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ABSTRACT OF DISSERTATION

TOWARD A TYPE By GEOMETRIC LITTLEWOOD-RICHARDSON RULE

We conjecture a geometric Littlewood-Richardson Rule for the maximal orthogonal Grass-
mannian and make significant advances in the proof of this conjecture. We consider Schubert
calculus in the presence of a nondegenerate syrﬁmetric bilinear form on an odd-dimensional vector
space (the type B, setting) and use degenerations to understand intersections of Schubert vari-
eties in the odd orthogonal Grassmannian. We describe the degenerations using combinatorial
objects called checker games. This work is closely related to Vakil’s Geometric Littlewood-

Richardson Rule {Annals of Mathematics, 164).
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Chapter 1

BACKGROUND
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1.1 Littlewood-Richardson Numbers

Littlewood-Richardson numbers occur in a variety of contexts. In combinatorics, the Little-
wood-Richardson number c§,, counts, for example, the number of skew tableaux of shape v/
whose rectification is of shape u [6]. In algebra, the ring of symmetric functions has a basis
of Schur functions. The Schur functions can be enumerated using partitions and the structure
coefficients of the ring are the Littlewood-Richardson numbers. In representation theory, the
general linear group GL,(C) has irreducible representations enumerated by partitions. The
tensor product of two irreducible representations can be decomposed into a sum of irreducible
representations with multiplicities that are Littlewood-Richardson numbers [21]. Finally, the
Littlewood-Richardson numbers play a role in geometry, the context in which this dissertation is

set.
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1.2 Geometry Discussion

The usual, or type A, Grassmann manifold G(k,n) is the space of k-dimensional vector

subspaces of C".

Example 1.2.1. G(1,3) is the set of all lines through the origin in C* (this is the projective
plane, P?). Consider a set of reference spaces, called a flag, in C3, consisting of the origin, a line

through the origin, a plane containing that line, and all of three-space, denoted
F=(FRGc¢hGRCF=C

We can ask what lines through the origin meet these reference spaces in a certain way. For
example, we might ask what lines meet the reference plane Fy in one dimension? The solution
to this question is a subspace of the Grassmannian G(1,3), the set of lines through the origin

that lie in the reference plane Fj.

In general, the space of all k-dimensional subspaces of C™ which intersect certain reference

spaces in a predetermined way is a locally closed subvariety of the Grassmannian.

Definition 1. Given0 <oy <oy < <ap,=kandaflag F.=(Fp, C K/ C - C F, =C")
of subspaces, the set of all V € G(k,n) such that dimV N F; = a; for 1 < j < n, is called a
Schubert cell.

In example 1.2.1, (o, g, 3) = (0,1,1).

A Schubert condition on C" is encoded by a partition A with at most n — & columns and k
rows. We denote the corresponding Schubert cell 25 (F.). The vector space V is an element of
the Schubert cell Q) (F) if dim(V N Fp_g)45-a,) =j for 1< j < k.

Listing 0 < o < oy £ -+ £ ap = k for a Schubert condition is equivalent to giving a

partition A via the following bijection:
e Given A= (A1 2 A2 > -+ 2 A > 0), we have dim(V N Fpopy4j-n;) =7 for 1 <5 < k.

e Given 0 < a1 € a2 <+ < an = k then for each 7, 1 < j < n, where oj_1 < a; (with the

convention that ag = 0) we have Ao, = (n — k) + o — J.

In example 1.2.1, the required intersection is described by the partition A = (1) = .
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Fo F1 F2 Fs F4 FS
dm(VNF)| 0|0 |1 ]1]2]2

Table 1.1: Dimensions of intersection for Example 1.2.2

1

2
3y

A

A

Figure 1.1: Walk corresponding to dimensions in Table 1.1

Example 1.2.2. Consider the Grassmannian G(2,5) and a fixed flag F. with restrictions on
dim(V N F;) given by Table 1.1. The corresponding partition A is then found by the two calcu-

lations:

1. dim(V N Fis_2)4+1-1,) = 1 where

Fsooyt1-n, =F2 = A1 =2

2. dlm(V N F(5_2)+2_)\2) = 2 where

Fis_yp2-0, = F4 = Ap =1
So A = @ which gives the Schubert cell Qp(F.).

A third equivalent way to describe a Schubert condition is with an n-step walk through
the vertices of a k x (n — k) grid of boxes. Beginning from the northeast corner, walk either
west or south. On the j%* step, move west if dim(V N F;) = dim(V N V;_1) and move south if
dim(V N F;) = dim(V N F;_1) + 1. The partition A is then the collection of boxes northwest of
the n-step walk.

In Table 1.1, jumps occur at F, and Fy. The five step walk is given in Figure 1.1.

The closure Q,(F) of a Schubert cell is called a Schubert variety. This is the set of V that
meet F. at least in the prescribed way, or more precisely, dim(V N F;) > a; for all . A natural

question is:
Question 1.2.1. How do two Schubert varieties intersect?

An important special case is:
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Question 1.2.2. If a collection of Schubert varieties has a finite number of peints in common,

what ezactly is this number?

Such questions are typical Schubert calculus questions. We will concern ourselves with
answers to generalizations of these questions. More precisely, codimg(k ) (Q(F)) = ||, so if we

have r flags F!, F2,..., F', and the flags are in general position, then

T

r
codimg(k,n)(n ﬁ)\j (FJ)) = Z l)\Jl

j=1 j=1
where M is a partition for 1 < j < r. A general Schubert problem consists of finding all V which
satisfy the Schubert conditions A/ with respect to FJ for j =1,...,r.

By the Kleiman-Bertini theorem, we can categorize the number of solutions possible:

1. If E;=1 IM| < k(n — k), then there are infinitely many solutions (over C).

2. If Z;=1 M| > k(n — k), and F!, F2,..., F" are in general position, then there are no

solutions, i.e. (i_; Uy (F7) = 0.

3. If Z;=1 M| =k(n—k), and F!, F2,..., F" are in general position, then there are a fixed,

finite number of solutions, i.e. the set {V € (_, 0xs (F7)} is finite.
1.2.1 Orthogonal (type B,) flags

The setting described above for the usual Grassmannian is called type A,. If we place a
non-degenerate symmetric bilinear form B on the odd-dimensional vector space C?**! and work
with isotropic subspaces (see definition 2), we are describing a type B, setting. Caution: The
form B is not an inner product, so there exist nonzero vectors v with B(v,v) = 0.

The following is based on [7]. Since we are working over an algebraically closed field, we can
always choose a basis e1, es, .. . eant1 for C¥**! such that

1 fi+j=2n+2
0 otherwise.

B(eiaej)={

This gives
0
B(:c,y =1 ... Zon+t : .
)=l S A
1 0 ... o] ¥nit
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for x,y € C¥n+1,

For a subspace V € €21, define V+ as
Vi = {a: eC™! | B(zy)=0 Wye V}.
The perp space V* has dimension dim V41 = 9n + 1 —dimV.

Definition 2. A subspace V C C?*t+! is called isotropic if B{x,y) = 0 for all z,y € V. A

mazimal isotropic subspace of C2"*! is an isotropic subspace whose dimension is n.
The following facts are immediate consequences from the properties of the form B:
. (VvHt=v
2. V is isotropic if and only if V c V+.

3. We always consider subspaces of C2"*+! with the induced (restricted) form of B. If V. ¢ C2?n+!

then Bly is symmetric bilinear (but not necessarily nondegenerate).
4. V is isotropic if and only if B}y =0

5. V is isotropic or the perp of an isotropic space if and only if rank(B|y) is minimal (minimal

means max{0,2dimV — (2n + 1)}).
6. If V is the perp of an isotropic space, then rank(Bl|y) is odd.

7. If V. ¢ W C C?**+! then B induces a well-defined form on W/V if and only if V is isotropic
and W C VL. In particular, if V is isotropic, then B induces a non-degenerate form on

Vi,

With these facts, we can construct isotropic flags F. = (Fp € [} € -+ § F, G C?**1) with
dim F; = ¢ and F; isotropic. Specifically, choose F} to be a one-dimensional isotropic subspace
of C?"*!. Once we choose F;, we choose an isotropic line Fp/Fy C Fj-/F; and continue in the
same manner, with F;/F;_; C Ff;l/Fi_l for i =1,...,n. We can complete this flag by setting
Fopi = FﬁL+1—i for 1 <4 < n+ 1. An alternate way of building F. is to choose a maximal
isotropic subspace, Fy, C C?"*1. Then choose a flag F; C --- € F,. In this method, once a
maximal isotropic space F,, is chosen, all subspaces of F, are immediately isotropic. The flag is

completed by setting Fj,; = F,f;l_i for 1 €4 < n+1. The variety of all such flags is OF{(2n+1).
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Matrix representation of a flag

A flag E. € OFI(2n+ 1) can be described by a matrix representation where each row r; is a
vector and E; = (ry,...,r;) for 1 < i < n. We need not include rows greater than n since these

spaces are determined by Fy,..., E,.
Attitude table for a flag cell

OFl(2n + 1) has a cell structure. A cell can be represented using an attitude table. Fix a

flag F. = (F1 G Fo € --- € F,) and choose a basis such that F; = (ey,...,e;). We want to

=

describe the cell of OFI(2n+ 1) that contains all flags E. such that dim(E; N F;) = oy, ; for given

o;; with 1 <i<n,and 1 <j < 2n+ 1. For the cell to be nonempty, it is necessary that
Loajgry—o; <1
2. a1~ <1
3. ap2nt1 =n and
4. ifi<kandj<!thena;; < agy.

The a;,; can be written in an attitude table. An example of such a table for n = 2 is given in
Table 1.2.

Let the n-tuple (1, J2, ..., jn) describe the jumping numbers for the cell, where j; is the first
position in row i (left to right) where there is an increase from the corresponding column entry

in row ¢ — 1. The jumping number n-tuple for the cell described in Table 1.2 is (71, j2) = (2, 5).

Fo |Fi | B | Fs | Ba | Fs
Ecl0jJo0lololo]|o
E.| 0|0 |11 ]1]1
E,| 00|11 ]1]2

Table 1.2: A flag attitude table for n = 2. Typically, the Ey row and Fy column are not written.

Matrix representation of a flag cell

An n x (2n 4 1) matrix representation can also be used to describe a cell of OFI(2n + 1).
For each jumping number j;, let entry (3, j;) of the matrix be 1. Each entry in the column below

a 1 or in the row to the right of a 1 will be designated as 0. The remaining entries are *’s,
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representing free entries. Isotropy conditions must be imposed, which determines some entries.
After satisfying isotropy conditions, the number of free entries in the matrix is the dimension of

the cell in OFI(2n + 1).

Example 1.2.3. The set of E. that satisfy the attitude table 1.2 are given by the matrix

*x 1 0 0 0
e 0 % o 1

where * represents a free entry and e represents a determined entry. Determined entries come

representation

from isotropy conditions. In this example, before isotropy conditions are applied, E. is represented

a1l 0 0 O
b 0 ¢ d 1

where a,b, ¢, d are free entries. Let row 1 be v; and row 2 be vs. In order for E. to be isotropic,

by the matrix

the symmetric bilinear form imposes conditions on the variables.
B('Ul,’Ul) =0 0=0
B(’U],'Uz) =0 < a+d=0
B(vg,vg) =0 <= 2b+c2=0.
For the isotropy condition imposed by rows ¢ and j, ¢ < j, there will be at most two linear

monomials. We solve for the variable in the linear term that comes from row j. In this example,

we solve for d and b. Nowd= —a and b= —9;— are determined, so this cell has dimension = 2.
Permutation representation of a flag cell

A third way to represent a cell of OFI(2n + 1) is by a permutation. Schubert cells of
OF!(2n + 1) correspond to elements in the Weyl group

W={we Sops1 |wi) +w@n+2—17)=2n+2 Vi} (1.1)

where Sp,.+1 is the symmetric group on 2n+1 elements. Given a permutation w € W, we produce
an n X (2n+ 1) matrix representation of the corresponding cell by placing 1’s in positions (2, w(3))
for 1 £ 4 < n, zeroes to the right and below the 1’s, and #’s elsewhere. Checking the isotropy
conditions (like Example 1.2.3) determines where *’s are replaced with e’s. Conversely, given a
n x (2n+ 1) matrix representation of a cell, w is determined by looking at the position of the 1’s
in the matrix. The column position of the 1 in row ¢ is w(z) for 1 < ¢ < n. The rest of w is then

determined: w(n+1)=n+landw(f)=2n+2-w(@n+2-j)forn+1<j<In+1.
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1.2.2 0Odd orthogonal (type B,) Grassmannians
We now define the (mazimal) odd orthogonal Grassmannian,
OGr(n,2n+1) = {V € G(n,2n + 1) | V is isotropic wrt B}.
OGr(n,2n + 1) is a homogeneous space of the orthogonal group. Like the usual (type A,)
Grassmannian, the orthogonal Grassmannian has a cell structure.
Attitude table for a cell of OGr(n,2n + 1)

For a fixed choice of F. € OFI(2n + 1), a cell of OGr(n,2n+ 1) can be described by a single
row attitude table with entries o;, 1 < ¢ € 2n + 1, where dim(V N F;) = «;. Similar to the
flag attitudes, it is a necessary condition for nonempty cells that oy < «; for ¢ < j and that

a1 —a; < 1. An example of such an attitude for n = 2 can be found in Table 1.3. Note that an

P F | B | By | Fs
Vio |1 |1]1]2

Table 1.3: an orthogonal Grassmannian attitude table for n = 2

attitude table for OFI(2n+ 1) gives more information than an attitude table for OGr(n,2n+1).

In particular, there is a forgetful map
OFl(2n+1) —» OGr(n,2n+ 1)

which maps F. — E,. The attitude table for a cell of the orthogonal Crassmannian is the
same as the n* row of attitude tables of more than one cell in OFI(2n + 1). Two different
cells of OFI(2n + 1) that have the same n** row in the attitude table have the same image in

OGr(n,2n + 1) under the forgetful map.

Example 1.2.4. Let F. € OFI(2n+ 1) be the standard flag defined by Fj = (e1,...,e;) for 1 <
j < 2n+1. The attitudes for cells A, B C OFI(5) are given in Tables 1.4 and 1.5 respectively. The
cells are not the same, A # B, but for E. € A thereisan F’ € B such that E; = EJ and vice versa.
Here, EY) = {ae; - 92362 + ce3 + eq, e1) for some choice of a,c € C and E; = ey, :z’ieg +geg + eq)
for some choice of g € C. So for ¢ = g we have E; = E}. On the other hand, E; = (e;) which

2
cannot be E] = (ae; — Sea + ces + e4) for any choice of a and c.
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Ei 1 1 1
E, | 1 1 1

—
—_

Table 1.4: a flag attitude table for cell A

F | Fs | Fs | Fa | Fs
E;[ 0|00 1]1
Ey[ T |1 1|22

Table 1.5: a flag attitude table for cell B

Matrix representation for a cell of OGr(n,2n+ 1)

Matrix representations of two different cells of OF{(2n + 1) both having 1’s in columns
{71, 72, -, Jn} will describe a unique cell of OGr(n,2n + 1) with jumping numbers {j1,...,jn}.
In fact, two matrix representations of cells in the flag variety will row reduce to the same form

if they describe the same cell in OGr(n,2n + 1).
Lemma 1.2.1. FElementary row operations preserve isotropy.

Proof. For an isotropic subspace V, let v;,v; € V where v; and v; are the ith and jth rows of an
n % (2n + 1) matrix spanning V. B{v;,v;) = 0. Adding a multiple of row j to row %, we have the
new row v; + avj.
B(v; + awj, vy + av;) = B{vi, v;) + B(vi, aw;) + B(awj, v;) + Blav;, aw;)
= B(v;,v;) + aB(vi,v;) + aB(vj,v;) + & B(v;, v;)
=0+ a0+ a0+ a?0
=0.
So v; + av; is orthogonal to itself. Similarly we can check that B(v; + avj,vg) = 0 for all

vg €V. [}

Definition 3. The reduced row echelon form for a matrix representation of a cell of OFI[(2n+1)
is an n x (2n + 1) matrix where the 1’s are arranged in descending order (left to right) and there

are zeroes below each 1.

Example 1.2.5.

® * % x 1| rowreducesto (@ 1 0 0 O
e 1 0 0 O e 0 x x 1

10
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The set of matrix representations of cells of OF[(2n + 1) that are in reduced row eschelon

form are in one-to-one correspondence with the cells of OGr(n,2n + 1).
Permutation representation for a cell of OGr(n,2n +1)

For a fixed F, there is a correspondence between the set of cells of OGr(n,2n + 1) and a

subset W' of the Weyl group of OFI(2n +1):
W ={weW|wl)<w@) < <wn)and w(t) € {2n+ 2 — w(j) for j < i}} (1.2)
Lemma 1.2.2. There are 2™ cells in OGr(n,2n + 1).

Proof. We choose the numbers to be placed in the first n positions of the Weyl group element
(in table form). The #** position has 2n — 2(i — 1) possibilities (there are 2n choices for the first
slot, then 2n — 2 choices for the second slot since we cannot use w(1) or its pair 2n + 2 — w(1)).
Thus there are

2n(2n —2)(2n—4)...(2n - (2n - 2)) = 2"n!

choices for the first n positions. Since we only want the elements where w(1) < w(2) < -+ < w{n),
we divide by the number of orderings of each collection. So the number of cells in OGr(n, 2n+1)

2"n! __ o9n
157—2. O

An alternate notation for elements of W’ described by F. Sottile is often useful. Shift the

numbering of permutations so that n+ 1 is now 0. Then we permute —n,...,0,...,n instead of
1,...,2n+ 1. We use the overbar to denote a negative number; for example, —3 = 3. In this
notation,

W ={weSin, . np|w@)+wE =0 Vi}

and

W={weW|wh) <wh=1) < <w(l) and w(z) # w(j) for j < i}

This notation makes manipulating the permutations easier and adjusts more easily when n varies.
Standard permutation notation is more quickly interpreted for matrix represenations and for

dimension attitudes. These notations will be used interchangeably throughout.

11
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Figure 1.2: ps
Partition representation of a cell of OGr(n,2n + 1)

The cells of OGr(n,2n + 1) can also be described by partitions. Let p, be the partition
(n,n—1,...,2,1) (see Figure 1.2). Let

Pn‘—_{/\z()\l,)\z,...)l)\l>/\2>... and)\Cpn}.

There is a one-to-one correspondence between elements of W' and elements of P,,. For w € W'
and A € P, w corresponds to A if A\; = max(n + 1 — w(4),0) for ¢ = 1,...,n. Equivalently, let
[(\) be the number of nonzero rows of A. Then w corresponds to A if
- {n+ I-w(i) fori i)
0 otherwise.

Example 1.2.6.

Table 1.3 < [: c 20
For the fixed flag F. € OFI(2n + 1), the Schubert cell of OGr(n,2n + 1) corresponding to

] - w=25314=12021 = A= (1) =0

the partition A € P, is denoted Q) (F.).
OA(F)={VeOGr(n,2n+1) |ji=n+1-Xfor1 <i<I(A)and j; >n+1ifi> ()}

where {j1 < -+ < jn} is the set of jumping numbers for V. The closure of this cell is the Schubert

variety 0, (F.) where
QA(F) = {V € OGr(n,2n+1) | dim(V N F},) >4 Vi}
Lemma 1.2.3. Let |A| = M+ Az2+.... Then the dimension of the cell Q5(F.) ¢ OGr(n,2n+1)
is (") = AL
Proof. The codimogyr(n,2n+1) UA(F.) = |A] where |A] = Ay 4+ X2 + ... by [7]. The cell with

maximal codimension is the cell Q, (F) = {V = F,} which has dimension zero. This implies

that dim(OGr(n,2n + 1)) = |pn| = ("#'). Thus

aim(@(P) = onl = 11 = ("5 1) - .

12
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1.2.3 Schubert calculus and cohomology

In the geometric setting, Schubert calculus is normally phrased in cohomological terms (see
[6, 7] among others). In the A, setting, a Schubert variety Q2,(F.) gives rise to the Schubert

cycle

[Qr(F)] € Hu(G(k,n); Z)

in homology. This Schubert cycle is independent of the flag F.. Its Poincaré dual in cohomology,
ox € H*(G(k,n); Z),

is called a Schubert class. Now, H*(G(k,n);Z) is a ring, and the set of Schubert classes {o}
is an additive basis for this ring. In particular, the cup product of two Schubert classes can be

written uniquely as a linear combination of basis elements:

v
OOy = E CAuOv-
14

The structure coefficients c§ , for the cohomology ring H*(G(k, n); Z) are the Littlewood-Richardson
numbers. In a compact manifold such as the Grassmannian, the cup product is Poincaré dual
to the intersection product. By the Kleiman-Bertini theorem, for sufficiently general flags F.
and M., the Schubert varieties 0, (F.) and Q,(M.) meet transversely, so o0, is Poincaré dual to
[QA(F) N QL (M.)). Now, Q5(F)NQ,(M.) is homologous to a union of other Schubert varieties,
and c§, counts the number of components of this union that are Schubert varieties described
by v. Thus, knowing the Littlewood-Richardson numbers answers Question 1.2.2 completely and
gives insight into Question 1.2.1. The goal of Schubert calculus is to understand these coefficients
from the perspective of the Grassmannian. |

More generally, if we have r Schubert conditions and ﬁ;(F’) for 1 € j £ r meet properly

and transversely, then 1052 . .. oxr is Poincaré dual to [, Oy (F?)). In particular, °m\ (where
B is a k x (n — k) partition) is Poincaré dual to a point. Thus, if oy1052...0)r = aogy, then
there are exactly a solutions to the Schubert problem for general F!, F?, ..., FT.

Because of the Schubert cell structure in the orthogonal Grassmannian, one can still ask
questions in the B, setting that are similar to questions 1.2.1 and 1.2.2 posed in the type A,

setting.

13
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1.2.4 Schubert calculus in the B, setting

In the B, setting, we have a similar situation (see [7]). The Schubert cell Q,(F.) gives rise
to the Schubert cycle
[\ (F)] € Hi(OGr(n,2n + 1); Z)

in homology, or by Poincaré duality, the Schubert class
75 € H*(OGr{n,2n+ 1), Z).
For any fixed F. € OFI(2n + 1), the set of Schubert classes,
{r» € H(OGr(n,2n+1),Z) | » € P,,}

form an additive basis for the cohomology of the orthogonal Grassmannian, or equivalently, for
its Chow ring! [17]. So multiplying two Schubert cycles via the cup product yields a linear

combination of Schubert cycles.

ATy = Z axuTy
veP,

for some integers a¥,,. These integers are the type By, Littlewood-Richardson numbers. Knowing
these numbers allows us to understand the ring structure of the Chow ring or cohomology ring.
Equivalently, if F. and M. are in general position, then the fundamental class of the intersection
of two Schubert varieties, [ (F) NQ,(M.)] is 3 aKu[ﬁ;(F)] Note that if  flags F1,...,F’ €
OFI(2n + 1) are in general position, then the intersection of Schubert varieties, N7_, Qy, (F?) is

a transverse intersection.

!In this dissertation, we use the complex numbers as the base field. It should be noted that more generally,
with certain modifications such as replacing the cohomology ring H?* with the Chow ring CH*, the complex
numbers can be replaced with any algebraically closed field of characteristic # 2.

14
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1.3 Littlewood-Richardson Rules

A combinatorial algorithm for calculating Littlewood-Richardson numbers is called a Littlewood-
Richardson Rule. In the A, setting, several such rules are known. There are classic rules such as
Pieri’s formula and Giambelli’s formula as well as rules involving tableaux [6], puzzles [11, 12],
and checker games [22] (for a description of the checker games, see also section 1.4).

Pieri’s formula is used in the special case of calculating 010, where p = (k) is the partition

consisting of one row of size k. Pieri’s formula is

U)\U(k) = ZO’)\/

which is the sum over those X that are obtained from A by adding k boxes with no two in the
same column.

