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ABSTRACT 
 
The Highland Lakes are operated by the Lower Colorado River Authority (LCRA) in 
Texas to provide water supply to municipal, industrial, agricultural users and 
environmental flows for the river and Matagorda Bay.  The Highland Lakes also provide 
for hydroelectric generation and recreation. 

The catchment area is in the Texas Hill Country, a region classified as the Edwards 
Plateau.  Subject to extended droughts interrupted by intense rainfall, the region has the 
nickname of Flash Flood Alley.  Precipitation in the region is understood to be influenced 
by oceanic conditions in the Pacific, Atlantic, and Gulf of Mexico.  While the behavior of 
these global climate patterns is climatologically understood, finding strong skill in 
prediction of streamflows has been challenging. 
 
Identifying concurrent teleconnections, and to a lesser extend lagging indicators, is a 
critical first step for finding potential for predictors. Research efforts have often focused 
on predicting rainfall or climatic indexes.  However, surface water managers need to 
relate predictions to streamflows.  Climate indices can also be useful if they are 
hindcasted, enabling for relationships to the streamflow record to be established.   
 
Persistence is one of the strongest predictive indicators in the region, primarily through 
the winter season.  Persistence is useful in short term predictions because it directly 
relates to streamflows and indirectly is influenced by teleconnection patterns.  Therefore 
explicitly considering teleconnection patterns adds less incremental short term skill but 
potential benefit for longer term prediction.  Use of persistence and ENSO forecasts are 
currently being used in water supply forecasts at the LCRA.     

 
INTRODUCTION 

 
The Lower Colorado River Authority (LCRA) is a conservation and reclamation district 
created by the Texas Legislature in 1934.  LCRA supplies electricity for Central Texas, 
manages water supplies and floods in the lower Colorado River basin, provides public 
parks, and supports community and economic development.  LCRA manages water 
supplies for cities, farmers and industries along a 600-mile stretch of the Texas Colorado 
River between San Saba and the Texas Gulf Coast.  The LCRA water supply includes a 
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combination of interruptible water for agricultural uses and firm water supply for 
municipal and industrial uses 

LCRA operates six dams on the lower Colorado River in Central Texas: Buchanan, Inks, 
Wirtz, Starcke, Mansfield and Tom Miller. These dams form the six Highland Lakes - 
Buchanan, Inks, LBJ, Marble Falls, Travis and Austin as shown schematically in Figure 
1.  Two of these reservoirs, lakes Buchanan and Travis, are the only water supply 
reservoirs and only Lake Travis has flood control storage.  The total combined storage in 
the Highland Lakes two water storage reservoirs, lakes Buchanan and Travis is 
approximately 2,010,000 acre-feet of water when at full conservation storage.  LCRA 
regulates water discharges to manage floods, and releases water for sale to municipal, 
agricultural and industrial users.  Installed hydropower generation at these reservoirs 
provides approximately 295 MW of electrical generation capacity. 

 

 

Figure 1. The Highland Lakes Chain of the Colorado River in Texas 
 
Long lead time prediction of streamflows in the Colorado River basin could provide 
many opportunities for better resource planning and management including water supply, 
physical facilities, flood management, hydropower generation and scheduling, and 
environmental provisions.  While general long lead time meteorological predictions such 
as drier than normal or wetter than normal are useful and improving, these do not lend 
themselves to directly quantifiable forecasts of streamflows or evaporation that can be 
readily used by surface water supply managers.  Even the relationships between rainfall, 
if it could be accurately predicted, and streamflow, which is a reasonably well understood 
physical process, have significant variability.  For the catchment of the Highland Lakes, 
statistical regression of the monthly of streamflows, precipitation only partially explains 
the variations in streamflows.  This is likely due to the spatial and temporal variation of 
rainfall as well as issues such as surface and groundwater interactions and soil moisture 
conditions which are less easily quantified.  Piechota & Dacup (1996) found that while 
strong relationships between the lagging indices of Southern Oceanic Index (SOI) and 
Palmer Drought Severity Index (PDSI) could be found, the same was not true for SOI and 
streamflows.  Unfortunately, streamflows are necessary for surface water resource 
managers in evaluating supply. 
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The term "teleconnection pattern" refers to 
a recurring and persistent, large-scale 
pattern of pressure and circulation 
anomalies that spans vast geographical 
areas.  Teleconnection patterns are also 
referred to as preferred modes of low-
frequency (or long time scale) variability. 
Although these patterns typically last for 
several weeks to several months, they can 
sometimes be prominent for several 
consecutive years, thus reflecting an 
important part of both the interannual and 
interdecadal variability of the atmospheric 
circulation. (source:  National Weather 
Service, Climate Prediction Center) 

