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ABSTRACT OF DISSERTATION 

THE EFFECT OF PARAMETER UNCERTAINTY 

IN STOCHASTIC STREAMFLOW SIMULATION 

Hydrologic time series simulation based on a stochastic model is intended to obtain a set 

of equally likely hydrologic sequences that could possibly occur in the future and might 

be useful for determining the uncertainty of decision variables such as the storage 

capacity of a reservoir. Since stochastic models generally hinge on parameters that are 

estimated based on a limited historical sample, the model parameters become uncertain 

and so are any decision variables that are derived from the generated samples. The main 

objective of this study is to propose and analyze methods for quantifying the effect of 

parameter uncertainty of the models that are used in the generation of synthetic 

streamflow series. As a way of quantifying parameter uncertainty of a stochastic model, 

asymptotic and Bayesian approaches have been implemented and their performances 

compared through extensive simulation experiments. Alternative streamflow simulation 

techniques have been utilized with parameter uncertainty incorporated such as stochastic 

models of annual streamflows at single and multiple sites as well as temporal and spatial 

disaggregation models. The impact of parameter uncertainty is shown to increase the 

variability of generated flow statistics and resultant design related variables, which is 

visible even with a relatively large sample size, e.g. sample size of 200. The Bayesian 
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approach produces larger variability of generated statistics for small sample sizes than the 

asymptotic approach, and the difference between the two approaches is more evident for 

the case of generation of streamflows with high serial correlations. The effect of 

parameter uncertainty within disaggregation models is not as significant on the first and 

second moments of disaggregated flows as the effect of parameter uncertainty of the 

models that generate the input variables; whereas the effect of parameter uncertainty of 

disaggregation models results in more variability of month-to-month, month-to-annual, 

and cross correlations than those induced by the uncertainty of the model parameters of 

input variables. 

Dong-Jin Lee 
Department of Civil and Environmental Engineering 

Colorado State University 
Fort Collins, CO 80523 

Fall 2009 
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Chapter I 

INTRODUCTION 

1.1 General Remarks 

Stochastic modeling of time series has been widely used in the planning and 

management of water resource systems (Salas et al., 1980; Loucks et al., 1981; Bras and 

Rodriguez-Iturbe, 1985; Grygier and Stedinger, 1990; Hipel and McLeod, 1994; Salas et 

al., 2000). Two important utilizations of stochastic modeling in hydrology are to 

forecast and to simulate a hydrologic time series. The purpose of the simulation is to 

obtain a set of stochastically equivalent series of observations that could possibly happen 

in the future, which might be useful to determine the expected capacity of hydrologic 

structures with certain reliability. A number of mathematical stochastic models have 

been extensively suggested regarding stochastic simulation of hydrologic processes: 

autoregressive (AR), autoregressive moving average (ARMA), autoregressive integrated 

moving average (ARIMA) models, disaggregation models, fractional Gaussian noise 

models, broken line models, and shifting level models, etc (Salas et al., 1980). Three 

steps are usually required for formal model procedures: model identification, model 

estimation, and model diagnostic checking. Obtaining efficient parameter estimates 

might be crucial after the specific stochastic model is identified for a hydrologic system 
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of interest. It is common that inadequacy of fit may simply arise from inefficient fitting 

and not from an inadequate model (Box and Jenkins, 1970). Several parameter 

estimation techniques are available to obtain the optimal estimates of parameters: method 

of moments estimators, maximum likelihood estimators, and least square estimators. 

However, the precision of parameter estimates arise from the limited information of 

available historical data sets, even though the best estimator could be applied. If the 

available historical data is sufficiently long (e.g. hundreds of years), the model 

parameters could be estimated with good precision; the synthetic samples produced from 

the model would reflect the expected variability of the process under consideration; and 

consequently the expected variability of the design variables could be obtained from them 

(e.g. the size of the needed storage capacity for a reservoir). However, the usual lengths 

of historical streamflow records are short, which means that the model parameters are 

uncertain. Consequently, the variability of the design variables may be uncertain 

beyond what is expected. 

1.2 Problem Definition and Brief Literature Review 

Vicens et al. (1975) argued that the uncertainties in water resources can be 

classified into two different uncertainties, which are natural uncertainty developing from 

the assumed random nature of hydrological process and informational uncertainty 

developing from the limited information regarding the true nature of the process. The 

sampling errors, which could be defined by the discrepancy between the parameter 

estimates based on historical samples and true population parameters, have been 
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illustrated to impose a significant effect on practical water resource design problems such 

as impact on estimates of the reliability with which reservoirs of different capacities can 

meet a specific demand (Stedinger and Taylor, 1982). However, the conventional 

approaches of reservoir determination procedures do not have the abilities to exhibit these 

parameter uncertainties. Therefore, the incorporation of uncertainties of the sampling 

errors could result in a better design than the traditional approaches (Vicens et al., 1975; 

Wood, 1978; Valdes et al., 1977; Klemes et al., 1981; Salas et al., 1980; Grygier and 

Stedinger, 1990). 

Theoretically, this parameter uncertainty can be quantified and expressed in terms 

of the sampling distribution. Based on the asymptotic behavior of the maximum 

likelihood estimators, Box and Jenkins (1970) derived the large sample variance-

covariance matrix of maximum likelihood estimators (MLE) for univariate autoregressive 

moving average model by using the information matrix to interpret the uncertainty of 

parameter estimators, which enables one to define an approximate distribution of 

parameter estimates for a sufficiently large sample size. McLeod and Hipel (1978) 

developed the WASIM3 (Waterloo Simulation Procedure 3) algorithm for the univariate 

ARMA model based on the large sample theory so as to explain how parameter 

uncertainty is incorporated into reservoir design and affects the storage capacity-

reliability relationships for reservoir systems. The incorporation of parameter 

uncertainty into the streamflow generation is also available for method of moments 

estimators (MOME). The idea is that once parameter estimates are expressed as 

functions of sample moments, relevant asymptotic distributions could be given by central 

limit theory. For instance, Vecchia et al. (1983) proposed the asymptotic distributions of 
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MOME of the first order periodic AR model based on the relationship with asymptotic 

distributions of seasonal autocorrelations. The application of multivariate stochastic 

models has been useful in the planning and management of water resource systems of 

several sites with interdependence (Matalas, 1967; Pegram and James, 1972; O'Connell, 

1974; Salas and Pegram, 1977; Lettenmaier, 1980; Salas et al., 1980; Loucks et al, 1981; 

Camacho et al, 1985, 1987; Salas et al, 1985; Stedinger, et al , 1985a). By introducing 

the usefulness of a contemporaneous autoregressive moving average model (CARMA) as 

a subset of the general multivariate ARMA model in the generation of the multivariate 

streamflows, Camacho et al. (1987) examined the large sample properties of MLE of the 

CARMA model and derived asymptotic variances of MLE to compare the efficiency of 

joint estimates with those in the univariate case. 

Parameter uncertainty issues could also be dealt within a Bayesian framework. 

For a Bayesian approach to parameter uncertainty, there is no major difference between 

univariate autoregressive models and univariate regression models (see Zeller, 1971; 

Vicens et al., 1975; Stedinger and Taylor, 1982), likewise for the multivariate cases of 

each of the models (Valdes et al., 1977). Based on the Bayesian regression model, 

Vicens et al. (1975) proposed incorporation of parameter uncertainty in the synthetic 

streamflow generation scheme for the univariate annual AR model by deriving a 

Bayesian predictive probability density function of streamflows. A multivariate 

extension of that by Vicens et al. (1975) is available in the literature based on Bayesian 

multivariate regression and a multivariate AR model (Valdes et al.., 1977). However, 

these previous works have inadequacy since those algorithms are not a possible 

realization of the underlying stochastic process and only approximate the relationship 
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between parameter uncertainty and synthetic flows to be generated (Davis, 1977; 

McLeod and Hipel, 1978; Stedinger and Taylor, 1982). In addition to parameter 

uncertainty regarding the annual streamflow generation, Stedinger and Taylor (1982) 

presented the incorporation procedure of parameter uncertainty of the first order annual 

univariate AR process into monthly streamflow generation based on the Bayesian 

technique. They also examined the impact on estimates of monthly reservoir system 

reliability, which supported the previous suggestions by Klemes et al. (1981) and Burges 

and Lettenmaier (1981) that parameter uncertainty might be more important than the 

choice of generation models. More recently, Thyer et al. (2002) applied a numerical 

method to incorporate parameter uncertainty into streamflow generation based on the first 

order AR model in conjunction with the Box-Cox transformation, where the Bayesian 

Markov Chain Monte Carlo method was employed to evaluate parameter uncertainty. 

Since the model proposed by Valencia and Schaake (1973), several temporal or 

spatial disaggregation models have been proposed and widely used for their simplicity in 

parameter estimation and for better performance in preserving statistical characteristics of 

both levels of flows (annual/seasonal or key-sites/sub-sites) as an alternative to direct 

modeling of seasonal or multivariate streamflows (Valencia and Schaake, 1973; Mejia 

and Rousselle, 1976; Tao and Delleur, 1976; Lane, 1979; Stedinger and Vogel, 1984; 

Stedinger et al, 1985a, 1985b; Grygier and Steinger, 1990; Lane and Frevert, 1990; 

Santos and Salas, 1992). Applying the normal regression model enables one to 

incorporate parameter uncertainty into the disaggregation model in the Bayesian 

framework, which has been found either in theoretical studies (Zeller, 1971; Box and 

Tiao, 1973), or in the application to water resource systems planning based on the 
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temporal disaggregation model (Stedinger et al., 1985b). Parameter uncertainty 

consideration might improve the ability to specify how a given hydrologic system is 

likely to perform in the future (Stedinger et al., 1985b). On the other hand, Grygier and 

Stedinger (1990) proposed that the parameter uncertainty effect in spatial disaggregation 

is thought to be relatively small compared with that of the annual or seasonal basin flows 

at a single site, and they also proposed that the annual to seasonal disaggregation model 

should be used for incorporating parameter uncertainty into the complex multivariate 

annual to seasonal disaggregation. However, extensive exploration of the effect of 

parameter uncertainty incorporation into spatial disaggregation has not been clearly made. 

1.3 Research Objectives 

The general objective of this research is to develop and to propose uncertainty 

quantification procedures that incorporate parameter uncertainty of mathematical models 

into the generation of a synthetic streamflow series in a multi-sites channel system. 

Specific objectives that will be considered in this research are: 

(1) To systematically analyze the effect of parameter uncertainty of a single 

univariate stochastic model for generating streamflow data based on traditional 

asymptotic and Bayesian approaches. The nonparametric approach based on 

bootstrapping will also be utilized for the comparison of parametric consideration. 

(2) To expand the parameter uncertainty incorporation procedure of the single site 
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generation to seasonal flow generation based on temporal disaggregation. In 

order to consider parameter uncertainty, asymptotic distributions will be derived 

and the comparative analysis with the conventional Bayesian approach will be 

given. 

(3) To develop the parameter uncertainty incorporation technique for synthetic flows 

at multiple sites by using spatial disaggregation model. Based on the 

multivariate regression concept, the asymptotic distribution and Bayesian 

posterior distribution of parameters of spatial disaggregation models will be 

derived as a way of incorporating parameter uncertainty into the flow generation, 

and the uncertainty impacts on statistical properties and related design variables 

will be investigated and compared. 

(4) To enhance parameter uncertainty incorporation for multivariate synthetic 

streamflows generated by using the general multivariate autoregressive model. 

The traditional Bayesian regression concept for the first multivariate 

autoregressive model will be expanded to the general multivariate autoregressive 

model and comparative analysis with the conventional asymptotic approach will 

be presented. 

(5) To present a simple disaggregation model based on the proportionality between 

annual and seasonal flows (key and sub stations flows), which does not require 

the normality constraint and the correspondingly required adjustment procedure. 
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1.4 Chapter Organization 

This research consists of five stand alone chapters, of which each chapter has its 

own abstract, application and conclusion. In Chapter 2, parameter uncertainty 

incorporation into a lag-1 autoregressive model, a commonly used stochastic model for 

generating synthetic streamflow data, will be presented. The impact of each type of 

parameter uncertainty of the model will be investigated based on statistical properties and 

related design variables, and the performance of conventional approaches will be 

compared. In Chapter 3, the expansion of parameter uncertainty consideration into a 

temporal disaggregation model will be provided. Two temporal condensed 

disaggregation models, LAST (Lane, 1979; Lane and Frevert, 1990) and SPC (Stedinger 

et al., 1985), will be employed and parameter uncertainty regarding those models will be 

taken into account by using asymptotic theory and Bayesian posterior distributions. In 

Chapter 4, the parameter uncertainty effect will be discussed in the case of generated 

streamflows based on the spatial disaggregation model. Asymptotic and Bayesian 

posterior distributions of parameters of the simple spatial disaggregation model 

(Valencia-Schaake model) will be derived. The impact of parameter uncertainty and 

also the performance of two approaches will be examined based on flow related statistics. 

Chapter 5 will present the uncertainty incorporation to the multivariate generation case. 

The General multivariate autoregressive model will be implemented and the uncertainty 

of parameters will be investigated based on both asymptotic and Bayesian approaches. 

Finally, Chapter 6 will report a simple disaggregation method which is based on the 

proportionality between two levels of flows. Throughout the chapters, annual and 
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monthly streamflows data sets at several sites in the Colorado River Basin, as well as 

annual and monthly streamflows at the St. Lawrence River will be used to show how 

parameter uncertainty can be brought into a practical simulation study. 
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Chapter II 

UNCERTAINTY ANALYSIS FOR SYNTHETIC 

STREAMFLOW GENERATION 

Abstract: Synthetic streamflow generation has been widely used in hydrology and water 

resources for a number of practical problems such as determining the capacity of a 

reservoir and assessing the long-term behavior of an existing reservoir. Synthetic 

streamflows can be obtained using parametric and non-parametric approaches. The 

former assumes that a certain mathematical model describes the stochastic behavior of 

the underlying process, e.g. streamflow. The mathematical model hinges on a number 

of parameters that must be estimated from historical data. However, the usual lengths of 

historical streamflow records are short, which means that the model parameters are 

uncertain and consequently, the variability of the design variables may be uncertain 

beyond what is expected. A number of approaches have been proposed in literature to 

tackle the problem of parameter uncertainty in simple stochastic models. In the paper 

described herein, we take two different approaches based on the asymptotic theory and 

Bayesian framework for an AR(1) model and investigate in some detail the effect of the 

uncertainty in one or more parameters on the design variables such as the reservoir size 

and reliability. A non-parametric approach based on bootstrap has been also 
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implemented for the purpose of the performance comparison. Our analysis has been 

conducted based on simulation studies. In the first, part theoretical behavior of the 

synthetic design variable has been illustrated for a wide range of parameters. 

Furthermore, this paper also has included examples to illustrate the applicability of the 

concepts obtained in the study. As a result, parameter uncertainty shows considerable 

effects on the variability of generated design variables even if the sample size is equal to 

100. Bayesian analysis provides more variability of generated design variables than 

asymptotic analysis for smaller sample size, and it also concludes that less variability and 

quantiles of design variables would be expected when using a nonparametric approach 

rather than a parametric one. 

2.1 Introduction 

Uncertainties in water resources commonly arise from the random nature of the 

hydrological process and from the limited information (data) that is available regarding 

the true nature of the underlying process. Since the parameters of stochastic models are 

estimated using the limited historical records, these estimates are uncertain quantities. 

These uncertainties in the parameters of stochastic models are translated into the 

uncertainty of decision variables of planning and management of water resources. 

Perhaps the simplest example may be the case of designing a flood related structure for a 

100-yr flood. The flood frequency distribution is an expression of the natural 

uncertainty of the underlying extreme floods, but the magnitude of a specific flood 
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quantile, e.g. the 100-yr flood quantile, is uncertain. It is well known that such 

uncertainty is commonly expressed by determining the confidence limits of the 

population quantile (e.g. Stedinger et al., 1993). 

Likewise, conventional approaches for designing the capacity of a reservoir 

generally consider the effect of the natural uncertainty of streamflows. For example this 

is done by building a stochastic model and simulating synthetic flow records from which 

the frequency distribution of the needed reservoir storage capacity can be obtained. 

However, as is the case for the flood protection design problem illustrated above, the 

stochastic model of streamflows has a parameter set that is uncertain because of the 

limited data available and as a result, the distribution of decision variables related to them, 

e.g. reservoir capacity, is also uncertain. Although this issue has been recognized in the 

past and some procedures have been suggested (e.g. Vicens et al., 1975; Wood, 1978; 

Valdes et al., 1977; McLeod and Hipel, 1978; Salas et al, 1980; Klemes et al., 1981; 

Grygier and Stedinger, 1990), unfortunately the problem remains perhaps because of its 

complexity and the lack of understanding of the many factors involved. 

In this paper we will report results of a systematic study of the effect of parameter 

uncertainty of a lag-1 autoregressive model, which is a commonly used stochastic model 

for generating synthetic streamflow data, on the size of the storage capacity of a reservoir. 

2.2 Stochastic Model and Parameter Uncertainty 

The uncertainties of parameter estimates can be statistically quantified in terms 

of their probability distribution functions. To tackle this problem, two different 

15 



approaches are currently available; asymptotic analysis and Bayesian inference. In the 

asymptotic analysis, the approximate distribution of a parameter estimate is derived based 

upon large sample theory that the estimates will converge into their exact values when the 

sample size is large enough. Box and Jenkins (1970) derived the large sample variance-

covariance matrix of parameter estimators (MLE) for univariate autoregressive moving 

average model by using the information matrix to interpret the uncertainty of parameter 

estimators, which enables one to define an approximate distribution of parameter 

estimates for sufficient large sample size. By introducing the usefulness of a 

contemporaneous autoregressive moving average model (CARMA) as a subset of the 

general multivariate autoregressive moving average model (MARMA) model for the 

generation of the multivariate streamflows, Camacho et al. (1987) examined the large 

sample properties of MLE of the CARMA model and derived asymptotic variances of 

MLE to compare the efficiency of joint estimates with those in the univariate case. 

In the Bayesian framework, posterior distributions of parameter estimates are 

allowed to measure their uncertainties, and by deriving the posterior from the proper prior, 

both the natural and the parameter uncertainties can be evaluated. Using Bayesian 

analysis, Vicens et al. (1975) and Valdes et al. (1977) investigated parameter uncertainty 

effects on univariate and multivariate annual synthetic streamflow generation and showed 

that it could give better reliability under uncertainty conditions. 

McLeod and Hipel (1978) suggested the computer algorithm, which is able to 

incorporate parameter uncertainty into streamflow generation by sampling parameter 

estimates from the asymptotically derived posterior distributions. Based on the lag-1 

autoregressive model, AR(1), the parameter uncertainty impact on the reservoir system 
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was discussed by Stedinger and Taylor (1982), which showed that the uncertainty effects 

might be more significant than model choice to improve the reservoir system reliability. 

In this study, the incorporation of parameter uncertainty into the synthetic streamflow 

generation will be systematically examined based on both asymptotic and Bayesian 

methods, and the performance of the two methods will be compared. Basically, annual 

streamflows in a single site will be generated by using the AR(1) model, and MLE will be 

used for parameter estimation. Sampled parameter estimates from derived distributions, 

based on either the asymptotic distribution or Bayesian posterior distribution, will be 

used as a way of incorporating the parameter uncertainty into the synthetic streamflows, 

which will be able to generate a different synthetic streamflow set in each simulated trace. 

Two different historical streamflow sets, with different serial correlations will be chosen 

for simulative analysis, and basic statistics of simulated streamflows and resultant design 

variables, such as storage and drought related statistics, will be used to investigate the 

parameter uncertainty effect. The effect of each uncertain parameter estimate on 

simulated flows and design variables will be tested throughout the simulation analysis, 

and the most significant factor and its effect will be examined. Moreover, a 

bootstrapping technique will be implemented for comparison with the parametric 

methods. 

2.2.1 Asymptotic analysis 

Assume that the underlying annual streamflows, denoted by Yt, is stationary and 

normally distributed with the mean ju and variance a2, which has an autoregressive 
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autocorrelation with the constant parameter. The first order autoregressive model, 

AR(1) representing the variable Yt=T(Xt) is generally expressed by: 

Yt=M +<fi(Yt_l-M)+el, (2.1) 

where T(-) is a transformation function to obtain normalized flow Yt from the original 

streamflow Xt, <f> is the autoregressive coefficient that satisfies the causal condition in 

the range of - 1 < </> < 1, and st is the time independent innovation term with zero mean 

and variance cr]. The first step in applying the AR(1) model is to estimate the 

parameters from the historical streamflows data. It is well known that MLE of AR(1) 

parameters are given by (Box and Jenkins, 1976): 

£ = - 2 X (2-2) 

# = 7 T . (2-3) 

n-\ 
(2.4) 

n n+x—> 
where Dt = 'YlY'+lY'l+l for Y'=Yt-ju, t = \,2,...n and n represents 

n + 2-i-j tt 

sample size. 

Since Yt is stationary with mean /u and auto-covariance function /(•) , 

1 » ( \k\^ 
E(ju) = /J. and E(/u - ju) = — 2_, 1 

'I h=-n V nJ 
y{k) . If y(ri) -»0 as n —>• co , then 

i ^ f j ^ 

V nJ 
y(K) converges to zero, so that // converges in mean square to ju . 



Also, as «—»co, var(/i) = E(/u- p)2 —>• 0 if y(n)->0 and nE(p- p)2 -^ ^y(k) if 
k=-oo 

^ | H ^ ) | < 0 0 (Brockwell and Davis, 1991). Thus, the asymptotic distribution of the 
£=-CO 

sample mean // for AR(1) model can be given by: 

p~AN\ 
a 

M, 
' \ + p x 

(2.5) 

where a2 is the variance of series Yt, p is the lag-1 correlation coefficient of series 

Yt, and '-AN ' means asymptotically normal distributed. 

i l / 2 

L(</>,ae,iu\y) = (27rcr2r,ll-</>z exp 
2cr2 

(2.6) 

where the sum of squares S(0,p) =YJ[(Yt -ju)-<f> (X,-\ ~M)\ and y = (yi,y2,...,y„)' 

is an observation vector. Then, the log-likelihood function is: 

LL((f>,ae,p\y) = -nlog(crc) + -log(l-<f>z)-2x S(<p,ju) 
2a2 (2.7) 

The asymptotic variance-covariance matrix of MLE can be given by the inverse 

of the information matrix of which element is defined by negative second derivative of 

the log-likelihood function (2.7). Furthermore, if the log-likelihood is approximate 

quadratic and the maximum is not close to a boundary, even in a moderate sample size, 

adequate approximations to the variances and covariances of the estimates can be 

determined by the asymptotic variance-covariance matrix. The second derivatives with 

respect to </> is given by (Box and Jenkins, 1976): 
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82LL 3n D 

df n-2 a 
22_ 
2 ' 

and second derivatives with respect to other parameters are: 

d2LL 1 d2S(<p,/u) n 

dju2 2a2
s dju2 .= ( 1 _ ^ 

(2.8) 

(2.9) 

d2LL _ n 3S(0,ju) 

da2 ~ a2 at ' 
(2.10) 

d2LL 
djudip , 

= £(¥,-ti)-2tf -\)Y(Y,_} - M) , 
r=l 

d2LL 2 ( ^ - l ) ^ r , v . ,(V .i 

(=i 

(2.11) 

(2.12) 

• ^ i f e "AOtf-, - / i ) " ^ - , - ^ ) 2 ] - (2-13) 

From (2.8), the inverse matrix associated with <f> follows (Box and Jenkins, 1976): 

!(</>) = £ 
d2LL 

d<f>2 

(i-r) 
(2.14) 

and the information matrix I(/u) and I(a£) can be simply derived from (2.9) and 

(2.10): 

I(M) = E 
82LL 

3// 

n{\-<t>)2 

(2.15) 

UP.) = E 
d2LL In 

(2.16) 

Using derived asymptotic variances of the MLE of <j>, a], and /} by taking 

inverse of information matrices and then by Taylor's theorem for a], the asymptotic 
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distributions of MLEs are as follows 

(p -AN 

at ~ AN 
2a 4 A 

<rer 

(2.17) 

(2.18) 

£i~AN 
' 1 a2 > 

"(i-^r 
(2.19) 

where ^ , <x̂ , and fx are shown to be asymptotically uncorrelated to one another 

since E 
d2LL 

d/jd(f) 
= 0,E\ 

d2LL 

d<jsdju 
= 0, E\ 

d2LL 

d<7sd(j) 
= 0 by the stationary assumption 

for large sample n . It is simply found that the asymptotic distribution of // in (2.19) 

is equivalent with (2.5) since a2 = (T2(\-02) and (/> = p from the property of AR(l). 

2.2.2 Bayesian analysis 

If the AR(1) model of (2.1) is rewritten using observations y , then: 

y, =a + fiyt_x +st, t = l,2,...,n, (2.20) 

where a = //(l -(/>), (3 = <f> , st ~ N\0, cr]), -°o<«i,/?<oo , 0<ae < co , and ~ N 

denotes normally distributed. Zellner (1971) showed how the Bayesian inference could 

be applied in the analysis of time series data as follows (also see Box and Tiao, 1973; 

Stedinger and Taylor, 1982). Assume that the information about a , /?,and a2 are 

diffused and independent of each other, then it gives the joint prior distribution of the 

parameters by: 
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p{a,fi,ae)cc (2.21) 

with - c o < a < o o , -oo</?<oo, and 0 < a s < <x> . And the likelihood function is 

L(a, p, fft|yj0)«—exp 
2cr,2 ,„ 

(2.22) 

where y0 denotes an assumed initial value of the series. Combining (2.21) and (2.22), 

the joint posterior distribution for the parameters can be derived as 

p(a, p, o-J y, y0) <x - ^ e x p 
2<T: 

-Z(y«-«-^^-i)2 (2.23) 

o c • 
mn+\ expi 2o-

{n-2)al +n(a-af +n{p- pft^yU+^a-aXP- P)Yy, 
t=\ t=\ 

where the mean square error &e is give by: 

a2=- Y\yt-a-py^j 
n-1 , 

Let 6 = («,/?)' and from (2.23) it is seen that the conditional probability density 

function of 9 given ae, p(<9 \y,y0,<Je) is the bivariate normal distribution as (Zellner, 

1971): 

p{0\y,y0,cTe)~N2(e,VeK), (2.24) 

where 9-{d,p)' = 
V v 

Fa 
« IX 

IX IX 
with the T^ extending from t = 1 to z1 = rc. However, since <je is not known, the 

actual posterior distribution of 0 is obtained by integrating (2.17) with respect to ae, 

thus the marginal posterior distribution of 6 is (Zellner, 1971): 
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p{o ly»^o)= \P(0> ffJy.^o )dcre 

cc (n-2)al+n(a-a)2+n(P-P)2fdyl1+2(a-aX0-fi)fdyl_ 
t=\ (=1 

7/2 

,(2.25) 

which is the equivalent to a bivariate Student t distribution with mean 6 = (a,J3)', and 

the covariance matrix of J^ with n - 2 degree of freedom. 

As for the marginal posterior distribution for parameter <j£, it can be obtained 

by integrating (2.23) with respect to 9 as (Zellner, 1971): 

M^Jy.^o)*—^rexP 
a 

(AJ-2)<T 
i 2 A 

2CT 
for 0 < ex < oo . (2.26) 

* y 

which is equivalent with an inverted gamma probability distribution with mean and 

variance as: 

E{cre)=aE 
^n-2^ 

V ^ J 

1/4 
fn-3^ 

\ ^ J 

'n-2^ 

V ^ J 

n-2 „ Var(a£)=
r-^-a2

£-[E(ae)]\ 
n-A 

where the posterior probability distribution function of the ratio of the known residual 

total sum of square (n - 2)a2
s to the unknown residual variance a] is the standard chi-

squared distribution with {n - 2) degree of freedom as (n - 2)a21 a2 ~ xl-i • Then, the 

actual variance of <r2
e could be calculated from a2 =(n-2)a2 /%2_2 (Box and Tiao, 

1973). 

2.2.3 Bootstrap 

Since the bootstrap was introduced by Elfon (1979), this resampling technique 
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has been widely used in streamflow generation as an alternative to the parametric 

approach because of its simplicity and efficiency, which might have the ability to 

reproduce sample statistics without any transformation and selecting of the stochastic 

model. The empirical probability distribution function of any statistic of concern is 

generated by resampling either directly the historical data (Vogel and Shallcross, 1996; 

Lall and Sharma, 1996) or the residuals from a fitted stochastic model (Cover and Unny, 

1986, Pereira et al , 1984; Oliveira et al., 1988; Tasker and Dunne, 1997; Srinivas and 

Srinivasan, 2000, 2005). 

