its residuals. Following [5, 6], the proposed algorithm functions on the 

premise that if there is structure remaining in the residuals, then one or more additional 

basis functions should be added. On the other hand, if there is no discernible structure 

then this is tantamount to a stopping criterion. 

We seek to model data that may be viewed as the superposition of a signal and IID 

noise observing that if data is noise free then one may simply add IID noise to employ 

this algorithm. In view of this, we may expect the model residuals to be IID while the 

model itself represents the geometric structure of the data. Hence, an indication that an 

RBF model is unsatisfactory is the failure of the residuals to satisfy an hypothesis test 

for IID noise. This observation forms the basic idea for the stopping criterion used in 

this research work. The primary advantage of such a criterion is that the hypothesis test 

from which it stems does not involve any ad hoc parameters that require adjustment. 

Now we outline the IID test for determining structure in the residuals and its asso­

ciated algorithm. 
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2.3.1 Sta t i s t ica l Background of Test for I ID Noise 

The model residual for the nth data point is defined as 

6n = Vn J\£n)-

Following [6], we denote the set of residuals for a model of order K, as 

RK = K l t i , (2.2) 

where L is the cardinality of the training set. The standard definition for the sample 

autocorrelation function, p(/i), (ACF) for a set of residuals ei ,e 2 ,e 3 , ...,e£ with sample 

mean e and lag h is defined as 

m = | | , (2.3) 

where — L < h < L, and 
L-\h 

j(h) = iJ2a(h,ei). (2.4) 

As proposed in [5, 6] we decompose the ACF into its component terms 

a(h, ei) = {ei+\h\ - e)(ej - e). (2.5) 

For a fixed lag h the quantity a(h, e») is the contribution of the zth residual to the 

autocorrelation function. Later we focus on this quantity a and will illustrate that it 

reveals critical information concerning where new basis functions should be placed. Given 

its importance, we refer to this term as the autocorrelation contribution, or ACC [5, 6]. 

2.3.2 I I D Hypo thes i s Test 

As indicated above, we seek to terminate the addition of new basis functions when 

the residuals appear to have no further structure. As a test for structure, we consider 

whether the residuals are IID. The relevant theorem from statistics states that for large 

L, the sample autocorrelations of an IID sequence U\, U2, •••, UL with finite variance are 
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approximately IID with normal distribution with mean zero and variance -£, N(0, j), 

[28] p. 222. Hence, if Ui,v,2, •••, un is a realization of such an IID sequence, then 95% of 

the sample autocorrelations should fall between the bounds 

-1.96 _ , , 1.96 , „ „ , 
< p(h) < —=. (2.6) y/L VI' 

Note that if the underlying model is known, there is a more accurate bound for this test, 

described in Section 9.4 of [28]. Therefore, if one computes the sample autocorrelation 

up to lag h and finds that more than 0.05/i of the samples fall outside the bound, or 

that one value falls far outside the bounds, the IID hypothesis is rejected. This test can 

equivalently be written in terms of \ 2 distribution. Given 

L - l 

Q = LpTp = LYJP\j), 

it has been shown in [28] that Q has a \ 2 distribution with L — \ degrees of freedom. 

The adequacy of the model is therefore rejected at level a if 

Q>xla(L-l). 

2.3.3 Additional Testing Possibilities 

To show rigorously that a sequence of random variables is truly IID, higher moments 

(if they exist) also need to be considered. In particular, if a sequence of random variables 

is IID, then any function of the random variables is also IID. Thus, the autocorrrelation 

function (ACF) of not only the sequence of random variables, but also, e.g., squares, 

cubes and the absolute values must also pass the above given test. For simplicity in 

this chapter we only consider the ACF of the raw residuals. Although this limits our 

ability to conclude the residuals are strictly IID, the results suggest this test is already 

quite powerful. Note that the test as implemented does indeed provide a necessary and 

sufficient condition for a sequence to be white noise. 
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Algorithm 1 RBF Algorithm using Spatio-Temporal Ball 
ran-flag = 1, K = 0 
while ran-flag = 1 do 

evaluate the RBF on the training data set {f(xn)}n=i 
compute the model error {e„}^= 1 

compute component contributions a(h, e*) = {ei+\h\ — e)(ej — e) 
compute ACF for all 0 < h < L 
if the autocorrelation test is rejected then 

compute h* via equation h* = arg max j(h), h > 0 and 
compute x* = Xi* = e~l{ei») where i* = argmaxj=i]...)„_/l. a(h*,ei) 
compute the ACC function, $ = a(h*, e^), i = 1,..., n — h* 
optional: denoise the ACC function 
find the right and left local minimizers of i*, i.e., /* and r* 
compute di = d(xi*,x/») , dr = d(xi*,xr*) and dc = max{d;,dr} 
define the local ball as XiocaX = {x E X : \\x — x*\\ < dc} 
add a new RBF h(x; v) with initial values v = [CQ, cro, ao]T 

solve E(y) = min || h(x;v) — y HI, where x G A;oca; 

7^ = ^ + 1 
else 

ran.flag = 0 
end if 
compute confidence, RMSE and j(h*) of the current model on the training set 

end while 

Lastly, we remark that there are alternatives to the test described above based on 

the autocorrelation function for testing IID or white noise. Other such tests include 

the difference-sign test, the rank test, and a test based on turning point [28]. These 

tests might also be applied as stopping criteria individually, or in conjunction with the 

current test based on the autocorrelation function. Another route for improvement may 

be possible by considering the relationship between the data inputs and the residuals of 

the outputs [99]. 

2.4 R B F Algorithm using Spatio-Temporal Ball 

In this section we present the details of the proposed batch algorithm. The question 

of whether a new basis function should be added is answered by the IID test. We shall see 
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that this test also indicates where the new basis function should be added. We introduce 

the concept of a space-time ball for defining local regions. 

Initially, the residuals of the model are equal to the original data. A step in this 

algorithm consists of evaluating the residuals and determining whether they indicate that 

a new basis function should be added. Pseudocode is provided in Algorithm 1 and we 

now proceed to describe the details. 

2.4.1 Determining Optimal Locations of N e w RBFs 

If the autocorrelation test indicates that the data is not IID, then the next require­

ment is to determine where the new basis function should be located to optimally reduce 

the structure in the model residuals. Following, [5, 6], we look for the point in the domain 

that makes the largest contribution to the ACF. This is accomplished by observing that 

the residuals are associated with the data in the domain in a one-to-one manner, i.e., 

there is a mapping, say ip, from a data point to its residual of the form 

Si = 1p{Xi). 

Thus, by identifying the residual associated with the largest contribution to the ACF we 

may identify the location in the domain where the basis function should be added. Note 

that if the maximum contribution value to the ACF function is shared by more than one 

residual, a single basis function would be added, selected from the residuals at random. 

To actually find this point first we determine the exact lag for which the autocorrelation 

function, j(h) reaches its maximum value h*, i.e., 

h* = argmax7(/i). (2.7) 
h>0 

Note that we only consider lags h > 0. If we allowed h = 0, then the term Q(0 , e*) would 

always have the maximum contribution (for some i) to the ACF and the method would 

be similar to those that use maximum magnitude of residuals as a criterion to allocate 

new basis functions critically losing the spatial component of the diagnostic. 
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Then, we find the point in the spatial domain that has the maximum contribution 

to the ACF for lag h = h* by solving 

i* = arg max a(/i*,ej). (2-8) 
i=l,...,ra—h 

Thus the center for the new basis function is given by 

where •0 - 1 is the inverse of the function xf). For simplicity, we will refer to this center 

location as x*. 

2.4.2 Spatio-Temporal Windowing 

Now that the center of the new basis function has been found as described above it 

is necessary to determine what data should be used to determine the scale and weight 

of the new RBF. Consider the function fa = a(h*, e^). The index i is inherited from the 

data labels and in the case of a time-series corresponds to a time ordering. In practice, 

if we plot fa as a function of i we observe that the values of fa decrease away from i* 

which is what one expects since this index was selected given it corresponded to a local 

maximum in Equation (2.8). How quickly the values of fa decrease for both i > i* and 

i < i* is a property of the scales of the data and the model. 

For simplicity, we assume that fa decreases monotonically for both increasing and 

decreasing values of i until local minima are reached at the indices I* < i* and r* > i*\ 

here we use l,r to indicate left and right, respectively. We now compute the distances 

di = d{xi*,xi*) 

and 
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as these indicate the size of the data ball around the center x*. The subset of the data 

employed to update the added basis function is then 

Xlocal = {X G X : \\x - X*\\ < 4 } , 

where X is the entire training set. The distance dc can be selected in a variety of ways 

and here we select 

dc = max{d;, dr}. 

Note that Xiocai now may contain data whose indices have values that are substantially 

different from i*, I* and r*. For time-series data it is apparent that spatial neighbors may 

not be temporal neighbors. Hence, this spatial-temporal windowing has the potential 

to capture substantial training data that would otherwise be ignored. For periodic, or 

quasi-periodic data we have found that space-time windowing is essential. As observed 

in [5, 6], if $ does not decrease monotonically away from the peak then a small amount 

of filtering can be employed to recover monotonicity. Note that while no smoothing of 

Pi was required to accurately determine Xiocai for the examples in this chapter, it may 

be necessary in practice; see [5, 6, 66] for details. 

2.4.3 Updating the Model 

We may write the RBF expansion as consisting of K adapted terms and one new 

term, i.e., 

f{K+1\x) = fK\x) + Kx-v), 

where v = [c,a,a]T is the vector of parameters to be optimized. The new term h{x;v) 

is initialized as 

h(x;v) = a0(j)(\\x - CQ\\W). 

The initialization of the center CQ is at the point of most structure according to our test, 

i.e., Co = x*. The vector of widths a is very effectively initialized using the diagonal 
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elements of the covariance matrix of the local data, 

er0 = \/diag(cov(Xlocai)). (2.9) 

Note here that W = diag(a0), where the diagonal matrix W is the weighting term in 

the inner product and has its diagonal elements equal to the components in a. This 

initialization of the weights has proven to be extremely valuable in accelerating the 

convergence of the conjugate gradient iteration. The initial value for the weight, ceo, is 

calculated via least squares using the initial values for center location and widths. 

Once the data in X\ocai has been determined, the scale (width), weight and the center 

location of the new basis function are optimized using the conjugate gradient method 

with cost function 

E(v) = min } || h(x; v) — y \\\ . 
XtXlocal 

We only optimize the parameters associated with the new RBF and keep the others fixed. 

2.4.4 Stopping Criteria 

One of the most critical components of any growing algorithm is the stopping crite­

rion. Once the optimization of the new term h(x; v) is complete, a new set of residuals 

is computed over the entire training set. For an algorithm based on the IID test of the 

residuals the most natural stopping criterion to use is the 95% confidence level. Note 

that it is possible to interpret the level of confidence as a parameter but we do not vary 

it. We present several examples in the section on numerical experiments that illustrate 

the effectiveness of this stopping criterion. 

For all applications we have computed the Root Mean Square Error (RMSE) 

^x>?> (2-iQ) RMSE = 
\ '!•*-

where T is the number of test points. To compare our results with other work we also 

compute two forms of the Normalized Prediction Error (NPE), namely, 

V T I I 
NPE1 = y i = 1 ' 6i l_ (2.11) 

£ i = i \yi-y\ 
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and 
TT e2 

NPE2 = ^i=1 l_ . (2.12) 
E i = i ( ? / i - y ) 2 

It is also interesting to note that the quantity j(h*), i.e., the total contribution to 

the autocorrelation function at lag h*, monotonically decreases with the number of basis 

functions and becomes very flat when the algorithm has converged. Hence, this quantity 

could be used as a sort of statistical no progress criterion. We have compared the usual 

no progress criterion on the root mean square error with the idea of a no progress criterion 

on 7(/i*) and have found the latter to be more robust. Although we did not need to use 

either as stopping criteria for our applications it is possible they could be useful for this 

purpose with other data sets. With this in mind, we will illustrate their behavior in the 

numerical experiments that follow. 

2.5 Numerical Examples 

Here we present several applications to demonstrate the performance of the algo­

rithm in higher dimensional domains. The successful extension of this algorithm from 

one to higher dimensional domains required the introduction of the notion of a space-

time window. Here we illustrate the impact of this idea on several applications. Note 

that throughout all the following examples the same code was employed, in particular, 

there were no parameters that were adjusted or tuned to the data set. Applications to 

one-dimensional domains for a variety of noise levels and types have been explored in 

[66]. 

2.5.1 A Simple Manifold 

In this example we illustrate the representation of data on a manifold as the graph 

of a function. We employ the Pringle data set, shown in Figure 2.1, named as such 

given its similarity to the boundary of a potato chip; see also [30, 29]. The task is to 

construct a mapping from an (x, y) value in the plane to its corresponding z value on the 
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Figure 2.1: Plot of a typical Pringle set with A = 1 and UJ = 0.5. 
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Figure 2.2: Plots of the training and testing data sets. The solution to the dynamical 
system is corrupted with Gaussian noise with STD of 0.1. There are 54 data points in 
one cycle. 
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lected points to construct the fourth 
RBF. 

Figure 2.3: The plots of ACC functions for the four major basis functions. 
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(a) The first RBF in relation with the 
training data set. 
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(b) The second RBF in relation with 
the training data set. 
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(c) The third RBF in relation with 
the training data set. 

(d) The fourth RBF in relation with 
the training data set. 

Figure 2.4: The primary four radial basis functions allocated by the algorithm. The 
residuals of the four mode model pass the IID test. 
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Pringle. Thus, we are fitting the graph of a function from IR2 to R. Such graph fitting 

problems are at the center of the Whitney's manifold embedding theorem where 2m + 1 

dimensional domains suffice (in general) to write m dimensional manifolds as graphs; see 

[30, 29] for a discussion. 

This data set, as proposed in [31], can be generated as the solution to the following 

systems of ordinary differential equations 

dx 

Tt = y 

^ = -x-(x2 + y2-l)y 

-£ = -\z + 2{\xy + Lu(x2-y2)), 

where A and u> are parameters. In Figure 2.1 a numerically integrated trajectory of an 

attracting cycle is shown. In this example, we are only concerned with fitting data on 

the limit cycle and ignore transients. Figure 2.2 shows the training set consisting of 

101 points (almost two cycles) and testing data set consisting of 500 points, or almost 9 

cycles. The fact that the solution is periodic will clearly illustrate the need for spatial 

as well as temporal windowing of the data. The system is capable of learning a specific 

part of the trajectory with a small amount of data and generalizes well to the data that 

resides in the same region. 

Figure 2.3 shows the ACC functions for the four major RBFs that capture the 

underlying structure of this data set. Again, the diamonds indicate the points in the 

ACC function that contribute to the RBF at that stage, i.e., they belong to Xiocai. 

In Figure 2.3 (a) we see that the spatio-temporal window collects data from two peaks 

indicating that we have cycled through the data twice in that region. This example clearly 

illustrates the difference between spatio-temporal windowing and temporal windowing: 

a time window would only use data from one cycle. We see the same effect in 2.3 (b), 

2.3 (c) and 2.3 (d). 
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(a) The plot of 7(ft*) as new basis functions 
are added to the model. 
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(b) The RMSE plot of the model as new basis 
functions are added to the model. 
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(c) The confidence level of the fitted model 
as the new basis functions are added to the 
model. 

Figure 2.5: The performance of the RBF fit on the Pringle data set. NOTE: The 

confidence level at the end of the process is o. 
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The output of the model 
• The target values 

Figure 2.6: The testing data set and the output of the four mode model. 

Figure 2.4 shows the location and shape of the four RBFs that are generated by the 

algorithm to model the data before the IID stopping criteria is satisfied. The training 

data and the RBFs are displayed together to illustrate how the algorithm has fit the 

RBFs to the data. Figure 2.5 (a) shows the maximum value of the ACC function for 

each step in the training process. Figure 2.5 (b) shows the performance of the model in 

the RMSE sense as the number of assigned RBFs increase while Figure 2.5 (c) shows the 

confidence level at each stage of training. We see that the first four basis functions are 

clearly the most significant. The four major RBFs model the data with RMSE of 0.1187 

and 99% of points in the autocorrelation function resides in the 95% confidence bands. 

Note that neither the RMSE nor the values of j(h*) provide reliable stopping criteria 

in this example. A plot of the output of the model and target values of the testing set 

are shown in Figure 2.6. We note that a similar experiment has been carried out for the 

noise-free Pringle data set; see [66] for details. 
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(a) Initial autocorrelation function. 
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Figure 2.7: The first and last autocorrelation functions and the associated ACC functions 
that are used to determine the local balls. 
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2.5.2 Mackey-Glass Time Series 

The Mackey-Glass time-delay equation 

generates a chaotic time series with short-range time coherence, where long time pre­

diction is very difficult; it has become a standard benchmark for testing model fitting 

algorithms [118, 79, 152]. 

The time series is generated by integrating the equation with model parameters 

a = 0.2,6 = 0.1 and r = 17 using the trapezoidal rule with At = 1, with initial conditions 

s(t — r) = 0.3 for 0 < t < r (r = 17). The initial 1000 data points corresponding to 

transient behavior are discarded. Then 4000 data points are reserved for the training set. 

The test set consists of 500 data points starting from point 5001. Note that not all 4000 

training points collected were actually used for training the model. (These conditions 

are very similar to those in Piatt [118].) 

For purposes of comparison [153], the series is predicted with v = 50 samples ahead 

using four past samples: sn, sn_6, Sri-12 and sn_is- Hence, the nth input output data for 

the network to learn are 

with yn = sn, whereas the v step-ahead predicted value at time n is given by zn+v = 

f(xn+v), where f{xn+v) is the network output at time n. The v step-ahead prediction 

error is e = sn+v — zn+v. As such, this time series provides a good example for illustrating 

the construction of a nontrivial mapping from R4 to R. 

Figure 2.7 (a) shows the initial ACF (computed on the training data) while Figure 

2.7 (b) shows the ACF of the residuals that indicates that the model fitting process 

should be terminated given 95% confidence has been achieved. Figures 2.7 (c) and (d) 

show the associated ACC functions, i.e., the point-wise values Pi, corresponding to the 
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Figure 2.8: The performance of the RBF fit on the Mackey-Glass data set. 

31 



maximum value of the ACF in (a) and (b), respectively. From Figure 2.8 we see it 

is sufficient to use only 76 centers to get the 95% confidence fit for the Mackey-Glass 

data set with a resulting RMSE of 0.0116 (See Figure 2.9.) The output of the 76 mode 

model for the testing data set appears to fit the target values very well. This example is 

interesting in that a large number of modes is required to attain the stopping criterion. 

Our algorithm based on space-time balls provides a result similar to MRAN [152] 

(RMSE of 0.035) using 1500 data points with 21 centers. However, at this level of RMSE, 

both our algorithm (21 modes) and MRAN (24 modes and 4000 data points), produce 

sporadic but significant overshoots and undershoots of the function in regions of high 

gradient. These large pointwise errors are hidden to some degree by a relatively small 

RMSE. The IID test is of course point-wise and reveals local un-modelled structure in 

the data and prevents the algorithm from terminating prematurely. 

Yet, one might argue that stopping at 95% confidence and 76 modes is still premature 

stopping as a slightly improved final RMSE value of 0.0090 on the test data is achieved 

with 109 modes (but then does not improve with more). However, this example is for 

the special case of noise-free data. In such instances we recommend that the IID test be 

coupled with the RMSE test to draw optimal conclusions, unless, of course, one chooses 

to add noise artificially to the data. Given how close the RMSE errors are at 76 and 

109 modes one must seriously consider that even in this case the 95% confidence level is 

arguably superior. 

