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ABSTRACT OF DISSERTATION 

A RATIO ERGODIC THEOREM ON BOREL ACTIONS OF 

Zd AND Rd 

We prove a ratio ergodic theorem for free Borel actions of Zd and M.d on a 

standard Borel probability space. The proof employs an extension of the Besicovitch 

Covering Lemma, as well as a notion of coarse dimension that originates in an 

upcoming paper of Hochman. Due to possible singularity of the measure, we cannot 

use functional analytic arguments and therefore diffuse the measure onto the orbits 

of the action. This diffused measure is denoted \ix, and our averages arc of the form 

}B s fB f o T~v(x)dnx. A F0lner condition on the orbits of the action is shown, 

which is the main tool used in the proof of the ergodic theorem. Also, an extension 

of a known example of divergence of a ratio average is presented for which the action 

is both conservative and free. 

Eric Norman Holt 
Department of Mathematics 
Colorado State University 
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LIST OF SYMBOLS 

1. F ' = Z d o r I r f . 

2. | \v\| = the Euclidean norm of v in F. 

3. Bp = {veF:\\v\\<p}. 

4. Bp(w) = { i ) 6 F : ||v — xu|| < p}. 

5. <9rBp = Bp \ Bp^r. 

6. d*Bp = Bp+r \ -Bp_r. 

7. cdim^0Y: see Definition 2.2.7. 

8. (X, T. /i) = a standard Borel probability space. 

9. T = a Borel action of F on (X, .F, JJ). 

10. i" = the function that takes X x F to X x F by J(a;,i;) = (T"(a;),i;). 

11. m = Haar measure on F. 

12- Aiv = ^ ) ^ * ( / ^ x m)\XxBN. 

13. HJV = {A x Biv : A G J7}. 

14. jj,x^N(E) — a version of E^N{X x F|7^;v)> where F C BAT is Borel. 

15. iVz = the smallest A'' such that JJ,X,N(BN) > 0. 

16. / i x = lim — — - . 

17. X0,N = {x G X : fix,N{BN) > 0}. 

18. X0 = {x G X : ^ ( F ) > 0}. 

19. A0 = {x G X0 : lim^oo ^ g g ^ = 0 for all r > 0}. 

20. [0,1)* = [0,1) \ { £ : A: G N U {0}, n G N}. 

21. £* = {/In [0,1)* : . 4 G £ } . 



22. / = an Ll{ii) function, which is usually assumed to be nonnegative. 

23. 9 = a measure on (X, T, \x) defined by 9(A) = fA fdfx. 

24. 9X = the measure 9 diffused on the orbits of T. 

25. y0' = {x e X : ̂ ( F ) > 0}. 

26. Yo = ^o' U {x '• f(Tv(x)) = 0 for all i> outside some set of m measure zero}. 

28. i/j = a measure equivalent to jix for which An(f,x) = *<B
N\-

29. >lQi/3 = {x : liminf >ln(/, x) < a < (3 < limsup An(f, x)}. 

30. i4^5 = a subset of Aa^ that is invariant and has the same yu measure as Aa^. 
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Chapter 1 

Introduction 

The first milestones in ergodic theory come in the early 1930's when von Neu­

mann [25] and Birkhoff [4] each publish an ergodic theorem. Both results assume 

a measure-preserving, invertiblc transformation on a er-finitc measure space. A few 

years later Hopf extends Birkhoff's result for L1 functions by proving a ratio er­

godic theorem [9]. Hopf's theorem is presented in terms of a weighted average, but 

can also be seen as generalizing the measure-preserving requirement to nonsingular 

transformations. In 1944, Hurewicz gives an even further generalization by proving 

an ergodic theorem that allows for singularity of the system [10]. The results of 

both Hopf and Hurewicz assume conservativity. It is five decades until another ma­

jor pointwise ergodic theorem of this form is presented. In 2007, Feldman [6] uses 

a maximal inequality proven by Lindenstrass and Rudolph [14] to show an ergodic 

theorem for non-singular actions of 7Ld. The multidimensional group 7Ld requires him 

to average over hypercubes [—n, n]d, which are centered at the origin, rather than 

the most natural extension of the earlier results, which is to average over [0,n]d. 

This is necessary because an example of divergence is known for the latter type 

of average with d > 1 [13]. Hochman recently extended Feldman's Ratio Ergodic 

Theorem by removing the assumption of conservativity on both the action and the 

components [8]. 

The climax of this dissertation is the proof of a ratio ergodic theorem for Borel 

actions of Zd and Ed which assumes neither nonsingularity nor conservativity. This 
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first, introductory chapter gives a foundation to the ergodic theorem by describing 

the ergodicity condition and reviewing the classical ergodic theorems that pertain 

to pointwise convergence. Chapter 2 presents the Besicovitch Covering Lemma, as 

well as a recent extension of the Besicovitch Covering Lemma due to Hochman. In 

Chapter 3, the measure of a standard Borel probability space is diffused onto the 

orbits of a free Borel Zd or Rd action. Such diffusion of a measure has a long history 

in the setting of the leaves of a foliation, but was introduced by Lindcnstauss and 

Rudolph in the case of a Borel action [14]. Also in this chapter, a F0lner condition 

of the diffused measure on the orbits of such an action is proven, which is the 

first original work presented. The second such work is an extension of the Krengel 

and Brunei example of divergence of ratio averages so that the system is free and 

conservative, which is in Chapter 4. Also, the ratio ergodic theorems of Feldman 

and Hochman are reviewed here. Chapter 5 includes the statement and proof of the 

main result, as well as a few examples. Finally, Chapter 6 describes questions which 

arise from the results presented in this dissertation. 

1.1 Ergodicity 

The study of dynamical systems, at its most basic level, is the branch of math­

ematics that deals with values which change in time. A state space and a discrete 

or continuous transformation are used to quantify this idea. Physicists introduced 

the ergodic hypothesis, which is the notion that statistical properties of the system 

over time in a single experiment will be the same as the statistical properties across 

the state space [16]. This probably came about by observations that the statistics 

arc indeed often the same. One basic statistical analysis one can do is an average, or 

expectation. Ergodic theory began as the study of such averages, though naturally 

the field has grown to include subjects that extend beyond the scope of computing 

average values. Ergodic theorems, in turn, are results concerning the existence and 

value of a time average under certain conditions. 
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Consider a mass attached to a spring in a frictionless system. For the state 

space, one must consider velocity or momentum as well as the position of the mass. 

This is necessary so that the system is deterministic: knowing the value at one 

time enables us to compute the value at any other time. The state space, then, is 

7 x R for some open interval / (for our purposes, what happens at the endpoints of 

this interval is not important). We may use either a discrete time transformation, 

representing measurement at subsequent intervals of a constant amount of time, or 

a continuous time transformation. An orbit is a circle for the continuous time case 

and is an at most countable subset of a circle for the discrete time case. Suppose 

that f(x) is the total energy of the system at state x. By conservation of energy we 

have that / remains constant under the transformation. Thus, the average value of 

/ over time in a particular experiment is clearly not the same as the expected value 

of / across the state space (the former is a number whereas the latter is infinite). 

On the other hand, if the state space is restricted to a certain energy level, then the 

average value of / over time in one experiment is the same as the expected value of 

/ over the state space. 

This example demonstrates the notion of ergodicity, which is the condition 

that time averages equal space averages. Also seen in this example is the ergodic 

decomposition: any system can be broken up into ergodic components. To make 

this notion of ergodicity more precise, suppose we have a state space X. The state 

space is assumed to come with a natural probability measure \i on the er-algebra T 

of X. This allows us to write down a space average: 

L fdfi. 
' x 

We assume a discrete time system and let T : X —> X be an T measurable time 

evolution map that gives evolution over one unit of time. We then formulate a time 

average: 

^n(/):=-£/oT*. 
fe=0 
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This is known as the Cezaro average, and is only one of many time averages that 

can be considered. Ergodicity, in this case, is the property that An(f) converges to 

J f. The convergence may be pointwise, L1, Lp, or uniform, for example. 

In application of the results, we may wonder where the probability measure \i 

comes from. Indeed, one natural way to find \x is just to run the experiment and 

let /j,(A) be the proportion of times that the state is in A. This, however, is just 

computing a time average, so the space average equals the time average for free 

(assuming that the average converges). Another way to approach this issue is to 

search for a measure that is invariant under T. Suppose the state space is compact 

and the map T is continuous. We can start with any probability measure v and 

look at the sequence of measures 

1 71—1 

n /—' 
fc=0 

We don't know if these measures converge, but we do know that a convergent sub­

sequence exists. If we start with a system in R" and the Lebesgue measure, then 

the subsequential limits of {un} are called Krylov-Bogolubov measures. Any weak* 

subsequcntial limit of un is an invariant measure and therefore a reasonable choice 

for fi [5]. 

The above formulation of the condition of ergodicity is a property of the set 

{/, (X, JF, fi), T}. However, the usual definition of ergodicity is a property of the set 

{(X, J7, n),T} and looks quite different. 

Definition 1.1.1. The system {X,T) is said to be ergodic ifT~1(A) = A implies 

fi{A) = 0 or 1 for A^T. 

This definition appears to have nothing to do with space averages and time 

averages. How can the two notions of ergodicity be reconciled? Suppose that for 

all / € L1, An(f) —> J fdji almost surely. Further, suppose A e T is T invariant 
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(T-l{A) = A) and n(A) > 0. Letting / = lA gives 

]im-J2^{Tk(x))=fi(A) (1.1.1) 
n—»oo TL '—' 

fe=0 

for a.e. x. Choose XQ € A for which (1.1.1) holds. Now lA(Tk(x0)) = 1 for 

all k G {0,1,2,...} and we sec ^(.A) = 1. Therefore, T-invariant sets must have 

measure zero or one, and the system is ergodic. So, we see how space averages 

equalling time averages implies Definition 1.1.1. In the next section, we will see the 

converse: Definition 1.1.1 implies space averages equal time averages. 

1.2 Early Ergodic Theorems 

We now look at some early ergodic theorems. 

The most basic ergodic theorem is the Law of Large Numbers, which says that 

the average value of a Bernoulli random variable converges to the expected value 

as the number of trials goes to infinity. Although the law is stated in the context 

of random variables rather than dynamical systems, the language and result are 

easily transferable. The function / is the random variable and the state space is all 

infinite sequences of samples. We endow the state space with a Bernoulli measure, 

which is based on the original measure of the sample space. For example, suppose 

a fair die is rolled repeatedly. The Law of Large Numbers says us that, almost 

surely, the ratio of fours rolled to total number of rolls converges to | , since ~ is the 

expected value, or space average, of the random variable (which takes the value 1 

when a four is rolled and 0 otherwise) [11, 3]. 

Next we turn our attention to the von Neumann Ergodic Theorem and the 

Birkhoff Ergodic Theorem. As with the various laws of large numbers, the differ­

ence between these two theorems is the type of convergence that is asserted. In this 

dissertation, we are concerned with ergodic theorems that give pointwise conver­

gence. The von Neumann theorem gives 1? convergence, but is included because it 
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is in this setting that the identity of the function which the time averages converge 

to is the clearest. 

Theorem 1.2.1. (von Neumann Ergodic Theorem) [25] Suppose (X.T,^) is a a-

finite measure space and T is a measurable, m,easure-preserving transformation. 

Then for f <E L2(/j,), there is an f G L2(LI) for which 

.. n—X 

f 
fc=0 

in L2([i). 

We notice a special property of / : it is T-invariant. To see this, we compare 

the time averages of / and / o T in L2: 

/

1 n—1 1 n—1 „ 

fc=0 fc=0 J n 
- ( / - / ° r dji 

< -
nl 

and the right hand side goes to zero as n approaches infinity. The von Neumann 

Ergodic Theorem, then, gives that 
, n—1 

-J2((foT)oTk)^f 
fc=0 

in L {(x). In other words, / o T = f. 

