

Problem Statement

For a company's marketing team to create attractive and exciting contents, it is important to identify topics that are highly trending. The question is:

Which topics (say, in the data infrastructure and analytics industry) are highly trending within the recent one year?

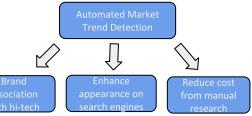


Figure 1. Values from detecting market trends.

Solution

Stage 1: Discover topics of interest relevant to the industry

Co-occurrences of words within same mention reveal their relationship.

Stage 2: Retrieve Google search topic popularity
Google search volumes, available at trends.google.com, show
how many times people search for a topic over time.

Stage 3: Identify topics with consistent growth
Train a Convolutional Neural Network (CNN) to differentiate
times-series with positive trend and others with stationary or
declining trend.

Figure 2. Solution broken down into 3 stages.

Automating Market Trends Detection with Machine Learning Hieu Nguyen

MS Statistics, Colorado State University

Stage 1: Discover topics of interests

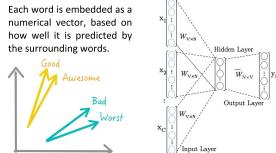


Figure 3. Word embedding model (right) and word associations based vector representation (left)).

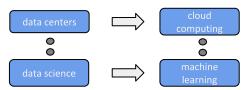


Figure 4. Words associated with data related topics.

Stage 2: Retrieve Google search volume for topics

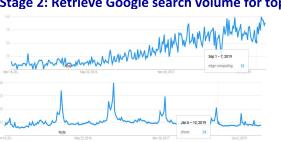


Figure 4. Google search volume time-series examples.

Stage 3: Identify topics with consistent growth

Convolutional neural network trained on synthetic data is able to discern whether Google search volume time-series has consistent growth pattern.

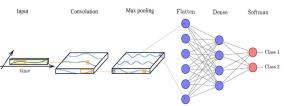


Figure 5. Convolutional neural network for time-series classification

Results

Figure 6. Discovered trending topics.
Bigger topics grow faster in one-year period.

References

- 1. Mikolov, Tomas; Sutskever, Ilya; Chen, Kai; Corrado, Greg S.; Dean, Jeff (2013). *Distributed representations of words and phrases and their compositionality*. Advances in Neural Information Processing Systems.
- 2. LeCun, Yann; Léon Bottou; Yoshua Bengio; Patrick Haffner (1998). *Gradient-based learning applied to document recognition*. Proceedings of the IEEE. 86 (11): 2278–2324.