2.5.3 Time Series Prediction Using Exchange Rate Data Set1 

This data set consists of daily values of the Deutsche Mark/French Franc exchange 

rate over 701 days; see Figure 2.10. As mentioned in [103], this data set has irregular 

non-stationary components due to government intervention in the Europe exchange rate 

1We would like to thank Dr. D. Lowe at Aston University for providing us with this data set. 
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Figure 2.9: The output of the 76 mode model for the testing set compared to the target 
values. For this model an RMSE value of 0.0116 was obtained and the 95% of confidence 
stopping criteria was satisfied. 
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Figure 2.10: The plot of Exchange Rate data set. 
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Figure 2.11: The 1-step prediction of the exchange rate data using a three mode 
RBF constructed using spatio-temporal balls. The associated errors for this model are: 
RMSE = 0.0043, NPEX = 0.2760, NPE2 = 0.1033. 

mechanism. Following [103], as there can be "day of week" effects in such data, a window 

of 5 previous values can be used as input, giving a data set of 696 patterns. Hence, this 

data set forms an interesting example of a mapping from R5 to R. 

The training data for this model was taken to be the first 600 data points. The test 

data set was taken to be the last 96 data points. Figure 2.11 shows the output of the re­

sulting model (1-step prediction values) and the target (market) values for the test data. 

The modeling process terminated with a model of order three when the 95% confidence 

threshold was attained (actually 97.17%). The ACC and RMSE criteria are also in agree­

ment with the model order of three; see Figure 2.12. The three mode model produces 

the RMSE value of 0.0043, NPEl = 0.2760 and NPE2 = 0.1033. The model has cen­

ters at (3.4933,3.9292,3.2870,3.8574,4.0983), (3.2793,3.3475,3.3337,3.18433.2718) and 

(3.3666,3.4187,3.6620,3.2056,3.6457) with widths (0.4501, 2.7037, 2.2175, 2.5672, 2.9234), 
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Figure 2.12: The performance of the RBF fit on the Exchange Rate data set. NOTE: 
The confidence level is set at 97.5% so one can observe the behavior of the system beyond 
the 95% of confidence. Also one might note that after adding three basis functions the 
97.17% of the residuals fall within the confidence bounds. 
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Figure 2.13: The process of extracting three basis functions from the training (Exchange 
Rate) data set demonstrated by the ACC functions. 
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(0.1136,0.1336,8.5380,0.6561,0.5541) and (0.0555,0.0358,0.1740,0.1939,0.4015), and 

weights 3.8595, 0.5751 and 1.3805 respectively. 

The results for this exchange rate data reported in [103] show a model fit with 11 

RBFs and the NPEi of 0.336. We note that in that study the data was assumed to be 

on-line so the results presented here do not compare directly. However, we have observed 

that the on-line performance of our algorithm was comparable to the batch mode for the 

Exchange Rate data. 

Figure 2.13 highlights the patterns in the ACC functions associated to the maximum 

contributions of the ACFs in the process of adding the first 3 main RBFs. Note again 

the need for the spatio-temporal window as evidenced in Figure 2.13 (b) and (c). Figure 

2.13 (b) shows two distinct time regions contributing to the local data indicating either 

a periodic or quasi-periodic behavior. Figure 2.13 (b) suggests the remaining structure 

in the data is distributed across a preponderance of the data. A time-local windowing 

procedure would not capture this global structure in the data. 

2.5.4 Overview of Related Work 

In this section we review the work that is most similar in spirit to the algorithm 

presented here. It appears that the first paper to propose a growing algorithm for RBFs 

is [118]. In this paper, a new RBF is added to the model when the algorithm detects 

novelty in the input data. Briefly, the criteria for novelty include model error tolerance 

and the distance threshold between the input pattern and the nearest center. The new 

input pattern serves as the center of the new RBF, while the width of the RBF relates 

to a constant multiple of the distance between the new input and its closest center. If 

any of the criteria is not satisfied the current model parameters are adjusted using the 

Widrow-Hoff LMS algorithm [147]. In attempt to achieve more compact networks, a new 

algorithm referred to as RAN-EKF is introduced which uses the Extended Kalman Filter 

(EKF) instead of LMS adaptation procedure [79]. Although RAN-EKF can produce more 

parsimonious models it requires initialization of additional ad hoc parameters. 
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A minimal RBF neural network (MRAN) was proposed in [152]. MRAN adds a 

pruning strategy to RAN-EKF [79] that identifies RBFs that have negligible contribu­

tion to the overall model output over a number of consecutive inputs with respect to 

a threshold parameter. Also, MRAN includes an additional criterion that restrains the 

premature addition of new modes by smoothing the output error over a sliding window. 

A modified version of MRAN, called EMRAN, which utilizes an additional winner neu­

ron strategy is proposed in [97]. Similarly, an algorithm that uses accumulated error 

information as a criterion for adding new RBFs is proposed in [48] and [49]. The diam­

eter of the localized units is chosen based on the mutual distances of the RBFs. This 

method is able to generate small and well generalizing networks with comparably fewer 

epochs through training data set. 

In an effort to reduce the number of required ad-hoc parameters a statistical test for 

adding new units to the network is proposed in [78]. This method, which uses EKF for 

training, is called Incremental Network (IncNet). In this model, if the prediction error 

does not fall within a certain level of confidence for the Z-statistic hypothesis test, then 

a new RBF will be added to the model. 

More recently, a new RAN-EKF algorithm has been proposed that is applicable 

to both stationary and slowly varying non-stationary problems [103]. Here the novelty 

criterion involves testing whether the prediction error sequence corresponds to a zero 

mean Gaussian sequence at the 95% confidence level. A ^-statistic is used to determine if 

the sequence has zero mean while the Weighted Sum Squared Residual (WSSR) statistic, 

[35], tests the normality of the sequence. 

The algorithms described above that employ the results of hypothesis tests to add 

modes are only valid if the residuals have Gaussian distribution. In addition, perhaps 

more critically, all the algorithms mentioned in this section require careful adjustment 

of the ad hoc parameters for each data set to which they are applied. See Table 5.1 for 

a summary of these methods. 
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Algorithm 
Piatt 's RAN 
RAN-EKF 

MRAN 
IncNet 

RAN-WSSR 
Full-Bayesian 

New Algorithm 

Noise Type 
-

normal 
normal 
normal 
normal 
normal 

IID 

ad-hoc parameters 
7 
9 
12 
5 
6 
12 

None 

Table 2.1: This table presents a comparison of related RBF algorithms. Note that the 
proposed algorithm is the only one that applies to the more general case of IID noise. 

To name some specific practical application of RBFs, one could name its impact on 

DC motors [57],communications channel equalization, [95, 74, 93, 73], pattern retrieval, 

[151], robotics manipulations, [154], estimation of the noise density, [2], object recogni­

tion, [114], discriminating the EEG patterns, [42], estimation of ground rainfall, [149], 

adaptive classification, [67], sensor failure, [3], finance, [64], and other applications in 

astronomy and other fields. For further details about the described algorithms and their 

ad-hoc parameters please see [66]. 

2.6 Conclusions 

We propose an algorithm for approximating functions from scattered data and com­

pare its performance to the leading algorithms in the literature. To illustrate the absence 

of ad hoc parameters, all the data sets presented in this chapter were fit by exactly the 

same code. No adjustments were made based on the data set being fit. Hence, we claim 

the proposed algorithm is approaching a black-box methodology for nonlinear function 

approximation. This feature will permit the advancement of a variety of other algo­

rithms, e.g., the representation of data on manifolds as graphs of functions [29, 30], 

pattern classification [67, 90], as well as the low-dimensional modeling of dynamical 

systems [31]. 
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It is assumed that the available data represents a functional relationship, or signal, 

with IID additive noise. Note that if the signal contains multiplicitive noise we can take 

the natural logarithm of the signal to make it additive. An hypothesis test is applied to 

the residuals at each step in the algorithm to determine whether a new basis function 

should be added, and if so, where it should be added. When it has been determined that 

this test has been passed using the 95% confidence criterion one may infer there is no 

geometric structure left in the residuals and thus the model order has been found. 

We extended previous work by employing a spatio-temporal window, i.e., space-time 

balls, for determining the local data to be used in updating the model. The examples 

suggest that this novelty is critical for approximating data over high-dimensional domains 

and in particular for data generated by dynamical systems. We have observed that 

significantly more data is located in the space-time balls than the temporal windows 

previously considered resulting in the construction of significantly improved models. 

In this chapter we have assumed that the received signal is composed with additive 

IID noise while prior algorithms based on statistical hypotheses are restricted to Gaussian 

noise. Despite the fact that the IID test provides only a necessary condition, it appears 

to generate low order models with small RMSE. 

We have presented this algorithm for batch data. It is possible to extend this 

approach for data that arrives in a stream, i.e., on-line data. Our preliminary results 

show that this approach does not require the data to be seen repeatedly as some "on-line" 

algorithms require. We will present these results in a companion study. Also, although 

the algorithm was presented here in the context of growing RBFs, in principle it can 

be employed with other architectures for fitting nonlinear functions such as feed-forward 

neural networks. 
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Chapter 3 

E X A M P L E S OF COMPACTLY S U P P O R T E D F U N C T I O N S FOR 

RADIAL BASIS APPROXIMATIONS 

Abstract Most applications of Radial Basis Functions (RBFs) in the literature em­

ploy basis functions from a relatively small list, that includes Gaussians, multi-quadrics, 

inverse multi-quadrics, cubics, linear functions and thin plate splines. These functions 

are attractive since they satisfy invertibility conditions for the interpolation problem. 

In this chapter we introduce several new compactly supported RBFs for approximating 

functions in Lp(M.d) in the over-determined least squares. In this setting the require­

ments on the functions are weaker and many interesting examples arise. We illustrate 

the utility of this broader class of RBF on the benchmark Mackey-Glass time series data. 

We observe that these new RBFs significantly reduce the number of modes required to 

approximate the data and produce models that have significantly improved condition 

numbers. 

3.1 Introduction 

As described in the previous chapters, the approximation of nonlinear relationships 

in scattered data is now a problem of established significance in science and engineering. 

Often it occurs that only empirical observations of a phenomenon are available and 

relationships must be estimated by means of mathematical models. It is desirable for 

such phenomenological models to be as simple as possible. Given the nature of the RBF 



approximation problem as described in Chapter 2, it is very desirable for functions in 

an approximation to have minimal or even zero overlap. This is only possible if the 

functions have compact support. 

One of the main objectives in the construction of a model from known, or training, 

data is to optimize the quality of its performance on new data generated by the same 

process. Thus we require the models to have both descriptive and predictive features. 

While this goal can be approached from a variety of directions1 the inherent conditioning 

of the model plays a critical role in its ability to generalize. In practice, if the data model 

is represented generally by the mapping 

V = f(x), 

we are concerned with how the output of the model changes as a consequence of pertur­

bation of the input. In particular, if 

y + 6y = f(x + 6x), 

it is desirable that the magnitude of the change in the output \\5y\\ be small if ||<5x|| is 

small. By definition, well-conditioned models produce small variations in Sy for small 

variations in 5x. 

For nonlinear mappings, such as those generated by multi-layer perceptrons, the 

estimation of the condition number is complicated by the fact that the Jacobian of the 

map must be estimated at every point of interest [88]. This is also true in general 

for RBFs. However, in the case of RBFs we can determine the the condition number 

associated with the perturbation of the parameters simply by computing the singular 

values of the interpolation matrix. This information provides an important measure of 

the sensitivity of the model. 

For example, regularization methods and cross validation. 
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In general the condition number of an m x n matrix is 0(mn) suggesting that 

(nonlinear) models that employ linear transformations have poor performance bounds 

for large data sets of sufficient complexity. We have observed however, that the nature of 

the condition number depends very significantly on the type of RBFs that are employed. 

With this motivation we considered several forms of RBFs including those with compact 

support. We found that the functions generally available in the literature often have 

poor conditioning properties, at least for some of the data sets we have considered. In 

this chapter we introduce several new compactly supported functions for approximating 

data that possess surprisingly good conditioning properties. 

The organization of this chapter is as follows: Section 3.2 provides an introduction 

to RBFs for nonlinear data approximation. Section 3.2.1 introduces new compactly 

supported RBFs and reviews the current literature in this area. Section 3.3 shows the 

performance of the new RBFs in context of numerical examples. Finally, Section 3.4 

provides some concluding remarks and discusses avenues for future work. 

3.2 Radial Basis Functions for Approximating Scattered Data 

We employ the same RBF expansion as in Chapter 2 which we repeat here for 

convenience, i.e., an RBF is a mapping / : R™ —> Rm that is represented by 

Nc 

f(x) = Ax + UQ + Y^Uk4>{\\x ~ ck\\w), (3.1) 
fc=i 

where x is an input pattern, <fi is a RBF centered at location <%, and otk denotes the weight 

for A;th RBF and A is an m x n matrix. As before, the matrix W denotes the parameters 

in the weighted inner product ||x||w = \/xTWx and the term Ax + a0 performs an affine 

transformation of the data and is useful so that the nonlinear terms are not attempting 

to fit flat regions. More general polynomials may be used for this purpose [130]. As 

usual, the dimensions of the input n and output m are specified by the dimensions of 

the input-output pairs from data. 
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In this chapter the implementation of the RBF follows our black-box methodology 

for nonlinear function approximation as described in Chapter 2 or [66, 72], i.e., we employ 

Algorithm 1. It is assumed that the available data represents a functional relationship, 

or signal, with IID additive noise. 

3.2.1 Compactly Supported RBFs 

Recently several functions with compact support have been proposed as RBFs for 

the interpolation problem, see, e.g., [144, 143, 148]. For example, the C2 function 

0(r) = ( l - r ) t ( l + 4r), (3.2) 

has been derived as an RBF explicitly for domain dimension 4 in the sense that the 

resulting square interpolation matrix is a (conditional) positive definite matrix [144]. In 

other words, we say that this function qualifies as an RBF given the square interpolation 

matrix is guaranteed to be invertible. In many cases of practical interest it appears that 

this interpolation condition is overly restrictive. In particular, the data fitting problem 

is concerned with solving an over-determined least squares problem. In this setting it 

seems adequate to only require that the approximating basis functions be dense in an 

appropriate function space. 

For example, as described in [115], the conditions required of basis functions to 

be dense in LP(R") are very weak. For completeness, we briefly describe Park and 

Sandberg's theorem. Following [115], let K be a radially symmetric kernel function 

related to the activation function 0 : [0, oo) —• R, such that, K(^L) = 0(l |x~Cil1). The 

general element of the set Si(K) is expressed as 

q(x) = E^OiKi^^), (3.3) 

where Nc G N, the set of natural numbers, is the number of basis functions, a* G Rm is 

the vector of weights, x is an input vector (an element of Rn), Cj and Oi are the center and 
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(a) The plot of the C°° mollifier function. 
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(b) The plot of C° quarter circle. 
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(c) The plot of C°° Hanning function. 

Figure 3.1: These functions can be used as 4>{r) in the radial basis function expansion. 
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Figure 3.2: The output of the 37 mode model for the testing set compared to the target 
values. For this model an RMSE value of 0.0167 is obtained and the 95% of confidence 
stopping criteria was satisfied. 

widths of the zth kernel node, respectively. If &i = a, i.e., all the widths are constant, 

then this family of functions is referred to as SQ{K) [115]. 

Park and Sandberg's S0(K) Theorem [115]: 

Let K : R™ —> R be an integrable bounded function such that K is continuous 

almost everywhere and JRn K(x)dx ^ 0. The family SQ(K) is dense in Lp(M.n) for every 

pE [l,oo). 

Park and Sandberg provide additional theorems for So and Si with improved con­

ditions in [116]. Motivated by these broad criteria which qualify functions as RBFs for 

least-squares problems, we propose several compactly supported functions that by Park 

and Sandberg's theorem are dense in L p (R n ) . In what follows we will illustrate their 

utility in practice in the context of over-determined least squares problem. 
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First, we propose the bump function widely used in differential geometry 

< K r ) = e x p ( ^ ^ ) i / ( l - r 2 ) , 

for use as an RBF activation function where H is the usual Heaviside step function. This 

compactly supported and infinitely differential function is also widely referred to as a 

mollifier. It is shown in Figure 3.1 (a), and is qualitatively similar in nature to the widely 

applied non-compact Gaussian RBF, exp(—r2). Interestingly, the failure of the Gaussian 

to have compact support has led some researches to arbitrarily truncate it. We observe 

that the Gaussian RBF satisfies the positive definiteness of the interpolation matrix for 

all space dimensions d > 1. Note that while the mollifier function satifies the postulates 

of Park and Sandberg's theorem, it has non-positive values in its Fourier transform and 

hence does not satisfy Bochner's interpolation criterion, [24], for a compact RBF [144]. 

Although this fact is of theoretical interest it is not of practical consequence since we 

are interested in the approximation (rather than interpolation) in the context of the 

overdetermined least squares problem. 

A compact activation function with constant curvature is provided by 

<j>(r) = Vl-r2H(l - r2). (3.4) 

This is just the quarter circle shown in Figure 3.1 (b). Clearly this function also satisfies 

the postulates of Park and Sandberg's theorem. Of course this function is not differen-

tiable where it meets the axis. While this could potentially cause problems in practice, 

we establish in the section on numerical experiments that the condition number of this 

RBF suggests it is worthy of further investigation. 

Our last proposed activation function with compact support is the Hanning filter 

(j){r) = (cos(rTr) + l)H{\ - r). (3.5) 

Like the bump function, this function is also infinitely differentiable; see Figure 3.1 (c). It 

has advantages over the mollifier function in the manner in which the function approaches 
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Table 3.1: This tables shows the performance of different RBFs under using an identical 
strategy of fit. 

ConditionN umber 
RMSE 

NumberofRBFs 
Confidence% 

Wendland RBF 

3.0057e + 003 
0.0109 

51 
95 

Circle RBF 

12.5845 
0.0344 

26 
95.27 

Mollifier 

284.3114 
0.0167 

37 
95.53 

zero, i.e., there is no vanishing term in a denominator. We do not present empirical results 

for this case in this current chapter, however, the Hanning filter performs very well in 

the examples of Chapters 5 and 6. 

3.3 Numerical Examples 

Here we employ a parsimonious growing algorithm with automatic mode determi­

nation as described in Chapter 2 or [66, 72], i.e., Algorithm 1. As described in Chapter 

2, this algorithm is very attractive for comparing the qualities of various RBFs as it 

does not require any tuning of ad hoc parameters. Algorithm 1 works on high dimen­

sional domains and employs an spatio-temporal window to identify the data points that 

contribute to each RBF, see Chapter 2. Recall that the placement of the functions is 

driven by a statistical hypothesis test that reveals geometric structure when it fails. At 

each step the added function is fit to data contained in a spatio-temporally defined local 

region to determine the parameters, in particular, the scale of the local model. 

3.3.1 Mackey-Glass Time Series 

In this example we again use a mapping from a time-delay embedding of the uni­

variate time-series to a future value to illustrate the performance of the new compact 

functions. The data set is exactly the same as in Chapter 2, Section 2.5.2 as is the form 

of the modeling problem. 

As in Chapter 2, we compare performance of the various RBFs via RMSE and the 

number of basis functions required. However, here we also measure the sensitivity of the 
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(a) The plot of the C°° mollifier function. 
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(b) The plot of C° quarter circle. 
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(c) The plot of C°° Hanning function. 

Figure 3.3: The derivatives of the compact RBFs. Small values near r = 0 can lead to 
improved conditioning of the model. 
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models via the condition number of the interpolation matrix of the full model. We present 

the final result of the fit using the mollifier in Figure 3.2. In this figure the output of the 

model and the associated target values are shown. A comparison of condition numbers 

as well as other data associated with the model fit is summarized in Table 3.1. The circle 

RBF has a surprisingly low condition number, three orders of magnitude lower than the 

polynomial RBF. Note also that, as described in Chapter 2, all the results achieve 95% 

confidence in the statistical test applied to the residuals. 

