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ABSTRACT OF DISSERTATION

A RATIO ERGODIC THEOREM ON BOREL ACTIONS OF
Z* AND R¢

We prove a ratio ergodic theorem for free Borel actions of Z¢ and R? on a
standard Borel probability space. The proof employs an extension of the Besicovitch
Covering Lemma, as well as a notion of coarse dimension that originates in an
upcoming paper of Hochman. Due to possible singularity of the measure, we cannot
use functional analytic arguments and therefore diffuse the measure onto the orbits
of the action. This diffused measure is denoted u,. and our averages arc of the form
Z;'(IBT) an foT™™(x)du,. A Folner condition on the orbits of the action is shown,
which is the main tool used in the proof of the ergodic theorem. Also, an extension
of a known example of divergence of a ratio average is presented for which the action
is both conservative and free.

Eric Norman Holt
Department of Mathematics
Colorado State University
Fort Collins, Colorado 80523
Summer 2009
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Chapter 1

Introduction

The first milestones in ergodic theory come in the early 1930’s when von Neu-
mann [25] and Birkhoff [4] each publish an crgodic theorem. Both results assume
a measure-preserving, invertible transformation on a o-finite measurc space. A few
years later Hopf extends Birkhoff’s result for L' functions by proving a ratio cr-
godic theorem [9]. Hopf’s theorem is presented in terms of a weighted average, but
can also be secn as generalizing the measure-preserving requircment to nonsingular
transformations. In 1944, Hurewicz gives an even further generalization by proving
an crgodic theorem that allows for singularity of the system [10]. The results of
both Hopf and Hurewicz assume conservativity. It is five decades until another ma-
jor pointwise crgodic theorem of this form is presented. In 2007, Feldman [6] uses
a maximal inequalvity proven by Lindenstrass and Rudolph [14] to show an ergodic
theorem for non-singular actions of Z¢. The multidimensional group Z¢ requires him
to average over hypercubes [—n,n]¢, which are centered at the origin, rather than
the most natural cxtension of the carlicr results, which is to average over [0,n]%.
This is necessary because an example of divergence is known for the latter type
of average with d > 1 [13]. Hochman recently extended Feldman’s Ratio Ergodic
Theorem by removing the assumption of conservativity on both the action and the
components [8].

The climax of this dissertation is the proof of a ratio ergodic theorem for Borel

actions of Z% and R® which assumes neither nonsingularity nor conservativity. This



first, introductory chapter gives a foundation to the ergodic theorem by describing
the ergodicity condition and reviewing the classical ergodic theorems that pertain
to pointwise convergence. Chapter 2 presents the Besicovitch Covering Lemma, as
well as a recent extension of the Besicovitch Covering Lemma due to Hochman. In
Chapter 3, the mcasure of a standard Borel probability space is diffused onto the
orbits of a free Borel Z? or R? action. Such diffusion of a measure has a long history
in the setting of the leaves of a foliation, but was introduced by Lindenstauss and
Rudolph in the case of a Borel action [14]. Also in this chapter, a Fglner condition
of the diffused measure on the orbits of such an action is proven, which is the
first original work presented. The second such work is an extension of the Krengel
and Brunel example of divergence of ratio averages so that the system is free and
conscrvative, which is in Chapter 4. Also, the ratio ergodic theorems of Feldman
and Hochman are reviewed here. Chapter 5 includes the statement and proof of the
main result, as well as a few examples. Finally, Chapter 6 describes questions which

arise from the results presented in this dissertation.

1.1 Ergodicity

The study of dynamical systems, at its most basic level, is the branch of math-
cmatics that deals with values which change in time. A state space and a discrete
or continuous transformation are used to quantify this idea. Physicists introduced
the ergodic hypothesis, which is the notion that statistical propertics of the system
over time in a single experiment will be the same as thé statistical properties across
the state space [16]. This probably came about by observations that the statistics
arc indeed often the same. One basic statistical analysis one can do is an average, or
cxpectation. Ergodic theory began as the study of such averages, though naturally
the ficld has grown to include subjects that extend beyond the scope of computing
average values. Ergodic theorems, in turn, are results concerning the existence and

value of a time average under certain conditions.



Consider a mass attached to a spring in a frictionless system. For the state
space, one must consider velocity or momentum as well as the position of the mass.
This is necessary so that the system is deterministic: knowing the value at one
time enables us to compute the value at any other time. The state space, then, is
I x R for some open interval I (for our purposes, what happens at the endpoints of
this interval is not important). We may use either a discrete time transformation,
representing measurcment at subsequent intervals of a constant amount of time, or
a continuous time transformation. An orbit is a circle for the continuous time case
and is an at most countable subset of a circle for the discrete time case. Suppose
that f(z) is the total energy of the system at state z. By conservation of energy we
have that f remains constant under the transformation. Thus, the average value of
f over time in a particular experiment is clearly not the same as the expected value
of f across the state space (the former is a number whercas the latter is infinite).
On the other hand, if the state space is restricted to a certain encrgy level, then the
average value of f over time in one experiment is the same as the expected value of
f over the state spacc.

This example demonstrates the notion of ergodicity, which is the condition
that time averages equal space averages. Also seen in this example is the ergodic
decomposition: any system can be broken up into ergodic components. To make
this notion of crgodicity more precise, suppose we have a state space X. The state
space is assumed to come with a natural probability mecasure g on the o-algebra F

of X. This allows us to write down a spacc average:

/X fdu.

We assume a discrete time system and let T : X — X be an F measurable time
evolution map that gives evolution over one unit of time. We then formulate a time

average:

n—1
An(f) = =3 ot
k=0



This is known as the Cezéaro average, and is only one of many time averages that
can be considered. Ergodicity, in this case, is the property that A, (f) converges to
[ f. The convergence may be pointwise, L', L?, or uniform, for example.

In application of the results, we may wonder where the probability measure p
comes from. Indeed, one natural way to find u is just to run the experiment and
let u(A) be the proportion of times that the statc is in A. This, however, is just
computing a time average, so the space average cquals the time average for free
(assuming that the average converges). Another way to approach this issue is to
search for a measure that is invariant under 7. Suppose the state space is compact
and the map T is continuous. We can start with any probability measure v and

look at the sequence of measurcs

n—1
1
Up = — E voT*
n
k=0

We don’t know if these measures converge, but we do know that a convergent sub-
sequence exists. If we start with a system in R™ and the Lebesgue measure, then
the subsequential limits of {1,} are called Krylov-Bogolubov measures. Any weak*
stubsequential limit of v, is an invariant measure and therefore a reasonable choice
for p [5].

The. above formulation of the condition of ergodicity is a property of the set
{f,(X,F,u), T}. However, the usual definition of ergodicity is a property of the set
{(X,F,u), T} and looks quite different.

Definition 1.1.1. The system (X, T) is said to be ergodic if T7'(A) = A implies
u(A)=0o0r1l for Ae F.

This definition appears to have nothing to do with space averages and time
averages. How can the two notions of ergodicity be reconciled? Suppose that for

all f € L', A,(f) — [ fdu almost surely. Further, suppose A € F is T invariant



(T (A) = A) and p(A) > 0. Letting f = 14 gives
lim ~ Z 14 (T*(z)) = n(A) (1.1.1)

for a.e. z. Choose z; € A for which (1.1.1) holds. Now 14(T%*(z)) = 1 for
all £ € {0,1,2,...} and we sec u(A) = 1. Thercfore, T-invariant sets must have
measure zcro or one, and the system is ergodic. So, we see how space averages
equalling time averages implies Definition 1.1.1. In the next section, we will see the

converse: Definition 1.1.1 implies space averages equal time averages.

1.2 Early Ergodic Theorems

We now look at some early ergodic theorems.

The most basic ergodic theorem is the Law of Large Numbers, which says that
the average value of a Bernoulli random variable converges to the expected value
as the number of trials goes to infinity. Although the law is stated in the context
of random variables rather than dynamical systems, the language and result are
casily transferrable. The function f is the random variable and the state space is all
infinite sequences of samples. We endow the state space with a Bernoulli measure,
which is based on the original measure of the sample space. For example, suppose
a fair die is rolled repeatedly. The Law of Large Numbers says us that, almost
surely, the ratio of fours rolled to total number of rolls converges to %, since % is the
expected value, or space average, of the random variable (which takes the value 1
when a four is rolled and 0 otherwise) [11, 3].

Next we turn our attention to the von Neumann Ergodic Theorem and the
Birkhoff Ergodic Theorem. As with the various laws of large numbers, the differ-
cnce between these two theorems is the type of convergence that is asserted. In this

dissertation, we are concerned with ergodic theorems that give pointwise conver-

gence. The von Neumann theorem gives L? convergence, but is included becausc it



is in this setting that the identity of the function which the timc averages converge

to is the clearest.

Theorem 1.2.1. (von Neumann Ergodic Theorem) [25] Suppose (X, F,u) is a o-
finite measure space and T is a measurable, measure-preserving transformation.
Then for f € L*(u), there is an f € L*(u) for which

1 n—1 _

- Y foTF—F

k=0
in L(p).
We notice a special property of f: it is T-invariant. To sece this, we compare

the time averages of f and f o T in L%

/

2

du = /H—(f—foT”)

n—1

n—1 2
1 1
EZfoT’“—EZ(foT)oT’“ du

2
< ;5“”2,

and the right hand side goes to zero as n approaches infinity. The von Neumann

Ergodic Theorem, then, gives that

—

n—

(foT)oT") — f

0

in L?(u). In other words, foT = f.

S
il

This property is notable because it is the main tool used in characterizing f.
The proof of the von Neumann Ergodic Theorem is constructive. It shows that f is
the projection of f onto the L%-subspace of T-invariant functions.

The Birkhoff Ergodic Theorem came soon after the von Neumann thcorem

(even though the publication dates imply the opposite).

Theorem 1.2.2. (Birkhoff Ergodic Theorem) [4] Suppose (X, F, ) is a probability
space, T is a measurable and measure-preserving transformation on X, and f €

LY(u). Then

1 n—1 . ~
;kz:%foT — f (1.2.1)



both a.e. and in L'(u), and f is the conditional expectation of f given the o-algebra

of T-invariant sets.

We can usc the Birkhoff Ergodic Theorem to show the other dircction in relating
the two notions of ergodicity given above, having alrcady seen that time averages
equalling space averages implies invariant sets have measurc zero or one. Now
suppose that the pair {(X,F, u),T} is ergodic (Definition 1.1.1) and f € L'(p).
The conditional expectation of f given the o-algebra of T-invariant sets is just the
expected value of f in this case. Therefore, the Birkhoff Ergodic Theorem says that
time averages converge to the expected valuc of the function almost surely.

The Birkhoff theorem is often stated on a o-finite measure space, although
the characterization of the limit does not hold in this case since the conditional
expectation is not defined for infinitc mecasures. If there is a T-invariant subset of
positive, finite measure, then onc can restrict the space to this set and apply the
charactcrization given in Theorem 1.2.2. If no such set exists, then f is 0 a.c [20)].