By using the bootstrap technique, parameter uncertainty can be incorporated into 

the synthetic streamflow generation: Cover and Unny (1986) applied the bootstrapping 

technique to the residuals calculated from a fitted ARMA model, in which different 

parameters were estimated from generated streamflows by resampling residuals at 

random with replacement. By minimizing the conditional likelihood function updated 

by resampled residuals in each realization, new parameter sets are recursively obtained. 

This procedure was extended to the multivariate periodic streamflow case by Tasker and 

Dunne (1997). After fitting the model which is assumed appropriate into a standardized 

historical sample, multi-site residuals are extracted with non-overlapping one year (12 

consecutive months) residual blocks, which are contemporaneous across sites. Then, 

new monthly streamflows are generated based on the assumed model by using resampled 

residuals and consequently, different parameter sets are generated. 

In this analysis, a simple resampling technique, as in Takser and Dunne (1997), 

will be used to incorporate the parameter uncertainty effect. From given residuals 

obtained by fitting the AR(1) model into normalized historical streamflow data, a new 
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residual series with the length of larger than historical flows (100+rc will be used in this 

analysis to eliminate the initial value effect) are generated by randomly resampling with 

replacement and then those are plugged into (2.1) to generate a new streamflow series. 

Different parameter sets are then estimated from the new generated streamflows, which 

correspond to uncertainty incorporated parameter estimates. The comparative analysis 

with parametric approaches will be given at the end of this paper. 

2.3 Theoretical Example of Parameter Uncertainty Effect 

To evaluate the effect of parameter uncertainty we examine six cases: (a) no 

uncertainty is considered, i.e. all parameters are assumed as constant values, (called 

natural uncertainty); (b) only uncertainty of ju is considered; (c) only uncertainty of a] 

is considered; (d) the uncertainties of // and tfi are considered; and (e) the 

uncertainties of all parameters /u, <j>, and a] are considered. 

As a preliminary analysis, the effect of uncertainty in terms of the coefficient of 

variation rjx and lag-1 serial correlation (f)x of the original (non-transformed) series is 

theoretically evaluated with different values of rjx and (j)x ; r/x =0.1-2.0 with an 

increment of 0.05 and <j>x = 0-0.9 with an increment of 0.02. Log-transformation 

without a location parameter is used to prevent complex values in the original domain 

caused by simulated negatives in the transformed domain for several rjx and tf>x 's, 

when some transformations are applied; e.g. Box-Cox or power transformation. 

Simulation experiments are conducted assuming jux = 10 and the AR(1) model 
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parameters of normalized series Yt are estimated for the assumed values of rjx and 

</>x . Four sample sizes will be considered: n-25, 50, 75, 100, and uncertainties of the 

parameters fx, <p, and a] will be quantified by sampling from different asymptotic 

distributions in Cases (a)-(e). Based on 10,000 different sets of sampled parameter 

estimates, 10,000 different synthetic streamflow series are obtained. For each set of 

synthetic streamflows, a storage capacity is calculated using the sequent peak algorithm 

as (Loucks et al., 1981): 

5 ( = m a x ( 0 5 5 M + D , - ^ ( ) , t = \,....,Nd, (2.27) 

where Dt = water demand, Xt = reservoir inflow, Nd = planning horizon, and S0 = 0 . 

Then the storage capacity becomes: 

S ^ m a x O V S , , . . . . , ^ ) . (2.28) 

For the purpose of this study we assume that the demand level Dt is constant as mean 

annual flows (MAF). However, we considered two options: (i) the historical sample 

mean, which is assumed to be fixed for all generated samples, this option is labeled FM; 

(ii) the sample means obtained from each generated sample is utilized as the demands, 

labeled SM. 

Figure 2.1 illustrates the expected value of storage capacity obtained over the 

specified ranges of values of r\x and <fix for a sample size of n=\00 and demand 

option SM. For rjx <0.5, similar patterns could be observed for the various cases 

analyzed. Overall, the expected value of storage capacity increases as <fix increases or 

T]x increases; also the effect of rjx on the expected storage capacity is larger than that 

of (j)x . Figure 2.1 (a)-(e) shows that the effect of the uncertainty of a] seems to be 
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less important that the effect of the uncertainty of /u or <f>. Remarkably, the effect of 

the uncertainty of (j) seems very significant. 

Figure 2.1 (d) and (e) illustrate the cases where the effect of <j> is included. The 

figure suggests that the effect of the uncertainty of </> dominates over the effect of the 

other two when high values of TJX (say in the range 77̂  =1.0-2.0) and high values of 

(j)x (say (j>x >0.5) are combined, in which very large values of the storage capacity may 

occur. This could occur for example if <j> is sampled from </> ~ #(0.8, 0.062) when 

(j)x=Q.l, t]x=\.5, w=100. Sampling from this distribution may lead to values of <j)x 

close to 1 (correspondingly </> close to 1), which in turn may produce very large values 

of streamflows, a large value of the sample mean, and consequently a very large value of 

the storage capacity. Note the very large values of the storage capacity obtained for 

Cases (d) and (e). On the other hand, this possibility of very large values of the storage 

capacity are not found for the other cases, i.e. (b) and (c), where the uncertainties of ju 

or cr2
e are considered. The foregoing results correspond to the demand option SM. 

On the other hand, extremely large storage capacities shown in SM are not found for the 

demand option FM (refer Figure 2.A1 in Appendix). However, the storage capacity 

increases with larger variation and larger serial correlation as similar in SM. Except 

extremely large storage capacities in some ranges (high value of rjx s and high value of 

<f>x s), FM produces larger expected values of storage capacities over the whole ranges of 

rjx and (f>x, when compared with SM. As expected, Case (e), which includes the 

effect of the uncertainties in all parameters, gives the largest storage capacities as 

compared with other cases. 
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Similar patterns could be found for the generated standard deviations of storage 

capacities over the different values of r\x and <f>x (see Figures 2.A2-2.A3 in the 

Appendix). However, SM produces larger standard deviations of storage capacities over 

the whole range of J]x and </>x, when compared with FM, except extremely large 

storage capacities in some ranges (high value of r\x s and high value of </>x s). 

2.4 Simulation of Synthetic Streamflows with Parameter Uncertainty 

Two annual streamfiow series, one with the high lag-1 serial correlation and the 

other with the low serial correlation have been chosen to study the effect of parameter 

uncertainty on synthetic streamflows. The annual flow at Lee's Ferry in the Colorado 

River Basin has been analyzed where TJX =0.28, px =0.28, the skewness coefficient of 

0.14, and the kurtosis coefficient of 2.40. Additionally, the annual flow of the St. 

Lawrence River at Cornwall, Ontario near Massena, NY, has been selected. It has the 

following characteristics: 77̂  =0.09, px=0J3, the skewness coefficient of-0.28, and 

the kurtosis coefficient of 2.74. 

For both historical sample sets, normalizations have been applied by using power 

transformations. 10,000 different streamfiow sets with the length of historical sample 

size (98 for Lee's Ferry and 59 for St. Lawrence River) have been generated based on the 

AR(1) model with different sample sizes: n =25, 50, 75, 100. In each generation, it was 

assumed that population parameters are equal to those from historical annual streamfiow 

data. Two different population parameter sets are possible because of different 

estimators in asymptotic and Bayesian analysis. For comparison, approximate MLEs 
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adopted in the asymptotic method are implemented as population parameters in Bayesian 

analysis as well instead of least square estimators. 

2.4.1 Sampling of parameter estimates 

First, the asymptotic distributions of parameter estimates will be given in the 

analysis. A measure of relative efficiency of simulation experiments might be useful, 

which is defined by the ratio of standard error (square root of variance) of generated 

parameter estimates from asymptotic distributions relative to the theoretically defined 

asymptotic standard error of corresponding parameter estimates. Since the large number 

of traces is generated (10,000 traces), the simulated standard error would be expected to 

be closer to the theoretical one. However, the variances of parameter estimates 

calculated from simulations are less than theoretically derived ones for moderate or small 

sample sizes (n =25,50) (see Table 2.A1 in Appendix). This non-consistency could be 

due to restricted ranges of parameters associated with real streamflow generation such 

that (i) 0 < <f> < 1 , (ii) generated original streamfiows X\' = T~l{Yt) > 0 where T'x 

means a back-transformation function and Yt denotes generated streamflow in the 

normal domain. For example, for n = 25 and Case (e), P{(j) < 0) =7.4% for Lee's Ferry 

[0~N (0.277, 0.1922)] and P(<j>>\) =2.3% for the St. Lawrence River [<j>~N (0.720, 

0.1392)]. Probability of having negative streamfiows in back-transformation to the 

original domain is not explicitly given, but it could be numerically counted during 

simulation: e.g. P(X? < 0) = 2.6, 1.3, 1.0, 0.8% with n=25, 50, 75, 100 for Lee's 
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Ferry data. However, simulated standard errors are shown to be not significantly 

affected by the limited parameter space for both cases with relatively large sample sizes 

n>75 and therefore, a theoretical asymptotic distribution might be applicable without 

being affected by the limited parameter space. 

For Bayesian analysis, simulated standard errors of sampled parameter estimates 

using conditional posterior distribution of (2.24) and (2.26) have been compared with 

those from asymptotic distribution by using the ratio of calculated standard deviations of 

parameter, which are illustrated in Table 2.1. Non-informative prior distributions are 

assumed in the derivation of the posterior distributions of parameters, but during the 

simulation parameter estimates generated from their distributions are truncated and 

redistributed when those are not on assumed parameter spaces: <r^>0, /} >0, and 

0<<fi<\. Note that a and ^(= /?) are jointly sampled from the Bayesian posterior 

distribution (bivariate normal). Generated a s are expected to be linearly correlated 

with generated <j> s (say a = k</>) of which the relationship could be explained by the 

off-diagonal element in the variance-covariance matrix of (2.24). Thus, the nonlinear 

relationship of fx and a in // = a /(l - <j> ) = k tf> /(l - <j> ) results in an extremely large 

value of ju when <f) is getting closer to 1: for example, (1) Case (e), ju =1.22x10 

for &) =1.23 xlO17, i =0.9996, a = 4 . 5 5 x l 0 7 (2) Case (d), fi =1.99 xlO10 for 

a£
2=7.17xl016, ^=0.999, a = 1.93 xlO7 [compare /}=2.36xl09 for CT'=7.17X1016, 

^=0.72, « = 0.66xl09 in Case (a)] for the St. Lawrence River with n=25. This 

effect of high <j> will still be effective for relative moderate sample size (ft =50) for the 
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St. Lawrence River since there exist more chances of having <f> close to 1 due to the 

high historical parameter estimates (^ =0.72). But, in practical hydrologic streamflow 

generation this very high <j> seems unrealistic. A choice of the appropriate upper 

bound of <j> to eliminate the unrealistic high ju can enable one to assure the 

applicability in real streamflow generation. Thus, another simulation experiment of 

parameter estimates in a newly defined range of <f>: 0<<p <0.99 (assume that 0=0.99 is 

large enough in the real streamflow generation) is taken into account. For this newly 

defined range of <j), the efficiency of ju is shown to reduce to comparable values when 

n =25 and 50. 

Comparison of asymptotic and Bayesian methods in terms of efficiency shows 

similar variability (within 10% difference) of <p for all sample sizes and a] for n >50 

in both low and high serially correlated streamflows sets. When the Bayesian method is 

used, larger variability of generated ju is notable in Cases (d) and (e), which are shown 

for the range of n < 50 for Lee's Ferry and all applied sample sizes for the St. Lawrence 

River. Note that the similar variability (within 10% difference) of ju between two 

methods is illustrated in Case (b). As discussed before, this might be caused by the 

nonlinear relationship of ju and <j> (especially for high <j>, which is shown in the last 

two columns in Table 2.1). Proper choice of possible range of <j> in the prior 

distribution would reduce the unexpected variability of ju , but in reality it seems hard to 

define the possible range of </> because it is uncertain. Alternatively, employing a 

reliability concept of uncertain parameter estimates might be a useful way to avoid using 
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the unrealistic, extremely high parameter estimates since the more chance of having 

extremely larger <f> would be expected for the large number of simulations (e.g. 10,000 

in this study). Reliability is associated with quantiles of simulated variables calculated 

from a large number of traces. This will be discussed later. 

Moreover, as shown in Table 2.1, the usage of conditional posterior (Normal) and 

more realistic posterior (t) distributions show the similar efficiency for n > 50, while the 

conditional posterior distribution shows the larger variability of ju when n=25. It 

might be probable to use either the conditional posterior distribution or the more realistic 

distribution for n > 50. Without loss of generosity, the t distribution will be used as 

the posterior distribution for further analysis of the parameter uncertainty effect 

examination. 

2.4.2 Parameter uncertainty effects on basic statistics 

Parameter uncertainty effects on the basic statistics of mean, standard deviation, 

skewness coefficient, and lag-1 serial correlation calculated from synthetic streamflows 

of different sample sizes n will be examined based on both asymptotic distribution and 

Bayesian posterior distribution, which are listed in Table 2.2. Increased variabilities of 

distributions of generated means, standard deviations, and lag-1 serial correlations are 

shown for all sample sizes, which is explained by the effect of parameter uncertainty. 

However, this is not the case for generated skewness coefficients. In order to compare 

parameter uncertainty effects for two different historical data, the ratio of increased 

variability by parameter uncertainty in Cases (b)-(e) relative to natural variability of the 
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general simulation procedure might be useful. 

Generated synthetic streamflows with the uncertain ju (Cases (b),(d),(e)) show 

increased variability in the generated mean, but not much in the generated standard 

deviation, skewness, and lag-1 serial correlation. The uncertainty effect of </> (Cases 

(d), (e)) leads to increased variability of the generated lag-1 serial correlation. For the 

calculated variances of generated streamflows, both uncertain a] and <j> make an 

important impact. In particular a] seems more effective in low correlated data, while 

(/> is more significant in high serially correlated data (for more, see Figures 2.A4-2.A7 in 

Appendix). 

As generally expected, the uncertainty effect would be reduced as the sample size 

n increases; for example, for Lee's Ferry and Case (e) when using the asymptotic 

method, 137% increased standard error of the generated mean in n =25 decreases to 44% 

in ft=100 and a 94% increase in the generated lag-1 correlation in n=25 reduces to 

38% in n=100. Practically, n= 100 might be considered as a large sample size in the 

streamflow generation, but the simulated result shows that the parameter uncertainty 

effect is still notable in generated mean, standard deviation, and lag-1 correlation in that 

large sample size. Overall, larger values of ratio can be found for the St. Lawrence 

River compared with the case of Lee's Ferry. When the sample size is relatively larger 

(n >75), little difference of calculated standard deviation of generated mean and standard 

deviation might be expected between Bayesian and asymptotic analyses, while larger 

variability of generated mean is mostly expected by Bayesian analysis for a relatively 

smaller sample size (n < 50). 
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2.5 Parameter Uncertainty Effect on Design Variables 

2.5.1 Uncertainty effect on storage capacity with different sample sizes in two 

demand level options 

Based on two different categories of demand levels, FM and SM, parameter 

uncertainty effects incorporated by asymptotic and Bayesian methods on the simulated 

storage capacities S*c are shown in Figure 2.2 and 2.3, where S*c are calculated from 

synthetic streamflows with the planning horizon Nd assumed as the historical sample 

size (98 for Lee's Ferry, 59 for St. Lawrence River, respectively) with different sample 

size n . When FM is used, the effect of uncertain ju. on S*c is shown quite 

significant in all sample sizes. Mean parameter uncertainty expands the interdectile 

range between 25% and 75% quantiles. It also results in very high 90 and 99% 

quantiles of generated storage capacities, which is still notable even in a relatively large 

sample size n=\00. The magnitude of the storage capacity is generally based on the 

deficit of generated streamflows from the specified demand level. Thus, if new 

generated streamflows are distributed with an averaged value less than the historical 

mean, a larger amount of the storage capacity would be expected than the historical one. 

Therefore, incorporation of the uncertain Ju into the simulation results in the upward 

shift of the distribution, which is caused by the large number of generated high storage 

capacities. On the other hand, uncertain <f> affects the increased variability of S*c 
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significantly in option SM. Overall, the increased magnitude of S*c by parameter 

uncertainty is not very notable in option SMthan in FM. 

As in generated basic statistics, Bayesian analysis shows similar variability of S*c 

as asymptotic analysis when n > 75 for Lee's Ferry data. The calculated upper 

quantiles of S*c (especially 90% or higher quantiles) from Bayesian analysis are larger 

than ones from the asymptotic method in small sample size (n <50). The difference 

between asymptotic and Bayesian methods is notable in Cases (d) and (e) with option FM, 

which again results from the different variability of ju for a small sample size. 

A comparison by using relative bias (RBIAS) and relative root mean square error 

(RRMSE) of generated storage capacities Cv(S*c) based on two methods is given in 

Table 2.3. RRMSE is defined as the square root of mean square error (MSE) relative to 

the certain quantity of concern (historical storage capacity S" herein). MSE is defined 

as MSE (S*c) = Var(S*c) + (E(S*C)-S")2 , where E(S'C)-S" is the bias of S*c . 

RBIAS and RRMSE are defined as RBIAS= (E(S*C ) - S" )/S" and RRMSE = jMSE/s" . 

For Lee's Ferry with option FM, both asymptotic and Bayesian methods give almost 

similar RRMSE for all sample sizes in Case (b), while the Bayesian method shows larger 

RRMSE in Cases (d) and (e) for n <50. The Bayesian method shows larger RRMSE 

(greater than 10% difference between two methods) even if n=15 for the St. Lawrence 

River data, which results from the effect of uncertain <j> and fx on the generated mean 

which is still considerable for larger n as discussed before. However, when «=100, 

the difference is getting into the range less than 10%. For option SM, the two methods 
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show little difference in variation of S*c. Additionally, note that at least 35% more 

increased RRMSE still exists in Case (e) even when n=\00 for both low and high 

serially correlated data regardless of asymptotic and Bayesian analyses. 

2.5.2 Uncertainty effect on storage capacity for different demand level 

The behavior of a water supply system can be classified by using the Hurst's 

standardized net inflow parameter m , defined by (Hurst, 1951): 

m = —-, (2.29) 

*lx 

where a is the annual demand given by the ratio of demand to mean annual flows 

(MAF) and rjx is the coefficient of variation of annual streamflows. This index gives 

a measure of the degree to which the designed storage capacity depends on monthly or 

annual storage requirements (Vogel et al., 1999). Literature suggested that as long as 

0<m< 1, the system will be behave like an over-year system, while the system is 

dominated by within-year behavior if m >1 (Vogel and Stedinger, 1987). Based on this, 

«>0.71 or a>0.91 will be respectively required to ensure the over-year regulation of 

the assumed reservoir for two different historical annual streamflows of Lee's Ferry in the 

Colorado River Basin (?7X=0.29) and the St. Lawrence River (7^=0.09). For small a 

(e.g. a =0.5), the generation of Sc would be allowed in the monthly scale instead of 

the annual, thus a= 1, 0.9, 0.8, 0.7 at the Lee's Ferry station and a= 1, 0.975, 0.95, 

0.925 at the St. Lawrence River are assumed as fractions of MAF in demand levels. 

Generally, the distribution of S*c shows the upward shift from the historical Sc for a 
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given a, but in some cases of a «1 in low correlated streamflows, S*c can give the 

positive bias for both options of FM and SM (refer to Figure 2.A8 in Appendix). 

Comparison between FM and SM will be given by using RBIAS and RRMSE. 

Compared with SM, FM gives an upward shift of RBIAS and larger RRMSE over different 

demand levels. Since RRMSE tends to increase as a decreases, much variability of 

storage capacity will be expected when the parameter uncertainty is incorporated into the 

simulation with smaller fraction of MAF as a demand level in the calculation of the 

storage capacity. 

It is generally expected that the variability of S*c decreases as a decreases (see 

Figures 2.A9 and 2.A10 in Appendix). Table 2.4 illustrates that the uncertain jx and 

<f> are more significant on the variability of Sc than &e regardless of different 

demand levels. However, taking a by a smaller value makes the mean uncertainty 

effect become less significant. The effect of uncertain <f> gets more significant as a 

decreases, which could be judged by RBIAS and RRMSE in Table 2.4. To be notable, 

the difference in the variability of S*c between asymptotic and Bayesian analyses 

becomes more with smaller a in option FM. 

2.5.3 Uncertainty effect on storage capacity with reliability 

When the generated 5',.. is used to determine the size of the reservoir of concern, 

it is required to assure the failure-free operation over Nd design period with the 

probability p. Steady state reliability q of selected storage capacity Sc can be 
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defined as the probability q = 1 - p with which the reservoir is able to carry the yield 

for next year without failure. Empirical distributions of S*c in Cases (a)-(e) are plotted, 

which are obtained from the 10,000 synthetic flow traces with 100 years of design period 

for different sample sizes, two demand options FM and SM, and a =1 based on both the 

Colorado River and the St. Lawrence River (Figures 2.4-2.5, 2.A11-2.A12). 

For a given reliability expressed by a quantile of S*c, parameter uncertainty 

incorporation increases the magnitude of S*c , and in option FM, this effect is still visible 

even in a relatively large sample size, say ft =100. For smaller n, the uncertainty 

effect is remarkably found even in relatively small reliability; for example, consider the 

quantiles of S*c for a reliability 90% ( q =0.9) based on Lee's Ferry data with n =50 and 

FM. Increased magnitude of S*c by uncertain parameters is given by 9.8MAF for the 

asymptotic method (Case (e)), which is a 44% increment compared with the case of 

natural uncertainty (Case (a), 6.8MAF). That is, in order to yield the fail-free operation 

in the next 10 years of the design period, storage capacities might be required more than 

at least 3MAF as a result of parameter uncertainty (for more, see Tables 2.5 and 2.A2). 

When Bayesian analysis is used, additional increase of S*c compared with asymptotic 

analysis can be expected for small sample size in option FM, which is caused by the 

effect of uncertain fx combining with uncertain (/> . This difference between 

asymptotic and Bayesian methods is much distinguishable at a greater degree for smaller 

reliability for smaller n and for the low serial correlated sample. In high correlated 

data, the Bayesian method still shows the large increment of S'c by uncertain (/> when 

n =100 even for a small reliability (e.g. #«0.9). As previously discussed, SM shows 
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only the effect of uncertain (j) on S*c , and for high correlated data this effect still seems 

significant for larger reliability (q > 0.99) even if n becomes larger. 

Uncertainty effect associated with quantiles is additionally examined with the 

different demand levels (Figures 2.A13-2.A15 in Appendix). For FM, significant 

parameter uncertainty effects can be shown in lower reliability when the demand level is 

closer to the historical mean, but those become visible in higher reliabilities as the 

demand level decreases. On the other hand, a consistent pattern of distributions of Sc 

over different demand levels is shown for SM. 

2.5A Drought related Statistics 

As another tool for evaluating parameter uncertainty effect, drought related 

statistics will be utilized. For a given demand level (assumed as MAF), the deficit 

occurs when annual streamflows Yt <MAF during one or more years until Yl >MAF 

again, which can be defined by its magnitude, by its duration, and by its intensity 

(magnitude divided by corresponding duration). Among the number of deficits in a 

given streamflows, the maximum deficit magnitude, length and intensity in a given 

sample are referred to the critical drought length cdl, critical maximum magnitude cdm , 

and critical drought intensity cdi (Salas et al., 1980). 

For two different annual streamfiow data, 10,000 different traces of synthetic 

streamflows with the length of the historical flows of each station have been generated by 

incorporating parameter uncertainties based on different sample sizes similar in the case 

of storage capacity. After this, critical drought statistics are calculated and compared 
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between two demand options {FM, SM) and between asymptotic and Bayesian method in 

Figures 2.6-2.7 and 2.A17-2.A20. 

It can be shown that parameter uncertainty effects on simulated cdm and cdl 

seem very similar, as in the case of storage capacity. When FM is used, uncertain ft 

makes an important impact on upper quantiles of cdm* and cdl* , while the 

uncertainty of ^ significantly affects on them for the case of SM. This effect seems 

notable in small n for Lee's Ferry but still visible even in n =100 for the St. Lawrence 

River. Also, the Bayesian method shows the higher upper quantiles of cdm* and 

cdl * by uncertain <j) for moderate or smaller n (say n < 50 ) for both Lee's Ferry and 

St. Lawrence River. However, uncertain parameter estimates which are significant on 

cdi* seem to be dependent with the sample characteristics: e.g. a] for Lee's Ferry and 

</> for the St. Lawrence River. For Lee's Ferry, the effect of aE is observable in small 

n but the increased cdi * is not quite significant compared with cdm * and cdl * for 

the whole. 

2.5.5 Brief summary of parameter uncertainty effect on design variables 

Table 2.6 illustrates the brief summary of the parameter uncertainty effect on 

synthetic storage capacity and critical drought magnitude obtained from generated annual 

streamflows at Lee's Ferry and at the St. Lawrence River for option FM. For simplicity, 

Case (a) (no parameter uncertainty, NU) and Case (e) (all parameter uncertainty PU) are 

numerically compared. For example, compared with NU, PU shows increased expected 
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value of the storage capacity with a range of from about 17% up to 72% depending on 

different demand levels and sample serial correlations. The parameter uncertainty effect 

is more visible for standard deviation and higher quantiles of storage capacity; e.g. about 

a 280% increase of the 99% quantile of the storage capacity for the case of the St. 

Lawrence River when using 90% MAF demand level. Overall, less increase by the 

parameter uncertainty effect is illustrated in the generated critical drought magnitude 

compared with the generated storage capacity, except that a similar pattern of increased 

statistics and quantiles by parameter uncertainty over different demand levels and sample 

serial correlations could be found for both design variables. 

2.6 Comparative Analysis with Nonparametric Technique 

For two different sets with different sample sizes (n=50, 98 for Lee's Ferry and 

n =30,59 for St. Lawrence River), synthetic streamflows with the length of historical 

sample have been generated with the parameter uncertainty incorporated based on natural 

uncertainty (NU), asymptotic (AS), Bayesian (BA), and bootstrapping (BS). The BS 

does not enable one to incorporate the uncertainty of each parameter estimates separately 

because of its structure. For this reason, the uncertainty of all parameter estimates are 

taken into account (Case (e)) in the generation based on asymptotic and Bayesian 

methods. Some distortions of generated parameter estimates are found in BS compared 

with AS and BA since estimated <j> in BS is based not on the statistical structure but 

only on resampled residuals of the historical sample (see Figure 2.A21 in the Appendix). 

Less variability of generated basic statistics (mean and standard deviation of synthetic 
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streamflows) in method BS is notable for both Lee's Ferry and the St. Lawrence River, 

especially in the case of simulating the larger design period than given sample sizes as 

shown in Figure 2.8. By plotting generated design variables of the storage capacity, 

critical drought magnitude, length, and intensity with different reliabilities (see Figure 

2.9) the difference among AS, BY, BS has been investigated. BS shows similar 

performance as in the case of natural uncertainty, and it is shown to be incapable of 

demonstrating the parameter uncertainty effect on generated design variables. 

2.7 Concluding Remarks 

Overall, the uncertainty effect of mean parameter ju and AR(1) parameter <f> 

make a significant impact on the generated streamflow statistics and related design 

variables. An uncertain ju shows significant effect on the generated mean and does an 

uncertain (j) on the generated serial correlation. Storage and drought related design 

variables have been employed as design variables on which the sample mean uncertainty 

causes enlargement of the variability, particularly increasing the upper quantiles when the 

historical mean is used as a demand level. When using the simulated mean as an 

alternative of a demand level, increased variability of the design variable is affected by 

the uncertain AR(1) parameter ij> . Distinguishable effect on design variables by 

uncertain parameters is still visible even if the sample size is 100 in option FM. The 

parameter uncertainty effect is related with the different fraction of demand levels: the 

mean uncertainty effect becomes less significant, while uncertainty of (j) becomes more 
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significant for smaller demand levels. 

Asymptotic and Bayesian show similar variability when incorporating the 

uncertain ju only. The Bayesian method causes the increased variability of the design 

variable when combining uncertain ju with uncertain ^ , as in Cases (d) and (e). This 

difference is notable for the relatively small sample size for Lee's Ferry, but for all 

sample sizes for the St. Lawrence River, which might resulted from the different 

historical sample serial correlations. Since ju is actually correlated with <j> , the 

Bayesian method seems more applicable in reality, but unrealistic ju might be 

occasionally expected when <j> close to 1 is generated in the Bayesian method. In 

calculation of storage and drought related statistics, this high value of ju might not be 

significant when using the historical sample as a demand since the deficit of synthetic 

streamflows is mostly of concern in the calculation of those variables. However, the 

appropriate choice of the parameter space of <j> can give a better performance in 

simulation. Asymptotic analysis for n > 100 is recommended for incorporating 

parameter uncertainty into the generation of streamflows. Using a bootstrap as an 

alternative for incorporating the parameter uncertainty shows similar variability as natural 

uncertainty and the notable parameter uncertainty effect on design variables would be 

less expected by the bootstrap technique compared with a parametric approach. 
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case (a), E(S ) =426 v ' ' y ' max case (b), E(S) =428 v ' v ' max 

case (c), E(S) TOx =424 case(d), E(S) =432 v ' ' v ' max 

case (e), E(S) rax =432 

Figure 2.1: Expected values of generated storage capacities calculated from 10,000 
different traces simulated from theoretically assumed streamflows with different 
coefficient of variation 77̂  (0.1-2) and lag-1 serial correlation ^x (0-0.9). Historical 
mean (FM) is used as a demand level in the calculation of storage capacity by using SPA 
with demand level a =\00%FM. Calculated maximum expected values are (a) 426, (b) 
428, (c) 424, (d) 432, and (e) 432. 
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Table 2.1: Efficiency Eff(-) = BSTD(-)/ASTD(-): ratio of simulated standard errors of 
sampled parameter estimates using Bayesian distribution, BSTD(-) relative to ones using 
asymptotic distribution, ASTD{-) calculated from normalized annual streamflows of 
Lee's Ferry and St. Lawrence River. 