We make no claim that the RBFs proposed here are superior to other RBFs in the 

literature or that they can be used for the interpolation problem. Clearly there are many 

factors that influence the performance of these fits. In particular, the nature of the data 

set will dictate to some degree which RBF is most appropriate. However it is significant 

that, on this data set at least, the condition numbers of the least-squares matrix are 

dramatically lower for the new compactly supported RBFs. This could be due in part 

to the profile of the derivative of each of the RBFs. We see in Figure 3.3 (a) that the 

derivative of the mollifier is very small near the origin. The slope rises faster than that of 

the derivative of the quarter circle but is more well behaved for larger values. Obviously 

the circle suffers from the fact that it is not differentiable at r = 1 as shown in Figure 

3.3 (b). Clearly this blow-up is potentially problematic but in our simulations the data 

for each RBF was never in this region. The symmetry of the Hanning derivative shown 

in Figure 3.3 (c) might have advantages but we also observe the steeper slope near the 

origin. 

3.4 Conclusions 

We have proposed several new compactly supported RBFs and have illustrated some 

of their enhanced performance properties on the benchmark Mackey-Glass problem. Both 

the number of required modes and the conditioning of the final model are substantially 

improved over results using RBFs from the standard list. This suggests that the com­

pactly supported RBFs proposed here provide additional options of interest in the data 
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fitting problem. In particular, we advocate the use of either the mollifier function or 

Hanning RBF as an alternative to the truncated Gaussian RBF. 

We note that the condition number of the interpolation matrix depends directly 

on the choice of RBF and suggested an explanation of the good conditioning properties 

of the proposed RBFs in terms of the behavior of the derivatives. It is interesting to 

speculate that new RBFs may be designed by optimizing the behavior of the derivative 

of the RBF for purposes of numerical conditioning. Such an approach should lead to 

improved function generalization. 

In later chapters we will consider innovations that result in Algorithm 2 and exten­

sions to higher dimensional ranges, i.e., Algorithm 3. We employ the compact functions 

presented here in those settings as well and observe significantly improved performance. 
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Chapter 4 

SKEW-RADIAL BASIS F U N C T I O N EXPANSIONS FOR EMPIRICAL 

MODELING 

Abstract We propose a skew-radial basis function expansion for the empirical model 

fitting problem. This is accomplished by modulating or skewing, each radial basis func­

tion by an asymmetric shape function which increases the number of degrees of freedom 

available to fit the data. We show that if the original radial basis function interpolation 

problem is positive definite, then so is the skew-radial basis function when it is viewed 

as a bounded perturbation of the radial basis function. We illustrate the effectiveness of 

skewing radial basis functions via several example problems including fitting data with 

jumps and prediction of the maximum wind intensity of a hurricane. Further, we show 

this approach leads to models with both improved accuracy and reduced order. 

4.1 Introduction 

The importance of quantifying nonlinear relationships between sets of variables has 

driven researchers to devise an array of techniques for empirical modeling from data. 

If the underlying relationship between the domain and range variables is nonlinear and 

the dimension of domain variables is greater than two or three then one must resort to 

special techniques that overcome Bellman's curse of dimensionality [20]. The multilayer-

perceptron and the associated back-propagation algorithm have attracted considerable 

attention for constructing such mappings [145, 128]. Alternatively, radial basis functions 



(RBFs) have attracted substantial interest given that the resulting optimization problem 

can be broken efficiently into linear and nonlinear subproblems [121, 32, 120, 119]; see 

also the more recent monographs [96, 34, 144]. 

Empirical modeling is essentially a data fitting problem. The data may be gener­

ated, e.g., by a dynamical system that is either numerically simulated or observed. For 

example, a physical system such as a hurricane may be observed in nature or approxi­

mated via a numerical simulation. In either case it is of interest to model a relationship 

between domain variables and scalars of interest such as maximum wind intensity. Other 

dynamical systems, such as financial markets, behave in such a manner that equations 

derived from first principles do not adequately describe the behavior of the actual phe­

nomenon. In this setting as well it is useful to be able to discover relationships by directly 

modeling the data. 

A geometric approach to data analysis involves describing data given as a set of 

points on a manifold embedded in an Euclidean space as the graph of a function [29, 30]. 

Given data samples from a manifold, the first step is to identify an appropriate domain 

x for the function. Then a nonlinear data fitting technique may be used to represent 

the nonlinear elements f(x) resulting in the representation of the data as the graph 

(x,f(x)). These ideas belong to a field that has been more generally referred to as 

manifold learning, see, e.g., [137, 126]. 

These examples all share the common feature of the data fitting problem in that 

there exists a set of domain values {x^ G W1} and range values {y^ € M.m}. Further, 

it is implicit that there exists a mapping f(x) such that 

y{k) = f(x(k)l (4.1) 

which we seek to determine. In general terms we can express this as a function approxi­

mation problem, i.e., 
n 

/ (x ) = ^ a ^ ( x ; 7 f t ) . (4.2) 
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In addition to the nature of the function 0, the parameters {r]i} are critical for encoding 

the information associated with the data. In particular, these parameters determine the 

location of the basis functions over the domain as well as shape parameters to govern 

the functions ability to match, or fit, the data. 

Given the volume of the domain increases exponentially with dimension, it is simply 

not practical to cover a high-dimensional domain with a uniform lattice. Assuming that 

the auxiliary parameters r\i have been selected, then the weights a, in Equation (4.2) 

are determined by satisfying the interpolation conditions given in Equation (4.1). Note 

that if the interpolation matrix is square then these conditions are satisfied exactly. 

However, if there are more data points than centers, then these interpolation conditions 

are approximated in the least squares sense. 

In general, data fitting methods, such as those based on RBF expansions, are very 

limited in the nature of the parameters that can be used to adapt the shape of the 

functions <fi, see Appendix for a Gallery of most prominent types of these functions. 

In this chapter we investigate skew-radial function expansions of the form 

n 

f(x) = Yl a^(x' vO. (4-3) 
t= i 

where 

ip{x;tfi) = z(x;i>i)<p(x;r)i). 

•di consists of parameters required for both the radial function cj){x;r]i) and the symmetry 

breaking function z(x;i/i). Note that z is actually a data adapting function since it 

provides additional flexibility to the function to match the shape of the data. Both 

functions are mappings from the data domain to the real line, i.e., 

z, <p : R n -»• R. 

We demonstrate via several examples how this modified expansion can be used to improve 

a given data fitting approach by both improving the accuracy of the fit and reducing the 
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order of the model required. We focus on illustrating these ideas in the context of RBFs, 

one of the most popular approaches for nonlinear data fitting over high dimensional 

domains, see e.g., [52]. Park and Sandberg's theorems, [115, 116], provide theoretical 

background for the universal approximation properties of radial basis functions which 

are also inherited by skew-radial basis functions. 

The organization of this chapter is as follows: Section 4.2 provides a motivating 

example for why skew-radial basis functions are useful. Section 4.3 reviews the connection 

to skew-symmetric. Section 4.4 introduces the skew-radial basis functions for data fitting 

and provides several examples. The positive definiteness properties of the new skew-

radial basis functions are proved in Section 4.5. Section 4.6 demonstrates the added 

value of the developed basis functions via numerical examples. Section 4.7 provides an 

overview to related work. Finally, Section 4.8 provides some concluding remarks and 

discusses future work. 

4.2 A Motivating Example 

We now consider an illustrative example which, while artificial in nature, clearly 

indicates the potential need for the shape adaptation function z(x,Ui). Consider the 

function f(x) defined as 

r\(x-2) 
f(x) = e-(*-2)2 / e-

y2dy. (4.4) 
J — oo 

Note that if the skew parameter A = 0, then the function f{x) is symmetric. For 

this example we select A = —7 and generate random points on the graph (x, f(x)) as 

shown in Figure 4.1. A data set of 450 data points is generated. A modest amount of 

noise is added to the data, normally distributed with mean zero and standard deviation 

0.01 (these leads to the requirement of an overdetermined system). These points are 

partitioned into a training subset which is used to compute fitting parameters and a 

validation subset which is used to indicate when the training is completed. The training 
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The plot of test set 

Figure 4.1: The testing and training data sets for the skew-radial data set generated by 
randomly sampling Equation 4.4 with the parameter A = —7. 

and validation data sets consist of 244 and 107 uniformly sampled data points from the 

original data set, respectively. The remaining 99 data points are used as testing. 

A standard RBF algorithm would seek to represent f(x) as defined by Equation 

(4.4), e.g., as 
n 

f(x) = y^2^4{\\x - Ci\\Wi), (4.5) 
i = l 

where x is an input point, <p is the basis function that is centered at location c*, a^ 

denotes the weight for the ith basis function. The term W denotes the parameters in 

the weighted inner product \\x\\w = y/xTWx. 

Note the dilemma as the functions 4> are> by construction, symmetric. In our ex­

periment we employ Gaussian RBFs to approximate f(x) and we require n = 13 terms 

to achieve an RMSE 1 of 0.0035 and a 96.80% confidence level that the residuals of the 

model are IID noise [66, 72] or Chapter 2. The resulting fit is shown in Figure 4.2 (a) 

and the RMSE performance of the model is shown in Figure 4.2 (b). 

LRoot Mean Square Error, RMSE= J (1/T) J2i=i e1 where ei's are the residuals. 
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(a) The the output of the model. 

_ a a a> 

(b) The RMSE plot of the model 
as new basis functions are added to 
the model. 

Figure 4.2: The output of the model when Gaussian's are used as RBFs and the perfor­
mance of the model as new basis functions are added to the model. 

It is revealing to view the manner in which the symmetric functions manage to fit 

the skew-radial function as shown in Figure 4.3. While it is tempting to conclude that 

only n = 5 functions are required to fit f(x) we note that the residuals are not IID for 

that model. We return to this example in Section 4.6.1 where a model is constructed in 

terms of skew-radial basis functions. 

4.3 Skew Statistical Distributions 

The motivation for skew-radial basis functions (sRBF) stems from the fact that the 

shape of data to be fit is in general not radially symmetric. Our research in model order 

reduction, Chapter 2, indicated that the shortcomings of the fit could be directly related 

to the lack of flexibility in the approximating functions. The need for such asymmetric 

expansion functions suggested that recent developments in the literature of multivariate 

skew statistics could be of particular interest. In [8] a general representation of the 

density of an arbitrary skew distribution is given as 

f(z\Qm) = K-1fk(z)Qm(z),zeRk, 

where Km = P(X > 0) and Qm(z) = P(X > 0\Z = z) for some random vectors X and 

Z with dimensions m and k, respectively, and with joint distribution such that Z has 
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Figure 4.3: The 14 steps to fit the Skew data set. The residuals of the model are IID 
after 13 terms. 

marginal density fk- Km is a normalizing constant and the term Qm may be interpreted 

as a skewing function. The most general class of skew distributions is defined in terms 

of this density and are referred to as fundamental skew-symmetric distributions (FUSS) 

[8]. 

One could obtain different families of skew distributions by specifying a symmetric 

pdf / for Z and conditional distribution X\Z = z. For example, if we assume that 

Z ~ iVfc(/i, E), then the FUSN class of distributions is defined as follows: Let Z* = 

[Z\X > 0], where Z ~ Nk(n,T,) and X is a m x 1 random vector. Then Z* has 

a k-variate fundamental skew-normal (FUSN) distribution, which is denoted by Z* ~ 

FUSNktTn(/j,, S, Qm) and its density is given by 

fz^z) = K-1d>(z\fi,Tl)Qm(z), 
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where Qm(z) = P(X > 0\Z = z) and Km = E[Qm(Z)} = P(X > 0). Note that one 

could generate further nonsymmetric distribution by specifying another function in the 

argument of Qm [8]. 

The idea of modeling skewness by means of the construction of a mathematically 

tractable family including the normal distribution can be traced back to 1908, [56], 

where perturbation of the normal density via a uniform distribution function leads to a 

form of skew-normal density. For specific references on skew-Cauchy distributions, see 

[9, 19, 61, 53], for skew t distributions [75, 14], skew-logistic distributions [142], and 

skew-elliptical distributions [26]. 

For the purposes of this chapter we focus on the specific formulation of the skew-

normal distribution. The formal definition of the univariate skew-normal (SN) family 

is due to Azzalini [11]. A random variable Z has an SN distribution with skewness 

parameter A, and is denoted by Z ~ SN(X) if its density is f(z\X) = 2(j)(z)$(\z), with 

z G M and A G K. Here 0 and <5 are pdf and cdf of N{0,1), respectively. The case 

where A = 0 reduces to JV(0,1). Further probabilistic properties of this distribution are 

studied in [11, 12]. The multivariate SN family of densities is introduced in [15] and 

is given by f(z\X) = 2(j)k(z)$i(XTz), z G Mfe and A G Rk. Again, (j)k is the probability 

density function of a A:-dimensional normal distribution, A^(0,1). Similar to what is 

mentioned above, the case where A = 0 corresponds to Nk(0,lk)- Further properties of 

the multivariate SN distribution are studied in [13]. 

So, in general we are motivated by the broad class of skew multivariate distributions 

of the form 

fp(y; fi, E, D) = $ (0-/ + D S D ' ) ^ ' M ' E ^ [ j D ( y ~ ^ ' 

where fi G Rp, S > 0, D(p x p), 0P(.;//, S) and <&P(.;E) denote the pdf and the cdf 

of a p-dimensional symmetric distribution with mean /j, and covariance matrix E > 0, 

respectively. Note that in this case we have a p-integral with upper bounds of D(y — //) 

[54]. 
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In this chapter we consider the simplified representation 

fp(y; fi, S, A) = 2<j>p(y; fi, £ ) $ i (\T(y - fi)) , 

where A is a vector of length p and $1 is the one dimensional cdf of the given distribution. 

In other words 
/•AT(»-/i) 

$i[A r(y -fi)]= / ^1(x;/i ,E)dx, 
J — oo 

as provided in [15]. However, we emphasize that the sRBFs proposed in this chapter 

need not be skew distributions and as we shall see in the examples, generally they are 

not. 

Nonetheless, a blue-print for constructing sRBFs is motivated by the literature in 

skew multivariate distributions. The product of a cumulative distribution function with 

its associated probability density function is a clear candidate. However, given our 

view to construct functions that efficiently adapt to data we are not concerned whether 

the representation is strictly speaking a true skew distribution. So, for computational 

efficiency, we can use the closed form Cauchy cdf (an Arctan function) with an array of 

different RBFs to generate a family of skew-radial functions. For examples, Erf-Cauchy 

RBFs (Erf is the Gaussian cdf) , Cosine-Sine RBFs, Cosine-Cauchy RBFs, and many 

others. An analytic representation of the cdf makes the Cauchy distributions attractive. 

All we need is a nonlinear modulator that can produce flexibility in the shape of a 

symmetric RBF. We present several concrete examples of skew-radial functions in the 

next section. 

4.4 Skew-Radial Basis Functions 

In this chapter we investigate skew-radial basis function (sRBF) expansions of the 

form 

n 

f(x) ='%2aiz(.x>1/i)<i>(\\x ~ CiWwt), (4-6) 
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where the modulating term z(x, Vi) serves to break the radial symmetry of the function 

0(||x — CJHWJ. Furthermore, in this work we focus on the special case of the form 

n 

f(x) = ^jaiz{\J{x - Ci))<j>(\\x - a\\Wi), (4.7) 

where the vector of parameters Aj determines the shape of the skew-radial function. 

For compactness we represent the set of parameters associated with the symmetric 

portion of an RBF as rji = (Wj,Cj), and the non-symmetric portion as ẑ  = (Aj,Cj) and 

when we are not concerned about which basis function simply as r\ and v. In what 

follows we consider specific examples of the impact of modulating a symmetric RBF 

4>(x;rj) with an asymmetric function z(x;u). Examples of compactly supported sRBFs 

arise by modulating compactly supported RBFs proposed in Chapter 3. 

4.4.1 Erf z(x; v); Gaussian 4>(x;ri) 

In our first example we employ the symmetric RBF 

<t>{x\Tu) = exp( ^ — ) , 

with an asymmetric modulating function 

Z{X\ Vi) 
/

Ai(X-Ci) 

exp(-y2)dy. 
-oo 

Thus, for the special case where both the domain and range of the data are one-

dimensional the Gaussian-Gaussian sRBF is given by 

MxM) = exp(-{- ^-) / exp(-y2)dy. (4.8) 

For domains in higher dimensions we have 

/

Xf(x-a) 
exp(-y2)dy. (4.9) 

•oo 

See Figure 4.4 (a) for a plot of the Erf-Gaussian case. 
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(b) Arctanz(:r; v) - Hyperbolic-
(a) Erf z{x; v) - Gaussian 4>{x; rj). S e c a n t ^x. ^ 

(c) Arctan z{x;v) - Gaussian (d) Arctan z(x;^) - Circle 0(a;; 7?). 
4>(x;r]). 

(e) Arctan z(x; v) - Hanning fa, rj) (f) Arctan z(x; v) - Mollifier fa, r,). 

Figure 4.4: Plots of the one-dimensional (domain) ^ f ^ ^ ^ * ^ J ^ 
z(x- v)6(x- n) where the asymmetry parameter A is varied from -10 to +10 The product 
u n i o n s a^e composed of the following: (a) Erf-Gaussian (b Arctan-Cauchy (c) Arc an-

Gaussian as well as the compactly supported functions (d) Arctan-Circle (e) Arctan-
Cosine and (f) Arctan-Mollifier. 

62 



Figure 4.5: Plot of the two dimensional sRBF using Arctan for z(x\ v) and the Gaussian 
for (j>(x; 77) for the specific case Ai = A2 = —10. 

4.4.2 Arctan z(x;v); Hyperbolic-Secant 4>{x;r]) 

For the symmetry breaking term we may use the arctan function 

z(x; Vi) = - arctan (\J(x - Q ) ) + - , (4.10) 
7T Z 

which is also the cumulative distribution function for the Cauchy probability density 

function. Thus the skew-radial Arctan-Hyperbolic Secant is given by 

ip(x,'di)= I-axctan (Xj(x-Ci))+-jsech(\\x-ci\\wi)- (4-H) 

It is important to note that cf){r) = cosh - 7(r) for 7 > 0 is positive definite, [21], so it 

could be used in both the least square and interpolation senses. Also note that varying 7 

changes the curvature of the function. This way one could get an RBF that is adaptable 

to the local curvature of the data. This feature could be used to further reduce the model 

order. See Figure 4.4 (b) for a plot of the Arctan-Hyperbolic Secant. 

For further functions that are positive definite and could be used as RBFs see [125]. 

In particular all symmetric stable probability distribution functions are positive definite. 
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4.4.3 Arctan z(x;u); Gaussian (j){x\rj) 

For the symmetry breaking term we may use the arctan function given in Equation 

4.10. Combined with the Gaussian RBF <f)(x;r)i) = exp(—||x — Cj||^.), we get 

V>(z,#i)= ( - a r c t a n (Af(x - Q ) ) + - J exp(- | |x - Q | | ^ ) . (4.12) 

See Figure 4.4 (c) for a plot of the Arctan-Cauchy case. 

This function also coincides with what is provided in [110]. In this reference the pdf 

is taken to be normal and the cdf comes from variety of distributions such as as normal, 

t, Cauchy, Laplace and logistic distributions. 

4.4.4 Arctan z(x;v); Circle 4>(x;rj) 

Now consider the Quarter Circle compact function with radius one, i.e., 

j V l - r 2 if r < 1, 
0 ( r ) = \ o i f r > l . 

Using the Heaviside step function notation and letting r = ||a: — Cjjl^, we have 

<t>(x,Vi) = y l - \\x-Ci\\2
WiH{\ - \\x-Ci\\Wi). 

Despite the fact that this RBF is not smooth it has performed well on some data sets, 

see Chapter 3. Combining this with the arctan symmetry breaking term z we have the 

sRBF 

ip{x,di) = ( - a r c t a n (Af(x-Ci)) + - ) y l - \\x - Ci\\2
w.H(l - \\x-Ci\\Wi). (4.13) 

See Figure 4.4 (e) for a plot of the Arctan-Hanning case. 