We will necd a new definition to continue our review of the early ergodic theo-

rems.

Definition 1.2.3. The system {(X,F, u), T} is conservative if u(T*(A)NA) =0
and for all k € N and A € F implies p(A) = 0.

Hopf extended Birkhoff’s theorem, which was in turn extended by Hurewicz.
We now review these two results. Again, our statement will assume a probability
space, although convergence holds in both cases for o-finite measure spaces. (The
o-finite case adds an assumption of conservativity for Hopf’s theorem, whereas con-
servativity is automatic for the measure-preserving transformation on a probability

space, which is a condition of Theorem 1.2.4.)

Theorem 1.2.4. (Hopf Ergodic Theorem) [9] Suppose (X,F,u) is a probability

space, T is a measurable, measure-preserving transformation of X, f € L'(u), and



g : X — R is measurable with respect to the Lebesque o-algebra on R and positive

almost everywhere. Then

5ifoTk
k=0

. BUIT)
T e B(glD)

zgoTk

k=0

(1.2.2)

almost everywhere, where T is the o-algebra of T invariant sets.

We notice that this is a generalization of the Birkhoff Ergodic Theorem by
taking g to be the constant function 1. Since the Hopf theorem involves a ratio of
sums, it is known as a ratio ergodic theorem.

A little over a decade after Birkhoff’s Ergodic Theorem and scven years after
Hopf’s Ergodic Theorem, Hurewicz proved an even morc general result removing
the assumption that the system be measure-preserving. In fact, Hurewicz allowed
the system to be singular: we may have A € F with u(A) =0 and p(T-1(A)) > 0.

Rather than assuming a function f € L'(u) as Birkhoff and Hopf do, Hurewicz
starts with a countably additive set function F’ on F which is absolutely continuous
with respect to p. This countably additive sct function is just a signed measure on
F. Taking f = %—S (sec [17] for the Radon-Nikodym Theorem on signed measures)

and g = %Z, this is the Hopf theorem.

Theorem 1.2.5. (Hurewicz Ergodic Theorem) [10] Suppose (X, F, i) is a probabil-
ity space and T is a measurable and measurably invertible transformation of X. Let
F be a finite, countably additive set function on F which is absolutely continuous

with respect to pu, and consider the point densities

- d(ZZ:oF o T¥)
o d(ZZ:o poTk)

If the system is conservative, then f, converges a.e.

fa (1.2.3)



Recent work on the ratio ergodic theorem has considered an action of Z¢ or
R? instead of a transformation T. Nevertheless, the Birkhoff, Hopf, and Hurewicz
crgodic theorems provide a foundation for the more recent ratio ergodic theorems.
The arguments used on the actions of higher dimensional groups are very similar to
those used in these early ergodic theorems. We return to the ratio ergodic theorem

in Chapter 4, but first build a few tools for our proof in the next few chapters.



Chapter 2

Covering Lemmas

Covering lemmas play a crucial role in various arguments in Ergodic Theory.
The most basic such lemma is that if Iy, I, and I3 are intervals and I; N I, N I3
is nonempty, then one of the intervals may be discarded so that the remaining two
intervals cover the same set as the original three. This is essentially the Besicovitch
Covering Lemma for R. In this chapter, we prove the Besicovitch Covering Lemma
and then move on to an extension by Hochman. All results in this chapter arc
presented in R¢, but the results immediately follow for Z% as well (using Haar instead
of Lebesgue measure). In both settings, the Euclidean metric is used. A ball in R®
with radius p and center ¢, denoted B,(c), here means {z € R?: d(z,c) < p}. If the

center is not specified, then it is assumed to be the origin.

2.1 The Besicovitch Covering Lemma

Theorem 2.1.1. (The Besicovitch Covering Lemma) [2, 24] For R, there is a
natural number C such that the following holds. If E C R® is bounded, and for all
v € E we have a ball B,y (v) with p(v) > 0, then there exist subsets Ey,...,Ec C E
such that vy, vy € Ey, vy # vy tmplies B,y (v1) N Byy)(v2) = 0, and

EC U Bp(v)(’l)).

vEE)
1<k<C

We will employ the following two lemmas in the proof of the Besicovitch Cov-

ering Lemma.

10



Lemma 2.1.2. For all real numbers r and R, let K be the maximum number of
disjoint balls of radius 5 in R¢ that can be placed inside a ball of radius 3R (notice
K depends only on d and the ratio %) Then for any collection of K + 1 vectors
V0, V1, Vg, ., Vg € R and function p: {v1,...,vg} — [r, R] with d(vi,v;) > p(v;) for

all0 <1< j <K, thereis a1l < k < K such that d(vy,vg) > p(vg) + p(vg).

r

Proof. Fix r, R, and d. Let K be the maximum number of disjoint balls of radius 7
that can be placed inside a ball of radius 3R. Assumc v; and p arc as stated. For
the sake of contradiction, suppose that for all 0 < j < K, d(vo,v;) < p(ve) + plv;).
This implies that the collection of balls {Bz(v;) : 0 < j < K} is pairwise disjoint

and contained in Bsg(vg), which contradicts the definition of K.

The next lemma is rather technical.

Lemma 2.1.3. Suppose d > 2 and a,b,c € R? are not collinear. Let d; =
d(a,b),dy := d(b,c),dsy := d(a,c), and ¢ := Labc (see Figure 2.1). Also, suppose

positive real numbers p(a), p(b), p(c) and the following constraints:

1. dy € [pla), p(a) + p(b)) and dy € [p(c), p(c) + p(b)),

Proof. Suppose, for the sake of contradiction, that the assumptions hold and m(vy) <

2. Thus, cos(y) > -1%, and we apply the law of cosines to Aabc and estimate the

11



dy

dy
dy

Figure 2.1: The setup for Lemma 2.1.3.

quantities involved:

(ds)? = (d1)*+ (d2)* — 2d1dp cos ¥
(p(a))’ (%n(a)) n (%n(e)) ~ 2p(a)p(e)

We combine like terms, move the last term to the left hand side, and divide by

AN

pla)p(c) to got
515 M 121 &

9
5° 2,401 p(c) 100 p(a)’
)

which implies p(a) > Tp(c) by assumption 3. Applying assumptions 1 and 4 gives

63
10

sin(%)

sin{Zbac) ’ Since

d3 > %d,. Concavity of sin on [0, ] and the law of sincs gives 2 <

—Sm(z >0 for z € (0,%),y € (0,z), we have & <—<-——

5 sin(y) m(Zbac)
Let e be a new point which is colinear with a and ¢ such that d(a,e) = d(a,b).
Then d(c,e) < p(b), while d(b,e) > dy — p(b) > d(c,e) and d(b,c) = dy > d(c,e).

Thus, €€ is the shortest leg of Abee, so m(Zcbe) < %. Since Aabe is isosccles,

— b
m(w) + m{Zebe) = AL
7 10
z 5~ '1'2—677”(1/)),
which implies m(y) > %ﬂ' — 22 This contradicts m(y) < I. O

Proof. Now we prove Theorem 2.1.1. Suppose E and p(v) are as stated.
It is not difficult to see that Theorem 2.1.1 holds for d = 1 by letting C = 2. We
may assume, then, that d > 2. Let s = diam(F) and K be the maximum number

of bhalls of radius one that can be placed inside a ball of radius 300 Also, let M be

12



the maximum number of non-origin points that can be placed in R such that the
measurc of any angle with the origin as the vertex and one of these points on cach
leg is at least §. Let C = 115K + M + 1, which depends only on d. If there is a
v € E with p(v) > s, then we let E; = {v} and E; =0 for 1 < j < C, and the
result holds. Assume, then, that p(v) < s for all v € E.

For cach natural number ¢, lct

6= {ver: (8) = ()}

Notice that G1, Gq, ... are pairwise disjoint and cover F.

We build the sets Fj simultaneously, moving through the sets GG; one at a time.
For step one, choose vy € Gy (if Gy is empty, then skip to step two) and let vy € Ej.
Suppose 1, ..., v;—1 have been chosen and placed in an appropriate set Ej. Choose
v; € G1 \ Ui<icj By (1), skipping to step two if this set is empty. Let n; be the
smallest n such that for each 1 < k < n, thereis av € Ey with d(v;,v) < p(v;)+p(v)
and place v; € E,,. Notice that {B,)}ves, is a pairwise disjoint collection of balls
for each k. Also, the balls {B%(vj)} arc pairwise disjoint, where r; = 23s. Since
the set Gy is bounded, this process terminates.

Now suppose steps one through | — 1 have been completed. Let k; be such that

vy, has been defined, but v, has not (or, if no v; has been defined, let k; = 0).

Also, let
=G\ U B,y (v;).
1<5<k

Choose vk, 41 € G}, or skip to step | + 1 if G} is empty. Let ng,4+1 be the smallest n
such that for cach 1 < k < n, thereis av € Ey with d(vg,+1,v) < p(vg,41) +p(v), and

place vy, 41 € B, Now suppose v; has been chosen and placed in an appropriate

k41"

Ey for ki +1 < i < kj4j. Choose v 4 € G\ U B (vs), or skip to the next

kiH1<i<ki+j
step if this set is empty. Let ng,4+; be the smallest n such that for each 1 < k < n,

there is a v € Ey with d(vk,45,v) < p(vk4;) + p(v) and place vg,4; € E, Again,

ky+3°

13



the balls {B%(vj)} are pairwise disjoint, where r, = (32)'s. Since G, is bounded,
step [ terminates.

If we show that n; is never larger than C, then the proof is complete. Suppose,
for sake of contradiction, that the above procedure is carried out and there is some
J at step { for which n; = C + 1. This gives incrcasing natural numbers 41,12, ..., ic
such that d(vj,v;,) < p(v;) + p(vy) forall 1 <k < C.

Lemma 2.1.2 implies that at most K of the vectors v;, can be from a given
Gm. Thus, ic_115x < ki—115 + 1. Also, for all 1 < k£ < C — 115K, p(v;,) > 10p(v;),
since (53)'* > 10 and (53)1 is the ratio of the lower bound for p on Gi_115 to the
upper bound for p(v;). Since C' — 115K > M, we may choose distinct vectors w,

and wy from v, ..

+ Vie_nsg Such that m(Zwivjws) < §. Without loss of generality,

assume w; comes before wy in the list v;,,...,vio_,1.x- Apply Lemma 2.1.3 with
a = wy,b=vj, and ¢ = wy to get that m(Lw,v;w,) > . This is a contradiction, so

n; is never larger than C, and the proof is complcte. 0l

Given a set of points in R% and a ball centered at each point, it would be
helpful to reduce to a disjoint sub-collection of these balls that still cover the set.
The Vitali Covering Lemma comes close to providing this, but the sub-collection
given covers all but some positive fraction of the Lebesgue mass of the set. Since
we will be working with measures that are not Lebesgue, this is not good cnough
for us. Instead, we use the Besicovitch Covering Lemma, which shows that there
must be C collections of balls such that each collection has pairwise disjoint balls
and the balls in the C' collections together union to the entire set. This allows us to
cover a fraction % of the mass of the set, with respect the measurc we use. Much

work has been done to determine the value of C [7]. For our purposes, however, it

will be sufficient that C is finite,
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2.2 Hochman’s Lemma

In this section, we follow a line of reasoning that extends the commonly used
Besicovitch covering lemma on R? so that, in each subcollection, two distinct balls
are not only disjoint, but are no less than a certain positive distance apart. This
is used to prove a statement that says balls with heavy boundaries cannot be too
common if the measure on R? is finite. The results and arguments in this section are
due to Hochman [8]. It should be noted that Hochman’s trcatment includes more
gencral metrics on R

First we start with some terminology.