This property is notable because it is the main tool used in characterizing / . 

The proof of the von Neumann Ergodic Theorem is constructive. It shows that / is 

the projection of / onto the L2-subspace of T-invariant functions. 

The Birkhoff Ergodic Theorem came soon after the von Neumann theorem 

(even though the publication dates imply the opposite). 

Theorem 1.2.2. (Birkhoff Ergodic Theorem,) [4] Suppose {X,T,LI) is a probability 

space, T is a measurable and measure-preserving transformation on X, and f 6 

L1(LI). Then 
1 n—1 

- ] T / o T f c ^ ; (1.2.1) 
n fc=0 
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both a.e. and in Ll(n), and f is the conditional expectation of f given the a-algebra 

of T-invariant sets. 

We can use the Birkhoff Ergodic Theorem to show the other direction in relating 

the two notions of ergodicity given above, having already seen that time averages 

equalling space averages implies invariant sets have measure zero or one. Now 

suppose that the pair {(X, T, (j),T} is ergodic (Definition 1.1.1) and / G Ll(n). 

The conditional expectation of / given the er-algebra of T-invariant sets is just the 

expected value of / in this case. Therefore, the Birkhoff Ergodic Theorem says that 

time averages converge to the expected value of the function almost surely. 

The Birkhoff theorem is often stated on a a-finite measure space, although 

the characterization of the limit does not hold in this case since the conditional 

expectation is not defined for infinite measures. If there is a T-invariant subset of 

positive, finite measure, then one can restrict the space to this set and apply the 

characterization given in Theorem 1.2.2. If no such set exists, then / is 0 a.e [20]. 

Wc will need a new definition to continue our review of the early ergodic theo­

rems. 

Definition 1.2.3. The system {(X, F,n),T} is conservative ifn(T~k(A)nA) = 0 

and for all k G N and A s f implies fjt(A) = 0. 

Hopf extended Birkhoff's theorem, which was in turn extended by Hurewicz. 

We now review these two results. Again, our statement will assume a probability 

space, although convergence holds in both cases for cr-finite measure spaces. (The 

(T-finite case adds an assumption of conservativity for Hopf's theorem, whereas con-

servativity is automatic for the measure-preserving transformation on a probability 

space, which is a condition of Theorem 1.2.4.) 

Theorem 1.2.4. (Hopf Ergodic Theorem) [9] Suppose (X,T,n) is a probability 

space, T is a measurable, measure-preserving transformation of X, f G Ll(ii), and 
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g : X —* M is measurable with respect to the Lebesgue a-algebra on M. and positive 

almost everywhere. Then 

]T/oTfc 

fc=o E(f\l) n „ > 
" , ™ E(g\l) [L^Z) 

fc=0 

almost everywhere, where! is the a-algebra ofT invariant sets. 

We notice that this is a generalization of the Birkhoff Ergodic Theorem by 

taking g to be the constant function 1. Since the Hopf theorem involves a ratio of 

sums, it is known as a ratio ergodic theorem. 

A little over a decade after Birkhoff's Ergodic Theorem and seven years after 

Hopf's Ergodic Theorem, Hurewicz proved an even more general result removing 

the assumption that the system be measure-preserving. In fact, Hurewicz allowed 

the system to be singular: we may have A G T with /i(A) = 0 and ji{T"l{A)) > 0. 

Rather than assuming a function / € Ll{n) as Birkhoff and Hopf do, Hurewicz 

starts with a countably additive set function F on T which is absolutely continuous 

with respect to \i. This countably additive set function is just a signed measure on 

T. Taking f = jf- (see [17] for the Radon-Nikodym Theorem on signed measures) 

and g = ^f^-, this is the Hopf theorem. 

Theorem 1.2.5. (Hurewicz Ergodic Theorem) [10] Suppose (X,T,fj) is a probabil­

ity space and T is a measurable and measurably invertible transformation of X. Let 

F be a finite, countably additive set function on T which is absolutely continuous 

with respect to \x, and consider the point densities 

If the system, is conservative, then fn converges a. e. 
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Recent work on the ratio ergodic theorem has considered an action of Zd or 

M.d instead of a transformation T. Nevertheless, the Birkhoff, Hopf, and Hurewicz 

ergodic theorems provide a foundation for the more recent ratio ergodic theorems. 

The arguments used on the actions of higher dimensional groups are very similar to 

those used in these early ergodic theorems. We return to the ratio ergodic theorem 

in Chapter 4, but first build a few tools for our proof in the next few chapters. 
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Chapter 2 

Covering Lemmas 

Covering lemmas play a crucial role in various arguments in Ergodic Theory. 

The most basic such lemma is that if h,h, and Is are intervals and I\ D I2 Pi I3 

is nonempty, then one of the intervals may be discarded so that the remaining two 

intervals cover the same set as the original three. This is essentially the Bcsicovitch 

Covering Lemma for R. In this chapter, we prove the Bcsicovitch Covering Lemma 

and then move on to an extension by Hochman. All results in this chapter are 

presented in Rd, but the results immediately follow for Zd as well (using Haar instead 

of Lebesgue measure). In both settings, the Euclidean metric is used. A ball in Rd 

with radius p and center c, denoted Bp(c), here means {x £ M.d : d(x, c) < p}. If the 

center is not specified, then it is assumed to be the origin. 

2.1 The Besicovitch Covering Lemma 

Theorem 2.1.1. (The Besicovitch Covering Lemma) [2, 24] For Rd, there is a 

natural number C such that the following holds. If E C l d is bounded, and for all 

v G E we have a ball Bp(v)(v) with p(v) > 0, then there exist subsets E\,..., EQ C E 

such that Vi,v2 G Ek, v\ =̂  v<i implies Bp(vi)(vi) D Bp(V2)(v2) = 0, and 

EC |J Bp{v)(v). 
veEk 

l<k<C 

We will employ the following two lemmas in the proof of the Besicovitch Cov­

ering Lemma. 
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Lemma 2.1.2. For all real numbers r and R, let K be the maximum number of 

disjoint balls of radius | in Md that can be placed inside a ball of radius 3R (notice 

K depends only on d a,nd the ratio —). Then for any collection of K + 1 vectors 

VQ, VI,V2, ...,VK G Rd and function p : {vi, ...,VK} —> [r, R] with d(vi, Vj) > p(vf) for 

all 0 < i < j < K, there is a 1 < k < K such that d(v0l Vk) > P{VQ) + p(ffe)-

Proof Fix r, R, and d. Let K be the maximum number of disjoint balls of radius -

that can be placed inside a ball of radius 3R. Assume Vj and p arc as stated. For 

the sake of contradiction, suppose that for all 0 < j < K, d(vo,Vj) < p(vQ) + p(vj). 

This implies that the collection of balls {Bt(vj) : 0 < j < K] is pairwise disjoint 

and contained in ^3^(^0)1 which contradicts the definition of K. 

• 

The next lemma is rather technical. 

Lemma 2.1.3. Suppose d > 2 and a,b,c G Ed are not collinear. Let d\ := 

d(a,b),d2 := d(b,c),d3 := d(a,c), and if) := Zabc (see Figure 2.1). Also, suppose 

positive real numbers p(a), p(b), p(c) and the following constraints: 

1. dx e [p{a), p(a) + p{b)) and d2 G [p(c), p(c) + p{b)), 

2. d3 > p{a), 

3. p{a) > %p{c), and 

I I0p(b)<p(c). 

Thenm(ip) > f. 

Proof. Suppose, for the sake of contradiction, that the assumptions hold and m(ip) < 

| . Thus, cos(V') > JQ, and we apply the law of cosines to Aabc and estimate the 
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Figure 2.1: The setup for Lemma 2.1.3. 

quantities involved: 

{ds)2 = {di)2 + {d2)
2- 2d1d2cos^ 

(P(a))2 < ( ^ ( a ) ) 2 + ( ^ c ) ) 2 - 2 ^ a ^ c ) ^ -

We combine like terms, move the last term to the left hand side, and divide by 

p(a)p(c) to get 
9 515 p{a) , 121 p(c) 

5 2,401 p(c) 100 p(a)' 

which implies p(a) > 7p(c) by assumption 3. Applying assumptions 1 and 4 gives 

<i3 > f§d2. Concavity of sin on [0, | ] and the law of sines gives ~ < ^ f ^ & - Since 

f - S g > 0 for x e (0,f),y G (0,.x), we have § < ^ . 

Let e be a new point which is colincar with a and c such that d(a, e) = d(a, b). 

Then d(c,e) < p(b), while d(b,e) > d2 - p(b) > d(c,e) and d(b,c) = d2 > d(c,e). 

Tlrus, ce is the shortest leg of Afece, so m(Zcbe) < | . Since Aabe is isosceles, 

7T — m(Zbac) 
m(ijj) + m(Zcbe) 

2 

~ 2 126 V ; ' 

which implies m(i/>) > ^ 7 r — f§f. This contradicts m(-0) < | . D 

Proof. Now we prove Theorem 2.1.1. Suppose E and /)(?;) are as stated. 

It is not difficult to see that Theorem 2.1.1 holds for d = 1 by letting C = 2. We 

may assume, then, that d > 2. Let s = diam(.E') and K be the maximum number 

of balls of radius one that can be placed inside a ball of radius ^ . Also, let M be 
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the maximum number of non-origin points that can be placed in Rd such that the 

measure of any angle with the origin as the vertex and one of these points on each 

leg is at least | . Let C = 115K + M + 1, which depends only on d. If there is a 

v £ E with p(v) > s. then we let E\ — {v} and Ej — 0 for 1 < j < C, and the 

result holds. Assume, then, that p(v) < s for all v £ E. 

For each natural number z, let 

Notice that Gi,G2, ••• are pairwise disjoint and cover E. 

We build the sets Ek simultaneously, moving through the sets Gi one at a time. 

For step one, choose V\ £ G\ (if Gi is empty, then skip to step two) and let v% £ E\. 

Suppose v\, ...,Vj-i have been chosen and placed in an appropriate set Ek- Choose 

Vj G G\ \ \Ji<i<jBp(i){vi), skipping to step two if this set is empty. Let rij be the 

smallest n such that for each 1 < k < n, there is a v G Ek with d(vj, v) < p(vj) + p(v) 

and place Vj G Eny Notice that {Bp(v)}veEk is a pairwise disjoint collection of balls 

for each k. Also, the balls {Bn{vj)} are pairwise disjoint, where r\ = | | s . Since 

the set Gi is bounded, this process terminates. 

Now suppose steps one through I — 1 have been completed. Let ki be such that 

vkl has been defined, but v^+i has not (or, if no Vj has been defined, let ki = 0). 

Also, let 

G ; : = Q \ (J BP{V])(VJ). 
l<j<ki 

Choose vkl+i G G{, or skip to step / + 1 if G\ is empty. Let n^+i be the smallest n 

such that for each 1 < k < n, there is a v G Ek with d(vkl+i, v) < p(vkl+i) + p(v), and 

place Vkl+i G Enk +1. Now suppose Vi has been chosen and placed in an appropriate 

Ek for ki + 1 <i< ki+j. Choose v^+j GG[\ M Bp(v.)(vi), or skip to the next 
ki + l<i<ki+j 

step if this set is empty. Let nkl+j be the smallest n such that for each 1 < k < n, 

there is a v £ Ek with d{vh+j,v) < p(vkl+j) + p(v) and place vh+j G Enki+j. Again, 
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the balls {BH(VJ)} are pairwise disjoint, where r\ = {%)ls. Since Gi is bounded, 

step I terminates. 

If we show that rij is never larger than C, then the proof is complete. Suppose, 

for sake of contradiction, that the above procedure is carried out and there is some 

j at step / for which rij = C + 1. This gives increasing natural numbers i\,i%,...,ic 

such that d(vj,vik) < p(vj) + p(vik) for all 1 < k < C. 