There are many contributing factors to the difficulty in long lead time streamflow 
prediction in central Texas.  First the lack of snow pack precludes one of the most helpful 
predictions available to our counterparts in the Southwest, Pacific-Northwest, and 
Atlantic Northeast states.  Additionally weather patterns are influenced by Pacific 
generated fronts, Arctic influences, Atlantic influences, Gulf of Mexico influences, 
tropical disturbances, and even the influences from Canadian cold fronts can have a 
profound effect.  Theses stalled fronts can sometimes be the source for large rain storms 
such as the Memorial Day Flood of 1981. 
 
Other complications are influences from the north 
and southward displacement of the Hadley Cell 
over the southern US.  If the cell is displaced 
further to the north or to the south, it could lead to 
more convection in Central Texas thus producing 
more precipitation.  Researchers and water 
managers alike have employed a variety of 
methods to relate these climatic indicators to 
streamflow ranging from simple statistical 
relationships, advanced multivariate methods, and 
even hydrodynamic modeling.   
 
Of the thirteen prominent teleconnection patterns, several have been investigated for use 
as long lead indicators of hydrology in the area.  These include Pacific Decadal 
Oscillation (PDO), Northern Atlantic Oscillation (NAO), El Niño/Southern Oscillation 
(ENSO), and Atlantic Multidecadal Oscillation (AMO).  Of these indicators, the ENSO is 
perhaps the best understood and the best quantified indicator for the streamflows in the 
lower Colorado River basin.  ENSO is measured by several indicators including the 
Sothern Oscillation Index (SOI), the Oceanic Niño Index (ONI), and the Multivariate 
ENSO Index (MEI).  Both ONI and MEI have been computed for long historical periods 
lending them to be easily correlated with the gaged surface water record. 

 
EL NIÑO/SOUTHERN OSCILLATION EFFECTS ON CENTRAL TEXAS 

WEATHER 
 
The meteorological influences of the ENSO cycle on Texas weather are rather well 
understood.  In the negative phase, often referred to as La Niña, easterly trade winds 
increase in strength across equatorial Pacific, causing colder than normal waters to spread 
west from the coast of South America to near the International Date Line.  A "cold 
tongue" of water develops across central and eastern equatorial regions, leaving a zone 
of warmer than normal water across across the western Pacific and Indian Ocean.  The 
warmer than normal waters fuel the development of thunderstorms across the western 
Pacific.  Rising air currents associated with the area of thunderstorms tend to sink across 
the central and eastern parts of the equatorial Pacific, creating a closed area of 
circulation.  The sinking air causes the development of a broad high pressure area across 
the eastern half of the Pacific.  As the Pacific circulation strengthens, the area of high 
pressure across the eastern Pacific expands to the north.  Eventually, the area of high 
pressure gains enough strength to cause the Polar Jet Stream to shift from southern 
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California to the Pacific Northwest and western Canada.  As the storm track shifts to the 
north in connection with the Jet Stream, drier than normal weather conditions develop 
across the southern US, including Texas.  This drier than normal pattern often leads to the 
development of drought.  The influence of La Niña can be seen in Figure 2.  
  

 
Figure 2.  Typical Wintertime La Niña Pattern 

 
The National Climatic Data Center has compiled a set of charts based on the historical 
record showing the anomalous influence of El Niño and La Niña on precipitation across 
the US by month.  These charts, shown in Figures 3 and 4, also show the departures and 
percent frequency of occurrence.  In the Central Texas region during November to 
January influence is a 60 to 70% increased frequency of 10 to 70 mm less precipitation as 
show in Figure 3. The effect is only slightly weaker during the December to February 
period shown in Figure 4. 
 