Definition 2.2.1. A collection of subsets of R% has multiplicity M if every element

of R is contained in at most M elements of the collection.

For example, if d = 1, then the collection of sets {{1,4,5}, {0,1,2}, B2(4), R}
has multiplicity three since 1,4, and 5 each lie in three sets in the collection. Notice

that this collection also has multiplicity M for any integer M > 3.

Definition 2.2.2. A collection of balls U in R? is well-separated if the distance
between any two balls in U is at least rminlf = glirUl{radius(B)}.
€

A collection being well-separated allows us to extend the radii of the balls in

rminid
2

the collection by up to and still have a disjoint collection.
Suppose m is Lebesgue measure on R, We have the following improvement of

the Besicovitch Covering Lemma.

Lemma 2.2.3. Suppose E C R® is bounded and to cach v € E there corresponds a
ball B,y (v) with p(v) > 0. Then there ezists a number x, which depends only on
R?, and a partition {E1, Fa, ..., Ex} of E such that each E; is countable, { Byw)(v) :
v € E;} is well-separated for each j, and

EC U B,,(v)(v).

’U€E]'
1<j<x
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Proof. Let C be the constant from the Besicovitch Covering Lemma. Also, let D be
the doubling constant for R%: for any ball B,(v) in R%, m(By,(v)) < D - m(B,(v)).

Let v € R? and R > 0. Supposc {Bi, By, ..., By} is a collection of balls with
radii > R, centers in B3p(v), and multiplicity C. Shrinking each ball to radius R
gives

n-m(Bg(v)) < C-m(Bar(v)) < D*- C - m(Bg(v)),

and we see n < CD?%. Let x = CD? + 1.

Suppose there is a v € E with p(v) > diam(FE). We let £y = {v} and Ep =
... = E, =0, and the result holds. We may assume, then, that p(v) < diam(E) for
cach v € E.

Let vy, vg, ... be a sequence of vectors from E such that the ordered collection of
balls { B,y (v1), Bpgu,) (v2), ...} covers E, has nonincreasing radii, multiplicity C, and
Vi & Uj<iBow,)(v;). The fact that such a collection of balls may be chosen follows
from the Besicovitch Covering Lemma. Color the balls inductively, starting with
Bywyy(v1), with CD? + 1 colors so that each color gives a well-separated collection.
By the work in the previous paragraph, B,,)(v;) cannot be within p(v;) of more
than C D? of the balls which are already covered, so an appropriate coloring is always

available. O
Fix a value x = x(R?) that satisfies Lemma 2.2.3.

Corollary 2.2.4. Suppose v is a measure on R, E C R? is bounded, 0 < v(E) <
oo, and each v € E corresponds to a ball Byy(v). Then there exist vi,vs,... € F

such that { By, (Vi) bien s well-separated and covers at least % of the v-mass of E.

Proof. By Lemma 2.2.3, let {E}, Fs, ..., F, } be a partition of £ such that { By (v) :
v € Ej;} is well-separated for each j and U;{B,)(v) : v € E;} covers E. By finite

additivity,

vB)= Y v| [ Bow®)

1<j<x \veE;
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The result follows. a

We now build some notation. Suppose r,p > 0 and v € R%. We let
0,B,(v) :== B,(v) \ By—,(v)

and
07 By(v) := Bpyr(v) \ Bpr(v).
Also, for a collection U of balls in RY, let U = {0B : B € U}, wherc 8B is the

usual topological boundary. We may extend the definition of well-separated to this

setting.

Definition 2.2.5. A collection of balls V in R? has that 0V is well-separated if
rminV < inf{d(8B1,0B,) : B1, B € V}.

Note that a collection of balls ¥ may have the property that 9V is well-separated
cven though V is not well-scparated. Consider, for example, the collection V = {By :
N e N}

Next, we have a lemma that allows us to capture mass of a set inside thick
boundaries 03B when each vector of the set itself is the center of many balls with

heavy thick boundaries.

Lemma 2.2.6. Suppose that v is a finite measure on R%, 0 < ,6 < 1, p = [%] +1,

r >0,
1. E C R? is bounded and v(E) > dv(RY),
2. max(11,r) <r < Ry <ry<..<r, <R, and

3. for each 1 <i < p, we have a function p; : E — [ry, R;] and v(0, By, (v)) >

ev(By,)(v)) for allv € E.

17



Then there is an integer 1 < k < p and V C U;se{B,,»)(v) : v € E} such that OV

is well separated and

u((ga;RkB) NE)> %V(E).

Proof. We recursively define V; C Uisp—i{Bp,w)(v) : v € E} such that V; is well
separated and v(Upey;0,B) > jg;z/(E) until one of the V;’s satisfy the conclusions.
We begin by letting Vg = 0.

Suppose V;-; has been constructed and satisfies the above mentioned condi-
tions. If v((Upey, 035, B)NE) > sv(E), then let V =V, and k = p—j to

satisfy the conclusions. Otherwise, we build V;. Notice v(E'\ Upey, ,03p,  B) >

5v(E). We apply Corollary 2.2.4 to sclect E; C (E\ Upey,_ 035 _,B) such that
Vi == {B,,w() : v € E;} is well-separated and v(E N Upey,B) > 2—1)<-V(E) Let
V; = V;;1 UV, Since cach clement of E; is of distance at least 2Ry from the

boundary of any ball in V;_;, 0V; is well-separated. Also,

v UE)TB = v U 0.B | +v U@TB

Bey; BeVj, BeV;
€ €
> F— 1)— —_
> (1= VtB) + 3=H(B)
. €

Notice that v(Upey,0r B) would be larger than v(R%) for j = p, so the process must

terminate before building V. O

We would like to use the fact that the boundary of a ball has lower dimension
than the ball itself. Since we are dealing with thick boundaries, though, we need to

define a different type of dimension.

Definition 2.2.7. If Y is a metric space and Ry > 1, then cdimp,Y =k (read Y

has coarse dimension k at scales > Ry is defined by recursion on k:

1. cdimpg,® = —1 for any Ry,
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2. cdimpg,Y is the minimum integer k for which cdim;g,0;f B,(v) < k—1 for any

t>1,p>tRy, andv €Y.

For example, cdimp, £ = 0 if and only if F is nonempty and diamFE < Ry - 1.
Also, if E has diamFE > Ry — 1 and E is composed of two nonempty, disjoint sets,
each of diameter less than Ry — 1, then cdimp F = 1.

We show that R? has finite coarse dimension for scales > 11.

Lemma 2.2.8. There ezists k € N such that p(1) > p(2) > ... > p(k) > 11 and
V1,V o, Uk € RE with v; & Uj<i Bojy—1(v;) implies
k
()01 Boy (vi) = 0.
i=1
Proof. Let k be larger than the most points that can be placed around v in R? so
that the angle formed by any pair of these points on the legs and v as the vertex is
at least arccos(%g). Suppose the assumptions hold and
k
vE ﬂ 01 By (v).
i=1
Choose 1 < j < i < k and note p(j) > p(¢). Let o := d(v;,v5),0 := d(v,v;),7 =

d(v,v;), and ¢ := Zv;vv;, and we have the following three estimates:

p(])—l < q,

IN
—

lp(7) — ]

The law of cosines states that

o = 32+ ~% - 28vcos .
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We use this to estimate cos ¢:

cos¢p =

< =

Thus, ¢ < arccos(%—;) for all 1 < j < i < k, which contradicts the definition of

k. O
Proposition 2.2.9. R? has finite coarse dimension at scales > 11.

Proof. Suppose cdim;;R? = [. We work backwards through the inductive definition

of coarse dimension. For any #(1) > 1, p(1) > 11¢(1), and v € R¢, we have
Cdimt(l)na;(l)Bp(l)(U) = l — 1.

This means that for any £(1),4(2) > 1, p(1) > 11¢(1), p(2) > 11¢(1)t(2), v; € R?,

and vy € 8:(1)3,,(1)(1)1), we have that
Cdimt(l)t(g)u (6:(2)3[)(2) ('Ug) N 8:(1)30(1)(?)1)) S [ — 2.

How do we see that [ is finite? To say that R? has finite coarse dimension no larger
than k — 1 is to say that for any ¢(1),4(2),...,t(k) > 1, p(¢) for 1 < i < k such that
p(i) > t(1)t(2)---t(4)11, and v; € R? for 1 < 4 < k with v; € 95y Boi) (v;) for all
1 <3 < i, we have

k
edimyqyy..ory [ Ol Bocoy (1) = —1,
i=1

Let k' be the k from Proposition 2.2.8 and &” be the largest & € N such that
there exist vy, .05 € B‘i‘f with d(v;,v;) > 1 — IlT forall 1 < i< j <k Let

k = K'k"” + 1. Suppose we are given
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2. p(1),p(2), ..., p(k) with p(7) > t(1)¢(2) - --t(¢)11, and

3. v1, Vg, ..., 0% € R% such that v; € 07y Boy (vj) for j < i.

We would like to show ﬁleat*(i)Bp(i)(vi) = 0.
Claim: we can obtain a subsequence of length & such that {p(5;)}*, is de-
creasing. To see this, we show there is some 2 < j < k" + 1 with p(j) < p(1),

and the argument may be repeated for p(j), and so on. Suppose, for the sake of

contradiction, that p(j) > p(1) for 2 < j < k" + 1. First, notice

vj € Byy+i1)(v1) C Bz yqy(v1)

11
for all 2 < j < k" +1. Second, if 2 < j <1 < k" +1, then

1 1

d(vi, v;) = p(J) = t(7) 2 p()(1 — =) = p(1)(1

117 = B ﬁ)'

Scaling the norm by a factor of ﬁ shows that we have contradicted the definition
of k".

Having reduced to a subsequence of length &' with decreasing radii, let ¢ =
max; t(1) and scale the norm by a factor of 1. Lemma 2.2.8 shows mlea;(i) Byiy(vi) =

0, so edim;;R? < k — 1. O

We now have access to the main result of this section, which will allow us to

show a Fglner condition on the orbits of a Z% or R? action. Suppose F is a subset
PP

of R<.