Case 

n 

25 

50 

75 

100 

n 

25 

50 

75 

100 

n 

25 

50 

75 

100 

n 

25 

50 

75 

100 

n 

25 

50 

75 

100 

n 

25 

50 

75 

100 

Eff(<£) 

(d) (e) 

Eff(<x£
2) 

(c) (e) 

Eff(/i) 

(b) (d) (e) 

maximum 

(d) 

Lee's Ferry in the Colorado River Basin, Conditional posterior distribution (0< ^< 

1.01 1.01 

1.02 1.01 

1.00 1.00 

0.99 0.99 

1.11 1.06 

1.06 1.05 

1.03 1.04 

1.02 1.03 

0.99 1.36 1.22 

1.00 1.07 1.09 

0.98 1.03 1.05 

1.00 1.04 1.03 

0.99999 

0.78 

0.67 

0.69 

Lee's Ferry in the Colorado River Basin, Conditional posterior distribution (0< < ̂  

1.01 1.01 

1.02 1.01 

1.00 1.00 

0.99 0.99 

1.11 1.06 

1.06 1.05 

1.03 1.04 

1.02 1.03 

0.99 1.36 1.22 

1.00 1.07 1.09 

0.98 1.03 1.05 

1.00 1.04 1.03 

0.98 

0.78 

0.67 

0.69 

Lee's Ferry in the Colorado River Basin, Actual posterior distribution (0< <f> <0.99) 

1.02 1.03 

1.03 1.02 

1.00 1.00 

1.00 0.99 

1.10 1.11 

1.07 1.06 

1.04 1.04 

1.03 1.01 

1.01 1.41 1.54 

1.02 1.12 1.08 

1.01 1.04 1.04 

1.00 1.04 1.03 

0.97 

0.81 

0.72 

0.69 

St. Lawrence River, Conditional posterior distribution (0<^<1) 

0.93 0.92 

0.97 0.98 

0.98 0.99 

1.15 1.12 

1.06 1.07 

1.04 1.05 

0.98 0.99 1.03 1.02 

0.99 23.98 63.41 

1.00 1.55 7.02 

1.02 1.24 1.21 

1.00 1.12 1.13 

0.999 

0.997 

0.99 

0.97 

St. Lawrence River, Conditionalposterior distribution (0<^<0.99) 

0.91 0.93 

0.96 0.98 

0.98 0.99 

0.98 1.00 

1.13 1.11 

1.06 1.05 

1.06 1.04 

1.03 1.02 

1.00 1.84 1.78 

1.00 1.48 1.48 

1.00 1.20 1.22 

1.00 1.15 1.14 

0.99 

0.99 

0.98 

0.98 

St. Lawrence River, Actual posterior distribution (0< ^ < 0.99) 

0.95 0.93 1.15 1.12 

0.98 0.98 1.06 1.04 

0.99 0.99 1.05 1.04 

1.00 0.99 1.02 1.03 

1.00 2.22 1.94 

1.03 1.48 1.47 

1.03 1.23 1.23 

1.00 1.16 1.14 

0.99 

0.99 

0.99 

0.98 

4> 
(e) 

1) 

0.91 

0.88 

0.77 

0.63 

< 0.99) 

0.91 

0.88 

0.77 

0.63 

0.98 

0.83 

0.71 

0.62 

0.9999 

0.999 

0.97 

0.95 

0.99 

0.99 

0.98 

0.97 

0.99 

0.99 

0.99 

0.96 

Note: (£=0.277, &] =122,768, /} =549,101 for Lee's Ferry, ^=0.720, o] =267,848,289, ju =2,324,977,641 

for St. Lawrence River 
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Table 2.2: Ratio of standard deviation of generated basic statistics in cases with parameter 
uncertainty incorporated relative to natural uncertainty case. 

Asymptotic 
(b) (c) (d) (e) 

Bayesian 
(b) (c) (d) (e) 

Lee's Ferry in the Colorado River Basin 

St. Lawrence River 

mean 

Std 

skew 

Lag-1 

corr. 

25 

50 

75 

100 

25 

50 

75 

100 

25 

50 

75 

100 

25 

50 

75 

100 

2.26 

1.74 

1.54 

1.42 

1.02 

1.03 

1.02 

0.99 

1.01 

1.00 

0.99 

1.00 

0.99 

1.02 

1.00 

1.01 

1.01 

1.01 

1.00 

0.99 

2.05 

1.65 

1.48 

1.33 

1.00 

1.00 

0.98 

0.99 

0.99 

1.01 

0.99 

1.00 

2.36 

1.79 

1.57 

1.43 

1.52 

1.23 

1.15 

1.09 

1.03 

1.00 

1.01 

1.00 

1.93 

1.66 

1.47 

1.37 

2.37 

1.77 

1.59 

1.44 

2.39 

1.76 

1.57 

1.41 

1.03 

1.02 

1.00 

1.00 

1.94 

1.62 

1.47 

1.38 

2.32 

1.74 

1.55 

1.42 

1.02 

1.01 

1.01 

1.01 

1.00 

1.02 

0.99 

1.00 

1.01 

1.01 

0.99 

1.00 

1.06 

1.03 

1.01 

0.99 

2.25 

1.70 

1.49 

1.37 

1.00 

1.02 

0.99 

1.01 

1.00 

1.00 

1.00 

0.99 

3.29 

1.93 

1.60 

1.47 

1.82 

1.23 

1.12 

1.09 

1.02 

1.03 

1.00 

1.02 

1.94 

1.66 

1.48 

1.38 

3.74 

1.85 

1.60 

1.46 

2.78 

1.84 

1.59 

1.43 

1.05 

1.04 

1.00 

1.02 

1.96 

1.65 

1.48 

1.35 

mean 

Std 

skew 

Lag-1 

corr. 

25 

50 

75 

100 

25 

50 

75 

100 

25 

50 

75 

100 

25 

50 

75 

100 

2.21 

1.77 

1.55 

1.42 

1.06 

1.05 

1.02 

1.02 

1.00 

1.01 

0.99 

0.99 

1.01 

1.00 

1.01 

0.98 

0.99 

1.02 

1.00 

1.01 

1.52 

1.31 

1.18 

1.14 

1.01 

1.00 

0.99 

1.03 

1.00 

1.01 

0.99 

0.98 

2.64 

2.00 

1.68 

1.51 

2.47 

1.95 

1.59 

1.41 

1.05 

1.03 

1.00 

1.02 

1.90 

1.58 

1.39 

1.29 

2.73 

2.01 

1.78 

1.53 

2.77 

2.07 

1.78 

1.54 

1.04 

1.05 

1.01 

1.01 

1.91 

1.60 

1.39 

1.31 

2.33 

1.77 

1.54 

1.43 

1.05 

1.04 

1.03 

1.04 

1.02 

1.00 

1.03 

1.00 

0.99 

1.02 

0.99 

1.00 

1.07 

1.03 

1.01 

1.01 

1.63 

1.36 

1.23 

1.18 

1.03 

1.00 

1.01 

1.01 

0.98 

1.01 

1.00 

1.00 

3.96 

2.35 

1.87 

1.66 

2.24 

1.86 

1.63 

1.48 

1.05 

1.03 

1.04 

1.01 

1.91 

1.58 

1.40 

1.32 

3.84 

2.38 

1.87 

1.62 

2.65 

2.07 

1.79 

1.59 

1.07 

1.05 

1.03 

1.02 

1.89 

1.57 

1.41 

1.33 
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Figure 2.2: Distribution of generated storage capacities Sc* scaled by mean annual 
flows (MAF) for different sample sizes, at Lee's Ferry in the Colorado River Basin, 
where FM: fixed mean, SM: simulated mean, AS: asymptotic analysis, BA: Bayesian 
analysis, n denotes sample size, and (a)-(e) in each subplot represent different 
parameter uncertainties considerations (design period Nd =98). In box plots, the upper, 

middle and lower line in the box represent 75, 50, 25% quantiles and from the box the 
whiskers extend to 90,99 and 10,1% quantiles in the upper and lower sides. Two dots 
outside box represent the maximum and minimum values, 'O' represents the averaged 
value, and 'X' represents historical storage capacity. The maximum value which is 
larger than the vertical axis limit is expressed by the number. 
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Figure 2.3: Distribution of generated storage capacities Sc* scaled by mean annual 
flows (MAF) for different sample sizes, at St. Lawrence River (design period Nd =59). 
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Table 2.3: Relative BIAS and relative RMSE of generated storage capacities for different 
sample sizes (demand level a =100%). 

RBIAS (%) 

(a) (b) (c) (d) (e) 

RRMSE (%) 

(a) (b) (c) (d) (e) 

Lee's Ferry in 

AS, FM 

BA,FM 

AS, SM 

BA.SM 

25 

50 

75 

100 

25 

50 

75 

100 

25 

50 

75 

100 

25 

50 

75 

100 

the Colore 

-15 

-15 

-15 

-14 

-15 

-15 

-15 

-14 

-24 

-23 

-23 

-23 

-24 

-24 

-24 

-23 

do River 

9 

-2 

-5 

-7 

11 

-2 

-7 

-8 

-24 

-24 

-23 

-23 

-24 

-23 

-23 

-24 

Basin 

-15 

-15 

-15 

-15 

-14 

-14 

-15 

-15 

-24 

-24 

-23 

-23 

-21 

-22 

-23 

-23 

Nd=98) 

14 

1 

-5 

-6 

19 

4 

-4 

-7 

-17 

-21 

-22 

-22 

-16 

-20 

-22 

-22 

15 

1 

-4 

-6 

16 

2 

-4 

-7 

-17 

-21 

-22 

-22 

-14 

-20 

-21 

-22 

42 

42 

43 

43 

43 

43 

43 

42 

32 

32 

32 

32 

32 

32 

32 

32 

89 

68 

60 

56 

92 

69 

60 

56 

32 

32 

32 

32 

32 

32 

32 

32 

44 

44 

43 

43 

44 

43 

43 

43 

34 

33 

32 

32 

33 

32 

32 

32 

94 

71 

60 

57 

105 

77 

63 

58 

37 

34 

33 

33 

40 

34 

33 

33 

94 

70 

62 

58 

104 

74 

63 

58 

38 

34 

34 

33 

43 

34 

33 

33 

St. Lawrence 

AS, FM 

BA,FM 

AS.SM 

BA,SM 

25 

50 

75 

100 

25 

50 

75 

100 

25 

50 

75 

100 

25 

50 

75 

100 

River (Nd = 

-12 

-14 

-13 

-13 

-12 

-12 

-14 

-13 

-25 

-25 

-25 

-25 

-25 

-24 

-25 

-25 

59) 

11 

0 

-5 

-6 

12 

0 

-5 

-7 

-25 

-25 

-25 

-25 

-25 

-25 

-25 

-25 

-13 

-13 

-12 

-13 

-8 

-11 

-12 

-12 

-25 

-25 

-25 

-24 

-22 

-24 

-24 

-24 

23 

9 

3 

-3 

22 

8 

4 

-1 

-17 

-19 

-21 

-22 

-19 

-20 

-21 

-22 

24 

8 

1 

-2 

29 

9 

4 

-1 

-16 

-19 

-22 

-23 

-16 

-19 

-20 

-22 

58 

57 

57 

57 

57 

57 

58 

57 

37 

37 

36 

37 

36 

36 

36 

36 

106 

84 

74 

69 

108 

84 

75 

70 

37 

36 

37 

37 

37 

37 

36 

37 

60 

59 

58 

58 

61 

60 

58 

57 

38 

38 

37 

37 

37 

37 

37 

37 

135 

104 

88 

79 

153 

112 

97 

86 

51 

45 

41 

40 

48 

44 

41 

40 

133 

101 

88 

79 

160 

115 

97 

85 

53 

45 

42 

40 

51 

44 

42 

40 



Table 2.4: Relative BIAS and relative RMSE of generated storage capacities for different 
demand levels (n =50). 
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Figure 2.4: Quantile plots of simulated storage capacities Sc * for different sample sizes 
where reliability denotes nonexceedance probability associated with the corresponding 
quantile (Lee's Ferry in the Colorado River Basin, asymptotic analysis, Nd =100). 
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Figure 2.5: Quantile plots of simulated storage capacities Sc * for different sample sizes 
where reliability denotes nonexceedance probability associated with the corresponding 
quantile (Lee's Ferry in the Colorado River Basin, Bayesian analysis, Nd =100). 
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Figure 2.6: Distribution of generated critical drought magnitude cdm* for different 
sample sizes, at Lee's Ferry in the Colorado River Basin (Nd =98). 
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Figure 2.7: Distribution of generated critical drought length cdl* for different sample 
sizes, at St. Lawrence River (Nd =59). 

55 



(1) LF, n=50,Nd=98 

1 

o 0.5 
o 

jo u 
1 
• 

* » 

^ i i 
1..&.J |...<5?s-i r^n T ¥ I 

« • 

NU AS BA BS 

(2)LF, n=98,Nd=98 

NU AS BA BS NU AS BA BS NU AS BA BS 

in 

NU AS BA BS 

(3)SL, n=30,Nd=59 

NU AS BA BS 

* 
9 

• 

* 
» 

# 

^ 

* 

T 

NU AS BA BS NU AS BA BS 

2 

. 1-5 
c 
to 
CD 

E 1 

0.5 NU AS BA BS 

(4)SL, n=59,Nd=59 

NU AS BA BS NU AS BA BS NU AS BA BS 

^ ri ri, 
rtp tw] LSXd 

NU AS BA BS NU AS BA BS NU AS BA BS NU AS BA BS 

Figure 2.8: Distributions of mean, standard deviation (SD), skewness, and lag-1 serial 
correlation coefficients based on 10,000 synthetic annual streamflows where NU, AS, BA, 
BS represents natural uncertainty, asymptotic, Bayesian, and bootstrap, respectively and 
LF, SL represents Lee's Ferry in the Colorado River Basin and St. Lawrence River, 
respectively. In AS and BA, uncertainties of all parameters are incorporated into 
simulation. 
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Table 2.6: Example of generated storage capacity and critical drought magnitude (scaled 
by MAF) (n =50, Nd =100, Bayesian analysis, FM) 

Demand level 

NU/PU 

Storage capacity 

mean 

SD 

#0.9 

#0.95 

#0.99 

Critical drought magr 

mean 

SD 

#0.9 

#0.95 

#0.99 

Lee's Ferry in the Col 

MAF 

NU 

4.08 

1.93 

6.78 

7.73 

9.93 

litude 

2.10 

0.74 

3.06 

3.51 

4.39 

PU 

4.89 

19.8% 

3.53 

82.4% 

9.82 

44.9% 

11.95 

54.6% 

16.99 

71.1% 

2.30 

9.4% 

1.21 

63.4% 

3.75 

22.2% 

4.54 

29.3% 

6.66 

51.6% 

orado River Basin 

0.8MAF 

NU 

0.93 

0.39 

1.43 

1.67 

2.17 

0.84 

0.33 

1.27 

1.46 

1.91 

PU 

1.09 

17.1% 

0.80 

104.3% 

1.93 

34.8% 

2.44 

46.1% 

3.98 

83.8% 

0.94 

12.0% 

0.56 

69.9% 

1.61 

26.5% 

1.97 

35.3% 

2.96 

55.3% 

St. Lawrence River 

MAF 

NU 

1.36 

0.86 

2.54 

3.03 

4.04 

0.97 

0.60 

1.77 

2.15 

3.01 

PU 

1.69 

24.6% 

1.77 

106.7% 

3.69 

45.6% 

5.00 

64.7% 

8.59 

112.6% 

1.21 

23.8% 

1.42 

135.9% 

2.45 

38.2% 

3.54 

64.7% 

7.39 

145.2% 

0.9MAF 

NU 

0.23 

0.23 

0.52 

0.69 

1.05 

0.21 

0.21 

0.47 

0.63 

0.99 

PU 

0.39 

71.7% 

0.82 

259.3% 

0.86 

65.7% 

1.48 

115.2% 

3.97 

278.5% 

0.34 

61.6% 

0.68 

227.6% 

0.75 

58.4% 

1.23 

96.3% 

3.15 

219.0% 

Note NU: no parameter uncertainty considered (natural uncertainty), PU: uncertainty of all 
parameters incorporated case, SD: standard deviation, q09, qQ95, qog9 mean 90%, 95%, and 

99% quantile, respectively. Value (%) in the column of PU represents the ratio of increased 
storage capacity(or critical drought magnitude) in PU with respect to NU. (parameter uncertainty 
effect) 
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Figure 2.9: Empirical distribution of generated storage capacities Sc *, critical drought 
magnitude cdm * , critical drought length cdl *, critical drought intensity cdi * for 
different sample sizes in option FM. In AS and BA, uncertainties of all parameters are 
incorporated into simulation. 
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Appendix 2.A: Additional Figures and Tables 

case(a), E ( S ) T O X = 3 1 8 case (b), E(S) _ =420 v ' v ' max 
400 

case (0)^(5)^=319 case(d), E(S) r a x =3.43*107 

400 

300 

200 

100 

case(e), E(S)m3x=1.85*10a 

0 0.2 0.4 0.6 0.8 

Figure 2.A1: Expected values of generated storage capacities calculated from 10,000 
different traces simulated from theoretically assumed streamfiows with different 
coefficient of variation r]x (0.1-2) and lag-1 serial correlation </>x (0-0.9). 100% 
generated mean (averaged over each generated flow set, SM) is used as a demand level in 
the calculation of storage capacity based on SPA. Calculated maximum expected values 
are (a) 318, (b) 420, (c) 319, (d) 3.43xl07, and (e) 1.85xl09. 
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case (a), 80(8)^=214 

400 

300 

1 200 

100 

case(c), SD(S) =212 v ' v max case (d), SD(S) ̂  =283 

400 

300 1.5 

200 Tlx 1 

100 0.5 

case (e), SD(S) TOX =281 

I 

i400 

300 

200 

100 

Figure 2.A2: Standard deviations of generated storage capacities calculated from 10,000 
different traces simulated from theoretically assumed streamflows with different 
coefficient of variation 77̂  (0.1-2) and lag-1 serial correlation ^.(0-0.9). 100% 
Historical mean (FM) is used as a demand level in the calculation of storage capacity 
based on SPA. Calculated maximum expected values are (a) 214, (b) 268, (c) 212, (d) 
283, and (e) 281. 
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case (a), 50(5)^=411 case (b), 50(5)^=912 

400 2 

|300 1.5 

200 1 

100 0.5 

case (c), SD(S) mgx =406 case (d), SD(S) =3.43*10a 
x " v ' max 400 2 

300 1.5 

200 A 1 

100 0.5 

n400 

300 

200 

100 

case (e), SD(S) = 1.85*1011 
v ' x ' max 

Figure 2.A3: Standard deivations of generated storage capacities calculated from 10,000 
different traces simulated from theoretically assumed streamflows with different 
coefficient of variation T]x (0.1-2) and lag-1 serial correlation <j>x (0-0.9). 100% 
generated mean (averaged over each generated flow set, SM) is used as a demand level in 
the calculation of storage capacity based on SPA. Calculated maximum expected values 
are (a) 411, (b) 912, (c) 406, (d) 3.43 xlO9, and (e) 1.85 xlO11. 
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Table 2.A1: Efficiency of simulated standard error (ASTD) of parameter estimates 
sampled from the asymptotic distribution relative to theoretical asymptotic standard error 
(TASTD) defined by Eff(-) = ASTD(-) I TASTD(-). 

Lee's Ferry: 0=0.277, 

Asymptotic variance 

n= 25 

50 

75 

100 

Simulated variance 

n= 25 

50 

75 

100 

Efficiency 

n= 25 

50 

75 

100 

St. Lawrence River: 0 

Asymptotic 

n= 25 

50 

75 

100 

variance 

Simulated variance 

n= 25 

50 

75 

100 

Efficiency 

n= 25 

50 

75 

100 

a] =122,768, /} =549,101 

TASTDQi) 

0.192 

0.136 

0.111 

0.096 

^57D(^) 

0.163 

0.126 

0.107 

0.096 

Eff(h 
0.85 

0.93 

0.97 

1.00 

=0.720, 0-2=267,848,289, ff-

TASTD((j>) 

0.139 

0.098 

0.080 

0.069 

ASTD{$) 

0.129 

0.097 

0.080 

0.069 

Effih 
0.93 

0.99 

1.00 

1.00 

TASTD(a]) 

17,362 

12,277 

10,024 

8,681 

ASTD(a]) 

17287 

12236 

9967 

8656 

EfnaD 
1.00 

1.00 

0.99 

1.00 

=2,324,977,641 

TASTD{<J]) 

37,879,468 

26,784,829 

21,869,721 

18,939,734 

ASTD(al) 

37,634,980 

27,178,879 

21,641,456 

18,988,777 

Eff(a]) 

0.99 

1.01 

0.99 

1.00 

TASTD(ji) 

34,072 

24,092 

19,671 

17,036 

ASTD(ju) 

34,369 

24,330 

19,538 

17,025 

Eff(fi) 

1.01 

1.01 

0.99 

1.00 

TASTD(Ji) 

198,632,953 

140,454,708 

114,680,789 

99,316,477 

ASTD{p) 

197,715,202 

141,399,777 

114,572,395 

99,686,224 

Eff(M) 

1.00 

1.01 

1.00 

1.00 
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Figure 2.A4: Distributions of mean, standard deviation (SD), skewness, and lag-1 serial 
correlation coefficients based on 10,000 synthetic annual streamflow series at Lee's Ferry 
in the Colorado River Basin (asymptotic analysis). 
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Figure 2.A5: Distributions of mean, standard deviation (SD), skewness, and lag-1 serial 
correlation coefficients based on 10,000 synthetic annual streamflow series at Lee's Ferry 
in the Colorado River Basin (Bayesian analysis). 
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Figure 2.A6: Distributions of mean, standard deviation (SD), skewness, and lag-1 serial 
correlation coefficients based on 10,000 synthetic annual streamflow series at St. 
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Figure 2.A7: Distributions of mean, standard deviation (SD), skewness, and lag-1 serial 
correlation coefficients based on 10,000 synthetic annual streamflow series at St. 
Lawrence River (Bayesian analysis). 

69 



(1) Lee's Ferry,FM 

15 

10 

m i U i i f i ; * •• 

10 
(2) Lee's Ferry,SM 

1.0 0.9 0.8 
a 

(3) St. Lawrence River, FM 

0.7 

o 4 

: n:^¥96 
* * ' • i • i f I T l t f 

1.0 0.9 0.8 
a 

(4) St. Lawrence River.SM 

0.7 

o 

1.0 0.98 0.96 0.94 0.92 

a 

RBIAS and RRMSE of s'c with different a (Lee's Ferry) 

0.98 0.96 0.94 0.92 0.9 0.86 0.84 0.82 0.8 0.78 0.76 0.74 0.72 0.7 

RBIAS 

(%) 

RRMSE 

(%) 

FM 

SM 

FM 

SM 

-14 

-23 

43 

32 

-11 

-20 

44 

32 

-2 

-10 

46 

31 

23 

14 

61 

41 

43 

34 

77 

57 

56 

48 

88 

70 

55 

49 

87 

71 

49 

44 

80 

67 

45 

40 

76 

65 

43 

39 

75 

65 

44 

40 

75 

66 

47 

44 

79 

71 

54 

51 

86 

78 

66 

63 

99 

91 

71 

68 

104 

97 

64 

61 

98 

91 

RBIAS and RRMSE of s'c with different « (St. Lawrence River) 

0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.9 

RBIAS 

(%) 

RRMSE 

(%) 

FM 

SM 

FM 

SM 

-13 

-25 

57 

37 

-15 

-27 

59 

40 

-17 

-29 

61 

43 

-23 

-33 

62 

47 

-27 

-36 

63 

50 

-29 

-38 

64 

52 

-29 

-38 

66 

55 

-27 

-37 

70 

57 

-25 

-34 

74 

59 

-24 

-34 

78 

62 

-29 

-38 

80 

65 

Figure 2.A8: Distributions of generated storage capacities S*c calculated using different 

demand levels a (n =100, Nd =98 for Lee's Ferry, and Nd =59 for St. Lawrence River) 
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Figure 2.A10: Distribution of generated storage capacities Sc* for different demand 
levels (a MAF) at St. Lawrence River (n =100,Nd =59). 
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with reliabilities (St. Lawrence River, asymptotic analysis, Nd =100). 
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Figure 2.A12: Simulated storage capacities Sc* for different sample sizes associated 
with reliabilities (St. Lawrence River, Bayesian analysis, Nd =100). 
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Table 2.A2: Quantiles of S*c scaled by MAF for different reliability q (St. Lawrence 
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Figure 2.A13: Simulated storage capacities Sc* for different demand levels associated 
with reliabilities (Lee's Ferry in the Colorado River Basin, asymptotic analysis, n=\00, 
Nd=\00). 
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Figure 2.A15: Simulated storage capacities Sc * for different demand levels associated 
with reliabilities (St. Lawrence River, asymptotic analysis, n =100, Nd =100). 
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Figure 2.A16: Simulated storage capacities Sc* for different demand levels associated 
with reliabilities (St. Lawrence River, Bayesian analysis, n =100, Nd =100). 
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Figure 2.A17: Distribution of generated critical drought magnitude cdm* for different 
sample sizes at St. Lawrence River (Nd =59). 
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Figure 2.A19: Distribution of generated critical drought intensity cdi* for different 
sample sizes, at Lee's Ferry in the Colorado River Basin (Nd =98). 
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Figure 2.A20: Distribution of generated critical drought intensity cdi* for different 
sample sizes, at St. Lawrence River (Nd =59). 
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Chapter III 

UNCERTAINTY CONSIDERATION IN TEMPORAL 

DISAGGREGATION MODEL 

Abstract: Synthetic monthly streamflows will be generated based on parametric 

generation model. Since the available historical information is limited, estimated 

parameters of the generation model have uncertainty as a consequence, thus this 

parameter uncertainty will translate into generated monthly flows. In this study, this 

parameter uncertainty effect will be statistically quantified and the effect on generated 

flows will be evaluated from the simulation experiment. As a way of quantifying the 

parameter uncertainty, sampling distributions are theoretically derived based on the 

limiting property of parameter estimates and Bayesian inference. Simulation 

experiments of monthly streamflows are performed with different parameter sets of 

which uncertainty is incorporated. A coupled AR(1) annual generation model and 

temporal disaggregation model will be employed for the generation. For generated 

monthly streamflows sets, the impact of parameter uncertainty is examined by inspecting 

monthly statistics and design variables related to them. Uncertainty effects which have 

arisen from annual and monthly generation stages will be compared respectively or 

together based on several different combinations of generation options. The parameter 

86 



uncertainty in disaggregation increases the variability of generated monthly statistics 

depending on different sample sizes, but it is shown to be not as significant for generated 

design variables as the natural uncertainty in generated annual flows. The parameter 

uncertainty which arises from the annual generation step propagates into monthly 

streamflows through the disaggregation and affects generated design variables of storage 

capacity and critical drought indices most significantly. 