Lemma 2.1.2 implies that at most K of the vectors v\k can be from a given 

Gm. Thus, ic-nsK < fcz-ii5 + 1- Also, for all 1 < k < C — 115K, p(vik) > 10 p(vj), 

since (§g)114 > 10 and (f§)114 is the ratio of the lower bound for p on G/_n5 to the 

upper bound for p(vj). Since C — 115K > M, we may choose distinct vectors w\ 

and w2 from v^, ...,Vic_U5K such that m(Z.WiVjW2) < | . Without loss of generality, 

assume W\ comes before w2 in the list v^, ...,vic_115K. Apply Lemma 2.1.3 with 

a = wi,b = Vj, and c = w2 to get that m(ZwiVjW2) > | . This is a contradiction, so 

rtj is never larger than C, and the proof is complete. • 

Given a set of points in Rd and a ball centered at each point, it would be 

helpful to reduce to a disjoint sub-collection of these balls that still cover the set. 

The Vitali Covering Lemma comes close to providing this, but the sub-collection 

given covers all but some positive fraction of the Lebesgue mass of the set. Since 

we will be working with measures that are not Lebesgue, this is not good enough 

for us. Instead, we use the Besicovitch Covering Lemma, which shows that there 

must be C collections of balls such that each collection has pairwise disjoint balls 

and the balls in the C collections together union to the entire set. This allows us to 

cover a fraction ^ of the mass of the set, with respect the measure we use. Much 

work has been done to determine the value of C [7]. For our purposes, however, it 

will be sufficient that C is finite. 

14 



2.2 Hochman's Lemma 

In this section, wc follow a line of reasoning that extends the commonly used 

Besicovitch covering lemma on Rd so that, in each subcollection, two distinct balls 

are not only disjoint, but are no less than a certain positive distance apart. This 

is used to prove a statement that says balls with heavy boundaries cannot be too 

common if the measure on M.d is finite. The results and arguments in this section are 

due to Hochman [8]. It should be noted that Hochman's treatment includes more 

general metrics on M.d. 

First wc start with some terminology. 

Definition 2.2.1. A collection of subsets ofM.d has multiplicity M ij every element 

of Md is contained in at most M elements of the collection. 

For example, if d = 1, then the collection of sets {{1, 4, 5}, {0,1, 2}, S2(4),R} 

has multiplicity three since 1,4, and 5 each lie in three sets in the collection. Notice 

that this collection also has multiplicity M for any integer M > 3. 

Definition 2.2.2. A collection of balls U in M.d is well-separated if the distance 

between any two balls in IA is at least rminZ// = min{radius(I3)}. 

A collection being well-separated allows us to extend the radii of the balls in 

the collection by up to rm^lU and still have a disjoint collection. 

Suppose m is Lcbesgue measure on Wd. We have the following improvement of 

the Besicovitch Covering Lemma. 

Lemma 2.2.3. Suppose E C M.d is bounded and to each v £ E there corresponds a 

ball Bp(v)(v) with p(v) > 0. Then there exists a number x, which depends only on 

Wd, and a partition {Ex, E2,..., Ex} of E such that each Ej is countable, {Bp(v)(v) : 

v G Ej} is well-separated for each j , and 

EC |J Bp(v)(v). 

1<J<X 

15 



Proof. Let C be the constant from the Besicovitch Covering Lemma. Also, let D be 

the doubling constant for Rd: for any ball Br(v) in Md, m(B2r(v)) < D • m(Br(v)). 

Let v G Rd and R > 0. Suppose {Bj, B2, •••,Bn) is a collection of balls with 

radii > R, centers in B3R(v), and multiplicity C. Shrinking each ball to radius R 

gives 

n • m(BR{v)) < C • m(B4R(v)) < D2 • C • m{BR{v)), 

and we see n < CD2. Let \ = CD2 + 1. 

Suppose there is a v G E with p(v) > diam(£'). We let E\ = {v} and E2 = 

... = Ex = 0, and the result holds. We may assume, then, that p(v) < diam(E') for 

each v £ E. 

Let v\, v2,... be a sequence of vectors from E such that the ordered collection of 

balls {Bp(Vl)(vi), Bp(V2)(v2), •••} covers E, has nonincrcasing radii, multiplicity C, and 

Vi G" Uj^Bp^y^ivj). The fact that such a collection of balls may be chosen follows 

from the Besicovitch Covering Lemma. Color the balls inductively, starting with 

Bp(vi)(vi), with CD2 + 1 colors so that each color gives a well-separated collection. 

By the work in the previous paragraph, Bp(Vj)(vj) cannot be within p(vj) of more 

than CD2 of the balls which are already covered, so an appropriate coloring is always 

available. • 

Fix a value x = x(^d) that satisfies Lemma 2.2.3. 

Corollary 2.2.4. Suppose u is a measure on Md, E C Kd is bounded, 0 < v(E) < 

oo, and each v G E corresponds to a ball Bp(v)(v). Then there exist Vi,v2,... G E 

such that {Bp(Vi)(vi)}iGw is well-separated and covers at least - of the u-mass of E. 

Proof. By Lemma 2.2.3, let {E\, E2,..., Ex} be a partition of E such that {Bp(v)(v) : 

v G Ej} is well-separated for each j and Uj{Bp(v)(v) : v G Ej} covers E. By finite 

additivity, 

u(E)= E ^( U B
Pn(vn-
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The result follows. • 

We now build some notation. Suppose r, p > 0 and v G Kd. We let 

drBp(v):=Bp(v)\Bp.r{v) 

and 

d;Bp(v) := Bp+r{v)\Bp..r(v). 

Also, for a collection U of balls in Rd, let dW = {SB : B eU}, where 9 5 is the 

usual topological boundary. We may extend the definition of well-separated to this 

setting. 

Definition 2.2.5. A collection of balls V in Md has that dV is well-separated if 

rminV < mi{d{dBu dB2) :B1,B2eV}. 

Note that a collection of balls V may have the property that dV is well-separated 

even though V is not well-separated. Consider, for example, the collection V = {BM : 

N eN}. 

Next, we have a lemma that allows us to capture mass of a set inside thick 

boundaries d*RB when each vector of the set itself is the center of many balls with 

heavy thick boundaries. 

Lemma 2.2.6. Suppose that v is a finite measure on W1, 0 < c,5 < 1, p = |"̂ f ] + 1 , 

r > 0, 

1. E C Rd is bounded and u(E) > 5u(Rd), 

2. max(l l , r) < rx < Rx < r2 < ... < rp < Rp, and 

3. for each 1 < i < p, we have a function pi : E —• [rj,i?j] and u(drBp^(v)) > 

ev(BPi(v)(v)) for all v e E. 
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Then there is an integer 1 < k < p and V C ^>i>k{BPi(v)(v) : v G E} such that dV 

is well separated and 

v{{\Jd*2RkB)nE)>l-v{E). 

Proof. We recursively define Vj C \Ji>p-j{BPi(v)(v) : v G E} such that Vj is well 

separated and ^(UBev^r-B) > j-^-v(E) until one of the V/s satisfy the conclusions. 

We begin by letting Vo = 0. 

Suppose Vj-i has been constructed and satisfies the above mentioned condi­

tions. If ^((UBeVj-^fl,,-.*-8) nE) > \v(E)i t h e n l c t V = Vj_i and k = p - J to 

satisfy the conclusions. Otherwise, we build Vj. Notice u(E \ UB£VJ_I^2« _B) ^ 

\v{E). We apply Corollary 2.2.4 to select Ej C (E \ UBevj-&Rp_iB) such that 

Vj := {BPj(y)(v) : v G Ej} is well-separated and i/(.E D UBZVJB) > -£-v{E). Let 

Vj = Vj+i U Vj-. Since each element of Ej is of distance at least 2Rk from the 

boundary of any ball in Vj_i, <9Vj is well-separated. Also, 

u ( U drB ) = v\ U d'B ) + " ( U drB 

\seVj / \BeVj-i ) \BeVj 

= w{E)-
Notice that v(UBeVjdrB) would be larger than u{Rd) for j = p, so the process must 

terminate before building Vp. D 

We would like to use the fact that the boundary of a ball has lower dimension 

than the ball itself. Since we are dealing with thick boundaries, though, we need to 

define a different type of dimension. 

Definition 2.2.7. IfY is a metric space and RQ > 1, then cdlmngY = k (read Y 

has coarse dimension k at scales > R 0 j is defined by recursion on k: 

1. cdimflo0 = — 1 for a,ny RQ, 
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2. cdim.R0Y is the minimum integer k for which cdimt^09*Bp{v) < k — 1 for any 

t > 1, p > tRo, and v G Y. 

For example, cd im^S = 0 if and only if E is nonempty and diamE < RQ — 1. 

Also, if E has diamE > RQ — 1 and E is composed of two nonempty, disjoint sets, 

each of diameter less than R0 — 1, then cdim^E = 1. 

We show that Md has finite coarse dimension for scales > 11. 

Lemma 2.2.8. There exists k G N such that p{\) > p(2) > ... > p(k) > 11 and 

i>i,f2, •••,ffe G Kd wz#i fj G1 Uj^Bp^-^Vj) implies 

k 

f]d*1Bp{l)(vl) = (H. 
i=i 

Proof. Let fc be larger than the most points that can be placed around v in Md so 

that the angle formed by any pair of these points on the legs and v as the vertex is 

at least arccos(H|). Suppose the assumptions hold and 

k 

vef]dtBp{l)(Vl). 

Choose 1 < j < i < k and note p(j) > p(i). Let a :— d(vi,Vj),/3 := d(v,Vi),j := 

d(v,Vj), and <f> := ZviWj, and we have the following three estimates: 

p(j) - 1 < a, 

\p(i)-P\ < 1, and 

|p( j ' ) -7l < I-

The law of cosines states that 

a2 = /32 + 72 - 2/?7 cos <j>. 
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We use this to estimate cos <j>: 

(32 + 7
2 - a2 

COS i 

< 

2/37 

(P(0 +1)2 + (PU) +1)2 - (P(J) - 1 ) 2 

2 ( p ( i ) - l ) ( p ( j ) - l ) 
p(0 I _ 2 _ i _4_ , 1 

_ P(j) "^ P(.J) ^ P(i) ^ P(J)PU) 

< 

P(j) p(i) p(i)p(j) 

187 

198 

Thus, 4> < arccos(i§!) for all 1 < j < i < fc, which contradicts the definition of 

k. D 

Proposition 2.2.9. Md has finite coarse dimension at scales > 11. 

Proof. Suppose cdimnMd — I. We work backwards through the inductive definition 

of coarse dimension. For any t(l) > 1, p(l) > l l t ( l ) , and v G Rd, we have 

cdimt{1)nd*{l)Bp{1)(v) = 1-1. 

This means that for any t(l),t(2) > 1, p(l) > l l i ( l ) , p(2) > llt(l)i(2), vx G Rd, 

and v2 G d*^Bp^(vi), we have that 

cdimt(i)t(2)ii (9t*(2)Bp(2)(u2) n at*(1)Bp(i)(ui)) < I - 2. 

How do we see that / is finite? To say that M.d has finite coarse dimension no larger 

than k — 1 is to say that for any t(l),t(2), ...,t(k) > 1. p(i) for 1 < i < k such that 

p{i) > t{\)t(2) • • -t(i)n, and v{ G Rd for 1 < i < k with v{ G d*t{j)BpU)(vj) for all 

1 < j < i, wc have 
A; 

cdim i (1)... t{fe)np|a; ( i )Bp(i )(^) = - 1 , 

i.e.,nt ia; ( i )B, ( i )(i; i) = 0. 