Theorem 2.2.10. Fiz e, 6 € (0,1) and r > 0. Suppose cdimy F = k, and let q be

Tk

' 4k . .
an integer no smaller than (353? + 2)F. (—266—})’“. Also, suppose v is a finite measure

on F,

1. E CF is bounded,
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2. r; and R; are numbers for 1 <1 < q such that max(11,7) < r; < Ry, Rip1 >

rip1 > 11R;, and

3. pit E—[ry, Ry for 1 <1 < q such that v(0,B,,w)(v)) > ev(B,,wy(v)) for each
ve L.

Then v(E) < 6v(F).

Proof. We proceed by induction on k. For the base case, suppose k = —1, which is
trivial since this implies F' = {.
Suppose, then, that the result holds for cdim;; F' = k — 1. For the sake of

contradiction, assume v(FE) > dv(F). For cach 1 <1 < g, let
U; = {Bpi(v)(v) U E E}

Let N = [ ] and notice N > (%;—X 4+ 2)k-1 . (Ex 652 )k. We apply Lemma 2.2.6

1+1
to every N th r;, R;, and p; to get a collection of balls V C Uk/<i<_]%UiN such that
OV is well-separated and v(Fy N E) > sv(F), where Fy = UpevOsg,, B. Let p =
[+ D (5

constant p corresponds to g for parameters k — 1, x, 5, and ‘5 . Notice M > 64X We

24k 27k

L) M = —5, and m(j) = KN + jp for 0 < j < M. The

consider the following M collections of covers of F:

Urn(0)+1; Um(0) 425 s Um(0)+p

U (1)+1, Um(1)+2, - Um(1)4p

Ur(ar—1)+1, Um(a1-1)425 oo, Un(rr—1)4p
For 0 < j < M, let F; := UBevang(j)B. Notice F; C Fjy1, Fj is a disjoint
union since dV is well-separated and rmin(V) > 2Rp;), and v(F; N E) > v(E) for
al 0 < j< M. Fix0<j< M-—1and for Be€Vlet Fg = 8§Rm(j)B. Also, let
V;:={BeV:y(FgNE)>2u(Fg)}. Fix B €V,
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We would like to apply the induction hypothesis to the set Fg. However, we
do not know that all of the balls with heavy boundaries still have heavy boundaries
when restricted to Fg. So, we have to throw away some points. In fact, the induction
hypothesis will give us a lower bound for the v mass of the points we have to throw

away. For m(j) <i < m(j) + p, let
. €
B = {v € ENFp: v(Fy N8By 0(v) > £v(Fa N Bm(v)(v))} ,

Ep = Nm)<i<m)+pEy, and By := FgNE\ Eg. We apply the induction hypothesis
to the space Fg with bounded Sﬁbset Ep and paramcters k — 1, 3, %,V!pB and p
instead of parameters k, €, 6, v, and g, respectively. This gives that v(Eg) < gl/(FB).
In turn,

v(Eg) > -g-u(FB),

since B € V;. For v € Ey, let m(j) < i, < m(j) + p such that v ¢ F%. Thus,
. €
V(Fg N 0,:Bp,)(v) > 5v(By,, (V)

for all v € E. Now {B,, (v) : v € E} is a cover of E, and we apply Corollary
2.2.4 to get a well-separated subcollection C covering % of the v mass of E;. We

have the following estimate:

v(|J 8.B' N (F\Fs) > %V(U B)

BeC BreC
€
> ZV(E‘/B)
e
—u(Fg).
> 16XV( 5)

Notice Upgice 0-B' N (F\ Fp) is contained in Fjyy; \ F}.
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We un-fix B and have

< Z/(Fj N E)

= v(( U O35, B)
Bev,

<
Bey;

<

JNE) + u(
BeV\V;

6 \
v( | Fy N E) + v U &g, B)

BeV\V;

v( U Fg)+ gy(F)

(U &, ,BNE)

This gives that %Z/(F) < V(UBevj Fg), which is a disjoint union and allows us to

estimate the v mass between Fj1 and Fj:

We see that this is true for all 0 < j < M — 1, which gives v(U;F}) >

contradiction.

v(Fi \ F))

>

Z v ;Rm(mpB \ 8;Rmo‘)B)

24
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Chapter 3

Diffusion of Measure

Let F be Z4 or R%. In the first section of this chapter we construct measures

te on F for p-a.c. x such that for any A € F and N > 0,

)= [

where A, ;= {v € F : T%(x) € A}, T is a free Borel action of F on a standard
Borel probability space (X, F, i), and p} is a measure on X. Such diffusion of the
measure is common in the setting of the leaves of a foliation but was only recently
applied to the general context of Borel actions on Polish spaces. In the second

section we prove a Fglner condition for F' on the diffused mcasurcs p,.

3.1 Construction of the Diffused Measure

Definition 3.1.1. The measure spaces (X, F,p) and (Y,G,v) are measurably

isomorphic if there exist
1. XoCX and Yo CY with p(X \ Xo) =0, v(Y \Yy) =0 and
2. a measurable bijection ¢ : Xog — Yy such that v = po ¢~ .
The map ¢ is called an isomorphism.

Definition 3.1.2. A standard probability space (or Lebesgue probability
space) is a probability space which is measurably isomorphic to an interval with the

Borel sets and Lebesque measure joined with at most countably many atoms.
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A standard Borel probability space will be the setting in which we work. We
can look at the preimage of the dyadic intervals under such an isomorphism to
get a sequence of partitions P, that refines to points almost surely on a standard
probability space. Each partition includes the singletons of the atoms.

To build the diffused measures, we construct a “twisted” measure on X x F'
and then define a measure on F using the Rohklin decomposition. Let m be Haar
measure (Lebesgue if F = R?, counting if F' = Z%) on the Borel sets (denoted B) of
F. We use the function I : X x F — X x F, defined by I(z,v) := (T?z,v), to twist

the space X x F. Let N € N and iy := I*(u X m)|xxBy, @ Borel probability

-1
m(Bn)
measure on X X By. Notice that for M > N, fipr|xxpBy 1S cquivalent to fin.

The Rohklin decomposition can be used to pull the measure /iy down to orbits,
so a description of this decomposition of a measure will be useful. Suppose (X, F, u)
is a standard Borel probability space. Let (Y,Q,;\) be an interval of length A
together with the points 1,2, ..., which each are assigned mass Ay, \g, ..., such that
(X, F,u) is isomorphic to (Y, G, A). Then there exists a measurable isomorphism
¥ between (X, F,u) and (Y x Y, G x G, v) for some measure v (see Figure (3.1)).
There is also a measurable isomorphism ¢ between (X,F,u) and (Y,G, ). The
Rohklin Theorem says that for any sub o-algebra ‘H of F, ¥ and v may be chosen
so that the o-algebra {A xY : A€ G} in Y x Y is the image of H under ¢ almost
surely. The pullbacks of the vertical slices {a} x Y are called fibres. Notice, then,
that a fibre is a maximal set of points in X which arc indistinguishable under H.
Let P,(z) be the element of the partition P, that contains x and m; be projection
onto the second coordinate in Y x Y. A fibre almost surely can be given a measure
pa by

e BT W) X m(4)
i I T TR < V)

Integrating these measures over u gives back y, i.e., for any f € L'(v),

/ Fdu = / / Fdusdp. (3.1.2)
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For z € X, the measure p, is a version of the conditional cxpcectation of p given 'H,

which is denoted E,(A|H) [20, 18].

Figure 3.1: The space Y x Y.

Let Hy := {A x By : A € F}, and apply the Rohklin Theorem to X x By
using the sub o-algebra Hy. The fibres correspond to sets {z} x By, since these are
precisely the sets of undistinguishable points under Hy. The fibre measures, which
we call fi; n, are measures on Borel subsets of {z} x By. To keep our notation as
clean as possible, we consider the measures fi, v as mecasurcs on the Borel sets of
Bn. We let f(z,v) = 1g(v) for a Borel ¥ C By in (3.1.2) to obtain

| tewdiv= [ (B (3.1.3)
XxBy X xBy

Equation (3.1.3) is enough to uniquely determine measures /i, y (up to a sct of

measurc 0). To construct the measures, we use (3.1.1), which in our case is

] E

- ) 3.14
oo in(Ay X By) (314

where A,, = P,(x) for some choice of ¢. The set of points x for which ji,  is defined
under the construction, which we denote as Xy n, is precisely the set of points for
which there are A, that refine to z and have [, y(An(x) X By) > 0 for cach n.
There may be many measurable isomorphisms between (X, F, 1) and (Y, G, ;\), and
iz~ is defined if there exists a measurable isomorphism between these two spaces
such that P,(x) x By has positive fixy measure for cach n. Let Xp := UXon. We

will sce that X, is a set which is invariant under 7" and of full x measure.
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Letting E = By in (3.1.3), we see that for each N, Xg y has fin(Xon X By) = 1.

Also, fixing an x € X y results in measures that extend each other up to rescaling:

ﬂ N = .&I,N+IIBN
- fz n+1(BN)

For each = € X, we let N, be the smallest natural number N for which i, y(By) >

0 and define a Borel mecasure on all of F' by

,[la: N
= hm .

We have constructed measures p, on F for x € X, that pull the measure u
down to the orbits. In what ways do the measures i, represent the structure of the
system? We address this question in two fashions. First, we show in Proposition
3.1.4 that composing the measures u, with a shift on F' is equivalent to shifting the
base point z. This shows that these orbit measures behave correctly when the base
point is moved to somewhere else on the same orbit. Also, as a corollary, this shows
that X is T invariant and of full i measure. Second, in Proposition 3.1.6, we prove

a statement that allows us to interpret the measure u in terms of the orbit measures
[z
Lemma 3.1.3. Suppose N >0, w € F, and M > N + ||w||. Then for any A € F,
i (A X By) = i (T (A) x By(—w)).
Proof. Let N,w, and M be as stated and choose A € F. By the definition of [i,,
5 (o m) (I (T2 (4) x B(-u)))

Now we can apply Fubini’s Theorem to the right hand side and use the fact that m

fuss (T(A) % By(~w)) =

is shift-invariant:

//1]_1(T—w(A)XBN(_w))dudm = / /1T—w(A)(T“(I))dudm
Bn(~w)
= / /1A (T°(x))dudm.
Bn

Thus, (g x m)(I7HT7(A) X By(—w))) = (u x m)(I"1(A x By)), and the result
follows by dividing by m(By). O
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Let 7, (v) :=v+w forv,w e F.
Proposition 3.1.4. For x € Xo, pg s equivalent to ppwz) © T_y for each w € F.