3.1 Introduction 

As an alternative of using direct monthly streamflow generation techniques, like 

the periodic autoregressive moving average model, several temporal disaggregation 

models have been proposed in modeling monthly streamflows generation for the purpose 

of preserving statistical characteristics of both annual and seasonal streamflows at a site 

of interest. The full temporal disaggregation model, of which structure is intended to 

reproduce the cross relationships simultaneously between annual flows and all seasonal 

flows, might result in a huge number of parameters; e.g. 156 parameters for the Valencia 

Schaake temporal disaggregation model and 168 parameters for the Mejia-Rousselle 

model are required in generating monthly streamflows from the annual for only a single 

site. As a substitute, the condensed disaggregation model has been proposed to resolve 

the precision problem related with the number of parameters (Lane, 1979 (LAST); 

Stedinger et al., 1985 (SPC)). The condensed disaggregation model (Lane, 1979) needs 

only 36 parameters by considering season by season, and this staged disaggregation 
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scheme has been known to be considerably efficient and adaptable in real synthetic 

streamflow modeling. However, even though an optimal disaggregation model structure 

could be determined, a precision problem would not be guaranteed due to the shortage of 

historical streamflows data. A disaggregation model has uncertain parameters and 

consequently, design variables related to them are uncertain. In this study, uncertainty 

of parameters of the temporal disaggregation model is theoretically taken into account 

through the Bayesian inference and the large sample theory. As in a previous work, 

Stedinger et al. (1985) suggested the procedure to account for parameter uncertainty 

regarding their model in a simple form within a Bayesian framework. In our study, we 

derive the asymptotic variance-covariance matrix of parameter estimates based on the 

maximum likelihood estimation. Also, alternative Bayesian posterior distribution is 

implemented to investigate the uncertainty effect for smaller sample size. We assess the 

proposed uncertainty analysis techniques by simulating synthetic streamflows and 

comparing a number of storage and drought related statistics. The applicability of the 

suggested methods using actual streamflow data of the Colorado River and the St. 

Lawrence River will be presented. 

3.2 Generation of monthly synthetic streamflows using disaggregation 

models 

3.2.1 Traditional temporal disaggregation models 

Disaggregation schemes were basically suggested for the purpose of 
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conservation of the statistical properties at more than one level of aggregation (Harms 

and Campbell, 1967) with the purpose of preserving the statistical properties at both 

original (key) series and sub-series levels by a linear dependence model. It could allow 

for reducing the number of parameters without loss of expected properties in the 

generated data, as well as more flexibility in generation techniques (Salas et al., 2000). 

Valencia and Schaake (1973) proposed a theoretically well established 

disaggregation model (named as VS model throughout this paper), and Mejia and 

Rousselle (1976) introduced an extension of the VS model which mainly dealt with the 

temporal disaggregation of annual flow to seasonal flow (MS model). Since then, 

various approaches have been implemented by Lane (1979), Salas et al. (1980), Stedinger 

and Pei (1982), Stedinger and Vogel (1984), Grygier and Stedinger (1988, 1990), Santos 

and Salas (1992), Lane and Frevert (1990), and Salas et al. (2000). Recently, the 

disaggregation technique has been widely suggested as the efficient one in modeling a 

hydrologic time series in a complicated multi-site system. 

The temporal disaggregation model by Valencia and Schaake (1973) is first given 

by: 

Y = AX + Bu, (3.1) 

where Y is the seasonal streamflows being generated (low level), X is the annual 

streamfiows (high level), u is the error terms, and A, B are parameter matrices. 

Also, u is assumed as independent with X and multivariate normally distributed with 

zero mean and unit diagonal matrix as the variance-covariance matrix. By choosing the 

proper estimates of parameter matrices, the correlation structures between low-level, 

high-level flows are preserved, respectively, and between low-level and high-level 
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streamflows as well. A transformation would be required to ensure that X and Y are 

normally distributed (Valencia and Schaake, 1973). For generating monthly 

streamflows from the annual based on the VS scheme, it can not be assured to explicitly 

preserve correlations of the consecutive months between different years; e.g. the first 

month in the current year and the last month in the previous year. In order to overcome 

this drawback, modified scheme was proposed by linking the past with the current value 

being disaggregated as (Mejia and Rousselle, 1976): 

Y = AX + Bu + CZ, (3.2) 

where the additional term Z is the column matrix containing as many seasonal values 

from the previous year as are desired, and C is the parameter matrix. 

3.2.2 Condensed temporal disaggregation models 

Even though disaggregation methods could explain the cross correlation of all 

seasonal flows, a serious drawback of the disaggregation methods arises from the fact 

that it needs too many parameters coming from reproducing many cross correlations. 

For this reason the condensed or staged (stepped or cascaded) disaggregation models 

have been suggested that could decrease the size of parameter matrices involved 

(correspondingly the large number of parameters) and make those models efficient in 

computation work (Curry and Bras, 1978; Salas et al., 1980; Loucks et al., 1981; Bras 

and Rodriguez-Iturbe, 1985; Stedinger et al., 1985; Santos and Salas, 1992). For 

example, to reduce the number of parameters Curry and Bras (1978) applied staged 

disaggregation in which annual data is disaggregated into quarterly data and then into 
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monthly data. Also, in order to come up with how efficiently the number of parameters 

in the seasonal disaggregation process could be reduced, Lane (1979) proposed the 

simplification scheme (known as the condensed model) in the computer package of 

LAST (Lane's Applied Stochastic Techniques) based on the classic disaggregation 

models by MR (1976) as: 

YVtT=aT+0TYv^+rTXv+Vv, , (3.3) 

where r denotes the different season of concern and a total of 36 parameters are needed 

for T=\2. Xv is the high level flows (annual flows) in year v, YVT and YVT_l are 

the low level flows (monthly flows) for season r and r - 1 in year v . Vvr refers to 

the innovation term, which is independent and normally distributed with zero mean and 

variance of aT for each season r . Annual and monthly variables Xv, YVT, and 

Yv r_, are assumed to follow normal distribution with mean zero. Lane (1982) discussed 

that even though the statistical relationship between Yt and Xt, between Yt itself, and 

between Yt and Yt_x are preserved, this is not the case between Xt and Yt_x since it 

is not represented by the disaggregation model structure. For this reason, adjusted 

moments explaining this relationship were suggested, which could allow moments to be 

precisely conserved in the generated sequences, although the moments are not equivalent 

to the historical ones but to the adjusted moments. However, this model has a 

drawback: since the low-levels, i.e. seasonal streamflows, are not generated 

simultaneously, these are not summed exactly to the high-level series, i.e. annual 

streamflows. That discrepancy can be resolved by recalculating the annual values or by 

introducing the adjustment procedure make generated seasonal values exactly added to 
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annual ones (Salas et al , 1980; Lane, 1979; Stedinger and Vogel, 1984; Stedinger et al., 

1985; Lane and Frevert, 1990). Lane and Frevert (1990) proposed three methods of 

adjusting seasonal flows equal to annual flow. 

Based on the log normality of real streamflows, Stedinger, et al. (1985) proposed 

another temporal disaggregation scheme (SPC) by adding an extra term in LAST so as to 

conserve the additivity of seasonal flows, which is given by: 

Yvl=al+j3lXv+Vvl for r = l , (3.4a) 

Yv-=aT+/3TXv+ytYv_,+ST 2>n, 
i - i 

+ VVT for T>2, (3.4b) 

where at,f5t,yt,8, are parameters and VvT is independent normally distributed 

residual term with zero mean and variance ax. YVT,XV are the normalized low-level 

and high-level streamflows as shown in VS and MR schemes, of which YVT,XV are 

transformed from the original series to be normally distributed. The weighting factor 

ws is defined as the derivatives of untransformed monthly flows with transformed 

monthly flows, dQv T jdYv r evaluated at the expected value of the annual flow. For 

example, the weight factor ws is given by w, = exp(/ir +<J2
Y / 2) for three parameter 

lognormal transformation where fj.Y , al are the mean and variance of Yv T (Grygier 

and Stedinger, 1990). To ensure that the sum of generated monthly streamflows is equal 

to actual annual streamflows an additional adjustment process would be required as a 

final step. 

As another way of condensed temporal disaggregation, Santos and Salas (1992) 

proposed the stepwise disaggregation procedure (STEP model) assuming the normality of 
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real streamflows. It can be simply shown that SPC and STEP have the identical 

structure in case that (3.4) is applied into streamflows without transformation (letting 

ws=l). 

3.3 Theoretical consideration of parameter uncertainties 

3.3.1 Asymptotic approach 

Rewrite SPC temporal disaggregation scheme of Eq. (3.4) as a regression form 

for T>2: 

\T = xTeT+yT, (3.5) 

where YT ={YXjJu,...JnJ, YT=(Vu,V2^,...,VnJ, 6T = (aT,/JT,yT,SJ, 

X = 

1 *l,r-l X\ Z\,t-\ 

1 -*2,r-l X-2 ^2 , r - l 

* Xn,T-\ X-n ^n,i-l 

r -1 

with Zv r_j = ^T ws Yv s and n means sample size. The maximum likelihood 
. v = 1 

estimators (MLE) of 6t = {aT,f3x,yx,5T) and the variance of the error vector Vr, crr
2 

are given by, respectively: 

0r=(X'TXt)X'TYT 

5 2_(Y r -XA) ' (Y r -X r g r ) 
n-k 

(3.6) 

(3.7) 
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where k is the rank of X r . The 4x4 matrix E(-II/)=I(0T,<JT) is referred to as 

an information matrix for parameter 0t and aT where It] is defined by the 2nd 

derivatives of log-likelihood function. For a large sample, the variance-covariance 

matrix V{0r, <7T) for MLE of (0T, aT) can be approximately given by the inverse of 

the information matrix. Hence, the asymptotic distribution of MLE in the SPC temporal 

disaggregation model is given by a multivariate normal distribution with mean vector 

{aT,/3r,yT,8T,(7ty and symmetric variance-covariance matrix as (Appendix 3.A1): 

V(az,PT,yt,8T,&T) 

°L 
n 

1 K* 
°L + #r_, 

symm. 

Mx 

SXY^ + MxMr,_l 

~ 2 " 2 
<TX+Hx 

Mz,., 

^zr.,i;-.
 + Azr_,/V, 

^X2T_, +MxMzT_] 

~ 2 "2 at, + ui 
£T-\ r Lt-\ 

0 

0 

0 

0 

2 

(3.8) 

Thus, two separate asymptotic distributions can be defined for 0T and az as: 

( _ 2 

6> ~ MVN or,^E(x'TxTy (3-9) 

ai N 
. 2 ^ 

2n 
(3.10) 

In a similar way, asymptotic variance-covariance matrix of parameter estimates for LAST 

model can be given as (Appendix 3.A2): 
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v(&TJT,rT,aT) = Z-
n 

juy 

+ JUy XYr_ + JUXJUV 0 *Xt*Yr 

'1 
symm. 

-i - i 

a\ + ft o 
(3.11) 

3.3.2 Bayesian inference 

As noted in the previous section, the temporal disaggregation model can be 

translated into the form of normal multiple regression with one fixed parameter of 

innovation term. Applying this normal regression model enables one to incorporate 

parameter uncertainties into the temporal disaggregation schemes in the Bayesian 

framework, which has been suggested in theoretical Bayesian studies (Zeller, 1974; Box 

and Tiao, 1973) and in the application to stochastic hydrology (Stedinger et al., 1985). 

Consider the relationship between annual and seasonal streamflow series season by 

season, separately, and assume that prior distributions of parameter sets of temporal 

disaggregation scheme are independent (Box and Tiao, 1973; Zeller, 1974; Stedinger et 

al., 1985). Introducing the Bayesian framework shows that parameter uncertainties can 

be explained in terms of posterior distributions. From (3.5), the likelihood function of 

Yr given XT, 6T, <JT follows as 

l (Y r ;X T ,g r > g r )= l
 2exp 

(27T(Tt ) 
- -L . (Y r -X r 0 r ) ' (Y r -X r 0 r ) 

2-<Jr 

oc —exp 2a: 
- ( r f<j r

2 +(0 r -0 r yx;x r (0 r -0 r ) (3.12) 

where mean square error oT =d (Yr -Xr6>r)'(Yr -XT6T) are sufficient statistics 
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(Zeller, 1974) and rj = n-k is degree of freedom. Under the assumption that the 

information about the parameters is diffusive and the prior of each parameter element of 

0T is independent of one another, the joint prior distribution yields: 

\0T,oT)oc — ,-<x><at,Pt,yt,St <oo, 0<a T <oo, (3.13) 

and then the joint posterior distribution is derived as: 

p(et,aT | Y r , X r ) c x - L e x p - - L ( ^ &)+{0z -0T)' X'TXT(0T -0T)) 
<yr 2.0• 

(3.14) 

The marginal distribution of crr
2 can be obtained by integrating (3.7) with respect 

to 6T, and it gives the form of inverted gamma distribution as (Zeller, 1974): 

/>(<>•, l Y ^ x J o c - ^ - e x p 
2al 

(3.15) 

which implies rj&T / <rr follows a % ~~ distribution with rj degree of freedom so that 

(7T is distributed as inverse x2 _ distribution. The posterior distribution of parameter 

matrix 0t can be taken into consideration for two possible cases; one is that the standard 

deviation aT is assumed known, and the other is unknown <rT. First, when ar is 

assumed to be known the conditional posterior distribution of 6t given <JT is the 

multivariate normal distribution with mean 6r and variance-covariance matrix 

<T2(X^Xr)
_1. On the other hand, for the case of unknown <rr, the joint posterior 

distribution of 6T is given by the multivariate t distribution with mean 0r, variance-

covariance matrix of (X'TXT)~l with rj degree of freedom (Box and Tiao, 1973). For 
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known or : 

P(eT\YT,xT,*T) = xx r 
^7T-FexP (2K) CJT 2a; 

-O9 r-0 r) 'X' rX r(0 r-0 r) (3.16) 

and for unknown <r : 

P 
(f)\w x) ^bi + k)i2}\xTxira-> 

l r l " r j [r(l/2)]Y(77/2)77*/2 1 + 
(gr-gryx;xT(gr-gr) 

?7ar
2 

-(?]+k)/2 

(3.17) 

It is well known that t distribution will become equivalent to normal 

distribution when the sample size is large enough and (3.16) has been employed to define 

the posterior distribution in the previous literature (Stedinger and Taylor, 1982; Stedinger 

et al., 1985). Comparison of (3.9) and (3.16) reveals that Bayesian posterior distribution 

is equivalent to the derived asymptotic distribution. That is, using (3.17) instead of 

(3.16) seems more appropriate in the Bayesian sense, and (3.17) will be used as the 

underlying posterior distribution in this study. 

3.4 Uncertainty incorporation into synthetic streamflows 

3.4.1 Simulation experiments 

Two monthly streamflow sets with distinct statistical characteristics were 

selected: Lee's Ferry in the Colorado River Basin and the St. Lawrence River (see Tables 

3.1 and 3.2). Over 60% annual flows are from only three months (May, June, and July) 

in the Colorado River, while almost similar monthly flows are contributed to total annual 

flows in the St. Lawrence River. A significant difference in month-to-month serial 
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correlations and also the difference in variations in each monthly flow are remarkable for 

these two sites. In addition, significantly different variations in aggregated monthly 

flows (annual flows) are notable. 

As in the traditional simulation, different traces of annual flows (5000 traces will 

be generated) are first generated with the same size as the historical flows (98 for Lee's 

Ferry and 59 for St. Lawrence River), and then those generated annual flows are 

disaggregated into monthly flows by using SPC and LAST temporal disaggregation 

models. The normality of flows is examined by using a skewness test with a 5% 

significant level for two historical flows series. Log-transformations are applied to both 

annual and monthly steamflows of Lee's Ferry flows; log-transformation with a location 

parameter for February, May and June flows and without a location parameter for the rest 

of the months and the annual. It is shown that the normality assumption cannot be 

rejected through the skewness test so that historical flows of the St. Lawrence River are 

directly applied to the monthly flow generations. Generated monthly flows are not 

exactly summed up to the annual because of the transformation, thus a adjustment 

process is required to make the sum of generated monthly flows equal to the annual. 

Several adjustment methods have been proposed in previous literature, among which the 

proportional scheme might distort marginal distributions the least and not generate 

negative flows negative (Grygier and Stedinger, 1988). Note that the SPC model 

applied to non-transformed data as in the St. Lawrence River has the equivalent form as 

Salas and Santos' model (1988). 

In order to consider the parameter uncertainty, 5000 different parameter estimates 

sets of the AR(1) model for annual generation and those of SPC, LAST disaggregation 
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models are first sampled from their distributions, which are already defined by 

asymptotic and Bayesian approaches. In each generation, one of 5000 different 

parameter sets is substituted for the parameter set estimated from the historical flows. 

3.4.2 Preliminary analysis of disaggregation models and uncertainty considerations 

Before stepping forward to compare uncertainty effects with the different 

combinations of annual and monthly parameter uncertainty considerations, a comparative 

analysis of SPC and LAST disaggregation models has been taken into account based on 

both asymptotic and Bayesian approaches. Different sample sizes are considered to 

examine their related impacts since parameter uncertainties are closely related to the 

available sample size. Parameter estimates calculated from the historical flows are 

assumed to be population values, by which the expected values of parameter estimates 

are set as fixed ones, and then new parameter estimates are sampled from distributions of 

parameters by changing the variances corresponding to sample sizes of n =25, 50, 75, 

100. 

Storage and drought related statistics are implemented to inspect the simulated 

synthetic flow characteristics. For storage related statistics, a storage capacity is 

calculated using the sequent peak algorithm (Loucks et al., 1981): 

S, = m a x ( 0 , S M + D , - * , ) , t = l,....,Nd, (3.18) 

where Dt = demand level, Xt = reservoir inflow, Nd = planning horizon, and S0 = 0 . 

Then the storage capacity becomes: 

Sc=max(S0„V-A,)- (119) 
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As another tool for evaluating parameter uncertainty effect, drought related 

statistics will be utilized. For a given demand level (for example, mean monthly flows, 

MMF), the deficit occurs when annual streamflows Yt <MMF during one or more 

months until Yt >MMF again, which can be defined by its magnitude, by its duration, and 

by its intensity (magnitude divided by corresponding duration). Among the number of 

deficits in a given streamflow set, the maximum deficit magnitude, length and intensity in 

a given sample are referred to the critical drought length cdl, critical maximum 

magnitude cdm , and critical drought intensity cdi (Salas et al., 1980). 

After generating 5000 different sets of monthly streamflows, synthetic storage 

capacities and critical indices are calculated and compared for different sample sizes, 

disaggregation models, and different uncertainty consideration approaches (Figures 3.1-

3.2). A demand level is assumed equal to mean monthly flows (MMF) for both Lee's 

Ferry and the St. Lawrence River. The effect of different thresholds will be discussed in 

detail later in this chapter. 

Increased variabilities of storage capacities by parameter uncertainties are shown 

in Figures 3.1 and 3.2, and those parameter uncertainty effects are more significant for 

smaller sample size. It is notable that those variabilities still can be found even in large 

sample size (e.g. «=100) for both Lee's Ferry and the St. Lawrence River. Almost 

similar variabilities of generated storage capacities are expected for SPC and LAST 

models. The Bayesian approach results in a little increased variabilities of storage 

capacities (99% quantiles) than asymptotic distribution in smaller sample sizes (e.g. 

n < 50), but it seems not significant in Lee's Ferry flows. However, the difference in 

variabilities of generated storage capacities between two approaches is shown to be 
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remarkable for the St. Lawrence River. Overall, upward shifts of storage capacities are 

shown as a parameter uncertainty effect. Distribution plots of generated critical drought 

indices are listed in Appendix 3.C1-3.C6. As in the case of the storage capacity, the 

Bayesian approach is shown to produce much variability in smaller sample size, 

especially for the St. Lawrence River. Also, SPC and LAST models show almost 

similar distributions for both sites and parameter uncertainties result upward shifts of 

drought indices. Tables 3.CI and 3.C2 in Appendix illustrate coefficients of variation of 

generated storage capacities and drought indices. Consequently, parameter uncertainty 

effects on reservoir and drought related statistics are not to be ignored even in relatively 

large sample sizes (n > 75), and their effects might be more considerable, which is 

affected by the statistical characteristics of data sets of concern in the synthetic 

streamflow generation. For further study, the SPC temporal disaggregation model and 

the Bayesian approach will be assumed as underlying schemes based on the comparative 

analysis result demonstrated in this section. 

3.4.3 Uncertainty effect of temporal disaggregation model parameters combined 

with historical annual flows 

In a traditional disaggregation procedure, simulated annual streamflows are 

generally in use as input variables to generate monthly streamflows. Even though the 

parameter uncertainty effect is not incorporated in the stage of the annual flow generation, 

the error term which is implicated in the annual flow generation model might produce a 

variety of values not certain ones. These will be called by natural uncertainty in this 
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study and this natural uncertainty of the annual flows is usually embedded into the 

synthetic monthly flows in the general disaggregation procedure. 

In order to eliminate the natural uncertainty effect in the stage of annual flows 

generation and to examine the uncertainty effect of disaggregation parameters themselves, 

historical annual flows are assumed as an input in the disaggregation stage instead of 

simulated annual flows. Assuming that given historical sample size of each site is large 

enough; estimated parameters from the historical flows data are used as the real 

parameter set. By changing the sample size, parameter estimates of the disaggregation 

model are sampled from posterior distributions and then those are assigned to new ones. 

That is, the expected values of estimated regression parameters are assumed to be the 

same as the historical one regardless of the sample size, and variances of parameter 

estimates are proportional to the historical ones (Stedinger et. al, 1985). Note that 

applied sample sizes is: n= 25, 50, 75, 98 for Lee's Ferry and n= 15, 30, 45, 59 for the 

St. Lawrence River data. 

Table 3.3 represents increased quantiles of generated storage capacities by 

uncertain parameter estimates of the SPC temporal disaggregation model. It is shown 

that the mean and high quantiles (q >75%) of generated storage capacities are not 

significantly influenced by disaggregation parameter uncertainties for Lee's Ferry, while 

significant increases of those estimates are found for the St. Lawrence River. For 

example, in 99% quantile of generated storage capacities, 3.7, 1.6, 0.6, 1.0% increase 

with a demand level of MMF and 8.1, 3.5, 1.5, 1.1% increase with a 80% MMF demand 

for Lee's Ferry, while 21.4, 12.0, 6.5, 5.4% increase with 95% MMF demand level and 

50.1, 25.4, 12.4, 11.0% increase with 85% MMF demand level for the St. Lawrence River. 
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To be remarkable, increased standard deviation of storage capacities is visible for both 

statistically different steamflow sets. 

3.4.4 Uncertainty effect of parameter uncertainty of annual streamflow generation 

and temporal disaggregation 

Four different considerations of parameter uncertainty are utilized in order to 

examine the combined effect of parameter uncertainty in both levels of annual and 

monthly flow generations. As in the traditional monthly streamflow generation 

procedure based on the temporal disaggregation model, monthly streamflows are simply 

disaggregated from generated annual flows and set to Case 1. In this case, parameter 

uncertainty is not incorporated into both annual flow generation and temporal 

disaggregation (no parameter uncertainty). That is, only natural uncertainty from the 

generation models (annual or disaggregation) will be considered. In Case 2, parameter 

uncertainty of the temporal disaggregation model will be incorporated. Annual flows 

are generated without parameter uncertainty, and then those are disaggregated into 

monthly streamflows with parameter uncertainty incorporated. Parameter uncertainty in 

annual flow generation will be taken into account in Cases 3 and 4. Generated annual 

flows with parameter uncertainty are simply disaggregated into monthly streamflows 

without consideration of disaggregation parameters in Case 3. In Case 4, parameter 

uncertainty in both annual flow generation and temporal disaggregation will be applied. 

The four different combinations of natural and parameter uncertainty in the annual flow 

generation and temporal disaggregation are summarized as: 
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Cases Annual flow generation Temporal disaggregation 

Case 1 NU NU 

Case 2 NU NU + PU 

Case 3 NU + PU NU 

Case 4 NU + PU NU + PU 

For each case, basic statistics of synthetic monthly flows such as mean, variance, 

month-to-month correlation and correlation between monthly to annual flows are 

evaluated. Also, as observed before, the distributions of the storage capacity and 

drought indices based on the generated monthly streamflows will be compared, which 

enables one to allow for the parameter uncertainty effect translated into design variables. 

Figures 3.3 and 3.4 show monthly means, standard deviations, month-to-month 

serial correlations and month-to-annual correlations calculated from generated monthly 

flows for four different Cases assuming sample size is equal to 50. The parameter 

uncertainty in the annual generation (Cases 3 and 4) result in much variability in the 

mean and standard deviation of generated monthly streamflows compared with Cases 1 

and 2. A log-transformation was applied in the generation of Lee's Ferry streamflows, 

thus simulated monthly flows were adjusted with respect to the annual flows, while the 

adjustment was not applied to the St. Lawrence River case. By this adjustment 

procedure, the proportionality of monthly flows to the annual is shown to be well 

preserved by the disaggregation model even with the parameter uncertainty incorporated 

into the model. The parameter uncertainty in the temporal disaggregation (Cases 2 and 

4) exhibits increased month-to-month serial correlation and month-to-annual correlation 
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for each month compared with natural uncertainty in the disaggregation model (Case 1 

and 3). 

In the previous section, the uncertainty effect of monthly disaggregation models 

were shown to be visible and dependent on the available sample sizes. However, it is 

notable that there seems little difference in the distributions of storage capacities between 

Cases 1 and 2. Based on this, it can be demonstrated that the effect of parameter 

uncertainty in the monthly flows disaggregation on generated storage capacities is not as 

significant as one of natural uncertainty in the annual streamflow generation (Figures 3.5 

and 3.6). That might be related to the disaggregation model structure that the 

proportionality of monthly flows to the annual is intended to be preserved. Even though 

the parameter uncertainty of the disaggregation model is translated into generated 

monthly flows, the mean and variance of generated monthly flows were not significantly 

increased by the parameter uncertainty as shown in Figures 3.3 and 3.4. Much 

variability of storage capacities is expected as shown in Cases 3 and 4, which might 

conclude that the parameter uncertainty in the annual generation is dominant over one in 

the disaggregation in the sense of the storage related statistics. 

For the Lee's Ferry generation (Figure 3.5), there could be found the difference 

of variabilities of storage capacities in Cases 3 and 4 for smaller sample sizes {n <50), 

which is distinguishable with the case of the St. Lawrence River generation (Figure 3.6). 

For simple monthly flow generation (Case 1), generated storage capacities show larger 

variability in Lee's Ferry case than those in the St. Lawrence River, which might result 

from higher variation of historical monthly streamflows within a year. This statistical 

characteristics plays a role in increasing much variability of storage capacities if the 
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parameter uncertainty in the disaggregation would be combined with parameter 

uncertainty incorporated synthetic annual flows (compare Cases 3 and 4 for Lee's Ferry 

generation in Figure 3.5) when available sample size is relatively small (n <50). 

The comparable results might be found in distributions of generated critical 

drought indices (see Figures 3.C7-3.C12 in Appendix). The parameter uncertainty in 

the disaggregation step is not as significant as the natural uncertainty in input variables 

(annual flows), and the parameter uncertainty in input variables affects most considerably 

on synthetic drought related statistics. 

When determining storage and drought related statistics, different options of 

demand levels and planning horizons might be available. Assuming that the available 

sample size is equal to 50 for both Lee's Ferry and the St. Lawrence River, different 

demand levels are implemented to examine associated parameter uncertainty effects (100, 

90, 80, 70% demand levels for Lee's Ferry and 100, 95, 09, 85% for St. Lawrence River), 

and distributions of generated storage capacities and drought indices are plotted in 

Figures 3.C13-3.C20 in the Appendix. Comparing distributions for four Cases shows 

the similar patterns for parameter uncertainty considerations over applied demand levels. 

Since different demand levels result in different variabilities of storage capacities and 

drought indices in the case without parameter uncertainty (Case 1), the increased 

variability of design variables by parameter uncertainty is expected to be different 

corresponding to different demand levels. 
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3.4.5 Brief summary of parameter uncertainty effect on design variables 

Table 3.4 gives a brief summary of the parameter uncertainty effect on synthetic 

storage capacity and critical drought magnitude obtained from generated monthly 

streamflows at Lee's Ferry and at the St. Lawrence River. For simplicity, Case 1 in 

which no parameter uncertainty is considered either in annual streamflow generation or in 

temporal disaggregation and Case 4 where parameter uncertainty is incorporated in both 

annual generation and in temporal disaggregation are numerically compared. Relative 

to Case 1, Case 4 shows increased expected value of the storage capacity with a range of 

from about 10% up to 66% depending on different demand levels and sample serial 

correlations; e.g. increased expected value is shown up to 66% for the St. Lawrence River 

with 90% MAF as a demand level. Moreover, the increased standard deviation of 

storage capacity by parameter uncertainty is shown to be about 73%-375% depending on 

different sample serial correlations and assumed demand levels. The parameter 

uncertainty effect is also visible for higher quantiles of storage capacity, e.g. about a 

200% increase of the 99% quantile of the storage capacity for the case of the St. 