In the positive phase of ENSO, often referred to as El Niño, the easterly trade winds 
diminish and are replaced by westerly trades.  These westerly winds pull the very warm 
waters residing across the western Pacific all the way east to the coast of South America.  
Eventually a tongue of warmer than normal water develops across the central and eastern 
equatorial Pacific.  These warm waters fuel the development thunderstorms across the 
central and eastern Pacific, leading to rising air currents, creating a broad area of low 
pressure.  As the broad area of low pressure strengthens, circulation around the low helps 
focus the storm track across the southern US.  
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Figure 3.  U.S. Precipitation Departures (mm)  

Frequency of Occurrence (%) for La Niña during Nov.-Jan. 
 
 
 

 
Figure 4. U.S. Precipitation Departures (mm)  

and Frequency of Occurrence (%) for La Niña during Dec- Feb. 
 

The flow of moisture off the Pacific Ocean, in combination with a flow of moisture off 
the Gulf of Mexico, creates frequent periods of storms, resulting in above normal rainfall.  
A recent summary of ENSO model predications is show in Figure 5 which shows a 
period of relatively long range consensus among predictions.  While the horizon of 
consensus of the ENSO predictions is often longer than streamflow persistence, it is still 
short relative to multi-year water supply system operations. 
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Hydrological Persistence:  The 
characteristic of hydrologic 
conditions to remain in wet or 
dry cycles.  Interactions 
between global climate process 
and the hydrological cycle can 
result in rainfall and stream 
flow data clustering into wetter 
and drier conditions. 

 
 

Figure 5. ENSO Model Predictions for February 2012 
 

SUMMARY OF PREDICTION STUDIES INVOLVING CENTRAL TEXAS 
 

O’Connell (2002) focused on the longer term indicators of ENSO and the NAO, noting 
that the PDO cycle was too long to be of much management use as a indicator.  She 
examined correlation coefficients between streamflow in lower Colorado River basin and 
the indicators for the period of 1940 to 1999 on an annual time step.  While she found 
good correlation between concurrent data, leading indicators showed only minor 
correlations.  She found the indicators to be 
capable of improving annual forecasts by 11-
13% over persistence alone, and an optimal 
linear combination used SOI and NAO to gain a 
49% improvement” but noted “skill inflation 
may have occurred, as forecasts were not tested 
on an independent data set.”  Interestingly, she 
identified the strong month to month persistence 
that often exits in the streamflow data sets apart 
from teleconnections. However that was not 
directly useful for the modeling approach.  Furthermore, at the time, she suggested that 
without strong lead correlations, the indictors were not useful as predictors.  However, 
now a decade later, we have easy access to good dynamic and statistical prediction 
models, at least for ENSO, which can make concurrent relationships useful for several 
months in the future even where leading predictions by indicators may not be established. 
 
In hindsight, the prediction skill may have been improved through classification of ENSO 
into El Niño, Neutral, or La Niña rather than a continuous variable, since the strength of 
the condition seems to have less impact than the condition alone.  Similarly the 
streamflows and the ENSO indexes are highly correlated so the lack of additional 
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NOAA Operational Definitions for El Niño 
and La Niña Episodes 

• El Niño: characterized by a positive ONI 
greater than or equal to +0.5°C. 

• La Niña: characterized by a negative ONI 
less than or equal to -0.5°C. 

 
CPC considers El Niño or La Niña conditions to 
occur w hen t he monthly Ni ño3.4 OIS ST 
departures meet or exceed +/-  0.5°C along w ith 
consistent atm ospheric feature s. T hese 
anomalies must also be forecasted to persist for 
three consecutive months. 

information from the ENSO index may be due to the fact that the ENSO signal is already 
largely incorporated into the antecedent conditions. LCRA now uses both the persistence 
and the ENSO forecasts for aiding prediction (Anderson and Walker, 2010) of 
streamflows and subsequently lake contents.   