Proof. Suppose r € X and {A,} is a sequence of F mcasurable sets that decrease
to {z} and have iy, (A, x Byn,) > 0 for each n € N. Choose w € F. We first
use Lemma 3.1.3 to show that —MEL does not depend on N for N > N,

prw () (BN (—w

assuming ppw(y) exists. Suppose Np > Ny > Ny, and let M = N, + [[w(|. We have

( #I(EN]) )
b B, Cw)) ) Ha(Ba )i @) (B, (—))
(M) ta (Bag ) pirw(z) (B (—w))

Hw (z) (B, (—w))

Now, since By, Bn,(—w) C By, we use (3.1.1) to see

(mi%_)) — nll—{go:aM(An x BNl):&M(Tw(AN) x BNQ(——w))
( llz(BNz) ) lim ,ELM(An X BNz);ELM(Tw(An) X BN](_w)) .

brw(z) (BN, (~w)) n—oo

By Lemma 3.1.3, the right hand side is 1. Let kg, = ——*‘I—@V-L_ for N > N,.

prw (g (B (—w))

Suppose z, w, and A, are as above. Also, suppose F C By is Borel, N > N,
M = N + ||w]|. We again usc (3.1.1) and find

fim (An X E)
AF) = u(Bay) lim =
pa(E) Ha( M)naoouM(A < Bur)

fim (An x E)

(A X BN) .
= T B hm - : hm ~ '
pe(Bay) lim = fint (An X Bag) oo fiag(An X By)

The first limit is just ‘“L—’(%— We apply Lemma 3.1.3 to the second limit gives

— im :aM(Tw(A”) x B - w)
pa(E) = pz(By) lim (T (A,) x By(—w))’

We evaluate the limit to find that fipw) does exist and the right hand side is
exactly Ky, - e © T—w(E). The result follows by continuity from below on o-

finite measures. O

Corollary 3.1.5. The set Xg is T invariant and u(Xo) =
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Proof. Proposition 3.1.4 implies that pre)(F) > 0 for every v € F whenever
pz(F) > 0. This is exactly invariance of Xj.
It was noted earlier that fin(Xon X By) = 1 for any N. By continuity from

below, this implies

1 = ﬂN(XQ X BN)
1 -1
= B (u xm)(I7(Xo x Bn))

= u(Xo).

O

As the final result in this section, we have an equation that allows us to interpret
the measure p in terms of the orbit measures p,. Recall A, = {v e F: T(z) € A}.
To use i, we need another measure: the projection of iy onto the first coordi-
nate. This projection, which we dcnote as py, is a measure on X and for A € F is

equal to finy(A x By). Writing this as an integral and untwisting the measure gives

1
¥ = T)* udm.
N = 2B /BN( )

If A € Fis an invariant set, then p (A) = p(A). For example, uiy(Xo) = u(Xo) =1

for any N. The measure uj allows us to usc Fubini’s Theorem on iy. For any

[ adi= [ [ gdiea
X xBy X v By

Proposition 3.1.6. For A€ F and N > 0,

. ,Uz(Am N BN) *
p(A) = /Wdﬂw

Proof. Let A € F and N > 0. We can integrate over By, normalize, and twist the

g€ L'(in),

inside integral to get

iy, (s
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Since ——d(T")*udm = djiy, we apply 3.1.3 and see

(B)

N(A) - /ﬂz,N(Az N BN)d/lN

HI'BN

Recall that u, is defined so that i, v = By SO
A) = // —— " dfiy nd
u(A) — BN flo,N Ay
————duy.
/ Nz(BN) N

3.2 A Fglner Condition on Orbits

We can now prove a Fglner condition on orbits via the diffused measures. A
Fglner condition states that, for any » > 0, the ratio of the measure of 9.B to the

measure of B goes to zero as the radius of the ball goes to infinity.

Proposition 3.2.1. For any r, R > 0 and = € X,

/le(arBR) x m(arBR)
/ i2(Br) MR B

Proof. Let r, R > 0. We use that u¥ is the projection of fip onto the first coordinate:
T a’f“B l(17 aTB ~
/M( R)dm?:/ fa( R)dﬂR-
Nz(BR) XxBr Nw(BR)

Recall that £29-82) = 1, r(0-Br). So, we can apply (3.1.3) and get

“uz(BR)
/'Ll'(aTBR) * / -~
———=dup = lo.Bg (V)ditR.

/ Nm(BR) r X XBpRr aBR( ) KR

Now we untwist the mcasure jig to get

/ /J“:c(arBR)
/‘LCC(BR)

m(0, Br)
m(Bg) ’

*

which completes the proof. O

We prove the Fglner Condition with respect to the sequence of measures p%,.
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Corollary 3.2.2. Letr > 0. Then

Nz(arBR>
/‘LI(BR>

Proof. Let r > 0. By Proposition 3.2.1,

Mr(arBR>
NI(BR>

lim
R—ooe

duy = 0.

(0B
iy, = lim m(6Br) _

fim R—oco m(Bg)

R—o0

We now prove the Fglner Condition pointwise almost surely.

Theorem 3.2.3. (Fglner Condition) For p-a.e. x € Xy,

lim H2e\or2R) (0: Br)

=0
R—oo Nz(BR>

for all r > 0.

Proof. Let x € X, a set of full u measure. Let r > 0 be fixed and for any € > 0,
A = {:c € Xo: limsup/—l—x(ﬁgi) > e}.
Rooo  Hz(BR)

We want to show that u(A.) = 0 for all e > 0. Suppose, for the sake of contradiction,
that e > 0 and p(A,) = 2a > 0. We inductively reduce this set so that we have a
structure on the radii of the boundary-heavy balls that will allow us to use Theorem
2.2.10. Reduce to 4; C A, with p(A;) > 2a and max(10,7) < r; < R; such
that z € A, implies there is a p;(z) with r; < p1(z) < Ry and (0, B, (z)) >
€lz(Bo (). Having defined A;_i1, reduce to A; C A;_y with p(A;) > (1+ 3)a and
11R;_1 < r; < R; such that z € A; implies there is a p;(x) with r; < p;(z) < R; and
La(0r Boy(z)) > €lia(Bp,(z))- Let A := N A;. By continuity from above, u(A) > a > 0.

Let ¢ be an integer no less than (24:7" + 2)F . (%)’“ and r := R,. Suppose

R > 0. By Proposition 3.1.6,

/'Lm(Am N BR) *
a < 2 du,.
N / .u’.’E(BR> NR
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pz(BR) a+1

We let Dg := {z € Xp : te(As0BR) a’}, and it follows that u%h(Dg) > %
Suppose x € Dgi. We apply Theorem 2.2.10 with £ = A, N B, § = -“2—2, and

v = lig|B, to find that
2

a
/‘LI(AT N BR—T‘) < —2-/193(3}2)

But z € Dg, s0 po(Az N Br) > a’u.(Bgr). Thus,

a2

Nz(Ax N arBR) > 5/11(31%)

for any x € D, R > 0.

Using Corollary 3.2.2, we choose R > 0 such that

. 3
/ 'ux(arBR)d'u"i S a .
pz(Bpg) R~ 2a+4

1 (0r B ) 2 3 2 : )
We sce that X' = {z € X : ’#—I(gﬁ > S} has gig > Tun(X), de, pi (X)) < 25

)
But Dp C X', and p,(Dp) > ;97 This is a contradiction and shows that u(A.) = 0.

For r > 0, let

AO,r1={$EX01]%LTEOM7I(?TBB——~;f;—)=O}.

We have Ags C Ao, and p(Ag,) = 1 for any s > r > 0. Let Ag = Ny=odor. By

continuity from above, u(Ag) = 1. This completes our proof. d

Finally, we show that the set of points which satisfy the Fglner condition is

invariant under the action 7. Notice

Ap={r € Xp: lim ————Mm(arBR)

=0 for all » > 0}.
R—oc  liz(Bp) }
Theorem 3.2.4. The set Ay of points which satisfy the Folner condition is T in-

variant and p(Aq) = 1.

Proof. That u(Ag) = 1 was already shown in Theorem 3.2.3. So, we nced to show
invariance of Aqg.
Supposc £ € Ag C Xo. Let 7 > 0, v € F, " =7+ ||v||, and € > 0. Choose
12(8,/BRy)

Ny such that Ry > Ny implies ’”WJ))— < €g, where ¢ = min(y/e,1 — v/¢). Let
=\ERy
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N = No+||v|| and supposc R > N. Notice Bg_ | C Br(—v). We apply Proposition
3.1.4 to get

pz(Br) < (1~ €0)pts(Brojpup)

S kv,x(l - EO)ﬂT”(x)(BR)~

Since 0,Bg — v C 0 Bg, we may again apply Proposition 3.1.4 to obtain

1

/«LT“(x)(arBR) < Z:_Mx(ar’BR)
< eop(Ba)
kv‘xfoﬁbm R

< 6/«LT”(1)(BR)'

The suppositions imply that pgvg(Br) is positive for large R, so the proof is com-
plcte. |
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Chapter 4

Ergodic Theorems on Actions of Z? and R?

Recent explorations of the ergodic theorem have involved the generalization of
ergodic theorems beyond a transformation on a probability space to a group action
on a probability space. The groups that are most often considered are Z¢ and R%.
Since the average for the ergodic theorems in Section 1.2 was taken over intervals

[0, 7], the most natural extcnsion is to average over [0, n]%.

In the first section of
this chapter, we examine an example of a measure preserving, conservative action
of Z? on [0, 00) for which the ratio averages over the hypercubes [0,n]? diverge on a
set of positive measure. This shows that the most natural extension of the Birkhoff,
Hopf, and Hurewicz ergodic theorems to actions of Z? does not hold. Nevertheless,
versions of these theorems do cxist for actions of Z¢ and R?, when the average is

taken over hypercubes of the form [—n,n]?. These results arc reviewed in the second

section of this chapter.

4.1 An Example of Divergence

We describe an example of a measure preserving, conservative action T' of Z?
on all but a null set of [0, 00) such that the ratio averages

> for

ve[on]d

> gor

vE[0,n}d

(4.1.1)



fail to converge a.e. as n — oo for certain f,g € L'([0,00)). The action TV
has components 70D = 700 = & where S is a measure-preserving, invertible
transformation on all but a null set of ([0,1), £, A). Both the transformation S and
the functions f and g are defined by a recursive procedure. A step in the recursion
process extends the definitions of S, f, and g to a larger portion of the space.
(Note: this example is original, but it is both inspired by and closely related to a
construction given by Krengel and Brunel [13].) Implementation of the cutting and
stacking procedure is used to gain the conservativity in our example, and we use a
product space formulation to make the action free. This system is an improvement
on that given by Krengel and Brunel because their example is neither conservative
nor free. For a description of the cutting and stacking method, see [20, 22].

To begin the construction, let S take [0,1) to [1,2) by addition of one. We are
able to describe the transformation S by a cutting and stacking procedure, so let
the interval [1,2) be stacked above [0,1) and the transformation given by moving
one step vertically (see Figure 4.1). Now, for = € [0,2), let

T 12
S

0 F——1

Figure 4.1: The first stage of the construction.

1if0<z<1,
[z} =0 and g(z) = {Oif1;x<2.
This completes the first stage of the construction.
We now perform the second stage of the construction. We cut the stack in half
by a vertical slice and place the left half beneath the right half (sce Figure 4.2). This

means S remains the same on [0, 1), but now [1,2) is taken to [£,1) by subtraction

of

%, Stack 76 more intervals, each of length -12-, above [%,2). Thus, S maps [%,2)
to [2,3), [2,3) to [£,3), ..., and [39, 22) to [Z2, 40) by addition of § (sec Figure 4.3).