Lawrence River with 90% MAF demand level. Overall, less increase by the parameter 

uncertainty effect is reported in the generated critical drought magnitude compared with 

the generated storage capacity, except that similar pattern of increased statistics and 

quantiles by parameter uncertainty over different demand levels and sample serial 

correlations could be found for both design variables. 
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3.5 Summary and Conclusions 

Parameter uncertainty effect on synthetic monthly streamfiows has been 

examined in this paper using the simple AR(1) annual streamfiows generation model and 

LAST and SPC temporal disaggregation models. Based on regression analysis, 

asymptotic distribution and more precise Bayesian posterior distribution of parameter 

estimates were theoretically derived and then parameter uncertainties were considered by 

sampling parameter estimates from derived distributions. Uncertainty effects were 

compared in terms of basic statistics as well as storage and drought related statistics 

which were calculated from generated monthly streamfiows. Two historical flows with 

different statistical characteristics were implemented to investigate related effects. It is 

notable that even for large sample size (n =100), parameter uncertainty could be found in 

increased variabilities of design variables. 

LAST and SPC models show similar variabilities of generated storage and 

drought related statistics in terms of parameter uncertainty. The Bayesian approach 

shows larger variabilities of design variables for smaller sample size (n < 50) than 

asymptotic distribution and the difference between two approaches is more visible for the 

St. Lawrence River case. 

Parameter uncertainty in the disaggregation model does not affect greatly on the 

mean and standard deviation of generated monthly flows but on the month-to-month 

serial correlation and month-to-annual correlation. The effect of natural uncertainty in 

annual streamflow generation is more significant than parameter uncertainty in temporal 

disaggregation. This is closely associated with the model structure that the sum of 
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monthly flows would be equal to the annual and the proportionality of monthly flows 

would be preserved. Parameter uncertainty in annual flow generation is propagated into 

simulated monthly streamflows through the temporal disaggregation and parameter 

uncertainty causes significant effect on related storage and drought statistics. 
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Table 3.1: Basic statistics of annual and monthly streamflows (Lee's Ferry in Colorado 
River) 

Mean S. Dev. Coeff. Of Skewness Kurtosis lag-1 proportion 
(ac-ft) (ac-ft) Variation Coeff. Coeff. correlation to annual(%) 

Historical 

Oct 

Nov 

Dec 

Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jul 

Aug 

Sep 

Annual 

580893 

480821 

382530 

356611 

393776 

645201 

1199946 

3037199 

4054340 

2190444 

1083174 

671371 

15076307 

272006 

141531 

95858 

78632 

97576 

211390 

512460 

1146760 

1572353 

1012249 

423971 

309698 

4365301 

0.47 

0.29 

0.25 

0.22 

0.25 

0.33 

0.43 

0.38 

0.39 

0.46 

0.39 

0.46 

0.29 

1.64 

1.21 

1.22 

0.59 

1.42 

1.08 

0.96 

0.27 

0.43 

1.13 

0.95 

1.95 

0,14 

6.64 

4.83 

4.92 

3.06 

5.74 

4.81 

4.22 

2.65 

2.89 

4.33 

3.20 

8.21 

2.40 

0.54 

0.76 

0.83 

0.70 

0.55 

0.48 

0.47 

0.59 

0.63 

0.83 

0.78 

0.64 

0.28 

3.9 

3.2 

2.5 

2.4 

2.6 

4.3 

8.0 

20.1 

26.9 

14.5 

7.2 

4.5 

100.0 

Log-transformed series 

Oct 

Nov 

Dec 

Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jul 

Aug 

Sep 

Annual 

13.18 

13.04 

12.83 

12.76 

12.20 

13.33 

13.91 

16.34 

16.20 

14.50 

13.83 

13.33 

18.34 

0.42 

0.28 

0.23 

0.22 

0.42 

0.31 

0.43 

0.09 

0.14 

0.45 

0.37 

0.39 

0.05 

0.03 

0.02 

0.02 

0.02 

0.03 

0.02 

0.03 

0.01 

0.01 

0.03 

0.03 

0.03 

0.003 

0.38 

0.20 

0.44 

0.04 

0.10 

0.09 

-0.11 

0.06 

0.07 

-0.06 

0.24 

0.54 

: 0.04 

3.04 

3.89 

3.37 

2.77 

2.98 

2.94 

2.53 

2.50 

2.68 

2.74 

2.41 

3.31 

2.39 

0.66 

0.78 

0.79 

0.69 

0.55 

0.55 

0.57 

0.67 

0.64 

0.87 

0.83 

0.66 

0.28 
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Table 3.2: Basic statistics of annual and monthly streamflows (St. Lawrence River) 

Oct 

Nov 

Dec 

Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jul 

Aug 

Sep 

Annual 

Mean 
(ac-ft) 

3997 

3790 

3871 

3765 

3352 

3884 

4100 

4376 

4278 

4382 

4261 

3984 

48042 

S. Dev. 
(ac-ft) 

357 

345 

350 

380 

348 

397 

368 

405 

413 

420 

403 

370 

4157 

Coeff. Of 
Variation 

0.09 

0.09 

0.09 

0.10 

0.10 

0.10 

0.09 

0.09 

0.10 

0.10 

0.09 

0.09 

0.09 

Skewness 
Coeff. 

-0.37 

-0.38 

-0.36 

-0.11 

-0.15 

0.15 

0.09 

0.07 

0.01 

-0.13 

-0.24 

-0.31 

-0.28 

Kurtosis 
Coeff. 

2.74 

2.87 

3.03 

2.82 

2.91 

2.59 

2.83 

2.53 

2.28 

2.33 

2.49 

2.58 

2.74 

lag-1 
correlation 

0.98 

0.98 

0.96 

0.89 

0.93 

0.91 

0.92 

0.96 

0.97 

0.98 

0.99 

0.99 

0.75 

proportion 
to annual(%) 

8.3 

7.9 

8.1 

7.8 

7.0 

8.1 

8.5 

9.1 

8.9 

9.1 

8.9 

8.3 

100.0 
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Figure 3.1: Distributions of storage capacities for different disaggregation models (SPC 
and LAST) and different parameter uncertainty consideration schemes in the temporal 
disaggregation (Asymptotic and Bayesian approaches) where S: SPC, L: LAST, A: 
Asymptotic approach, B: Bayesian approach, and N: no parameter uncertainty. Storage 
capacities are calculated with the demand level equal to MMF and the planning horizon 
of 98 years based on synthetic monthly streamflows disaggregated from simulated annual 
flows with parameter uncertainty incorporated as well using historical flows at Lee's 
Ferry in Colorado River. The upper, middle and lower line in the box means 75, 50, 
25% quantile, respectively, and from the box the whisker extends to 90, 10% quantile for 
each side. Two dots outside box mean 99% and 1% quantile values. 'X' means 
historical storage capacity. 

112 



(1) sample size = 25 (2) sample size = 50 

S-N L-N S-A S-B L-A L-B S-N L-N S-A S-B L-A L-B 

(3) sample size = 75 
250 

(4) sample size = 100 

S-N L-N S-A S-B L-A L-B S-N L-N S-A S-B L-A L-B 

Figure 3.2: Distributions of storage capacities for different disaggregation models (SPC 
and LAST) and different parameter uncertainty consideration schemes in the temporal 
disaggregation (Asymptotic and Bayesian approaches) where S: SPC, L: LAST, A: 
Asymptotic approach, B: Bayesian approach, and N: natural uncertainty. Storage 
capacities are calculated with the demand level equal to MMF and the planning horizon 
of 59 years based on synthetic monthly streamflows disaggregated from simulated annual 
flows with parameter uncertainty incorporated as well using historical flows at St. 
Lawrence River. The upper, middle and lower line in the box means 75, 50, 25% quantile, 
respectively, and from the box the whisker extends to 90, 10% quantile for each side. 
Two dots outside box mean 99% and 1% quantile values. 'X' means historical storage 
capacity. 
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Table 3.3: Increased quantiles(%) of generated storage capacities by parameter 
uncertainty in SPC disaggregation model: Storage capacities are calculated from 
synthetic monthly flows disaggregated with parameter uncertainty from historical annual 
flows for different sample sizes. (Bayesian approach) 

Lee's Ferry in Colorado River (planning horizon = 25 years) 

min 

1% quantile 

10% quantile 

25% quantile 

median 

75% quantile 

90% quantile 

99% quantile 

max 

mean 

SD 

Coeff. of variation 

Demand level = 

25 

0.1 

-0.4 

-0.3 

0.2 

0.9 

1.3 

2.2 

3.7 

8.4 

1.0 

15.0 

13.9 

sample 

50 

1.9 

-1.1 

-0.6 

-0.2 

0.1 

0.5 

0.8 

1.6 

4.4 

0.2 

8.4 

8.2 

100% MMF 

size 

75 

2.5 

-0.1 

-0.4 

-0.2 

0.1 

0.4 

0.6 

0.6 

-0.5 

0.2 

4.7 

4.6 

98 

5.3 

-0.1 

-0.7 

-0.4 

0.1 

0.3 

0.6 

1.0 

2.9 

0.1 

6.2 

6.1 

De 

25 

-8.1 

-2.2 

0.0 

1.6 

2.9 

4.3 

6.4 

8.1 

12.4 

3.3 

28.9 

24.9 

mand level = 

sample 

50 

-3.2 

-0.8 

0.1 

0.6 

1.1 

1.8 

2.6 

3.5 

12.4 

1.3 

11.8 

10.4 

= 60% MMF 

size 

75 

-4.9 

-0.5 

-0.4 

0.2 

0.8 

1.5 

1.9 

1.5 

2.3 

0.8 

8.0 

7.2 

98 

0.9 

-0.7 

-0.1 

0.4 

0.6 

1.2 

1.4 

1.1 

9.0 

0.7 

7.5 

6.7 

St. Lawrence River (planning horizon = 15 years) 

min 

1% quantile 

10% quantile 

25% quantile 

median 

75% quantile 

90% quantile 

99% quantile 

max 

mean 

SD 

Coeff. of variation 

Demand level 

25 

1.1 

1.8 

1.8 

2.6 

5.4 

7.7 

10.9 

21.4 

39.6 

6.7 

28.6 

20.5 

sample 

50 

8.6 

-0.8 

0.5 

1.3 

1.6 

2.8 

3.7 

11.9 

17.1 

2.6 

13.6 

10.8 

= 95% MMF 

size 

75 

1.8 

0.5 

-0.2 

0.6 

1.3 

1.7 

2.8 

6.5 

3.7 

1.6 

7.6 

5.9 

98 

-2.1 

1.8 

-0.6 

-0.5 

0.7 

0.8 

1.7 

5.4 

1.9 

0.9 

5.5 

4.6 

Demand level = 

25 

-34.5 

-4.5 

4.3 

9.4 

18.6 

29.5 

36.1 

50.1 

73.6 

23.8 

59.3 

28.6 

sample 

50 

-52.4 

-0.1 

0.1 

2.6 

8.2 

11.0 

16.2 

25.4 

35.1 

10.1 

29.7 

17.8 

= 85% MMF 

size 

75 

-52.4 

-1.5 

1.1 

1.2 

3.7 

5.4 

9.4 

12.4 

7.6 

5.0 

14.2 

8.7 

98 

-33.3 

-1.1 

1.0 

1.8 

3.2 

4.6 

5.8 

11.0 

-7.1 

4.0 

8.8 

4.7 
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Figure 3.3: Basic statistics of monthly streamflows disaggregated using SPC temporal 
disaggregation model from annual flows generated using AR(1). Parameter uncertainty 
is incorporated using Bayesian posterior distribution and available sample size is 
assumed to be 50 (Lee's Ferry in Colorado River) 
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Figure 3.4: Basic statistics of monthly streamflows disaggregated using SPC temporal 
disaggregation model from annual flows generated using AR(1). Parameter uncertainty 
is incorporated using Bayesian posterior distribution and available sample size is 
assumed to be 50 (St. Lawrence River) 
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Figure 3.5: Distributions of storage capacities for different uncertainty consideration 
cases in annual-monthly flow generation. Storage capacities are calculated with the 
demand level of MMF and the planning horizon of 98 years (SPC, Bayesian approaches, 
Lee's Ferry in Colorado River) 
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Figure 3.6: Distributions of storage capacities for different uncertainty consideration 
cases in annual-monthly flow generation. Storage capacities are calculated with the 
demand level of MMF and the planning horizon of 98 years (SPC, Bayesian approaches, 
St. Lawrence River) 
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Table 3.4: Example of generated storage capacity and critical drought magnitude (scaled 
by MMF) in =50, Bayesian analysis) 

Demand level 

Case 

Lee's Ferry in the Colorado River Basin 

(Ab=98) 

MMF 0.8MMF 

Case 1 Case 4 Case 1 Case 4 

St. Lawrence River 

MMF 0.9MMF 

Case 1 Case 4 Case 1 Case 4 

Storage capacity 

mean 

SD 

#0.9 

#0.95 

#0.99 

52.8 

23.3 

84.7 

98.0 

123.1 

Critical drought magnitude 

mean 

SD 

#0.9 

#0.95 

#0.99 

12.6 

4.3 

16.5 

21.0 

24.3 

61.5 

16.4% 

40.4 

73.0% 

118.3 

39.7% 

140.6 

43.5% 

197.4 

60.4% 

13.2 

4.7% 

5.8 

35.1% 

20.7 

25.3% 

23.9 

13.4% 

32.3 

32.6% 

14.2 

4.8 

20.5 

23.3 

29.3 

7.8 

3.1 

11.4 

12.4 

17.0 

15.6 

9.8% 

8.3 

74.3% 

25.5 

24.6% 

31.3 

34.0% 

46.4 

58.4% 

8.2 

5.6% 

4.0 

29.7% 

12.5 

9.1% 

15.5 

24.3% 

21.4 

25.6% 

16.6 

10.1 

30.6 

36.7 

46.9 

6.5 

4.2 

12.1 

14.8 

20.1 

20.6 

23.7% 

21.0 

106.9% 

43.9 

43.5% 

57.6 

56.9% 

84.4 

79.8% 

8.4 

30.5% 

14.1 

234.0% 

16.9 

40.3% 

23.3 

57.1% 

50.8 

152.3% 

2.5 

2.3 

5.4 

7.1 

10.8 

1.5 

1.3 

2.9 

4.0 

6.5 

4.2 

66.0% 

10.7 

374.8% 

9.1 

70.4% 

14.0 

97.1% 

33.0 

204.4% 

2.5 

66.7% 

8.9 

596.2% 

4.6 

56.6% 

7.4 

85.3% 

18.0 

178.6% 

Note Case 1: no parameter uncertainty considered (natural uncertainty), Case 4: parameter 
uncertainty incorporated both in annual flow generation and in temporal disaggregation, SD: 
standard deviation, q09, q095, q099 means 90%, 95%, and 99% quantile, respectively. Value 

(%) in the column of Case 4 represents the ratio of increased storage capacity(or critical drought 
magnitude) in Case 4 with respect to Case 1. (parameter uncertainty effect) 
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Appendix 3.A: Derivation of the asymptotic variance-covariance matrix 

of Lane's condensed temporal disaggregation scheme 

Recall SPC temporal disaggregation scheme for each season T ( r =2,..., co) as 

Y^=aT+/5IYv^+rTXv+5T 

r-l 

X Ws Y
V, +v„ (3.A1) 

Assume that the seasonal random variable YVT,YV r_, for season r , r -1 are normally 

distributed with the mean /uY , /uY and variance <JY , aY , respectively and the 

annual random variable Xv is normally distributed with mean jux and variance ax . 

T-\ 

The seasonal cumulative term ^ ws Yv v = Zv x_x is assumed as normally distributed with 

r-l 

mean JUZTX = V ws juY and variance o\ ^, and Vv r is the error term with zero mean 

and variance a). Let 0T = (aT,(3T,yT,5r) , Vr = (Vu,V2j,...,Vnj)' and then from 

(3.A1) the likelihood function Z(-) = L(Vr;9T) and the resultant log-likelihood function 

LL(-) = LL(YT;dT) are 

Z(-) = 
1 

I7 e xp 2cr2
 v=l 
2 fc.r - «r - « , - . - ̂  - <^,-. J2 

i -£-LL{.)=-^\og{2n)-n\o%(av)-^Yj(YVT-ar-f3TYVJ_,-yTXv -5TZVTJ 
2 2aT v=l 

1st derivative of log-likelihood LL(-) with respect to each parameter is given as, 

respectively, 
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^ = - - ^ X f c , -a,-PJ^-r,xr-s,z,„J 
da, er cr ' r v=\ 

And 2" derivatives with respect to parameters yield 

d2LLQ) _ _n_ 

dot ~ a2 

d2LL(-) _ _ J _ Y 
i2 _ 2 2—l*v,z-\ 

d2LL(-) _ 1 ^ 2 

a2zz(-) l ^ 
a o2 2 / ' v,z-l Yz2 

^ = ~-At(Yv, ~aT-PX^-7tXv-8TZv^)2 

daT at ax „=1 

a2zzp = i fY 
dat d/3T cr2 tt v'r~ 

d2LL(-) _ 1 ^ 

daTdyT aT v. 
IX 



d2LL(-) = 1 ^ z 

dadSr a) ~{ V'T~ 

jrir- = ~ A t fc, - «, - fix,-, - r,xv - stzv^) 
daTd(JT crT v=1 

d2LL(-) _ 1 ^ 

df3TdyT ~ 5X^.r-
' r v=l 

d2LL(;) = If 
dprd8t a2

Th - " ' ^ 

d2LL(-) _ _ 1 ^ 

dyTd5T 
EZv.r-.^v 
v=l 

,nd Taking expectation for negative 2 derivatives over Vv T using observations of 

Yv,, Xv, Z„T yields 

( d2ZZ(-)^ 
da2 j 

n 

f d2LL(-)^ 
= E 

1 " 

— Y Y 2 
i ^ zZE(KUh^k+tiJ 

v=l 

( d2LL{^ 

dy2 = M \nxi =iz^2)=4l#+#] 
\ a r v-l J v=\ 
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( *2TT,,\ 
dzLL(-) 

d8l 
= E 

J 

1 •£• 

V ^ r v=l 
i5X2,-. = -VS f̂c,-, )=4[*L + fiL} 

•T V=\ 

f *2 
dzLL(-) 

da] , 
= E 

n 3 ^ 
^-2 ^-4 Z(K,-<*-fiYv;c_i-rXv-szv,J 

n 3 A 2 « 3 2 2n 

^ d2LL{^\ J 1 ^ 
daTd(3t 

= E\ 2 2il^V,T-\ ~llE(Yv,T-l)=^MYr_ 
\<~>r v=l y ^ r v=l 

' d2LL(-)^ 

daTdyt 
= E "2X —E^J=-r^ 

V ^ r K=I y ^ r v. 

f a2ii(-)^ ^ 
v dard5T j 

= E\ 
1 ^ 

,,=1 i < T , „ = i CT V ^ r v=l y 

f a 2 r , v ^ 

= £ 
V°V - 1 

1 ^ 
— 2 X ^ , - i =— HE{XV n>r_,) = 4 ( a ^ + &&,_,) 

y °V >-i 

^ a2iz(-)^ 
= E 

1 T2-

V ^ r v=l 
] > X , r - l ^ , r - l = ^ S ^ f e , r - l ^ ^ - l ) = 4 ( ^ Z r _ , ^ l + £z r_, &,_• ) 

J °r v=\ 

f d2LL(-)^ 

dyT8ST 
= E 

1 a
n 1 1 " 

V°"r v=l 
EZv,r-l^v = - I £ ( Z v , H ^ ) = 4(^Zt_1X + ^ r _ , ^ ) 

' r v=l 

' 82LL(-)^ ( 

v daTdcrT j 
= E 

2 ^£ 
t f r v . r - a - P Y v ^ - Y X y - 8 Z y ^ \ = — Y < E K r ) = " 

2 ^ 

J aT V=\ 

3LL(-) 
= E 

2 ^ — Z f e , -a-pYVT_x-YXv -5ZVT_X)YV^ =—^E(VVT YVTA)=Q 
J \UT V=l 

2 ^ 

K=l 

f a2 
dzLL(-) 

dyTd<rT 

( 1 W.v 

= £ — Z f e . r - a - ^ ^ - y ^ - ^ Z , ^ ) ^ l = — 2 > ( ^ x J = 0 
V°"r v=l 

2 ^ 

J °T V = 

125 



f d2LL(-)^ 

V ^STdaTj 

= E\ 2L^ 
_ 3 

£(YVtt -aT- fiTYv^ - yzXv - STZVtT_x )ZVT_ 

2 ^ 
££(FVirZ, iM)=0 
K=l 
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Appendix 3.B: Derivation of the asymptotic variance-covariance matrix 

of Lane's condensed temporal disaggregation scheme 

Lane's condensed temporal disaggregation scheme can be expressed as a 

regression form for each season z as 

YVJ=aT+{JTYVT_]+yTXv+VVJ (3.B1) 

where, v is the annual index, z is seasonal one (r = l,...,eo), and on is the number of 

seasons. Since Eq. (3.B1) is defined for each season, there are co equations can be 

considered among total co seasons. Xv denotes annual observation series in year v 

with sample mean jux and variance o\ Yv r , is monthly observation series in a 

season r - 1 with sample mean fiY and variance &l , and VVT is the error term 

with zero mean and variance <J2
T . Since VVT is normally distributed, monthly 

streamflows in year v and season z YVT follows a normal distribution with mean 

aT Xv +pv YVT_X +yT Xv and variance cy) . 

Let QT=(aT,/3T,yT), Yr =(F l r ,72r , . . . ,7„ r) ' and then from Eq.Q.Bl) the 

likelihood function £(•) = I(Y r;6T) and the resultant log-likelihood function 

LL(-) = LL(YT;QX) are 

2crr „=1 

LLQ = - ^ log(2^) - / i log( f f r ) - -L-JT( i ; i r -at-0TYv,-x ~Y,XV)2 

2 2crr v=1 
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1st derivative of log-likelihood LL(-) with respect to each parameter is given as, 

respectively, 

dJ^ = \±(Y^-aT-l3Jv^-yTXv)Xv 

ST? °r 7?\ 
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And 2nd derivatives with respect to parameters yield 
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Hence, asymptotic variance-covariance matrix of ML estimates of parameter sets 
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Appendix 3.C: Additional Figures and Tables 

(1) sample size = 25 (2) sample size = 50 
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Figure 3.C1: Distributions of critical drought magnitudes for different disaggregation 
models (SPC and LAST) and different parameter uncertainty consideration schemes in 
the temporal disaggregation (Asymptotic and Bayesian approaches) where S: SPC, L: 
LAST, A: Asymptotic approach, B: Bayesian approach, and N: natural uncertainty. 
Critical drought magnitudes are calculated with the demand level equal to MMF and the 
planning horizon of 98 years based on synthetic monthly streamflows disaggregated from 
simulated annual flows with parameter uncertainty incorporated as well using historical 
flows at Lee's Ferry in Colorado River. The upper, middle and lower line in the box 
means 75, 50, 25% quantile, respectively, and from the box the whisker extends to 90, 
10% quantile for each side. Two dots outside box mean 99% and 1% quantile values. 
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Figure 3.C2: Distributions of critical drought lengths for different disaggregation models 
(SPC and LAST) and different parameter uncertainty consideration schemes in the 
temporal disaggregation (Asymptotic and Bayesian approaches) where S: SPC, L: LAST, 
A: Asymptotic approach, B: Bayesian approach, and N: natural uncertainty. Critical 
drought lengths are calculated with the demand level equal to MMF and the planning 
horizon of 98 years based on synthetic monthly streamflows disaggregated from 
simulated annual flows with parameter uncertainty incorporated as well using historical 
flows at Lee's Ferry in Colorado River. 
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Figure 3.C3: Distributions of critical drought intensities for different disaggregation 
models (SPC and LAST) and different parameter uncertainty consideration schemes in 
the temporal disaggregation (Asymptotic and Bayesian approaches) where S: SPC, L: 
LAST, A: Asymptotic approach, B: Bayesian approach, and N: natural uncertainty. 
Critical drought intensities are calculated with the demand level equal to MMF and the 
planning horizon of 98 years based on synthetic monthly streamflows disaggregated from 
simulated annual flows with parameter uncertainty incorporated as well using historical 
flows at Lee's Ferry in Colorado River. 
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Figure 3.C4: Distributions of critical drought magnitudes for different disaggregation 
models (SPC and LAST) and different parameter uncertainty consideration schemes in 
the temporal disaggregation (Asymptotic and Bayesian approaches) where S: SPC, L: 
LAST, A: Asymptotic approach, B: Bayesian approach, and N: natural uncertainty. 
Critical drought magnitudes are calculated with the demand level equal to MMF and the 
planning horizon of 59 years based on synthetic monthly streamflows disaggregated from 
simulated annual flows with parameter uncertainty incorporated as well using historical 
flows at St. Lawrence River. 
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(1) sample size = 25 (2) sample size = 50 

S-N L-N S-A S-B L-A L-B S-N L-N S-A S-B L-A L-B 

(3) sample size = 75 (4) sample size = 100 

S-N L-N S-A S-B L-A L-B 

Figure 3.C5: Distributions of critical drought lengths for different disaggregation models 
(SPC and LAST) and different parameter uncertainty consideration schemes in the 
temporal disaggregation (Asymptotic and Bayesian approaches) where S: SPC, L: LAST, 
A: Asymptotic approach, B: Bayesian approach, and N: natural uncertainty. Critical 
drought lengths are calculated with the demand level equal to MMF and the planning 
horizon of 59 years based on synthetic monthly streamflows disaggregated from 
simulated annual flows with parameter uncertainty incorporated as well using historical 
flows at St. Lawrence River. 

135 



(1) sample size = 25 (2) sample size = 50 
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Figure 3.C6: Distributions of critical drought intensities for different disaggregation 
models (SPC and LAST) and different parameter uncertainty consideration schemes in 
the temporal disaggregation (Asymptotic and Bayesian approaches) where S: SPC, L: 
LAST, A: Asymptotic approach, B: Bayesian approach, and N: natural uncertainty. 
Critical drought intensities are calculated with the demand level equal to MMF and the 
planning horizon of 59 years based on synthetic monthly streamflows disaggregated from 
simulated annual flows with parameter uncertainty incorporated as well using historical 
flows at St. Lawrence River. 
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Table 3.CI: Coefficient of variations of simulated reservoir statistics (Lee's Ferry in 
Colorado River, demand level = MMF) 

sample 
size 

25 

50 

75 

98 

25 

50 

75 

98 

25 

50 

75 

98 

25 

50 

75 

98 

S-N 

Storage capacity 

0.44 

0.44 

0.44 

0.44 

Critical drought i 

0.34 

0.34 

0.34 

0.34 

Critical drought 1 

0.32 

0.32 

0.32 

0.32 

L-N 

0.43 

0.43 

0.43 

0.43 

magnitude 

ength 

0.35 

0.35 

0.35 

0.35 

0.32 

0.32 

0.32 

0.32 

Critical drought intensity 

0.04 

0.04 

0.04 

0.04 

0.04 

0.04 

0.04 

0.04 

S-A 

0.76 

0.66 

0.61 

0.56 

0.48 

0.43 

0.41 

0.39 

0.43 

0.39 

0.37 

0.36 

0.05 

0.05 

0.05 

0.04 

S-B 

0.80 

0.68 

0.62 

0.57 

0.49 

0.44 

0.40 

0.39 

0.43 

0.39 

0.36 

0.35 

0.06 

0.05 

0.05 

0.05 

L-A 

0.75 

0.64 

0.60 

0.57 

0.49 

0.43 

0.41 

0.39 

0.43 

0.38 

0.36 

0.35 

0.05 

0.05 

0.05 

0.05 

L-B 

0.82 

0.67 

0.62 

0.58 

0.51 

0.45 

0.41 

0.41 

0.45 

0.40 

0.37 

0.36 

0.05 

0.05 

0.05 

0.05 
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Table 3.C2: Coefficient of variations of simulated reservoir statistics (St. Lawrence River, 
demand level = MMF) 

sample 
size 

15 

30 

45 

59 

15 

30 

45 

59 

15 

30 

45 

59 

15 

30 

45 

59 

S-N 

Storage capacity 

0.61 

0.61 

0.61 

0.61 

Critical drought i 

0.65 

0.65 

0.65 

0.65 

Critical drought 1 

0.52 

0.52 

0.52 

0.52 

L-N 

0.62 

0.62 

0.62 

0.62 

magnitude 

ength 

0.69 

0.69 

0.69 

0.69 

0.54 

0.54 

0.54 

0.54 

Critical drought intensity 

0.12 

0.12 

0.12 

0.12 

0.12 

0.12 

0.12 

0.12 

S-A 

1.12 

1.02 

0.88 

0.77 

1.75 

1.67 

1.26 

0.92 

1.06 

0.91 

0.80 

0.68 

0.21 

0.18 

0.15 

0.14 

S-B 

1.43 

1.11 

0.94 

0.87 

2.44 

1.75 

1.43 

1.13 

1.35 

1.03 

0.87 

0.74 

0.26 

0.19 

0.16 

0.15 

L-A 

1.07 

1.04 

0.83 

0.78 

1.67 

1.79 

1.04 

0.96 

1.03 

0.93 

0.75 

0.69 

0.21 

0.18 

0.15 

0.14 

L-B 

1.48 

1.16 

0.97 

0.83 

2.57 

1.96 

1.55 

1.06 

1.41 

1.06 

0.86 

0.75 

0.27 

0.20 

0.16 

0.15 
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Figure 3.C7: Distributions of critical drought magnitudes for different uncertainty 
consideration cases in annual-monthly flow generation. Storage capacities are calculated 
with the demand level of MMF and the planning horizon of 98 years (SPC, Bayesian 
approaches, Lee's Ferry in Colorado River) 
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Figure 3.C8: Distributions of critical drought lengths for different uncertainty 
consideration cases in annual-monthly flow generation. Storage capacities are calculated 
with the demand level of MMF and the planning horizon of 98 years (SPC, Bayesian 
approaches, Lee's Ferry in Colorado River) 
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Figure 3.C9: Distributions of critical drought intensities for different uncertainty 
consideration cases in annual-monthly flow generation. Storage capacities are calculated 
with the demand level of MMF and the planning horizon of 98 years (SPC, Bayesian 
approaches, St. Lawrence River) 
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Figure 3.C10: Distributions of critical drought magnitudes for different uncertainty 
consideration cases in annual-monthly flow generation. Storage capacities are calculated 
with the demand level of MMF and the planning horizon of 98 years (SPC, Bayesian 
approaches, St. Lawrence River) 
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Figure 3.C11: Distributions of critical drought lengths for different uncertainty 
consideration cases in annual-monthly flow generation. Storage capacities are calculated 
with the demand level of MMF and the planning horizon of 59 years (SPC, Bayesian 
approaches, St. Lawrence River) 
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Figure 3.C12: Distributions of critical drought intensities for different uncertainty 
consideration cases in annual-monthly flow generation. Storage capacities are calculated 
with the demand level of MMF and the planning horizon of 59 years (SPC, Bayesian 
approaches, St. Lawrence River) 
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Figure 3.C13: Distributions of storage capacities for different uncertainty consideration 
cases in annual-monthly flow generation. Storage capacities are calculated with the 
sample size of 50 years and the planning horizon of 98 years (SPC, Bayesian approaches, 
Lee's Ferry in Colorado River). Subscript "h" means the historical. 
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Figure 3.C14: Distributions of critical drought magnitudes for different uncertainty 
consideration cases in annual-monthly flow generation. Storage capacities are calculated 
with the sample size of 50 years and the planning horizon of 98 years (SPC, Bayesian 
approaches, Lee's Ferry in Colorado River). Subscript "h" means the historical. 
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Figure 3.C15: Distributions of critical drought lengths for different uncertainty 
consideration cases in annual-monthly flow generation. Storage capacities are calculated 
with the sample size of 50 years and the planning horizon of 98 years (SPC, Bayesian 
approaches, Lee's Ferry in Colorado River). Subscript "h" means the historical. 
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Figure 3.C16: Distributions of critical drought intensities for different uncertainty 
consideration cases in annual-monthly flow generation. Storage capacities are calculated 
with the sample size of 50 years and the planning horizon of 98 years (SPC, Bayesian 
approaches, St. Lawrence River). Subscript "h" means the historical. 