Giambelli’s formula says we can decompose o) to be written as an expression involving
multiplication and addition of o’s. Once o) and o, are expressed this way, Pieri’s formula can

be used to calculate from there. Giambelli’s formula is
oy =det(or4j—i)1<ij<n—k

In the B, setting, there is a Pieri-type rule [9] and a Giambelli-type rule [18] for the or-
thogonal Grassmannian. In addition, one can use symmetric functions to determine the as,
The Hall-Littlewood symmetric functions, or P-polynomials, Py(x;t), form a basis for the ring
of symmetric functions. We can multiply

P\P, =) ¥,P,

vePpP
and determine bK“ for all v € P. The cup product gy, is then a linear combination with

coefficients

v by u ifve Py,
a)\”‘ = .
0 otherwise

[10, 16]. There is a Maple program written by John Stembridge [20] that will write the product
PP, as a linear combination of P-polynomials.

Buch, Kresch, and Tamvakis have a combinatorial, maximal orthogonal Littlewood-Richardson
rule [3] that uses shifted tableaux. There is, however, no known Littlewood-Richardson rule for

OGr(k,2n + 1) when k < n.

15
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1.4 Vakil’s Geometric Littlewood-Richardson Rule

In recent work, Vakil describes the (type A, ) Littlewood-Richardson numbers geometrically
via explicit rational degenerations [22]. Given two flags F. and M. in general position with
respect to each other, Vakil gives a sequence of rational, codimension one degenerations in the flag
manifold that moves one flag until it coincides with the other. The intersection of two Schubert
varieties given by A and p is studied as the space changes through the sequence of degenerations.
At each step, the space either stays as one component or breaks into two components, each with
multiplicity one. The number cf, is the number of Schubert variety components described by
v that are the result of the degeneration sequence beginning with the intersection of Schubert
varieties given by A and p. A combinatorial bookkeeping device called a checker board and
described in [22] encodes the dimensions of intersection at each step of the degeneration.

Vakil describes c§, as the number of checker games starting with the configuration oy ;@
and ending with the configuration o, f;nq. Given a starting checker configuration, oe;,;;, there
are partitions A and u so that oe,,;; corresponds to the Schubert calculation, oyo,. Conversely,
if opo, # 0, then there is a unique checker configuration oey,;; such that the sum of all possible
outcomes of games beginning with this ce;,;; configuration corresponds to 3 c’)’\“a,,. We give a

summary here of Vakil's work. For a full description, see [22].
1.4.1 Checker game setup

We start by taking two flags in general position with respect to each other, F. and M., and a
representative V € Qy(F) N8, (M.). We then take an n x n checker board with n black checkers,
no two in the same row or column. The columns of the checker board refer to Fy, Fs, ..., Fy,
and the rows refer to My, My, ..., M,. The dim(F; N M) is the number of black checkers in
positions (7,5) such that ¢ < k and j < . In other words, dim(F; N My) is the number of black
checkers weakly northwest of the {k,[) position. Figure 1.3 shows a e-configuration where, for
example, dim(Fy N M3) = 2. In the setup, F. and M. are in general position with respect to each
other, so the beginning e-configuration, or e;,;;, is given by black checkers on the antidiagonal.
See figure 1.5.

To complete the setup of a checker game, the white checkers correspond to V € G(k,n) that
meet the flags F. and M. in the prescribed way. If 050, # 0 then there is a unique way to place

k white checkers on the e;,;; board such that

16
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A B R E

o | My
. M,
. M,
. My

Figure 1.3: This e-configuration encodes dim(M; N F;). The number of black checkers weakly
northwest of (¢, 7) is dim(M; N Fj).

R F R F
0 011 ]|M
olol1{2|M
01123 |M;
11210304 ]|M,

Figure 1.4: dim(F; N M;) for e

1. There are no two white checkers in one row or column

2. dim(V N F; N M) is the number of white checkers weakly northwest of the (k,!) position.

Example 1.4.1. In G(2,4), to calculate ogog, we first set up the checker configuration og ginit-
Two flags, F. and M., in the most general position have dimensions of intersection given in Figure
1.4 which corresponds to the e;,;; checker position in Figure 1.5.

The fundamental class dual to og has dimensions of intersection given in Table 1.6 and since
og is independent of the choice of flag, we also have the dimensions of intersection for V' N M; in
Table 1.7.

Using dim(V N Fy), dim(V N M;), and dim(M; N F}) to determine the general intersection
of VN M. NF., Figure 1.6 is constructed to describe dim(V N M; N F};). This corresponds to the

og g®init checker configuration in Figure 1.7.

Figure 1.5: e;,;; for n =4

17
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B |Fy | Fy | F3 | Fy
dm(VAF) | 0] 01|22

Table 1.6: Attitude table for Q(;,1)(F) for Example 1.4.1

Mo M1 M2 M3 M4
dm(VAM) ] 010 |12 2

Table 1.7: Attitude table for Q¢ ;y(M.) for Example 1.4.1

F, F, F3 F,

010 |0 |M
M,
M;
M,

oo

[l R
= O
BN | =
B[ DN | e

Figure 1.6: initial dim(V N F; N M;) for o¢1 1y0(1,1) {Example 1.4.1)

Figure 1.7: oe4,;; for 0(3,1y0(1,1) (Example 1.4.1)

18
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1.4.2 Playing the game

The flag M. is moved through a series of rational codimension one degenerations, called the
specialization order until M. coincides with F.. At each stage, the white checkers along with the
black checkers describe a particular 2-flag Schubert variety. For each degeneration, the space of
V that meet (F), M.) in the oe-way either stays as one component or breaks into two components.

Each piece has multiplicity one.
Definition 4.

1. X, = {{F,M) € Fl(n) x Fl(n)] F. and M. meet in dimensions described by the e-

configuration }

2. Xoo = {(V,F,M) € G(k,n) x Fl(n) x FIR)|(F.,M) € X, and dim(V N F; N M;) is

described by the oe-configuration. }

Xoe = {(V,F,M.) € G(k,n) x Fl(n) x Fl(n) |
(F,M) e X, and dim(V N F; N M;) is at least the dimension
described by the o e-configuration.}
= Clg(k,nyxx, Xos

The black checker moves follow the specialization order which has the property that dim X
dim X, — 1. On the other hand, at each step, the white checkers move in such a way that
the dimension of the fiber of X,, — X, will be the same as the dimension of the fiber of
X — X The proof of the geometric Littlewood-Richardson Rule shows that the rules

O®next ®rext’

of the game consider exactly the situations where dim X, — 1 = dim X but the dimension of

®next
the choice of appropriate V' remains fixed.

To play a checker game, n black checkers and k white checkers are set up in a prescribed
way on an 1 X n checkerboard. The black checkers are moved, one swap at a time following the

specialization order. This is the order

€n—16n—-2...€2€1 €np_—1...€2 e €n—1€n-2 €Enp-—-1
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Fo | By | Fs | Fs | Fy
dm(VNE) | 0] 0|1 ]1]2

Table 1.8: Attitude table for Example 1.4.2

read right to left where e; swaps the black checkers in the i** and (i41)* rows. The two flags, F.
and M., begin in the most general position possible, corresponding to e;,;;. Figure 1.8 shows the
black checker specialization order for an n = 4 game. The diagram corresponding to each step of
the game shows how F. and M. intersect as dim X, decreases by one for each step. The pictures
are projectivized, so a point represents 1-dimensional space, a line represents a 2-dimensional
space, and the plane represents a 3-dimensional space.

There are specific rules governing the movement of the white checkers at each step (details
of the rules can be found in [22]). oe;n;; is the initial setup of white and black checkers, 0547 is
the final outcome of a checkergame, and ce,,;450r¢ refers to the configuration of white and black
checkers at any intermediate step of the game. In most moves of the checker game, there is a

unique way to move the white checkers such that for the projection
7:Gk,n) x Xg — G(k,n)

we have dim 7(X.e) = dim7(Xo,,,.,). In one type of situation there are two possible placements
of the white checkers so that dim7(Xoe) = dim7(Xo,,...,) (see step 2 of figure 1.10). In this
situation, instead of oe moving to oe,c;¢, the game splits into two, with configurations ogqy®nest

and Ogyap®nezt. Geometrically, as (F\, M.) € X, specializes to a point in X the correspond-

®next?

ing fiber {V € G(k,n)|(V,F.,,M.) € X.,} specializes to a divisor with two components, each

having multiplicity one.

Example 1.4.2. A classic example of a Schubert problem asks: How many lines meet four
fixed projective lines in P37 This is equivalent to asking how many V € G(2,4) meet four fixed
two-planes in one-dimensional subspaces.

For one fixed 2-plane, Fz(l), we want dimensions of intersection described in Table 1.8. This
corresponds to the partition A = 0. To calculate [Qa(F!) N Qg(F2) N Qo(F3) N Qg(FY)] or
0a0nonoo,we begin with ooog. Figure 1.9 gives dim(V N F; N M;) for 1 < 4,7 < 4 and the

corresponding oe;,;; configuration.
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€3 €1
) T -
1 [ !
| } !
. . ) ) !
[l 1 !
) . 1 | !
| | !
[ ] [ 1 x |
* [ ]
€2 €2
| K
| |
L ] ) ] :
. . : 1
| I
. . e =
. .
€3 €3
L ] [ ]
* L
L4 .
L .

Figure 1.8: Specialization Order for n = 4
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01010 (0 |M .
010 |01 |M, e |0
00|01 |Ms .
011112 |M, e o

Figure 1.9: Initial cpog configuration (Example 1.4.2)

For this example, we will again consider the projectivized picture, so V' € G(2,4) will be
drawn as a dashed line. For oe;,;;, we can think of V' as the span of 2 points described by the
two white checkers. One point lies on a general point of F3 N My = F, (not on Fy). The other
point lies on a general point of Fy N My = Mz (not on My). Figure 1.10 walks through the opog
checker game and shows the corresponding geometric interpretation. Note that in the initial
configuration dim(Qa(F ) NQa(M.)) = 2 and dim{V'} remains 2 through the game. Note also the
split into two components at the second step, which results in onon = om + og- Continuing the

calculation of (og)4, we have

0aoudadn = (0m + 0g)0ada
= (0won)oa + (G'BO'D)O'D.

Now, two new checker games must be set up and played. Figure 1.11 gives the dimensions
and oe;,;; configuration for omon and Figure 1.12 gives the same for ogoa. Both games, omog
and opou, yield a oef;,,; configuration corresponding to # , so the last game is the same for both
branches, namely ogpog. The dim(V N F; N M;) and oe,,;; configuration for opog are given in
Figure 1.13.

The outcome of this final game is ogpog = o SO (on)* = QUEE, meaning there are two

solutions to the original Schubert problem.
1.4.3 The geometric Littlewood-Richardson rule

Consider the following commutative diagram:

XO. _ XO. Ae— DX
open closed

| | | (1.9

Snext
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Figure 1.10: ogop = o(z) + 01,1
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hEFF

0101010 M .
00|01 |M e |o
0101011 | M; .

1 {1412 1M, %

Figure 1.11: Initial o(3y00 configuration (Example 1.4.2)

R EFEEF

01]01]0{0|M .
010 {1]1|M %
01011 ]|M; R
011122 |M, e |o

Figure 1.12: Initial o(; 1y0g configuration (Example 1.4.2)

010|010 |M .
1| M, %
1| M; °

2 | My %

Figure 1.13: Initial 0(5 )00 configuration (Example 1.4.2)
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The closure of the upper left corner is taken in G(k, n) X X, while the closure of the upper middle
is taken in G(k,n) % (X,UX,,,,,,)- Define Dx as the fiber product for the right square of diagram
(1.3). The Geometric Littlewood-Richardson rule states that at each stage of a checker game,
the space of all V' that meet (F., M.) in the ce,.,; way is exactly Dx. In other words, the rules
of the checker game were made in the right way, causing no additional nor lost components and

no extra multiplicities. Precisely,

Theorem 1.4.1 (Geometric Littlewood-Richardson Rule).
Dx =X

or Xosf.ay $next U X

Ostay®next’ Cswap®next? Oswap®nert

The proof of the Geometric Littlewood-Richardson Rule first shows that the components of

Dy are exactly those described by each step of the checker game, namely X X

Ostay ®next’ Oswap®next?

or the union of the two. The proof then shows that each of these components has multiplicity 1.
1.4.4 The importance of a geometric rule

Why do we want a geometric interpretation of the Littlewood-Richardson Rule? The initial
question posed is really a geometric question: Given two Schubert conditions and two general
flags, we want to find out about the set of V € G(k,n) that satisfy the given conditions with
respect to the given flags.

Before the work of Vakil, geometers were forced to analyze general Schubert problems al-
gebraically. In particular, two Schubert conditions and two general flags correspond to two
Schur polynomials (already we’ve jumped into algebra). Using a (non-geometric) Littlewood-
Richardson rule, the product of these two Schur polynomials gives a sum of various Schur poly-
nomials. These new Schur polynomials correspond to a sum of Schubert conditions. By the
Kleiman-Bertini theorem, this new sum of Schubert varieties is homologous to the original inter-
section. This amounts to a black box approach to determining the intersection of two Schubert
classes.

On the other hand, Vakil’s geometric rule gives an explicit step-by-step description of how
the intersection and the sum are connected. This is more direct and in general preferable to
a black box explanation. More importantly, this proof opens the door for other applications.
In particular, Schubert induction [23] is a consequence of this geometric proof. Among other

things, Schubert induction shows that when the intersection of a collection of Schubert varieties
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has dimension zero, then for most choices of real flags, all of the expected solutions are real.
Vakil's geometric proof using degeneration methods will likely also lead to numerical solutions of
general Schubert problems. In applications such as control theory, the existence of real solutions
and numerical algorithms are tremendously important, so the geometric Littlewood-Richardson

rule promises to have a significant impact on such fields.
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1.5 Schubert Induction

In this section, we give a brief introduction to Schubert Induction, an important application
of Vakil’s geometric Littlewood-Richardson rule. For a complete proof and discussion, see [23].

Consider Example 1.4.2 of four fixed projective lines in P3. The question of how many
other projective lines intersect the four fixed lines can be answered by the Geometric Littlewood-
Richardson Rule (of course it can be answered other ways as well). Suppose we want both of the
solutions to be real. We might ask: Is there a choice of four real flags such that the intersection
of the corresponding Schubert varieties yields all real solutions? The answer is yes, and Schubert
Induction is used to prove this.

Let P be a property of morphisms that depends only on dense open subsets of the range,
meaning f : X — Z has property P if there is a dense open subset V' C Z such that f|s-1(v)
has the property P. For a given e-configuration and subvariety ¥ C G(k,n) x X,, let 7,y be

the projection

{(V,FY,....,F™) € G(k,n) X FIn)™ 2 x X, |V € Qo (F)for 1 <i<m~—2and (V,F*L,F") e Y}
l"o,Y
Fl(n)™ 2 x X,
Theorem 1.5.1 (Schubert Induction Theorem).
IF

1. Q4 C G(k,n) x Fl(n) is the universal Schubert variety, Qo = {(V, F)|V € Qu(F)}, then
the projection S : Qq — Fl(n) has property P for all partitions o

2. whenever m,,,,,,Dx has P, then m, % has P

3. whenever the checker game splits and both w

and have P

'nemhxostay!next .’ﬂEIi’Xf’swup'newt

then To,..,.Dx has P

THEN

We can have many Schubert conditions and property P will still hold. In other words, property
P holdsV m,ay,...,any for the projection
{(V,F},...,F™) € G(k,n) x Fi(n)™V € Qa, (F¥) for 1 <i < m)
l (1.4)
Fl(n)™.
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(li'final) (Z'fi'nal) (3»'final)

(1,04)
(1,03)
(1, e3) (2,032) (3,02)

‘ (1, ®iniz) (2, 0init) (3, 9init)

i |
i |
| i
| i
| |
| |
[ |
| !

Figure 1.14: Order of induction using Type I and Type II induction steps

The proof is a backwards induction on the steps through the specialization order (type
I induction step) and a forward induction on the number of Schubert conditions, m (type II

induction step). Details can be found in [23].

1. Type L this type of induction step says if we are at ®; 7 ®7;,4; and we know that at e;4

the projection onto FI(n)™ has P, then at e; the projection also has property P.

2. Type II: this induction step says if we are at a e;,;; position and we have m Schubert
conditions, then we can rewrite these conditons as the final step of a game played using

m -+ 1 Schubert conditions.

The order of induction can be pictured as in Figure 1.14. Let (m,e;) be an ordered pair
where m is the number of Schubert conditions and e; is the 4t step in the specialization order,

with e;;;; = 7.
1.5.1 Applications

Schubert Induction can be applied to several questions. Two are summarized here.

Reality
Returning to the question of reality, are Schubert problems enumerative over the reals?

Corollary 1.5.2. There is a dense open subset of Fl(n)™, all real, such that appropriately asked

Schubert questions on these flags will yield all real solutions.

Example 1.5.1. To see how Schubert Induction helps answer this question, we look at the
example in G(2,4) explored earlier (example 1.4.2). The calculations can be summarized by the

tree diagram on the right side of Figure 1.15. Each vertical line represents the movement through
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(4, ®init)
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i
(41 .fz‘na.l) (Uudn)d%
Type II— It
7.init)
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I
! om(oooa) og(onon)
(3v .final) H K
Type I[I— i (omon)on (aBou)a,:,
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Type I 1
|
27 (3
r:[‘}'pe I— ( .I{ nal) ogpon ogpon
(1, ®init)
]
Type I !
i
[}
(lv.final) O'EB o'EH

Figure 1.15: Working from bottom to top, Schubert Induction is used to show this Schubert
problem is enumerative over the reals.

the specialization order, or playing the checker game. The branching at Y is where the checker
game ogog splits into two games.

First we check that S : Q4 (F) — Fl(4) has property P for all partitions c. In the reality
question, we are checking that for all partions a there is a dense open real subset U of F(4) such
that S~1(U) C Qq(F)(R). First note that the only single Schubert Condition that yields a finite
number of solutions is - So we find a dense open subset of FI{4)(R) such that its preimage is
real. opg is Poincaré dual to {V € G(k,n)|V = Fz}. Choose U = FI(4)(R). Condition 1 is met.
Conditions 2 and 3 are also met by the choice of U.

Following Figure 1.15 we can walk through the induction order beginning at both leaves
on the bottom and simultaneously moving up. At Y, each component has property P, so by

condition 3 of the theorem, when combining osy4p and ogqy we will still have property P.
Generic Smoothness

We know that a Schubert problem over an algebraically closed field of characteristic zero

will always give the expected number or dimension of solutions. For an algebraically closed field
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of positive characteristic, p, this is not always the case since there do exist nowhere smooth,

surjective maps between smooth spaces. Consider the following definition:

Definition 5. A morphism f : X — Y is generically smooth if there is a dense open subset

V C Y and a dense open subset U C f~(V) such that f is smooth on U.
If the projection in (1.4) is generically smooth, then we have the following corollary:

Corollary 1.5.3. If a particular dimension of solutions or a certain finite number of solutions
are expected over C, then the same dimension or number of solutions can be expected over any

algebraically closed field. In particular, this holds for fields of characteristic p > 0.

A traditional way to show that Schubert calculus is enumerative over C is to use the Kleiman-
Bertini Theorem. Kleiman-Bertini implies that the projection in (1.4) is generically smooth over
C, which in turn shows that Schubert calculus is enumerative over C. Unfortunately, Kleiman-
Bertini fails in characteristic p > 0, so until [22], there was no way to show that the projection
in (1.4) is generically smooth over a field of characteristic p > 0. Generic smoothness used as
property P in Theorem 1.5.1 satisfles all three hypotheses, so by Schubert Induction, (1.4) is

generically smooth. This implies corollary 1.5.3.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.6 Dissertation goals and realities

The goal of this project is to state and prove a type B, geometric Littlewood-Richardson
rule for the maximal orthogonal Grassmannian along the lines of Vakil’s type A, rule. A strategy
similar to [22] is used here, however the number of cases to be considered is significantly larger.
There are three times as many trivial cases and at least six times as many non-trivial cases.

This dissertation is not a complete proof of a type B, geometric Littlewood-Richardson rule
for the maximal orthogonal Grassmannian (conjecture 3). We present a substantial portion of
the proof of conjecture 3 including a specialization order for the degeneration of one orthogonal
flag into another (section 2.2), preliminary lemmas with careful consideration to the effect of the
bilinear form on the geometry (in particular, lemma 3.3.1), definitions of spaces needed for the
proof of the main conjecture, and proofs for certain cases in the conjecture. We give complete
proofs for the trivial cases, both the s and s; cases (section 4.2). We leave for future work
nontrivial cases where there is a white checker in column ¢ + 1. For nontrivial cases with no
white checker in column ¢+ 1, we give partial results for the case of nontrivial s; moves where

there is no white checker in row dg < n. We give complete proofs in the cases
1. Nontrivial s;-moves where there is a white checker in row dg < n.

2. Nontrivial case for s9 moves.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

STATEMENT OF THE RULE
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Figure 2.1: The dimensions of M; N F; encoded by the black checker configuration on the right
are listed on the left.

Fy

M {0
My 10
M; {0
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M,
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1
2
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Wi |=OO
e
oo
o
L ]

Figure 2.2: e;,;-configuration for n = 2

In this chapter, we state the type B, geometric Littlewood-Richardson rule and describe

some preliminaries needed for the proof.

2.1 Black Checker Diagrams and double Schubert cells

Consider a (2n + 1) x (2n+ 1) checker board with 2n + 1 black checkers, no two in the same
row or column. We make a rank table describing dim(M; N F;) such that dim(M; N F}) is the
number of black checkers weakly northwest of position (7,7). We define

Xe={(M,F) € OFl(2n+1) x OFl(2n+ 1) | M. and F. meet in dimensions

described by the e-configuration}
X, is an example of a double Schubert cell. See figure 2.1.

The dimensions of two two transverse flags are encoded by black checkers in positions (2, 2n+
2—1) for 1 < ¢ < 2n+1. We will call this configuration e, the inital black checker configuration.
See figure 2.2.

The configuration of black checkers in positions (z,4) for 1 < ¢ < 2n+1 describes the diagonal
of OFI(2n+4 1) x OF1(2n+1). Such a configuration will be called ®f;nq1, the final black checker

configuration. The corresponding double Schubert cell is X

®final *
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2.2 Specialization order

Given an isotropic flag F. and an isotropic flag M. that is transverse to F', we give a sequence
of n? rational curves in OFI(2n + 1), each of degree one or two. The sequence of curves moves
the flag M. until it coincides with F.. Traveling along each curve causes a minimal increase in
intersection between M. and F, a codimension one degeneration. A degeneration corresponds to
moving black checkers on the (2n+ 1) x (2n+ 1) checkerboard. The prescribed sequence of black

checker moves is called the specialization order.

Theorem 2.2.1. There is a sequence of n? codimension one degenerations taking an arbitrary
tsotropic flag to a fized isotropic flag. Fach degeneration respects isotropy and corresponds to a

curve of degree one or two in the orthogonal flag variety .

Consider the subset S of the symmetric group on 2n + 1 elements.

S ={50,51,-..,8n-1} C Sont1

where s = (n,n+2) and s; = (n+1+4,n+2+¢)(n+1—-4,n—14) for 1 <i<n-—1. 9 generates

W, the Weyl group for B,,, see equation (1.1). Note that
1. s2=1

2. (sisi41)3=1for1<i<n—2

[IN)

. (8031>4 =1
4. (sisj)2 =1for |i—j| > 2.