For z € [2,40), let
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n

Figure 4.2: The second stage of the construction.

> 76 levels added
S T

Figure 4.3: S at the second stage of the construction.

M-

1 :¢ 39
5 if 5 S r < 20),
0 otherwise.

g(z) =0 and f(z) = {
This completes the second stage of the construction.

Suppose that stage 2n has been completed. Let i be the largest integer such
that S*(0) is defined and let j be the largest number such that f and g are defined
on [0,7). The number 7, then, is one less than the number of levels in our stack
at the cnd of the previous stage. We make a vertical slice down the middle of
the stack and put the left half underneath the right half. This defincs S*(0) for
0 < k < 2¢+1 by moving vertically one level in the stack. Let N be an integer such
that N > Zzl:ol(k + 1)(f 0 S¥)(0). Place 2N + 2i + 2 new levels, all of the same
length as those levels already in the stack, on top of the stack, with the new levels
being taken consecutively from [j, 00) (see Figure 4.4). Let the N + 2 + 2P level be
representing [a, b) and the top lcvél be representing [c, d). For z € [j,d), let

1

—ifa < b
f(-T)ZOandg(g:):{\/Nl a<z<h

0 otherwise.

This completes the 2n + 1P stage of the construction. Since 2n 4 1 is odd, we

cxtended the locations for which ¢ is positive on [0,00). Choose an z € {0,1] and
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add 2N + 2i + 2 levels

.
’

t

b
P .
! .
[ S } bisect the i levels
S
A
\\ //

S Y from the previous step
AY

\

Figure 4.4: Stage 2n + 1 of the construction.

let Ny be such that SN (z) € [a,b). It can be seen in the construction above that

Ny > N. Thus,
S e S+ (/0 SH(a)
v€e[0,Ng]? k=0
Ue[%o]z(g o T)) Z(k +1)(g o S*)(x)
N
o (No + l)ﬁ
< 1.

For stage 2n + 2, let | = 2N + 4i + 4, which is the largest integer for which
SY(0) is defined. As before, make a vertical slice through the middlc of the stack
and place the left half underneath the right half. Let M be an integer such that
VM > 2 Zzljol(kJr 1)(go S*)(0) and place 2M + 21 +2 new levels of the same length
on top of the stack, taken consecutively from [d, 00). Let the M + 2I + 2" level be

representing [r, s) and the top level be representing [t,u). For z € [t,u), let

._l_f < x
9($)=Oandf(x):{ml r<zx<s,

0 otherwise.

This completes step 2n + 2 of the construction. Since 2n + 2 is even, we extended

the locations for which f is positive on [0, 00). Now choose x € [0, 1] and let M, be
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such that SMo(z) € [r,s). This implies My > M and

Y (feT)(z) Zo(k+1)(foSk)(x)
v€[0,Mo)? k=0

v T Mo
22 0°TIE SR e )

k=0
1
- (Mo +1) 7=
- VM
2
> 2.

This procedure is carried out to define a transformation S on ([0, c0), £, A) and
functions f,g € L'([0,00)). A representation of the construction on the real number
line is given in Figure 4.5.

For A C [0,00), let

Figure 4.5: S is a measure preserving transformation [0, oo) that takes dyadic inter-
vals to dyadic intervals lincarly.

It may seem odd that we used an infinite measure space when up to this point we
have only been working with probability spaces. This was done because the natural
extension of the pointwise ergodic theorem is true for measure-preserving actions of
Z¢ or R¢ on a probability space. What remains, then, is the non-measure-prescrving
casc. It is easier to describe this construction as a measure-preserving action on an
infinite space than as a nonsingular action on a probability space. Nevertheless, we

can modify the system so that the action of Z? is on a probability space. To do
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so, simply put a probability measure on [0, 00) in the following way: for a Lebcsguc
measurable E C [0, 00), let

() :ZA(EH{;— Li)

i=1

Also let f(z) = f(z) - 2*) and §(z) = g(z) - 2/ for z € [0,00). We have f.§ €

LY([0,00)*, L*,v)), and the ratio averages

Z d(UOTU>(fOTU>

ve[0,n]d dv
dvoT"), .,
Y. o (geT)
v€[0,n]d

diverge on [0,1)*, since they are identical to the averages in (4.1.1).

In the ratio ergodic theorem of Hopf, the function g was assumed to be positive
almost everywhere, whercas our function ¢ is definitely not so. However, g may be
added to an extremely small constant function on the probability space ([0, 00), £, v).
The constant function can be made small enough so that the lim sup and lim inf still
do not match, and the ratio average still diverges.

We now show that the action T is conservative. Since v << A and A << v,
conscrvativity will apply to the mcasure v if proven for A. Lebesgue measurable
sets can be approximated from above arbitrarily well by open sets, so we first show
recurrence for open sets. We use special types of recurrence that are stricter than

conservativity [12].

Definition 4.1.1. A transformation S is rigid if there ezists a sequence of natural

numbers ni, na, ... such that for any measurable set A of finite measure,

liminf A(S™(A)N A) = A(A).

Definition 4.1.2. A transformation S is partially rigid with factor r if there
exists a sequence of natural numbers ny, na, ... such that for any measurable set A of
finite measure,

liminf A(S™(A) N A) > rA(A).

1— 0
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Rigidity implies partial rigidity, and partial rigidity implics conservativity. The
reverse directions, however, do not hold. To be partially rigid, a transformation must
have a sequence of the return times in which each set recurs to a certain fraction of
its mass. To be rigid is to have a sequence of return times in which each set recurs
to almost all of its mass. These two definitions have analogs for actions of Z2, for
which the sequence of natural numbers n; is replaced by a sequence of vectors in Z2.

We show the transformation .S built earlier in this section is partially rigid. For
each natural number 7, let n; be the height of the stack in stage i of the construction

of S. Notice that each of the n; intervals in the stack at stage ¢ is of length 5;1;7
Lemma 4.1.3. Any interval (a,b) has

liminf A(S™((a, b)) N (a,b)) >

i— 00

A(a,b)).

DO}

Proof. Fix € > 0 and suppose (a,b) is nonempty (the result is trivial for an empty
interval). Choose [ such that S((a,b)) is defined no later than stage [. Suppose

k > 1, ap, and by arc natural numbers such that [, %%) C (a,b) and

ag by

M@0\ 2 5) < (@)

At stage k, then, all but less than a fraction € of the mass of (a, b) is a union of levels
of the stack at stage k. Looking forward to stage k + 1, each of these levels (which
has now been cut into two picces) has half of its mass return to the level when S is
applied ng4+1 times. Further, looking forward to stage k + 2, each level has half of

its mass return to the level when S is applied ng,2 times. More generally, for any

Aot ) - (2 m).

Since [32, g%) C (a,b), for any 1 > k,

1>k,

1

g ap bo
A e > 3 (35)

%(1 ~ (@, b)).

Y

41



Thus,
liminf A (5™ ((a, b)) N (a, b)) >

1—00

(1= e)A((a;0))

N —

for any € > 0 and the result follows. U
Lemma 4.1.4. The action S on ([0,00), L, A) is partially rigid with factor %

Proof. Suppose A € £ with AM(A) < co. Let € > 0 and U be an open set in [0, 00)
such that A C U and AU \ A) < €. Let I}, I, ..., I; be pairwise disjoint open
intervals contained in U such that AU \ U¥_,I;) < e. Let I be a natural number

such that for any ¢ > {and 1 < j <k,
N 1
ME™(L)N ) > (5~ OA(L). (4.12)

The existence of such an [ follows from Lemma 4.1.3. For any 7 > [,

k
AS™(A)NA) > 3 NS™ (L) N ;) - 2,

7=1

since A(UY_ 15\ A) <e. We then use (4.1.2) and sum over j to get

AS™(A)N A) > (% — )1 = MU — 2
2 (% —€)(1 —e)M(A) — 2¢

for any ¢ > [. For any € we can choose such an [, so

lim inf A(S™(A) N A) >

11— 00

A(A).

NN

Corollary 4.1.5. T is partially rigid with factor %

Proof. For i € N, let v; = (0, n;), where n; is the height of the stack in the ith stage

of the construction of S. For any A € L*,

liminf A(T%(A) N A) >

1— 00

A(A)

N

by Lemma 4.1.4. U
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We now modify the action 7" so that it is a free action. Let (S, F, u) be the
unit circle in R? with the Lebesgue o-algebra and the Lebesgue probability measure,
a; and a9 be irrational numbers for which %;- and o; — oy are also irrational, and
7 be the action of Z? on S! whose component actions are rotation by «o; and a,. It
is well known that an irrational rotation on the unit circle is rigid, is an isometry,
and has the property that every orbit is dense with respect to the Euclidean metric
from R/Z, in which the length of an interval on S' is equal to its mecasure. Now
let T x 7 be the action of Z? on the product space ([0,00)* x S, L* x F, A x u)
in which T defines the action on the first coordinate and 7 gives the action on the
sccond coordinate.

First, we note that T X 7 is a frec action. This is true since 7 is free. Second,

1

we note that the action T' x 7 is partially rigid with factor 3

To see the partial rigidity, first consider a cylinder set A x B of [0,00)* x S in
which A and B are intervals and let € > 0. Let m; be a sequence in which rotation
of T1 by mi(a1 — ag) is within 1 of rotation by n;a;, and notice this sequence
is independent of B. Such m; can be chosen because rotation by a; — ay is an
isometry and has that cvery orbit is dense. Let k1 be a natural number such that
i > ky implies A(TV(A) N A) > 3(1 — €)A(A) for any v € Z? with ||v|| = n;. Notice

(1,-1

that rotation by a; — ay is the same as 7 ), and let k, be a natural number so

that i > k, implies p(r™*+mi=m)(B)Y N B) > (1 — ¢)v(B). For i > max(ki, ky),

(A x w)((T x m)mtme=mid(A 5« BYN A x B) > =(1 —€)*(\ x u)(A x B).

DN

This gives partial rigidity of T' x m with factor % on cylinder scts. To prove partial

rigidity with factor % of general £ x F sets, we can approximate from above by
cylinder sets as we did in the proof of Corollary 4.1.4.

We may take functions f and g in L'() x ) that only depend on the first coor-
dinate for which the ratio average over [0, n]? diverges on a sct of positive measure,

using the construction given above. We then see that thc most natural extension
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of the ratio ergodic theorem for actions of Z does not hold for conservative, free
actions of Z2.

Why do we get divergence of the ratio averages in higher dimensions while it
can be proven that they converge in one dimension? Onc explanation gocs back to
the Besicovitch Covering Lemma. A sequence of hypercubes {[0,nx]¢}$2, share a
common corner rather than sharing a center. The Besicovitch Covering Lemma does
not hold, however, on these types of sets. To display what is meant by this, consider
the collection of sets {[z,1]¢: 0 < z < 1}. If the Besicovitch Covering Lemma held,
then we could find some finite number of subcollections such that each subcollection
is disjoint and the union of sets in all subcollections covers {(z,z,...,z) € R% :
z € (0,1]}. However, any two of these sets intersect nontrivially and no finite
subcollection will cover the diagonal in (0, 1]¢, so the Besicovitch Covering Lemma,
does not hold. (This reasoning also applies to the d = 1 case, but the Besicovitch
Covering Lemma is not used in the proof of ergodic theorems in this setting. 1t is,

however, a standard tool in proving ergodic theorems on actions of Z¢ and R?.)