148 



20 

15 

10 
o 

(1) demand level = 100% MMF 

Casel Case2 Case3 Case4 

20 

15 

10 

(1) demand level = 95% MMF 

Casel Case2 Case3 Case4 

(1) demand level = 90% MMF (1) demand level = 85% MMF 

o 
W 

Casel Case2 Case3 Case4 Casel Case2 Case3 Case4 

Figure 3.C17: Distributions of storage capacities for different uncertainty consideration 
cases in annual-monthly flow generation. Storage capacities are calculated with the 
sample size of 50 years and the planning horizon of 59 years (SPC, Bayesian approaches, 
St. Lawrence River). Subscript "h" means the historical. 
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Figure 3.C18: Distributions of critical drought magnitudes for different uncertainty 
consideration cases in annual-monthly flow generation. Storage capacities are calculated 
with the sample size of 50 years and the planning horizon of 59 years (SPC, Bayesian 
approaches, St. Lawrence River). Subscript "h" means the historical. 

150 



(1) demand level = 100% 

• 

• • 
1 ': ' :

 J *-' ' 
—$~ ~~i~ •"•» 

MMF 

• 

^ r -
Casel Case2 Case3 

t 
~~~* 

cd
l 

10 

8 

6 

4 

2 

n 

(1) demand level = 95% 

• 

ft • 

—*— —#— —#— 

MMF 

• 

-

1 

Case4 Casel Case2 Case3 Case4 

(1) demand level = 90% MMF 

Casel 

(1) demand level = 85% MMF 

• 

.=£=, 

* 

' -W"" 

* 

-j-

' " T T " ' 

\ 

T" 
"~r" 

f 

c
d

l/
 

8 

6 

4 

2 

0 

« 

• " 

* 

* 

» 

T 
* 

# 
-

-

-

T 
* 

Case2 Case3 Case4 Casel Case2 Case3 Case4 

Figure 3.C19: Distributions of critical drought lengths for different uncertainty 
consideration cases in annual-monthly flow generation. Storage capacities are calculated 
with the sample size of 50 years and the planning horizon of 59 years (SPC, Bayesian 
approaches, St. Lawrence River). Subscript "h" means the historical. 
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Figure 3.C20: Distributions of critical drought intensities for different uncertainty 
consideration cases in annual-monthly flow generation. Storage capacities are calculated 
with the sample size of 50 years and the planning horizon of 59 years (SPC, Bayesian 
approaches, St. Lawrence River). Subscript "h" means the historical. 
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Chapter IV 

PARAMETER UNCERTAINTY IN SPATIAL DISAGGREGATION 

Abstract: Parameter uncertainty considerations might be useful when using synthetically 

generated streamflows in the design or management of hydrologic structures. Parameter 

uncertainty is quantified in two ways; one using the asymptotic distribution of the 

parameter estimates and the other using Bayesian inference. A simple Valencia-Schaake 

disaggregation model is implemented to generate synthetic streamflows at sub-stations 

from the given key-station flows. In order to incorporate parameter uncertainty into the 

data generation, parameter sets of the disaggregation model are replaced with those 

sampled from the derived asymptotic distribution or from the Bayesian posterior 

distribution. Parameter uncertainty of given input variables of the disaggregation model 

is also taken into account and combined effects of two different kinds of parameter 

uncertainty are examined as well. As an example, 5000 different streamfiow sets are 

generated for different sample sizes based on historical annual streamfiow data at three 

sites in the Colorado River Basin, and parameter uncertainty effects are evaluated and 

compared for different scenarios based on generated statistics, as well as reservoir and 

drought related statistics. As a result, parameter uncertainty shows considerable effects 

on the variability of calculated reservoir and drought statistics especially for relatively 

153 



small sample sizes (equal or less than 50), and it is still visible for sample size of 100 that 

has been traditionally thought of as a large sample size. The parameter uncertainty 

effect associated with input variables (key-station flows) of a disaggregation model on 

generated streamflows is shown to be dominant over that from the spatial disaggregation 

model. Moreover, the effect of parameter uncertainty of disaggregation models is also 

reported when combined with parameter uncertainty in the input variables generation. 

4.1 Introduction 

The disaggregation model has been proposed as an alternative to the direct 

stochastic model because of its simple structure and the good ability to preserve relevant 

statistical properties of interest. Several disaggregation models and their applications 

are available in the literature based on either the parametric or non-parametric sense 

(Valencia and Schaake, 1973; Mejia and Rousselle, 1976; Tao and Delleur, 1979; Lane, 

1979; Salas et al , 1980; Todini, 1980; Stedinger and Vogel, 1984; Grygier and Stedinger, 

1988, 1990; Oliveira et al., 1988; Salas et al., 2000; Koutsoylannis, 2001; Kumar et al, 

2001). For example, Salas et al. (1980) applied the disaggregation model in the spatial 

case by disaggregating the total annual precipitation over an area into several sub-areas 

and showed that the model performed well in preserving statistical properties. 

The Valencia and Schaake (VS) model applied to spatial disaggregation may be 

written as: (Valencia and Schaake, 1973) 

Y = AX + B E , (4.1) 
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where Y is the dependent vector of the sub-station flows to be generated and X 

represents the key-station flows. X and Y are assumed to.be normally distributed 

with zero means. E is an error term with a zero mean vector and a unit variance-

covariance matrix. A and B are the parameter matrices that may enable preserving 

cross correlations between key- and sub-stations, as well as correlations among sub

stations. 

In LAST package, Lane (1979) proposed the spatial disaggregation model which 

is identical to the temporal disaggregation model by the Mejia and Rousselle model 

(1976) where the difference with the temporal model is the definition of variables in the 

model. The Mejia- Rousselle's scheme can be given as: 

Y = AX+BE + CZ. (4.2) 

Instead of defining X, Y as normally distributed annual and seasonal random variables, 

X,Y are treated as key-station and sub-station streamflows to be generated, and Z is a 

column matrix of the sub-station annual flows in the previous year. Similar to the 

temporal disaggregation model, this spatial model could preserve cross correlations over 

key-stations, over sub-stations, between key-stations and sub-stations, as well as lag-1 

correlations among sub-stations. 

These spatial disaggregation models could be staged for data generation of the 

complex real river systems (Grygier and Stedinger, 1990; Salas et. al, 2000). 

Depending on the basin of interest and the underlying problem, key-stations may be one 

or several sites downstream, or they may be index stations that are a group of sub-stations. 

Generated streamflows at key-stations are disaggregated into sub-stations, and then the 

sub-station flows are further disaggregated into sub-substations and so on, finally to the 
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tributary. Grygier and Stedinger (1990) developed the SPIGOT package which is 

intended to simulate a multivariate synthetic series based on the staged disaggregation. 

As a first step, seasonal disaggregation of aggregated annual flows into aggregated 

seasonal flows or into individual seasonal flows at key stations is performed, and then it 

is extended to seasonal flows at sub-stations using the spatial disaggregation model 

proposed by Stedinger and Vogel (1984). Grygier and Stedinger (1988) claimed that 

this approach might be able to reproduce concurrent cross correlations of seasonal flows 

rather than the LAST model, but not for annual flows at the various key stations, 

explicitly. 

Based on Valencia-Schaake's model, Stedinger and Vogel (1984) suggested the 

spatial disaggregation model be expressed in a linear regression form with correlated 

residual terms. In their model, the relationship between monthly flows at sub-stations 

and key-stations can be expressed in terms of aggregated monthly flows and serially 

correlated innovations: 

Yt =A+BZ,+Wl, (4.3) 

where Yt is the normally transformed monthly flows at the sub-stations and Z, is the 

aggregated normally transformed monthly flows at key-stations in the current year t. 

Also, A and B are the parameter matrices, and the residual term Wt is given in the 

autoregressive form as: 

W,=CWt_,+Vt, (4.4) 

where Vt is the independent normally distributed residuals with zero mean and the 

specific spatial variance-covariance matrix that could explain the month-month 
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correlations in transformed monthly flows at each site. Parameter matrix C is a 

diagonal matrix, which suggests that only lag-1 auto-correlations could be reproduced in 

generated annual streamflows at sub-stations. 

The condensed temporal disaggregation model might be useful for of a spatial 

disaggregation case in the complex system (Salas et al., 2000). For example, Lane's 

condensed temporal disaggregation model can be written for the spatial disaggregation of 

annual flows as: (Lane, 1979) 

Yt
{,) = A{,) X + B{,) £<° + CU)Y$ , (4.5) 

in which Yt
v),X ,^'1

),£, ( ' ) ,A('\B{'\ and C(0 are defined in a way similar to Eq.(4.2). 

The subscript t indices the current year and the superscript (/) denotes the 

corresponding site /. After generating flows at each site, an adjustment procedure is 

required to ensure the additivity constraints due to the separate site by site generations 

and the normality assumption of flows. 

As with the temporal disaggregation case which was discussed in the previous 

chapter, the uncertainty issue regarding estimated parameters of disaggregation models 

also arises because the available historical sample is of limited size. Grygier and 

Stedinger (1990) suspected that the parameter uncertainty effect in the spatial 

disaggregation to be relatively small compared with that of the annual or seasonal basin 

flows at a single site, and they proposed that the annual to seasonal disaggregation model 

should be used for incorporating parameter uncertainty into the complex multivariate 

annual to seasonal disaggregation. However, extensive exploration of the effect of 

parameter uncertainty incorporation into the spatial disaggregation has not been clearly 

made. 
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In this chapter, a systematical comparison of parameter uncertainty incorporation 

into the spatial disaggregation model is provided. The simple spatial disaggregation 

model by Valencia and Schaake (1973) is assumed as the underlying model for the 

streamflows generation. Based on the multiple regression frameworks, asymptotic 

distribution and Bayesian posterior distribution for spatial disaggregation model 

parameters are theoretically derived in order to quantify parameter uncertainty. Several 

sites in the Colorado River Basin are chosen for the streamflows simulation with 

parameter uncertainty incorporated, and the impacts of parameter uncertainty are 

investigated in terms of statistical properties of generated flows, as well as related design 

variables. In addition, the condensed disaggregation model by Lane (1979) is applied 

for the sake of comparison where site-by-site flow generations are first performed by the 

condensed model and generated sub-site flows are adjusted to come up with the key

station flows. 

4.2 Parameter estimation in spatial disaggregation 

4.2.1 Traditional parameter estimation 

Generally, the method of moments estimates of the VS model are given from the 

sample moments associated with historical annual flows at key-stations and sub-stations 

by: 

A = SXY Sx'x (4.6) 

BB' = SY Y-ASX Y , (4.7) 
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where p is the number of sub-stations, q is the number of key-stations, n is the 

sample size, S x x is the qxq historical sample covariance matrix among key-stations, 

SYY is the pxp historical sample covariance matrix among sub-stations, SXY is the 

qxp historical sample covariance matrix between key-stations and substations, and 

S'XY is the transpose of SXY. S x x , SYY, and SXY are expressed by: 

S x x = - L
T Z ^ , sYY=J-jryjy;, sw=-Mh*jyi> (4.8) 

where pxl vector yi denotes concurrent sub-station flows at year j with zero 

means and q x 1 vector Xj is concurrent key-station flows at year j with zero means. 

Assuming that B is a low triangular matrix, the matrix equation BB'=D can be 

solved by using the square root method, which requires that the variance-covariance 

matrix of error term D is a positive semi-definite matrix (Salas et al., 1980). 

4.2.2 Maximum likelihood estimation 

In the basic VS model, key- and sub-sites flows Y and X are required to have 

the zero means. In order to allow for parameter uncertainty of the historical mean 

through the model, the VS model of Eq.(4.1) is rewritten with the sample mean of 

historical flows added into the model as: 

Y= X 0 + V , (4.9) 

where Y , X ,0 , V have the dimension of nx p ,nx(q + \) ,(q + \)xp , and nxp , 

respectively. A sub-station flows matrix is defined by Y = (y],y2,...,y j,...,y„)' where 
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y7- is a l x p vector defined by yJ• = {}>) ,y)• ,...,yf ) for year j and the superscript 

indexes the sub-station flows. Also, X = (x]5x2,...,x.,...,x„)' is the newly defined key 

station flows matrix (actually, this X is different from Eq.(4.1)), where \x(q + Y) 

dimensional vector Xj^^xy ,x(j',...,xy') shows key-station flows for year j (Note 

again that in this model key-station and sub-station flows X and Y are not required to 

have zero means as was the case in Eq.(4.1)). An unknown parameter 0 is given by 

& = (6l,02,...,0J,...,0p), where 6j. = (a7,/?)'\/?)^,...,/?f})' and a residual matrix is 

given by V = (v ],v2,...,v7,...,vn)', where \ j =(vy ,vy ,...,vy'y is a l x p random 

vector. It is assumed that v- is independent and normally distributed with \xp 

dimensional zero means and the positive definite variance-covariance matrix 

var(v ) = E 
j ' PXP ' 

v-MVN^O,?.^). (4.10) 

Then, the likelihood function of v given X, Y , L(\ | X, Y; @, E) is easily given by: 

L(y | X, Y;0,E) = Y\f(^) = Qny""2 \L\~nl exp 
;"=1 

1 n 

M 

n f n ^ 
From the properties of a trace of a matrix, it follows that ^ v . L - 1 v ' =tr 2r '^Tv ;v' 

i=i V '=i ) 

= ^(E-1V'v), thus 

L{\ | X, Y;0, E) = {27iynpn \Z\'"12 
exp 

1 
frE_1W (4.11) 

and the log-likelihood function LL(\\ X,Y;0,L) is derived by: 
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ZZ(v|X,Y;0,E) = logZ(v|X,Y;0,i:) = - ^ l o g ( 2 ^ ) - - l o g | 2 : | - - r r L M V ' V (4.12) 

where the first derivative with respect to 0 follows: 

5ZZ(v|X,Y;0,L)_ d f l_frl:-W^ 

5 0 
1 5 
2 5 0 

50 
}__d_ 
2 50 

*r(L_ 1(Y-X0)'(Y-X0)) 

^ ( E _ 1 Y ' Y - L V X 0 - L^0'X'Y + E-'Q'X'X©). (4.13) 

A derivative of matrix Q,vt with respect to P,v, is defined by — = — ®Q so that 
,*, dP dV 

the (i,j) element of the derivative is shown as: 

dQ 

d? 

dp,, 

dP„ 

Squ 

dqrs 
dP„ 

Using the properties of derivatives regarding a scalar function of a matrix for derivative 

terms in Eq.(4.13) gives: 

— frflT'Y'XoW X'YIT1, 
50 V ; 

50 
rr(L"10'X'Y)=X'YE-1

: 

— ^ ( L _ 1 0 ' X ' X 0 ) = —rr(0L- 1 0 'X 'x)= X'X00_1 + X'X0(E"') ' = 2X'X0 L"1. 
50 V ; 50 V ' 

Thus, Eq.(4.13) is simplified as: 

5ZZ(v|X,Y;0,S) = x , y L_, _ X , X 0 L_ 

50 
(4.14) 

Maximum likelihood estimators of 0 can be derived by setting Eq.(4.14) equal to zero, 

which yields: 
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0 = (X'X)"1X'Y, (4.15) 

which is equivalent to the general least square estimators. Let A = IT1 for 

convenience in derivation, and then differentiating Eq.(4.12) with respect to A gives: 

amv|x,Y,e,s) =5A( logiAlLIA(frAV 'v) 
8A 2dA v 6 | | ; 2 8AK ' 

n ;(2|A|A-' - |A|c/ /f lg(A" l))--(2UTU-J/ag(W)), (4.16) 

where diag(-) is defined by the vector consisting of the elements of the main diagonal 

of a square matrix. Since diag(A~ ) = diag(L) = n~ diag(V'\) , setting the above 

equation equal to zero shows: 

au(T|x,Y,e,g)_ | |A.,_^ = 0 (417) 

9A 

and thus maximum likelihood estimates of £ becomes: 

£ = A-1 =-V*V. (4.18) 
n 

In practical consideration of the spatial disaggregation model, when y. and \ i are 

normally distributed and the sum of yj is expected to be x j3 D becomes the singular 

matrix, which might not enable one to incorporate the parameter uncertainty. Thus, a 

constraint that D should be positive definite would be required for the consideration of 

parameter uncertainty. To avoid the singularity of the variance-covariance matrix in 

the actual application, transformation of real flows will be implemented and the 

corresponding adjustment procedure will be followed to obtain the generated flows 

through the disaggregation model. 
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4.3 Parameter uncertainty consideration 

In order to quantify the uncertainty of parameters in the spatial disaggregation 

model, sampling distributions were derived using large sample theory and Bayesian 

inference. As addressed before, two possible parameter estimators of VS disaggregation 

models are available, and those estimates might be different. For parameter uncertainty 

consideration, a maximum likelihood estimator (MLE) will be used instead of a method 

of moments estimator because MLE (least square estimator) is asymptotically efficient. 

4.3.1 Asymptotic distribution of the parameters 

A p x p dimensional matrix W is distributed as a p - dimensional central 

Wishart distribution with scale matrix £ and nd degrees of freedom, i.e., 

W ~ Wp(E,nd), if and only if W = UU' for some matrix U = (Uj,ii2,...,u )' where 

pxl random vector u ~ MVN (0,T, ) (Wishart, 1928). It is generally regarded as 

the multivariate extension of the chi square distribution. The expectation matrix £(W) 

and the dispersion matrix £)(W) which is the variance-covariance matrix of vectorized 

W are given by (Kollo and Rosen, 2005): 

E(W) = E(uu')= ndXpxp (4.19) 

D(W) = E[vec(u)vec'(u)]=nd(lp2 + KpJ(Tpxp ®XpJ (4.20) 

where, vec(-) is a vectorization operator from Rpxc' to Rpqx] and K is defined as 
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the commutation matrix of the p x p dimension consisting of p x p blocks which 

has the pxp sub matrix with the element of kJt=\ or otherwise 0 in an (i,j) block. 

For example, 

KP*P~ 

1 

0 

0 

p 
0 

0 

0 

0 ; 

o j ••• 

0 ; 

0 

1 

0 

0 0 o i 

0 

0 

0 

p 
0 

0 

0 

... 1 

... o 

... o 

0 

0 

0 

0 

0 

0 

... o 

... o 

0 1 

From Eqs.(4.9) and (4.18), an unbiased variance-covariance matrix estimator of 

n 

£ is given by 'L = (n-nciy
l'£\ix'i where nd = n-(q +1); further E converges in 

probability to £ . Also, by the central limit theorem, 4^i(vec(t - L)) converges in 

distribution to a p2 dimensional multivariate normal distribution with zero mean vector 

and variance-covariance matrix DCL) =11 2 +K„ „ )(Lnv„ ® Lnvn) (See Kollo and 

\ / \ P p,p i \ PXP pxp / v 

Rosen, 2005), i.e., 

^vec(±pxp-i:J^^MVNpi(0p2, a ^ K ^ ) ^ ® ! ^ ) ) (4.21) 

Hence, the asymptotic distribution of the vectorized sample variance-covariance matrix is 

given by: 
vec(±)-AMVNp2(vec(i:pxp),-(lp2 + K „ ) ( E „ ® I W ) \ (4.22) 

\ n j 
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where AMVN means an asymptotic multivariate distribution. 

Recall Eq.(4.14) as: 

dZX(v|X,Y;Q,S) = x , y ^ _ X>XQ ^. 

Thus, the second derivative of the loglikelihood function is given by: 

a2ZZ(v|X,Y;0,i:) 

30 2 

• X'X0Z-' = -2T1 <g> (X'X)' = - IT 1 <8> (X'X) (4.23) 
3 0 

The information matrix for parameter 0 can be derived by taking the 

expectation of the negative of the second derivative shown above, of which the inverse 

could be defined as the Cramer Rao lower bound CRLB , that is: 

-i 
CRLB(&)= E _ d ^ ( v | X , Y ; Q , S ) = ^_, ^ ^ ^ = ^ ^ ^ ^ 

The CRLB is a lower bound for unbiased estimators and gives the variance-covariance 

matrix of the maximum likelihood estimators for large samples. Thus, the asymptotic 

distribution of the maximum likelihood parameter estimator 0 becomes: 

vec(0) ~ AkTVNqxp(vec(0), L ^ <E>(X'X)^). (4.24) 

For example, the relationship of derived asymptotic distributions of the spatial 

disaggregation parameter estimates with asymptotic distributions of a temporal 

disaggregation model (which were provided in the previous chapter) will be briefly 

examined. Recall the SPC spatial disaggregation model in the multivariate regression 

form as: 

YB
r
xl= X„x40r

4x] +V„r
xl, for each season r = 2,...,12 , 
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where the subscript denotes the dimension of corresponding matrix, Yn
r
x] 

= U , r »y 2 , r — ' J v l > V «x l = [\r > V2,r » - » V J » ©4x1 = ( « r , A > X, , # , ) , a n d 

x„.„ = 

r-1 
1 Ar-1 X\ HW^Us 

.v=l 
r - 1 

1 yi.v-1 X2 Z ^ ' ^ 2 , , 
i-1 

r - 1 

1 >V-1 X« EW^",* 
i - l 

1 A r - 1 X l Z l 

^ ^2,r- l •X!2 Z 2 

1 JV r - l Xn Zn 

1 " 
Since p = 1, the asymptotic distribution of (Tv = X v , r

v ' r directly follows from n-A /=i 

Eq.(4.22) as: 

<r* -AN 
( ? \ 

V « J 
(4.25) 

where A/V denotes asymptotic normal distribution. Also, from Eq.(4.24) the 

asymptotic distribution of a parameter matrix 0 is given by: 

0T ~ AMVN4(&\ <j2
v (X'X)"')= AMVN4 0 r , ^ H 

V n 
(4.26) 

J 

where 

H 

^Y(r-l) MX(T) MZ(r (O 

+ MY(T-1) G X(r-l) ^ A*r(r-1) L j 'X(r)r(r-l) + MX(T)/^Y(T-\) ^Zi^Yir-l) + MZ(T)MY(T-} 

°V( r )Z( r ) + MX(T)MZ(T) 
2 2 

V symm. 
2 2 

^ ( r ) + / / Z ( r ) 

Both Eq.(4.25) and Eq.(4.26) are equivalent to the asymptotic distributions of parameter 

estimates of the SPC temporal disaggregation model given in the previous chapter. 
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4.3.2 Bayesian inference on parameters of the spatial disaggregation 

Recall Eq.(4.9) as: 

Y = X 0 + V , 

where rows of V are independently distributed, each with an p dimensional zero 

vector and variance-covariance matrix £ . Under this assumption, the probability 

density function for Y given X ,0 and £ is: 

/7(Y|X,0,E)oc|ErB/2exp - - r r ( L - , ( Y - X 0 ) ' ( Y - X 0 ) ) (4.27) 
2 

where (Y - X0)'(Y - X0) can be newly defined by using sample statistics and least 

square estimates of parameters as (Y - X0)'(Y - X0) = M + (0 - 0)'X'X(0 - 0 ) , 

where the least square estimates matrix M = (Y - X0)'(Y - X0) and 0 = (X'X)"1 X'Y. 

Then, the likelihood function for 0 and £ follows: 

Z(0,L|X,Y)oc|5:r" /2exp - ^ ( M E " 1 ) - - r r ( ( 0 - 0 ) ' X ' X ( 0 - 0 ) E " 1 ) (4.28) 

The invariance theory that probability statements on observable random variables should 

remain invariant under changes in the parameterization of the problem (Jeffery, 1961) can 

give one an idea about the prior distribution of a parameters sets p(&, £ ) , such that 

p(&) is a constant and p(L) °c \L\ . Since the prior distributions of 0 and L 

are assumed to be independent, the joint prior distribution of parameters is obtained as a 

diffuse prior probability density function by: 

p(0,E) = p(0)/>(£) «|sr ( '+ 1 ) / 2 (4-29) 
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Combining Eq.(4.28) and Eq.(4.29) yields the joint posterior pdf of 0 and E as: 

/?(0,E| X,Y) oc E exp --tr (ME-1 )--tr((® - 0) 'X'X(0 - 0)E_1) 

I | - (n+p+l ) /2 

E x exp -tr (ME - 1)- - (vec@ - vec&)'(L ® (X'X)"1 )_1 (vec0 - vec0) 

(4.30) 

where vec0 is a vectorized form of the parameter matrix 0 , vec@ =vec(0) 

= {0[,0'2,...,e'y . From />(0,E| X,Y) = p ( 0 | X,Y,E)p(E| X,Y), 

p(L|X,Y)oc|zr("+/,""+1)/2exp -fr (ME-1 ) (4-31) 

• 9 / 2 

^ (0 |X ,Y ,E) oc E " e x p - - (vec& - vec0)'(E ® (X'X)"1 )_1 (vec© - vec0) 

(4.32) 

Since Eq.(4.31) is the form of inverse central Wishart distribution, then the posterior 

distribution of E given X, Y can be given by: 

p(?.\X,Y)~IW(M,v), (4.33) 

where v = n-(p + q) +1 is the degree of freedom and IW denotes inverse Wishart 

distribution. Also, from Eq.(4.32), the conditional posterior pdf of 0 given X,Y,E 

is a multivariate normal distribution with mean vec@ and covariance matrix 

E®(X'X)_1 expressed by: 

p(vec& I X,Y,E) ~ MVNqxp(vec0, E „ <S>(X'X ) ^ ) (4.34) 

which has the equivalent form as the asymptotic distribution of Eq.(4.24). Note that in 

large samples the posterior distribution of parameters 0 will be approximately normal 
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with mean 0 , the maximum likelihood estimates, and variance-covariance matrix 

d2ZZ(v|X,Y;0,E) 

50 2 

- i 

©=© 

(Zellner, 1971). The assumption that E is replaced by E is partially justified if the 

sample size is large enough realizing that E converge in probability E , and thus 

Eq.(4.34) can be regarded as the asymptotic posterior distribution of 0 rather than a 

fixed sample size posterior distribution. When E is unknown, the fixed sample size 

posterior distribution of 0 needs to be derived from Eq.(4.30). Using E_1 instead of 

E in Eq.(4.30) yields: 

p(0,2T' | X, Y) oc E 
_1|(«-(p+l))/2 

exp •-^(ME^)--fr((0-0)'X'X(0-0)E"1) 

(4.35) 

and by integrating (4.34) with respect to E ' gives (Zellner, 1971) 

p(& | X, Y) oc M +(0 - 0) 'X'X(0 - 0 ) 
nil 

(4.36) 

which is thought of as a matric-variate extension of the t distribution (Box and Tiao, 

1973) or a generalized multivariate t distribution (Zellner, 1971). It is not possible to 

express the distribution of 0 as a multivariate t distribution, but it can be simplified 

to a multivariate t distribution when either p or q is equal to 1. 
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4.4 Application to Colorado River System 

4.4.1 Parameter uncertainty effect based on historical key-station flows 

As a way of examining uncertainty effects on the synthetic annual streamflows 

regarding a spatial disaggregation model, a simulation experiment will be performed 

using historical annual streamflows data sets in the Colorado River Basin: one key-station 

and three sub-stations with the period of 1905-2002 (USBR, 2007). Figure 4.1 shows 

the locations of adopted stations in the Colorado River Basin, where the key station (key) 

is located at the Colorado River main stream above Cisco, Utah (USGS site number: 

09180500, site 8), and three sub-stations are: sub-station 1 at Colorado River main stream 

above Cameo, Colorado (09095500, site 2), sub-station 2 at Gunnison River above Grand 

Junction, Colorado (09152500, site 6), and sub-station 3 at Dolores River near Cisco, 

Utah (09180000, site 7). Table 4.1 illustrates that the averaged proportion of each 

historical sub-station flow to the historical key-station flow is 53%, 35%, and 12%, 

respectively, and calculated cross correlations exhibit close relationships among either the 

key-station and sub-stations or sub-stations themselves. A skewness test of historical 

flows in all stations was performed with a 5% confidence level to ensure the normality 

assumption for the VS disaggregation model, and power transformations were applied to 

all four stations. ML parameter estimates of the VS disaggregation model are obtained 

as: 

0 = 
2224 -24705 36 

0.10 2.47 0.01 
2 = 

168497 -1121408 -35385 

-1121408 30333242 174491 