4.4.5 Arctan z(x;u); Hanning (f)(x;rj) 

In this example the we employ a cosine function in the same fashion as a Hanning 

filter to produce a RBF with compact support, [71] or Chapter 3, i.e., 

4>{x;r]i) =(cos(||a; - Ci\\w%ir) + l)H(l - \\x - Ci\\Wi). 
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To create a sRBF here we employ the Arctan function. These functions, taken together, 

result in the Arctan-Hanning sRBF 

ip(x, di) = ( - arctan (Xj(x - Cj)) + - ) (cos(||x - C ^ ^ T T ) + l)H(l - \\x - Ci\\Wi). (4.14) 

See Figure 4.4 (e) for a plot of the Arctan-Hanning case. 

4.4.6 Arctan z(x;u); Mollifier (j>{x;rj) 

The Mollifier, or bump function, also has an attractive form for an RBF given its 

decay rate and compact support, Chapter 3. It is expressed as 

0(r) = eMj^)H(l - r). 

So the sRBF of interest is then 

ip(x,fii) = ( - arctan (X[(x - a)) + - ) exp ( ,, — \ y r ) H ( l ~ \\x ~ ci\\wi)- (4.15) 
71 Z L \\X Ci\\w. 

See Figure 4.4 (f) for a plot of the Arctan-Mollifier. 

4.5 Interpolation with Skew-Radial Basis Functions 

In the previous examples we have considered the over-determined data fitting prob­

lem which results in an overdetermined least squares system. Alternatively, one may 

employ these data adapted basis functions, like standard RBFs, to solve the interpola­

tion problem. Such interpolation problems arise from explicit or implicit surface recon­

struction, (a compact, orientable manifold), e.g., in image processing, [144], as well as 

in numerical analysis, [121], and the numerical solution of partial differential equations, 

see, e.g., a special journal issue devoted to this topic [1]. Given the utility of RBFs in 

these domains we address the issue of the suitability of asymmetric, or sRBFs, for the 

interpolation problem. Following the work of [25], we show that under certain conditions 

we are guaranteed that the sRBFs also can be used to solve the interpolation problem. 

In [25], it is shown that an interpolation matrix remains positive definite for a bounded 
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perturbation in scale and shape. We adapt their approach here to show that perturb­

ing the symmetry of the RBFs also results in an interpolation problem with a unique 

solution. 

Our framework is the same as in [25] and we follow the basic ideas and notation 

presented there. In contrast to their dilation problem, in our application we are concerned 

with skew-radially, perturbing the conditionally positive definite radial functions <fi : 

R>o —> R in the multivariate interpolation problem. Our data is spatially finite in 

extent and so we assume that it consists of the set of points that is a subset of a compact 

set fl C Rd, i.e., X = {xi, x2, x3,..., x^} C fl. By assumption, if 

Ajk = </>(\\xj-xk\\), 

then the quadratic form xTAx > 0 is positive definite on the space 

JV 

V := {a € RN : J2aiP(xj) = Ofor allP e Pm}> (4-16) 
3 = 1 

where P ^ denotes the space of d-variate polynomials of order not exceeding m [25]. For 

examples of such (conditional) positive definite functions see Appendix, [106, 144, 131]. 

If Q = dim IP^ and we require that the interpolation condition 

Vi = f{xi) 

be satisfied, then we seek the unique solution to the (N + Q) x (JV + Q) system 

Aa + P(3 = y 
PTa + 0 = 0, i 4 - i 0 

where P^ = Pi{xj), i = 1 , . . . , Q and rank(p) = Q < N of the form 

JV Q 

z{x) = j2aMxJ ~x\\)+^2&Pi(x)i 

with a G V. 

We propose a sufficient condition for the non-singularity of the system of equations 

4.17 perturbed by a radial symmetry breaking function z. 
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T h e o r e m 4 .5 .1 . Skew-radial basis functions of the form 

n Q 

f(x) = ^2onz(Xj(x - Ci))(j)(\\x - a\\) + Y^PiPi(x), 
1=1 1 = 1 

which have positive definite interpolation matrices when A = 0 have positive definite 

interpolation matrices for values of A > 0 if 

A 
lAllcc < 

NM\zr(rto)\^magN\\xj - z f c | | i ' 

where A is the smallest eigenvalue of the interpolation matrix A in Equation (4-17) 

restricted to V. 

Proof. Now the skew-radially perturbed basis functions form the interpolation matrix 

for the perturbed problem is 

Ajk = <j>(\\Xj - Xk\\)z{)%{Xj - Xk)), 

where Ai is the parameter which determines how skew the basis function is. The per­

turbed version of the system of equations (4.17) can be written as 

Aa + P0 = f u R, 
P r 5 + 0 = / . ( 4 1 8 ) 

We seek to bound the term 

(A - A)jk = <f>(\\xj - xk\\)z(\l(xj - xk)) - 0(||xj - xk\\)z(Xl{xj - xk)). 

It follows that 

(A - A)jk < \<t>(\\xj - xk\\)\ • \Z(XI(XJ - xk)) - Z(\1(XJ - xk))\. 

Define 

M = max.\<p(\\xj - x f e | | ) | . 
jk 

Then, by the mean value theorem, 

(A - A)jk < M\z'{ri)\(Xl{XJ - xk) - A^(x,- - xk)), 
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for some rj € [0, \J(XJ — xk)}. Further, if 

??o = argmax|z'(?7)|, 
v 

then 

(A - A),k < M\z'{r]0)\X[{xj - xk), 

where we assume that we are perturbing about A2 = 0. If we let 

V X j X k, 

then 

ATw = ^XiVi < ^ | A i | | u i | , 
i i 

SO 

ATt> < | |A||oo||£j - Xfe||i. 

Putting it all together and considering ||̂ 4 — A\\2 < N\\A — AW^ = N max \Ajk — Ajk\, 
l<j,k<N 

[60], we get 

| | A - i | | 2 <iVM|z/(77o)|||A||00 max \\XJ - xk\\x. 

We require that A be such that 

NM\z'(r)0)\ ||Ajloo max \\XJ - xk\\i < A, 

where \\A — A\\2 < A(see Appendix). In other words, 

A 

°° ~ NM\z'(r]0)\ max ||x7-— xk\\i 
l<j,k<N J 

D 

For details concerning values A for certain conditional positive definite functions see, 

[129] and references therein. 
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Figure 4.6: The output of the model Equation (4.19) fit to the data set shown in Figure 
4.1. 

4.6 Numerical Experiments 

In this Section we revisit our first skew-radial example from Section 4.2 and present 

two additional examples to illustrate the enhanced fitting capabilities of sRBFs of the 

form given in Equation (4.6). To illustrate the absence of the Gibbs phenomenon using 

sRBFs we fit data sampled from the unit step function in Section 4.6.2. This example is 

followed by fitting a complex time series of maximal tangential wind velocities generated 

by a numerical simulation of a hurricane in Section 4.6.3. 

4.6.1 Motivating Example Revisited 

It was shown in Section 4.2 that attempting to fit asymmetric data by radial func­

tions can result in models of relatively high order as the symmetric functions build up 

the asymmetry in the data. Now that we have seen an array of sRBFs we show how such 

a representation can fit the data in Figure 4.1 optimally well. To achieve this we include 

the skew term in the expansion, 

/ (*) = £ > ( f'XC' e x p ( - y 2 ) * / ) 0 ( l | : r - Q l k ) . (4.19) 
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Figure 4.7: The optimization process to fit the Skew data using sRBFs. 

By design, given this functional form, we expect that only one basis function is required 

to fit the data. This is in fact the case as is shown in Figure 4.6. Clearly this example 

is intended to illustrate the weaknesses of RBFs and the power of sRBFs by selecting 

data that is least suited to RBFs and most suited to sRBFs. In general this contrasting 

performance will not be so severe. 

Given the simplicity of this example the numerical results are easy to interpret and 

provide some insight into more complicated examples. After optimization we find, that 

we need only n — 1 terms with the values converged to a = 1.0005, a = 1.0004, A : 

—6.9695 and ju = 1.9999. This modulated representation produces an RMSE = 0.0029 

with 98.8% confidence that the residuals are IID noise. 

It is informative to examine the convergence of the parameters during the optimiza­

tion procedure as shown in Figure 4.7. Note that the center, width and weight of the 

RBF seem to be determined first and then the skewness of the modulating term refines 

the solution. 
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Figure 4.8: The training and validation data sets for the discontinuous step function. 
The training data has 926 uniformly samples data points and the validation data set 
consists of 701 data points. 

4.6.2 The Unit Step Function 

This data set is constructed to demonstrate the performance of sRBFs in fitting 

sharp discontinuities and edges that may arise, e.g., in the modeling of images, or time 

series with sudden changes or physical systems with shocks. Note that although we only 

consider the case of the domain being one-dimensional, the results for a two dimensional 

domain (discontinuous square) are similar. 

In this study it is important to pay attention to the reduction in the Gibbs phe­

nomena. The Gibbs phenomenon was first observed in the context of truncated Fourier 

expansions. Other variations of the Gibbs effect arise in situations such as truncated 

integral transforms and for different interpolation methods. The Gibbs effect for several 

RBFs in one dimension was first studied in [45]. For further study on Gibbs phenomenon 

using multiquadric RBFs see [77]. Note that the above mentioned references consider 

the Gibbs effect in the interpolation sense. In this work we examine the capability of our 

sRBFs to fit a noisy realization of step function denoted by u(t) + n{t) in minimum least 

square sense. Where u(t) denotes the step function and n(t) is a uniformly distributed 

noise component with standard deviation of 0.1. A data set consisting of 2250 data 

The plot of training set 

The plot of validation data set 
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Figure 4.9: The output of the single mode sRBF model. 

points is generated. Two data sets of 926 and 701 data points were randomly chosen as 

training and validation data sets, respectively. Figure 4.8 shows the training and testing 

data sets. The remaining 623 data points form the testing set. 

We have employed our algorithm described in Chapter 2, to fit this time series using 

both radial and sRBFs. 

Figure 4.9 shows the result of the fit using Erf-Gaussian RBFs. The interesting point 

is the sharp transition in this fit and the flexibility of the RBF to be able to achieve this 

without introducing the Gibbs ripples around the discontinuity. The RMSE of the single 

RBF fit is 0.0032. The confidence level on the training set is 96.97% while the validation 

set reaches 99.14% of confidence. We note that the second and third order statistics on 

the training set are 98.05% and 97.51%, respectively. The absolute value of the residuals 

of the training set gets to 98.92% of confidence to be IID noise. The single RBF model 

has the following parameters; the skew parameter is 6377.5 the center, width and the 

weight are -0.00124, 9.2277, 1.0086, respectively. 

In contrast to the sRBF which is able to adapt its shape to the discontinuity the 

RBF (Gaussian in this case) is unable to accurately adapt its shape in the neighborhood 

of the discontinuity as shown in Figure 4.10. Figure 4.10 (a) shows the output of the 
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intermediate result which employs 12 RBFs in the model. Figure 4.10 (b) shows the 

result of using 16 RBFs in the model. As far as the symmetric model is concerned the 

residual errors on the validation set are IID with 95% of confidence using 16 RBFs. The 

second and third order statistics and the absolute values of the residulas pass 95% of 

confidence to be IID at the stages of in the process of adding the 16 and 18th RBF. Note 

the increase in oscillatory behavior in the vicinity of the discontinuity as basis functions 

are added. Figure 4.10 (c) provides details about the performance of the model in terms 

of RMSE as RBFs are added. The final RMSE of the symmetric 21-mode model (97% of 

confidence of training data set) is 0.00404 (at this point higher order statistics indicate 

that the model residuals are IID). 

4.6.3 Hurricane Data 

The maximum intensity of a hurricane is viewed as a time series in this study to 

compare the performance of the radial and sRBF. The data set is generated from an 

axisymmetric simulation of hurricane described in [117]. The main idea of axisymmetric 

model for a hurricane as a dynamical systems is described in [40, 41] which has similarities 

to [92]. We construct a prediction problem in a way that we would like to learn the 

behavior of the dynamical system using a part of the data set and then compare the 

generalization ability of the RBFs and sRBFs. We employ a time-delay embedding of 

the time series [36, 37], and use the radial and sRBFs to approximate / which takes four 

contiguous values and maps them to the next, i.e., 

One-step Prediction 

In this one-step prediction problem, we use known data in the domain of / to predict 

the next unknown value and then compare this with the true next value. During the 

data fitting stage we compare the predicted values to the true values and adjust the 
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(a) The output of the 12 RBF model. 

(b) The output of the 16 RBF model. 
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(c) The RMSE plot of the model as new basis functions are added to the model. 

Figure 4.10: The outcome of the final and a single mode RBFs and performance of the 
RBF fit. 
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parameters in the radial or sRBFs to minimize these. Again, we employ the training 

algorithm presented in Chapter 2. 

In this study we model the steady state behavior of the dynamics. The data set 

consists of 1801 training, 800 validation and 500 testing data points 2. Figure 4.11 (a) 

shows the training and validation data sets. Note that after disregarding the transient 

part of the data we select the training data points followed by the validation and finally 

the testing data points. To be more realistic, there is a difference on how this experiment 

has been conducted with regard to the other examples in this chapter where training, 

testing and validation data sets were randomly (uniformly) selected from a larger data 

set. Figure 4.11 (b) and (c) show the predicted values using symmetric and data adapted 

Erf-Gaussian RBFs, respectively. Note that the asymmetric fit was complete using one 

RBF and the RMSE value of the testing data is 1.3036. The 96.22% and 95.62% of 

confidence was achieved on training and validations data sets, respectively. Where as 

for the symmetric RBF the training stopped based on 95.37% confidence criteria on 

validation set with seven RBFs. The 95% confidence on training was reached after three 

RBFs. When applied the model consisting of seven RBFs to the testing data set, there 

was a clear effect of over training. By inspection we observed that better results can be 

reached using only the first three RBFs, the RMSE of testing set using this pruned model 

is 5.7918. We observe that the sRBF is capable of fitting the space via the training and 

produces a model that generalizes well. Also one could note that the 95% of confidence 

is reached with a smaller model order and error using the sRBFs. 

We also compared the performance of circle RBFs to the skew-radial Cauchy-circle 

basis functions on this data set. In both cases the final model consists of one basis 

function. For the symmetric RBF, the confidence on training and validation sets are 

2We would like to thank John Persing and Mike Montgomery for providing the hurricane data used 
in this chapter. 
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(b) The testing set and the output of the one mode sRBF. 
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(c) The testing set and the output of the three mode symmetric RBF. 

Figure 4.11: The performance of the radial and skew-radial basis functions on Hurricane 
intensity prediction. 
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95.4% and 90.5%, respectively. The RMSE of the final model is 1.23. In the case of 

the skew-radial fit the confidence on training and validation data sets are 95.7% and 

88.6%, respectively. The RMSE of the final model is 1.15. We note that the prediction 

results of Cauchy-Circle sRBF is superior to the Erf-Gaussian sRBF. The result of the 

Cauchy-Circle prediction is also better than for the symmetric circle RBF. 

Iterated Prediction 

It is interesting to look at the iterative predictions using both RBFs and sRBFs. We 

report the results of this experiment on the testing set and note the results are similar 

on the training set. In the iterated prediction problem we take the first point on the 

testing set (domain and the range values) and predict a future value. Then the output 

value of the model is used as a domain value and the last point in the domain value 

is disregarded. So, if Xi,x2, £3 and x4 are actual (not predicted data values) we may 

predict the next value using the model / as 

£5 = f(xi,x3,x2,x1) 

and at the next step 

x& = f(x5,xi,X3,x2). 

After three steps we are using only predicted data to form our new predictions, i.e., 

Xn+l J \Xni Xn—\j Xn—2i Xn—3). 

We have repeated this iterated estimation 60 times. The NMSE 3 results for both 

symmetric and non-symmetric types are shown in Figure 4.12. We observe that the sRBF 

is able to produce better iterative predictions than the RBF after about 11 iterations. 

%P 2 
3Normalized Mean Square Error, NMSE= ^ ^ i ^ _ , 2 where e,'s are the model residuals. 
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Figure 4.12: The NMSE associated with 60 steps of iterative prediction using radial 
(circles) and skew-radial (Erf-Gaussian) functions. 

It is interesting to note that this suggests that for short spans of iterated prediction the 

residuals may be essentially symmetric. 

Note that for the iterated prediction, the NMSEs for both the skew-radial and radial 

approximations exceed one for 10 < n < 30 and 10 < n < 34 iterations, respectively. 

In this region the models are performing worse than using the mean as a predictor. 

Nonetheless, the skew radial approximation outperforms the radial approximation in 

this region as well, suggesting that the data is not symmetric and should be fit with 

asymmetric functions. We note also that the very nature of this data, i.e., the spatial 

location of the point of maximum winds may vary discontinuously, makes prediction a 

daunting task. 

To the best of our knowledge, the prediction and the modeling of hurricane intensity 

using RBFs has not been explored before. We anticipate that the results presented here 

will vary to some degree as different embedding dimensions are selected. In this study our 

focus was to compare the performance of the RBFs and sRBFs. Further exploration of 

the hurricane data set is outside the scope of this chapter and will be presented elsewhere. 
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4.7 Relationship to Other Work 

4.7.1 Normalized Radial Basis Functions 

Normalized RBFs of the form 

m=^w:T~t- <4-2°> 
2^kn\\x-ck\\) 

were proposed by Moody and Darken, [108]. These normalized RBFs have been com­

pared to standard RBFs in a number of investigations and appear to have advantages, 

especially in the domain of pattern classification, [33, 140]. For example, it was reported 

in [33] that using normalized RBFs reduced the order of the model and the robustness of 

generalization. It has also been reported that normalized RBFs require less data when 

training models of dynamical systems, [76]. 

Functions of the form given by Equation (4.20) may also be viewed as non-radial in 

the sense that the normalization term is a function of the domain location and serves to 

break the radial symmetry. However, in contrast to the asymmetric functions proposed 

here there are no additional parameters in the model so this normalization term does 

not provide as much flexibility for the basis functions to adapt to the data. Of course 

the normalization of the expansion could also be employed in our context, although no 

attempt was made to explore that extension here. 

4.7.2 Polynomial Modulation 

Another approach for breaking the radial symmetry in RBFs is by modulating the 

RBF with a polynomial term. For example, the following expansion has been proposed 

f(X) = ^2(Wk + Xl(X ~ Ck))(f>(\\x - CfcH), 

fc 

as well as its normalized version, [76]. Of course it is also possible to use higher order 

polynomials in place of the linear term indicated above. These functions do introduce 
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new parameters into the model via a global modulating term that will have only local 

impact if the RBFs employed are also local or compactly supported. Again, this term 

makes the representation functions non-radial but in a manner that is more restricted 

than the local functions we propose. For example a linear polynomial, or even low order 

polynomial can't bend it's shape to the data as we have seen in the examples in this 

chapter, e.g., the step function in Example 4.6.2. 

4.7.3 Additional R B F s 

An RBF based on the subtraction of two log-sigmoidal functions to generate local­

ized robust RBFs was proposed in [94]. A composite product of log-sigmoidal functions 

to form localized RBFs as well as a strategy to train an RBF network based on expo­

nentiated gradient was provided in [10]. These RBFs, have the form 

n 

fc=l 

where f •' = 1/(1 + exp(- /?V'0) and f-r = 1/(1 + exp(/3iCi,r) with C'1 = (x - / / ) + 01 

and (l,r = (x — /J,1) — 9l. In this setting, f3% > 0 controls the shape of the RBF, x is the 

input, /j,1 is the center of the RBF and 6l relates to the reception field of the ith node. 