Let fc' be the /c from Proposition 2.2.8 and k" be the largest k G N such that 

there exist i?!,...?^ G Bvi with d(vi,Vj) > 1 — jj- for all 1 < i < j < fc. Let 

fc = fc'/c" + 1. Suppose we are given 
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1. i(l),*(2),...,i(A:)>l, 

2. p(l), p(2),..., p(k) with p(z) > t(l)t(2) • • • t(i)l l , and 

3. vi,v2, ...,Vk € Kd such that i>j G d*,-,Bp^)(vj) for j < i 

We would like to show n^d^Bp^ivi) = 0. 

Claim: we can obtain a subsequence of length k' such that {p(ji)}i=i is de­

creasing. To see this, we show there is some 2 < j < k" + 1 with p(j) < p(l), 

and the argument may be repeated for p(j), and so on. Suppose, for the sake of 

contradiction, that p(j) > p(l) for 2 < j < k" + 1. First, notice 

Vj G Bp(i)+t(i)(u1) C Bi|p(1)(ui) 

for all 2<j<k" + 1. Second, if 2 < j < i < k" + 1, then 

d{vuvj) > p(j) - t(j) > p(j)(l - 1 ) > p(l)(l - ^ ) . 

Scaling the norm by a factor of -4pr shows that we have contradicted the definition 

of k". 

Having reduced to a subsequence of length kl with decreasing radii, let t — 

max; t(i) and scale the norm by a factor of j . Lemma 2.2.8 shows H^d^Bp^Vi) = 

0, so cdinxnRd < k - 1. D 

We now have access to the main result of this section, which will allow us to 

show a F0lner condition on the orbits of a Zd or Rd action. Suppose F is a subset 

ofRd. 

Theorem 2.2.10. Fix e, 8 G (0,1) and r > 0. Suppose cdimnF = k, and let q be 

an integer no smaller than (—^ + 2) • {—^)- Also, suppose v is a finite measure 

on F, 

1. E C F is bounded, 
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2. Ti and Ri are numbers for 1 < i < q such that max(ll ,r) < ri < R\, Ri+i > 

ri+i > URi, and 

3. p% : E —> [ri,Ri\ for 1 < i < q such that v{drBp^v){v)) > ev(BPi(v)(v)) for each 

veE. 

Then u{E) < 5u{F). 

Proof. We proceed by induction on k. For the base case, suppose k = — 1, which is 

trivial since this implies F = 0. 

Suppose, then, that the result holds for cdininF = k — 1. For the sake of 

contradiction, assume v{E) > 5u(F). For each 1 < i < q, let 

Ui := {BPi{v)(v) : v G E). 

Let N = ITT^T-A and notice N > ( ^ + 2)k'1 • @ ) f e . We apply Lemma 2.2.6 

to every iVth r*, Ri, and pi to get a collection of balls V C U ^ ^ i ^ A r such that 

dV is well-separated and u(F0 n E) > \v{E), where F0 = Usevd^R , B. Let p = 

\(2-^ + l)*"1 • (5?) f c" 1 l , M = f, and m(j) = k'N + jp for 0 < j < M. The 

constant p corresponds to q for parameters fc — 1, x, f, and | . Notice M > | j j . We 

consider the following M collections of covers of E: 

^m(0)+ l i^m(0)+2 i . . . ,Wm (o)+ p 

^ m ( l ) + l-, ̂ m ( l ) + 2 , •••,^/m(l)+p 

Mm(M-\) + lMm{M-l)+2i •••Mm{M-l)+p 

For 0 < j < M, let F? := \JB€Vd2Rm{j)B. Notice F,- C F i + 1 , Fj is a disjoint 

union since dV is well-separated and rmin(V) > 2RmQ), and h>{Fj n F) > | ^ (F) for 

all 0 < j < M. Fix 0 < j < M - 1 and for B G V let FB = &*R B. Also, let 

Vj :={BeV: v{FB n F) > | ^ ( F B ) } . Fix B G V;, 
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We would like to apply the induction hypothesis to the set FB. However, we 

do not know that all of the balls with heavy boundaries still have heavy boundaries 

when restricted to FB. So, we have to throw away some points. In fact, the induction 

hypothesis will give us a lower bound for the v mass of the points we have to throw 

away. For m(j) < i < m(j) + p, let 

EB := [v £ E fl FB : u(FB D drBPi(v)(v)) > €-u{FB n B^v))} , 

EB '•= ^m(j)<i<m(j)+pEB, and E'B := FBDE\EB. We apply the induction hypothesis 

to the space FB with bounded subset EB and parameters k — l , | , | , i / | ^ B and p 

instead of parameters k, e, 5, u, and q, respectively. This gives that u(EB) < | i /(FB). 

In turn, 

u{E'B) > iv(FB), 

since B £ Vj. For v £ E'B, let m(j) < iv < m(j) +p such that v $• El£. Thus, 

u(Fc
BDdrBPiv(v)(v)) > e-u{BPiv{v){v)) 

for all v £ E'B. Now {BPi (v)(v) : v £ E'B} is a cover of E'B, and we apply Corollary 

2.2.4 to get a well-separated subcollection C covering - of the u mass of E'B. We 

have the following estimate: 

v({JdrB>n(F\FB)) > 6-v(\jB>) 
B'eC B'£C 

> ±«eB) 

16x 

Notice Us'ec ^rB' fl (F \ Fjg) is contained in Fj+i \ Fj. 
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We un-fix B and have 

5-v{F) < u(F3r\E) 

= ^([Jd^mU)B)nE) + u(( U d*2RmU)B)nE) 
BeVj Bev\Vj 

< u(\jFBnE) +
 S-u( | J d*2RmU)B) 

sev, Bev\v, 

< u(\J FB) + S-u(F). 
BeVj 

This gives that \v{F) < K U s e v ^B), which is a disjoint union and allows us to 

estimate the v mass between F J + i and Ff 

BeVj 

wv{Fa) 

sev, A 

16Y
 l U 7 

> £ ^ 
We see that this is true for all 0 < j < M — 1, which gives I / (UJFJ ) > v{F), a 

contradiction. D 
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Chapter 3 

Diffusion of Measure 

Let F be Zd or M.d. In the first section of this chapter we construct measures 

pLx on F for /i-a.e. x such that for any A G T and N > 0, 

V\A) = / „ / p x <W, 

where 4 := {» e F : T^rr) G ^4}, T is a free Borel action of F on a standard 

Borel probability space (X,T,fi), and /x^ is a measure on X. Such diffusion of the 

measure is common in the setting of the leaves of a foliation but was only recently 

applied to the general context of Borel actions on Polish spaces. In the second 

section we prove a F0lner condition for F on the diffused measures \ix. 

3.1 Construction of the Diffused Measure 

Definition 3.1.1. The measure spaces (X, J7, /i) and (Y,Q,u) are measurably 

isomorphic if there exist 

1. XQdX and Y0 C Y with fi(X \ X0) = 0, v{Y \ Y0) = 0 and 

2. a measurable bijection <f> : XQ —>• YQ such that v = /i o 0_ 1 . 

The map (f> is called an isomorphism. 

Definition 3.1.2. A standard probability space (or Lebesgue probability 

space,) is a probability space which is measurably isomorphic to an interval with the 

Borel sets and Lebesgue measure joined with at most countably many atoms. 
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A standard Borel probability space will be the setting in which we work. We 

can look at the preimage of the dyadic intervals under such an isomorphism to 

get a sequence of partitions Vn that refines to points almost surely on a standard 

probability space. Each partition includes the singletons of the atoms. 

To build the diffused measures, wc construct a "twisted" measure on X x F 

and then define a measure on F using the Rohklin decomposition. Let m be Haar 

measure (Lebesgue if F — Md, counting if F = Zd) on the Borel sets (denoted B) of 

F. Wc use the function I: XxF—>XxF, defined by I(x, v) := (Tvx, v), to twist 

the space X x F. Let N eN and JJ,N := }B x/*(^ x m ) | x x % , a Borel probability 

measure on X x BN. Notice that for M > N, £IM\XXBN is equivalent to /}#. 

The Rohklin decomposition can be used to pull the measure jl^ down to orbits, 

so a description of this decomposition of a measure will be useful. Suppose (X, J-', /i) 

is a standard Borel probability space. Let (Y, G, A) be an interval of length Ao 

together with the points 1,2,..., which each are assigned mass Ai, A2,..., such that 

{X.T^JJ) is isomorphic to (Y, Q,\). Then there exists a measurable isomorphism 

ip between (X,F,n) and (Y xY,Q x Q,v) for some measure v (see Figure (3.1)). 

There is also a measurable isomorphism <\> between {X,T,\i) and (Y, Q,\). The 

Rohklin Theorem says that for any sub cr-algebra H of JF, ip and v may be chosen 

so that the cr-algebra {̂ 4 x Y : A € G} in Y x Y is the image of 7i under ijj almost 

surely. The pullbacks of the vertical slices {a} x Y are called fibres. Notice, then, 

that a fibre is a maximal set of points in X which arc indistinguishable under H. 

Let Pn(x) be the element of the partition Vn that contains x and H2 be projection 

onto the second coordinate in Y x Y. A fibre almost surely can be given a measure 

A*x by 

,M) := lim ^-W-W)^^)))), 
n-,00 /u(^-1((^(P„(x)) x Y))) 

Integrating these measures over \i gives back \x, i.e., for any / € Ll(v), 

j fdfi= f j fd^dfi. (3.1.2) 
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For x G X, the measure /ix is a version of the conditional expectation of [i given H, 

which is denoted E^H) [20, 18]. 

0 a e 
• e • 

Figure 3.1: The space Y xY. 

Let HN := {A x BN : A £ J7}, and apply the Rohklin Theorem to X x B^ 

using the sub cr-algebra H^. The fibres correspond to sets {x} x BN, since these are 

precisely the sets of undistinguishable points under HN- The fibre measures, which 

we call ftx,N, a r e measures on Borel subsets of {x} x BN. To keep our notation as 

clean as possible, we consider the measures jXx^ as measures on the Borel sets of 

BN. We let f{x,v) = 1E(V) for a Borel E C BN in (3.1.2) to obtain 

/ lE(v)dftN = / p,x<N(E)dp,N. (3.1.3) 
JxxBN JXXBN 

Equation (3.1.3) is enough to uniquely determine measures fix^ (up to a set of 

measure 0). To construct the measures, wc use (3.1.1), which in our case is 

. (iN{An x E) 
fix,N(E) = lim , . y (3.1.4) 

where An = Pn(x) for some choice of <fi. The set of points x for which (ix^ is defined 

under the construction, which wc denote as XotN, is precisely the set of points for 

which there are An that refine to x and have fix^{An(x) x B^) > 0 for each n. 

There may be many measurable isomorphisms between (X, J7, ji) and (Y, G, A), and 

jix,N is defined if there exists a measurable isomorphism between these two spaces 

such that Pn(x) x B^ has positive fi^ measure for each n. Let XQ := UXo:/v. We 

will see that X0 is a set which is invariant under T and of full \x measure. 
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Letting E = B^ in (3.1.3), we see that for each N, XO,N has JJ,N(XO,N X BN) = 1. 

Also, fixing an x £ X0tN results in measures that extend each other up to rescaling: 

Ax,7V+l|BN 

fi>x,N = 7 T D T -
Hx,N+\\£>N) 

For each ,x £ X0, we let Â x be the smallest natural number TV for which LLX}N(BN) > 

0 and define a Borel measure on all of F by 
v Ar,7V 

yUx = llffi r-r r . 
N^°° HX,N{BNX) 

We have constructed measures \xx on F for x £ X0 that pull the measure fx 

down to the orbits. In what ways do the measures LLX represent the structure of the 

system? We address this question in two fashions. First, we show in Proposition 

3.1.4 that composing the measures jix with a shift on F is equivalent to shifting the 

base point x. This shows that these orbit measures behave correctly when the base 

point is moved to somewhere else on the same orbit. Also, as a corollary, this shows 

that XQ is T invariant and of full LI measure. Second, in Proposition 3.1.6, we prove 

a statement that allows us to interpret the measure ji in terms of the orbit measures 
Hx-

Lemma 3.1.3. Suppose N > 0, w 6 F. and M > N + \\w\\. Then for any A £ T, 

fiM{A x BN) = fiM(Tw(A) x BN{-w)). 

