
Study of an Iterative Resource Allocation Technique

to Minimize Machine Completion Times

in a Distributed Computing System
Luis D. Briceño1, Mohana Oltikar1, H. J. Siegel1,2, and Anthony A. Maciejewski1

This research was supported by the NSF under grant CNS-0615170 and by the Colorado State University

George T. Abell Endowment

1Electrical & Computer Engineering, 2Department of Computer Science

{ldbricen, mohana.oltikar, hj, aam}@colostate.edu

Reference:
L. D. Briceño, M. Oltikar, H. J. Siegel, and A. A. Maciejewski,

“Study of an Iterative Technique to Minimize Completion Times

of Non-Makespan Machines,” submitted.

Note: An e-copy will be available at:

http://www.engr.colostate.edu/~hj/complete_vita.pdf

Introduction

�What is heterogeneous computing (HC)?
� HC is the coordinated use of different types of machines,

networks, and interfaces to maximize performance

�How do we maximize the performance?

� a common optimization criterion is to minimize the
completion time of all the machines (makespan)

�makespan machine:

� machine that is the last to complete

�non-makespan machines:
� the machines that are not last to complete

resource
allocation

heuristic

mapper

tasks

{t1,t2,t3,

t4,t5,t6}

machines

M1, M2, M3

M1 M2 M3

t5

t1
t6

t2

t3

t4

completion time
(CT) = 10 CT = 9

CT = 12

Iterative Approach: Original Mapping

time

resource
allocation

heuristic

mapper

tasks

{t1,t2,

t5,t6}

machines

M1, M2

M1 M2 M3

t2

t5
t1

t6

t3

t4

completion time

(CT) = 8 CT = 8

CT = 12

Iterative Approach: First Iterative Mapping

drop the makespan machine M3 and
tasks t3 and t4 and then re-map

time

Genitor

� one resource allocation heuristic considered is Genitor

�What is Genitor?

� Genitor is a type of genetic algorithm (GA)
� each chromosome represents a possible mapping
� uses a sorted population with the best chromosomes
� offspring generated by crossover and mutation

� offspring are kept based on their rank in the population
� good mappings stay in the population
� bad mappings are discarded

Genitor: Performance with the Iterative Mapping

� the mapping resulting from the previous iteration (of the

iterative approach) is seeded into the population of the
current iteration

� the ranking in Genitor guarantees the mapping for the
current iteration is either:

� the seeded mapping from the previous iteration
� or a mapping with a smaller makespan for the

considered machines and tasks (compared to that
from previous iterations)

� thus, the iterative technique can result in:

� an improvement
� or no change

Min-Min

� Another resource allocation heuristic considered

� Min-Min procedure

1. for each task find the machine that

completes the task earliest

2. from all (task ti, machine mk) pairs found above select the

pair (ti, mk) with the minimum completion time

3. add it to the mapping

4. update the ready time value of mk

5. repeat above steps until all tasks are mapped

Conclusions

�Genitor can improve the original resource allocation
using the iterative approach

�Min-Min does not improve upon the
original resource allocation with the iterative approach

� if ties are broken deterministically, then the resource

allocation does not change
� if ties are broken randomly, then the resource
allocation may get worse

� other heuristics were also studied
�these heuristic are included in the reference

Introduction

�What is the iterative approach?
� the iterative approach attempts to decrease the finishing
time of each machine in a given resource allocation by
repeatedly running a mapping heuristic to minimize

makespan of the considered machines and tasks
�the makespan machine and tasks assigned to it are
removed from the considered machines and tasks after
every mapping

�What is the goal of this study?
� identify which resource allocation heuristics can

effectively employ the iterative approach

�Genitor and Min-Min are examined here

Min-Min

�performance with the iterative approach:

� if ties (in steps 1 and 2) are broken deterministically
then the resource allocation will not change over iterations

�the proof is included in the reference

� if ties (in steps 1 and 2) are not broken deterministically
then the makespan may become larger

� example included in the reference

Min-Min: Iterative Approach

�Theorem:
Using the Min-Min heuristic the individual completion times

for each machine do not improve over iterative mappings
of the iterative approach, if ties (in steps 1 and 2) are
broken deterministically

� this is proven by using induction
� the proof is included in the reference

Genitor: Procedure

sorted Genitor

population
pick two chromosomes

for crossover

crossover

if the offspring is better:

� insert it in the population
in ranked order

� discard the worse chromosome

mutation

mutation
offspring

crossover

offspring

repeat until stopping criteria is met

pick a chromosome

for mutation