So (W, S) is a Coxeter system [5]. The specialization order comes from a walk through the Bruhat
order of W, beginning with a representation of the longest word wy (length n?) and ending with

the identity, 1. Let

wo = (8n—18n-2 .50 Sn—28n-1)(Sn—28n_3...50. .. Sn—3Sn—2)...{8150%1)(s0). (2.1)

If s; € S is the rightmost letter of a word w, apply the permutation s; to w, giving w’ = ws;. By
the properties of the Coxeter system (W, .S), we have s? =1 so w’ has length 1 less than w. The
representation of wy in equation (2.1) (reading right to left) gives the specialization order for the

deformation of M. into F..
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An so move swaps the black checkers in rows n and n 4+ 2. An s;,% # 0, move swaps the
black checkers in rows n+ 1 + 1 and n + 2 + ¢ and simultaneously swaps the checkers in rows
n+1—1iand n—4. An s; move swaps four checkers while an sy move swaps only two. See figure
2.3. The movement of checkers occurs with some symmetry about position (n+1,n+1). In this
choice of path, the radius of movement of checkers about position (n+ 1,7+ 1) increases as the

specialization order progresses.

Example 2.2.1. For n = 3, wp = $28150515251505180. The intermediate checker configurations
correspond to partial factorizations of wy. Figure 2.3 shows the nine moves of the black checkers
and the corresponding partial factorizations and permutations. The Weyl group for n = 3 can be
realized as a polytope. Consider the polytope obtained by shaving off the corners and edges of a
cube. The faces of the cube become octagons, the edges become squares, and the vertices become
hexagons. Such a polytope is called a permutahedron of type Bs [5]. See figure 2.4. The vertices
correspond to elements of the Weyl group. The edges between squares and octagons correspond
to sp moves. The edges between hexagons and octagons correspond to s; moves. And the edges
between squares and hexagons correspond to s; moves. If we place the longest word at the north
pole of the permutahedron, then the identity, 1, is the south pole. The specialization order is a
prescribed path along the edges (with the first step along the edge between the square and the

octagon) to move from the north pole to the south pole.

We now describe the degeneration at each step by describing an explicit rational curve that
the M. flag follows to move one step closer to becoming the F. flag. Given any F. and M. in
e-position, we can choose a basis such that F. is the standard flag and M. is given by the o .
configuration. Specifically, Fj = (e1,...,¢;) and M; = (ej,,...,e;,) where j is the column of
the black checker in row k.

For a fixed F., we describe & curve in X, UX, as the set of points (F., MP) for p = [s,1] €

®next

P! with the properties:
1. Mo =
2. (F,MP) e X, for p+#[1,0]
3. (F, MM ex

®next

The degeneration for an s; move is linear while the degeneration for an 5o move is quadratic.
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Figure 2.3: Specialization order for Bs. Each step is labeled with the corresponding element of
the Weyl group, a permutation of {3,2,1,0,1,2,3}, and a permutation of {1,2,3,4,5,6,7}
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Figure 2.4: Permutahedron of type Bs from [5]

2.2.1 Rational curve for an s; move

In an s; move, ¢ # 0, black checkers in rows n+ 1 — i and n — ¢ swap and black checkers
in rows n+ 1+ 1¢ and n + 2 + ¢ swap. While there are four checkers moving, only two spaces,

M,,_; and Mnl_i = M, 1145 are actually moving in the degeneration. Since ML . is determined

n—1

by Mp_;, we can describe the curve by showing what happens to the flag

MP=(My G- GME G Magas G G M)

=

For all p € P!, we need M?_, C M,41_;. Define M? as
ME = Mg = (ej,,...,ej,)
fori<k<n-i—landforn+1—-i<k<nand
MP_ = Mp_i_1+ (sej,,,_. +tej._,)
Note that for any choice p € P!, M?_, is isotropic and MF_, C My41—;.

Example 2.2.2. We illustrate this linear curve with the s; move (n = 3) shown in figure 2.5.
For this configuration, we choose a basis for F. and M. so that F. is the standard flag with
Fy = (e1,...,e;) and

M; = {er)

M; = (er, e6)

M3 = <e7v €6, 63)
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ru.
-le

Figure 2.5: Black checker configuration for an s; move

Let M? = (er, ses + teg). When p = [0,1], then M¥ = M, and M" = M.. Consider a matrix

whose first ¢ rows span M7 (as long as s # t).

0000 0 01
00s 00 ¢t O
00¢t0 0 s 0
0001 0 00
0 s 00 ~t 00
0¢00 s 00
(1000 0 0 0]

In row 5, we use —t instead of ¢ so that M¥ = (M})*. If p = [0, 1], then we have nonzero entries

in e-positions and zeroes otherwise. If p = [1,0], then M% = (e7,es) and (F,MP) € X To

®next*

make a path to p = [1,0], we begin by moving away from the point {0, 1] and so without loss of

generality, let s = 1. For our example, this gives the matrix

0000 0 01
0010 0 ¢t 0
00t o0 0 10
0001 0 00
0100 —t 00
0t 00 1 00
(1000 0 00|

The first ¢ rows should span M?, so again without loss of generality, we can change row 3 and

row 6 giving the matrix

(0000 0 0 1]
0010 0 ¢t 0
0000 0 10
0001 0 00
0100 ~t 00
0000 1 00
(1000 0 0 0|

Then for any choice of ¢ (even ¢t = 1

—

the rows span as expected. The span of the rows of this

matrix describe a linear path from a general point in X, U X to a general point in X

®next ®next’
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Figure 2.6: Black checker configuration for an sy move

2.2.2 Rational curve for an sg move

For an sp move, black checkers in rows n and n + 2 swap positions. Here, two checkers are
moving and two spaces, ME and M, = (MP)+ are moving in the degeneration. Since ME, s
determined by MP, we describe the curve by considering M? = (M; C -+ C M,—1 C MP). We

need M? isotropic and MP C My a. Define M? by
ME = (ej,,...,€5)
forl<k<n-1and
ME = M,_1 + (25%;,,, + 2tse,i1 — t2e;,)

Note that j,+1 = n+ 1 since the center checker is in position (n+ 1,7+ 1).
For any choice p = [s,t] € P!, MP is isotropic and quadratic terms are needed to satisfy

isotropy.

Example 2.2.3. We illustrate this quadratic curve with the e-configuration shown in figure 2.6

whose next move is of type sg (n = 3). From this e-configuration, we choose a basis for F. and
M.. F. is the standard flag and

M = (er)

Mz = (e7, e3)

M3 = (er, e3, €5)

My = (er, €3, €5, €4) = Mg

Ms = (er, €3, €6, €4, €2) = Mj

Let MP = (My ¢ My C ME) with My, Ms, Mg and M7 determined as perps.

M3 = (er, e3,25%e3 + 2tses — t2eq)
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When p = [0, 1],
M5 = (e7,e3,—eg) = (er,€e3,e6) = M3
which gives MP = M..

Consider a matrix whose first ¢ rows span M? (as long as s # t).

0 0 o 0 0 0 1
0 0 1 0 0 0 O
0 252 0O 2ts 0 -t2 o
0 2s 0 (#*-s*) 0 ts O
0 —t2 0 2ts 0 252 0
0 0 O 0 1 0 0
1 0 0 0 0 0 0|

If p = {0,1] then we have nonzero entries in e-positions and zeros otherwise. If p = [1,0], then

MY = (e7,es,e3) which puts (F,M?) € X To make a path to p = [1,0], we begin by

®next '

moving away from the point [0,1] and so without loss of generality, let s = 1. For our example,

this gives the matrix

0 0 0 0 0 0 1

0 0 1 0 0 0 O

0 2 0 2t 0 -2 0

0 2t 0 (-1 0 t O

0 -t 0 2t 0 2 0

0 0 O 0 1 0 0
|1 0 0 0 0 0 0]

And since the first ¢ rows should span M?, we can change row 5 to give a new matrix

[0 0 0 0 0 0 1]

0 0 1 0 0 0 O

0 2 0 2t 0 —t2 0

0 26 0 (#2-1) 0 t 0

0 0 0O 0 0 1 o0

0 0 0 0 1 0 0
11 0 0 0 0 0 0]

and then for any choice of ¢ (even t = /—2) the rows span as expected. The span of the rows of

this matrix describe a degree two path from a general point in X, U X,

X

to a general point in

®next

®next”
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Figure 2.7: The black checkers encode the dimensions of M; N F; listed on the left and the white
checkers encode the dimensions of V' N M; N Fj listed on the right.

2.3 White checkers and two flag Schubert varieties

In addition to the black checkers, we place n white checkers on the board. These white
checkers encode the dimensions dim(VNM;NF;) for F. and M. in e-position and V' € OGr(n, 2n+
1). The number of white checkers weakly northwest of position (¢, j) is dim(V N M; N F}). Note
that the southernmost row then encodes dim(V N Fj) and the easternmost column encodes

dim(V N M;). See figure 2.7 for an example.

Definition 6. A white checker configuration o is happy with respect to e if each white checker
has one black checker weakly north of it in the same column and one black checker weakly west
of it in the same row (this is Vakil’s definition of happy). When there is no confusion over which

e-configuration is meant, then we just say happy.

Definition 7. A white checker configuration o is pairwise happy if it is happy and if there is a
white checker in position (r;,¢;) and a white checker in position (rj,c;), then r; +7; # 2n + 2

and ¢; +c¢; #2n+2forany 1 <4,5 <n (even i = j).

Definition 8. A white checker configuration o is isotropically happy if it is pairwise happy and
there exists some V' € OGr(n,2n + 1) that meets the flags in exactly the way described by the
oe configuration. In other words, there cannot be a more specialized white checker configuration

that describes the full set of isotropic V’s that meet the flags in the way described by the original

configuration.
2.3.1 Initial configurations

For an intersection of two Schubert varieties (with respect to transverse isotropic flags, i.e.
flags in the e,,;~position), we give a construction to ‘pla/ce white checkers on the initial black

checker board. We will call this white checker configuration o;,;.
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oY

Figure 2.8: For n = 3, 7(1)7(3,1) corresponds to this initial position.

Theorem 2.3.1. There is a one-to-one correspondence between initial white checker configura-

tions of type oinit and non-empty type By, two-flag Schubert varieties.

For a Schubert question posed as Q5 (F.) N, (M.), we describe how to set up the initial
white checker configuration. Labeling columns and rows with #,n - 1,...,1,0,1,2,...,n—1,n
(recall this notation introduced at the end of section 1.2.2), the jumping numbers for A C p, are
J1 < ja < -+ < Jn. Let £(X) be the number of rows in the partition A and Ax be the number of
boxes in row k. Then AV C p, is the strict partition whose parts complement the parts of A in

the set {1,2,...,n}. For 1 <k < {£()\), we have
gk =Mk
and for 1 < k < £(A\V), we have

je(A)+k = )‘X(AV)+1—IC

The jumping numbers for u C p, are 43 < i3 < --- < ¢, and are described similarly.

Definition 9. On a e;,;;-configuration, define o;,;; as the initial white checker configuration
for Q5 (F) NQ,(M.). oins is constructed by placing white checkers in positions (i, jn4+1—&) for

1<k<n.
See figure 2.8 for an example o;,;:-configuration. We make some observations about o;,;.

Lemma 2.3.1. The white checker configuration o, has no white checker in the center column

and no white checker in the center row. Equivalently, 0 & {j1,2,...,Jn} and O & {i1,%2,...,%n}.

Proof. This is clear by construction of the jumping numbers from A and p. We can also see
this by constructing the matrix representation for V. Suppose 0 € {j1,...,jn}. Then the matrix

representation of V has a row vy of the form
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[**...*10...0]

where the 1 is in the middle column. This requires that 0 = B(v,,ve) = 1, a contradiction, in

order for V to be isotropic. A similar argument works for {41,%2,...,in}. O
Lemma 2.3.2. The set {k,k} ¢ {j1,....,3n} and {k,k} ¢ {i1,....,5n} for any 0 < k < n.

Proof. This is again clear by construction of the jumping numbers from A and y. We can also
see this by constructing the matrix representation for V. Suppose {k, k} C {j1,%2,...,Jn}. Then

V is represented by an n x (2n + 1) matrix of the form

with 1’s in columns k and k. But then V is not isotropic because the rows v, and vg (listed in

the matrix for V) give B(vq,v5) = 1. A similar argument works for {i1,%2,...,in}. ]

Lemma 2.3.3. If u is not contained in AV then the initial white checker configuration ot is

not happy and Q5 (F)NQ, (M) =0.

Proof. (See also [3] defining f(X, ;v).) In the e;,;; configuration, the 2n+1 black checkers are in
positions (k, k) for 0 < k < n. As a consequence, if a 0;,;; configuration is happy, then r +¢ > 0

for a white checker in position (r,c). If 4 ¢ AY then either
1. £(w) > &AV) or
2. £(p) < £(AV) and there is some k, 1 < k < £(u) such that pg > AY.

Case 1: 2(u) > £(\Y)

In this case there is a white checker in position (i), Jn+1-¢(u)) Where

te(u) = Fre(p) <0
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and
Int1—e(n) < Jnt1-£(v)

= Jn+1-(n-£(\)

= Je(\)+1
Now, m = £(A) + 1 is the minimal m such that jn, > 0, s0 jn41-g(u) must be negative. This
implies 4g(u) + Jnt1-¢(x) < 0 and thus this white checker position is not happy.
Case 2: £(u) < £(AV) and there is some k, 1 < k < £(u) such that px > AY.
Note that for 1 < m < £(u), the white checker positions are (fzy,, A, ). Consider the white checker
in position (fzg, AY). Checking the necessary happiness condition, fig + A} < 0 since px > AY. So

this white checker position is not happy. 0

Lemma 2.3.4. On a e;,;; checkerboard, the o;n;: configuration is the least specialized o-configuration

that still describes the required intersections for Q,(F.) N Q,(M.).

Proof. Suppose o # o,y,;; is an isotropically happy white checker configuration on a e;,;; checker-

board such that for (F.,M.) € X

oini there exists V € Qy(F.) NQ,(M.). Let the positions of the
n white checkers in the o-configuration be described by pairs (i), jx) for1 <k <nand o € Sy.
Let k be the smallest number of {2, ...,n} such that (k) > o(k — 1) (i.e. o) > to(k—1))-

In order to satisfy the jumps in dimension for V' N F; and V N M;, any good initial white
checker configuration o must have one white checker in each of rows iy,...,4, and in each of

columns ji,...,Jn. The claim to be proved is: o;,;; is the least specialized of these possible

configurations. We first look at the case where k = 2.

oy Ta(1) o9 ey

o | taz ol Lo(2)

Ji P 7 Ja
Figure 2.9: k =2

If we swap checkers o1 and oz, we have a less specialized configuration because in figure

2.9 on the left side, dim(V N Fy, N M;, ) = 2 and dim(V N Fy, N M;_ ) = 1. In figure 2.9 on

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L] Ta(k-1)

° k-2

ol 1w

° Totk-3)

Jr-3 Jk=2 Jret Ik

Figure 2.10: k> 2

the right side, dim(V N Fj, N M;_ ) = 2 and dim(V 0 Fj; N M;,,,) = 0 while still preserving

o (1)
dimension jumps at ji1, j2, to(1), and i5(2).

For the case k > 2, we have figure 2.10. Notice for o < k that dim(VNF;, N M;_,) =1 but
for k, dim(V N F;, N Mia(a)) > 2. Thus we can swap the checkers in columns j, and jx—1. This
decreases the dimension of intersection, but does not change the dimension jumps. If i,(x_1) >
io(k—2) NOW, then swap these two checkers. Continue until all white checkers are creating a
positive slope (i.e. rows decrease west to east). This is the least specialized configuration, and

still preserves dimension jumps. Now the checkers are in positions (in+1-&, jk)- O

Lemma 2.3.5. If Q\(F)NQu(M.) # 0 then the corresponding o configuration is isotropically

happy.

Proof. Suppose o, does not yield a happy checker configuration. Then there must be a white
checker in position (in41-k,Jk) such that in41-f + jx < 0. Since ojp;: is the least specialized
position for V, there is no way to decrease dim(V N F;, N M;,,,_,.). Because a white checker

is located at (in+1—k. Jx), we have dim(V N F;, N M; ) > 1. But according to the e;,;

n+l—k
configuration, we have dim(Fj, N M;_,,_,) =0, a contradiction. So Qx(M.) N Q,(F.) = 0.
By construction of oy, if 04, is happy, then it is pairwise happy.

It remains to be shown that o;,;; is isotropically happy. O
2.3.2 Midsort

Definition 10. A checker diagram is described as midsort if the black and white checkers are
positioned in such a way that the black checkers are in one of the specialization order configura-
tions and the white checkers are in positions that follow from prescribed moves beginning with

a o;p;¢-configuration.
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We observe the following characteristic of midsort configurations:
Labeling columns (and rows) with 1,2,...,2n+1, let (c+1) be the column of the westernmost
rising black checker. Denote

z=2n+1-uz. (2.2)

Then ¢ = 2n + 1 — c is the column of the easternmost descending black checker.

White checkers in columns 1 < col < c tend in the same direction as the black checkers. And
for white checkers in columns ¢ < col < 2n + 1, a similar trend occurs. We state the following as
conjectures. These and other characteristics of midsort will be proven by induction when analysis

of all cases is complete.

Conjecture 1. In a midsort checker diagram, white checkers in columns 1 < col < ¢ and

columns ¢ < col < 2n + 1 decrease in rows from west to east.

Conjecture 2. In a midsort checker diagram, white checkers in columns ¢ < col < ¢ increase

in rows from west to east.
2.3.3 Reading the final answer

A final oe-configuration has black checkers in positions (k, k) for @ < k < n. The n white
checkers are in positions along the same diagonal. We determine v for ,(F.) by recording the
positions of the white checkers in columns (or equivalently rows) 7@ < col < 0. Call these positions

ay <ap < <oy <0. Then v = (a7,az,. .., G0))-
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2.4 Statement of Rule

2.4.1 Geometric Statement

Conjecture 3. Let 7\ and 7, be Schubert classes for the orthogonal Grassmannian OGr(n,2n+
1), with AT, = Zaxuﬂ,. Then the coefficient ay, is equal to the number of isotropic checker

games with input A, p and output v.

2.4.2 Combinatorial Statement

Definition 11. Let dg be the row of the easternmost descending black checker and let dw
be the row of the western descending black checker. For s; moves, either 1 < dg < n or
n+2<dg < 2n+ 1. Row dw has the property that dw = 2n + 1 — dg. For so moves, dg = n

and there is no row dy .

Definition 12. Define c as the rightmost column with a black checker in position (2n+2—c¢,c) =
(¢, c). In other words, c is the column of the rightmost (¢ < n) black checker on the antidiagonal.

Then ¢ > n + 2 (recall (2.2)) is the column of the rightmost descending black checker.

The rules for moving white checkers are as follows:
For an sg move, there is either a white checker in row n or in row n + 2, but not both. If
there is not a white checker in row n, then we call this the trivial case and the white checkers
stay. If there is a white checker in row n, the row of the descending black checker, then we
consider columns n+ 2 through ¢+ 1. See Figure 2.11. If there is a white checker in one of these
columns, we choose the top most white checker. The location of this white checker and the white
checker in row n determine if these checkers stay, swap, or stay and swap (in a split). In the
split possibility, the pair of checkers can stay, or if there are no white checkers in the rectangle
between them, they can swap. A white checker in the rectangle is called a blocker. See Figure
2.12 for an example. Table 2.1 summarizes the sp white checker moves (when there is no white
checker in column ¢ + 1).

In any s; move, if there is no white checker in row dg and no white checker in row dy, then
we call this a trivial move and the white checkers stay.

In an s; move with a white checker in row dg < n, we consider columns dg + 1 through

¢+ 1. See Figure 2.13. If there is a white checker in one of these columns, we choose the top most
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9 - TIOW Nl

Tc?)lg

'colc+1
coln+2

Figure 2.11: If there is a white checker in row n in an so move, then look for the northermost
white checker in the highlighted region (n +2 < col < ¢+ 1).

;1@--19| =——rTOoW n

O blocker

[ ] (e]

t colc+11 col ¢
col ¢ cole+1

Figure 2.12: Example of a blocker in an sg move.

Is there a white checker in row n?
Yes, in col = ¢ Yes, in col > ¢ No
Top WC in column | Yes swap swap if no blocker or stay | stay
n+2<col<c+17 | No stay stay stay

Table 2.1: White checker moves for the sy case when there is no white checker in column c+1
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[ ]
- TOW dE
-— row dw

[ ]
[ ]
1 Tcolg
cole+1
coldg + 1
cole+1

Figure 2.13: If there is a white checker in row dg < 7 in an s; move, then look for the northermost
white checker in the highlighted region (dg +1 < col < ¢ +1).

®
M-t -1@e| =—row dg
o ! : blocker
‘O____ [ N O
®
.
[} L o -— row dw
) 1
® O

I colc+1Tcolc

col ¢ cole+1

Figure 2.14: Example of a blocker in an s; move.

white checker. The location of this white checker and the white checker in row dg determine if
the move is a stay, a swap, or a split (separate stay and a swap branches). In the split case, the
pair of white checkers can stay, or if there is not a blocker, the two white checkers can swap. See
Figure 2.14 for an example of a blocker. Table 2.2 summarizes the s; white checker moves for a

white checker in row dg < n (when there is no white checker in column ¢+ 1).
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Where is the white checker in row dg < n?

Incol=¢ Incol >¢
Top WC in column | Yes in rising checker square swap swap
dg+1<col <c+17 Yes, elsewhere swap swap if no blocker or stay
No stay stay

Table 2.2: White checker moves for the s; case with a white checker in row dg < n and when
there is no white checker in column ¢+ 1
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2.5 Cleanups

After a particular move is completed, the white checkers may be unhappy (or isotropically

unhappy) with respect to the new e configuration.
2.5.1 Regular cleanups

A white checker is not be happy if there is no longer a black checker either weakly north or
weakly west of the white checker.

After an s; move, at most two white checkers may be unhappy. After an sg move, at most
one white checker may be unhappy. In the clean-up phase, if a white checker is not happy,
then move it either up or left until it becomes happy. This is always possible, in a unique way.
Cleanups across the midline involve one checker. Cleanups not crossing the midline involve two
checkers.

Recall that a white checker is not pairwise happy if it is in row n + 1 or column n + 1.
Therefore, a white checker in row n 4+ 2 that moves up to become pairwise happy must move to
row n (not row n + 1). Similarly, cleanups moving left across column n + 1 will never stop in
column n + 1.

A white checker moving from row 7 # n+2 to row r—k in a cleanup wil have a corresponding
white checker in row 2n + 2 — (r — k) that moves to row 2n + 2 — r. This paired move always
occurs in the maximal case because there is no white checker in row r — k& implying that there
is a white checker in row 2n + 2 — (r — k). To preserve pairwise happiness, we must make this a
paired move. Similarly, we also have paired moves when cleaning up white checkers by shifting
left.

Examples of cleanups occur in the A, case [22]. In the B, case, we see examples of paired

and unpaired cleanups even in very small examples.

Example 2.5.1. With n = 2, consider the first two moves shown in Figure 2.15 in the game
A= (2,1) and 4 = 8. The first move is a trivial sp move (see Section 2.4.2 for combinatorial
rules on moving white checkers). The cleanup raises one white checker across row n + 1. The

second move is a trivial sy move. The cleanup move shifts two white checkers up one row each.
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C’J [ ] ° _—u ; _—-‘O ®
*d i P?o : ro hd

Figure 2.15: The first two moves in an n = 2 game with A = (2,1) and u = §. Both sg and s;
moves are stay moves that require cleanups.

2.5.2 isotropic cleanups

Given a white checker configuration, we want to determine if the configuration is isotropically
happy and if not, determine the least specialized o-configuration that is isotropically happy. It
is an open question to find combinatorial rules to determine if a o-configuration is isotropicially
happy.

On the other hand, any particular oe-configuration can be determined to be isotropically
happy or not by asking about ideal membership in an ideal generated by quadrics. This can, in

theory, be solved algorithmically by Grobner basis methods.
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Chapter 3

PRELIMINARY LEMMAS
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3.1 Orthogonal Bott-Samelson varieties

3.1.1 Bott-Samelson varieties

In the proof of a Geometric Littlewood-Richardson Rule, Vakil adds a third row to (1.3)
which considers a Bott-Samelson variety instead of the Grassmann variety. We recall for the
reader (nearly verbatim) the definition of the Boti-Samelson variety BS(Q) given in [22].