 
Dr. James Tolan (2006) also investigated ENSO impacts in Texas but with a focus on 
salinity along the Texas Gulf Coast.  However, this is still of interest since, in some areas, 
salinity can be related to streamflow with potentially less error than precipitation 
(Anderson, Wedig, and Tyagi, 2009).  Dr. Tolan analyzed the period of 1982 to 2004 
using seasonally standardized salinity.  He found major cross correlations between both 
ENSO and PDO while also finding minor correlations with NAO and yearly season 
cycles.  Dr. Tolan also identified five frequencies associated with the variation in salinity 
that correspond to ENSO but the period of salinity record is short in relation to the 
patterns. 

 
Slade and Chow (2011) focused their 
study on the Texas Hill Country using 
the period of 1950 to 2009.  While they 
looked at precipitation, flood flows, and 
streamflows, our interest here is 
streamflows.  Their results confirmed the 
meteorological understanding of ENSO 
influences.  They found for each gage in 
the region that the mean streamflow 
during El Niño periods exceeds the mean 
streamflow during La Niña periods.  
While this exceedence was only slight in 
the San Saba River, Llano River, and 
Johnson Creek; the exceedence was substantial at the more southerly gages of such as the 
Pedernales, Guadalupe, and Blanco Rivers.  The focus of their work was diagnostic rather 
than predictive, therefore they only looked at concurrent conditions or lagging indicators 
rather than leading indicators such as was done by O’Connell. 
 
Quan et. al. (2011) looked at the ability to reproduce the historical standard precipitation 
index (SPI) for the period of 1982 to 2002 using dynamic atmospheric climate 
simulations across the United States.  While SPI is not easily related to streamflows, the 
results of the research echo findings of other research in the central Texas area. They note 
that inherent drought persistence alone provides considerable seasonal skill.  
Furthermore, they note that dynamic sea surface temperature (SST) models do improve 
predictive skill, and that ENSO is believed to be the preponderance of the skill source in 
the Southern US. 
 
Wei, W. and Watkins (2011) evaluated ENSO, PDO, and NAO specifically related to 
flows in the Lower Colorado River.  They conducted an ordinal polytomous logistic 
regression approach to forecasting streamflows.  Of all the indicators they evaluated, they 
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found that only hydrologic persistence and ENSO or PDO provided any skill over mean 
seasonal streamflow patterns. 
 

ANALYSIS USING NON-PARAMETRIC-METHODS 
 
As has been shown in the literature, persistence and ENSO are skillful in predicting 
streamflows in central Texas for up to several months.  While other indicators may be 
shown to be good predictors of climate indices, further research is needed to quantify the 
impacts of PDO and NAO to central Texas streamflows.  Past research suggests that 
additional indicators may only provide marginal additional prediction skill but continued 
advances in the understanding and simulation of teleconnection patterns may prove 
otherwise. 
 
The gaged record of the Highland Lakes for the period of 1940 to 2011 was analyzed and 
computed for the month to month persistence of streamflows for conditions of El Niño, 
La Niña, neutral, or unspecified.  The computed persistence is the basis for transitional 
probabilities used to constrain chaining Marcov forecasts.  Monthly streamflows are 
grouped into lower quartile, inner quartile range, and upper quartile bins for dry, medium, 
and wet conditions respectively.  The three antecedent classes, three transitional classes, 
and 12 months a year result in 108 potential combinations of prior distributions for 
describing transitional probabilities. Furthermore, considering the four ENSO 
classifications  results in 424 combinations.   
 
These prior distributions capture both the persistence and ENSO impacts as the supported 
by the literature.  An example of the transitional probabilities for the condition of 
unspecified ENSO is shown in Table 1.   
 
Table 1. Transitional Probability of Persistent Quartiles for Unspecified ENSO Condition 