4.2 Ratio Ergodic Theorems on Actions of Z¢

While versions of the Birkhoff, Hopf, and Hurewicz ergodic theorems do not
hold for averages over [0, n]%, Feldman and Hochman have shown that the theorems
do have analogs for actions of Z¢ and R? when averaging over hypercubes centered

at the origin ([—n,n]?).

Definition 4.2.1. A measure space (X, F, u) is called a Polish space if there ezists
a metric on X such that the Borel sets generate F and the metric is complete and

separable.

A Polish probability space is also a standard probability space [16], so the Polish
space assumed by Feldman is more restrictive than the standard Borel probability

spac¢c we assume.
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Theorem 4.2.2. (Feldman) [6] (2007) Suppose T is a measurable, invertible, non-
singular, conservative action of Z% on the Polish probability space (X, F,u) such
that the component actions T; := T of Z are also conservative. Then for any

f.g € L*(u) with E(g|Z) > 0 a.e., the ratio averages

ZfoT—v_w

o AT o
2 9ol ==
vE By IUI
converge to gg:g almost everywhere, where I is the o-algebra of sets which are

invariant under the action T.

The ratio averages in (4.2.1) look like somewhat of a compromise between those
of Hopf (1.2.2) and Hurewicz (1.2.3). Without loss of generality, the function ¢ can
be assumed to be one (see Corollary 5.1.4). Hochman extended Feldman’s result
by proving the same averages converge a.c. without the assumption of directional
conservativity or conservativity of the action.

The ratio ergodic theorem stated and proven in Section 5 improves the above
results by allowing for singularity of the dynamical system. The action T is assumed
to be Borel and free, but there is no connection, beyond being Borel, that is assumed
between this action and the measure y. This can be seen as a version of the Hurewicz
ergodic theorem for actions of Z? and R¢ (or, rather, of the extension of Hurewicz
by Oxtoby that assumes neither non-singularity nor conservativity [15]).

Every ergodic theorem mentioned thus far is proven by a maximal inequality.
With a maximal inequality in hand, convergence of the averages is reduced to finding
a dense family in L* for which convergence can be shown. This is typically taken to
be the set of coboundaries, {f — foT": f € L'(u),v € F}. Feldman and Hochman
use a maximal inequality that was proven by Lindenstrauss and Rudolph [14]. The

first step in this method (proving a maximal inequality) has been completed for
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the singular case by Rudolph [21]. However, our proof bypasses the usual maximal
inequality, instead using the Fglner condition found in Section 3.2. With the Fglner
condition in hand, convergence of the ratio average is then proven for all f € L?

instead of using the set of coboundaries or some other dense family.
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Chapter 5

An Ergodic Theorem for Borel Actions of Z? and
Rd

We can now state and prove an crgodic theorem for Borel actions of Z¢ and R¢.

Theorem 5.0.3. If T is a free Borel action of F(= Z2 or R?) on the standard Borel
probability space (X, F,u) and f € L (u), then

lim L foT™™(x)du,

R—oo NI(BR) Br
converges for p-a.e. x. Furthermore, denoting the a.e. pointwise limit as f(a:), the
averages converge to f in LY(p) and f= E(f|T), where T is the o-algebra of sets

which are invariant under the action T.

Before proving Theorem 5.0.3, we review a similar result. Suppose H" is an
n dimensional real hyperbolic space. There are n — 1 dimensional spheres, called
horospheres, which are perpendicular to the geodesics. Thesce spheres are all tangent
to O(H™), and the collection of horospheres covers H™. In 1982, Rudolph used a
Fglner condition to show a mean ergodic theorem on these horospheres. This implied
that the geodesic flow, when equipped with a natural measure [23], is isomorphic to

a Bernoulli flow [19].
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5.1 Proof of the Ratio Ergodic Theorem on Borel Actions of Z? and R?

Suppose f € L'(u) is a nonnegative function and for A € F let

0(A) = /A fdu.

We construct the diffused measure on € as described in Section 3 and get Borel

probability measures 6, on F for x € Y|, an invariant set of full § measure. Let
Yo=Y u{re X \Y;: f(T%x)) =0 for m-a.c. veE F}.

For z € Yy \ Yy, let 6, = 0, the trivial measure on F.

Lemma 5.1.1. Y} is T-invariant and of full u measure.

Proof. Invariance of Yy is obvious, so we need to show that u(Yy) = 1. Let Y™ =
X \ 'Yy and suppose, for the sake of contradiction, that u(Y*) > 0. For each z € Y*,
let B, = {ve F: f(T(z)) > 0}. Notice m(E;) > 0 for cach z € Y*. Using
continuity from below, choose N* > 0 and a subset Yy+ C Y* such that u(Yy+) >0

and for each = € Yn», m(E, N By+) > 0. We have

/ fdudm =0,
By« JY=

since #(Y™) = 0 implics the insidc intcgral is zero. We twist the integral (notice Y*

is invariant) and switch the order of integration to get

/ foT?(x)dmdy =0.
+ J By

This implies u(Y™*) = 0, since the inside integral is now positive for cvery x € Yy,

which is a contradiction and completes the proof. O

Lemma 5.1.2. Forx € XoNY,, there is a real number k, such that

db,
dpts

(0) = ky - foT() (5.1.1)

for py a.e. v.
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Proof. Let x € XoNYy. If z ¢ Yy, then let k, = 0 and (5.1.1) holds. Suppose r € Yj
and let M, be the minimal natural number M such that 0,(Bys) > 0. Since << p
and 0, << u,, we have M, > N,.

First, we calculate %ﬁ’,— for N > 0. Choose N > 0. For any measurable

S C X x By, we untwist the measure éN to get

5 1
7 = .
N(S) m(BN) /](S)dQXm

We now use the deﬁnition of 8 and retwist the measure:

N 1 v N
() = gy o @ m = /SfoT (2)djin.

This shows that j—f)i = foT™.
fin

0= (Bn) : :
Second, we show that Tom FoT=20m is constant in N for N > M_,. Suppose
Ny > Ny > M,. We apply (3.1.4) to get

0-(Bn)) > )
(iBNl ToT—vdpy i HNQ(ATL % BN;) i fAanN2 fOT d,u]\]2

0(Bry) T G, (An X By,) 7 [u kg, £ o T din,
fBN2 foT~Vdug

i fA"XBNl foT "djin, . fAanN2 JoT ™ djin,
== 1m

————— + lim —
e fA"XBN2 foT vdfin, n—oe fAanN1 foTvdjing

which is one. Let &, = ———GLB‘E’%—— for N > M,.
fBN foT—Vduy,
d

Finally, we characterize g%:. The Radon-Nikodym derivative ff is the unique

Borel function of F' such that 0,(F) = fE %:duz for any Borel set £ C F. Notice
that k; - f o T%(x), as a function of v, is Borel. Let £ C By be Borel and N > M,,.

Again, we use the sets A, to identify the diffused measure:

0.(E) = 0,(By) lim In(An x E)
n—0oo QN(An X BN)

o T7vdji
_ 0,(By) tim Jtexe Py
n=o0 [ wmy [ o T Vdin
Jo foTVdu,
Js, foTvdu,

= /kx-foT“”d,uz.
E

49



The sct E was assumed to be bounded. Continuity from below on 0, and g, com-

pletes the result. O

We now define some new notation:

Anlf @) = ,uz(an) B

Also, let v, =k - pg for z € Yy and v, = p, for z € Xy \ Yy, where &, is that from

foT ™™ (x)du,.

Lemma 5.1.2. Thus, A,(f,z) = %ﬁ—; for x € Xy. Recall that we want to show

12

pointwise convergence of A,(f,z) outside a set of measure zero. Let

Anp = {x liminf A, (f,z) <a< 8 < limsupAn(f,.r)} )

To prove a.c. convergence in Theorem 5.0.3, we need to show p(A, ) = 0 for any

o < 3.

Lemma 5.1.3. Let o < (3 be given. Then there is a subset A, 5 of Aa g of the same

measure which is T-invariant.

vz(0rBg)

B = 0 and limg_, 820-Br) .  for all

GI(BR)

r > 0 by Theorem 3.2.3. Let Aj ;5 be the set of such z, and we see A} ; has the

Proof. For a.e. © € A,p, limp.o

same measure as A, 5. Let x € A;’B. Fix w € F. We would like to know that
T%(z) € A}, 5- Theorem 3.2.4 says that the Fglner condition holds for T%(z), so we
only need to show T%(z) € A, 3. Let b =limsup A,(f,z). Let n > M, and w € F.

n—oo

We can write A, (f, 7%(z)) in terms of 6, and v,:

An(fva(m)) = m Bn(—w)foT—v(I)d:uz
_ 02(Bn(—w))
ve(Bn(—w))

_ 0:(Bn) (m(Bn(—w))_ v2(By) )

Vz(Bn) GT(BTL) Vz(Bn( w))

By the Fglner condition, choose N such that n > N implies

0c(Bu(~w))  wa(B.) _ 26+20
gz(Bn> Vz(Bn(“w)) - 3b+ﬁ




Now for every n > N with A,(f,z) > M (notice there arc an infinite number of

such n),
3b+ﬁ_2b+2ﬁwb+ﬁ
4 3b+8 2

An(f, T(2)) > > 8.

Thus, limsup,,_,, An(f,T*(z)) > 5. An analogous argument shows

liminf A, (f, T%(2)) < «,

n—oeo

so TV(x) € AZ 5. O

Proof. We now prove Theorem 5.0.3. First, we show a.e. convergence of A, (f,z).
For the sake of contradiction, suppose p(Aq3) > 0. Thus, u(A} ;) > 0. Notice
A; 3 C Yy, We groom the sct A} ;5 to obtain a structure on the pairs n,z which
have A,(f,z) > 8. Let 1, = 0. Choosc Ay C A% 3, R > 71, and p; : A; — [ry, Ry
such that u(A;) > (%)Z_Su(A;;ﬁ) and each z € A; has A, )(f,z) > 8. We now
inductively define measurable sets Ay C A7 5, positive numbers r; and Ry, and
functions py : Ay — [rk, Ri] for all k € N.