Associate a variety to the following data, (@, dim, n).

1. @ is a finite subset of the plane, with the partial order < given by domination (a < b if a
is weakly northwest of b). We require @ to have a maximum element max and a minimum
element min. (We visualize the plane so that moving south corresponds to increasing the
first coordinate and moving east corresponds to increasing the second coordinate, in keeping

with the labeling convention for tables.)
2. dim: @ — {0,1,2,...,n} is an order preserving map, denoted dimension.

3. If [a, b] is a covering relation in @ (i.e. minimal interval: a < b, and there is no ¢ € @ such

that a < ¢ < b), then we require that dima = dimb - 1.

4. If straight edges are drawn corresponding to the covering relations, then we require the
interior of the graph to be a union of guadrilaterals, with four elements of () as vertices,

and four edges of @ as boundary.

We call this data a quilt, and abuse notation by denoting it by @ and leaving dim implicit.
Note that the poset ) must be a lattice, i.e. any two elements x,y have a unique minimal
element dominating both (denoted sup(x,y)), and a unique maximal element dominated by
both (denoted inf(x,y)). An element of Q at (¢,7) is said to be on the southwest border (resp.
northeast border) if there are no other elements (¢, j’) of @ such that ¢’ > ¢ and j/ < j (resp.
i! < i and j' > j). Thus every element on the boundary of @ is on the southwest border or the

northeast border. The maximum and minimum elements are on both.

Definition 13. Let K be an algebraically closed field with char K 3 2. Define the Bott-Samelson
variety BS(Q) associated to a quilt @ to be the variety parameterizing a (dim a)-plane V, in K™

for each a € @, with V, C V, fora < b,
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BS(Q) is a smooth [22], closed subvariety of [[ .o Gr(dima,n). Elements m of @ will be
written in bold font while corresponding vector spaces will be denoted V.

Any set § of quadrilaterals of a quilt determines a stratum of the Bott-Samelson variety.
The closed stratum corresponds to requiring the spaces of the northeast and southwest vertices
of each quadrilateral in S to be the same. The open stratum corresponds to also requiring the
spaces of the northeast and southwest vertices of each quadrilateral not in S to be distinct.
Denote the open stratum by BS(Q)s, so the dense open stratum is BS(Q)p. The open strata
give a stratification, the closed strata are smooth, and codimgg(g) BS(Q)s = |S|. We depict

«__»

a stratum by placing an in the quadrilaterals of S, indicating the pairs of spaces that are

required to be equal.
3.1.2 Orthogonal Bott-Samelson varieties

Consider a quilt (@, dim, 2n + 1) with dim max < n. The orthogonal Bott-Samelson variety

OBS(Q) is a subvariety of the corresponding Bott-Samelson variety BS(Q) defined as
OBS(Q) = {V. € BS(Q) | Vnaz is isotropic }

Lemma 3.1.1. OBS(Q) is a smooth, closed subvariety of BS(Q,), hence of H Gr(dimm, 2n+
meg
1)

Proof. We have a smooth projection
BS(Q) — G(dim(max),2n + 1)
And we have a smooth, closed subvariety
OGr(dim(max), 2n + 1) — G(dim(max),2n + 1)

And OBS(Q) is the pullback:
OBS(Q) BS(Q)

l l

OGr(dim(max), 2n + 1) &osed G(dim(max),2n + 1)

This implies that OBS(Q) is smooth, OBS(Q) is a closed subvariety of BS(Q), and OBS(Q)
inherits a stratification from BS(Q)}. a
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Example 3.1.1 (Quilts generated by a set of white checkers.). Given a white checker configu-
ration, define the associated quilt @, by including the squares of the checker board where there
is a white checker weakly north and a white checker weakly west of the square. Include a “zero
element” 0 northwest of the white checkers. For s € @, let dims be the number of white checkers
s dominates, so dim 0 = 0, and dim s is the edge-distance from s to 0. If we allow V4, to vary
in G(dim max, 2n + 1) then we have BS(Q.), and if we additionally require the maximal space

to be isotropic, then we have OBS(Q,). See (among others) figures 4.3 and 4.4.
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3.2 General results about vector spaces

Here we collect some general technical lemmas regarding vector spaces. These results will

be referenced in the proof of conjecture 3.
3.2.1 Results for any vector spaces

Lemma 3.2.1. Let Mg, Mp,Vs, and Vg be vector spaces such that Mg C Mg, and Vg C Vp.
And let ¢ = dim(Vg N Mg) — dim(Vs N Mg) and & = dim(Vs N M) — dim(Vs N Mp). Then
¢ >,

Proof. Since Mg C Mp, we have
dim(Vs N Mg) —dim(Ve N Mg)=a >0

and

dlm(VB n MB) - dim(VB N Ms) =0>0

Since Vg C Vg, the increase in dimension from Vg N Mg to Vg N Mp must be at least . So

8 > a. Now,
¢ — ¢ =dim(Vg N M) ~ dim(Vs N Mp) — (dim(Vs N Ms) — dim(Vs N Ms))
=08 -«
>0

Lemma 3.2.2. Let V and W be vector spaces (not necessarily isotropic). Then
(a) (V+W)t=vinwt
(b)) Vaw)t=viq4wt

Proof of part (a). If a € (V + W)L then B(a,b) =0forallbe V+W. Since V.C V+ W, we
know B(a,v)=0forall v € V, s0 a € V*. Similarly, a € Wt. Sov e Vinw-.
Conversely, if a € V- N W+ then B(a,v) =0 for all v € V and B(a,w) = 0 for all w € W.

Now, every element b € V + W can be written as b = v+ w for some v € V and w € W. Then
B(a,b) = B(a,v+ w) = B(a,v) + B(a,w) =0

Soa € (V+ W)t ]

a7
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Proof of part (b).
(VE+WHt = (VH N (W) by part (a)
=Vnw
So (VE+WhH) =(Vnw)t 0
Lemma 3.2.3. Let V and W be vector spaces (not necessarily isotropic). Then

VoW < Wtcvt

Proof. Suppose V. C W and let x € W+, Then B(z,w) =0 forallw € W. And V C W so
B(z,v)=0forallve V. Thusz € V.

Now suppose W+ C V+. Let € V. Then B(z,y) = 0 for all y € WL. This implies
zeW. O

3.2.2 Results for isotropic vector spaces
Lemma 3.2.4. IfV and M are mazimal isotropic spaces, then VL N M+ is not isotropic.

Proof. Let V and M be maximal isotropic subspaces (dim V = dim M = n). Suppose V4 N M+
is isotropic. Then V+ N M+ C V because otherwise the space V + (V+ N M*) # V is isotropic
and would be larger than V. This contradicts maximality of V. Similary, (V+ N ML) c M. So
(VinM*t) c (VN M). But an isotropic space is contained in its perp, so V C V+ and M ¢ M+
so (VN M) c (VEnML). Thus we have (VN M) = (VN ML) = (V + M)+
dim((V + M)*) = 2n 4+ 1 — dim(V + M)

=2n+1—-dimV — dim M + dim(V N M)

=2n+1-n-n+dm(VNM)

=1+dim(V N M)
So we have a contradiction and VN M # (V + M)>. In particular, there is a vector e that is

orthogonal to V and to M but not orthogonal to itself. So e € V4 N M~ which makes VLN M-+

not isotropic. O
Corollary 3.2.1. If A and B are isotropic spaces, then AL N BL is not isotropic.

Proof. Choose maximal isotropic spaces V and M such that A C V and B € M. Then A+ nB+

contains V- N ML which is not isotropic by Lemma 3.2.4. O
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Lemma 3.2.5. For A and B isotropic spaces, we have
A+ B is isotropic <= AC B+ <= Bc At

Proof. If A+ B is isotropic, then every vector in B is orthogonal to every vector in A, so B C At
and vice versa, A C B+. If A ¢ B+ and A is isotropic, then every vector in A is orthogonal to
every linear combination of vectors from A and B. And B isotropic with A C B implies that
every vector in B is orthogonal to every linear combination of vectors from A and B. So A+ B

is isotropic. &
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Figure3.1: k=n=4and0<a1=1<a=2<a3=4<a4=7<00
3.3 Codimension bounds for Schubert conditions given by containment

In the main proof, we will need to consider Schubert conditions given by containment.
Suppose we are given 1 < a; < az < -+ < ap < 2n+ 1 (with the convention that ap = 0 and
ant+1 = 00). In addition, a; + a; # 2n + 2 for all 4, j and a; # n+ 1 for all i. We are also given
integers j and R such that a; < R < a;41.

We have a closed subvariety
T' C OFI(2n+ 1) x OFl(2n + 1)
which is defined by
T’ = {((Vi)ign, M) | Vi C My, }

T’ can be constructed as a tower of quadrics over OF[(2n+1) by inductively choosing M1, Ma, ..., My

such that for1 <k <n
1. Mg_1 C My C M-, (with dim(My) = k)
2. My is isotropic

3. Vi(k) C My C V{(LE)

where 1(a) is defined as in (4.2) and k = 2n + 1 — k (equation (2.2)). Then complete the flag M.
by defining M; = M;* for 0 <i < n.

Consider a (2n + 1) x k checker board. Stratify OFI(1,...,k,2n+ 1) x OFIl(2n+ 1) by the
numerical data dim(V;, N M,,) for 1 < i3 < k. The strata correspond to checkerboards with
k columns and 2n + 1 rows (think of removing the 2n + 1 — k& columns without white checkers

and renaming the remaining columns 1 through k), with k checkers, no two in the same row or
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column, no two in rows that sum to 2n + 2, and none in row n + 1, such that dim(V;, N M;,) is
the number of checkers weakly northwest of (i1,%2). See figure 3.1 for an example. The condition
that a; < R < aj4+1 means R is a row between the j** and (j + 1)** checkers, possibly the same
row as the j*" checker.

We can build the stratum as an open subset of a tower of quadric and projective bundles over
OF1{2n + 1): quadric if the space that V;, sits in (i.e. Mj,) is a perp space (i3 > n), projective
if M;, is isotropic (i1 < n).

The dimension of the stratum is

dim(OF!(2n+1)) + Z (31 — #{checkers weakly northwest of ¢} —¢;,,)  (3.1)

checker ¢ at {i;,i2)

{1 if iy >n
€, =

where

0 ifin<n

T corresponds to configurations where there are at least ¢ checkers in the first a; rows, and
the dense open stratum of 7" corresponds to the configuration {(a;,i)|1 < i < n}. Note that this
configuration is as much on the diagonal as possible. If the white checkers are less specialized,
for example white checkers in (1,2) and (2,1) then there is no white checker in position (1,1)
which implies dim{V; N M;) = 0. But V; is supposed to be contained in M;. In particular, there
are j checkers in the first R rows.

Let B be a variety, B — OFl(2n + 1) a morphism, and 7" the pullback of 77 to B. Then

we have the following lemma:

Lemma 3.8.1. For any § < k, if P is an irreducible subvariety of T" where dim(Vz N Mg) =

j + £a, then codimp (P) > €5. Furthermore, if equality holds then one of the following is true:
1. 6, =0
2. 86=1,R>n+2,a; <R, a;11 = R+1, and Vj41 C Mg for all points of P
3 6=1,R<n,a; <R, a;;:1=R+1, and V41 C Mg for all points of P
4. €2=1, R=mn,a; <R, aj41 =n+2, and Vj11 C Mg for all points of P

5 €a=1,R=n+1,a; <R, aj41 =n+2, and V;11 C Mg for all points of P
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The proof of lemma 3.3.1 requires some preliminary lemmas connecting movement of checkers
with codimension 1 Schubert conditions. In the type A, setting, moving one white checker from
row ¢ + 1 to row i is a codimension 1 condition on A = {M. € Fl(n) | V; C M,, 1<i <k}
This can be seen by locking at the forgetful map A — A’ which forgets M;. The dimension of
the fiber over a general point in A’ is 1 because choosing M; is equivalent to choosing a line
in M;+1/M;_1. There is no condition from V. because there is no white checker in row ¢ which
implies Vin(a,) = V(i) C M;—1. When we move the white checker from row i+ 1 to row i, we
require that Vip(ar,,,) € M;. Choosing M; such that M;_; C M; C M4y and Vipar,,) C M is
equivalent to choosing the line (Mi_; + Viy(as,,0))/Miz1 C (Miy1/M;_1). This is a codimension
one condition on the one dimensional space.

In the B, setting, we sometimes move two checkers or move one checker two rows. These
moves correspond to codimension one conditions, however, the result is not immediate. We show
here that such moves are indeed associated to codimension one conditions.

We define a variety Q = Qq, .. 0, (V1,..., Vi). Suppose we are given V, a (2n+1)-dimensional
vector space with a non-degenerate, symmetric bilinear form on it, an integer k with 1 <k < n,

and a sequence of increasing integers 0 = ap < a1 < -+ < ax < 2n+ 1 with
a;+a;#F2n+2forany 1 <4, <k (3.2

Finally, we are given an integer j with 1 < j < k such that a; — a;_1 > 2. If there is an ¢ such
that a; = 2n 4+ 3 — a; then call this a; = a;. Note that if g exists, then a7 — 1 must be an empty
row because row a; has a white checker, so by equation (3.2), row 2n+ 2 — a; = a; — 1 is empty.
Consider the variety Y of pairs (V., M.) of partial isotropic flags V; C -+ C Vj and full istropic
flags M. with V; C M,, for 1 < ¢ < k. This variety fibers over the variety of partial V-flags. We
define the fiber over aflag V.= (V; C --- C V)
Q=0 arn(Va,..., Vi)
={M. € OFl(2n+1) | V; C M, for 1 < i < k}
By calculating the dimension of Q for the white checker positions before and after the moves,
we will show that the difference in dimension is one, and so the moves described correspond to
codimension 1 conditions.
We now describe a formula for dim(§2) in terms of the a;. For 1 < a < 2n+ 1. We build Q

recursively as follows:
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First choose My, maximal isotropic, such that Vj,y C My. This is equivalent to the choice
of an element of OGr(n — i(n),Vd‘n) /Vi(ny) the dimension of which is L'ﬂﬂm%ﬂﬁﬂ Now,
assuming Mgy C -+ C M, have been constructed, we next need to add M,. It must satisfy the

following three conditions.
1. Vi) € M,
2. My C Moy
3. Vita) C Mg = Mg or equivalently M, C Vi@)

So we need to choose M, satisfying Vq) C My C (Mg ﬂVif;z)). Note that isotropy is automatic
because M, C M,, and M, is isotropic.

There are two possibilities:

1. i(a — 1) = i(a). In this case, Mgy1 C Vi@) by the previous step of the construction. The

condition (g — 1) = i(a) is equivalent to row a being empty.

2. i(a — 1) = i(a) — 1. In this case, for a sufficiently general choice of M,41 in the previous

step, the intersection has dimension a.

In Case 2, the current step adds zero to the dimension of 2 and in Case 1, the current step adds

dim(P(Ma41/Vi(a))*) = a — i(a) to the dimension of . So we have a formula for dim(£2)

. . n—1
dim(Q) = - 1(”)][’;" Un) +1] 3 bala — i(a)] (3.3)
a=1

where
5 = 1 if row g is empty
. 0 if there is a white checker in row a.

Let @ = Qq, .. ar (Va, ..., Vi) be the variety corresponding to the white checker configuration

before the move, and let ' = A (V1,..., V&) be the variety corresponding to the new white
checker configuration. Then
gt i 1 n—1
dim(q) = 2=° (”)””2 i) +1] +3 6la—i'(a)] (3.4)
a=1

where
5 = 1 if row a is empty in the new configuration
. 0 if there is a white checker in row g in the new configuration.
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Lemma 3.3.2. A checker moved from row n + 2 to row n corresponds to a codimension 1

condition.
Call such a move a type M move.

Proof. For a move across the midline, we are given a; < -+ < a; as above, and there is some
j such that a; = n+ 2 and a;_; < n. Then g} = q; for i # j and a} = n. We will show that
dim ) — dim Q' = 1.

White checkers do not change positions in rows 1 < a < n — 2 nor in the corresponding rows

n+3<a<2n+1, so
n—-2 n-—2
> dala—i(a)) = d4la—i'(a)].
a=1 a=1

This gives

dim§ — dimgy = [(°= U = (n = i) s o1 i 1))]

2
_ [(n —1'(n)? — (n—i'(n))
2

+68_yln—=1-4(n-1))].

Now, 8p,—1 = 0 since row 2n 4+ 1 — (n — 1) = n 4+ 2 = a; has a white checker in it. And

/._1 = 1 since the white checker previously in row n + 2 has moved to row n. In addition,

i'(n—1) =14{n 1) =i(n) and ¢'(n) = i(n) + 1. This gives us

dim © — dim 0 — [(°= "(”))22— (n~ i(n),
_ [(n — (i(n) +1))2 = (n = (i(n) + 1))
D)

+(n—1-1i(n)))

O

Lemma 3.3.3. Fora & {n,n+1,n+2}, the paired movesa toa—1 and 2n+3—a to2n+1—a

correspond to a codimension 1 condition.
Call such a move a type P move.

Proof. Given a; < -+ < ai as above and j such that a; # n + 2 and a5 = a; as long as such an
a; = ay exists. We define a] = a; for i # 4,7, a} =a; — 1, and a,§~ = a5 — 1 if a7 exists. We will

show that dim Q) — dim Q' = 1.
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For this situation, we are not moving a white checker into row n, so i(n) = #'(n) which means

(“'i(”))zg(”‘i(”)) = ("‘il(”))gz‘(”_i'(")). The six rows of interest are rows a; — 2,a; — 1,a; and

their corresponding rows 2n+3—(a; —2), 2n+3 - (a; — 1), 2n+3 —a;. Other than these six rows,

all other terms in the sum are the same for  and Q. We will consider four cases separately:
1. a; < n and row 2n+ 3 — a; is empty (i.e. a; doesn’t exist)
2. a; € nand row 2n + 3 — a; has a white checker (i.e. g5 exists)
3. a; > n+2 and row 2n + 3 — a; is empty (i.e. a5 doesn’t exist)
4. a; > n+2 and row 2n + 3 — a; has a white checker (i.e. o exists).

Case !

dim Q — dim Q' = 8o, _2(a; — 2 — i(a; — 2))
+0a;-1(a; = 1 —i(a; = 1)) + 8a, (a; — i(a;))] ~ (04, _(a; — 2 —i'(a; - 2))
+ 05, -1(a; = 1 = i'(a; — 1)) + &, (a; — i'(a;))]

In Q, row 2n+ 1 — (a; — 2) = o5 is empty by hypothesis, s0 d5;-2 = 1. And row 2n +1 —
(a; — 1) = 2n 4+ 2 — a; is empty because it is the mirror of row a; which has a white checker, so
ba;-1 =1 In ¥, row 2n+1—(a;—2) = a; is still empty so §;, _, = 1 and row 2n+1-(a;~1) = a5
is empty because in 2, row 2n+3 —a; was empty and so was 2n+2—a;. Nothing changes in row
2n+1—a; s0 8,; = &;,. Nothing has changed in rows through row a; —2 so i(a; — 2) = i'(a; - 2).
A checker has moved into row a; — 1 so i{a; — 1) =#'(a; — 1) + 1. And finally, a checker moves
from row a; to row a; — 1 so i{a;) = i'(a;). This yields dimQ — dim Q' = 1.

Case 2

dim Q — dim Q' = [§a;-2(a; — 2 —i(a; — 2))
+ 8a;-1(a; — 1 —i{a; — 1)) + ba,(a; — i(a;))] — (62, _2(a; — 2 —1'(a; — 2))
+ 04, -1(a; — 1= i'(a; — 1)) + &, (a5 — '(a;))]
Row 2n + 1 — (a; — 2) = a5 has a white checker by hypothesis so §,,_¢ = 0. And as in

case 1, 65,1 = 1. In ', row 2n 4 1 — (a; — 2) = aj is empty because that checker has moved
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one row up to row 2n+1— (a; — 1) = af, s0 §;, 5 = 1 and &;,_; = 0. There is no change to
row 2n +1 — (a;) s0 &, = 8a;. And i(a;) = '(a;). Finally, there is no checker moving into row
a; — 250 i'(a; — 2) = i(a; — 2). Again we have dimQ — dim Q' = 1.

Case 3

Since a; > n+2, the three terms in the sum that we are concerned about are a = a5—2,a = a3—1,

and a = aj.

dimQ - dim ' = [§g,_2(a7 — 2 — i(a5 — 2))
+ ba;-1(ay — 1 — i(ag — 1)) + 8 (a5 — i(ap))] — [0;—2(a5 — 2 — i'(ay — 2))

a5—

+ 0, _1(a5 — 1~ i'(ag — 1)) + g, (a3 — i'(ap))]

Row 2n+ 1 — (a5 — 2) = a; is full, so d5,—2 = 0. And row 2n+1— (a;—1) = a; — 1 is empty,
50 §q;—1 = 1. Moving the white checker from row a; to row a; —1 gives §;_, =1 and §;,_; = 0.
Nothing changes in row 2n+1 - a3 =a; — 2 so 5,’13 = Jq;- And nothing changes in row aj — 2 so
(a5 — 2) = i(ay — 2). And finally by hypothesis, row a5 is empty in Q so ¥'(a7) = i(a5). So we
have dim 2 — dim Q¥ = 1.
Case 4

dim Q — dim Q' = [d4,-2(a5 — 2 — i(ay — 2))
+ bag-1(ag — 1 —i{ay — 1)) + Goz (a5 — i(a5))] — [0;~2(a5 ~ 2 — ¢'(a7 - 2))

+ 8 1(ag— 1 — i (a5 — 1)) + &g, (a5 — i'(7))]

As in case 3, 040 = 0, 0,1 = 1, 8,5, =1,8, 1 =0, 8 = b, i'(a5) = i(a;), and
g J. aj 5 1 ay T ) 4]

i'(a3—2) = i(a;—2). In Q, row a;—1 is empty since it’s the mirror of row a;. So i(a;—2) = i(a5—1).

This yields dimQ — dim ' = 1. a

Lemma 3.3.4. If there is no checker in row 2n+3 — a, then the move a to a—1 is a codimension

1 condition.
Call such a move a type .S move.
Proof. Moving one checker is just as in the A, case, a codimension 1 condition. O

We now prove lemma 3.3.1 for § = k < n and B = OFI(1,...,k,2n+1) (ie. T" =T").
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Figure 3.2: For the case R > n+ 2, where n =5 and £, = 3. In this case, the set of rows weakly
less than R that must be empty is {8,7, 3}

Proof. A dense open set of P lies in some stratum where there are at least 7 + £ checkers in the
first R rows. Our goal is to move 3 more white checkers into rows 1,..., R. There are already j
white checkers in rows 1,..., R. We’d like to find the greatest lower bound for the codimension
of the space {(V,, M.)} with the new constraints. This is based on the number of moves it will
take to get the extra ¢, white checkers into rows 1,...,a;. We consider a move as one of the
types M, P, and S described in lemmas 3.3.2, 3.3.3, and 3.3.4 respectively.

We begin with a checker configuration with exactly j checkers in the first R rows. We will
calculate the minimal number of moves needed to get £o more checkers into the first R rows.
Since one move corresponds to a codimension one condition, counting moves is equivalent to
calculating codimension.