Last  
Mon 

This 
Mon 

Persist 
Dry 

Dry to  
Medium 

Medium  
to Wet 

Medium  
to Dry 

Persist  
Medium 

Medium  
to Wet 

Wet to 
Dry 

Wet to  
Medium 

Persist 
to Wet 

12 1  76.47% 23.53% 0.00% 14.29% 65.71% 20.00% 0.00% 42.11% 57.89% 
1 2 77.78% 22.22% 0.00% 11.11% 75.00% 13.89% 0.00% 27.78% 72.22% 
2 3 61.11% 27.78% 11.11% 19.44% 72.22% 8.33% 0.00% 27.78% 72.22% 
3 4 72.22% 27.78% 0.00% 13.89% 61.11% 25.00% 0.00% 50.00% 50.00% 
4 5 33.33% 55.56% 11.11% 33.33% 52.78% 13.89% 0.00% 38.89% 61.11% 
5 6 38.89% 50.00% 11.11% 27.78% 44.44% 27.78% 5.56% 61.11% 33.33% 
6 7 66.67% 27.78% 5.56% 11.11% 69.44% 19.44% 11.1% 33.33% 55.56% 
7 8 50.00% 38.89% 11.11% 25.00% 55.56% 19.44% 0.00% 50.00% 50.00% 
8 9 55.56% 27.78% 16.67% 19.44% 66.67% 13.89% 5.56% 38.89% 55.56% 
9 1 0 61.11% 11.11% 27.78% 16.67% 58.33% 25.00% 5.56% 66.67% 27.78% 

10 11  72.22% 27.78% 0.00% 11.11% 66.67% 22.22% 0.00% 38.89% 61.11% 
11 12  77.78% 22.22% 0.00% 11.11% 72.22% 16.67% 0.00% 33.33% 66.67% 

 
The observed transitional probabilities in Table 1 have been compared to random 
probabilities.  The transitional probabilities which cannot be rejected at a 95% confidence 
as randomly occurring are shaded in the table. Only six of the 36 persistent states appear 
to be random.  These are predominantly during the April to May and May to June 
transitions.  This is reasonable since this is the period of spring rainfall also known as the 
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‘barrier period’.  The majority of the transition probabilities reflect statistically significant 
month to month persistence.  Said another way, the odds of switching out of a condition, 
or even more so from wet to dry or dry to wet conditions, rarely follow random 
probabilities. 
 
Table 2 presents the observed transition likelihoods under La Niña conditions.  The 
average increase in the likelihood of remaining in dry conditions or transitioning to the 
next dryer condition than under the unspecified condition is 12%.   
 

Table 2. Transitional Probability of Persistent Quartiles for La Niña Condition 
Last  
Mon 

This 
Mon 

Persist 
Dry 

Dry to  
Medium 

Medium  
to Wet 

Medium  
to Dry 

Persist  
Medium 

Medium  
to Wet 

Wet to 
Dry 

Wet to  
Medium 

Persist 
Wet 

12 1  72.73% 27.27% 0.00% 0.00% 77.78% 22.22% 0.00% 50.00% 50.00% 

1 2 88.89% 11.11% 0.00% 16.67% 75.00% 8.33% 0.00% 0.00% 100.0% 

2 3 77.78% 11.11% 11.11% 37.50% 50.00% 12.50% 0.00% 20.00% 80.00% 

3 4 90.00% 10.00% 0.00% 16.67% 66.67% 16.67% 0.00% 60.00% 40.00% 

4 5 37.50% 37.50% 25.00% 55.56% 44.44% 0.00% 0.00% 33.33% 66.67% 

5 6 57.14% 42.86% 0.00% 25.00% 75.00% 0.00% 33.33% 33.33% 33.33% 

6 7 60.00% 20.00% 20.00% 14.29% 42.86% 42.86% 0.00% 0.00% 100.0% 

7 8 0.00% 66.67% 33.33% 37.50% 37.50% 25.00% 0.00% 50.00% 50.00% 

8 9 100.0% 0.00% 0.00% 40.00% 50.00% 10.00% 0.00% 33.33% 66.67% 

9 1 0 71.43% 14.29% 14.29% 18.18% 63.64% 18.18% 0.00% 50.00% 50.00% 

10 11  85.71% 14.29% 0.00% 23.08% 69.23% 7.69% 0.00% 28.57% 71.43% 

11 12  88.89% 11.11% 0.00% 18.18% 72.73% 9.09% 0.00% 50.00% 50.00% 

 
In Table 3 we see the likelihood under El Niño conditions.  During El Niño conditions, 
we observe an average increase of 28% likelihood of transitioning out of dry conditions 
to moderate conditions throughout the year and an annual average of 7% increase in the 
likelihood of staying either medium or wet. 
 