-35385 174491 11441 
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which shows that sub-station 1 flows is negatively correlated with those of other sub

stations. Based on these parameter estimates, 5,000 different sets of synthetic annual 

flows in the sub-stations with the same sample size as historical flows will be 

disaggregated from the key-station flows. 

In a traditional spatial disaggregation procedure, key station flows which are 

used as an input variable are separately generated outside the disaggregation structure. 

Several stochastic models are available for generating input variables as in the usual case 

of annual streamflows generation. It is general that generated annual flows will have 

the variability caused by the error term in the generation model even without parameter 

uncertainty incorporated, and this variability is called by a natural uncertainty effect. 

Once the generated annual flows are applied into the disaggregation model, this natural 

uncertainty will probably propagate into sub station flows. It has been already shown in 

the previous chapter that the natural uncertainty effect of the annual flow generation on 

basic statistics of generated monthly flows (means, standard deviations) and related 

design variables are larger than the temporal disaggregation parameter uncertainty effect. 

In order to eliminate any uncertainty effect from input variables and to report the inherent 

uncertainty effect of the spatial disaggregation model, input variables are initially 

assumed as historical flows in the key station. 

Derived asymptotic and posterior distributions are employed to quantify the 

parameters uncertainty of the spatial disaggregation. In each generation (out of total 

5,000 generations), new parameter estimates of the VS model are sampled from the two 

different distributions and those will be substituted for original parameters estimated from 

the historical sample. Different sample sizes; n=25, 50, 75, 98 are assumed to be 
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available to investigate the related uncertainty effect. The given historical sample size 

n = 98 is assumed to be large enough and parameter estimates based on the historical 

sample are set as the true parameters. That is, expected values of parameter estimates of 

0 and £ are equivalent to historical parameter estimates regardless of sample sizes. 

In addition, the sum of squares of input variables X'X is assumed to be proportional to 

historical X'X for different sample sizes (Stedinger, et. al, 1985). Another parameter 

sets with the zero variances (historical parameter estimates) are referred to "ignoring the 

parameter uncertainty", which will be represented by n = 98*. As discussed before, the 

conditional posterior distribution of parameter estimates 0 in Eq.(4.34) has the 

equivalent form as the asymptotic distribution of Eq.(4.24). Note that the posterior 

distribution of L is an inverse Wishart distribution, which is used as the multivariate 

normal distribution in the asymptotic approach. 

As illustrated in Figures 4.2 and 4.3 (Figure 4.A1 and 4.A2 in the Appendix), 

parameter uncertainty results in increased variability of calculated means, standard 

deviations, and cross correlations of generated annual flows at sub-stations. Increased 

variability of generated statistics is getting less as the sample size increases, but the 

parameter uncertainty effect can still be found even when the sample size is equal to 98. 

However, it seems that parameter uncertainty has little effect on the generated skewness 

and lag-1 serial correlations. For the generated mean and standard deviation, the 

Bayesian approach results in wider variability (even not much) than the asymptotic 

approach for a small sample size (e.g., n <50). Note that Bayesian posterior 

distribution shows positive bias of generated standard deviations and negative bias of 

generated cross correlations for all sub-stations especially for small sample sizes {n < 50). 
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As the sample size is getting relatively larger, distributions of generated standard 

deviations and cross correlations based on the Bayesian approach are getting closer to 

those from the asymptotic distribution, but still there is a little difference, even when 

n = 98. This difference may be caused by the basic assumption of an asymptotic 

approach which requires large enough sample sizes. A sample size of at least 100 would 

be required when the asymptotic distribution is applied for parameter uncertainty 

consideration in the spatial disaggregation as an alternative to Bayesian distribution. 

The impact of parameter uncertainty on the statistical properties of generated 

flows would affect the related design variables which are usually employed as a design 

criteria for the practical planning and management of water resources. Based on 

synthetic flows at each sub-station, storage related statistics (storage capacity) and 

drought indices (critical drought magnitude, length and intensity) are calculated and 

compared. For more information of the utilized design variables, see previous chapters. 

In the calculation of the storage capacity based on the sequent peak algorithm, demand 

levels of reservoirs are assumed 100% of the mean annual flows (MAF), the design 

period Nd is assumed equal to the historical sample size of 98, and the reservoirs are 

assumed to be initially full. Also, 100% MAF is assumed to be the threshold level for 

critical drought statistics. It is not surprising that generated storage capacities and 

drought indices with parameter uncertainty incorporated would be closely affected by the 

sample sizes, in particular when sample sizes are equal or less than 50. Compared with 

a parameter uncertainty ignored case (n = 98*), increased variations of the storage 

capacities and drought indices are still visible when the sample size is relatively large 

(n =98). Asymptotic and Bayesian approaches give almost similar variability of storage 
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capacity distributions for sample size greater than 50 (See Figure 4.4, Figures 4.A3 and 

4.A4 in the Appendix). For n =25, the Bayesian approach shows larger upper quantiles 

(i.e. 90, 99% quantiles) of storage capacities than the asymptotic approach. A similar 

pattern with generated storage capacities could be reported for the generated critical 

drought magnitudes and intensities, while this pattern is hard to judge for generated 

critical drought lengths. Based on simulated results of sample statistics and design 

variables associated with parameter uncertainty, Bayesian posterior distributions of 

parameter estimates will be used in interpreting the parameter uncertainty effect in the 

further analysis. 

4.4.2 Parameter uncertainty effects combining with uncertainty of input variables 

As discussed in the previous chapter, generated annual flows in key-stations are 

significantly affected by the parameter uncertainty of the annual generation model and 

this is related with limited sample size of available historical steamflow data. Through 

spatial disaggregation, uncertainty effects of annual generation model parameters will be 

translated into generated sub-station flows. In this section, different combinations will 

be categorized to investigate the combined parameter uncertainty effect of the 

disaggregation model on generated sub-station flows with generated key station flows 

that have parameter uncertainty incorporated. The four unique combinations of natural 

and parameter uncertainty in key-station generation and spatial disaggregation are 

summarized in the following: 
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Cases Key-station generation Spatial disaggregation 

CI NU NU 

C2 NU NU + PU 

C3 NU + PU NU 

C4 NU + PU NU + PU 

Note NU : natural uncertainty, NU+PU : natural uncertainty + parameter uncertainty 

5000 different sets of key-station annual flows are first generated with the same 

size of historical data by using the first order autoregressive model, AR(1), which are 

then spatially disaggregated into sub-station flows. In order to have parameter 

uncertainties embedded, different parameter sets are sampled from Bayesian posterior 

distribution in the stage of key-station generation or spatial disaggregation in each 

generation step (depending on cases) for different sample sizes: 25, 50, 75, 100, and 200. 

Parameter uncertainty effects for the four different cases are compared with each other 

based on statistical properties of generated flows, as well as calculated design variables. 

As shown in Figure 4.5 (Figures 4.A5 and 4.A6 in the Appendix), C2 and C4 

show similar variability of generated means with CI and C3, respectively, from which it 

can be thought that parameter uncertainty in the disaggregation procedure does not 

significantly affect the generated means of sub-station flows. However, parameter 

uncertainty of the disaggregation model was visible when historical key-station flows 

were used as input variables in the disaggregation step as shown in the previous Figures, 

thus it is supposed that the natural uncertainty of input variables (annual flow generation) 

is more dominant over parameter uncertainty of the disaggregation model for generated 

means of sub-station flows. A comparison between C3 with CI (or a comparison 

between C4 with C2) demonstrates that the increased variability of generated key-station 
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flows with parameter uncertainty incorporated visibly propagates into means of sub

station flows through the spatial disaggregation causing the increased variability of those 

means. Quantile plots of generated standard deviations and generated lag-1 serial 

correlations of sub-station flows show a similar pattern with generated means. As the 

sample size increases, uncertainty effect decreases, but an increased variability of 

standard deviations can still be found even when the sample size is equal to 200. Note 

that the historical lag-1 serial correlations were well reproduced through simple VS 

spatial disaggregation, even though they are not to be preserved by the model structure. 

However, a different pattern can be found in generated cross correlations such 

that the parameter uncertainty effect on the increased variability of the spatial 

disaggregation model is greater than the parameter uncertainty of the key-station flow 

generation. (See Figures 4.6 and 4.7). Parameter uncertainty of the disaggregation 

model shows the negative bias of generated cross correlations even when the sample size 

is 100, and this will be reduced for a larger sample (see example of n =200). 

The quantile plots of storage capacities and drought indices for four different 

cases are illustrated in Figure 4.8 for sub-station 1 with the demand level of 70%MAF. 

(For different sub-stations and demand levels, see Figures 4.A7 through 4.All in the 

Appendix.) Distributions of generated storage capacities seem close to those of critical 

drought magnitudes, and this is because those two statistics are based on total deficits of 

generated streamflows. Little difference of calculated quantiles of storage capacities 

and drought magnitudes between CI and C2 (or between C3 and C4) is noted, while 

increased quantiles of those design variables in C3 compared with CI (or C4 compared 

with C2) are notable. The parameter uncertainty effect in C3 and C4 could also be 
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expected for generated critical drought lengths, but quantiles of generated critical drought 

intensities are not significantly influenced by parameter uncertainties. 

Again, as similar in generated means, standard deviations, and lag-1 correlations, 

parameter uncertainty effects on generated design variables regarding the key-station 

flows generation are dominant over those from the spatial disaggregation stage. The 

variability of generated storage capacities and drought indices is closely related with 

generated means, standard deviations, and lag-1 correlations of generated flows. That is, 

the larger variability of generated means, standard deviations, and lag-1 correlations of 

generated flows can make a considerable impact on the distributions of storage capacities, 

drought magnitudes and lengths. On the other hand, if other statistics which are more 

dependent on cross-correlations of several sites in a region were to be required for the 

design criteria in the multivariate sense, parameter uncertainty of the disaggregation 

model would be a significant factor affecting those statistics. 

Different demand levels could be also associated with the parameter uncertainty 

effects which are shown in Figures 4.9 (and also Figures 4.A12 and 4.A13 in the 

Appendix). Furthermore, increased upper quantiles are expected for C4 when compared 

with C3, which could be explained by the combined effect of parameter uncertainty of the 

spatial disaggregation model with parameter uncertainty of the key-station flow 

generation. Table 4.2 provides the numerical comparison of the quantile estimates of 

generated storage capacities (see Table 4.A1 through 4.A3 for generated design variables). 

Overall, the parameter uncertainty effect of the key-station generation model is much 

more visible for upper quantiles, means, and standard deviations (coefficients of 

variations) of generated storage capacities. However, the effect of parameter uncertainty 
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of the spatial disaggregation models also seems notable when combined with the effect of 

the annual generation uncertainty. For example, 4.03, 4.31, 6.67, 7.46 of 99% quantiles 

of generated rescaled storage capacities (scaled by historical one) are provided for sub

station 1 for the sample size of 50, which correspond with a 7% (C2), 66% (C3), and 85% 

(C4) increases compared with CI. A significant difference between C3 and C4 may be 

reported when compared with CI and C2, which is thought of as the aforementioned 

combined effects of parameter uncertainties from both key-station flow generation and 

spatial disaggregation. Besides, more remarkable increases of quantiles for higher 

quantiles are expected by parameter uncertainty; e.g., maximum estimates, which are 

131% (C2), 201% (C3), and 473% (C4) increases compared with CI. In a practical 

sense, empirical quantiles estimates of design variables can be conceptually associated 

with reliability and 99% reliability corresponds to the 100 year return period magnitude. 

If one would need to design the reservoir based on storage capacity with more than 99% 

reliability, parameter uncertainty would be more effective on improving the precision. 

For sample size equal to 200, the parameter uncertainty effect of generated key-station 

flows for the upper quantiles of generated storage capacities is getting negligible, but it is 

still visible on maximum estimates. Similar patterns may be noted in the cases of 

generated critical drought magnitudes and lengths, but not much more visible than 

generated storage capacities. In the example of generated critical drought intensities, 

the parameter uncertainty effect is hard to judge, which might be related to the definition 

of the drought intensity (defined as the ratio of the critical drought magnitude to the 

critical drought length). 

Table 4.3 gives a brief summary of the parameter uncertainty effect on synthetic 
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storage capacity and critical drought magnitude calculated from generated annual 

streamflows at sub-station 1 (Site 2). For simplicity, CI where no parameter uncertainty 

is considered either in key-station generation or in spatial disaggregation and C4 where 

parameter uncertainty is incorporated in both annual generation and in temporal 

disaggregation are numerically compared. Compared with CI, C4 shows about a 20% 

increased expected value of storage capacity. Moreover, C4 demonstrates the increased 

standard deviations of storage capacities of about 85% and 115% for demand levels of 

100% MAF and 80%> MAF, respectively. The parameter uncertainty shows the 

increased quantiles with a range from about 32% to 83%, and more increased quantiles of 

storage capacity would be expected by parameter uncertainty especially for the larger 

quantile. Overall, less increase by the parameter uncertainty effect is demonstrated in 

the generated critical drought magnitude compared with the generated storage capacity, 

except that similar pattern of increased statistics and quantiles by parameter uncertainty 

over different demand levels and sample serial correlations are reported for both design 

variables. 

4.4.3 Parameter uncertainty effects based on Lane's condensed model 

Lane's condensed temporal disaggregation model (Lane, 1979) is additionally 

applied in the streamflow generation for the purpose of comparison with the VS model. 

Slightly different than Lane's original condensed model, an additional term is included so 

as to consider the parameter uncertainty of mean estimates, and the ML estimators are 

used for the parameter estimation. After site-by-site generations were initially 
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employed, adjustment procedures were taken for generated flows at each site to come up 

with the given key-site flows (exactly to match with the proportion of sub-station flows to 

key-station flows). Statistical properties are calculated based on generated flows and 

illustrated in Figure 4.10 (4.A15 through 4.A17). Compared with Figure 4.5 for the 

case of the VS model, Lane's condensed (LC) model produces similar variability of 

generated means, standard deviations, skewness coefficients, and lag-1 serial correlations. 

The LC model does not show any ability in preserving the historical cross correlation, 

which is due to the model structure. An additional term for the LC model or an 

adjustment to handle the discrepancy of cross correlation might be required. Basically 

in CI, generated storage capacities and critical drought magnitudes based on the LC 

model have less variability than the VS model, whereas the LC model shows greater 

variability of generated critical drought length (Figure 4.11 and Figures 4.A18-4.A19 in 

the Appendix). Correspondingly, the less variability of generated storage capacities and 

drought magnitudes could be expected in the LC model when parameter uncertainty is 

incorporated (C2 through C4). 

4.5 Summary and Concluding Remarks 

Synthetic streamfiows at multi-sites were generated by using the VS spatial 

disaggregation model with parameter uncertainty incorporated. Based on the 

multivariate regression concept among the key-station and sub-station flows, asymptotic 

distribution and posterior distribution of parameter estimates of the VS model were 

theoretically derived. Basic statistics, synthetic storage capacities and critical drought 
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indices were calculated from generated flows and compared with different sample sizes 

to evaluate related uncertainty effects. The conclusions are as follows: 

Two approaches of asymptotic and Bayesian were able to explain the variability 

resulted from parameter uncertainty similarly in most sample statistics, an exception 

being cross-correlations. A little wider variability and upward bias of generated storage 

and drought related statistics were reported when using the Bayesian distribution for 

small sample size. The asymptotic and Bayesian approaches showed similar variability 

of generated means, standard deviations, and design variables once the sample size is 

larger than 50; little difference between the two approaches was expected for the sample 

size of 98. Thus, a sample size of at least 100 would be required if the asymptotic 

distribution approach is utilized for the parameter uncertainty consideration. That is, for 

the Bayesian approach, the effect of non-informative prior, which results in more 

variability of parameters than the exact prior, becomes negligible and sample information 

might be enough to interpret the variability of uncertain parameters. 

The effect of parameter uncertainty of the disaggregation procedure was not as 

significant on the generated means, standard deviations, and lag-1 serial correlations as 

the natural uncertainty of given input variables. Likewise, the effect of the parameter 

uncertainty of the disaggregation model on the utilized storage capacity and critical 

drought indices was also not as significant as the natural uncertainty of input variables, 

which results from the fact that the variability of design variables of concern are closely 

related with that of means, variances, and serial correlations of generated streamfiows. 

However, cross correlations of generated flows were much influenced by parameter 

uncertainty of the disaggregation. If any statistics, which are based on cross correlations, 
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are to be required in the practical design problem, parameter uncertainty of the 

disaggregation model would become more significant. 

When the parameter uncertainty of input variables was incorporated into the 

disaggregation, increased variabilities of key-stations was shown to propagate into the 

variabilities of means, standard deviations, and lag-1 serial correlations of generated sub

station flows, more significantly for smaller sample sizes. Thus, uncertain parameters 

regarding input variables might cause important consequences on the related 

determination of reservoir size as illustrated by increased variabilities of storage 

capacities and critical drought indices. In this case, parameter uncertainty of the 

disaggregation model might result in an additional increase over those by parameter 

uncertainty regarding input variables for small sample size. 

The parameter uncertainty still exhibits its effect on the variability of generated 

storage capacities and drought indices even when the sample size is equal to 100. A 

sample size of 100 does not seem large enough to neglect parameter uncertainty. 

However, the determination of what constitutes an adequate sample size depends on how 

much variability of design variables would be tolerated in the practical sense. In most 

applications for real streamflow generation, the available sample size is usually less than 

100. Therefore, the incorporation of parameter uncertainty issues into the streamflow 

simulation is of importance, and thus the precision and reliability of applications of 

generated streamflows will be improved. 
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Figure 4.1: Colorado River Basin gauging stations (USBR, 2007) 
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Table 4.1: Basic statistics of historical streamflows at chosen key-station and sub-stations 
in Colorado River Basin 

Mean (ac-ft) 

SD (ac-ft) 

Coeff. of Variation 

Skewness 

Lag-1 corr. 

Proportion to Key-station 

Cross correlation 

Key(site 8) 

Subl(site 2) 

Sub2(site 6) 

Sub3(site 7) 

Key(site 8) 

6824630 

1965948 

0.29 

0.20 

0.29 

Key(site 8) 

1.00 

0.95 

0.98 

0.84 

Subl(site 2) 

3580294 

934273 

0.26 

0.25 

0.26 

52.5% 

Subl(site 2) 

0.95 

1.00 

0.91 

0.67 

Sub2(site 6) 

2355220 

724565 

0.31 

0.14 

0.26 

34.5% 

Sub2(site 6) 

0.98 

0.91 

1.00 

0.85 

Sub3(site 7) 

813287 

360718 

0.44 

0.44 

0.23 

11.9% 

Sub3(site 7) 

0.84 

0.67 

0.85 

1.00 
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Figure 4.2: Quantile plots of basic statistics calculated from synthetic flows at sub-station 
1 (site 2) generated from historical key-station flows using VS disaggregation model with 
parameter uncertainty incorporated where the superscript * means "scaled by historical 
statistics", AS means asymptotic approach, and BA means Bayesian approach. The 
upper, middle and lower line in the box are 75, 50, 25% quantiles, the whisker extends 
from the box to 90, 10% quantile for each side, two dots outside box mean 99, 1% 
quantile values, and 'X' denotes historical statistics. 

185 



key-sub1,BA 

s 
co

rr
 

iS 
o 

1 

0.99 

0.98 

0.97 

0.96 

• 
T 

key-sub2,BA 

• • • # 

^ B| tfJ E§ 

* * * 

25 50 75 98 98* 
n 

sub1-sub2,BA 

25 50 75 98 98* 
n 

sub1-sub3,BA 

25 50 75 98 98* 
n 

25 50 75 98 98* 
n 

o o 

1 

0.98 

0.96 

0.94 

§ 0.92 

0.9 

0.88 

key-sub1,BA 

(1) Asymptotic approach 
key-sub2,BA 

ft 

, -L1 

1 

• 

# ft 

$ $ 
* • 

• 

« 

« 

* 

25 50 75 98 98* 
n 

sub1-sub2,BA 

0.95 
25 50 75 98 98* 

n 

sub1-sub3,BA 

1 

0.9 

0.8 

0.7 

0.6 

« 
T 
OC-

""I 
_1_ 

# 

key-

• 
T 

[ 

• 

sub3,BA 

1 * • 
^ ^ i± 
"1 x [ . * 
* • 

25 50 75 98 98* 

n 

sub2-sub3,BA 

25 50 75 98 98* 

key-sub3,BA 

25 50 75 98 98* 
n 

sub2-sub3,BA 

25 50 75 98 98* 

n 

1 

0.9 

o 
o 
to 0.8 
tn 
Q 
o 

0.7 

0.6 

» 
4 

T 

« 

• 
i 

9 

e * • . 
R& ft 

* . 
* 

25 50 75 98 98* 

n 

25 50 75 98 98* 

n 

(2) Bayesian approach 
Figure 4.3: Quantile plots of calculated cross correlations between historical key-station 
flows and synthetic sub-station flows generated from historical key-station using VS 
disaggregation model with parameter uncertainty incorporated where AS means 
asymptotic approach, BA means Bayesian approach, 'X' denotes the historical cross 
correlation, subl means sub-station l(site 2), sub2 means sub-station 2 (site 6), and sub3 
means sub-station 3 (site 7). 
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Figure 4.4: Quantile plots of storage capacities (Sc), critical drought magnitudes (cdm), 
critical drought lengths (cdl), and critical drought intensities (cdi) calculated from 
synthetic flows at sub-station l(site 2) generated from historical key-station flows using 
VS disaggregation model with parameter uncertainty incorporated where the superscript 
* means "scaled by historical statistics", AS means asymptotic approach, and BA means 
Bayesian approach. The upper, middle and lower line in the box are 75, 50, 25% 
quantiles, the whisker extends from the box to 90, 10% quantile for each side, two dots 
outside box mean 99, 1% quantile values, and 'X' denotes historical statistics. The 
demand level was assumed as 100%o MAF at each site. 
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Figure 4.5: Quantile plots of basic statistics calculated from synthetic flows at sub-station 
l(site 2) disaggregated (VS model) from generated key-station flows (AR(1) model) with 
parameter uncertainty incorporated (Bayesian approach) where C1,C2,C3,C4 denote case 
1, case 2, case 3, case 4,respectively, and the superscript * means "scaled by historical 
statistics". The upper, middle and lower line in the box are 75, 50, 25% quantiles, the 
whisker extends from the box to 90, 10% quantile for each side, two dots outside box 
mean 99, 1% quantile values, and 'X' denotes historical statistics. 
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Figure 4.6: Quantile plots of calculated cross correlations between generated key-station 
flows (AR(1) model) and disaggregated sub-station flows (VS model) with parameter 