Case R>n+2
The minimal number of moves will occur when the maximum #5 rows from the set of rows

{R-i|1<R-i<R}-{min(R~1%2n+2— (R-1))]

R —1dand 2n+ 2 — (R — t) are both in the previous set }

are empty. See figure 3.2 for an example. Each checker that is queued to rise will rise ¢ rows
(not including row n+ 1). Each row the checker moves up is a type M, P, or § move. There are
£3 such checkers, yielding a total of £2 moves. So the minimal codimension of the new space is
bounded above by £2. And % > 4,.
Case R<n
The minimal number of moves will occur when there are at least £3 empty rows beginning with

R and decreasing consecutively, and there are checkers in the minimum 4, available rows where
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Figure 3.3: For the case R < n, where n = 5 and £y = 2. In this case, the set of rows greater
than R that must have checkers is {5, 8}

[e]

Figure 3.4: For the case R < n, where n = 5 and f5 = 2. In this case, the set of rows greater
than R that must have checkers is {4, 5}

available rows come from the set
{R+i|R<R+i<2n+1}~{max(R+ ¢, 2n+2~ (R+17)) |
R+iand 2n+ 2 — (R+1) are both in the previous set }

See figure 3.3 for an example. We have two subcases here.

1. n > R+ ¥5. In this case all the checkers queued to move into row R or above start above

row 1 + 1.

2. n < R+ ¢;. In this case, some of the white checkers queued to move into row R or above

start in rows greater than n + 1.

Subcase 1

See figure 3.4 for an example. Each checker that is queued to rise will rise £, rows. Each row
the checker moves up is a type P or S move. There are £, such checkers, yielding a total of 22
moves. So the minimal codimension of the new space is bounded above by E%. And Z% > 0.
Subcase 2

See figure 3.5 for an example. In this case, the minimum ¢s rows in our queued list are not all
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Figure 3.5: For the case R < n, where n = 5 and £2 = 3. In this case, the set of rows greater
than R that must have checkers is {5, 8,9}

above row n + 1. In particular, exactly n — R of our queued checkers are above row n+ 1. We
raise each of these n — R checkers £ rows. Each row the checker rises is a type P or S move.
So we have a total of (n — R)¢; moves. In fact, these moves are all type P and we now have
¢3 — (n— R) checkers in rows n+2,n+3,...,14+ £+ R. If there is a type S move, the there is an
empty row somewhere in rows n+2,n+3,...,1+ £; + R and we would have to add additional
moves. So we may assume all of these moves are of type P.

For the checker now in row n + 2, we perform a type M move to bring it to row n. Then we
perform ¢5 — 1 type P moves by raising this checker £3 — 1 rows. Note that the checkers in rows
n+3,...,R+1+4;arenowinrowsn+2,...,R+ 1+ ¢ — 1. In general, for the 7** checker
that is queued below row n + 2 (after the initial (n — R)¢5 moves), we perform one type M move
and £ — i type P moves, for a total of 5 — 7+ 1 moves. So the total moves needed to add £

checkers into row R or above is at least

£,—(n-R) 1

(n-RG+ > (e2—¢+1)=%e§+%e2+(n_m[—%+ez—§(n—R)]

i=1
Here, both n — R and —% + 4y~ %(n — R) are non-negative. For the minimum total moves to

equal Z» one of the following must occur.
1. £5 = 0 (which forces n = R).
2. bpg=1withn=R

3. &, =1 with ——%—i—éz — %(n— R) = 0. This implies R = n— 1, but n < R+ ¢3 which implies

n < n, a contradiction.
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So in this case, if we have equality, either g =0 or {3 = 1 with n = R.

In these calculations, we've always kept checkers in increasing rows across increasing columns.
Suppose we move to a stratum that can be described by a checker configuration that has some
checkers in non-increasing rows (as columns increase). We are only interested in minimal numbers
of moves and so in the case of equality (/2 = minimal! number of moves ) we consider the cases
where €3 = 1.Then we have the (j + 1)%* checker in row R+ 1 that we’d like to move into row
R. If we move any of checkers numbered j + 2,5 + 3,... into row R, we must move them more
that one row (in order to bypass checker 7 + 1). Thus we no longer have a minimal number of
moves. So the only way for ¢5 to be the number of moves is to move checker j + 1 into row R.
This forces V;41 C Mg for all points in P.

Finally, for the case R = n + 1, we know V5 N M1 = V5 N M, since V; is isotropic. So if

R =n+1, we still need to move checkers into row n, so R = n is equivalent to R=n-+1. O
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m m m
m+1 m m+1
m+1 m m-+ 1 m+ 1
™m m m m m+1
m m m+1 m+1 m+1
m m m+1 m+1

m+1 m m+ 2 m+2

content —1 content 0 content 1

Figure 3.6: Possible labeled quadrilaterals, where j is labeled with dim(V; N M) for some fixed
vector space M. (Quadrilateral = arises in lemma 3.4.1)

3.4 Content of quadrilaterals

Lemma 3.4.1 discusses content of a quadrilateral from a quilt Q,. Suppose we are given a
vector space M C C?"*! and an element (Vip)meg, of OBS(Q,). We label each element m of
the quilt with label(in) = dim(V,, N M). For each quadrilateral in Q,, define the content of the

quadrilateral as

la,bel(mNE) + label(msw) - label(me) - label(msg) (3.5)

where my g is the northeast element of the quadrilateral, mgy, is the southwest element of the
quadrilateral, myw is the northwest element of the quadrilateral, and mgg is the southeast
element of the quadrilateral. The quilts we are working with have a maximal space V that is
isotropic, so all subspaces associated to the quilt Q. are isotropic without extra conditions. So
Lemma 5.5 in [22] can be used in the B, case directly. We restate the lemma here (see also

Figure 3.6):
Lemma 3.4.1. Suppose we are given a locally closed subvariety
U CFI(1,...,kn) x G(R,n) = ((V;), Mg)

where the rank data (V; N MR)i<j<k is constant, and (V;)1<j<k corresponds to the northwest

border of some given Q. Define P via the pullback diagram
P——— BS(Q,)s x G(R,n)

l

U< Fi(1,...,k,n) x G(R,n)
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where BS(Qo)s is a given open stratum of BS(Q.) (and elements of § are marked with ‘=").
Let ({(Vin)meq.. MR) be a general point of P. Label m with dim(V,, N MRg).

(a) Then no quadrilaterals of type * in Figure 3.6 appear.

(b) Assume furthermore that no negative-content quadrilaterals appear, and all quadrilaterals

marked “=” have positive content.
(i) If the northern two vertices of a quadrilateral are labeled m, then the southern two
vertices are also labeled m, and the quadrilateral is not marked “=”.
(i) If the western two vertices of a quadrilateral are labeled m, then the eastern two edges
are labeled the same (both m or m + 1), and the quadrilateral is not marked “=”,
Proof. See proof of lemma 5.5 in [22]. O

We include an additional observation here involving content of quadrilaterals.

Lemma 3.4.2. If we have a content 1 quadrilateral with associated vector spaces Vaw, Vae, Vsw, Vse
labeled m,m + 1,m + 1,m + 1 respectively where the label is given by dim(V, N M,). Then

Ve = Vsw.

Proof. dim{(Vyg N M,) = dim(Vsw N M,.) = dim(Vsg N M,.) = m 4 1 means that Vg N M, =
Vew N M, and there is a line L with L C Vng N M, = Vsw N M, such that Vg N M, =
(VeowNM)® L and L ¢ Vyw N M,. Now, L C M, since L C Vyg N M,, so it must be that
L ¢ Vyw. Since dim Vyg = dim Viyw + 1 we have Vg = Viyw @ L. Similarly Vew = Vaw @ L.
So Vve = Vew. O

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

PARTIAL PROOF OF THE TYPE By GEOMETRIC
LITTLEWOOD-RICHARDSON RULE
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4.1

Strategy of proof

The overall strategy of the proof of conjecture 3 is the same as developed by Vakil in [22]:

Instead of considering the divisor D on the closure of X, in OGr(n,2n+1) x (X, U X,,.,), we

consider the corresponding divisor Dg on the closure of OBS(Q.) x (Xe U X,,,..,). See diagram

(4.1). The map = is the projection from a point (V,,M.,F.) € CloBs(Qo) % (XsUX,,,, ) Koe 10

(V,M.,F) e ClOGr(n,2n+l)X(X.UX.next)XOO that drops all subspaces associated to the quilt except
Vmax-

losed
CloBs(Qe)xXs Xos > ClOBS(Q0) X (XeUXsyery) Xoo < Do

l |

open closed
ClOGT(n,2n+l)><X.Xo- C‘E‘> ClOGr(n,2n+1)x(X.UX.next)XOO ~—>D (4'1)
\L open l closed
Xe © X UX,,, 6 <—X

®next

In this chapter, we prove certain cases of the type B, geometric Littlewood-Richardson rule

(conjecture 3). In each case, we prove the following.

1.

Reproduced with permission of the

In section 4.2 we show the result holds in the trivial cases. For s; moves, this occurs when
there is no white checker in either of the descending black checker rows (rows dg and dyw ).
And for sg moves, this occurs when there is no white checker in row n. Following this
section, we will assume there is a white checker in row n for sg moves and a white checker

either in row dg or dw or both for s; moves.

We describe Clogs(qQ.)x(X.UX,,,,)Xoe as the intersection of two spaces, W, and W,

This is theorem 4.4.1.
We identify the irreducible components {Dg} of Dg (theorem 4.5.1).

‘We show all but one or two of the Dg are contracted by = (section 4.6). The statement of

the theorems in this section vary depending on the case.

We then prove theorem 4.7.1 which states that in the remaining irreducible components,

the multiplicity of Dg is one.

Finally, in theorem 4.8.1 we show the Dg map birationally to X OF Xo,uap

Ostay®next ®next?

giving us the expected answers which occur with multiplicity one.
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4.2 Proof of the rule in trivial cases

4.2.1 Trivial case for s; moves

The trivial case for s; moves, ¢ # 0 occurs when there is no white checker in row dg and no

white checker in row dw (recall definition 11).

Theorem 4.2.1. For an s; move, if there is no white checker in row dg and no white checker

in row dy then D= X,

®next”

Proof.
Case 1: dg <n

Let X/, be the projection of
Xoo — OGr(n,2n+1) x OFI(1,-- ,dg, -+ ,dw, - ,2n+ 1) x OFI(2n + 1)

by forgetting My, and My, . Note that My, = Mj-E since 2n+ 1 — dg = dw. In this case we
assume that dg < n.

To recover X,,, we can choose My, such that My,_1 C Mg, C Mg,4+1. Since Mg 41 C
M, My, will automatically be isotropic because M, is. The full P* of choices for My, gives
Clogr(n,g,ﬂ_l)x(x.ux.next)Xg., the P!-bundle over X!, corresponding to choosing Mg, as above.
The extra point in each fiber is the point at infinity, i.e. the choice of My, with the property
that (My, N F ) C FCJ;_I, so D is the section of ClOGr(n,2n+1)X(X.UX.next)Xoo given by {My, |

(May NF) € F41}. Two loose ends remain to be checked:

1. The choice of My, is completely independent of V € OGr(n,2n + 1) when V is described
by a white checker configuration with no white checkers in rows dg nor dy. In other words,
V imposes no conditions on My, so any choice of My, such that My, 1 C My, C Mgz41

will yield a point (V, M., F)) ClOGr(n,2n+1)x(X.UX.next)Xoo'
2. D=X

Ostay ®next

Choosing My, is independent of V: Let 0 < a1 < ag < -+ < ap, < 2n+ 1 be the n rows

with white checkers given by the o-configuration. Define

i(a) = max{i | a; < a}. (4.2)
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For (V,M.,F.) CloGr(n,2n+1)x(X,UX,,_,)Xoe, We have the properties dim(V N M,) > i(a) for
1<a<2n+1and M. and F. meet in either the e-way or the e,.,:-way. Now the fiber over the
projection of (V, M., F\) is the set of all My, such that dim(V N My,) > i(dg), dim(V N Mg, )} >
i(dw), Mag—1 C May C Mggi1, and (My,—1 NFL) C FL,.

Now, dim(V N Mg, -1) = i(dg — 1) = i(dg) since there is no white checker in row dg. And
dim(V N My, —1) > i(dw — 1) = i{dw) since there is no white checker in row dw. So Mgz..1 C
My, implies that dim(VNMyg,) > i(dg) and Mg, 1 C My, implies that dim(VNMy,, ) > i(dw).
So no knowledge of V' is needed to choose Mg,.

The divisor D: We have a P! of choices for My, where My, 1 C My, C Mg+1. The single
So X

choice of My, such that (Mg, N Fi) C F, gives the point over X is the

®nezt’ Ostay®next

section given by the divisor
DZ{MdE l (MdEnFcl) CFc_l-—l-l}

See diagram (4.3) where s(X/,) & D.
Xoe = Clogr(n,2n+1)x(XeUXu,,,,) Xoe
lpd’/ (4.3)
8
X3e
Case2: dg >n+2
Again, let X/, be the projection of

Xoe — OGr(n,2n+1) x OFI(1,...,dw,...,dg,...,2n+ 1) Xx OFI(2n + 1)

by forgetting Mg, and Mgy,. Note that My, = MaLW since 2n + 1 — dyw = dg. In this case, we
assume that dy < n.

To recover X,,, we can choose My, such that Mgy, 1 C Mg, C M4, +1. Since My, +1 C
My, Mg, will automatically be isotropic because it sits inside an isotropic space. If we look at the
full P! of choices for My, then we get more than just X.., we get Clocr(n.2n+1)x(X.uX.nm)Xow
And we say CloGr(n2n+1)x (XeUX, . ) Xos I8 the Pl.bundle over X., corresponding to choos-
ing My, as above. The extra point in each fiber is the point at infinity. It is the choice
of My, with the property that (Mf N Fl) = (My; NF}) c F4y, so D is the section of
CloGr(n,2n+1)x (XsUXa, ,, ) Koe given by {May, | (M&LW NFLH ¢ FC%H} The rest of this proof is

almost exactly the same as the case dg < n, replacing dg with dw . O
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4.2.2 Trivial case for s; moves
The trivial case for sg moves occurs when there is no white checker in row n.

Theorem 4.2.2. For an so move, if there is no white checker in row n then D = Xo ,, 0pe0:-

Proof. Let X!, be the image of the projection
DPn Xoe = OGr(n,2n+ 1) x OFU(#) x OFI(2n+ 1)

by forgetting M, and M;- = M,4,. For a general point p,(t) € pnp(Xoe), the fiber p71(¢) is
isomorphic to an open subset of Y = OP(M,42/Mp_1) C P(Myy2/M,_1). The closure of this
set in OGr{n,2n+ 1) x (Xs U X,,,.,) is all of Y. Since there are no white checkers in row 7 or
n + 1, there are no restrictions coming from V € OGr(n, 2n + 1) on the choice of M,.

Consider the section s of p,, defined as follows: for the point
pn(t) = (V, MyC---C Mn_l,F,)
we need M, such that
Mp-1 C My C Moy + (Mpy2 N Fy)
where dim(M,,) = n and M, is isotropic.
Let L = My42 N Feqq. By the e-configuration, L has dimension 1. Define M, = M,,_1 + L.

This choice of My, gives us a point in OGr(n,2n+ 1) x X
(M., F)e X

®next”
oness = dim(M, N Fl) = dim(M, N F4,)

< dim((Myp-1 + L)N F}) = dim((Mp—1 + L) N F4,

which are equal since L C Foy1 C Fy; C Fit and M1 N F = M,_; N FX, in the o-
configuration. We now show that this choice for for M, is the unique choice such that (M., F.) €

X instead of in X,.

®next

By the black checker configuration, we have

Moy 1 NFf =M, NFL, <= (M,F)eX

®next

Now, Mpy1 N Ft = (My + Fo)t and Mpp  NFL ) = (Mu 0 Fep1)t. So

(M,F)eX,,,.. < My+F,=M,+ F.q

= dim(M, N F,) =dim(M, N Feyq) — 1

<= there is a line £ C F.q; such that Mp, = M1+ L

7
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And M,, C Mn+2 means £ C Mn+2. So L C Mn+2 N Fc+1~ Now, dil’n(M.,H_g n Fc-H) =1,s0L
is unique and £ = L. We’ve shown there is a unique divisor D in Clogr(n2n+1)x(X.UX.,,,,) Xoce

that satisfies the conditions for X

®nert’

We now show that the divisor D has multiplicity 1. We give a test family F through a general

point t € (V, M., F) of Clogr(n,2041)x(XsUX.,,,, ) Xoe meeting the divisor D = X,,,, with

®next
multiplicity 1. For our general point of Clogr(n,2n+1)x(X.UX,,,,,, ) Xoe: We know (M.,F) € X,.

We choose a basis for F. and M.:
o Let F. have the standard basis with F; = (e1,..., e;).

e Let M. have the basis that depends on the e-configuration. In particular,

Mp_1 = {€m+1,€2ny -+ »€2mt2-ci €ct2) Ect3y - -+ €n)

and

Mpyo = Mpu_1+ (¢, €nt1, €ct1).
Build the one-dimensional test family F = {(V', M/, F')} as follows:
o Let V=V
o let F/=F
e For1 <i<n-—1,let M/ =M; and (M))* = M}
e This leaves M}, and M}, = (M})1. Define

1
M’I{l = <Mn—1, —"2—3262 + St6n+1 + t26C+1>

for [s,t] € P'. M}, is isotropic because (Mn_1, —55%€c + Steny1 + t2ecr1) C Mppa = M-,

and (—%s%2 + stent1 +t%ecq1) is itself isotropic.

We define the family F to be the the open subset of {(V’, M/, F’)} described above where
t #0. When s # O then (M/, F') € Xqs0 F ¢ D. And when [s,t] = [0,1] then (M/, F') € X
So F meets D.

®next’

The divisor D on F is given by
M,NFrCFL, < dmM,NF.4) =1

p dim((Mn_l + E) N Fc+1) =1

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Now, in both X, and X, we have that dim(M,,_1 N Fey1) = 0, so dim((Mp—1 4+ £) N Fey1) =

®next

1 <= L C F.41. This is equivalent to
1o
<—§5 €c + sent1 + ec+1> C Feqr,

which is true if and only if —-%32 = 0 and s = 0, a multiplicity one condition. So F meets D with

multiplicity one and thus D has multiplicity one.
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4.3 A description of CIOBS(QQ)X(X.UX.M,“)X°'

Similar to [22], we describe a closed subscheme of OBS(Q,) x (X, U X,__.,) and show it

®next
is CIOBS(QD)X(X.UX.HM)XO. (this is theorem 4.4.1). The subscheme will be constructed as the
intersection of two subvarieties of an open subset of a tower of projective and quadric bundles
over OBS(Q.).

A note on abusive notation: We say Xoo C OBS(Qo) X Xe when in fact, Xo, is a subset of

OGr(n,2n + 1) x X,. There is however, a natural injection
Xoe = OBS(Qo) x X,

which takes (V,M.,F) — ((Vin)meg,, M., F.) such that for m € @Q, in position (¢,) on the
checker board, Vi, = V N M; N F;. So without further note, we say Xoo C OBS(Q.) x X,. and

leave the injection implicit.

4.3.1 How to build T

Definition 14. Let m(M;) (1 < ¢ < 2n 4+ 1) be the maximum element m of @, in rows up
through . Define m(F;) similarly to be the maximum element m € @, in columns up through
j. In particular, we define a = m(Fc41) (c is defined in definition 12), an element we will refer

to often.

We’ve already dealt with the trivial cases so we will assume for the remainder of the discus-
sion that there is a white checker in row n (for the so moves) or there is a white checker in row
dg or dw or both (for the s; moves).

Remark: We assume also that there is no white checker in column ¢+ 1. A white checker in
columns ¢ + 1 requires more thought and will be determined later.

Consider a subspace
T C OBS(Q.) x OFI(2n+ 1) x OFI(1,--- ,c;¢,-++ ,2n+ 1).

We describe how to build T" and discuss some of its properties. We will then define spaces
Q,W,, and W,.....,
T is built like this:

which are fibered over T.

Start-with the base space OBS(Q,). For a point (Va)aecg, € OBS(Q,), build M. in the following

way “from outside to inside.” Let My = (0), then for 1 < ¢ < n, choose M; such that
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1. M1 CM; C M{l;l
2. M; is isotropic
3. Vm(Mi) CM;C VnJ{(Mi)

Complete the isotropic flag M. by defining for 0 < i < n, Maopy1-: = Mﬁ.
For a point ((V., M.), build the partial isotropic flag F<. in a similar way to M.. Let Fy = (0),

then for 1 < j < ¢, choose F; such that
1. Fj_, C F; C Fi,
2. Fj is isotropic
3. Vin(ry) € Fy C Vs
4. Fj is transverse to the flag M.
Then for 0 < j < ¢ define Foppq-5 = Fjl. This completes the space T

Theorem 4.3.1. At each midsort (conjecture 1) step in the degeneration, the space T is reduced

and irreducible.

Proof. We build T on OBS(Q.) by choosing My, Ms,..., M, and then Fy,...,F.. If there is
no white checker in row ¢ + 1 then choosing M;,.; is equivalent to choosing an isotropic line in
(M- NVp,,0y)/Mi. If there is a white checker in row ¢+ 1 then there is exactly one choice for
M4, namel;—MiH = M; + Vin(a,,,). We choose the Fy’s in a similar way with the additional
open condition that F} is transverse to the M. flag.

We’d like to show that T is reduced and irreducible. Together these amount to showing that
at each step where we add M;,; when there is no white checker in row ¢ + 1, that the rank of
the symmetric bilinear form, rank(B), on (Mj- N V,y .y, ))/M; is greater than or equal to 3.

Let W = Vn‘zL(MHl)v dim(W) = k, rank(B|w) = r_where risodd. Alsolet V = W' =
Vm(Mi_ﬂ) and M = M,;. Note that Vm(Mﬁ_l) C Vm(Mi) - MiL so M =M,; C Vri.(Mi“) =W. Qur
claim is now reworded: rank(B) on (M+ NW)/M is greater than or equal to 3.

We do a change of basis so that our form B is nicer looking. See Figure 4.1. r is odd so

let 7 = 2¢ + 1. So the center 1 of the r x r block {call this block R) of the matrix is in position
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Figure 4.1: The form for the change of basis matrix.

(g+1,g+ 1). M is isotropic so the block M cannot meet the antidiagonal of ones in block R.
Thus we must have 1 4 ¢ + 1 < k. This implies that ¢ < k — g.
We have two cases to consider depending on if blocks R and M overlap or not.

Case 1

They do not overlap, ie. 4 < k—r. Then Mj* = W and rank((M;* N W)/M;) = r. Since r
is odd, either r = lorr > 3. If »r = 1 then Vm(Ml._ﬂ) is maximal isotropic. This is because
W = V"f( M,,,) is the perp of an isotropic space and if rank(B|w) = 1, then we’ve only added the
middle vec;(; 50 Vin( M) Must have been dimension n. This means there are n white checkers
in rows 1,...,i+4 1. If there are n white checkers in rows 1,...,%2+ 1 then we must be in the

maximal case. And if we are in the maximal case and we’ve assumed no white checker in row

14 1, then there must be a white checker in row 2n+2— (¢ +1) =2n+1-(¢(+1)+1 =7+ 1+1.

So there cannot be n white checkers in rows 1,...,2 + 1. Thus r # 1, which implies r > 3.