Proof. Let N,w, and M be as stated and choose A £ T. By the definition of jj,M, 

fiM(Tw(A) x BN(-w)) = —)— • (LI x m)(rl(Tw(A) x BN(-w))). 

m\BM) 
Now we can apply Fubini's Theorem to the right hand side and use the fact that m 

is shift-invariant: 

/ / l]-i(j-^(A)xBN{-w))dndm = / lT-«,{A)(T
v(x))dLidm 

J J JBN(~w) J 

= / flA(Tv(x))dLid,m, 

Thus, (fj, x m)(r1(T-w(A) x BN{-w))) = {LI X m){r1(A x BN)), and the result 

follows by dividing by m(5^v). • 
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Let TW(V) := v + w for v, w e F . 

Propos i t ion 3.1.4. For a: G Xo, //x is equivalent to ^TW{X) °T-W for each w € F . 

Proof. Suppose z £ Af0 and { A J is a sequence of .F measurable sets that decrease 

to {x} and have fiNx{An x -BTVJ > 0 for each n G N. Choose w E F. We first 

use Lemma 3.1.3 to show that M ^ N ) — ^ o e s n o t dCpend on JV for N > Nx, 

assuming [XTW{X) exists. Suppose N2 > Ni > Nx, and let M = N2 + \\w\\. We have 

\HT*>(X)(BNI(-W))J _ HX(BN1)^T™(X){BN2(-
W)) 

( M»(BNa) \ fXx(BN2)l2TW{x)(BN,(-w))' 
\I*TV>(X)(BN2(-W))J 

Now, since BNl,BN2(—w) C S M , we use (3.1.1) to see 

(_j^Jhl ^ lim fiM{An x BN2)fiM{Tw{An) x J5Nli -w)y 

By Lemma 3.1.3, the right hand side is 1. Let kxw = ^N) .> for N > Nx. 

Suppose x, w, and An are as above. Also, suppose E C -BAT is Borel, N > A^, 

M ~ N + \\w\\. Wc again use (3.1.1) and find 

(V\ !T3 \ 1- £ M ( A I X F ) 
/ i x ( F ) = iix{BM) h m — •oo/ tM (>l n X B M, 

fiM(AnxBN) fiM(AnxE) 
HX(BM) hm -—f- -—- • hm n-*oo flM(An X F M ) " ^ ^ flM(An X BAT)' 

The first limit is just ^ L - , . We apply Lemma 3.1.3 to the second limit gives 

/ ^ / n M- A M ( T ^ ( A 0 X F - W ) 
^ F = / i s (Bjv) h m ~ / ' / , / p , TT-

n ^ o o / i M ( T w ( A n ) X BN{-W)) 

We evaluate the limit to find that (J,TW(X) does exist and the right hand side is 

exactly kXyW • /ir™(x) ° T-W(E). The result follows by continuity from below on a-

finite measures. D 

Corollary 3.1.5. The set X0 is T invariant and /i(X0) = 1. 
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Proof. Proposition 3.1.4 implies that /iT«(x)(F) > 0 for every v e F whenever 

JJLX{F) > 0. This is exactly invariance of XQ. 

It was noted earlier that /ijvpQ),N x BN) = 1 for any N. By continuity from 

below, this implies 

1 = ftN(X0 x B N) 

m{BN) 

= /x(Xo). 

1 ( / xxm)( / - 1 (X 0 xB J V ) ) 

D 

As the final result in this section, we have an equation that allows us to interpret 

the measure // in terms of the orbit measures \xx. Recall Ax = {v G F : Tv{x) G A}. 

To use [j,x, we need another measure: the projection of /ijv onto the first coordi­

nate. This projection, which we denote as fx*N, is a measure on X and for A G T is 

equal to (IN (A x BN). Writing this as an integral and untwisting the measure gives 

= -77TT / CH V™. m{BN) JBN •inyaNj JBN 

If A G .T7 is an invariant set, then fi*N(A) = JJL{A). For example, /iN(X0) = fi(X0) — 1 

for any N. The measure fj,*N allows us to use Fubini's Theorem on fiN. For any 

g G ^{fJLff), 

/ gdjlN = gdp.XtNdn*N. 
JXXBN JXJBN 

Proposition 3.1.6. For A e T and N > 0, 

f AS f Vx{Axf\BN) „ 

J VX{BN) 

Proof. Let A £ J- and N > 0. We can integrate over BNl normalize, and twist the 

inside integral to get 

^ ^ / J / W ( r ) > ) * " ' 
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Since }B )d(Tv)*fidm = dftjy, we apply 3.1.3 and see 

fi{A) = / fax,N{Ax n BN)dftN. 

Recall that /ix is defined so that fiXtN = £ 7 ^ , so 

M^4) = / / r5~~\—dfj,XiNdfiN 

J JBN Hx[tiN) 
f ixx(AxnBN)j , 

~ J ^(BN) ^ 

3.2 A F0lner Condition on Orbits 

• 

We can now prove a F0lner condition on orbits via the diffused measures. A 

F0lner condition states that, for any r > 0, the ratio of the measure of drB to the 

measure of B goes to zero as the radius of the ball goes to infinity. 

Proposition 3.2.1. For any r, R > 0 and x G X0> 

I lix{drBR) „ _ m,{drBR) 
ayJR — 

»X(BR) ™ m{BR) • 

Proof. Let r, R > 0. We use that fx*R is the projection of fxR onto the first coordinate: 

f fix(drBR)d „ = r jix(drBR) 

J Hx{BR) R JxxBR HX{BR) 

Recall that ^ffiffi = fix,n(drBR). So, we can apply (3.1.3) and get 

f ixx{drBR) _ f 
/ „ <n \ dVR= / hrBR{v)dfiR. 

J Hx{£>R) JXXBR 
Now we untwist the measure £iR to get 

/ 

fxx(drBR) t _ m(drBR) 
ajiR — 

fix(BR) ™ m(BR) ' 

which completes the proof. • 

We prove the F0lner Condition with respect to the sequence of measures /j,*N. 
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Corollary 3.2.2. Let r > 0. Then 

lim I fJ-x{drBR) 

Hx{BR) 

Proof. Let r > 0. By Proposition 3.2.1, 

\(J>x(drBR) 

dfj,R = 0. 

lim / 
R-^oo J Px{BR) 

dp*R — lim 
m(drB R 

R^oo m(BR) 
= 0. 

D 

We now prove the F0lner Condition pointwise almost surely. 

Theorem 3.2.3. (F0lner Condition) For fi-a.e. x G X0, 

lim ^J3** = 0 
fi-oo fjLx(BR) 

for all r > 0. 

Proof. Let x G Xo, a set of full ^ measure. Let r > 0 be fixed and for any e > 0, 

Hx{dr Af { x G XQ : lim sup 
fi^oo Mi (-6. Bfl) J 

We want to show that p(Ae) = 0 for all e > 0. Suppose, for the sake of contradiction, 

that e > 0 and p(At) = 2a > 0. We inductively reduce this set so that we have a 

structure on the radii of the boundary-heavy balls that will allow us to use Theorem 

2.2.10. Reduce to Ax C At with p(Ai) > \a and max(10,r) < rx < Ri such 

that x G A\ implies there is a p\(x) with T\ < p\{x) < R\ and px{drBp^x)) > 

€(JLX(BPI(X))- Having defined A - i , reduce to At C A - i with p,(AA > (1 + ^)a and 

URi-i < ri < Ri such that x G Aj implies there is a p^(x) with r{ < px{x) < Ri and 

Px(drBpr(x)) > ep,x(BPi(x)). Let A :— DiAl. By continuity from above, p(A) > a > 0. 

Let <7 be an integer no less than ( ^ ^ + 2)k • {^?)k and r := i?g. Suppose 

R > 0. By Proposition 3.1.6, 

„</ 
M*(# 

-dpR. 
R 
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We let DR : = {x G X0 : ^ f f i f f l > a 2 } , and it follows that (JLR(DR) > ^ j . 

Suppose x G DR. We apply Theorem 2.2.10 with E = Ax C\ BR-r, 5 = y , and 

v = ^X\BR to find that 
a2 

/j,x(Axr\BR-r) < —fix(BR). 

But Z G DR, SO ^ x ( 4 r n BR) > a2nx{BR). Thus, 

a2 

{AxndrBR)> —^X{BR) 

for any x G D#, i? > 0. 

Using Corollary 3.2.2, we choose R > 0 such that 

/ 
^ d r B ^ < - * * 

HX(BR) nR~2a + A 

We see that X' = {.x £ X 0 : * ^ * J > > f } has ^ > T ^ ( X ' ) , i.e., ^ ( X ' ) < ^ . 

But D ^ C X' , and ji*R{DR) > ^ . This is a contradiction and shows that n{AA = 0. 

For r > 0, let 

A0,r •= < x G X0 : hm - — - = 0 \ . 
I R-^oo flx{BR) ) 

Wc have A0,s C -Ao,r and //(A),r) = 1 for any s > r > 0. Let ^40 = nr>oA),r- By 

continuity from above, H{AQ) = 1. This completes our proof. • 

Finally, we show that the set of points which satisfy the F0lner condition is 

invariant under the action T. Notice 

A0 = {x G X0 : hm ^ M A = 0 for all r > 0}. 
R-*oo /1X{BR) 

Theorem 3.2.4. The set AQ of points which satisfy the F0lner condition is T in­

variant and /J,(AQ) = 1. 

Proof. That ^(A0) = 1 was already shown in Theorem 3.2.3. So, we need to show 

invariance of AQ. 

Suppose x G A0 C XQ. Let r > 0, v G F, r' = r + \\v\\, and e > 0. Choose 

7V0 such that RQ > N0 implies x .^ R? < e0, where e0 = min(v /e, 1 — y/e). Let 
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N = NQ + \\V\\ and suppose R> N. Notice BR^^ C BR(—V). We apply Proposition 

3.1.4 to get 

VX(BR) < (1 - e0)/^(£K-|M|) 

< kv<x(l - e0)nTv{x)(BR). 

Since 8TBR — v C dr>BR, we may again apply Proposition 3.1.4 to obtain 

I^Tv(x)(drBR) < -—jix(driBR) 

fcy,x 

1 
< -r—eQiix{BR) 

Ky,x 
< £^TV(X){BR). 

The suppositions imply that HTV(X)(BR) is positive for large R, so the proof is com­

plete. • 
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Chapter 4 

Ergodic Theorems on Actions of 1r and Rd 

Recent explorations of the ergodic theorem have involved the generalization of 

ergodic theorems beyond a transformation on a probability space to a group action 

on a probability space. The groups that are most often considered are Zd and Rd. 

Since the average for the ergodic theorems in Section 1.2 was taken over intervals 

[0, n], the most natural extension is to average over [0,n]d. In the first section of 

this chapter, we examine an example of a measure preserving, conservative action 

of Z2 on [0, oo) for which the ratio averages over the hypercubes [0, n]2 diverge on a 

set of positive measure. This shows that the most natural extension of the Birkhoff, 

Hopf, and Hurewicz ergodic theorems to actions of Zd does not hold. Nevertheless, 

versions of these theorems do exist for actions of Zd and Rd, when the average is 

taken over hypercubes of the form [—n, n]d. These results are reviewed in the second 

section of this chapter. 