Reformulated RBFs are introduced in [80] and therein prior work. These RBFs are 

intended to facilitate training by supervised learning based on gradient descent. The 

approach is based on selecting admissible generater functions that satisfy several axioms 

which are posed as requirements for an RBF. Here we name a few of the generating 

functions. Exponential generator functions, 

gj0(x) = exp(Pjx), Pj > 0. 

For m > 1, the exponential generator functions correspond to gj(x) = exp((3jx/(l — m)). 

This leads to Gaussian RBF, (f>j(x) = gj(x2) = exp(—x2/a2), with a2 = (m — l)/(3j. 

Linear generator functions, which generate the cosine RBFs, have the form 

9j0 = ajx + bj, cij > 0, bj > 0. 
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This type of generator produces RBFs of the form 

<pj{x) = 9j{x2) = {djX2 + fcj)13^, m > 1. 

If m = 3 this corresponds to the inverse multiquadratic RBF, 

4>q
j=gj{x2) = {ajx

2 + bj)^. 

In [46], a certain class of oscillatory radial functions are proposed as RBFs. These 

RBFs lead to non-singular interpolants and become increasingly flat by scaling. This 

flat limit is important in that it generalizes traditional spectral methods to completely 

general node layouts. The RBF is given in the from 

j<i_i(e(y)) 
Mr)= ' „ x ,d=l,2, . . . , 

(e(r))2 

where Ja(r) denotes the Bessel function of the first kind with order a. These RBFs will 

give nonsingular interpolation up to d dimensions when d > 2. 

4.8 Conclusions 

We have proposed a class of skew-radial basis functions (sRBFs) which is formed 

by modulating an RBF with a symmetry breaking term. Several forms of these are 

suggested by multivariate skew distributions from statistics. Additional sRBFs, some 

of which are compactly supported, are also proposed which do not arise from the skew 

distribution literature. 

The numerical experiments provided suggest that the proposed sRBFs adapt more 

flexibly to asymmetric data than their radial counterparts. The improved fit is not only 

the result of additional model parameters but rather the ability of the sRBFs to better 

match the shape of the data. In our motivating example we saw how ill-suited RBFs are 

at approximating functions outside of their native space, e.g., the space of sRBFs. In 

this case the skew-radial model required four parameters while the radial model required 
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26 parameters such that the model residuals were statistically IID. Similarly, we saw 

that sRBFs are especially well-suited for fitting data with jumps in it, such as we might 

find in physical flows with singularities, or in images with sharp edges arising from, e.g., 

shadows. 

In the modeling of the hurricane maximum wind speed time-series we observed that 

the sRBFs produced a fit that had a significantly lower error than the RBF approach 

and that increasing the complexity of the RBF model did not diminish this discrepancy. 

In this problem we examined the models for their relative predictive capabilities only. 

Currently we are collaborating with atmospheric scientists to apply sRBFs to the problem 

of understanding of nonlinear relationships in the hurricane intensification process. 

We anticipate that these new developments could impact other function fitting 

paradigms such as support vector machines, [132], and mixture models, [105]. 
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Chapter 5 

C O N V E R G E N C E ANALYSIS 

Abstract In this chapter we present a detailed analysis of an approach for con­

structing nonlinear empirical mappings from high-dimensional domains. We employ 

skew Radial Basis Functions (sRBFs) for constructing a model using data that may be 

scattered and sparse. The algorithm progresses iteratively adding a new function at 

each step to refine the model. The placement of the functions is driven by a statistical 

hypothesis test on training and validation data that reveals geometric structure when 

it fails. At each step the added function is fit to data contained in a spatio-temporally 

defined local region to determine the parameters, in particular, the scale of the local 

model. The scale of the function is determined via the zero crossings of the autocorrela­

tion function of the residuals. The model parameters and the number of basis functions 

are determined automatically from the given data and there is no need to initialize any 

ad hoc parameter. Compactly supported skew-radial basis functions are employed to 

improve model accuracy, order and convergence properties. A detailed analysis of the 

convergence of the algorithm is presented in the context of several hypotheses tests. We 

illustrate the new methodologies using several illustrative problems including modeling 

data on manifolds and prediction of a chaotic time series. 

5.1 Introduction 

The discovery of knowledge in large data sets can often be formulated as a problem 

in nonlinear function approximation. The inherent challenge in such an approach is 



that the data is often high dimensional, scattered and sparse. Given a limited number 

of exemplars one would like to construct models that can generalize to new regions or 

events. Additionally, underlying physical processes may not be stationary and the nature 

of the nonlinear relationships may evolve. Ideally, a good model will also be able to adapt 

and remain valid over extended regions in space and time. 

In this chapter we consider an approach for constructing mappings of the form 

/ :UeRn -» V 6 1 (5.1) 

from empirical data. Again, we assume that we have samples x^ € U and y^ € V that 

are indexed by [i and related via 

y{k) = f(x{k)). (5.2) 

In practice this may be, e.g., a mapping from a manifold U to a vector field V or, 

alternatively, a mapping of multiple time series (x\(t),... ,xn(t)) to a value at some 

future time t + T, i.e., x(t + T). 

In modeling with nonlinear functions we are confronted with several critical issues 

that either do not arise in the linear setting or where the nonlinear setting produces 

unique challenges. Our prescription for a useful algorithm includes two main features: 

the algorithm 

• can be applied to a wide range of data sets where little or no detailed knowledge 

is available 

• requires few or no user adjusted parameters 

Effectively we seek an essentially black box algorithm that requires little expertise on the 

part of the user to successfully build a model. 

A central assumption for our approach is that the mapping consists of the superpo­

sition of signal plus noise, i.e., 

f(t) = s(t)+n(t). 
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As we shall see, the algorithm exploits this assumption and iteratively fits the signal 

portion s(t) of f(t) until the residuals of model pass a Null Hypothesis for noise, i.e., 

they behave as n(t). 

A comprehensive survey of the literature related to RBFs is provided in Chapter 2, 

see also [66, 72], and we will not attempt to reproduce that here. While the previous 

chapters form a starting point for this work but as will be described below, the essen­

tial ingredients of the algorithm are substantially changed. Further, we provide a solid 

theoretical foundation for the convergence of the new algorithm. Serendipitously, this 

investigation into convergence led us to a new accelerated form of the algorithm which 

we show is asymptotically equivalent to the previous version. 

The organization of this chapter is as follows: Section 5.2 provides introduces the 

Black Box RBF algorithm and highlights the features that provide enhanced modeling 

capabilities which include compact and skew shaped functions. Section 5.3 provides 

several convergence results for the algorithm and illustrates their behavior with several 

examples. Finally, Section 5.4 provides some concluding remarks and discusses avenues 

for future work. 

5.2 A Blackbox Algorithm 

As in the previous chapters, at the center of the black box algorithm for modeling 

mappings from scattered data is the objective that the residuals of the model should 

contain no geometric structure, i.e., the data should pass one or more hypothesis tests 

indicating that they are some form of statistical noise. This test for structure is done 

iteratively is applied globally at each iteration. When the data is deemed to have persis­

tent structure, i.e., there is some location that does not appear to be noise, a new basis 

function is added to the point in the domain where the structure is deemed to be great­

est. In contrast to our prior work which considered only the autocorrelation function 

test for IID noise here we implement the following suite of indicators: 
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• Turning point test 

• Difference sign test 

• Autocorrelation function test 

This collection of tests permits the robust identification of structure in the residuals of 

the model. Further, as will be shown below, the algorithm described in this section is 

guaranteed to satisfy the Null Hypotheses for these tests. 

Before describing details of the proposed algorithm we first characterize the general 

setting of the data fitting problem. We assume that we have collected L input-output 

pairs {(x[, yi)}JLi, X = {xi}^=1 and y = {yi}f=i, is given the goal is to find the underlying 

mapping / such that yi — f{x{) for each I = 1 , . . . , L.1 We would like to approximate / 

using an RBF expansion of the form 

K 

fK{x) = Ax + a0 + ^2 ak<f>k(\\x ~ Cfc||ivJ, (5-3) 
fc=i 

where x is an input pattern, <f>k is the A:th RBF centered at location Ck, and ak denotes 

the weight for kth RBF and A is an m x n matrix. The term W denotes the parameters 

in the weighted inner product \\x\\w = VxTWx. 

Thus, at iteration K of the algorithm, the problem is to minimize the cost function 

i L 

EK(vK) = -Y,\\fK(xi)-yi\\2, (5.4) 

where the parameters associated with the newly added function (f> are VK = [ax, CK, WK] 

and fK is an optimal approximation for / . Note that in general not all the data is used 

here but only data near the point where the new center is being added; see Section 5.2.3 

for details. The model residual for the Ith data point is defined as 

ef = yl-f
K(xl). 

1In practice the L elements are actually divided into training, validation and testing sets as will be 
described in Section 5.3 in the context of specific examples. 
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The set of residuals for a model of order K, is defined as 

RK = {ef }tv (5-5) 

At each iteration an hypothesis test is applied to this global set of residuals to determine 

whether they are representative of IID noise. If so, the algorithm terminates and if not, 

the point of maximum departure from IID noise is determined. This point in the range 

may be traced back to a point in the domain where a new basis function is to be placed. 

The details of how this is done are describe in Section 5.2.2. Then, the fitting parameters 

VK are determined by minimizing the cost function in Equation (5.4) and the process is 

repeated. If no location in the data appears to possess structure, i.e., a global test on the 

residuals passes an hypothesis test for noise, then the algorithm stops. If the hypothesis 

test fails, then another iteration of the algorithm is implemented. 

In what follows we present new features in this algorithm that arose through the­

oretical considerations (as will be described in Section 5.3) yet actually enhanced the 

performance via both producing smaller models and by producing lower errors. These 

may be viewed as basic modifications to the algorithm that was originally introduced in 

Chapter 2 which in turn extended the basic algorithm proposed in [6, 5]. 

5.2.1 Highlights of Algorithm 

Since the papers [71, 66, 72, 69] appeared our extensive experience with this algo­

rithm has led us to discover several modifications which can result in improvements in 

the resulting model, i.e., smaller models that require fewer iterations of the algorithm. 

In the following subsections we highlight the features of the new algorithm. 

5.2.2 Enhancement of the Autocorrelation Function Test 

Here we describe two important aspects of our algorithm. First, whether the residu­

als of the model are indeed IID and, second, if the residuals are not IID, how this failure 

may be used as a guide to place the new RBF. We present the standard Autocorrelation 
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Function Test followed by a simple enhancement that we have found useful in practice. 

For the sake of completeness we first describe the ACF test for IID noise. 

The standard definition for the sample autocorrelation function, p(/i), (ACF) for a 

set of residuals ei, e-i-, e3> •••> eL with sample mean e and lag h is defined as 

where — L < h < L, and 

where 

L-\h\ 

l(h) = -J2»(h,el) (5.7) 
L 

a(/i,ej) = (ei+\hi - e)(ei - e). (5.8) 

For a fixed lag h the quantity a(h, ê ) is the contribution of the ith. residual to the 

autocorrelation function. 

For large L, the sample autocorrelations of an IID sequence XI,X2,---,XL with finite 

variance are approximately IID with normal distribution with mean zero and variance 

1/L, N(0,1/L), [28] p. 222. Hence, if our set of residuals ei, e2,..., en is a realization of 

such an IID sequence, then 95% of the sample autocorrelations should fall between the 

bounds 

-1.96 _ , . 1.96 ,_n. 
-7r<P(h)<7=. (5.9) 

When this test fails it is due to the fact that some of its components are necessarily 

too large. To identify which components are contributing to the failure of the test we 

compute the lag h* which contributes the most to p(/i), i.e., 

h* = argmax7(/t). (5.10) 
/ i>0 

Then, we find the residual that has the maximum contribution to the ACF for lag h = h* 

by solving 

i* = arg max a(/i*,ej). (5.11) 
i=l,...,n—h 
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Since i* is simply the label of the residual we may place the new basis function initially 

at the point Xj*. 

In this chapter we redefine a to be 

a(h,ei) = ei+wei, (5.12) 

effectively ignoring the mean of the residuals in the calculations. Indeed, we observe that 

the mean of the residuals goes to zero after a small number of iterations of Algorithm 2. 

We prove in Section 5.3 that Algorithm 2, which employs the new mean-free definition of 

a in Equation (5.12), is asymptotically equivalent to the algorithm which uses Equation 

(5.8) to define a. Thus, we may view the new and old algorithms as accomplishing the 

same end but the behavior of the modified algorithm in the early iterations has been 

found to be superior resulting in better solutions more quickly. 

The idea of placing a new RBF at the location of maximum contribution to the 

ACF follows [6, 5]. Note that the locations of the new basis functions are fundamentally 

changed when the mean of the residuals is ignored as proposed here. 

5.2.3 Defining Local Regions 

At every iteration of this algorithm (save for the last one) a basis function is added 

and parameters are fit. These parameters will be determined by minimizing the cost 

function, e.g., as described in Equation (5.4). This cost function is predicated on the 

data that is included in its evaluation. In [6, 5] the data was defined by those points 

that were contained in a contiguous time window that included the point Xj*, i.e., the 

initial location of the new center, and bounded by locations where the ACF had local 

minima. In Chapter 2 this idea was extended to make the data ball not simply temporal 

but spatio-temporal by including all the data in the domain that resided in the initial 

temporal window. In this work the local data region to be used at each iteration to 

evaluate the parameters has been modified to include the data points between the two 
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zero crossings of the auto correlation function. This modification produces improved 

convergence properties and also provides a theoretical foundation for proving convergence 

of the algorithm. It is the basis for the Zero Crossing Theorem that will be proved in 

Section 5.3.1. 

5.2.4 Optimization Algorithms and Cost Functions 

We have examined the performance of a variety of optimization methods to construct 

models. Primarily the algorithm employs the BFGS quasi-Newton method [100]. We 

have also implemented conjugate gradient as well as steepest descent and variations of 

these methods using alternative direction of descent (ADD) on the parameters. Here 

we have focused on descent algorithms generated by cost functions based on errors in 

the least squares sense. Again, as described above, at each iteration the data used to 

compute the parameters of the new RBF is local to the placement of the new center of 

the RBF. 

We have observed that at times the optimization routine which optimizes the error 

function over the local data may indeed lead to increases in error associated with the 

data not included in the local region. This has led to our preference of compactly 

supported RBFs as described in Section 5.2.6. In addition, we control the total error by 

implementing a verification that the error of the model as denned over the entire data 

set is not increasing. If this is the case then the algorithm simply exits the training of 

the parameters and proceeds to another test of IID residuals. In practice this happens 

about one in twenty functions. 

One may envision adjusting the direction of the gradient by constraining the op­

timization function to prohibit increases in the error associated with data not being 

included in the fitting procedure. The performance of the algorithm on the test prob­

lems has not indicated that this additional complexity is warranted at this point. 
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5.2.5 Additional Considerations 

As outlined in Section 5.2.2, the selection of an initial location in the domain for the 

center of a new RBF, we have consider the value h* which maximizes j(h) as denned in 

Equation (5.10). The region in the domain is then selected as one which has the maximum 

value of a(h*, i) over the residuals producing the optimal index i = i*. Alternatively, we 

have considered looking for the region in this function a(h*,i) that has the maximum 

area between zero crossings. The distinction between these two procedures amounts 

computing the maximum I2 or l^ norms of a(h*,i) between zero crossings. For the 

examples we have seen the two approaches generally agree in terms of model order but 

the actual location of the basis functions may vary. In general one might speculate that 

in the initial stages of model learning that the I2 norm would fit more energy in the data 

while towards the latter stages of learning the l^ norm can capture small scale features 

that need to be targeted for fitting. 

A summary of the algorithm employed in this chapter is provided in Algorithm 2. 

5.2.6 Compactly Supported R B F s for Data Fitting 

Most applications employ RBFs from a relatively small list, including Gaussians, 

multi-quadrics and thin plate splines, see Appendix. Such RBFs arise in the context of 

the interpolation problem which results in a linear system of equations for the weights. In 

this investigation we are primarily concerned with the data fitting problem which leads to 

an over-determined system of linear equations. In the latter situation, there is far more 

latitude in how the functions are selected. Of course, issues such as condition number of 

the interpolation matrix impact the relative quality of candidate RBFs. Several examples 

of compactly supported RBFs and a discussion on their properties is provided in Chapter 

3. 
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Algorithm 2 A new RBF fitting Algorithm using Spatio-Temporal Bail. 
ran-flag = 1, K = 0 
while ran-flag = 1 do 

evaluate the RBF on the training data set {/(xn)}n=i 
compute the model error {e n }^ = 1 

compute component contributions a(h,ei) = ei+\h\ei 
compute ACF for all 0 < h < L 
if the autocorrelation test is rejected then 

compute h* via equation h* = arg max 7(/i) , /i > 0 and 
compute x* = Xi* = e_1(ei») where i* = argmax i=iv.. in_/ la;(/i*,e;) 
compute the ACC function, $ = a(h*, ej), i = 1, ...,n — /i 
find the right and left zero crossing of the ACC function i*, i.e., /* and r* 
compute di = d(xi*,xi*) , dr = d(xj»,xr») and dc = max{d;,<ir} 
define the local ball as Xiocai = {% € X : ||x — x*j| < dc} 
add a new RBF /i(x; u) with initial values v = [CQ, <7O, ao]T 

solve E'(w) = min||/i(x; v) — y\\\, where x € Xiocai 

K = K+1 
else 

rari-flag = 0 
end if 
compute confidence, RMSE and j(h*) of of the current model on the training set 

end while 
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5.2.7 Skew RBFs 

Fitting asymmetric data by the superposition of symmetric functions can lead to 

models which are non-optimal. In this section we briefly describe how RBFs may be 

skewed to better approximate asymmetric data. For further discussion on this topic we 

refer the reader to Chapter 4. 

As described in Chapter 4, a skew-radial basis function (sRBF) expansions is of the 

form 
n 

f(x) = ^2<Xiz(x,i/i)<l)(\\x - Ci\\Wi), (5.13) 
i = l 

where the modulating term z(x, J/J) serves to break the radial symmetry of the function 

<^(||x — Cj||wi). Furthermore, in this work we focus on the special case of the form 

n 

/ (x ) = ^ a i z ( A f ( a ; - c i M | | a : - c i | | w . ) , (5.14) 
i=\ 

where the vector of parameters A, determines the shape of the skew-radial function. 

See Chapter 4 for details concerning the numerical optimization of skew RBFs. We 

include mention of them here since they are used in some of the examples described in 

this later chapter. 

5.3 Convergence Theory and Examples 

In this section we would like to establish a theoretical framework for the RBF fitting 

algorithm. To establish some properties concerning the convergence of Algorithm 2, we 

formulate a theorem to show that at the completion of each iteration of the RBF fitting, 

the number of zero crossings of the residuals increases. 

5.3.1 Zero Crossings 

Here we make precise the definition of the number of zero crossings of a sequence 

{en}. First, we define a derived sequence of zeros and ones 
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The number of zero crossings of a signal sampled in time is denned using the 

1, i f e « > 0 , 
Pn~ 0, i f e „ < 0 ( 5 - i 5 j 

for n = 1,..., L. Further define 

dn = {Pn - Pn-lf (5.16) 

to be the indicator function at time n. So dn is either 0 or 1 for any n. When dn = 1 we 

say a zero crossing occurs between n and n — 1. The number of zero-crossings of the set of 

residuals RK = {ef } will be denoted by D1(R
K) a n d i s defined by Di(RK) = d2+-..+dL

2. 

Theorem 5.3.1. (Zero Crossing Theorem) The number of zero crossings of residuals of 

the Kth order model {ef} is larger than the number of zero crossings of residuals of a 

K - lth order model {ef"1} , i.e., D1{RK) > Dl{RK~l). 

Proof. As described in Algorithm 2, a potential place to add a new RBF is identified using 

the ACF test (the place that makes the maximum contribution to the autocorrelation 

of the signal). At the same time, a local set of data is determined and denoted Xiocai-

Since, as described above, this data is centered at x* we may define a ball of radius dc 

around Xiocai as fi = B(x*,dc). 