Case 2

Blocks R and M overlap, i.e. i > k —r. See Figure 4.2. M and M" are spanned by the basis
vectors

M = (er,ek—1,-. -, Ehmit1)

L
M= = ek, s €hit1,Chois ) Erql—(kei))

so in the quotient space we have

(MJ' N W)/M = (Er+1—(k—i), e ,Ek—i)
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Figure 4.2: This is the form of the change of basis matrix if M and R blocks overlap, i.e. ¢ > k—7r

and
rank(B) = (k—i)— (r+1—(k—1i))+1
=2k-i)—r
We know r = 2¢ + 1 and by hypothesis we have both 7 > k — r and 1 < k — ¢. This implies
2(k—1)—7 > 0. And 2(k — %) — r is odd because r is odd and 2(k — 1) is even. We again consider
the two possibilities 2(k — i) —r =1 and 2(k —¢) — 7 > 3. Suppose 2(k — i) — r = 1. Then we
have
2k —i)—r=1
2k —i)=r+1
2k—-i)=(2¢+1)+1
k—i=q+1
This means the upper left corner of the M block is at position (g + 2, g + 2).
Recall that i(m) is the number of white checkers in rows 1, ..., m of the checker board. Then
k=dimW
=2n+1—dim(Vin(my,))

=2n+1-i(i+1)
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And r =2n+1—2i(¢+ 1). This is because we have 1 contributing to the rank from the middle
row and then we have 2n possible more to contribute to the rank r. For each row with a white
checker, we do not have that basis vector nor do we have its mirror pair contributing to the
rank, a total non-contribution of 2i(¢ 4 1). Then noting that r = 2¢ + 1, we can conclude that
g =mn —i(i+ 1). From the following calculation, we get that n = 1.

k—i=gqg+1

m+1l—i(i+1)—i=n—ii+1)+1

2Zn—i=n
n—1=20
n=1

But 1 < n (recall that we're finding M, which is at largest M, so i+ 1 < n and thus i < n) so

we have a contradiction. Thus rank(B) = 2(k — i) — r # 1 so rank(B) > 3. 0
4.3.2 Spaces built on T

Let inf € @,. inf is an important element of @, for the proof of theorem 4.4.1. We will

define precisely which element of @, is named inf for each case individually.
Definition 15. For a fixed point ¢ = ((Vin)meg,,» M., F<c) € T, choose F,1 such that
1. F,C Fo.4y C Ft
2. Fc41 is isotropic
3. Vint C Fy4
For fixed ¢t € T let @) be the set of all such F .

Note that if F, C Fy; and Fp41 is isotropic then the condition For1 C FCl is met automat-

ically.
Definition 16. Q = {(¢, Fet1)|t € T, Foy1 € Q1}. Q is fibered over T with fibers Q.
For (¢, Fey1) € @, we have the following lemma.

Lemma 4.3.1. (FfNMy,_1) C F, < dim(Fey1 N Mgy,41) > 1
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Proof. F- N Mag_1 C F, implies that Fey1 C Fo + Mg, _; = Fo + May, 41. By construction
of T, F, is transverse to the M. flag, so F, N Mg, +1 = (0). Thus we can write Fopq = F, + L
where L is a line in My, 41, and we have dim(F41 N Mg, 41) = 1.

Now, suppose dim(F.y1 N My, +1) = 1. By construction of T, we know Fe N Mg, +1 = (0).
This implies that there is a line L C My, 41 such that Feyqy = F. + L. So Fpp1 = (Fo+ L) C
(F. + Mgy, +1). Equivalently, (F. + Mg, +1)* C F,. And

(Fe+ Mgy 1)t = (FFn Mg, 1) = (Ffn Mag_1)
thus Ft N My, CFCLH. O
Definition 17. For a fixed point t = ((Vin)meq,, M., F<c) € T, choose F¢i1 such that
1. F,C Fey1 C FL
2. F,4, is isotropic
3. Vint C Fy
4. Von(Foyy) C Feqr C VE
For fixed t € T let Sy be the set of all such F4.
Definition 18. W, = {(¢, Fet1)|t € T, Forq € Si}. W, is fibered over T with fibers S;.
Definition 19. For a fixed point ¢t = ((Vin)meg,, M., F<c) € T, choose Fryy such that
1. F, C Feq1 C FE
2. F,4 is isotropic
3. Vit C FL,
4 (FFNMg,_y)C FL,
5. (F N Myg1) ¢ FLy (this is an open condition)
For fixed t € T" let R; be the set of all such Fgy;.

Definition 20. W..neu = {(t,Fc+1)[t eT, Fc+1 € Rt} W,

0 ext

is fibered over T with fibers R;.
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Lemma 4.3.2. W,,,..., has a natural immersion

W,

®®ncat

— OBS(Q.) x (XeUX,,...)

Proof. Given a point ((Vin)meqo, M., F<et1) € W complete the F¢(.41) flag as follows:

®next)
For Fj, c+2 < j < n, column j has a black checker in row rj. Let Fj = (My; N F,) + Feqa.
Note that

1. Fj is isotropic. This is because F.1; is isotropic and Fcl+1 N M, is isotropic because Mrj is
isotropic since r; < n for ¢+ 2 < j < n. In addition, (F4, N M,;) C F | so every vector

in FL,n M., is orthogonal to every vector in Fiyq.

2. Fj has dimension j. There are two cases:

(a) r; < req1. Then dim(F4, N M,,) =7 — (c+1) and (F4, N M,,) N Feqy = (0) s0
dim(F)) = dim(F}, N M) + dim(Feq1) — dim(Fa5, 0 My, N Feyq)
=j—(c+1)+(c+1)-0
=37
(b) 7; > rcq1. Then dim(Fz5; N M,,) = j — ¢ since the black checker in column ¢+ 1 is

now included in the dimension count. This also means dim(F3, N M,, N Foy1) = 1.

So
dim(Fy) =dim(Fz}; N My,) + dim(Feq1) — dim(Fyy N My, N Feyr)

=@-c+(c+1)~1

=7
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44 W,NW,.,....= CIOBS(QO)x(X.UX.next)Xoo

Theorem 4.4.1. We have the scheme-theoretic equality

W° N W'.nemt = CIOBS(QO)X(X-UX-,,CX‘,)XO'

Proof of theorem 4.4.1 depends on the type of move. We will prove theorem 4.4.1 for s;
moves with dg < n in section 4.4.1 and for sy moves in section 4.4.3. All proofs assume there is
no white checker in column ¢ + 1 (recall remark in section 4.3.1).

In each case, the strategy of the proof is this: We fix an irreducible component Z of W, N
Wee..... and describe an open subscheme of Z explicitly as a tower of projective and quadric
bundles over the dense open subset OBS(Q,)g. Through a description of the open subscheme of Z
as a tower of bundles, we will show that Z has the expected codimension. Note that W,NW.,,...
is irreducible because T is irreducible and the fibers over OBS(Q,)p are equidimensional. Since
Wo N W,e,... is irreducible and, as we will show, Z is a component of the same dimension, we
get that Z must be unique and thus Z = W, N W,,,...,-

The following definition will play a large role in the proof of theorem 4.4.1.

Definition 21. The expected codimension over @ of W, NW,,, ... is

expcod(W, N W,,.,,) = codimg(W,) + codimg(W,.,....)
4.4.1 s; move with dg <n

In this section, there is a white checker in either row dg, row dw, or both. Fix an irreducible
component Z of W, NW,,,..,. Necessarily, we have codimg Z < expcod(W, NW,,,...,). We will
show that Z is unique and codimg Z = e>v(pcod(Wo N Weapour)-

The reader may wish to refer to Figures 4.3, 4.4, 4.5, and 4.8 as examples. Let = be the
white checker on the western end of the northernmost diagonal of ¢, whose eastern end is in a
row greater than or equal to dg and in a column greater than or equal to ¢. Let d be the checker
on the eastern end of the diagonal.

Define R = (row of checker d) — 1. Let inf = z,a = m(F,),2’ = m(Mg41),2" = m(Mg),

and sup = sup(z,z’).
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We have three cases: (i)inf = a, (43)inf # a,x”, and (ié:)inf = x”. For the proofs of cases
(#)inf # a,x” and (441)inf = x”, if there is a white checker in row dg, then R = dg — 1 and the
proofs simplify in obvious ways.

Case (i) inf=a

In this case there are no white checkers in any columns from the column of z through ¢4- 1. No
white checkers in columns east of checker 2 through column ¢ + 1 indicates that z = a = m(Fe41).
To be in @, Fﬂ__l_ must contain Vg, so the W, condition that FC_+.1 also contain V, is not a new

condition. Thus W, = @ and we have Z = Weenext. S0 Z is unique and
codimg Z = codim(Wae,,..,) = expcod(W, N W,.,....)

Case (i) inf # a,x”
For this case, there must be at least one white checker in a row directly north of row R+ 1 (the
row of checker d) and at least one white checker in a column between the column of z and column
c+ 1. See Figures 4.3 and 4.4.

We will construct a dense open subscheme of Z. Let Zy be the image of Z in OBS(Q.), Zm
be the image of Z in OBS(Qo}x{M.}, and Zp be the imageof Z inT C OBS(Q.)x{M.} x{F<.}.
See Diagram (4.4).

Q < Wo N Wae,.. & < Pp () ————> 2
TF / PF
T (V.. M) pp— iy (V, M) ——> Zp
- o (4.4)
{(v., )} ' V) g Py (V) ——> Zu
mv pv
OBS(Q.) > Zv

codim=£,

Let = codimpps(g,) 4v. Zv is contained in some closed stratum of codimension at
most £3, which corresponds to a set S of at most #1 quadrilaterals of Q, (recall strata in section
3.1). Thus £; > |S]. If |S]| = 41, then Zy is the stratum OBS(Q.)s.

We next consider the choices for M. with the conditions described in section 4.3.1. Let

be the codimension of Zp; in the fibration

5 (Zy) — Zy
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Figure 4.3: An example with dp < n with no white checker in column ¢+ 1. inf # a,z”. In this
example, there is a white checker in row dy but not row dg.
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dw

Figure 4.4: An example with dg < n with no white checker in column ¢+ 1. inf # a,2” and
R =dg — 1. In this example, there are white checkers in rows dg and dy .
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Western good
quadrilaterals

Eastern good
quadrilaterals

Figure 4.5: An example of an s; move with a white checker in row dg < n. The shaded regions

and vertices b, ¥, and b’ are discussed in section 4.5
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For a general point of Z, define

— dim(Vaup N Mag—1) = dim(Vew N Map_1).

and
= dim(Vaup N Mg) — dim (Ve N MR).

By lemma 3.3.1 with R as above, j = dim(m(Mg)) = dimz",§ = dim(sup), B = Zy, and
B — OFI(1,...,6,2n + 1) the map giving the spaces of the northeast border of OBS(Q.), we
have £, > £5.

By lemma 3.2.1, we also have &, > {3, so
by >ty > by

Note that if there is a white checker in row dg, then R = dg — 1 and £, = ¢; immediately. Let

be the codimension of Zp in the fibration
W]T,II(ZM) — I

Then
COdimT ZF = €1 + 64 + 45.

For a general point t = (V., M., F<.) € Zp, consider the set {F.41} where
1. F,C Fey1 C FL
2. dim(Foq1)=c+1
3. F.;1 is isotropic
4. Vin(Fupy) C Fey1 C VG-
5. Foy1 C (FEN Mgg_q)t

Note that no white checker in column ¢ 4 1 implies that the containment Vin(Foyr) C Feqr is

already satisfied. Call this space &. The dimension of &; is calculated here.

dimé; = dim(V;t N (FLn Mg, 1)*) — dim(Fe) ~1 -1
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The first ~1 is for the isotropy condition and the second —1 is for choosing a line in V;' N
(Mg, _1 N F)L. The isotropy condition is a nontrivial condition since V;* N (Myy-1 N F)t is
not isotropic by Corollary 3.2.1. VXN (Mgy,-1NF3-)* satisfies the hypotheses for Corollary 3.2.1
because dg ~ 1 < n 8o My, 1 N F is isotropic. And Vigs C V, so V5 C Vi, Thus Foyy C V5

inf"
implies Foy1 C Vi, And F, C Foyq with Feoy isotropic implies that Fey1 C FZ. So we have
dimé; = dim(V;* N (FLnMgg_1)t) —c—2

= dim((Ve + (Ff O Map-1))*) — -2

=2n+1—-dim(V, + (F}f N Mgz_1)) —c—2

=2n+1— (dimV, + dim(F;: N My, _1) —dim(V, N FL N Myp_1)) —c—2

=2n+1—dimV, — dim(F N Mg, _1) +dim(V, N Mg,—1) —c— 2.
A note on the last line: Vo = Vippr ) C Fl, C F+. We now derive an expression for
expcod(We N Wi, )-

dim Q; = dim(V;") — ¢ — 2
=2n+1-dim(V;) —c - 2.
dim(W,)s = 2n+ 1 — dim(V,) — ¢ — 2.
codimg(W,) = dim(Q¢) — dim(W, ),
= dim(V,) — dim(V;).
dim(Wa,.,,): = dim(V;" N (F- N Mgp_1)*) —c -2
=2n+1—dim(Vz) — dim(F;" N Mgg_1) + dim(Vz N Mg, _1) — c— 2.
codimg(Wae,,..,) = dim(Q;) — dim{Wae.., ., )t
= dim(F;" N Myg_1) — dim(V, N Mg, _1).
So
expcod(Wo N W,,..,) = dim(V,) — dim V, + dim(Fif N Mgg_1) — dim(V, N Mg, _1).  (4.5)
Now, codimg, & is
codimg, & = dim Q¢ — dim&;
= expcod(Wo N Wee,,...) + dim @y — dim &, — expcod(W, N W,.,..,)
= expcod(Wo N Wee,....) — [dim(Va N My 1) — dim(Vy N My, —1)]

= expcod(W, N W.,.....) — 3
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Reg

Figure 4.6: A general outline of the region defined by xyzw.

where

= dim(V, N Mgg_1) — dim(V, N Mgg_1).

Since V, C V,, ¢3 is non-negative. Let be the codimension of the fiber p5'(t) C Z — Zp in
¢ See Diagram (4.4). Then codimg, (p'(t)) = codimg, & + £ and we have

codim Z — expcod(Wo N Wa,.,.,) = (&1 + €1 + €5 + codimg, (p7' (t))) — expcod(Wo N Wi,...)
= £1 4 £4 + €5 + codimg, & + L6 — expcod(Wo N Wi, )
=01+ £y + €5 + (expcod(W, N W) — £3)
+ £ — expcod(Wo N W,,,,..)
=L+ Ly + 85+ 4g — L5,
Now, 5 > 0 and ¢g > 0 because these are codimensions. And ¢4 > ¢; by lemma 3.3.1. So we

have

codim Z — expcod(W, N W,,,....) = €1 + €2 — £3.

Since Z is a component of W, N W, it must be true that codim Z < expcod(W, N

Onext?

W,

ezt

). Thus codim Z — expcod(W, N W,,,....) < 0 (nonpositive). We will show that ¢1 + €5 —
23 > 0, which will force codim Z = expcod(W, N W, .., )-

Consider the region defined by xx” sup a.

Definition 22. Name the northwest, northeast, southeast, and southwest vertices x,y,z, and w
respectively. See Figure 4.6. The region defined by xyzw has boundary edges defined as follows:

For the northern boundary (between x and y), choose the southern most path from y to x such
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that if m € @, is a node on the path, then x < m < y. For the eastern boundary (between z
and y), choose the western most path from y to z such that if m € Q. is a node on the path,
then y < m < z. Similarly, the southern boundary is the northern most path between z and w

and the western boundary is the eastern most path between x and w.

The total content of the quadrilaterals in this region is the sum over the content of all
quadrilaterals in the region. This is a linear combination of the labels of the vertices (see equation
(3.5)). The net contribution of a vertex m € @), is the number of quadrilaterals in the region of
which it is the northeast or southwest corner, minus the number of which it is the northwest or

southeast corner. Hence the only non-zero contribution to the total content is the following (see

also [22]):

e Any internal diagonal edge contributes the label of its larger edge minus the label of its

smaller edge (a non-negative contribution).

e The northeast and southwest corner vertices contribute their labels and the northwest and

southeast corner vertices contribute the negative of their labels.

For the region defined by xx" sup a, label vertex m of Q, with the value dim(V,, N Mg, _1).
Then the total content of this region is
T'C = (internal diagonal contribution) + dim(V, N My, —1) + dim(Vyr N Mag 1)

- dlm(V.’r N Mda—l) - dlm(%up N MdE—l)

v

—(dim(vsup N Mdp;—l) — dim(an N Mda—l)) + (dim(Va N MdE—l) - dlm(Vm N Mdg—l))
= —0y + {3.
The content is bounded above by |S| (lemma 3.4.2) which in turn is bounded above by ¢; and
we have
6 > |S| = ~be + 45
which implies
b1+ 8y — €3 > 0.
So we have equality in all inequalities. In particular, &5 = g = 0, €4 = £, = {3, the internal
diagonal contribution is zero, and ¢y = |S| = total content.

Next we use lemma 3.4.1(b) but first must confirm that the hypotheses for this lemma hold.
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Figure 4.7: The five types of quadrilaterals we are interested in for lemma 4.4.1.

Lemma 4.4.1. If £; = |S| then the hypotheses for lemma 3.4.1(b) are satisfied. In particular,
there are no negative-content quadrilaterals and there are no zero-content quadrilaterals with “="

signs.

Proof. We know ¢; = total content and |S| = # of quads with “=" signs and we know ¢; = {5|.

From lemma 3.4.1, there are five types of quadrilaterals that we are interested in. See Figure 4.7.

¢, = total content = (—1)]|A] + (-1)|B| + |E|

where | X| = # of quads of type X. And
|8| = # of quads with “=" signs = |B| + |C| + |D| + |E|.

Now, ¢; = |S] implies
(=DIA+ (=1)|B| + |E| = |B| + |C| + |D| + | E|
= 0=|A4|+2|B|+|C|+ |D|
Which implies |A| = |B| = |C| = |D| = 0. In particular, |[A| = |B| = 0 means there are no
negative-content quadrilaterals, and |C| = |D| = 0 means there are no zero-content quadrilaterals

with “=" signs. So the hypotheses for lemma 3.4.1 are satisfied. O

Since all internal diagonals have the same label on both vertices, edge xd has the same
label on both vertices. Using lemma 3.4.1(b)(¢), we move south from xd and conclude that

dlm(Vz N Mdg—l) =dim(Vy N MdE—1)~ So 43 =0.
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Wé also have that ¢4 = ¢, = £5. We will show that ¢, = 0. Consider the same region, defined
by xx'' supa, but now label vertex m € Q, with dim(V;, N Mg) for a general point of Z. The
total content, TCg of the region is

TCpgr = (internal diagonal contribution) g + dim(V, N Mg) + dim(Vyr N Mg)
— dim(Vy N Mg) — dim(Vgup N Mg)
> —(dim(Vaup N MR) — dim Ve 0 MRg) + (dim(V, N MRg) — dim(V; N Mg))
=—l+ 4
where | £ | = dim(V, N Mg) — dim(V; N MR). In the case where R = dg — 1, we have TC = T'Cg.

By lemma 3.2.1, we have £ > £3. The total content is still bounded above by £; so we have
4 > —5/2 + fé > —6’2 + 83 = —fy + £3. (4.6)

We already have equality in £; = —¥€5 + £3, so we get equality across (4.6) as well. In particular,
% = £3 = 0 and the internal diagonal contribution is zero.

Moving east from edge xd and using lemma 3.4.1(b)(i1), we get that
dim(Vy N Mg) = dim(Vyr N M) = dim(Ver ) < dim(Ver).

This implies that V» ¢ Mg. By lemma 3.3.1, with equality £, = ¢4 and V,y ¢ Mg, we must
have £, = 0. Thus €4 = ¢, =¥, =0 and we have 0 = ¢; + &3 — €3 = ¢;. And

codim Z — expcod(Wo N Wee,....) =1+ €y + 85+ g — €3 = 0.

For this case, we have described an open subscheme of Z explicitly as a tower of projective and
quadric bundles over OBS(Q,)p. Thus Z is unique and we’ve shown that Z has the expected
codimension.

Case (iii) inf = x"

This case occurs if and only if there are no white checkers directly above row R+ 1 in columns ¢
or greater. See Figure 4.8 as an example. The argument for the case inf # a,x” applies verbatim
until we conclude that 0 > codim Z — expcod(W. N W,.,....) = €1 + €3 — £3. Consider the region
defined by vertices x = inf = x”, %/, sup, and a. Label vertex m € @, with dim(V,,, N My, _1).

Now, V,»~ is a hyperplane in V, so

dim(V,. N Md;;——l) ~ dim(Vye N Mdg—l) =€
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Figure 4.8: dg < n with no white checker in column ¢+ 1. inf = x” and R =dw — 1.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where € = 0 or 1. The total content of region xx’'supa is

TC = (internal diagonal contribution) + dim(V, N Mg, 1) + dim(Vy N Mg, 1)
— dim(Vy N Mag_1) — dim(Vaup N Map_1)
= (internal diagonal contribution) + dim{V, N Mg, —1) + (¢ + dim(Vy» N Mg, 1))
— dim(Vy N Mgp—1) — dim(Vsup N Mag-1)
> e+ (dim(V, N My, 1) — dim(Vy N Mgg_1)) — (dim(Veup N Mgp—1) — dim(Ver N Mgz 1))
=€+ €3 — 3.
This is bounded above by ¢; so ¢ > ¢ + f3 — 5 and thus ¢; + 3 — €3 > €. So we have
0> ¢y + 43— 4¢3 > ¢ and so € = 0, and equality holds in all previous inequalities. In particular,
£y = £}, = ¢5 and the internal diagonal contribution is zero. Using lemma 3.4.1(b)(z) and moving
south from edge xd, we have ¢35 = 0. We now show that ¢, = 0. Relabel region xx'supa with
labels dim(V;, N MRg). The new total content, TCr is
TCr = (internal diagonal contribution)g + dim(V, N Mg) + dim(V,r N Mg)
— dim(Vy; N MRg) ~ dim(Vsyp N MR)
= (internal diagonal contribution) g + dim(V, N Mg) + (eg + dim(Vyr N Mg))
— dim(Vy N Mg) — dim(Vsup N MR)
> eg + (dim(V, N Mg) ~ dim(Vy N Mg)) — (dim(Vayp N Mg) ~ dim(Vyr 0 Mg))
=er+0- 4
where eg = dim(Vy N Mg) — dim(Vy» N Mg) > 0. If there is a white checker in row dg then
R=dg—1and TCgr=TC. By lemma 3.2.1 we have £5 > ¢3.

The total content of the region is bounded above by ¢; so
4 2 “e/2+€‘{3+6R2 *€f2+€32 —£IZ+Z3=—€2+€3. 4.7

We already have equality in 3 = —¢3 + £3 so we now have eg = 0,45 = ¢3 = 0, and the

(internal diagonal contribution) is zero. Since er = 0, we have
dim{Vyy N Mg) = dim(Vyr N Mg) = dim(Vw) < dim(V.).

This implies that Vr ¢ Mg. By lemma 3.3.1, with equality £;, = £; and V,» ¢ Mg, we must
have €, = 0. Thus ¢4 = ¢ = £3 = 0 and we have 0 = ¢; + {5 — €3 = £;. So for inf = x” we have

described an appropriate subscheme of Z and thus completed the proof in this case.
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4,4.2 s; move with dg > n+ 2

There are partial results for the case of an s; move with dg > n+ 2. We omit them for this

dissertation.
4.4.3 59 move

For a nontrivial sp move, there is a white checker in row n. Let inf = inf(a, a”), a = m(F},),
a’ = m(M,), a’ = m(M,—1), and sup = sup(a,a’). Figures 4.9 and 4.10 are examples of
nontrivial sop moves. We have three cases.

Case (i) inf=a

If there are no white checkers in columns 7 4+ 2 < col < ¢+ 1 then inf = a. No white checkers
in this region implies that V, C Viy¢ + F. which means V,;';f N FCJ- C Val, We already know
that all elements of @ satisfy the conditions F.11 C Vi} and Foy1 C Fi, so Foyq C V- is not
a new condition. Thus W, = Q and we have Z = W,,,..,. So Z is unique and codimg Z =
codim(Waa,,.,) = expcod(Wo N Wea.....).

Case (ii) inf # a,a”

See Figures 4.9 and 4.10. There must be at least one white checker in columns n+2 < col <
c+ 1, and at least one white checker in the region bounded by 1 < row < nand ¢ < col < 2n+1.
We will construct a dense open subscheme of Z. Let Zy, Zy, and Zr be described as in section
4.4.1. See Diagram (4.4).

Let = codimppg(q,) Zv. Zv is contained in some closed stratum of codimension at
most ¢; which corresponds to a set S of at most ¢; quadrilaterals of @, (recall strata in section
3.1). Thus £; > |S|. If |S] = ¢; then Zy is the stratum OBS(Q.)s.