4.1 An Example of Divergence 

We describe an example of a measure preserving, conservative action T of 1? 

on all but a null set of [0, oo) such that the ratio averages 

Yl f°TV 

^ (4.1.1) 

vG[0,n]d 
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fail to converge a.e. as n —> oo for certain f,g G L1([0,cxo)). The action TV 

has components T^0,1^ = T^1,0) = 5", where S is a measure-preserving, invertible 

transformation on all but a null set of ([0,1), £, A). Both the transformation S and 

the functions / and g are defined by a recursive procedure. A step in the recursion 

process extends the definitions of S, / , and g to a larger portion of the space. 

(Note: this example is original, but it is both inspired by and closely related to a 

construction given by Krengel and Brunei [13].) Implementation of the cutting and 

stacking procedure is used to gain the conscrvativity in our example, and we use a 

product space formulation to make the action free. This system is an improvement 

on that given by Krengel and Brunei because their example is neither conservative 

nor free. For a description of the cutting and stacking method, see [20, 22], 

To begin the construction, let S take [0,1) to [1,2) by addition of one. We are 

able to describe the transformation S by a cutting and stacking procedure, so let 

the interval [1,2) be stacked above [0,1) and the transformation given by moving 

one step vertically (see Figure 4.1). Now, for x G [0,2), let 

1 I 3 2 

0 I 3 1 

Figure 4.1: The first stage of the construction. 

10 if 1 < x < 2. 

This completes the first stage of the construction. 

We now perform the second stage of the construction. We cut the stack in half 

by a vertical slice and place the left half beneath the right half (see Figure 4.2). This 

means S remains the same on [0,1), but now [1, §) is taken to [|, 1) by subtraction 

of \. Stack 76 more intervals, each of length \, above [|,2). Thus, S maps [|,2) 

to [2, | ) , [2, | ) to [§, 3), ..., and [39, f ) to [f, 40) by addition of \ (sec Figure 4.3). 

For x G [2,40), let 
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; I \ , 2 
', I ' 5 

\ 1 '< 3 
\ 0 • 1 

Figure 4.2: The second stage of the construction. 

76 levels added 

Figure 4.3: S at the second stage of the construction. 

g(x) = 0 and f(x) 
_ . l i f f <:r<20), 

0 otherwise. 

This completes the second stage of the construction. 

Suppose that stage 2n has been completed. Let i be the largest integer such 

that Sl(Q) is defined and let j be the largest number such that / and g are defined 

on [0, j ) . The number i, then, is one less than the number of levels in our stack 

at the end of the previous stage. We make a vertical slice down the middle of 

the stack and put the left half underneath the right half. This defines Sk(0) for 

0 < k < 2% + 1 by moving vertically one level in the stack. Let N be an integer such 

that v^V > E f e i 1 ^ + 1)(/ ° Sk)(0). Place 2N + 2i + 2 new levels, all of the same 

length as those levels already in the stack, on top of the stack, with the new levels 

being taken consecutively from [j, oo) (see Figure 4.4). Let the N + 2i + 2th level be 

representing [a, b) and the top level be representing [c, d). For x € [j, d), let 

f{x) = 0 and g(x) = { ^ 
I 0 otherwise. 

This completes the 2n + 1 th stage of the construction. Since 2n + 1 is odd, we 

extended the locations for which g is positive on [0, oo). Choose an x € [0,1] and 
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s \ 

add 2N + 1i + 2 levels 

bisect the i levels 
from the previous step 

Figure 4.4: Stage 2n + 1 of the construction. 

let JV0 be such that SN°(x) G [a, b). It can be seen in the construction above that 

N0 > N. Thus, 

No 

£ (/°n(*) x>+ix/o <?*x*) 
*>e[o,JV0]

2 fe=o 

^G[0,N0] 

< 

fc=0 

< I. 

For stage 2n + 2, let / = 2iV + M + 4, which is the largest integer for which 

Sl(0) is defined. As before, make a vertical slice through the middle of the stack 

and place the left half underneath the right half. Let M be an integer such that 

\[M > 2 S = 0
1 ( H l ) ( g o 5 f c ) ( 0 ) and place 2M + 2̂  + 2 new levels of the same length 

on top of the stack, taken consecutively from [d, oo). Let the M + 21 + 2th level be 

representing [r,s) and the top level be representing [t,u). For x e \t,u), let 

g{x) = 0 and f(x) = \^M
 l 

I 0 otherwise. 

This completes step 2n + 2 of the construction. Since 2n + 2 is even, we extended 

the locations for which / is positive on [0, oo). Now choose x € [0,1] and let M0 be 
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such that SMo(x) G [r, s). This implies M0 > M and 

Mo 

£ (/°n(*) £(fc + i)(/o5fc)(.x) 
^e[o,M0]2 _ fe=o 

ue[o,M0 
fc=o 

> 
(Mo + l ) i M 

_M 
2 

> 2. 

This procedure is carried out to define a transformation S on ([0, oo), £, A) and 

functions f,g& Z/1([0, oo)). A representation of the construction on the real number 

line is given in Figure 4.5. 

For A C [0,oo), let 

A*:=A\l^:ke{0,l,..},neN\. 

frO Q0 

Figure 4.5: S is a measure preserving transformation [0, oo) that takes dyadic inter­
vals to dyadic intervals linearly. 

It may seem odd that we used an infinite measure space when up to this point we 

have only been working with probability spaces. This was done because the natural 

extension of the pointwise ergodic theorem is true for measure-preserving actions of 

Zd or Md on a probability space. What remains, then, is the non-measure-prescrving 

case. It is easier to describe this construction as a measure-preserving action on an 

infinite space than as a nonsingular action on a probability space. Nevertheless, we 

can modify the system so that the action of Z2 is on a probability space. To do 
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so, simply put a probability measure on [0, oo) in the following way: for a Lebcsguc 

measurable E C [0, oo), let 

iiE)_yX(En[i-l,i))^ 

Also let f{x) = f{x) • 2 ^ and g(x) = gix) • 2™ for x G [0,oo). We have f,g e 

Ll{[0, oo)*, £*,i/)), and the ratio averages 

y »°r'(/or) 
^ du 

ve[0,n]d 

*—' du 
vG[0,n]d 

diverge on [0,1)*, since they are identical to the averages in (4.1.1). 

In the ratio ergodic theorem of Hopf, the function g was assumed to be positive 

almost everywhere, whereas our function g is definitely not so. However, g may be 

added to an extremely small constant function on the probability space ([0, oo), £, u). 

The constant function can be made small enough so that the lim sup and lim inf still 

do not match, and the ratio average still diverges. 

We now show that the action T is conservative. Since v « A and A << v, 

conscrvativity will apply to the measure v if proven for A. Lcbcsgue measurable 

sets can be approximated from above arbitrarily well by open sets, so we first show 

recurrence for open sets. We use special types of recurrence that are stricter than 

conservativity [12]. 

Definition 4.1.1. A transform,ation S is rigid if there exists a sequence of natural 

numbers ni,ri2, ••• such that for any measurable set A of finite measure, 

lirnrnf \(SniiA) n A) = XiA). 
i—»oo 

Definition 4.1.2. A transformation S is partially rigid with factor r if there 

exists a sequence of natural numbers n\, n2,... such that for any measurable set A of 

finite measure, 

liminfA(5n i( J4)n/l) > rA(4). 
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Rigidity implies partial rigidity, and partial rigidity implies conservativity. The 

reverse directions, however, do not hold. To be partially rigid, a transformation must 

have a sequence of the return times in which each set recurs to a certain fraction of 

its mass. To be rigid is to have a sequence of return times in which each set recurs 

to almost all of its mass. These two definitions have analogs for actions of Z2, for 

which the sequence of natural numbers n* is replaced by a sequence of vectors in Z2. 

We show the transformation S built earlier in this section is partially rigid. For 

each natural number i, let n* be the height of the stack in stage i of the construction 

of S. Notice that each of the n, intervals in the stack at stage i is of length ^rr-

Lemma 4.1.3. Any interval (a,b) has 

liminfA(Sn*((a,6))n(a,&)) > ^A((a,6)). 
i—>oo 2 

Proof. Fix e > 0 and suppose (a, b) is nonempty (the result is trivial for an empty 

interval). Choose I such that S((a,b)) is defined no later than stage I. Suppose 

k > I, a0, and b0 are natural numbers such that [|£, |£) C (a, b) and 

A ( ( M \ @ , | ) ) < e A ( ( a , 6 ) ) . 

At stage k, then, all but less than a fraction e of the mass of (a, b) is a union of levels 

of the stack at stage k. Looking forward to stage fc + 1, each of these levels (which 

has now been cut into two pieces) has half of its mass return to the level when S is 

applied nk+i times. Further, looking forward to stage k + 2, each level has half of 

its mass return to the level when S is applied nk+2 times. More generally, for any 

i > k, 

Since [§£, |f) C (a,b), for any i > k, 

A(fi^((a,6))n(a,6)) > ^ ( [ | , | ) ) 

> i ( l -c )A((a ,6) ) . 
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Thus. 

liminfA(,Sni((a,6))n(a,6)) > 1(1 - e)A((a,6)) 
i—»oo ' ' ' ' ' ' ' 2 

for any e > 0 and the result follows. • 

Lemma 4.1.4. The action S on ([0, oo), £, A) is partially rigid with factor \. 

Proof. Suppose A G C with \{A) < oo. Let e > 0 and U be an open set in [0, oo) 

such that A C U and \(U \ A) < e. Let Ii,I2,...,Ik be pairwise disjoint open 

intervals contained in U such that X(U \ U^=1Ij) < e. Let / be a natural number 

such that for any i > I and 1 < j < k, 

X(S^(IJ)nlj)>(1-~e)X(IJ). (4.1.2) 

The existence of such an I follows from Lemma 4.1.3. For any i > I, 

k 

\{Sni{A)nA)>J2x(sn*(i])niJ)-2e, 
.7 = 1 

since A(U^=1/j \ A) < e. We then use (4.1.2) and sum over j to get 

X(Sni(A)nA) > (1--e)(l-e)X(U)-2e 

> (\-e)(l~e)X(A)-2e 

for any i > I. For any e we can choose such an I, so 

\imMX{Sni{A)r\A) > -X{A). 
i—>oo 2 

• 
Corollary 4.1.5. T is partially rigid with factor \, 

Proof. For i G N, let t>; = (0, n^), where n* is the height of the stack in the ith stage 

of the construction of S. For any A G £*, 

liminfA(T^(,4)n/l) > -X(A) 
i—>oo 2 

by Lemma 4.1.4. • 
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We now modify the action T so that it is a free action. Let (S1,?,^) be the 

unit circle in M2 with the Lebesgue cr-algebra and the Lebesgue probability measure, 

Qi and a2 be irrational numbers for which ^ and a.\ — a2 are also irrational, and 

7T be the action of 1? on Sl whose component actions are rotation by a.\ and a2. It 

is well known that an irrational rotation on the unit circle is rigid, is an isometry, 

and has the property that every orbit is dense with respect to the Euclidean metric 

from R/Z, in which the length of an interval on S1 is equal to its measure. Now 

let T x 7r be the action of Z2 on the product space ([0, oo)* x Sl,C* x f ^ x / i ) 

in which T defines the action on the first coordinate and ix gives the action on the 

second coordinate. 

First, we note that T x TT is a free action. This is true since TT is free. Second, 

we note that the action T x TT is partially rigid with factor \. 

To see the partial rigidity, first consider a cylinder set A x B of [0, oo)* x S1 in 

which A and B are intervals and let e > 0. Let m; be a sequence in which rotation 

of T\ by rrii(ai — a2) is within | of rotation by n;ai, and notice this sequence 

is independent of B. Such raj can be chosen because rotation by ai — a2 is an 

isometry and has that every orbit is dense. Let k\ be a natural number such that 

i > fci implies X(TV{A) D A) > i ( l - e)X{A) for any v G Z2 with ||u|| = nt. Notice 

that rotation by ot\ — a2 is the same as 7r^1,_1\ and let k2 be a natural number so 

that i > k2 implies ^(7^+™-""^(B) n B) > (1 - e)u(B). For i > max(fc1; fc2), 

(A x //)((T x 7 r )K+ '" - -^ ) (^ x jg) n A x S) > hi - e)2(A x fj){A x B). 