Table 3. Transitional Probability of Persistent Quartiles for El Niño Condition 
Last  
Mon 

This 
Mon Per sist Dry 

Dry to  
Medium 

Medium  
to Wet 

Medium  
to Dry 

Persist  
Medium 

Medium  
to Wet 

Wet to 
Dry 

Wet to  
Medium 

Persist 
Wet 

  12     1 100.0% 0.00% 0.00% 15.38% 69.23% 15.38% 0.00% 75.00% 25.00% 

    1     2 25.00% 75.00% 0.00% 8.33% 75.00% 16.67% 0.00% 14.29% 85.71% 

    2     3 nd nd nd 9.09% 81.82% 9.09% 0.00% 14.29% 85.71% 

    3     4 0.00% 100.0.% 0.00% 11.11% 44.44% 44.44% 0.00% 50.00% 50.00% 

    4     5 0.00% 100.0.% 0.00% 16.67% 83.33% 0.00% 0.00% 66.67% 33.33% 

    5     6 50.00% 50.00% 0.00% 18.18% 45.45% 36.36% 0.00% 25.00% 75.00% 

    6     7 66.67% 33.33% 0.00% 0.00% 87.50% 12.50% 0.00% 42.86% 57.14% 

    7     8 50.00% 50.00% 0.00% 14.29% 71.43% 14.29% 0.00% 33.33% 66.67% 

    8     9 50.00% 50.00% 0.00% 22.22% 66.67% 11.11% 0.00% 50.00% 50.00% 

    9   10 75.00% 25.00% 0.00% 8.33% 50.00% 41.67% 0.00% 50.00% 50.00% 

  10   11 50.00% 50.00% 0.00% 11.11% 44.44% 44.44% 0.00% 28.57% 71.43% 

  11   12 75.00% 25.00% 0.00% 11.11% 88.89% 0.00% 0.00% 20.00% 80.00% 

* nd = no data 
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A hindcast is a way of testing a 
mathematical model. Known or closely 
estimated inputs for past events are 
entered into the model to see how well 
the output matches the known results. 
Hindcasting is also known as 
backtesting. 

An example of hindcasting would be 
entering climate forcings (events that 
force change) into a climate model. If 
the hindcast accurately showed 
weather events that are known to have 
occurred, the model would be 
considered successful. - Wikipeda 

As the data is binned into further classifications, the number of observations gets small.  
As seen in Table 3, there is one state of transition that has not yet been observed in the 
gaged record.  This posses a technical issue in using non-parametric methods if more 
indicator variables were to be incorporated. 
 

CONCLUSIONS 
 
Researchers have investigated climate predictive indicators in Texas and specifically in 
the lower Colorado River catchment for many 
years.  Efforts focused on predicting 
streamflow, rainfall or climatic indexes.  
Surface water managers need to relate 
predictions to streamflows either by dynamical 
or statistical methods for use in supply 
management.  Qualitative or classification 
indicators can be useful if they are also 
hindcasted so they can be related to the 
streamflow record with a statistical methods and 
the prediction uncertainty can be characterized.  
Month to month persistence is recognized as 
one of the most skillful indicators, primarily 
through the winter season.  Persistence is useful 
in short term predictions because it directly 
relates to streamflows and indirectly is influenced by teleconnection patterns.  Therefore 
explicitly including teleconnection patterns adds less incremental short term skill but still 
offers potential benefit for longer term prediction.   
 
Even though most research has focused on concurrent indicators rather than leading 
indicators, concurrent relationships may still be useful in prediction as global circulation 
models provide better and further outlooks into future climate.  Use of lagging climate 
indicators may also help identify driving climate indicators but pose more challenges for 
prediction of streamflow.  Use of persistence and, concurrent ENSO relationships, and 
ENSO forecasts are currently being used in water supply forecasting at the LCRA.  
Additional skill may be achieved through future research with AMO interactions with 
ENSO forecasts (Nielsen-Gammon, 2011) as long as the historical record is reasonably 
long for use in providing confidence in the streamflow relationships and understanding of 
the prediction uncertainty.  Finally, even when additional indicators prove to be 
statistically significant they still need to provide substantively better projections over 
existing indicators to be of benefit to water managers. 
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