We next consider the choices for M. with the conditions described in section 4.3.1. Let

be the codimension of Zs in the fibration
w;l(Zv) — Zy.

Define for a general point of Z,

= dim(Vaup N My_1) — dim(Vim(as,. 1))
= dim(V;up n Mn—l) - dim(Vau).
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Figure 4.9: Example of an sy move where there is no white checker in column ¢+ 1 and there is
a white checker in row n. inf(a, a”) # a,a”
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- ¢

Trow n

o
a = 9gm

Figure 4.10: Example of a nontrivial s; move. Labels r, s,, f;, g;, and h; are discussed in section
4.7.3.
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By lemma 3.3.1, taking R =n—1, j = dim(m(Mp_1)) = dim(a”), § = dim(sup(a, a’)}, B = Zy,
and B — OFI(1,...,6,2n + 1) the map giving the spaces of the northeast border of OBS(Q.),
we have €4 > £5.
Let be the codimension of Zr in the fibration
W&I(ZM) — Zym.
Then we have
codimr Zp = €1 + 44 + &5.

For a general point t = (V., M., F<.) € ZF, consider the set {Fpi1} where

1. F,.CFe41 C FCJ‘

N

. F41 isotropic

i

Vin(Fop1) C Fes1 C Vit
4. Foy1 C (Ff N M)t
Call this space &. The dimension of &; is calculated here:
dim & = dim(V;* N (FE N Mp_q)t) — dim(F.) -1 - 1.

We subtract 1 because we choose a line in the space (V;- N (Fit N M,_1)1)/F, and we subtract
1 for isotropy. Here, V, is isotropic and so is F;* N M,,_; since M, is isotropic, so by Corollary
3.2.1, V; N (Ft N M,_1)t is not isotropic. Continuing the calculation:
dimé& = dim(VEn(FE N Mp_1)t) —c—2

= dim((Vs + (F N Mp_1))Y) —c— 2

=24+ 1-dimV, + (FFfNMu_1))—c—2

=2n+ 1 —dim(V,) — dim(F;" N Mp_1) +dim(V, N FX N M,_q) —c—2

=2n+1—dim(V,) — dim(F;" N My,_1) +dim(V, " M,,_;) —c— 2.
Note that for the last step of the calculation we have V, C Vin(ry) C Fe = Fi-.

Recall from Definition 21 that expcod(W, N W.,,..,) = codimg W, + codimg W, So

®nezxt "
we need
dim(Q;) = dim(V,}) —c—2

=2n+1 - dim(Vigt) — ¢ — 2.
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dim(Wo); = dim(V;E NVik) —c -2

=2n+1—-dim(V,) —c— 2.
dim(Waa,,.... )t = dim(Vigr N (F5" N Mp_1)*) —c— 2

= dim((Vias + (F;- N Mp_1))*) —c—2

=2+ 1—dim(Vips + (FL N M,_1)) —c—2

=2n+1 - dim(Vips) — dim(F- N My,—1)
+dim(Vige NFE N Mpy_1) —c—2

= +1—dim(FFf N My_1)—c—-2.

and
codimg(Ws) = dim(Q;) — dim(W,),
= dim(V,) — dim(Vins).
codimg (Wa,,.,.) = dim(F:- N M,,_q) ~ dim(Ving).
SO

expcod(Wo N We,...,) = dim(Vy) + dim(F N My,_1) — 2 dim(Vige). (4.8)
We now calculate codimg, &;.
codimg, & = dim Q; — dim &
= expcod(W, N W,,,...,) + dim @Q; — dim & — expcod(W, N W,.,....)

= expcod{W, N W, Y+2n+1—dim(Vips) —c— 2

—(2n+1—dim(V,) —dim(Ff N M,_1) +dim(Vy, N Mp,_1) —c - 2)
— (dim(V,) + dim(F;- N My—1) — 2 dim(Viar))

= expcod(W, N W,,_..,) — [dim(Vo N My_1) — dim(Vint)]

= expcod(W, N W,,....) — €3

where = dim(VoN My_1) —dim(Vige). Let be the codimension of the fiber p}l(t) cCZ-
Zp in &. See Diagram (4.4). Then codimg, (p}l(t)) = codimg, & + €. And we have
codim Z — expcod(Wo N Wi,...,) = €1 + €4 + €5 + codimg, & + &6 — expcod(W, N Wi.....)

=£1 —|—€4+€5+€6—£3.

Now, €5 and s are codimensions, so 5,85 > 0. And ¢, > ¢; by lemma 3.3.1, so

codim Z — expcod(Wo N W, ) 2 01 + €2 — £3.
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Since Z is a component of W, N W, it must be true that codim Z < expcod(W, N W,.,....)

®nert?
So 0 > codim Z — expcod(Wo N W,.., )} = &1 + €2 — €3. We now show that £ + £, — €5 > 0.
Label vertex m of @, with the value dim(V,, N M,,_1) for a general point of Z. So inf is
labelled dim(Viy¢) and a” is labelled dim(V,~). Consider the region defined by x = inf,y =
a',z = sup, and w = a (see Definition 22). The total content of region infa”supa is:
TC = (internal diagonal contribution) + dim(V, N M,_1)
+ dim(Vorr N Mp_1) — dim(Vige N Mp—1) — dim(Viup N Mp_1)
> —(dim(Veyp N Mn—1) — dim(Vor)) + (dim(Ve N Mp—1) — dim(Ving))
= —fy + £3.
The content is bounded above by |S| (lemma 3.4.2) which in turn is bounded above by £1, so
£y > |S] > —4€y + £5 and we have ¢; + £ — ¢35 > 0. This means 0 = codim Z — expcod(W, N
Waee.r, ) = €1+ €2 — €5 and we have equality on all inequalities. In particular, Zy = OBS(Q,)s,
8y =4, s = £g =0, the internal diagonal contribution is zero, and ¢; = |S| = total content.
Internal diagonal contribution is zero implies that all internal diagonals have the same labels
on either end. Let d be the vertex of the white checker in row n, then inf d is an internal diagonal
and inf and d have the same label: dim(inf). By lemma 3.4.1(b)(i2), we can deduce that a” and

a’ have the same label. So we have
dim(Vy N Mp_q) = dim(Var 0 My, 1) = dim{Vr) < dim(Vy).

So Vyr ¢ M,,_1. By lemma 3.3.1, since we have the equality £4 = #5, it must be that either £5 = 0
or V41 C Mg, ie. Vor C My_y, for all points in Z. Since this is not the case, €2 = 0.

By lemma 3.4.1(b)(z), we work our way south from the internal diagonal infd to conclude
that inf and a have the same label. Namely, dim(Viye) = dim(V, N M,,_1), so £3 = 0. Which also
gives us ¢; = 0.

Thus codim Z —expcod(W, NW,..,,) = ¢1+£€2—£€3 = 0. So for the sp-case: no white checker
in column ¢+ 1, white checker in row n, inf # a, a”, we have described an open subscheme of Z
explicitly as a tower of projective and quadric bundles over OBS(Qs)p—gs. Thus Z is unique and
we’ve shown Z has the expected codimension.

Case (iii) inf = a”

The proof is verbatim the case in the s; moves when there is a white checker in row dg < n. The
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picture is a little bit different (there are only two black checkers moving) but otherwise similar.

Replace dg with n and the proof is equivalent.
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4.5 Irreducible components of Dg are a subset of the Dg’s

We describe the components of Dg in terms of strata of OBS(Q,). Theorem 4.5.1 is valid
for the case of an s; move where there is a white checker in row dg < n and the case of a nontrivial

sq move. We give some definitions, state the theorem, then prove it for each case individually.
4.5.1 s; move with dg <n

There is a white checker in row dg

Let d be the vertex of @, where the white checker in row dg is located. Define the western
good quadrilaterals of Q. to be those quads with eastern two vertices dominating d and western
two vertices dominated by a = m(F,41). Let the eastern good quadrilaterals be those quads
whose vertices all dominate d, and are east of a western good quad. Let b be the southwestern
corner of the region of good quads and b’ be the southeastern corner of the region of good
quads. The region of good quads is inf(a, a’)a’bb’ (possibly empty). It may be helpful to refer
to Figure 4.5.

Define W,

®next

C Q, fibered over T, with fibers {F.11} such that
1. F.C Fepr C FE

2. F,4; is isotropic

3. Vint C Fyy

4. (FfnMy)c R,

5. (Fi- N Mgag41) € F;i, (this is an open condition)

In other words, W,,,.., is the pullback of the Cartier divisor X C Xeepeor 10 Wee.,.. - Let Dg

®next

be the pullback of the Cartier divisor X, .., C Xee,.., to the irreducible variety WoNW,,, .., C
Q. Thus Dg =W, nNW, cWw,

®next

enose [V Wo.

Let S be a set of good quadrilaterals with none weakly southeast of another. Define a
subvariety Dg of W,,, .. N W, as follows. Let Ts be the open subvariety of the the pullback
of OBS(Q.)s to T, on which dim(V, N My, ) is constant. Let Dg be the closure in Dg of the
pullback of Ts to Do C WoNW, T is irreducible and fibers over general points of Tg cT

®next’
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are irreducible and equidimensional (equidimensional because dim(V, N My, ) is constant on Ts).
So the pullback of Ts to Dg is irreducible, implying that Dg is irreducible.

Let S run over all subsets of good quads with none weakly southeast of another. Let Z be
an irreducible component of D¢ (not to be confused with Z used in earlier proofs). We will show

that there is a set S such that Z = Dg.

Theorem 4.5.1. The irreducible components of Dg are a subset of the set of Dg where S is

some set of good quadrilaterals with none weakly southeast of another.

Proof. Here we will use dg and o’ instead of dg — 1 and a”.
Case (i)inf(a,a’) = a.
Then W,

Snext

Case (ii)inf(a,a’) % a

NW, =W,,.., and W, __. = Dy since there are no good quadrilaterals.

Z is an irreducible component of Dg, so Z has the same dimension as Dg and Dg is a divisor
of Wae,,... " Ws s0
codimg Z = codimg (W,

®®ynert

NW,)+1

Let Zops(qQ.)» Zm, Zr be the image of Z in OBS(Q.),0BS(Q,) x {M.}, and T C OBS(Q,) x
{M.} x {F<.} respectively. Let = codimops(Q,) Z0Bs(Q,) and let S be the set of (at most
¢1) quadrilaterals corresponding to the smallest closed stratum of OBS(Q,) in which Zppg(q.)
is contained. Let be the codimension of Zp in 75, (Za) and for a general point in Z, let

= dim(Vsup(a,a’) n MdE) - dim(Va/)

Using lemma 3.3.1, let R = dg,j = dim(Var), and B = Zppg(g,). Then €4 > £;. Note: R = a;
since there is a white checker in row R = dg and so a; = dg = R. Thus we get equality (¢4 = £3)
only if 5 = 0.

Let be the codimension of ZF in w;l(Zp). So we get as before,
codimp Zp = £ + €4 + 5
For a general point ¢t = (V,, M., F<.) € Zr, consider the set {F.;1} where
1. F,.CF.41 CFt

2. F.4; is isotropic
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3. Vin(Fopr) C Fe1 C Vni(Fﬂ)
4, FC—H C (FCJ" ﬂMdE)J-

We will call this space &. For general t € Zp, the dimension of &; is
dim ¢ = dim(F- NV 0 (FF 0 Mgg)t) — dim(F,) - 1~1

= dim(V;" N (Ff N Mg)t) —c~2

= dim((Va + (Fe" N Mgp))*") —c—2

=2n+1—dim(V,) — dim(F+ N My,) +dim(Va N Fr N Mg,) —c—2

=2n+4 1 — dim(V,) — dim(F1 N My,) + dim(V, N My,) —c—2
In the first line of the above calculation, the first —1 is for choosing a line in the space given.
The second —1 is for the condition that the line must be isotropic. Here, VX N (Ff N My, )t is
not isotropic by corollary 3.2.1 so this is a nontrivial condition.

We now calculate the codimension of €; in Q. Note that expcod(W,NW,.,....) = codimg(W.N

Wee..... } Was shown in section 4.4.1.
codimg, & = codim(W, N W, ,..) + dim Q; — dim & — codim{W, N W,.,....)

= codim(W, N W,.,.) + (2n + 1 — dim(Vips(a,a)) — ¢ — 2)
- (2n 41— dim(V,) — dim(F} N My,) + dim(V, N My,) — ¢ — 2)
— (dim(Va) + dim(F;- N Mg, 1) — 2dim(Vinr))

= codim(W, N W,,..,) + diminf + dim(F: N Mg,)
—dim(F+ N Myg_1) — dim(V, N Mg,)

= codim(W, N W,,,,,,) + diminf +1 — dim(V, N My,).

In the last line of the calculation above, dim(F;- N My,) = dim(Ft N My, 1) + 1.
Let

= dim(V, N Mg, ) — dim(Vine).

Then 43 > 0 because Vips C V, N My,. This step contributes a codimension of compared
to codim(W, N W,......).
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Let be the codimension of the fiber pz!(t) C Z — Zp in &. Picture a diagram similar
to Diagram (4.4). Then codimg, (pz'(t)) = codimg, & + £6. So we have
1 = codim Z — codim{(W, N W,,,....)
= ({1 + &4 + €5 + codim &; + €g) — codim(W, N W,..._,)
=4y + £y + b5 + (codim(W, N W,,...) +1—€3) + &g — codim(W, N W,.....)
=144, + Ly + 05 — 3+ g
> 144 +46; - .
The final inequality is because €4 > £, and Z5, 5 > 0. We will now show that £; + &, — €3 > 0.
Label vertex m of Q, with dim(V,, N My,). We will compute the content of the region
inf(a, a’)a’ sup(a, a’)a. Each internal diagonal edge contributes the label of its larger vertex minus

the label of its smaller vertex, a non-negative contribution. The defining corners contribute their

labels (positive for a,a’ and negative for inf(a, a’) and sup(a,a’)). Thus the total content is
TC = (internal diagonal contribution) + dim{V, N Mg, ) + dim(Vy N My,)
— dim(Vips N Mg, ) — dim(Veup N My,.)
2 (dim(Va) — dim(Veup N Mag ) + (dim(Ve N Mgy ) — dim(Vinr))
= —{y + {5.
Total content is bounded above by |S| which is bounded above by ¢;. This implies £, > |S| >

—&; + {3 and so £; + €9 — €3 > 0, which gives us
121480, +4—403>1+0=1

So ¢ + €5 — f3 = 0. Thus equality holds in all inequalities above. In particular, €5 = £g = 0
and ¢ = ¢4 = 0 and ¢; = {3. Note that £; and {3 are not necessarily zero. And Zpgg(q,) is
the stratum corresponding to S. And so all quadrilaterals have content zero except for £; quads
with content 1 in region inf(a, a’)a’ sup(a, a’)a. We will consider two cases here:

Case b #a

The reader may wish to refer to Figure 4.5 for an example. Let b” € Q. be the vertex of the
other end of the northernmost diagonal edge emanating southeast from b. By equality above,
the internal diagonal contribution is zero, so b and b” have the same label. Applying lemma

3.4.1(b)(i) to the region below edge bb”, we have that all vertices below bb” have the same label
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as well. In particular, the labels of b and a are the same. Let F be the set of edges due south
of b” union the edge bb”. By midsort conjecture 1, there are no white checkers in the region
directly east of E, so this region is a grid of quadrilaterals. Using lemma 3.4.1(b)(ii), we get that
the labels on b’ and sup(a,a’) are the same. Thus, we do not add content by this new region
east of E, and so the total content of the region of good quads, inf(a,a’)a’b’b, is the same as
the content of the region inf(a, a’)a’ sup(a, a’)a. This content is £;. Thus the ¢; positive-content
quadrilaterals S are a subset of the good quads.

Caseb=a

The result that the £; positive-content quads S are a subset of the good quads is immediate.

We now show that no element of S is weakly southeast of another. This portion of the proof
is exactly section 5.11 in [22]. We include the paragraph here for completeness.

Fix a positive-content quadrilateral. Then its northeast, southeast, and southwest vertices
have the same label. Thus by repeated application of lemma 3.4.1(b)(z}, all vertices south of its
southern edge are labeled the same, and there are no positive-content quadrilaterals (elements
of S) south of this edge. Let E’ be the union of edges due south of the northeast vertex of our
positive-content quadrilateral. Repeated applications of lemma 3.4.1(b)(i7) imply that any two
vertices east of E' in the same column have the same label, and there are no positive content
quadrilaterals here either.

Thus Z = Dg for the S described above and we’ve shown that the irreducible components

of Dg are a subset of {Dg}s. O
There is no white checker in row dg, but there is a white checker in row dy > n -+ 2
This case remains to be proven.
4.5.2 s; move with dg > n+ 2
This case remains to be proven.
4.5.3 sp move

This case is almost exactly the same as the case for an s; move with a white checker in row
dg < n. Replace references to row dg with row n. Otherwise the proof is the same and theorem

4.5.1 holds for nontrivial sg moves.
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4.6 Contraction of all but one or two divisors by =

We show in this section that all divisors but possibly Dp and DNw good quad are contracted
by 7. Part (a) of the theorem shows that all other Dg are contracted by =. Part (b) shows that
Dy is contracted by 7 when predicted.

We will state and prove the theorem separately for each case, however, the general strategy
is as follows. In all parts, we will construct for a general point (V, M., F.) € n(Dgs) a positive
dimensional family in Dg which collapses to (V, M., F.). This will prove that Dg is contracted by
7 to a component of codimension greater than one in CIOGr(mg,H_l)X(X.Ux.nm)xo., hence does

not contribute to D.

4.6.1 sp move
Theorem 4.6.1. (a) If S # 0 and S # {northwest good quad} then Dg is contracted by .

(b) If S = 0 and the white checker in row n is in the descending checker’s square (n,c) and

there is a white checker in a column n+ 2 < col < ¢+ 1 then Dg is contracted by .

Proof of Part (a). Given a general point of Dg, ((Vin)meg,, M., F.) € Dg, we will produce a
one-parameter family (Vi )meq,, M., F.) through (Vin)meg, in the stratum OBS(Q,)s, fixing
those V,, on the northeast border of OBS(Q,) and those V,,, where a < m along the southwest
border and any m along the southwest border in checker board columns 1,...,c. Note: For
1<i<2n+1 we have Vm(Mi) C M; since Vi, () is on the northeast border so is fixed. Also
note that for 1 <j <c+1landc+1<j<2n+1 we have Vo) C Fj C V;(Fj). These two
comments hold for any element ((V,;,)me@., M., F.) in the family we will describe. Note also that
Vimaz(Q,) 18 fixed so this one-parameter family in Dg will be contracted by .

Here is a description of the one-parameter family: The description is exactly as in the proof
of proposition 5.13(a) in [22]. We reiterate the proof here for the purpose of checking details.

Choose a quadrilateral stuv in S. Name the elements of @, as in Figure 4.11. gy, is the
white checker in the column containing s. f,,_; is the next white checker to the west of gm. A

few comments:

1. gm is not necessarily a vertex within the “good quad” region; it may be north of the region.
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Figure 4.11: Let quadrilateral stuv be an element of §. Label the elements of @, as in this figure.

2. The s,g1,...,8m column is never a subset of the northeast border because there is always
a column east of s,g1,...,8m and the white checker in that column is in a more northern

row than gn, by midsort conjecture 1.

3. If stuv is the northwest good quad then s = gy, = inf(a,a”). So if inf(a,a”) = a”
then s = gm = inf(a,a”) is on the northeast border and is required to be fixed. And if
inf(a,a”) # a,a” then s = g, = inf(a, a”) has a third southeastern edge pointing due east

(toward a’).

So when stuv is not the northwest good quad, then gy, always has exactly one edge pointing
northwest and two edges pointing southeast.

We define our family as follows: Let V,,, = Vi, for m #s,81, - ,8m. Then choose V! from
the open set of P(V,/V) = P! such that dim(V},) = dim(g;) for 1 <7 < m and Vg, is defined
as Vy, = V{NVy,. We do not get the full P! of choices here because we must choose V{ so its
intersection with the “h; column” gives spaces with the expected codimensions. We double check
that Vg, is valid. Note that Vy, = VJ, is contained in Vg, since Vy, = V)NV, Vy, =V}, = VeNVh,,

and Ve C V{ so our containments V;, C V;, make sense. a

Proof of Part (b). We now suppose there is a white checker in the descending black checker

position, (n,c). Consider Figure 4.12. Call the white checker in position (n,c), d. Let t be the
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Figure 4.12: Diagram for § = ) and there is a white checker in row n in the descending black
checker’s square.

northwestern-most white checker in columns n+2 < col < c+1. g1,...,8m are the m white
checkers in columns n+2 < col £ ¢+ 1. These white checkers are in columns n+2 < a3 < ag <
o < o < c+ 1. Let ro, be the row of the white checker called g;. By midsort conjecture 2,
N+2< T <Tay < ' <Tq, <2n+1 hy € Qo is in column a; and row of the i** white
checker in the southwest ¢ x ¢ block. There are r such white checkers in this block. We know
that Vy # V; since S = 0.

In .4, the black checker configuration tells us that
FgﬂMn= ﬂﬂMn= c_ﬂﬂMn=-~'= 2 N My

In particular,

FyNMy=Fo NMy=-=Fy NM,

where a; is the column of the i*" white checker in the region weakly south of the critical diagonal.

We are given ((Vi), M., F.) such that

1. M, F)eX

®next

2. (Vm)mEQo € OBS(QO)(D
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3. Vin C Miow of m N Feol of m for all m € Qo
Some other observations:

1. S = {0 so we may assume that V,, # Vi for m, m’ opposite corners of any quadrilateral of

Qo.
2. Vi C My NFy=MyNF,,.
3.V, C Fa,

4. Vs = (V4, ;) so V,; C Fy,. Note also that Vs = (Vy, Vy,) and Vi, = (Vy, Vy,) with V,, C F,

and Vg C M N Fe = My NFy; s0 Vi, CFy; for1 <5 <m.

We will describe an m-dimensional family (V;,)weq, through (Vi )weq, in the stratum OBS(Q.)p
preserving all spaces on the northeast border and all spaces on the southwest border in columns
1< col <n+1andin columns ¢ < col < 2n + 1. In particular, we fix Viez.

Let V) =V, for w # g1,...,8m and w # hjj for 1 <7 <rand 1 < j < m. Choose Vg’1
from the open subset of P(V;/Vins(a,a)) such that V; # Vg and V. = (Vh,,, Vy,) has dimh;
for 1 <4 < r. Some notes: Since V, C F,,, we know that V;; C F,, also. And Vg’x has the
correct M. row containment because V; is in the same row. And V). = (Vh,,, V;,) has the correct
M. and F' containment because of Vi, and V;, have the correct containments. In particular,
Vi | C Fa, because V; C F,, and Vi, C Frpq C Fa,.

Now, for 2 < j < m, choose Vg’j from the open subset of ]P(ij/Vg’j_l) such that Vg’j # Vi
and Vh’ij = (Vglj’vl{i,,-_1> has dim h;; for 1 < i < r. Note that Vg’j C Vy, and Vi, C Fy, so
Ve, CFay. And Vi =(V; |, V) C Fy, because Vy; _ C Fy,;_, C Fy, and Vj, C Fq,.

Since the original point ((Viy)weq,, M., F') is in this family, it’s nonempty. So we’ve described
an m-dimensional (m > 1) family in Dg that collapses when we apply m. So Dg is contracted

by =. O

4.6.2 s; move with dg <n
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Figure 4.13: Diagram for the case S = () and there is a white checker in the rising black checker
square (row dg + 1).

There is a white checker in row dg
Theorem 4.6.2. (a) If S # 0, {northwest good quad} then Dg is contracted by =.

(b) (i) If S =0 and there is a white checker in the rising black checker square (in row dg+1),

then Dg is contracted by .