Let v+ (containing parameters of center, width, weight and skew) denote the opti­

mized parameters for the Kth, RBF (j>K, i.e., 

v+ = argmin Y~̂  (4>K(x;v) — eK~1(x))2. 

We would like to show that 37 6 Q D Xiocai, s.t., 

*>K ( 7 ) t ; + ) - e * r - 1 ( 7 ) = 0 . 

2Note that D\ denotes the number of the first order zero crossings. For kth order zero crossings D^ 
is defined to be the number of zero crossings of k — l th difference of Rh, i.e., Vfc-1iZA '. Where Rk 

could be any time series of length L. More precisely, let B denote the shift operator, with Ben = en_!. 
Therefor Ve„ = (1 - B)en = e„ - e„_i and Vfc = (1 - B)ken = ^ = 0 Oi-^V^-j-
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This indicates that there is a new sign change in the residuals RK. 

If (j>K{,y,v+) — eK_1(7) 7̂  0' t r i e n without lose of generality one could assume 

^(7,^+)-ex-1(7)>o, v 7 e a 
Let 

a* = mm(cf)K(j,v+) - eK~l(^)). 
7 

Then 3v*, s.t., 4>K{I,V*) = (I>K{1-,V+) — a* and 

J2 {Mx-y)-eK-l{x)f< J2 {<l>K{x;v+)-eK-\x))2. 

This contradicts the fact that v+ is the minimizer. 

If 4>K{I, V+) — eK~l{l) < 0, then the same argument as above applies. 

Thus 37 G ft, s.t., 4>K(I, V+) — eK~1('y) = 0 which establishes the introduction of a 

new zero crossing to the residuals of the model of order K. By construction the RBF 

is contained inside the support of the zero crossings of the residuals, hence two zero 

crossings must be added, i.e., 

D1(R
K) > A ( # * - 1 ) + l. 

In practice we see that as a result of noise the number of zero crossings in the residual 

may actually increase significantly from one iteration to the next. 

It is important to note that according to Algorithm 2, Xiocai is defined based on two 

consecutive zero crossings of the function a(h*, i) which in turn corresponds to two zero 

crossings of the residuals {ef~1}. The above analysis assumes that the RBF is compactly 

supported and that the support of the RBF is contained between two zero crossings of 

the residuals function. In the case that the RBF is not compactly supported then the 

tails of the RBF may exit the local region possibly resulting in the removal of some of 

the zero crossings in RK. • 
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5.3.2 Theorems on Norms of Residuals 

In what follows we assume that the signal is an additive composition of a smooth 

signal s(t) and noise n(t), i.e., 

x(t) = s(t) + n(t), 

where n(t) is uncorrected with s(t)3. Here we assume that n(t) is IID up to second 

order statistics. We will assume that ek(t) denotes the function of residuals at the kth. 

iteration of the algorithm. Then, in one iteration of modeling the residuals become 

ek+\t) = ek(t)-ak<}>{t), 

where (/> is assumed to have compact support and is zero outside of Xiocai-

Theorem 5.3.2. The residuals e(t) converge to the noise n(t), i.e., 

lim ek(t) = n{t) 
k—>oo 

Proof. Again, in one iteration, the residuals ek(t) will be fit with the RBF f(t) = ak4>{t) 

to produce new residuals ek+1(t). We assume that the fit is taking place between two 

zero crossings of the residuals, i.e., 

ek(a) = ek(b) = 0 

and 

ek(t)^0Vte (a,b). 

We will assume, without loss of generality, that the function f(t) is positive on (a, b). 

Observe that since f(t) > 0, it follows that 

ek+1(t) <ek(t), W e (a,b). 

3 The connection to our previous notation is simply e(tn) = e. 
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Hence we have 

||efe+1(i)|| < ||e*(i)|| 

where the statement is true for both the 2-norm and oo-norm. 

Note that the least squares parameter is selected such that it decreases monotoni-

cally, i.e., 

ak < afc-i 

and since it is bounded below by zero we have 

or, equivalently, 

from which it follows 

But since 

lim 
k—*oo 

lim Qfc = 0, 
k—>oo 

fek(t)(j)(t)dt = 

lim f(sk{t)+nk(t))(t>(t)dt = 0 
k—»oo J 

lim / nk(t)cl)(t)dt = / n{t)4>(t)dt = 0, 

where we have assumed that the noise is uncorrelated with the RBF, it follows 

lim f sk{t)(j){t)dt = 0 

so the signal left in the residual is zero, i.e., 

s(t) = 0 

and 

e(t) = n(t) 

in the limit.4 • 

4We may move the limit into the integration since the sequence of functions is Cauchy. 
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So, note that since by assumption the mean of n(t) = 0, it follows that the mean of 

e(t) = 0 in the limit. In practice, the mean converges to zero very quickly, see, Figure 5.6 

for an application to the Pringle data set and Figure 5.14 for results on the Mackey-Glass 

data set. 

As a simple corollary we have that the norm of the residuals is the same as the norm 

of the noise in the limit, i.e., 

Theorem 5.3.3. The energy of the residuals e(t) converges to the energy of the noise 

n(t), i.e., 

\im\\ek(t)\\ = \\n(t)\\. 
fc—>CX> 

Proof. This follows directly from the results above. • 

Theorem 5.3.4. The mean of the residuals e(t) converges to zero, i.e., 

lim fek(t)dt = 0. 

Proof. This follows directly from the results above. • 

5.3.3 Autocorrelation Function Test 

Recall the sample autocorrelation function test for white noise, [28]: For large n, 

the sample autocorrelation of an IID sequence Yi,Y2,Y3,... with finite variance are ap­

proximately IID with distribution iV(0, - ) . Hence, if yi, y2, yz, ••• is a realization of such 

an iid sequence, about 95% of the absolute values of the sample autocorrelation should 

be smaller than M̂=L If we compute the sample autocorrelation up to lag 40 and find 

that more than two or three values fall outside the bounds, or that one value falls far 

outside the bounds, we therefore reject the IID hypothesis. 

Let 

7fc(0) 

where h > 0. 
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Theorem 5.3.5. The Null Hypothesis for the ACF test will be accepted as k —> oo, i.e., 

lim pk(h) = 0 
k—>oo 

for all h > 0 where the sequence of residuals is generated by Algorithm 2. 

Proof. By definition 

~ m _ / ( e f c ( * ) - e f c ) ) ( e ^ - f t ) - e f c ) ) ^ 
Pk{}~ J(eK(t)-ekydt 

In the limit we have 

ek(t)ek{t-h), fe{t)e(t-h) 
fc—>oo 

f , ek(t)ek(t-h) , f e(i)e(t 
fc(/i) = / lim v y v ^di = / v y v 

_/ fc—>oo (T JO 

where we have used the fact that ek{t) —> e{t) = n(^) in the limit and 

lim f(ek{t)-ek)2dt = a2, 
k—>oo J 

is the variance of the noise n(t). • 

The IID test is applied under the null hypothesis that the residuals at each step are 

uncorrelated. As we notice this is a necessary but not a sufficient test. We have proved 

that the Null Hypothesis will be satisified as k —> oo. In practice, test is satisfied with 

95% of confidence where A; is a reasonable model order size. 

We remark that one can also produce additional results for the behavior of the ACF 

components that are not asymptotic. 

5.3.4 Spectral Analysis of Zero Crossings 

In the discussion above the arguments where specific to the behavior of the algorithm 

and took place in the time domain. There are also some interesting and relevant results 

concerning the relationship between zero crossings and the autocorrelation function in 

the frequency domain. The results in this section are presented in [81]. 
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Let (x, y) have a bivariate normal distribution with parameters EX = EY = 0, 

VarX = VarY = a2 and correlation p. It is reported in [81] that 

Pr(X > 0 , K > 0 ) = ^ + ^ sin"1^). (5.17) 

Here pk is the lag k autocorrelation. It is then shown in [81] that 

EXtXt_1 = - + —sm~1(p1). 

Hence ED\ = (N — 1)( | — ^ s i n - 1 ^ ) ) , where N is the number of data points. Further 

This result is interesting for our analysis as it indicates that p\ tends to zero as the 

number of zero crossing increase. 

It is also shown in [82] that by the Wiener-Khintchine theorem it follows 

^ = ̂ r " ' = * . (M9) 
N - ! ]_„ rf-F(w) 7o 

where Z?/c is the number of zero crossings of the k — 1th differenced time series. This 

formula shows the relation between the spectrum of the signal and the rate of zero-

crossings and weighted average of the spectral mass [82]. It is important to note that the 

zero-crossing rate tends to admit values in the neighborhood of a dominant frequency. 

Note that the formula is derived for the Gaussian case. The continuous analogue of 5.19 

is known as Rice's formula, [123]. Rice's formula gives the expected zero-crossing rate 

of a stationary Gaussian process. For further study of the the non-Gaussian case please 

see [17, 18]. Another analogue for a non-Gaussian case is given in [23]. 

For completeness we state some additional results that link pk and Dk. The higher 

order crossings uniquely determine the spectral distribution formula for F up to a con­

stant, [81]. The higher order crossing spectral representation is given by, [81] 
nEDk+1 rcos(u;)(s^)2kdF(u) 

»<^r> - rJ^rlFM • (5-20) 
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from which one obtains the following formula, [84], 

.*EDM, _ - ( £ ) + Mg) + &] ~ - + (-DV>+. , , „ . 
< ^ F ^ ) = (?)-2p1( tl'I)+..+(-l)'2p-. ' ' ' 

Equation (5.21) provides a recursion for obtaining pi,P2,P3,--. from ED\, ED2,.... For 

example for A; = 0 this reduces to Equation (5.18), so that p\ is determined form ED\. 

For A; = 1, 5.21 gives 

p2 = 1 - 2(1 - c o s ( ^ ) ) ( l + c o s ( ^ ) ) . (5.22) 

For k = 2, P3 is determined similarly from -EDi, £-D2, ED$. In general, p,fc is determined 

from EDi,..., E'Dfc. Now recall that pk is the fcth Fourier coefficient of F. 

The series of results above provides further insight into the behavior of the algorithm 

proposed here even if the basic theoretical result below is somewhat weaker than Theorem 

5.3.5. 

In what follows it will be useful to define a signal to be pi-dominant if p\ > pk for 

all A;. 

Theorem 5.3.6. Execution of Algorithm 2 will result in the Null Hypothesis for the ACF 

test being accepted if the signal being fit is pi-dominant. 

Proof. We have proved that the number of zero crossings of the residuals increase mono-

tonically in Theorem 5.3.1. From Equation (5.18), px = cos ( T g ( ^g ( e < ) ) ) . Thus, for this 

case, the autocorrelation at the maximum contributing lag decreases as a new RBF is 

added to the model. In other words the autocorrelation function will decrease with the 

addition of new RBFs. • 

In actual practice, we find that p\ dominates the ACF in the sense that almost 

always p\ > pk for k > 1. Indeed, we have experimented with ignoring these components 

of the ACF in the modeling algorithm and have found the computational expense can be 
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significantly reduced. Of course, it may be necessary to include these terms if convergence 

criteria are not met. This subject needs more thorough investigation. 

In the case where another lag becomes dominant, a higher order analysis is required. 

This indicates that there is a dominant periodicity in the signal and that is best removed 

by differencing rather than the nonlinear trend removal. However the idea is to show that 

the increment in the number of zero crossings also leads to a decline in the autocorrelation 

at this specific lag. This could be shown from Equation (5.21) and the fact that the 

algorithm goes through the ACC function for that specific lag and the case becomes 

similar to the one for lag one. 

To conclude this analysis in the frquency domain, lets consider an IID hypothesis 

test based on higher order zero crossings. According to [84] there is no simple closed 

form expressions for variances Dj] various approximations are available in [83, 85]. A 

very useful and simple approximation can be obtained if pk —> 0, as k —> oo sufficiently 

fast. Under the hypothesis of white noise Dk has an asymptotic normal distribution and 

also we know EDk exactly. Thus, one could form probability limits for Dk- Approximate 

95% probability limits for £)fc's are given in [85] as 

{N ~ 1)[l+1 sin~1(nr)] ± L96{(iV - 1)[i - (i s i n _ 1(^))2]}"- (5-23) 
The hypothesis of white noise is rejected if at least one Dj, j = 1,..., K, falls outside 

the bounds. When all the Dj,j = 1,..., K, fall inside the limits, the initial rate of increase 

in the Dj resembles that of white noise and the hypothesis of white noise is accepted. 

For further reading about this test see [83, 85]. 

5.3.5 First Order Tests 

Although the ACF test described in the previous section is arguably more powerful, 

it is also of interest to consider a convergence analysis of the proposed algorithm in 
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terms of first order tests on the residuals. To make the chapter self contained we include 

definitions of these tests in what follows. First we review additional definitions used to 

determine whether a time series is WN of IID. 

The Turning Point Test 

The Turning Point Test (see, e.g., [86]): If 2/1,2/2,2/3, ••• is a sequence of observations, 

we say that there is a turning point at time i, 1 < i < n, if y^_x < ŷ  and y, > yi+\ or 

if yi-i > yi and yi < j/j+i. If T is the number of turning points of an IID sequence of 

length n, then since the probability of a turning point at time i is 2/3, the expected value 

of T is [IT = E(T) = 3 '. It can also be shown, [86], that for an IID sequence the 

variance of T, a\ = Var(T) = 16^~29. A large value of T — \XT indicates that the series is 

fluctuating more rapidly than expected for an IID sequence. On the other hand a value 

of T — Ht much smaller than zero indicates a positive correlation between neighboring 

observations. For an IID sequence with n large, it can be shown that T is approximately 

N(/J,T, 07.). This means we can carry out a test of IID hypothesis, rejecting it at level a 

if [ ~Mr > $ i _ s , where $!_s is the 1 — | quantile of the standard normal distribution. 

A commonly used value of a is 0.05 for which the corresponding value of <&!_<* is 1.96. 

Theorem 5.3.7. Execution of Algorithm 2 will result in the Null Hypothesis for the 

Turning Points test being accepted. 

Proof. Using Zero Crossing Lemma, by adding new RBFs the number of zero crossings 

increases. Thus the number of turning points increase. Eventually, the number of turning 

points enters to the acceptable bounds derived from turning point test, i.e., [IT = E(T) = 

2fc^l, a\ = 1 § | ^ 2 , ^ ^ < $ i_ |=1 .96 . At this point we accept the hypothesis test 

and algorithm is converged. • 
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Difference-Sign Test 

Difference-Sign Test, [86]: For this test we count the number S of values of i such 

that yi > yi-i, i = 2, ...,n or equivalently the number of times the differenced series 

yi — yi_i is positive. For an IID sequence it is clear that //s = ES = ^ j ^ . It can 

also be shown, under the same assumption, that er| = Var(S) = n^. For large n, S 

is approximately N(ns,cr^). A large positive (or negative) value of S — /J,S indicates 

the presence of an increasing (or decreasing) trend in the data. We therefore reject the 

assumption of no trend in the data if * ~$ > $ i _ s . The difference-sign test must 
as 2 

be used with caution. A Set of observations exhibiting a strong cyclic component will 

pass the difference-sign test for randomness since roughly half of the observations will 

be points of increase. 

Theorem 5.3.8. Execution of Algorithm 2 will result in the Null Hypothesis for the 

difference sign test being accepted. 

Proof. Using Zero Crossing Lemma, by adding new RBFs the number of zero crossings 

increases. This causes the number of different signs form a damped oscillating behavior 

and will eventually enter the confidence bounds of the difference sign test, i.e., us = 

E(S) = 2=1, o\ = Var(S) = ^ , l-^^- < $ ! _ | . At this point the algorithm terminates. 

• 

5.3.6 Subspace View of Convergence 

Here we pursue a more geometric discussion of convergence of the algorithm by 

viewing it as a process for performing a rank-one update of the interpolation matrix. 

This approach can be viewed as Krylov subspace expansion of a vector space. We 

consider the correlation function as the cost function and attempt to find the optimal 

directions to minimize this cost. 

At each step in the iteration a new dimension is added to the vector space which 

is independent of the previous dimensions as a result of the ACF test. Effectively it is 
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the translation and the dilation of the basis function that produce linearly independent 

directions. According to the structure of the algorithm the scale of the RBFs change 

at each level. This procedure provides a one dimensional expanding Krylov subspace 

at each step. We assume that the input signal is composed of signal plus noise. When 

the least squares solution of the weights becomes zero we detect the orthogonality of 

the signal space and the noise component. Note that at the stopping point the noise is 

orthogonal to the native space of the RBFs that are used to fit the data. Thus we have 

a decomposition of the signal and noise. 

The current algorithm for RBFs could also be used for optimization based on other 

criterion, e.g., if one would likes to use the information matrix, this algorithm can be 

used to identify the regions in the data that are contributing the most to this matrix 

and try to capture the signal model in a way that is in the direction of the maximum 

reduction in the given sense. 

5.3.7 Numerical Results 

We have provided several theoretical results concerning the converge of the algorithm 

proposed in this chapter. Here we present numerical results that both corroborate the 

theory as well as provide some indication of the rates of convergence on specific data 

sets. We emphasize that all the results were produced without changing any parameters 

in the code, i.e., the algorithm was treated as a black box. We apply the algorithm to the 

Pringle and the Mackey-Glass data sets using the Cosine and the Arctan-Hanning RBFs, 

respectively. In these experiments the data is partitioned into training, validation and 

testing data sets. Note that code used here is also used, with the multivariate extensions, 

in Section 6.4. 

We note that in these numerical experiments the support of the compact RBFs was 

not restricted to be contained in the local data region. Also, for these results the radius of 

the ball is selected to be the maximum of the radius of the left or right zero-crossing points 
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to the initial center location. Despite these deviations from our theoretical framework 

the convergence of the algorithm is not adversely affected. 

Here we present several applications to demonstrate the performance of the algo­

rithm in higher dimensional domains. Note that throughout all the following examples 

the same code was employed, in particular, there were no parameters that were adjusted 

or tuned to the data set. We present the results starting from dimension two. 

Pringle data set 

This data set was introduced in Chapter 2. As before, the task is to construct a 

mapping from an (x, y) value in the plane to its corresponding z value on the boundary 

of a Pringle. Thus, we are fitting the graph of a function from R2 to K. Such graph 

fitting problems are at the center of the Whitney's manifold embedding theorem where 

2m + 1 dimensional domains suffice (in general) to write m dimensional manifolds as 

graphs; see [30, 29] for a discussion. 

Recall Figure 2.1 where we showed a numerically integrated trajectory of an attract­

ing cycle. Again, in this example, we are only concerned with fitting data on the limit 

cycle and ignore transients. Figure 5.1 shows the training set consisting of 101 points 

(almost two cycles) and 100 data points for validation. The testing data set consisting of 

400 points, or almost 8 cycles. The fact that the solution is periodic will clearly illustrate 

the need for spatial as well as temporal windowing of the data. The system is capable 

of learning a specific part of the trajectory with a small amount of data and generalizes 

well to the data that resides in the same region. 

Figure 5.2 shows the location and shape of the four RBFs that are generated by the 

algorithm to model the data before the IID stopping criteria is satisfied. The training 

data and the RBFs are displayed together to illustrate how the algorithm has fit the 

RBFs to the data. 

Figure 5.3 (a) shows the maximum value of the ACC function for each step in the 

training process. We observe that it is essentially zero after four RBFs have been added 
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O The plot of training set 

x The plot of validation set 

-2 -2 

Figure 5.1: Plots of the training and validation data sets used in this numerical experi­
ment. The solution to the dynamical system is corrupted with Gaussian noise with STD 
of 0.1. There are 54 data points in one cycle. 

to the model. Figure 5.3 (b) shows the performance of the model in the RMSE sense 

as the number of assigned RBFs increase while Figure 5.3 (c) shows the confidence level 

at each stage of training on the training and validation data sets. Note that confidence 

levels are over 95% as of the fourth RBF for both the training and validation sets. 