Supposc Ag_1,7k—1, Rk—1, and px_; have been defined. We let A;_, C Ay,
and 7, > Ry such that p(A;_ ;) > (%)2—4—(‘“—1)#(/4;9_1) and x € Aj_, implies
%ﬁl—) <1- \3/% for all n > ry. Now choose Ay C A;_;, R, and pi @ Ay —
(7%, Ri] such that x € A, implies A, )(f,z) > 8 and pu(Ag) > (%)Td_ku(A;;Ml).
Notice these properties also hold for the base case £ = 1. Now let A = Ny A, and
we have u(A) > 8/% - u(A% 5) by continuity from above on finite measures,

We proceed with a Besicovitch covering argument. Let C be the Besicovitch

constant for F, and let K be such that 1 — (1)K > {/% Also, choose y € A and

”yliaRng \/7 \/§ (5.1.2)
y

,U/y(A ﬂBN)
T (B > \/;, and (5.1.3)
An(fy) < o, (5.1.4)

N > Ry such that
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where the second estimate uses Lemma 5.1.3. Let A = Ay N By-gr,. ‘Apply
the Besicovitch Covering Lemma to the set A with the ball By (mvy)) (v) corre-
sponding to each v € A to get a subset Ax C A with p,(Ag) > @gi_) such that
{Bow 1) (V) }oe i, 1S @ pairwise disjoint collection of balls in F.

Suppose that AK_J- has been chosen for 0 < j < K — 1. We inductively define
subscts AK_]A for 0 < 7 < K —1. Apply the Besicovitch Covering Lemma to the set
A \ Ufzofli with corresponding balls B, _._ (v (v) to get

J
Ag_ja c A\ JA
i=0

such that {B,._._ (1) (v)} is a pairwise disjoint collection of balls in F

UEAK_]_I
and Hy (Ak’fj—l) > é’ﬂy(;‘ \ UzzoAi)'

This procedure terminates after defining A;, and

-5 c—1\¥
4y (A\UAi) < (—5—) iy (A). (5.1.5)
=1
We now estimate Ay (f,y) by using the balls { B, (r+())(v)}oea, 1<;<x tO COVET

most of the p, mass of A. For 1< Jj < K, let

C; = {Bpj(T”(y))(v)}veAj

and

U B\oxr._B
BEUCJ'

where Ry = 0. Note that C is a disjoint union. Also, every B € C; has %L% > [

(O,
ande—(a—?(%)l-@<l——\/7,so
(B\aR]] [6

Let D = UBeucj B. This implies f;’((%)) > {’/%ﬁ, and since C C By,

By) _ Lfe
> \/;[3. (5.1.6)
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Further, UZK:1 A; is covered by D, so (5.1.5) gives

1, (D) > (1 - (C—Ci—l)K> () > {/gﬂy(/l)-

We have

“y(A) > py(Ay N Br) — 1y (Ory By)

i (- ()
u(A) > i/%mwm

by (5.1.2) and (5.1.3). Recall that v, and p, are equivalent, and

0:(By) v(D) v, (4)
AN(fay) Vy(lév) .Vy( A) Vy(BN)
0.(Bx) (D) pylA)
vy(D) uy(ﬂ) ty(Bn)
(8] (87 (8%
> {5V 5"

(5.1.7)

(5.1.8)

which contradicts (5.1.4). So, u(Aqp) =0 for all @ < 3 and A,(f) converges p a.e.

to a function f .

The rest of the proof is standard. We next show that this convergence is also in

L'(y). Fubini’s Theorem can be applied to show that [ A,(f)du = [ fdu for any

n > 0. Thus,

/ fdu < / lim A, (f)dpu

which gives that

1F 11 < 1l

93

(5.1.9)



Now suppose g € L' () is a nonnegative, bounded function. This implies A,(g)
has the same bound as g, and A,(g) — § in L'(x) by the Lebesgue Dominated

Convergence Theorem. Also,

1AR(F) = Fll < 11AR(F) = An(@)ll1 + [1An(g) = 8l + 1§ = fI-

We know [[An(f) = An(9)lli = || — g/l and [[g — fll: < |If — gl by (5.1.9), so for

large enough n, [[An(g) — gl1 < ||f — gll:. Additionally,

14 (f) = Fll < 3l1f = gllx

~

for large n. Since the bounded functions are dense in L!, we have that A,(f) — f
in L.
Finally, we need f = E(f|T). Tt is enough to show that f is invariant under

the action 7" and fA fdu = fA fdu for any invariant set A. By Proposition 3.1.4,

— eTw(z)(BTl) _ ez(Bn(”‘w))

VTw(z)(Bn) VI(Bn('“w)),

An(f, T%(z))

and T' invariance follows from the Fglner condition. Suppose T~*(A) = A for all

w€ Fand A€ F. By L' convergence and Fubifli’s Theorem,

[ ddn = Jim [ A
A n—00 J A

= /Afdu.

We have proven Theorem 5.0.3 for nonnegative f € L'(u). For f € L'(u),
write f = f* — f~ such that f*, f~ arc nonncgative L'(u) functions, and the result

follows. g

A ratio crgodic theorem is a theorem about the convergence of a weighted
average. In what sense is Theorem 5.0.3 a weighted average? First, because the
measure y can be taken to be any standard Borel probability measure, the measure

i may be altcred to adjust the weighting of the average. Changing the measure
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w1, however, may change which functions are L' and therefore change the functions
to which the theorem applies. Alternatively, we have the following result that is a

more traditional notion of a weighted average.

Corollary 5.1.4. Suppose T is a free Borel action of F' (= Z* or R?) on the stan-

dard Borel probability space (X, F,pu). Then for any f,g € L*(u) with F(g|Z) > 0

-a.e.,
i Js 0T @) BT (@)

n—00 angOT_v($>duz B E(g‘I)(‘T)

for p-a.e. x.

Proof. Notice
Jo, foT7V(@)dus  A,(f,x)
Js, 90T (2)dus  An(g,2)

Apply Theorem 5.0.3. O

5.2 Examples

We now look at some examples.

1. Suppose T is a measure-preserving, free action of F' on the standard Borel
probability space (X, F, u). In this case, the twisting of the measure actually
does not change the measure at all, and the diffused measures p, are equivalent

to m. Thus,

Afiz) = —— [ foT*(x)dus(v)

ﬂx(B ) Bn
1 —v
= _——m(Bn) /Bn foT ¥ (x)dm,

which is just the average of f at z over the ball B,,. Theorem 5.0.3 implies
that this average converges a.e. to E(f|Z) as n — oo. In particular, if T is

ergodic, then the average converges a.e. to the expectation of f.
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2. Suppose T is a free, nonsingular action of Z? or RY on the standard Borel
probability space (X, F, u). For f € L*(u), we show that the averages A,(f, z)

are the same as those considered by Feldman and Hochman.

Suppose B € B, m(B) = 0, and z € Xp. We have I*(z x m)(X x B) = 0,
which implies fin (X x B) =0 for any N. So, p,(B) = 0 and we see py, << m.

Thus, there exists a Radon-Nikodym derivative %‘:n—’”. We will see that %’jn—’”(v) =

ATy p

7.~ (z) for some constant c,.

Cy *

Suppose E C By is Borel and pu,(F) > 0. We use sets A, that decrease to x

to calculate p, (E):

B fin(An X E)
pa(E) = palBy) Iim o

= (Ba) tim A2 dan AT
N~ 00 fB fA TU ,udm

_ , fE (fAn e Hd#) dm
- MI(BN)TLIHEO fBN (fA d(Td1; du) dm

Since (X, F,u) is a standard Borel probability space, it is measurably isomor-

(5.2.1)

phic to an interval with the Borel scts and Lebesgue measure, along with at
most countably many atoms. It is known that the limit as n — oo of the inner

integrals in (5.2.1) is equal to ﬂ%%*—'u(:C) when the space is an interval, and it

is not hard to see that the samc is true for a point mass x. We can use the
isomorphism which corresponds to the sets A, to take the limit. This gives

d Tv *
Jp Y (@) dm

IUT(E) = /-Lx(BN)fBN dQTvz*u (:C)dm

dp

Thus, for any F' C By which also has p,(F) > 0,

pe(B) [ 2 (2)du

pa(F) fFﬂT——v—)—*ﬁ(:c)du'

du

This is true for any By and sets £, F' C By of positive u, measure, so %‘;—-’”(v) =

d(Tv)"p

Ca djs

(x) for some constant c;.



We now have that for n > 0, f € L'(u), and a.e. 7 € X,

1
An(fx) = foT dy,
/U“I(BN) By
Jo, foT™(x) ¢ Lﬁlﬁ(m)dm

d(T‘U)*
fBN o =gt £(z)dm

_ oy ST @) T (w)dm (5.2.2)

d(T‘U)*
fBN di H(ﬂf)dm

The expression in (5.2.2) is exactly the ratio averages considered by Feldman
and Hochman. This shows that Theorem 5.0.3 is an extension of the ratio

ergodic theorems of Feldman and Hochman, which we reviewed in section 4.2.

. Consider X = R? with the Borel g-algebra and let T be the action of Z¢ given
by translation. For any nontrivial standard Borel measure pu, this system is
not conservative, since [0,1)? is a wandering set and U,ez¢7T7([0,1)%) = X.
For any f,g € L' (X, p) with E(g|Z) > 0 a.c., the ratio averages

[z, foT7¥(x)du,
Jg, g0 T(z)du,

. E(T)
converge p-a.e. to ElolD) -
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Chapter 6

Conclusion

Ergodic theorems are at the foundation of measurable dynamics. They be-
gin the classification of dynamical systems that proceeds through entropy and orbit
equivalence, and this has been explored in-depth in the case of a measure-preserving
transformation. However, such theory has not been constructed for dynamical sys-
tems that are not measure-preserving. Can a parallel theory be built for this case?
This question is yet to be addressed, but the establishment of the ratio crgodic
theorem gives a starting point for such theory.

In this dissertation we used several tools to prove an ergodic theorem. First,
we uscd an extension of the Besicovitch Covering Lemma due to Hochman to get
a statement about the frequency of boundary-heavy balls in Z¢ or R?. This line
of reasoning uses the Besicovitch Covering Lemma, Doubling Condition, and the
notion that the boundary of a ball is of lower dimension than the ball itself. Second,
we diffused the measure of a probability spacc onto the orbits using a conditional
expectation. This was necessary to even state what the ratio theorem should look
like for possibly singular transformations. The statement from Hochman was then
used to show a Fglner condition on these diffused measures. Finally, we saw that
the Falner condition and the Besicovitch Covering Lemma could be used to prove
the ratio ergodic thcorem. This result improves previous work by dropping the as-
sumption of nonsingularity, but it also is a new method of proving crgodic theorems

that bypasses the usual maximal inequality and dense family.
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Finally, we describe a few questions that arise from Theorem 5.0.3. The theorem
shows that convergence of the ratio average is intrinsic to the machinery of Borel
actions of Z? and R? on standard Borcl probability spaces and does not need a
connection between the measure and the action. What can one say about the rate
of convergence? This is probably a difficult question to address due to the few
assumptions made. Also, does such a general ratio ergodic theorem hold on actions
of groups other than Z¢ and R?? Can convergence be shown on a more general class
of averaging sets? One may be able to follow the same line of reasoning by using a
Fglner Condition and the Besicovitch Covering Lemma to positively answer either

of these questions.
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