(i) If there is a white checker in the eastern descending black checker square (position
(dg,c)) and there is at least one white checker in columns dg +1 < col < c+1 then

Dg is contracted by .
Proof of Part (a). This is exactly as the so-case. O

Proof of Part (b)(z). There is a white checker in row dg + 1 in the rising black checker position.
Name the elements of Q. as in Figure 4.13. Here ¢ is the white checker in row dg + 1 and d is
the white checker in row dg. We will describe a one-parameter family (V! )meg, in OBS(Q.)
that preserves all spaces on the northeast and southwest borders, except V,: (note that Ve is
preserved). In order to show (V) )meq,, M., F.) € Dg=y for all elements of the family, we will
need to verify that for all V, in the family, we have V), C My,

Let V,, = Vi, for m # d,g1,...,8m. Now choose V from the open set of P(Vs/Vint(a.a)) =
P! such that dim(Vy,) = dimg; where V,, = (Vj,Vy,) for 1 <4 < m. In particular, V, =
(Vs Vi) = (Vg Var).

Now, Vo C My, -1 C My, and Vj C V, with V; = (W, V). We show here that V, C My,
which will give V; C My,. Vy C My, and Vi C Magy1 N Feyp (this is where the hypothesis
that ¢ is in rov-s1 dg + 1 is used). Now we have the containment Mgy, N Fey1 © Mug1 N Feyr.

By the e,,¢;:-configuration, we have dim(Mjg, N Fey1) = dim(Myg41 N Feqn) 0 the two spaces
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are equal. This gives us V; C Mgy, N Fep1 C Mgg. So Vs = (V;, Vy) C Mgy,. Finally, we have
Vglm = (V],V},.) C My,.

We've described a one-dimensional family in Dg which collapses to a general point in 7(Dg),

so Dg is contracted by 7. [

Proof of Part (b)(:7). Here there is a white checker in the descending black checker position in
row dg. Rows dg and dw + 1 are mirror image rows. Since there is a white checker in row dg,
there is not white checker in row dw + 1, the row of the rising black checker that corresponds to
the western descending black checker. With this in mind, this proof is almost identical to the sq
move proof, with a few small, obvious changes. Mainly, F, is replaced with Fy, and references

to column n + 2 will be replaced with the column of the rising black checker in row dg +1. [

There is no white checker in row dg, but there is a whife checker in row dw > n+ 2
This case remains.

4.6.3 s; move withdg >n-+2

This case remains.
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4.7 Multiplicity 1

We now show that the Dg that are not contracted by = appear with multiplicity 1 in the

Cartier divisor Dg. We state the theorem once and prove it for individual cases.

Theorem 4.7.1. (a) When Dy is not contracted by w, the multiplicity of the Cartier divisor
Dg along the Weil divisor Dy is 1.

(b) If there are good quadrilaterals, the multiplicity of Dg along D{Nw good quad} %S 1.
4.7.1 s; move with dg <n

There is a white checker in row dg

Proof of Part (a). Consider the open set T of T that lies in the preimage of the dense open
stratum (S = @) of OBS(Q,), and where V, N My, = V, = Viyr. Let Q' be the preimage of T’
in Q. Then

Q' NDog=Q Nn(WenW,__..).

We want to show that Q' N (W, NW,,...) is generically reduced. We know 7" is reduced because
T’ € T and T is reduced. Thus it is sufficient to show that the general fiber of @' N(W,NW,_,_,
in WoNW,

) —

T is reduced. Once we’ve shown this, then we know W,NW,

®next

has multiplicity

®next

one along the divisor Dy.

We now show that the general fiber is reduced. To build Q' N (W, N W, __.) over a general

next

point (V., M., F<.) € T”, we choose F,.1 such that
1. F,.C Fey1 C F
2. F.41 is isotropic
3. Vo, CFh,y
4. (Mgz NFL) C FL,
These conditions are equivalent to choosing an isotropic F,y; such that

Fy C Fop1 C [Va + (Mg, N FH)E
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Now,
[Va + (Mag N FOI* = [(Va + Mag) N F T
= (Va+ Myp)t + F.
=(VinMg)+F.
Note that (V;- N Mg, )+ F, is actually the direct sum (V;- N Mz, ) & F. because M. N F, = (0).
Thus choosing F.11 is equivalent to choosing a point in OP(V;" N Mg, ). Keeping in mind that

Mg, NV, = Vins, we define a basis such that
o Vine = (e1,- ., €k)
o Vo= (e1,...,€k Chils---s€0)
o Mg, = (e1,. .. ek, f1,-. s fr)

where k + r = dg. We choose the symmetric bilinear form B so it is standard with respect to
{e1. .., eant1) = C?™*1. Note that V, N (f1,..., fr) = (0). With this choice of basis, the rank of
OP(V;tn MdlE) is the same as the rank of B on (ex41,...,e2nt1-2) N {f1,..., fr)*.

We consider C?™*! where m =n — k. Let V = (ex41,...,€0) and M = (f1,...,fr). V
and M are isotropic, V is maximal in C2™+! if and only if V, is maximal in C?"**1, and M is
maximal in C?*™*! if and only if My, is maximal in C2"*!, Qur question is now rephrased as:
show rank B|xy1np1y > 3 for a general point. Since we are looking to find a lower bound on
rank for a general point, it is sufficient to find an example of a particular V and M that yield

rank BI(VlﬂM..L) > 3.
Example 4.7.1. We choose a new basis for V' and M and a symmetric bilinear form that is
standard with respect to this new basis. Let

M ={(g1,.-.,9m-1)

and
V= <gm + Im+3,Im+4y -+ - 792m+1>~

Here we have dim(M) = dim(V) = m — 1, but this example can generalize to M and V with

smaller dimensions. Then

MJ_ = (glv .. 'sg’m—hgm,g‘m—i—l)
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inf(a, a')
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™m
Figure 4.14:
and
vi= (Gms Im+1+ Im+3, Im+2 — Gm—15 Gm44s - - - 792m+1>-

Then the intersection is

M"L N V‘L = (gm,gm+11gm+2 - gm-—l)
and rank Blyiqpe = 3.

The example shown is for nonmaximal isotropic V and M in C>™*! which means the example
is only valid if dim(V,) < n and dim(My,) < n. Now, dg < n by hypothesis. And if dim(V,) =n
then there are no white checkers in columns ¢ + 1 < col < 2n+1. In particular, there is no white
checker in column ¢. But this implies there is a white checker in column ¢ + 1, a contradiction
to our hypothesis that column ¢+ 1 is devoid of white checkers. Thus this example is valid and
is sufficient for showing the rank of the bilinear form is at least three for the general fiber of
QNWw,Nnw,

— T which shows our fiber is reduced. 0

nect

Proof of Part (b).

We give a test family F through a general point (V., M., F.) of CloBS(Qo) X (XeUXa 0y, ) oo MeEEtING
Dq along D{Nw good quad} With multiplicity 1. Label the elements of @, as in Figure 4.14. t is
the highest white checker in columns dg +1 < col < ¢+ 1 and r’ is the row of checker t. We will

define a family F = {((V,;,)meq., M/, F')} as follows:
o VI =V, form+#d,g1,....8m

o Choose e; € V; and eq € Vj so that e; is a generator of V;/Viys and ey is a generator of
Va/Vine. Let V] = (Ving, pe: + veq) where [p,v] € P, so V) varies in the pencil P(V;/Vint).
Let Vg’i = (V,, V).
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o To build M/, we have two possibilities: either r' < dy or v > dw .

1. If v/ < dw thenlet M{ = M; for 1 <i<dgandr' <i<n. Andlet Mj, ., ;= le
Define M}_ = (Mg, 1, et + veq), and Mj, = (M} )*. For dg +1 < < min(r' -
1,n), choose M] such that
(a) M{_y c MjcC(M]_)*

(b) M is isotropic

(c) Vn’l(Mi) C M/ (this condition is not necessary becuse there is not a white checker
in row )

() Vinqaasy € (M)

Then define M, ,,_, = (M])*.

2. If ' > dw then there are no white checkers in rows dg +1 < row < n in columns
dg +1 < col < ¢+ 1. In the maximal case, this means at least one of the following
occur:

(a) There is a white checker in row n in a column ¢ < col < 2n + 1.

(b) There is a white checker in row n+ 2 in a column dg +1 < col < ¢+ 1.

(c) There is a white checker in row n 4 2 in a column ¢ < col < 2n + 1.

For the first possibility, the column of such a white checker would be less than the
column of the white checker labeled d by midsort conjecture 1. So this white checker
will serve as a blocker, causing no northwest good quadrilateral. So this possibility
does not occur here. For the second possibility, we would have n + 2 < dw. Then
7" = n+2 < dw which goes against our hypothesis that 7' > dy,. The third possibility
is like the first: such a white checker would serve as a blocker to any checkers in columns
deg+1<col<c+1.

So for the maximal case, we cannot have ' > dy and still have a northwest good

quadrilateral. We assume that ' < dw for the rest of this proof.

o Next we build F’. Let F]’ =Fjfor1<j<cand¢c<j<2n+1 Now choose F/ , such
that

1. F,CFl,, CF}
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N

F!., is isotropic

3. Va C (Fé+1)_L

[N

: Vm(Fc+1) - Fcl+1

5. (May_1 NFF) C (Fiy)*

For c+2 < j < ¢+ 2, define

Fj = Fjpy + [(Fln)™ N M,
where r; is the row of the black checker in column j.

With this construction, and pu = 0, we get our original general point in Clops(qQ,)x (X,UX.,,,, ) Xoe-
So F ¢ Dgq. Also, when v = 0, we get V; = V/ 50 (V. )meq, € OBS(Qo){NW good quad} and
thus F meets DiNw good quad) &t ¥ = 0. We will see that Dg contains the divisor v = 0 with
multiplicity 1, proving the result.

Keep in mind that (F{ ;)" contains Vo = Vi, Vo p ) = Vin(ruy,) © Fépn, and (Fiyy)t
contains My, 1 N F;- for all points of F.

The divisor Dg on F is given by
1. Vo C (Fl )t
2. (M, NF3) C (F)*
3. VM(Fc+1) - Fcl+1
These three conditions are equivalent to
(Va, Mg, NFF) C{Fopn)* C Viip,y

And since we already know that V, C (F/,,)* and (F. )t C VT#(FCH) for all points in F, the

divisor condition on F is equivalent to
(Mg, NFH) C (Fi)?t

Now, consider (Mg, -1, Fci) = K™ (this is fixed for all points of ). Choose a basisey, ..., ex
for Ft and fi,..., f; for My,_1. Here, k = 2n+1-cand j = dg~1. Let | = dim(My,_1NFL) =
dg—1—-cande = f; for 1 <4 < 1. Then K™ = (e1,... ek, fit1,...,f;). Define the
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projection o : K™ — F by o(e;) = e; and o(fi) = 0. o vanishes on My,_1/(Mgz—1 N F3-) so
(Id = o)(K™) C Mgg-1. Now, MfiE = (Mgyg -1, ues + veg), so by our condition above, Dg is
given by
(Mflig NFHc (Fc/+1)'L
= (Myg—1, pes + vea) N F C (Fl )"
= (Myg—_1,0(pe: + veg)) N F- C (Fiq)*
= (Mgg-1 N FL) + (o(ues + veq)) C (FLq)* since o(pes + veq) € F
<= po(e;) +vo(ea) € (Flpq)* since (Ma,-1 NFL) C (F.,,)* for all points in F
> e+ voled) € (Flyn)*
since e; € Fi- since t is in a column less than ¢ and ¢ is the identity on F:
> vo(ea) € (Foy)™
sincet <asoe €V, and V, C (Fi )t
Since the final statement is only true if we are in the divisor Dg, we know this condition is not
satisfied by all elements of 7 (as F ¢ Dg). This tells us that o(eq) € (Va, Myz—1 N F) because
if it were, then o(eq) € (Fl )t

Thus the restriction of Dg to F has two components, each with multiplicity 1. They are:

1. the hyperplane section {(Fi )" | oeq) € (Fiq)*} C P(F/(Va, Mgp—1 N FL))*. This
verifies that the multiplicity of D¢ along Dy is 1 (in the special case where there is a

northwest good quadrilateral).
2. The fiber for v = 0 is also a component, appearing with multiplicity 1 as desired.

|
There is no white checker in row dg, but there is a white checker in row dy > n+2
This case remains.
4.7.2 s; move withdg>n+2

This case remains.
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4.7.3 59 move

Proof of Part (a).

Consider a general point (V., M., F) € CloBs(Q,)x(XeUX.,,,,)Xos- The reader may wish to refer
to Figures 4.9 and 4.10 as examples. Without loss of generality, let F. be the standard flag where
F; = {e1,...,e;). and M; = (ec,,...,€c) where ¢ is the column of the black checker in row
k of the e-configuration. Since we are considering a general point of Clops(qQ.)x (X.UX.,,,,)Xoe:
VN M;NF; = Vy form € Q, in position (4,7) on the checker board. In particular, d is the

white checker in position (n,¢g) and
Va= <V'mf7 w -+ eg)

where
n

C
w = Z a;e; + Ed: biei.

i=1- col of inf i=¢+1

By d’s position, (n, cs), we can assume that the coefficient in front of e, is 1 and b, # 0. By
hypothesis, we are looking at Dy and are only interested in Dp when it is not contracted by =.
So by theorem 4.6.1, we may assume cq > c.

We give a test family F through the general point (V,M.,F.) € CloBs(Qo)x(XeUXa,,,, ) Xoe
meeting Dq along Dy with multiplicity 1. The family F = {(V/, M!, F')} is given by

e Fix F/ = F.

o Let M= M; and (M)}t =M*for1<i<n-1

e Define M), = M,_1 + (%s2ec+1 + stepq1 — t2e.) for [s,t] € P1. Then M., = (ML)L.
e For m € , where d A m, let V|, = V.

o Define

1
Vi = Vins + {w + 53266_,_1 + steps1 — tzeg).
Note that V; is completely determined by the choice of [s, t] for M.

e For m € Q, with d < m and m # d, inductively define V), as V}, x + Véyy, the span of the
vector spaces associated to the northeast and southwest corners of the quadrilateral where

m is the southeast corner.
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The set of all such (V/, M/, F') is the 1-dimensional family F.
For a point (V/, M!, F') € F, consider a quadrilateral in @, with northeast corner at position
(rnE,cne) and associated vector space Vg and with southwest corner at position (rsw,csw)

2n+1

and associated vector space Vsw. Vg has a vector v = 3.7

a;e; where acyy # 0. If Vyg
is in éolumn cq, then acy, = be, # 0 because (w + (%82664_1 + stent1 — t2ee)) C Vg, If Vvg
is in a column not equal to cg, then Vg inherits the nonzero coefficient acy, from the general
point (V., M., F). Now, because Vaw C Feg,, = (€1, " ,€cqn ) aNd csw < cng, all vectors of
Vsw are of the form w = Ef_’_ffl b;e; where be, = 0. So Vyg # Vew for any quad in Q. Thus
V! € OBS(Q.)p for every element of F.

When [s,t] = [0,1], (V/,M!,F') is the original general point (V,,M.,F). So F ¢ Dy.
When [s,t] = [1,0], M/, = Mpn_1 + (ec+1) which implies (M!, N F}) C FJ,, which makes

(M!,Fl'ye X So F meets Dy.

®next
Now, moving away from the original general point, let s = 1. Then we have M), = M,,_, +

(Yecs1 +tenyr — t%eg). A point in F is in Dy if and only if

M0 (Fo)t < (Fp)t

(o]

<= dim(M/ NF.y1) >1 by lemma4.3.1
1
= dim((Mp_; + (5ect1 + tents = t2eg)) N Foy1) > 1.

Now, for (M/,F') € Xa UX we have that dim(M, _; N Feyq) =0, so

®rnext?

. 1 1
dlm((M;L_l + <§ec+1 + tent1 — t26£>) N Fc+1) >1 = (§€c+1 +tent1 — t26£>) C Fey1.

This is true if and only if ~t2 =0 and ¢t = 0 (since n+ 1 > c+1 and ¢ > c+ 1), a multiplicity 1
condition. So F meets Dg with multiplicity 1 at a point of Dg, and therefore Dg has multiplicity

one along Dy. O

Proof of Part (b).
We give a test family F through a general point (V., M., F.) of CloBs(Qo) x(XeUXa,,,, ) Xoe Mmeeting
Dq along DiNw good quad) With multiplicity 1. Label the elements of @, as in Figure 4.15. See

Figure 4.10 as an example.
e t is the highest white checker in columns n+2 < col < ¢+ 1.

e ris the row of checker t, 7 =2n+1—-r < n.
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inf(a, a’)

"
______________________ _fT_"____»___ TOW < N
gm = @' E
- ! row =7
————————— o row =r>n

Figure 4.15:
The family F = {(V/, M/, F')} is given by
eV =Vpform=#d,g1,...,8m

Choose e; € V; and eq4 € V; so that e; is a generator of V;/Viys and ey is a generator of

Va/Vint. Let V] = (Vint, pet + veg) where [u,v] € P! and Vo, = (Vy,, V) has dim(V]) =

dim(g;). So V varies in an open subset of P(V;/Vins). Let Vy, = (Vy,, V).

e For 1 <i <y, let M/ =M, and (M{)‘L = M;-.

We make the following observation: there is no white checker in row r+ 1 because r+1 =
2n+1—r+1=2n+4 2 — 7 and row r has checker t in it. By maximality, since there
are no white checkers in rows n + 2 < row < r — 1, we must have white checkers in rows

r+2<row<n.

Choose a line L such that

1. Lg M,

2. LC M, =M}

3. L is isotropic

4. L ((V)F nVi) = (Vi 0 (ues + vea)t)
5 LCF

Then define

This is a valid choice for M, if the following are true:

1. My C My, CM,
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2. dim(Myy;) =r+1

3. M., is isotropic

4, VT;(MHI) C M4y

3. VT;‘L(M,-,.l) c (Mz'/_—}-l)i_ = M;_4
We will show that the above are all satisfied by our choice of My ;. M, C My +L =M,
and both M, and L are contained in M, so 1 is satisfied. L ¢ M, so dim(M,+ L) =r+1,
proving 2. L is isotropic and contained in MLl so My + L is isotropic which is 3. There is

no white checker in row r so 4 is not a new condition. There are also no white checkers in

rowsn+1,...,7r—1s0
V";L(Mr-—l) = V"%(Mn) = Vglm = </.L€t + Ved) + me
Now, (ue; + veq) + Vi, C V, C M, which implies M, C ((ue; + veg) + Vy, ). And
L C ({ues + veq) + Vy, )t by hypothesis. So
My + L= M. C ({pe: +veq) + me)'L
= (ue: +veg) + Vi C M;H
= Vi C M
Thus showing 5.
e Now defineforr+2<i<n
M = Myy1 + Vi,
Then with perps, we have M/,

o We now build the F! part of the family. Let Fj = Fj for 1 < j < c. Choose Fy,; such that

1. F,.CF,,,CF#
2. Fl,, is isotropic

3. Vo C (Fo)t

4. Vor..) C© Fiqr (There is no white checker in column ¢ 4 1, so this is not a new

condition.)

5. (M},_yNF) c (Flq)*
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Consider condition 5. M},_; N F: = (M}, + V;, )NF = (Mp + L+ V;, )N F-. So
(Mp_y NF) C (Fo)*
= Fl,1 C((Mp+L+V;,)NnFH)*
= F,CcM+L+Vi ) +F
& Fi,, C(M,nL"NFi)+F,
Note that L C Fi* so F, C L. So we have
FlaCc(M.NL*nVE)+F.c (Lt +F)=L*
which implies L C Féﬂ
o Now define FJ’ forc+2<j<nas
Fj=Fo+(Fe N M)
where 7; is the row of the black checker in column j of the e-configuration. With perps,
this gives F'.

With u = 0 we get the original point (V.,, M., F), so F ¢ Dg. With v =0, V] = V/ so
(V!,M!,F!) € DNW good quad 8nd F meets DNw good quad- We Wwill see that Dg contains the
divisor v = 0 with multiplicity 1, proving the result.

The divisor Dg on F is given by
LV, (Flq)t
2. Vin(Fesn) © Fen
3. (M, NF) C Flyy

Note that (M},_; N F:-) C F!,, along with conditions 1 and 2 are satisfied by all points of . A

point of F is in Dg

(M NF) C Fly,y

(Mpy1 +V, ) NFL) C Fopr

(Mg + L+ Vy, + (ues + vea)) N Fi) C Fiyy

(My + Vi, + (ues +veq)) N\F + L C Fyy

Tt i1t

(My+ Vi) + (ues + veg)) N F- C Faa
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The last equivalence is because L C F‘ér_l .
Let £ = dim((M,+V},,)NF:). Choose a basis ey, ..., ex for F5- and fi,. .., f; for M.+ Vj,

such that e; = f; for 1 <7 < £. Then

(My + V5, + F = (e1,.., ek, fop1s -0 i)
Define a projection
o (M, +Vy, )+ Ff— Ff

by o(e;) = e; for 1 < i < kand o(f;) =0 for £+ 1 < i < j. The projection ¢ vanishes on
(M, + Vi, )/ [(My + V5, )N F] so (Id — o)((My + V},) + F-) € M+ V;,,. Note that o is fixed

for all points in the family . So we can continue the equivalence:

(Mg + Vy,,) + (pe: + vea)] N Fih C Fpyy

[(My + V5,) + (o(pes + vea))) N FiE C Fopy

(M + V5,) N F + (o(pes + veg)) C Feyq  since o(ues +veq) € Ft-

o(ue; +veq) € Foyy  since My + Vy,, C My,_y and My,_; NF;- C Fgyy V pts of F
po(e) +vo(ea) € Foyy

pes 4+ vo(ea) € Flyy  since o is the identity on F

[N A A

vo(eq) € Fl,, sincet<a,so{(e;)) CV, CF, ., Vptsof F

The final statement is true only if we are in the divisor Dg. Since F ¢ Dg, this statement is
not satisfied by all points in F.

Thus the restriction of Dg to F has two components, each with multiplicity 1. They are:

1. the hyperplane section {F/,; | o(eq) € Fi 1} CF

2. the fiber for v = 0 is also a component, appearing with multiplicity 1 as desired.
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4.8 Connecting divisors to white checker moves

For the cases of nontrivial s moves and s; moves with a white checker in row dg < n,
we have two loose ends to tie up to conclude the proof of the type B, geometric Littlewood-
Richardson rule. These loose ends are exactly section 5.16 of [22]. We state them and include
the proofs nearly verbatim.

The loose ends:

L W(D@) = —‘Yostay.nemt and / or ﬂ-(DNW good quad) = Xoswop'ne:f.'

2. Furthermore X, appears with multiplicity 1 in Clos(qQ,)x(X,UX.,,,,,)Xoe if Dg ap-

Ostay®next

pears with multiplicity 1 in Clops(Q,)x(X,UX.,,,,)Xoce, and similarly for X and

Cswop®next

DNW good quad-
Both are a consequence of the next result ((2) using the fact that = is birational).
Theorem 4.8.1. The morphism © induces birational maps from

(a) Dy to Xo,,,, and

®next
(b) DNW good quad to Xos'wap‘nemt .

--+ Dy is given by the morphism X

Ostay®next

Proof. (a) The inverse rational map X

OBS(Q.) x X

Ostay®next

: by definition X,,,,_e,.,; Parameterizes isotropic flags M. and F. in

®next Ostay

®.cxt-position, as well as the maximal isotropic space V' and isotropic spaces V N M; N F;,
which correspond to elements of Q. (and dim(VNM;NF;) equals the corresponding element

of Qo).

(b) The inverse rational map Xo, ., enest
X

Cswap®nezt - OBS(QO) X X
OBS(QO)NW good quad < OBS(QO)

--+ DNW good quad 18 similarly given by the morphism

by way of the locally closed immersion OBS(Q.,,,,)s =

®nezt?

a
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