This gives partial rigidity of T x IT with factor | on cylinder sets. To prove partial 

rigidity with factor | of general C x T sets, we can approximate from above by 

cylinder sets as we did in the proof of Corollary 4.1.4. 

We may take functions / and g in Ll(X x /i) that only depend on the first coor­

dinate for which the ratio average over [0, n]2 diverges on a set of positive measure, 

using the construction given above. We then see that the most natural extension 
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of the ratio crgodic theorem for actions of Z does not hold for conservative, free 

actions of Z2. 

Why do we get divergence of the ratio averages in higher dimensions while it 

can be proven that they converge in one dimension? One explanation goes back to 

the Besicovitch Covering Lemma. A sequence of hypercubes {[0,nfc]d}^1 share a 

common corner rather than sharing a center. The Besicovitch Covering Lemma docs 

not hold, however, on these types of sets. To display what is meant by this, consider 

the collection of sets {[x, l]d : 0 < x < 1}. If the Besicovitch Covering Lemma held, 

then we could find some finite number of subcollections such that each subcollection 

is disjoint and the union of sets in all subcollections covers {(x,x,...,x) G Rd : 

x G (0,1]}. However, any two of these sets intersect nontrivially and no finite 

subcollection will cover the diagonal in (0, l]d , so the Besicovitch Covering Lemma 

does not hold. (This reasoning also applies to the d = 1 case, but the Besicovitch 

Covering Lemma is not used in the proof of ergodic theorems in this setting. It is, 

however, a standard tool in proving ergodic theorems on actions of Zd and Rd.) 

4.2 Ratio Ergodic Theorems on Actions of Zd 

While versions of the Birkhoff, Hopf, and Hurewicz ergodic theorems do not 

hold for averages over [0, n]d, Feldman and Hochman have shown that the theorems 

do have analogs for actions of Zd and M.d when averaging over hypercubes centered 

at the origin ([—n,n)d). 

Definition 4.2.1. A measure space (X, J7, n) is called a Polish space if there exists 

a metric on X such that the Borel sets generate T and the metric is complete and 

separable. 

A Polish probability space is also a standard probability space [16], so the Polish 

space assumed by Feldman is more restrictive than the standard Borel probability 

space we assume. 

44 



Theorem 4.2.2. (Feldman) [6] (2007) Suppose T is a measurable, invertible, non-

singular, conservative action of Zd on the Polish probability space (X, J7, fj) such 

that the component actions T{ := Tei of Z are also conservative. Then for any 

f,g£ Ll{n) with E(g\l) > 0 a.e., the ratio averages 

yfoT^.dJ£Tji 
^ J dfi 

v£Bn (A 2 1) 

v9or-».^!> ( ' 
*-*i alu 
veBn ^ 

converge to E( \Tl almost everywhere, where X is the a-algebra of sets which are 

invariant under the action T. 

The ratio averages in (4.2.1) look like somewhat of a compromise between those 

of Hopf (1.2.2) and Hurewicz (1.2.3). Without loss of generality, the function g can 

be assumed to be one (see Corollary 5.1.4). Hochman extended Feldman's result 

by proving the same averages converge a.e. without the assumption of directional 

conservativity or conservativity of the action. 

The ratio ergodic theorem stated and proven in Section 5 improves the above 

results by allowing for singularity of the dynamical system. The action T is assumed 

to be Borel and free, but there is no connection, beyond being Borel, that is assumed 

between this action and the measure //. This can be seen as a version of the Hurewicz 

ergodic theorem for actions of Zd and Rd (or, rather, of the extension of Hurewicz 

by Oxtoby that assumes neither non-singiilarity nor conservativity [15]). 

Every ergodic theorem mentioned thus far is proven by a maximal inequality. 

With a maximal inequality in hand, convergence of the averages is reduced to finding 

a dense family in L1 for which convergence can be shown. This is typically taken to 

be the set of coboundaries, {f — f oTv : f £ L1 (/z), v G F}. Feldman and Hochman 

use a maximal inequality that was proven by Lindenstrauss and Rudolph [14]. The 

first step in this method (proving a maximal inequality) has been completed for 
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the singular case by Rudolph [21]. However, our proof bypasses the usual maximal 

inequality, instead using the F0lner condition found in Section 3.2. With the F0lner 

condition in hand, convergence of the ratio average is then proven for all / 6 L1 

instead of using the set of coboundaries or some other dense family. 
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Chapter 5 

An Ergodic Theorem for Borel Actions of Z and 
Rd 

We can now state and prove an ergodic theorem for Borel actions of Zd and M.d. 

Theorem 5.0.3. IfT is a free Borel action of F(= Zd or Rd) on the standard Borel 

probability space (X^.fi) and f G L1^), then 

i im ,, in \ I foT~v(xWx 

converges for ii-a. e. x. Furthermore, denoting the a.e. pointwise limit as f(x), the 

averages converge to f in Ll(ii) and f = E{f\T), where X is the o-algebra of sets 

which are invariant under the action T. 

Before proving Theorem 5.0.3, we review a similar result. Suppose Hn is an 

n dimensional real hyperbolic space. There are n — 1 dimensional spheres, called 

horospheres, which are perpendicular to the geodesies. These spheres are all tangent 

to d(Hn), and the collection of horospheres covers Hn. In 1982, Rudolph used a 

F0lner condition to show a mean ergodic theorem on these horospheres. This implied 

that the geodesic flow, when equipped with a natural measure [23], is isomorphic to 

a Bernoulli flow [19]. 
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5.1 Proof of the Ratio Ergodic Theorem on Borel Actions of Zd and 

Suppose / £ L1 (fj) is a nonnegative function and for A G T let 

6(A) := / fdix. 
J A 

We construct the diffused measure on 9 as described in Section 3 and get Borel 

probability measures 6X on F for x G Y0', an invariant set of full 9 measure. Let 

Y0 := y0' U {x G X \ Y0' : f(T
v(x)) = 0 for m-a.e. u € F} . 

For x € Y0 \ Y0', let 9X = 0, the trivial measure on F. 

Lemma 5.1.1. YQ is T-invariant and of full /z measure. 

Proof. Invariance of Y0 is obvious, so we need to show that (J,(YQ) = 1. Let Y* = 

X \YQ and suppose, for the sake of contradiction, that fi(Y*) > 0. For each x G Y*, 

let Ex = {v e F : f(Tv(x)) > 0}. Notice m{Ex) > 0 for each x e 7*. Using 

continuity from below, choose N* > 0 and a subset Yjv» C Y* such that ^(Yiv*) > 0 

and for each x £ YN*, m(ExP\ Bpj*) > 0. We have 

/ / 
fdjidm = 0, 

since 9(Y*) = 0 implies the inside integral is zero. We twist the integral (notice Y* 

is invariant) and switch the order of integration to get 

/ f foTv(x)dmdfx = 0. 
JY* JBN* 

This implies fx(Y*) = 0, since the inside integral is now positive for every x £ Yjv*, 

which is a contradiction and completes the proof. • 

Lemma 5.1.2. For x G X0 n YQ, there is a real number kx such that 

^ ( t > ) = fcx-/°T-"(z) (5.1.1) 

for [ix a.e. v. 
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Proof. Let x e X0r\Y0. If x g Y0', then let kx = 0 and (5.1.1) holds. Suppose x G Y0' 

and let Mx be the minimal natural number M such that 8X(BM) > 0. Since 0 « fx 

and #x << LIX, we have Mx > Nx. 

First, we calculate 4 ^ for N > 0. Choose N > 0. For any measurable 

S C X x Bw, we untwist the measure 8N to get 

M S ) = -~^-~ f d9xm. 
m{BN) JI(S) 

We now use the definition of 9 and retwist the measure: 

ON(S) = - y ^ - f f{x)dli x m = f f o T~v(x)d(lN. 
m{BN) Jns) Js 

This shows that | g - = f o T~ 

Second, we show that * ^^ - "d x
 i s c o n s t a n t i n N for N > Mx. Suppose 

N2 > TVi > Mx. We apply (3.L4) to get 

{IBNIJOT-^X) eNMn x BNI) JAnXBN2 f o T-^N2 

.- = lim — ^ — • lim r 

_M^_] n^°° 9N2{An x BN2) n-oo j A n X B ^ foT M/iiv2 

— M#N) which is one. Let A:x = f T ^ for N > Mx. 
JBNJ01 atlx 

Finally, we characterize j ^ . . The Radon-Nikodym derivative ^ is the unique 

Borel function of F such that #X(.E) = fE ^-d[ix for any Borel set E C F. Notice 

that kx • f o Tv(x), as a function of -u, is Borel. Let E C BN be Borel and AT > Mx. 

Again, we use the sets An to identify the diffused measure: 

6X(E) = 9X(BN) lim > ( A " X E ) 

= 9X{BN) lim 

M A > x BN) 

n^0OJAnxB„f°T~VdP' N 

, I"™ f °T vdux 

/ . 
K, • f oT~vdiix. 
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The set E was assumed to be bounded. Continuity from below on 9X and \xx com­

pletes the result. • 

We now define some new notation: 

AnU,x):=—l—- f / o r ( i ) ^ . 

Also, let vx = kx • nx for x G YQ and vx = \ix for x e X0\Y0l where kx is that from 

Lemma 5.1.2. Thus, AJf.x) = 9x^n\ for x G X0. Recall that we want to show 

pointwise convergence of An(f,x) outside a set of measure zero. Let 

Aa /3 :— < x : liminf An(f, x) < a < ft < Mm sup An(f, x] 
{ rwoo n^oo 

To prove a.e. convergence in Theorem 5.0.3, we need to show fi(Aa^) = 0 for any 

a < (3. 

Lemma 5.1.3. Let a < 13 be given. Then there is a subset A*ap of Aag of the sam,e 

measure which is T-invariant. 

Proof. For a.e. x G Aa,0, l i m ^ ^ g f ) = 0 a n d l i m ^ M g M = 0 for all 

r > 0 by Theorem 3.2.3. Let A* p be the set of such x, and we see A*Qf3 has the 

same measure as Aa^. Let x G A*a^. Fix w G F. We would like to know that 

Tw(x) G A*a0. Theorem 3.2.4 says that the F0lner condition holds for Tw(x), so we 

only need to show Tw(x) G Aa$. Let b = limsup An(f, x). Let n > Mx and w G F. 
n—>oc 

We can write An(f, Tw(x)) in terms of 9X and ux: 

An(f,T
w(x)) = \ [ /o r (^ 

ex{Bn{-w)) 

vx{Bn{-w)) 
0x(Bn) f6x(Bn(-w)) ux(Bn) 

vx{Bn) V 0x(Bn) ux{Bn{-w)) 

By the F0lner condition, choose N such that n > N implies 

ex{Bn(-w)) vx{Bn) > 2b + 2/3 
9x{Bn) ' ux{Bn{-w)) ~ 36 + /T 
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Now for every n > N with An(f,x) > ^j@- (notice there arc an infinite mimber of 

such n), 

An{f,l [X))> 4 3b + p - 2 >P. 

Thus. limsupn^00 An(f, Tw(x)) > j3. An analogous argument shows 

liminfA l(/,T t"(:r)) < a, 
n—>oo 

so Tw{x) E A*aj. D 

Proof. We now prove Theorem 5.0.3. First, we show a.e. convergence of An(f,x). 