Figure 5.4 (a) shows the f)(h*) for each step in the training process. Note that 

h* = 1 for all the process. Figure 5.4 (b) shows the 7(0) as the number of assigned 

RBFs increase. Figure 5.4 (c) shows the 7fc+1(0)/7fc(0) at each stage of training where k 

denotes the number of RBFs in the model. 

Figure 5.5 (a) shows the number of turning points for each step in the training 

process. Figure 5.5 (b) shows the number of different signs as the number of assigned 

RBFs increase while Figure 5.5 (c) shows the number of zero crossings at each stage of 

training. 

Figure 5.6 (a) shows the plot of the histogram of the final residuals. Figure 5.6 (b) 

shows the confidence of the model based on x2 as the number of assigned RBFs increase 

while Figure 5.6 (c) shows the mean of the residuals at each stage of training. It is 

107 



(a) The first RBF in relation with the (b) The second RBF in relation with 
training data set. the training data set. 

(c) The third RBF in relation with 
the training data set. 

Figure 5.2: The primary four radial basis 
residuals of the four mode model pass the I 
was used in this fit. 

(d) The fourth RBF in relation with 
the training data set. 

functions allocated by the algorithm. The 
D test. The Hanning, or shifted cosine RBF 
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(a) The plot of j(h*) as new basis functions 
are added to the model. 

0.45? 

O RMSE value on testing set 
* RMSE valus on training set| 

0 0.5 1 1.5 2 2.5 3 3.5 A 
number of RBFs 

(b) The RMSE plot of the model as new basis 
functions are added to the model. 

number ofRBFs 

(c) The confidence level of the fitted model 
on the training (circles) and the validation 
(stars) data sets as the new basis functions 
are added to the model. 

Figure 5.3: The performance of the RBF fit on the Pringle data set. NOTE: The 
confidence level at the end of the process is 99% on the training data set and 97% on 
the validation data set. ^ q 



number of RBFs 

(a) The plot of p(h*) as new basis functions 
are added to the model. 

number of RBFs 

(b) The plot of 7(0) as new basis functions 
are added to the model. 

number of RBFs 

(c) The plot of 7fc+1(0)/7fc(0) as new basis 
functions are added to the model where k de­
notes the number of RBFs in the model. 

Figure 5.4: The behavior of p(h*), 7(0) and 7fe+1(0)/7fc(0) plotted as functions of the 
number of RBFs in the model for the Pringle data set. 
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number of RBFs 

(a) The number of turning points as new basis 
functions are added to the model. 

number of RBFs 

(b) The number of different signs as new basis 
functions are added to the model. 

number of RBFs 

(c) The number of zero crossings as new basis 
functions are added to the model. 

Figure 5.5: Diagnostics related to the hypothesis tests indicate that the algorithm is 
converging and that the model clearly requires four RBFs to fit the Pringle data set. 
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Histogram of the testing errors 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 

(a) The plot of the histogram of the final 
residuals. 

(b) The confidence of the model based on \ 2 

as new basis functions are added to the model. 

4.5 5 
number of RBFs 

(c) The plot of the mean of the residuals as 
new basis functions are added to the model. 

Figure 5.6: Properties of the residuals of the Pringle model using Hanning RBFs. 
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The output of the model 

The taget values 

Figure 5.7: The testing data set and the output of the four mode model. 

interesting that the mean of the residuals becomes essentially zero as the last function is 

added. This permits us to interpret the algorithm as having satisfied the full ACF test, 

even though the mean of the residuals was ignored during training. 

A plot of the output of the model and target values of the testing set are shown in 

Figure 5.7. 

The condition number of the four mode model is an extremely low value, namely 

1.65. 

Mackey-Glass Data Set 

This example uses the same data, a numerical simulation of the Mackey-Glass time-

delay equation, [102], as employed in the numerical experiments in Chapter 2. Here, as 

before, we illustrate the mapping from a time-delay embedding of the univariate time-

series to a future value. In these experiments noise was added to the data with a standard 

deviation of 0.05. 

Again, for purposes of comparison with [153], the series is predicted with v = 50 

samples ahead using four past samples: sn, s„_6, sn_i2 and sn-i8- Hence, the nth input 
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0 500 1000 1500 2000 2500 3000 3500 4000 4500 
t 

Figure 5.8: The data set used for the current study including noise with a STD of 0.05. 

output data for the network to learn are 

with yn = sn, whereas the v step-ahead predicted value at time n is given by zn+v = 

f(xn+v), where f(xn+v) is the network output at time n. The v step-ahead prediction 

error is e = sn+v — zn+v. As such, this time series provides a good example for illustrating 

the construction of a nontrivial mapping from R4 to R, [98, 44, 87]. 

Our goal here is to illustrate the convergence properties of the algorithm on Mackey-

Glass data set. This data set is particularly interesting as it requires a total of 24 RBFs 

before the termination criterion is achieved. Figure 5.8 shows the data set with added 

noise that is used in this study. To give a better view of small regions of the data points 

2000 to 2400 are shown in Figure 5.9. 

From Figure 5.10 we see it is sufficient to use only 24 centers to get the 95% con­

fidence fit for the Mackey-Glass data set with a resulting RMSE of 0.0186 (See Figure 
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Figure 5.9: Points 2000-2400 of the data set used for the current study. 

5.11 to assess the fit visually.) The output of the 24 mode model for the testing data set 

generated by Algorithm 2 appears to fit the target values very well. We remark that the 

experiment in Chapter 2 using Algorithm 1 resulted in a model consisting of 76 modes 

with an RMSE of 0.0168 when the %95 of confidence was satisfied. 

Figure 5.12 (a) shows the jo(/i*) for each step in the training process. Note that 

h* = 1 for all the process. Figure 5.12 (b) shows the 7(0) as the number of assigned 

RBFs increase while Figure 5.12 (c) shows the 7fe+1(0)/7fe(0) at each stage of training. 

Figure 5.13 (a) shows the number of turning points for each step in the training 

process. Figure 5.13 (b) shows the number of different signs as the number of assigned 

RBFs increase while Figure 5.13 (c) shows the number of zero crossings at each stage of 

training. Note that there are 3000 points in the training set and 1200 zero crossings by 

the time the model has converged. 

Figure 5.14 (a) shows the plot of the histogram of the final residuals. Figure 5.14 (b) 

shows the confidence of the model based on x2 a s the number of assigned RBFs increase 
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u m b e r o f R B F s 

(a) The log plot of j{h*) as new basis functions are added to the model. 

O O O O 

n u m b e r o f R B F s 

(b) The RMSE log plot of the model as new basis functions are added to the 
model. 
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(c) The confidence level of the fitted model as the new basis functions are added 
to the model. 

Figure 5.10: The performance of the RBF fit on the Mackey-Glass data set using Algo­
rithm 2 and Arctan-Hanning skew radial basis functions. Note that over 95% confidence 
is achieved with 24 modes. 
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1.6 

0.2 

-Q— Output of the model 
» Target values 

50 100 150 200 250 300 350 400 450 

Figure 5.11: The output of the 24 mode model for the testing set compared to the target 
values. For this model an RMSE value of 0.0186 was obtained and the 96% of confidence 
stopping criteria was satisfied both of the validation and the training data sets. The 
model has the condition number of 1325.3 
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0 5 10 15 20 25 
number of RBFs 

(a) The plot of p{h*) as new basis functions 
are added to the model. 

1 0 % 1 1 1 1 

' I I I I I I 

0 5 10 15 20 25 
number of R8Fs 

(b) The plot of 7(0) as new basis functions 
are added to the model. 

, i , , 1 1 1 
0 5 10 15 20 25 

number of RBFs 

(c) The plot of 7/c+1(0)/7fc(0) as new basis 
functions are added to the model. 

Figure 5.12: The Mackey Glass model statistical performance with Arctan-Hanning RBF. 
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0 5 10 15 20 25 
number of RBFs 

(a) The number of turning points as new basis 
functions are added to the model. 

31 1 1 . . . i 1 1 
0 5 10 15 20 25 

number of RBFs 

(b) The number of different signs as new basis 
functions are added to the model. 

0 5 10 15 20 25 
number of RBFs 

(c) The number of zero crossings as new basis 
functions are added to the model. 

Figure 5.13: First order measures and zero crossings for the Mackey-Glass training data 
set. 
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Histogram of the testing errors 

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 

(a) The plot of the histogram of the final 
residuals. 

number of RBFs 

(b) The confidence of the model based on log 
X2 as new basis functions are added to the 
model. 

number of RBFs 

(c) The plot of the mean of the residuals as 
new basis functions are added to the model. 

Figure 5.14: Properties of the residuals of the Mackey-Glass model using Arctan-Hanning 
sRBFs. 
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while Figure 5.14 (c) shows the mean of the residuals at each stage of training. Although 

24 basis functions are required before the algorithm may successfully terminate we see 

that the mean is approximately zero after 8 iterations. This provides numerical evidence 

that our omission of the mean in the definition of the ACF is in fact justified. 

5.4 Conclusions 

In this Chapter we present Algorithm 2 which has many similarities to Algorithm 

1, but includes several fundamental innovations. Of primary importance is that we have 

redefined the manner in which we locate the places where new RBFs should be added. 

Like Algorithm 1, Algorithm 2 is capable of modeling a non-linear time series without 

adjusting any ad hoc parameters. We established a suite of convergence properties that 

Algorithm 2 possesses. We demonstrated via numerical experiments that the perfor­

mance of Algorithm 2 is consistent with the theoretical convergence results developed 

in this chapter. Compactly supported and skew symmetric RBFs are employed in the 

simulations. We see that skew RBFs result in models that require far fewer modes when 

compared to the RBFs in the literature and that the condition numbers of these models 

are significantly improved. 
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Chapter 6 

E X T E N S I O N OF ALGORITHM TO R A N G E DIMENSION M > 2 

Abstract In this chapter we present an approach for constructing nonlinear em­

pirical mappings from high-dimensional domains to ranges of dimension one or more. 

We employ RBFs and the extensions proposed in this dissertation as skew Radial Ba­

sis Functions (sRBFs) for constructing a model using data that may be scattered and 

sparse. The algorithm progresses iteratively adding a new function at each step to refine 

the model. Again, the placement of the functions is driven by a statistical hypothesis 

test but now in a manner that accounts for correlation in the range variables. The test 

is applied on training and validation data and reveals geometric structure when it fails. 

At each step the added function is fit to data contained in a spatio-temporally defined 

local region to determine the parameters, in particular, the scale of the local model. The 

scale of the function is determined via the zero crossings of the autocorrelation function 

of the residuals. The model parameters and the number of basis functions are deter­

mined automatically from the given data and there is no need to initialize any ad hoc 

parameters. Compactly supported skew-radial basis functions are employed to improve 

model accuracy, order and convergence properties. The extension of the algorithm to 

higher-dimensional ranges produces reduced order models by exploiting the existence of 

correlation in the range variable data. Structure is tested not just in a single time series 

but between all pairs of time series. We illustrate the new methodologies using several 

illustrative problems including modeling data on manifolds and the prediction of chaotic 

time-series. 



6.1 Multivariate Extension 

We propose an algorithm for constructing nonlinear models from high-dimensional 

domains to high-dimensional ranges from scattered data. The proposed algorithm is an 

extension to our previous work, [66, 72] or Chapter 2. Similar to the univariate case, 

the algorithm progresses iteratively adding a new function at each step to refine the 

model. Again, the placement of the functions is driven by a statistical hypothesis test 

but now in higher dimensions that reveals geometric structure when it fails. At each step 

the added function is fit to data contained in a spatio-temporally defined local region 

to determine the parameters and in particular, the scale of the local model. Unlike the 

available non-linear function fitting methods that leave the extension of the algorithm 

to higher-dimensional ranges as a trivial extension of the single-dimensional range, we 

provide more parsimonious models by requiring that the residuals possess no structure in 

each dimension as well as between pairs of dimensions. This algorithm does not require 

ad hoc parameters. Thus, the number of basis functions required for an accurate fit 

is determined automatically by the algorithm. These advantages extend the scope of 

applicability of the univariate algorithm to a much larger class of problems that arise in 

nature and addressed in different areas of science. A challenge in this work is to convert 

the multivariate statistical hypothesis test for IID noise into a practical algorithm. 

Specifically, we propose an extension of the approach presented in the previous 

chapter for constructing mappings of the form 

/ : U E W1 -»• V e Rm , (6.1) 

from empirical data where now m may be greater than 1. Again, we assume that we 

have samples x^ G U and y^ € V are indexed by k and related via / , a nonlinear 

function, as 

y(fc) = f(xw). (6.2) 
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In practice this may be, e.g., a mapping from a manifold U to a vector field V or, 

alternatively, a mapping of multiple time series (xi(t),..., xn(t)) to values at some future 

time t + T, i.e., (x\(t + T ) , . . . ,xn(t + T)). It is often desirable to employ a time-

delay embedding of time series so that the mapping will be from points of the form 

(xi(t), xx(t - r ) , . . . , xx(t - nr),..., xn(t),xn(t - r ) , . . . , xn(t - nr)). 

6.2 Testing for Structure in Multivariate Model Residuals 

We denote the set of residuals for a model of order K, as 

RK = {en}£=i, (6.3) 

where en = yn — f(,xn), is the m-variate residual of the nth data point. L is the cardinality 

of the training set. /J, is the mean vector E(en), and T(h) = E(en+hen) ~ AV-4 is the 

covariance matrix at lag h. An unbiased estimate for [i is given by e = \ J2n=i e«- ^ n 

estimate of the covariance matrix T(h) = E[(en+h — n)(en — fj,)'] = [jij(h)]™j=1 is given 

by 

r(h\ - { I YlZ\ <*(h, efc), if 0 < h < n - 1 
LW-\ f't-fc), i f - n + l ^ A ^ O . { ' 

Similar to the univariate case we decompose the ACVF into its components as 

a(h,ek) = (ek+h - e)(ek - e)'. Further more a(h,el
k,el) = (e\+h - el)(e-[ - ej) is the 

(i, j)-component of a(/i, e^). In other words, 
1 L-h 

%(h) = Cov(ek+h, e{) = - ^ a[h, eJ
fc, e>k). 

fc=i 

For a fixed lag h the quantity a(h, ek) is the contribution of the kth residual to the 

autocorrelation function. And the quantity a(h, el
k, e

3
k) is the contribution of the i and 

j t h time series at the kth. residual of the autocovariance function. Later we focus on this 

quantity a and will illustrate that it reveals critical information concerning where new 

basis functions should be placed. 
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The estimate of the correlation matrix function R(.) is then given by 

R(h) = [Mm=i = [%(h)mO)%(0))^]Z=i> (6-5) 

where %j{h) is the (i, j)-component of T(h). If i = j , p^ reduces to the sample au­

tocorrelation function of the ith series. For the asymptotic behavior and the convergence 

properties of the sample mean and covariance functions see [28]. 

As mentioned in the univariate case in Chapter 2, we seek to terminate the addition 

of new basis functions when the residuals appear to have no further structure. As a test 

for structure, we consider whether the residuals are IID. We need to extend our definition 

of white noise to the multivariate case. The m-variate series {et},t £ Z is said to be 

white noise with mean 0 and covariance matrix E, written as {et} ~ WN(0, E) if and 

only if et is stationary with mean vector 0 and covariance matrix function 

Y(h) = f £, if /i = 0 /g g\ 

\ 0, otherwise. ^ 

We use the notation {et} ~ IID(0, E) to indicate that the random vectors {et} are 

independently and identically distributed with mean 0 and variance E. 

In general, the derivation of the asymptotic distribution of the sample cross-correlation 

function is quite complicated even for multivariate moving averages, [28]. The methods 

employed for the univariate case are not immediately adaptable to the multivariate case. 

An important special case arises when the two component time series have independent 

moving averages. The asymptotic distribution of ^u(h) for such a process is given in the 

following theorem: 

Theorem [28]: Suppose that 

oo 

Xa = J2 UjZt_Jtl,{Ztl} - IID{0,a*), (6.7) 
j= -oo 
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oo 

Xt2 = J2 &&-&, {Zt2} ~ HD(0, a2
2), (6.8) 

i=-oo 

where the two sequences {Zn} and {Zt2} are independent, EJ|O:J| < oo and T<j\/3j\ < oo. 

If h > 0, then 
oo 

pl2{h) is AN^n-1 Y, Pn(j)p22(j)). (6.9) 
i=-oo 

If h, k > 0 and h y^ k, then the vector ('pnih),'pi2(h))' is asymptotically normal 

(AN) with mean 0, variances as above and covariance, 
oo 

n-1 J2 PnU)P22(j + k-h). (6.10) 
j= -oo 

As it is reported in [28] without knowing the correlation function of each of the 

processes it is impossible to decide if the two processes are uncorrelated with one another. 

The problem is resolved by prewhitening the two series before computing the cross-

correlation 'pn(h), i.e., transfer the two series to white noise by application of suitable 

filters. In other words any test for independence of the two component series cannot be 

based solely on estimated values of the cross-correlation without taking into account the 

nature of the two component series. Note that since in practice the true model is nearly 

always unknown and since the data Xtj, t < 0, are not available, it is convenient to 

replace the sequences {Ztj} by the residuals, which if we assume that the fitted models 

are in fact the true models, are white noise sequences. To test the hypothesis H0 that 

{Xti} and {Xt2} are independent series, we observe that under HQ, the corresponding 

two prewhited series {Zt\} and {Zt2} are also independent. Under Ho, the above theorem 

implies that the sample autocorrelations 'p\2{h) and f)i2(k), h ^ k, of {Zt{\ and {Zt2} 

are asymptotically independent normal with mean 0 and variances n _ 1 . An appropriate 

test for independence can therefore be obtained by comparing the values of |pi2(/i)| with 

1.96n~2". If we prewhiten only one of the two original series, say {Xti}, then under H0 

the above theorem implies that the sample cross-correlations 'pnih) and Pi2(&), h ^ k, 

of {Zti} and {Xt2} are asymptotically independent normal with mean 0 and variances 
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n _ 1 and covariance n~1p22(k — h). Hence for any fixed h, ^{h) also falls (under H0) 

between the bounds ±1.96n~2~ with a probability of approximately 0.95. 

Therefore, if one computes the sample cross-correlations up to lag h and finds that 

more than 0.05/i of the samples fall outside the bound, or that one value falls far outside 

the bounds, the IID hypothesis is rejected. This test can equivalently be written in terms 

of x2 distribution. Given 
L - l 

it has been shown in [28] that Q has a x2 distribution with L — 1 degrees of freedom. 

The adequacy of the model is therefore rejected at level a if 

Q>xta(L-l). 

6.3 Multivariate Algorithm Implementation 

The main difference with the univariate algorithm is the statistical hypothesis test. 

Again, the question of whether a new basis function should be added is answered by the 

IID test. We shall see that this test also indicates where the new basis function should 

be initialized. First we compute the autocorrelation functions of all the m time series. 

If all of these pass the WN or IID test, then the cross-correlations among the time series 

are considered. If there is structure in the auto-correlations or cross-correlations of the 

time series then the IID will be rejected. 

As in the univariate case, the next requirement is to determine where the new basis 

function should be located to optimally reduce the structure in the model residuals. In 

our extension, we look for the point in the domain that makes the largest contribution 

to the auto or cross correlation which has caused the test to fail. 

Given this information, we use the fact that the residuals are associated with the 

data in the domain bijectively, i.e., there is a mapping, say ip, from a data point to its 

higher dimensional residual of the form e^ = ip(xk). Thus, by identifying the residual 
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associated with the largest contribution to auto or cross correlation we may identify the 

location in the domain where the basis function should be added. To actually find this 

point first we determine the exact lag for which the correlation function, %j(h) reaches 

its maximum value h*, i.e., 

h* = argmax7ij(/i), h > 0. (6.11) 

Then, we find the point in the spatial domain that has the maximum contribution to the 

associated ACF for lag h = h* by solving 

i* = arg max a(h*, e\, eJ
k). (6.12) 

K J. * • * * Jib fh 

Thus the center for the new basis function is given by 

where ip~l is the inverse of the function ip. For simplicity, we will refer to this center 

location as x*. 