For the sake of contradiction, suppose ji{Aa^) > 0. Thus, ^i{A*a0) > 0. Notice 

A*ap C YQ. We groom the set A*a ̂  to obtain a structure on the pairs n,x which 

have An(f,x) > (3. Let r^ = 0. Choose Ax c A*af3,Ri > ru and p\ : A\ —> [rl5.Ri] 

such that /i(^4i) > (TJ)2~5/-t(A*a0) and each ,x G Ai has ^P l(x)(/, x) > /?. We now 

inductively define measurable sets Ak C A* p, positive numbers rk and Rk, and 

functions pk : Ak ^ [rk, Rk] for all k G N. 

Suppose ^fc-^r-fc-ij-Rfc-i, and p^-i have been defined. We let A*k_x C Ak-\ 

and rfc > i?fc_i such that n{A*k_x) > (|)2_4_(,c_1)^(^fc_1) and x £ A*k_x implies 

X 6R(B\ " < 1 ~ \ / f f° r a n " > rfc- Now choose Ak C A^_1,/?fe, and pk : Ak -* 

[rk,Rk] such that x e Ak implies APk{x)(f,x) > /3 and fi{Ak) > (f )2_4_V(^fc-i)-

Notice these properties also hold for the base case k = 1. Now let A = HkAk and 

we have fx(A) > P/% • [i(A*a /3) by continuity from above on finite measures. 

We proceed with a Besicovitch covering argument. Let C be the Besicovitch 

constant for F, and let K be such that 1 - {^fr-)K > iyf. Also, choose y E A and 

N > RK such that 

p,y{dRKBN) fc JZ 

^ " f > > </f, and (5.1.3) 

^v(/,2/) < a, (5.1-4) 
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where the second estimate uses Lemma 5.1.3. Let A = Ay D BN-RK. Apply 

the Besicovitch Covering Lemma to the set A with the ball BPK{jv^{v) corre­

sponding to each v e A to get a subset An C A with [iy(AK) > ^ M such that 

{BPK(Tv(y))iv)}veA is a pair-wise disjoint collection of balls in F. 

Suppose that AK-J has been chosen for 0 < j < K — 1. We inductively define 

subsets AK^j for 0 < j < K — 1. Apply the Besicovitch Covering Lemma to the set 

A \ Uj
i=0Ai with corresponding balls BPK_j_1(T"(y)){v) to get 

j 

itf-j-i CA\\JA{ 
i=0 

such that {BPK_ _1(T
v(y)){v)}v€A _ _ ' s a pairwise disjoint collection of balls in F 

and ^ ( ^ K - J - I ) > ifJ>y(A \ UJ=oA)-

This procedure terminates after defining A\, and 

^U\\jA <{^)K ^). (5.i. 

We now estimate AN(f,y) by using the balls {-Bp^T^j/))^)}^. i<,-<^ to cover 

most of the \iy mass of A. For 1 < j < K, let 

and 

BeuCj 

where RQ — 0. Note that C is a disjoint union. Also, every B € Cj has V̂gT > 8 

uy(B) V/5 

Let D = UB€UC7
 5 - T h i s implies J ^ > ^3/f /3, and since C C.BNl 

*y(2>) > V / 3 ( } 
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\K Further, (J i=1 Ai is covered by V, so (5.1.5) gives 

We have 

»v(V) > 1 
C - l 

c 
Kx 

/ Q 
/itf(A) > ?l-p(J.y(A). (5.1.7) 

yUy(i) > (jLy(AynBN)-iJ,y(dRKBN) 

/ I N ( [& ( [® fo\ \ , T-, s 

/5 V/5 

/a (5.1.8) Vy{A) > V-pPtiy{BN) 

by (5.1.2) and (5.1.3). Recall that vy and \xy are equivalent, and 

ga(BN) !/„(£>) ^ ( i ) 
^NiJiV — /—,>, ' 7 1 7 ' / D \ 

^P) ^(A) ^(BN) 
fa [a fa „ 

-~> 3/ _ 3/ _ 3 / _ p, 

= a, 

which contradicts (5.1.4). So, /i(^4Qi;g) = 0 for all a < f3 and An(f) converges // a.e. 

to a function / . 

The rest of the proof is standard. We next show that this convergence is also in 

Ll{jS). Fubini's Theorem can be applied to show that f An(f)d/j, — J fd/j for any 

n > 0. Thus, 

/ fdfi < / lim Anifldn 
J J "-*00 

< liminf / An(f)dfx 
n—>oo J 

= / fdfi, 

which gives that 

i < \\J Hi- (5.1.9) 
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Now suppose g £ Ll{n) is a nonnegative, bounded function. This implies An(g) 

has the same bound as g, and An(g) —>• g in L 1 ^ ) by the Lebesgue Dominated 

Convergence Theorem. Also, 

\An(f) - f\\, < \\An(f) - AM, + \\An(g) ~ SHi + \\g - f\\ i-

We know \\An(f) - A^g)^ = \\f - g\\x and \\g - f\\x < \\f - g\\i by (5.1.9), so for 

large enough n, \\An(g) - g\\i < \\f - g\\i. Additionally, 

| | > 4 n ( / ) - / | | i < 3 | | / - f f | | i 

for large n. Since the bounded functions are dense in L1, we have that An(f) —> / 

in L1. 

Finally, we need / = E(f\T). It is enough to show that / is invariant under 

the action T and fA fdjj, = fA fdjj, for any invariant set A. By Proposition 3.1.4, 

A (f ru,,- _ flr»Qc)(3n) _ ex(Bn(-w)) 
i > ( i ) ( 5 n ) ^x (S„( - ty ) ) 

and T invariance follows from the F0lner condition. Suppose T~w(A) = A for all 

w G F and A £ T. By L1 convergence and Fubini's Theorem, 

/ fdji = lim / An(f)d(x 

= f fdn. 
J A 

We have proven Theorem 5.0.3 for nonnegative / £ Ll{n). For / £ L^/i), 

write / = / + — /"" such that / + , , / _ arc nonnegative Ll{ji) functions, and the result 

follows. • 

A ratio ergodic theorem is a theorem about the convergence of a weighted 

average. In what sense is Theorem 5.0.3 a weighted average? First, because the 

measure /i can be taken to be any standard Borel probability measure, the measure 

(j, may be altered to adjust the weighting of the average. Changing the measure 
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H, however, may change which functions are L1 and therefore change the functions 

to which the theorem applies. Alternatively, we have the following result that is a 

more traditional notion of a weighted average. 

Corollary 5.1.4. Suppose T is a free Borel action of F (= Zd or M.d) on the stan­

dard Borel probability space (X, T, fi). Then for any f,g G I/1(/u) with E(g\T) > 0 

fi-a.e., 
fBJoT-v(xWx = E{f\l){x) 

n ^ ° !Bn 9 ° T-V{x)dlix E{g\l){x) 

for [i-a.e. x. 

Proof. Notice 
JBnfoT-v(x)d^x _An(f,x) 
JBngoT~v(x)djj,x An(g,x)' 

Apply Theorem 5.0.3. • 

5.2 Examples 

We now look at some examples. 

1. Suppose T is a measure-preserving, free action of F on the standard Borel 

probability space {X^T, ji). In this case, the twisting of the measure actually 

docs not change the measure at all, and the diffused measures \ix are equivalent 

to m. Thus, 

An(f,x) = — l — - ! foT-v(x)d^x(v) 
^x{Dn) JBn 

—1— f foT-v(x)dm, 
™{Bn) JBn 

which is just the average of / at x over the ball Bn. Theorem 5.0.3 implies 

that this average converges a.e. to E(f\l) as n —> oo. In particular, if T is 

ergodic, then the average converges a.e. to the expectation of / . 
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2. Suppose T is a free, nonsingular action of 7Ld or Rd on the standard Borel 

probability space (X, JF, /j,). For / £ L1^), we show that the averages An(f, x) 

are the same as those considered by Feldman and Hochman. 

Suppose B e B, m(B) = 0, and x G X0. We have 7*(/L* X m)(X x B) = 0, 

which implies jj,N(X x B) = 0 for any iV. So, fxx(B) = 0 and we see \xx « m. 

Thus, there exists a Radon-Nikodym derivative ^ . We will see that ^(v) = 

cx • d
 dl ^{x) for some constant cx. 

Suppose E C BN is Borel and /J,X(E) > 0. We use sets An that decrease to x 

to calculate fix(E): 

= Vx{BN) lim -p f— 

IF(L ^P^d^dm 
= ^(BN) Hm JE V ** < . (5.2.1) 

Since (X, J7, JX) is a standard Borel probability space, it is measurably isomor­

phic to an interval with the Borel sets and Lebesgue measure, along with at 

most countably many atoms. It is known that the limit as n —» oo of the inner 

integrals in (5.2.1) is equal to dl ^ {x) when the space is an interval, and it 

is not hard to see that the same is true for a point mass x. We can use the 

isomorphism which corresponds to the sets An to take the limit. This gives 

LIX(E) = fj.x{BN) 

Thus, for any F C B^ which also has ^X(F) > 0, 

This is true for any B^ and sets E, F C B^ of positive JXX measure, so ^{v) = 

cx ^ d't
 >l(x) for some constant cx. 
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We now have that for n > 0, / G L1^), and a.e. x G X, 

An(f,x) = —I— f / o r % 
M-DJV) JBN 

JBJoT-"(z)-c,-^{x)dm 

The expression in (5.2.2) is exactly the ratio averages considered by Feldman 

and Hochman. This shows that Theorem 5.0.3 is an extension of the ratio 

ergodic theorems of Feldman and Hochman, which we reviewed in section 4.2. 

3. Consider X = M.d with the Borel cr-algcbra and let T be the action of Zd given 

by translation. For any nontrivial standard Borel measure /i, this system is 

not conservative, since [0, l)2 is a wandering set and UveZdTv([0,l)2) = X. 

For any f,g G LX{X,JJ) with E{g\T) > 0 a.e., the ratio averages 

JBnfoT-v{x)diix 

hn9oT~v(xWx 

converge /z-a.e. to ^j 5 • 
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Chapter 6 

Conclusion 

Ergodic theorems are at the foundation of measurable dynamics. They be­

gin the classification of dynamical systems that proceeds through entropy and orbit 

equivalence, and this has been explored in-depth in the case of a measure-preserving 

transformation. However, such theory has not been constructed for dynamical sys­

tems that are not measure-preserving. Can a parallel theory be built for this case? 

This question is yet to be addressed, but the establishment of the ratio ergodic 

theorem gives a starting point for such theory. 

In this dissertation we used several tools to prove an ergodic theorem. First, 

we used an extension of the Besicovitch Covering Lemma due to Hochman to get 

a statement about the frequency of boundary-heavy balls in Zd or M.d. This line 

of reasoning uses the Besicovitch Covering Lemma, Doubling Condition, and the 

notion that the boundary of a ball is of lower dimension than the ball itself. Second, 

we diffused the measure of a probability space onto the orbits using a conditional 

expectation. This was necessary to even state what the ratio theorem should look 

like for possibly singular transformations. The statement from Hochman was then 

used to show a F0lncr condition on these diffused measures. Finally, we saw that 

the F0lner condition and the Besicovitch Covering Lemma could be used to prove 

the ratio ergodic theorem. This result improves previous work by dropping the as­

sumption of nonsingularity, but it also is a new method of proving ergodic theorems 

that bypasses the usual maximal inequality and dense family. 
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Finally, we describe a few questions that arise from Theorem 5.0.3. The theorem 

shows that convergence of the ratio average is intrinsic to the machinery of Borel 

actions of Zd and W1 on standard Borcl probability spaces and does not need a 

connection between the measure and the action. What can one say about the rate 

of convergence? This is probably a difficult question to address due to the few 

assumptions made. Also, does such a general ratio ergodic theorem hold on actions 

of groups other than Zd and Rd? Can convergence be shown on a more general class 

of averaging sets? One may be able to follow the same line of reasoning by using a 

F0lner Condition and the Besicovitch Covering Lemma to positively answer either 

of these questions. 
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