Now that the center of the new basis function has been found it is necessary to 

determine what data should be used to determine the scale and weight of the new RBF. 

Similar to the univariate case in Chapter 2, consider the function (3k
J = a(h*,el

k,e
J
k). 

The index k is inherited from the data labels and in the case of a time-series corresponds 

to a time ordering. For simplicity, we assume that P]f decreases monotonically for both 

increasing and decreasing values of k until it crosses zero at the indices I* < i* and 

r* > i*; here we use l,r to indicate left and right, respectively. We now compute the 

distances 

dt = d{xi*,xi*) 

and 

dr — d\Xi*, xr* j 
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as these indicate the size of the data ball around the center x*. The subset of the data 

employed to update the added basis function is then 

Xiocai = {x G X : \\x - x*\\ < dc}, 

where X is the entire training set. The distance dc can be selected in a variety of ways 

and here we select 

dc = max{d;,d r}. 

Note that Xiocai now may contain data whose indices have values that are substantially 

different from i*,l* and r*. 

The new RBF added to the expansion is initialized and optimized similar to the 

univariate case. The center CQ is initialized at the point of most structure according to 

our test, i.e., c0 = x*. The vector of widths a is very effectively initialized using the 

diagonal elements of the covariance matrix of the local data, 

Co = Vdia9(cov(Xiocal)). 

Note here that W = diag(a0). The initial value for the multivariate weight, a0, is 

calculated via least squares using the initial values for center location and widths. Then 

the parameters associated with the new basis function are optimized by solving the 

nonlinear optimization procedure using BFGS. Note that all the multivariate range values 

associated to Xiocai contribute to the optimization procedure. 

Similar to the univariate case we could use one of the statistical tests, RMSE or nor­

malized prediction error or another measure of structure as stopping criteria. Pseudocode 

of this algorithm is provided in Algorithm 3. 

6.4 Numerical Results 

In this section we show that multivariate algorithm constructs a single model that 

is more parsimonious than multiple univariate models. 
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Algorithm 3 A multi-variate RBF algorithm, using a pairwise hypothesis test on time 
series. 

ran.flag = 1, K = 0 
while ran-flag = 1 do 

evaluate the RBF on the training data set {f(xn)}^=1 

compute the model error {e n }^ = 1 

compute component contributions a(h,e\,ePk) = ej^^ie^. for all i,j = 1, ...,m 
compute correlation functions for all the m time series and all lags 0 < h < L 
compute the maximum contribution to each correlation function over all lags 
apply the univariate WN test to each of the pairs 
if any of the autocorrelations does not pass the WN test then 

identify time series d, that has the maximum value at its autocorrelation function. 
Let i = d and j = d 

else if any of the cross-correlations does not pass the WN test then then 
identify the pair of time series d\, d2 that has the maximum value at their cross-
correlation function, i = dl and j = d2 

else 
rari-flag = 0 

end if 
compute h* via equation h* = &rgmaxjij(h), h > 0 and 
compute x* = Xi* = ip'1(ei*) where i* = argmax/c=ii...,„_/»* ot(h*, el

k, e
J
k) 

compute the CCC function, (5]f = a(h*, ek, e3
k), k = 1,..., n — h* 

find the right and left zero crossing of the CCC function i*, i.e., /* and r* 
compute di = d(xi*,Xi*) , dr = d(xi*,xr*) and dc = max{G^,dr} 
define the local ball as Xiocai = {x € X : \\x — x*|| < dc} 
add a new RBF h(x; v) with initial values v = [c0, a0, a 0 ] T 

solve E(v) = min || h(x; v) — y \\l, where x € Xioca\ 
V 

K = K + 1 
compute confidence, RMSE and j(h*) of of the current model on the training set 

end while 
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6.4.1 Multivariate Pringle Data Set 

To begin, in this section we use the Pringle data set, to show the usefulness of the 

multivariate algorithm in a case where there is full correlation between the first and the 

second time series. This data set was introduced in Chapter 2 in Figure 2.1. Given it is 

easy to visualize, this data set helps us to gain insight about the multivariate algorithm. 

Figure 5.1 shows the univariate training set consisting of 101 points (almost two cycles) 

and 100 data points for validation. In this instance the second output is the multiple 

of the first out put with a factor of two. This example illustrates the ideal behavior 

of the multivariate algorithm when the output time series are highly correlated. Two 

univariate models would in this instance double the model complexity. 

Figure 6.1 shows the first RBF allocated by the multivariate algorithm to both time 

series. Similar to the univariate case the final model has four RBFs. The training, vali­

dation and testing data sets and the output of the multivariate algorithm on multivariate 

Pringle data set are shown in Figure 6.2. The performance of the RBF fit on the multi­

variate Pringle data set in the RMSE sense is shown in Figure 6.3. The confidence level 

of the fitted model on the training and the validation set data sets as new basis functions 

are added to the model are shown in Figure 6.3. 

6.4.2 Multivariate Mackey-Glass 

This example uses the same data, as described in Section 5.3.7. However in this 

section we are interested in the multivariate prediction. For this purpose the series is pre­

dicted with 25 and 50 or 50 and 75 samples ahead using four past samples: sn, sn-e, sn-i2 

and Sn-18- Hence, we would like to approximate / is the following relation, 

^ n + u i > Sn+V2l J \Sni $n—6) "n—12) "ra—18jj 

where {vi,v2) = (25,50) or (^1,^2) = (50,75). 
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(a) The first RBF in relation with the training 
data set for the first time series. 

(b) The first RBF in relation with the training 
data set for the second time series. 

Figure 6.1: The first RBF allocated by the algorithm for the case where m = 2. Hanning 
RBF was used in this fit. The residuals of the four mode model pass the IID test. 
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* 
* 

Training set one 

Training set two 

Validation set one 

Validation set two 

(a) Plots of the training and validation data 
sets for multivariate Pringle data set. 

- First model output 

- Second model output 

First taget values 

First taget values 

(b) The testing data set and the output of the 
four mode model. 

Figure 6.2: The training, validation and testing data sets and the output of the multi­
variate algorithm on multivariate Pringle data set. 
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O RMSE value on testing set 
* RMSE value on training set| 

0.5 1 
number of RBFs 

(a) The RMSE plot of the model as new basis 
functions are added to the model. 

0.5 1 
number of RBFs 

(b) The confidence level of the fitted model 
on the training (circles) and the validation 
(stars) data sets as the new basis functions 
are added to the model. 

Figure 6.3: The performance of the RBF fit on the multivariate Pringle data set. 
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Figure 6.4 shows the confidence level of the multivariate model as new Arctan-

Hanning sRBFs are added to the model for the case of 25-50 steps ahead prediction. 

The confidence for all the pairs of the time series are provided. 

In this case the RMSE of the final model is 0.0175. The number of required sRBFs to 

achieve 95% of confidence on the training and validation data sets is 43. The associated 

univariate 25 ahead prediction problem requires 20 sRBFs to achieve 95% of confidence 

on the training data set and results in a model with RMSE of 0.0128. The number of 

sRBFs required to get to 95% of confidence on the validation data set 19. The analogue 

univariate 50 steps ahead predictor model has the RMSE of 0.0192 with model order 28 

to reach 95% of confidence on training data set. The number of RBFs required for the 

confidence on the validation data set reach 95% of confidence is 26. 

Figure 6.5 shows the both outputs of the multivariate model. Figure 6.5 (a) shows 

the output for 25 steps ahead prediction while Figure 6.5 (b) provides the model output 

for the 50 steps ahead prediction. The log plot of the RMSE of the model as new sRBFs 

are added to the model is shown in Figure 6.5 (c). 

In this work we would like to provide another example for predicting 50 and 75 steps 

ahead. Figure 6.6 shows the confidence level of the multivariate model as new Arctan-

Hanning sRBFs are added to the model. In this case the RMSE of the final model is 

0.0264. The number of required sRBFs to achieve 95% of confidence on the training 

and validation data sets is 49 and 48, respectively. The associated univariate 50 ahead 

prediction problem requires 25 sRBFs to achieve 95% of confidence on the training data 

set and results in a model with RMSE of 0.0173. The number of sRBFs required to get 

95% of confidence on the validation data set is 17. The analogue univariate 75 ahead 

predictor model has the RMSE of 0.0265 with model order 54 to reach 95% on training 

data set. The number of RBFs required for the confidence on the validation data set 

reach 95% of confidence is 36. 
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S 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 
number of RBFs number of RBFs 

(a) Confidence associated to pn. (b) Confidence associated to p\2-

A , , , , , , , , 1 j i , , , , , , , , 1 
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 

numbei of RBFs number of RBFs 

(c) Confidence associated to P21 (d) Confidence associated to J022 

Figure 6.4: The confidence level of the multivariate model as the new Arctan-Hanning 
sRBFs are added to the model for the case of 25-50 steps ahead prediction of noisy 
Mackey-Glass data set. 
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0 50 100 150 200 250 300 350 400 450 

(a) The first output of the model. 

- Output of the model 
Target values 

' 0 50 100 150 200 250 300 350 400 450 

(b) The second output of the model. 

3 S o 5 S S l l , 

u ° O o n O ^ „ 

0 5 10 15 20 25 30 35 40 45 
number of RBFs 

(c) The log plot of the RMSE of the model as 
new basis functions are added to the model. 

Figure 6.5: The performance and the output of the multivariate sRBF fit for the case of 
25-50 steps ahead prediction of noisy Mackey-Glass data set. 

137 



number of RBFs number of RBFs 

(a) Confidence associated to pn. (b) Confidence associated to pi2-

j i 1 • . . . 1 . 1 o* ' ' ' ' ' ' ' ' ' 1 
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 

number of RBFs numbei of RBFs 

(c) Confidence associated to p2i- (d) Confidence associated to p22-

Figure 6.6: The confidence level of the multivariate model as the new Arctan-Hanning 
sRBFs are added to the model for the case of 50-75 steps ahead prediction of noisy 
Mackey-Glass data set. 

It is interesting to note that the multivariate study provides an sRBF model for 

fitting both the 50 and 75 steps ahead prediction time series with model order less than 

the number of sRBFs required to fit the 75 steps ahead prediction problem alone. 

The log plot of the RMSE of the model as new sRBFs are added to the model is 

shown in Figure 6.7. 

Other performance measures such as x2> mean of the residuals, p(/i*), j(h*), j(0) 

and 7fc+1(0)/7fc(0) for each time series as the new sRBFs are added to the model relieve 

similar facts to the study cased out in Chapter 5. 

We expect that as the number of the time series in the range increase, the multi­

variate algorithm produces more parsimonious models. 
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Figure 6.7: The RMSE performance of the Arctan-Hanning fit for the multivariate 50-75 
steps a head prediction of noisy Mackey-Glass data set. 

6.5 Conclusions 

We observed that the extension of the ACF test for IID noise to multivariate ranges 

produces models of smaller order than using multiple univariate models. This is a con­

sequence of the fact that the correlation of the multivariate time-series in the range is 

exploited during the model building process. 

The opportunity for applications of the proposed RBFs is significant, e.g., various 

problems in nonlinear signal processing, optimal control, computer vision, pattern recog­

nition and prediction such as the financial time-series problem. In future work we will 

apply these functions for representing data on manifolds as graph of functions [29, 30] 

as well as the low-dimensional modeling of dynamical systems [31]. 
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Chapter 7 

CONCLUSIONS, C O N T R I B U T I O N S A N D F U T U R E W O R K 

Summary of Contributions 

We have proposed an algorithm for approximating functions from scattered data 

over high dimensional domains. We present a series of innovations of this algorithm and 

an approach for extending it to ranges of dimension greater than one. We have provided 

a detailed theoretical analysis as well as a suite of numerical results. These applications 

demonstrate that the proposed algorithm provides superior performance when compared 

to the leading algorithms in the literature. 

It is assumed that the available data represents a functional relationship, or signal, 

with IID additive noise. An hypothesis test is applied to the residuals at each step in 

the algorithm to determine whether a new basis function should be added, and if so, 

where it should be added. When it has been determined that this test has been passed 

using the 95% confidence criterion one may infer there is no geometric structure left in 

the residuals and thus the model order has been found. 

We note that the algorithm performs well on data with a low signal-to-noise ratio. 

This follows from the iterative behavior of the algorithm. At each step less signal is left 

in the residuals but the algorithm does not actually terminate until there is statistical 

evidence that no signal remains. Thus, even very small amounts of signal structure will 

lead to the addition of a new basis function. 

Here we summarize the main contributions of this dissertation. 



• Development of an algorithm for generating reduced order models from data re­

quiring no ad-hoc parameters. 

• Introduction of a space-time ball for model fitting. 

• Detailed convergence analysis of algorithm. 

• Introduction of new compactly supported basis functions and condition number 

analysis. 

• Introduction of skew Radial Basis Functions for fitting edges and asymmetric data 

in general. 

• Extension of algorithm to multi-variate range. 

• Application to time-series prediction resulting in best models in the literature. 

Development of an algorithm for generating reduced order models from data requiring 

no ad-hoc parameters. To illustrate the absence of ad hoc parameters, all the data 

sets presented in this dissertation were fit by exactly the same code through out each 

chapter. No adjustments were made based on the data sets being fit. Hence, we claim the 

proposed algorithm is effectively like a black box for nonlinear function approximation. 

This feature will permit the advancement of a variety of problems in nonlinear signal 

processing, optimal control, computer vision, pattern recognition and prediction or other 

algorithms, e.g., the representation of data on manifolds as graphs of functions [29, 30], 

pattern classification [67, 90], as well as the low-dimensional modeling of dynamical 

systems [31]. 

Introduction of a space-time ball for model fitting. The algorithm employs a spatio-

temporal window, i.e., space-time balls, for determining the local data to be used in 

updating the model. Further details about the choice of local ball are also reported. 

Modifications to the autocorrelations test is made and shown its equivalence to the 
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standard ACF at the stopping stages. The examples suggest these novelties are critical for 

approximating data over high-dimensional domains and in particular for data generated 

by dynamical systems. 

Detailed convergence analysis of algorithm. We also establish the convergence properties 

of the proposed algorithms. This revealed new features about the algorithm and provided 

more insight in to its behavior and the enhancement of the algorithm. The proofs brought 

together various developments made over different chapters. We demonstrate interesting 

facts about the algorithm such as the energy of the final residuals approaches the energy 

of the noise that could have been initially mixed with a signal. The convergence is 

shown for variety of statistical tests including autocorrelation, different sign and turning 

point tests. Further geometric elaboration on the properties of the algorithm is given 

in the Krylov subspace expansion sense. Optimization of the RBFs were also studied 

thoroughly. 

Introduction of new compactly supported basis functions and condition number analysis. 

We note that the condition number of the interpolation matrix depends directly on the 

choice of RBFs and suggests an explanation for the good conditioning properties for RBFs 

that posses the suitable derivatives to match with data. To construct more accurate 

models with better conditioning we have proposed several new candidate compactly 

supported RBFs and have illustrated some of their positive performance properties on 

the benchmark Mackey-Glass problem. Both the number of required modes and the 

conditioning of the final model are substantially improved over previous work. 

Introduction of skew Radial Basis Functions for fitting edges and asymmetric data in 

general. We have proposed a class of skew-radial basis functions (sRBFs) which is formed 

by modulating an RBF with a symmetry breaking term. These include compactly and 

non-compactly supported sRBFs. The main attraction of these types of RBFs is their 

additional flexibly to fit asymmetric data. In a motivating example we have shown that 
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an sRBF generated by four parameters, needs a 26 parameter RBF model to be fit 

with symmetric RBFs. We notice a major area of employment for this type of basis 

functions in fitting data with jumps in it, such as we might find in physical flows with 

singularities, or in images with sharp edges arising from, e.g., shadows. We also modeled 

the maximum wind speed of a hurricane and found out that sRBFs produced a fit 

that had a significantly lower error than the RBF approach and that increasing the 

complexity of the RBF model did not diminish this discrepancy. We anticipate that 

these new developments could impact other function fitting paradigms such as support 

vector machines, [132], and mixture models, [105]. 

Extension of algorithm to multi-variate range. A multivariate extension of the algorithm 

is also carried out. Unlike the general trend in the literature that leaves the multivariate 

extensions of the algorithm as a trivial extension to their univariate counter part, we 

observed considerable improvements in our results. In one of our experiments on Mackey-

Glass we show that a multivariate fit is more parsimonious than one of its univariate 

counterparts. 

Application to time-series prediction resulting in best models in the literature. 

The algorithm provides accurate results on variety of benchmark data sets including 

Mackey-Glass and a financial time series. 

Finally, there is significant evidence now that the exploitation of the geometry 

present in data will allow the construction of improved models and enhanced prediction. 

This dissertation details a new way to find the nonlinear relations in high dimensions 

that we hope will prove useful in the challenging problem of knowledge discovery in 

large data sets. We envision future applications to classification on manifolds, pattern 

recognition and time-series prediction, nonlinear signal processing, optimal control and 

computer vision. 
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Appendix 
In an effort to keep this work as self contained as possible we present the additional 

results that are required for the proof of theorem 4.5.1 in Chapter 4 and a gallery of 

RBFs. 

Perturbation Bound 

Following [25], the system of equations for the perturbed interpolation problem 

Aa + P(3 = f 
PTa + 0 = / (1) 

is solvable if the rank condition rank(P) — Q < N holds and if the perturbation A of 

the interpolation matrix A is bounded by 

\A-A\U<\ (2) 

where 

7 ^ 7 > AH7II2 

for all 7 G V where V is the space defined in Equation (4.16), [129]. 

Gallery of R B F s 

The table below page presents some of the widely used (conditional) positive definite 

RBFs. Note, for further properties of Wendland RBFs and their valid dimension please 

see, e.g., [144]. 

<f>(r) 

exp(—ar2),a > 0 
r2k In r, k G N 

r", (5 > 0, 0 $ 2N 
(c2 + r 2 ) ^ , ^ < 0 

(c2 + r y , / ? > 0 , (3<£N 
( l - r ) t ( l + 4r) 

order m 
m > 0 

m > k + 1 

m > r f i 
m > 0 

m> |73] 
m > 0 

Name 
Gaussian 

thin-plate splines 
linear or cubic if /? = lor3 

inverse multiquadrics 
multiquadrics 

Wendland 

Table 1: This table presents the commonly used RBFs in the literature. 
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Gallery of skew-RBFs 

The table below summarizes the sRBFs that are introduced in this paper. These 

basis functions are best suited for the case that there is more data points than basis 

functions. According to Theorem 4.5.1, one could check if an specific sRBF is positive 

definite to be used for interpolation. Note that the functions shown here are only ex­

amples of many functions one could generate based on the background provided in this 

work. 

Table 2: This table shows a collection of skew-RBFs introduced in this paper. Parameters 
c, A and W denote the center, skew parameter and the inner product weight, respectively. 

&Q 
exp(- | |x - c\\2

w) jZt {X~C) exp(-y2)o?y 

I ^arctan (\T(x — c)) + \ ]sech(||a; — c\\w) 

I ^ arctan (AT(x — c)) + \ J exp(—||x — c||^) 

i arctan (AT(x — c)) + | ) i / l — ||x — c | | ^ i / ( l — ||x — c\\w) 
rctan (AT(x — c)) + | ) (cos(||a; — c||W7r) + l)H(l — \\x — c\\w 

[± arctan (\T(x - c)) + jj) exp (1_ll~\^)H{1 - \\x - c\\w) 

Name 

Erf-Gaussian 

Atan-Hyper-Sec. 

Atan-Gaussian 

Atan-Circle 
Atan-Hanning 
Atan-Mollifier 
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