uncertainty incorporated (Bayesian approach), where C1,C2,C3,C4 denote case 1, case 2, 
case 3, case 4, 'X' denotes the historical cross correlation, n is assumed sample size, 
subl means sub-station 1 (site 2), sub2 means sub-station 2 (site 6), and sub3 means sub
station 3 (site 7). 
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Figure 4.7: Quantile plots of calculated cross correlations between sub-station flows 
disaggregated (VS model) from generated key-station flows (AR(1) model) with 
parameter uncertainty incorporated (Bayesian approach), where C1,C2,C3,C4 denote 
case 1, case 2, case 3, case 4, 'X' denotes the historical cross correlation, n is assumed 
sample size, subl means sub-station 1 (site 2), sub2 means sub-station 2 (site 6), and sub3 
means sub-station 3 (site 7). 

190 



sub1,n=50 sub1,n=100 sub1,n=200 

C1 C2 C3 C4 

sub1,n=50 

C1 C2 C3 C4 

sub1,n=100 

C1 C2 C3 C4 

sub1,n=50 

C1 C2 C3 C4 

sub1,n=100 

C1 C2 C3 C4 

sub1,n=50 

C1 C2 C3 C4 

sub1,n=100 

C1 C2 C3 C4 

T3 
O 

•a o 

C1 C2 C3 C4 

sub1,n=200 

C1 C2 C3 C4 

sub1,n=200 

C1 C2 C3 C4 

sub1,n=200 

C1 C2 C3 C4 C1 C2 C3 C4 

Figure 4.8: Quantile plots of storage capacity (Sc), critical drought magnitude (cdm), 
critical drought length (cdl), and critical drought intensity (cdi) calculated from synthetic 
streamflows at sub-station 1 (site 2) which are disaggregated (VS model) from generated 
flows at key-station (AR(1) model) with parameter uncertainty incorporated (Bayesian 
approach). C1,C2,C3,C4 denote case 1, case 2, case 3, case 4, 'X' denotes the historical 
cross correlation, n is assumed sample size. The demand level was assumed as 70% 
MAF at each site. 
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Figure 4.9: Quantile plots of storage capacity (Sc) calculated from synthetic streamflows 
at sub-station 1 (site 2) which are disaggregated (VS model) from generated flows at key
station (AR(1) model) with parameter uncertainty incorporated (Bayesian approach) for 
different demand levels. C1,C2,C3,C4 denote case 1, case 2, case 3, case 4, 'X' denotes 
the historical cross correlation, n is assumed sample size. 
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Figure 4.10: Quantile plots of basic statistics calculated from synthetic flows at sub
station l(site 2) disaggregated (LC model) from generated key-station flows (AR(1) 
model) with parameter uncertainty incorporated (Bayesian approach) where 
C1,C2,C3,C4 denote case 1, case 2, case 3, case 4,respectively, and the superscript * 
means "scaled by historical statistics". The upper, middle and lower line in the box are 
75, 50, 25% quantiles, the whisker extends from the box to 90, 10% quantile for each side, 
two dots outside box mean 99, 1% quantile values, and 'X' denotes historical statistics. 
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Figure 4.11: Quantile plots of storage capacity (Sc), critical drought magnitude (cdm), 
critical drought length (cdl), and critical drought intensity (cdi) calculated from synthetic 
streamflows at sub-station l(site 2) which are disaggregated (LC model) from generated 
flows at key-station (AR(1) model) with parameter uncertainty incorporated (Bayesian 
approach). C1,C2,C3,C4 denote case 1, case 2, case 3, case 4, 'X' denotes the historical 
cross correlation, n is assumed sample size. The demand level was assumed as 70% 
MAF at each site. 
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Table 4.2: Quantile estimates of generated storage capacities (rescaled by dividing the 
historical storage capacity) calculated from generated sub-station flows disaggregated 
from generated annual flows by using AR(1) and VS disaggregation models for 4 
different uncertainty considerations. (Bayesian approach, demand level = 70% MAF) 

sub-station 1 

Minimum 

1% quantile 

10% quantile 

25% quantile 

Median 

75% quantile 

90% quantile 

99% quantile 

Maximum 

Mean 

Standard Deviation 

Coeff. of variation 

sub-station 2 

Minimum 

1% quantile 

10% quantile 

25% quantile 

Median 

75% quantile 

90% quantile 

99% quantile 

Maximum 

Mean 

Standard Deviation 

Coeff. of variation 

sub-station 3 

Minimum 

1% quantile 

10% quantile 

25% quantile 

Median 

75% quantile 

90% quantile 

99% quantile 

Maximum 

Mean 

Standard Deviation 

Coeff. of variation 

CI 

0.20 

0.48 

0.83 

1.08 

1.45 

1.98 

2.61 

4.03 

6.23 

1.61 

0.74 

0.46 

CI 

0.20 

0.57 

0.92 

1.18 

1.58 

2.12 

2.72 

4.06 

6.58 

1.72 

0.74 

0.43 

CI 

0.50 

0.62 

0.89 

1.12 

1.42 

1.84 

2.31 

3.31 

4.84 

1.53 

0.58 

0.38 

n = 50 
C2 

0.07 

0.47 

0.84 

1.10 

1.49 

2.02 

2.66 

4.31 

8.16 

1.65 

0.79 

0.48 

n = 50 

C2 

0.19 

0.57 

0.91 

1.19 

1.60 

2.14 

2.75 

4.30 

6.97 

1.74 

0.77 

0.44 

n = 50 

C2 

0.35 

0.58 

0.86 

1.11 

1.46 

1.91 

2.41 

3.65 

7.19 

1.58 

0.66 

0.42 

C3 

0.00 

0.29 

0.70 

1.03 

1.52 

2.25 

3.31 

6.67 

12.54 

1.83 

1.24 

0.68 

C3 

0.00 

0.38 

0.78 

1.11 

1.64 

2.44 

3.57 

7.08 

14.02 

1.98 

1.34 

0.68 

C3 

0.22 

0.52 

0.80 

1.06 

1.47 

2.11 

2.91 

5.34 

8.68 

1.72 

0.98 

0.57 

C4 

0.00 

0.31 

0.75 

1.08 

1.59 

2.39 

3.48 

7.46 

29.44 

1.96 

1.52 

0.77 

C4 

0.00 

0.42 

0.82 

1.16 

1.71 

2.52 

3.77 

7.62 

30.63 

2.09 

1.59 

0.76 

C4 

0.10 

0.50 

0.81 

1.08 

1.51 

2.17 

3.04 

5.89 

20.24 

1.80 

1.18 

0.66 

CI 

0.19 

0.48 

0.83 

1.08 

1.46 

1.99 

2.60 

3.94 

6.38 

1.61 

0.74 

0.46 

CI 

0.31 

0.58 

0.91 

1.19 

1.59 

2.11 

2.72 

4.11 

6.15 

1.73 

0.75 

0.43 

CI 

0.37 

0.63 

0.90 

1.10 

1.42 

1.83 

2.28 

3.38 

4.39 

1.53 

0.58 

0.38 

n = 200 
C2 

0.00 

0.46 

0.82 

1.10 

1.48 

1.97 

2.62 

4.28 

7.70 

1.63 

0.77 

0.47 

n=200 

C2 

0.23 

0.57 

0.92 

1.19 

1.60 

2.12 

2.76 

4.24 

7.20 

1.74 

0.77 

0.44 

n = 200 

C2 

0.38 

0.63 

0.89 

1.12 

1.44 

1.87 

2.40 

3.63 

7.22 

1.56 

0.64 

0.41 

C3 

0.01 

0.42 

0.80 

1.08 

1.48 

2.08 

2.77 

4.58 

7.09 

1.68 

0.85 

0.51 

C3 

0.24 

0.54 

0.91 

1.19 

1.62 

2.22 

2.94 

4.83 

7.65 

1.81 

0.89 

0.49 

C3 

0.26 

0.61 

0.88 

1.12 

1.45 

1.90 

2.50 

3.86 

5.97 

1.60 

0.69 

0.43 

C4 

0.01 

0.39 

0.80 

1.09 

1.50 

2.06 

2.82 

4.56 

9.81 

1.68 

0.88 

0.52 

C4 

0.03 

0.53 

0.91 

1.18 

1.60 

2.22 

3.01 

4.90 

10.60 

1.82 

0.93 

0.51 

C4 

0.26 

0.60 

0.87 

1.10 

1.45 

1.93 

2.49 

4.05 

6.82 

1.60 

0.71 

0.45 
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Table 4.3: Example of generated storage capacity and critical drought magnitude (scaled 

by MAF) (n =50, Nd =98, Bayesian analysis, sub-station 1 (Site 2)) 

Demand level 

Case 

MMF 

CI C4 

0.8MMF 

CI C4 

Storage capacity 

mean 

SD 

00.9 

tfo 95 

70.99 

6.3 

7.3 

9.2 

4.6 

21.0% 

3.4 

85.3% 

9.1 

45.4% 

11.2 

52.3% 

15.9 

73.8% 

0.7 

0.3 

1.2 

1.4 

1.8 

0.9 

18.7% 

0.7 

115.3% 

1.5 

32.3% 

2.0 

42.8% 

3.3 

83.1% 

Critical drought magnitude 

mean 

SD 

^0.9 

#0.95 

q 0.99 

1.9 

0.7 

3.2 

4.2 

2.1 

10.0% 

1.1 

65.5% 

3.4 

21.8% 

4.1 

29.8% 

6.4 

32.6% 

0.7 

0.3 

1.0 

1.2 

1.6 

0.8 

13.6% 

0.5 

67.3% 

1.3 

24.8% 

1.7 

37.7% 

2.5 

25.6% 

Note CI: no parameter uncertainty considered (natural uncertainty), C4: parameter uncertainty 
incorporated both in key-station flow generation and in spatial disaggregation, SD: standard 
deviation, q09, q095, q099 means 90%, 95%, and 99% quantile, respectively. Value (%) in 

the column of C4 represents the ratio of increased storage capacity(or critical drought magnitude) 
in C4 with respect to CI. (parameter uncertainty effect) 
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Appendix 4.A: Additional Figures and Tables 

sub2,AS sub2,AS 
1.03 

1.02 

1.01 

1 

0.99 

0.98 

0.97 

* 

I 

T 
• 

• 

I 
* 

I 

i 
• 

• 

i 
« 

i 
25 50 75 98 98* 

n 

1.15 
sub2,AS 

D 
to 

25 50 75 98 98* 
n 

25 50 75 98 98* 
n 

0.3 

0.25 

sub2,AS 

« • • • 

V T T ' T 

* 

T-

T 
1-

* 4 * « » 

25 50 75 98 98* 
n 

sub2,BA sub2,BA sub2,BA sub2,BA 
1.15 

Q 
CO 

50 75 98 98* 
n 

• . . . 

\ I1 ' i1 ^ 

THT'L 
• • • 

J , , , ,_ 
25 50 75 98 98* 

n 
25 50 75 98 

n 

0.35 

0.3 

0.25 

0.2 

« 
• ft # « 

•J L X 1 1 -

^ I T r T 
1-

» « • 
« 

25 50 75 98 98* 
n 

Figure 4.A1: Quantile plots of basic statistics calculated from synthetic flows at sub
station 2(site 6) generated from historical key-station flows using VS disaggregation 
model with parameter uncertainty incorporated where the superscript * means "scaled by 
historical statistics", AS means asymptotic approach, and BA means Bayesian approach. 
The upper, middle and lower line in the box are 75, 50, 25% quantiles, the whisker 
extends from the box to 90, 10% quantile for each side, two dots outside box mean 99, 
1% quantile values, and 'X' denotes historical statistics. 
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Figure 4.A2: Quantile plots of basic statistics calculated from synthetic flows at sub
station 3(site 7) generated from historical key-station flows using VS disaggregation 
model with parameter uncertainty incorporated where the superscript * means "scaled by 
historical statistics", AS means asymptotic approach, and BA means Bayesian approach. 
The upper, middle and lower line in the box are 75, 50, 25% quantiles, the whisker 
extends from the box to 90, 10% quantile for each side, two dots outside box mean 99, 
1% quantile values, and 'X' denotes historical statistics. 
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Figure 4.A3: Quantile plots of storage capacities (Sc), critical drought magnitudes (cdm), 
critical drought lengths (cdl), and critical drought intensities (cdi) calculated from 
synthetic flows at sub-station 2(site 6) generated from historical key-station flows using 
VS disaggregation model with parameter uncertainty incorporated where the superscript 
* means "scaled by historical statistics", AS means asymptotic approach, and BA means 
Bayesian approach. The upper, middle and lower line in the box are 75, 50, 25% 
quantiles, the whisker extends from the box to 90, 10% quantile for each side, two dots 
outside box mean 99, 1% quantile values, and 'X' denotes historical statistics. The 
demand level was assumed as 100% MAF at each site. 
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Figure 4.A4: Quantile plots of storage capacities (Sc), critical drought magnitudes (cdm), 
critical drought lengths (cdl), and critical drought intensities (cdi) calculated from 
synthetic flows at sub-station 3(site 7) generated from historical key-station flows using 
VS disaggregation model with parameter uncertainty incorporated where the superscript 
* means "scaled by historical statistics", AS means asymptotic approach, and BA means 
Bayesian approach. The upper, middle and lower line in the box are 75, 50, 25% 
quantiles, the whisker extends from the box to 90, 10% quantile for each side, two dots 
outside box mean 99, 1% quantile values, and 'X' denotes historical statistics. The 
demand level was assumed as 100% MAF at each site. 
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Figure 4.A5: Quantile plots of basic statistics calculated from synthetic flows at sub
station 2(site 6) disaggregated (VS model) from generated key-station flows (AR(1) 
model) with parameter uncertainty incorporated (Bayesian approach) where 
C1,C2,C3,C4 denote case 1, case 2, case 3, case 4,respectively, and the superscript * 
means "scaled by historical statistics". The upper, middle and lower line in the box are 
75, 50, 25% quantiles, the whisker extends from the box to 90, 10% quantile for each side, 
two dots outside box mean 99, 1% quantile values, and 'X' denotes historical statistics. 
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Figure 4.A6: Quantile plots of basic statistics calculated from synthetic flows at sub
station 3(site 7) disaggregated (VS model) from generated key-station flows (AR(1) 
model) with parameter uncertainty incorporated (Bayesian approach) where 
C1,C2,C3,C4 denote case 1, case 2, case 3, case 4,respectively, and the superscript * 
means "scaled by historical statistics". The upper, middle and lower line in the box are 
75, 50, 25% quantiles, the whisker extends from the box to 90, 10% quantile for each side, 
two dots outside box mean 99, 1% quantile values, and 'X' denotes historical statistics. 
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Figure 4.A7: Quantile plots of storage capacity (Sc), critical drought magnitude (cdm), 
critical drought length (cdl), and critical drought intensity (cdi) calculated from synthetic 
streamflows at sub-station 2(site 6) which are disaggregated (VS model) from generated 
flows at key-station (AR(1) model) with parameter uncertainty incorporated (Bayesian 
approach). C1,C2,C3,C4 denote case 1, case 2, case 3, case 4, 'X' denotes the historical 
cross correlation, n is assumed sample size. The demand level was assumed as 70% 
MAF at each site. 
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Figure 4.A8: Quantile plots of storage capacity (Sc), critical drought magnitude (cdm), 
critical drought length (cdl), and critical drought intensity (cdi) calculated from synthetic 
streamflows at sub-station 3(site 7) which are disaggregated (VS model) from generated 
flows at key-station (AR(1) model) with parameter uncertainty incorporated (Bayesian 
approach). C1,C2,C3,C4 denote case 1, case 2, case 3, case 4, 'X' denotes the historical 
cross correlation, n is assumed sample size. The demand level was assumed as 70% 
MAF at each site. 
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Figure 4.A9: Quantile plots of storage capacity (Sc), critical drought magnitude (cdm), 
critical drought length (cdl), and critical drought intensity (cdi) calculated from synthetic 
streamflows at sub-station l(site 2) which are disaggregated (VS model) from generated 
flows at key-station (AR(1) model) with parameter uncertainty incorporated (Bayesian 
approach). C1,C2,C3,C4 denote case 1, case 2, case 3, case 4, 'X' denotes the historical 
cross correlation, n is assumed sample size. The demand level was assumed as 100% 
MAF at each site.. 
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Figure 4.A10: Quantile plots of storage capacity (Sc), critical drought magnitude (cdm), 
critical drought length (cdl), and critical drought intensity (cdi) calculated from synthetic 
streamflows at sub-station 2(site 6) which are disaggregated (VS model) from generated 
flows at key-station (AR(1) model) with parameter uncertainty incorporated (Bayesian 
approach). C1,C2,C3,C4 denote case 1, case 2, case 3, case 4, 'X' denotes the historical 
cross correlation, n is assumed sample size. The demand level was assumed as 100% 
MAF at each site. 
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Figure 4.A11: Quantile plots of storage capacity (Sc), critical drought magnitude (cdm), 
critical drought length (cdl), and critical drought intensity (cdi) calculated from synthetic 
streamflows at sub-station 3(site 7) which are disaggregated (VS model) from generated 
flows at key-station (AR(1) model) with parameter uncertainty incorporated (Bayesian 
approach). C1,C2,C3,C4 denote case 1, case 2, case 3, case 4, 'X' denotes the historical 
cross correlation, n is assumed sample size. The demand level was assumed as 100% 
MAF at each site. 
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Figure 4.A12: Quantile plots of storage capacity (Sc) calculated from synthetic 
streamflows at sub-station 2(site 6) which are disaggregated (VS model) from generated 
flows at key-station (AR(1) model) with parameter uncertainty incorporated (Bayesian 
approach) for different demand levels. C1,C2,C3,C4 denote case 1, case 2, case 3, case 4, 
'X' denotes the historical cross correlation, n is assumed sample size. 
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Figure 4.A13: Quantile plots of storage capacity (Sc) calculated from synthetic 
streamflows at sub-station 3 (site 7) which are disaggregated (VS model) from generated 
flows at key-station (AR(1) model) with parameter uncertainty incorporated (Bayesian 
approach) for different demand levels. C1,C2,C3,C4 denote case 1, case 2, case 3, case 4, 
'X' denotes the historical cross correlation, n is assumed sample size. 
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Figure 4.A14: Quantile plots of basic statistics calculated from synthetic flows at sub
station 2(site 6) disaggregated (LC model) from generated key-station flows (AR(1) 
model) with parameter uncertainty incorporated (Bayesian approach) where 
C1,C2,C3,C4 denote case 1, case 2, case 3, case 4,respectively, and the superscript * 
means "scaled by historical statistics". The upper, middle and lower line in the box are 
75, 50, 25% quantiles, the whisker extends from the box to 90, 10% quantile for each side, 
two dots outside box mean 99, 1% quantile values, and 'X' denotes historical statistics. 
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Figure 4.A15: Quantile plots of basic statistics calculated from synthetic flows at sub
station 3 (site 7) disaggregated (LC model) from generated key-station flows (AR(1) 
model) with parameter uncertainty incorporated (Bayesian approach) where 
C1,C2,C3,C4 denote case 1, case 2, case 3, case 4,respectively, and the superscript * 
means "scaled by historical statistics". The upper, middle and lower line in the box are 
75, 50, 25% quantiles, the whisker extends from the box to 90, 10% quantile for each side, 
two dots outside box mean 99, 1% quantile values, and 'X' denotes historical statistics. 
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Figure 4.A16: Quantile plots of calculated cross correlations between generated key
station flows (AR(1) model) and disaggregated sub-station flows (LC model) with 
parameter uncertainty incorporated (Bayesian approach), where C1,C2,C3,C4 denote 
case 1, case 2, case 3, case 4, 'X' denotes the historical cross correlation, n is assumed 
sample size, subl means sub-station 1 (site 2), sub2 means sub-station 2 (site 6), and sub3 
means sub-station 3 (site 7). 
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Figure 4.A17: Quantile plots of calculated cross correlations between sub-station flows 
disaggregated (LC model) from generated key-station flows (AR(1) model) with 
parameter uncertainty incorporated (Bayesian approach), where C1,C2,C3,C4 denote 
case 1, case 2, case 3, case 4, 'X' denotes the historical cross correlation, n is assumed 
sample size, subl means sub-station l(site 2), sub2 means sub-station 2 (site 6), and sub3 
means sub-station 3 (site 7). 
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Figure 4.A18: Quantile plots of storage capacity (Sc), critical drought magnitude (cdm), 
critical drought length (cdl), and critical drought intensity (cdi) calculated from synthetic 
streamflows at sub-station 2(site 6) which are disaggregated (LC model) from generated 
flows at key-station (AR(1) model) with parameter uncertainty incorporated (Bayesian 
approach). C1,C2,C3,C4 denote case 1, case 2, case 3, case 4, 'X' denotes the historical 
cross correlation, n is assumed sample size. The demand level was assumed as 70% 
MAF at each site. 
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Figure 4.A19: Quantile plots of storage capacity (Sc), critical drought magnitude (cdm), 
critical drought length (cdl), and critical drought intensity (cdi) calculated from synthetic 
streamflows at sub-station 3(site 7) which are disaggregated (LC model) from generated 
flows at key-station (AR(1) model) with parameter uncertainty incorporated (Bayesian 
approach). C1,C2,C3,C4 denote case 1, case 2, case 3, case 4, 'X' denotes the historical 
cross correlation, n is assumed sample size. The demand level was assumed as 70% 
MAF at each site. 
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Table 4.A1: Quantile estimates of generated critical drought magnitudes (rescaled by 
dividing the historical critical drought magnitude) calculated from generated sub-station 
flows disaggregated from generated annual flows by using AR(1) and VS disaggregation 
models for 4 different uncertainty considerations. (Bayesian approach, demand level = 
70%MAF) 

sub-station 1 

Minimum 

1% quantile 

10% quantile 

25% quantile 

Median 

75% quantile 

90% quantile 

99% quantile 

Maximum 

Mean 

Standard Deviation 

Coeff. of variation 

sub-station 2 

Minimum 

1% quantile 

10% quantile 

25% quantile 

Median 

75% quantile 

90% quantile 

99% quantile 

Maximum 

Mean 

Standard Deviation 

Coeff. of variation 

sub-station 3 

Minimum 

1% quantile 

10% quantile 

25% quantile 

Median 

75% quantile 

90% quantile 

99% quantile 

Maximum 

Mean 

Standard Deviation 

Coeff. of variation 

CI 

0.20 

0.47 

0.82 

1.07 

1.42 

1.90 

2.50 

3.79 

6.23 

1.56 

0.70 

0.45 

CI 

0.20 

0.56 

0.90 

1.15 

1.51 

2.01 

2.56 

3.76 

5.63 

1.64 

0.69 

0.42 

CI 

0.44 

0.59 

0.84 

1.04 

1.30 

1.64 

2.07 

3.04 

4.59 

1.39 

0.51 

0.36 

n = 50 
C2 

0.07 

0.47 

0.83 

1.08 

1.45 

1.96 

2.56 

4.02 

7.60 

1.60 

0.74 

0.46 

n = 50 

C2 

0.19 

0.57 

0.89 

1.15 

1.54 

2.00 

2.60 

3.86 

6.61 

1.66 

0.71 

0.43 

n = 50 

C2 

0.35 

0.58 

0.82 

1.04 

1.32 

1.70 

2.12 

3.06 

5.64 

1.42 

0.54 

0.38 

C3 

0.00 

0.29 

0.70 

1.02 

1.47 

2.16 

3.10 

6.17 

10.52 

1.75 

1.13 

0.65 

C3 

0.00 

0.38 

0.77 

1.09 

1.56 

2.29 

3.22 

6.15 

10.70 

1.84 

1.15 

0.62 

C3 

0.22 

0.51 

0.76 

0.99 

1.34 

1.85 

2.44 

4.14 

7.72 

1.51 

0.75 

0.49 

C4 

0.00 

0.31 

0.74 

1.07 

1.55 

2.27 

3.23 

6.68 

14.04 

1.85 

1.24 

0.67 

C4 

0.00 

0.42 

0.81 

1.13 

1.63 

2.35 

3.38 

6.45 

16.56 

1.91 

1.21 

0.63 

C4 

0.10 

0.49 

0.78 

1.00 

1.38 

1.91 

2.57 

4.62 

10.16 

1.57 

0.83 

0.53 

CI 

0.19 

0.48 

0.82 

1.06 

1.43 

1.93 

2.50 

3.80 

6.38 

1.57 

0.70 

0.45 

CI 

0.31 

0.57 

0.90 

1.14 

1.51 

2.00 

2.58 

3.76 

5.75 

1.64 

0.69 

0.42 

CI 

0.37 

0.61 

0.84 

1.03 

1.31 

1.65 

2.05 

2.91 

4.26 

1.39 

0.49 

0.35 

n = 200 
C2 

0.00 

0.46 

0.81 

1.08 

1.45 

1.92 

2.51 

3.98 

7.22 

1.58 

0.72 

0.46 

n=200 

C2 

0.23 

0.56 

0.90 

1.15 

1.53 

2.01 

2.56 

3.88 

7.07 

1.65 

0.71 

0.43 

n = 200 

C2 

0.38 

0.59 

0.84 

1.04 

1.31 

1.67 

2.13 

3.08 

5.49 

1.41 

0.54 

0.38 

C3 

0.01 

0.42 

0.80 

1.07 

1.44 

1.99 

2.68 

4.25 

7.09 

1.62 

0.80 

0.49 

C3 

0.24 

0.54 

0.89 

1.15 

1.54 

2.10 

2.75 

4.50 

7.65 

1.72 

0.81 

0.47 

C3 

0.26 

0.57 

0.82 

1.04 

1.33 

1.73 

2.16 

3.34 

5.22 

1.44 

0.58 

0.40 

C4 

0.01 

0.39 

0.79 

1.07 

1.46 

1.99 

2.67 

4.34 

7.76 

1.62 

0.81 

0.50 

C4 

0.03 

0.53 

0.89 

1.14 

1.53 

2.09 

2.79 

4.57 

7.99 

1.72 

0.83 

0.49 

C4 

0.26 

0.59 

0.83 

1.03 

1.32 

1.72 

2.21 

3.31 

6.82 

1.44 

0.59 

0.41 
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Table 4.A2: Quantile estimates of generated critical drought lengths calculated from 
generated sub-station flows disaggregated from generated annual flows by using AR(1) 
and VS disaggregation models for 4 different uncertainty considerations. (Bayesian 
approach, demand level = 70%MAF) 

sub-station 1 

Minimum 

1% quantile 

10% quantile 

25% quantile 

Median 

75% quantile 

90% quantile 

99% quantile 

Maximum 

Mean 

Standard Deviation 

Coeff. of variation 

sub-station 2 

Minimum 

1% quantile 

10% quantile 

25% quantile 

Median 

75% quantile 

90% quantile 

99% quantile 

Maximum 

Mean 

Standard Deviation 

Coeff. of variation 

sub-station 3 

Minimum 

1% quantile 

10% quantile 

25% quantile 

Median 

75% quantile 

90% quantile 

99% quantile 

Maximum 

Mean 

Standard Deviation 

Coeff. of variation 

n = 50 
CI C2 C3 C4 

1 1 0 0 

1 1 1 1 

1 1 1 1 

2 2 2 2 

2 2 2 2 

3 3 3 3 

4 4 4 4 

5 5 7 7 

8 10 12 13 

2.4 2.5 2.5 2.7 

0.9 1.0 1.3 1.3 

0.38 0.39 0.49 0.51 

n = 50 

CI C2 C3 C4 

1 1 0 0 

1 1 1 1 

2 2 2 2 

2 2 2 2 

3 3 3 3 

3 3 4 4 

4 4 5 5 

6 6 8 8 

9 12 15 16 

2.9 3.0 3.1 3.2 

1.0 1.1 1.5 1.5 

0.35 0.36 0.47 0.48 

n = 50 

CI C2 C3 C4 

1 1 1 1 

2 2 2 2 

3 2 2 2 

3 3 3 3 

4 4 4 4 

4 4 5 5 

6 5 6 6 

8 8 9 10 

14 14 14 20 

3.9 3.9 4.0 4.1 

1.3 1.3 1.6 1.7 

0.34 0.34 0.40 0.43 

n=200 
CI C2 C3 C4 

1 0 1 1 

1 1 1 1 

1 1 1 1 

2 2 2 2 

2 2 2 2 

3 3 3 3 

4 4 4 4 

5 5 6 5.01 

8 7 9 8 

2.4 2.4 2.5 2.5 

0.9 0.9 1.0 1.0 

0.37 0.38 0.41 0.41 

n = 200 

CI C2 C3 C4 

1 1 1 1 

1 1 1 1 

2 2 2 2 

2 2 2 2 

3 3 3 3 

3 3 4 4 

4 4 5 4 

6 6 7 7 

9 10 10 11 

2.9 3.0 3.0 3.0 

1.0 1.1 1.2 1.2 

0.35 0.36 0.39 0.39 

n = 200 

CI C2 C3 C4 

1 1 1 1 

2 2 2 2 

3 3 2 2 

3 3 3 3 

4 4 4 4 

4 5 5 5 

5 6 6 6 

8 8 9 8 

11 12 13 13 

3.8 3.9 3.9 3.9 

1.2 1.3 1.4 1.4 

0.32 0.34 0.36 0.36 
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Table 4.A3: Quantile estimates of generated critical drought intensities (rescaled by 
dividing the historical critical drought intensity) calculated from generated sub-station 
flows disaggregated from generated annual flows by using AR(1) and VS disaggregation 
models for 4 different uncertainty considerations. (Bayesian approach, demand level = 
70%MAF) 

sub-station 1 

Minimum 

1% quantile 

10% quantile 

25% quantile 

Median 

75% quantile 

90% quantile 

99% quantile 

Maximum 

Mean 

Standard Deviation 

Coeff. of variation 

sub-station 2 

Minimum 

1% quantile 

10% quantile 

25% quantile 

Median 

75% quantile 

90% quantile 

99% quantile 

Maximum 

Mean 

Standard Deviation 

Coeff. of variation 

sub-station 3 

Minimum 

1% quantile 

10% quantile 

25% quantile 

Median 

75% quantile 

90% quantile 

99% quantile 

Maximum 

Mean 

Standard Deviation 

Coeff. of variation 

CI 

0.16 

0.40 

0.63 

0.78 

0.97 

1.19 

1.42 

1.86 

2.49 

1.00 

0.31 

0.31 

CI 

0.31 

0.68 

0.96 

1.14 

1.38 

1.65 

1.93 

2.46 

2.87 

1.42 

0.39 

0.27 

CI 

0.51 

0.81 

1.01 

1.15 

1.31 

1.50 

1.66 

1.92 

2.05 

1.33 

0.25 

0.19 

n = 50 
C2 

0.07 

0.38 

0.64 

0.79 

0.98 

1.20 

1.43 

1.88 

2.49 

1.01 

0.32 

0.31 

n = 50 

C2 

0.29 

0.68 

0.95 

1.14 

1.39 

1.67 

1.95 

2.50 

2.84 

1.43 

0.40 

0.28 

n = 50 

C2 

0.45 

0.78 

1.01 

1.16 

1.34 

1.52 

1.69 

1.93 

2.05 

1.34 

0.26 

0.19 

C3 

0.00 

0.27 

0.57 

0.76 

0.98 

1.23 

1.49 

2.01 

2.35 

1.01 

0.36 

0.36 

C3 

0.00 

0.47 

0.90 

1.13 

1.39 

1.71 

2.04 

2.59 

2.86 

1.44 

0.45 

0.31 

C3 

0.44 

0.75 

0.99 

1.15 

1.33 

1.53 

1.69 

1.93 

2.05 

1.34 

0.27 

0.20 

C4 

0.00 

0.28 

0.59 

0.78 

1.01 

1.27 

1.54 

2.05 

2.74 

1.04 

0.38 

0.36 

C4 

0.00 

0.55 

0.92 

1.14 

1.43 

1.75 

2.06 

2.66 

2.87 

1.46 

0.45 

0.31 

C4 

0.21 

0.74 

1.00 

1.15 

1.35 

1.56 

1.73 

1.97 

2.06 

1.35 

0.28 

0.21 

CI 

0.19 

0.40 

0.62 

0.78 

0.97 

1.19 

1.41 

1.85 

2.48 

1.00 

0.31 

0.31 

CI 

0.34 

0.68 

0.97 

1.14 

1.38 

1.66 

1.95 

2.46 

2.86 

1.42 

0.39 

0.27 

CI 

0.55 

0.80 

1.00 

1.14 

1.31 

1.50 

1.66 

1.92 

2.06 

1.33 

0.25 

0.19 

n = 200 
C2 

0.00 

0.38 

0.62 

0.77 

0.96 

1.19 

1.41 

1.85 

2.44 

1.00 

0.31 

0.31 

n=200 

C2 

0.29 

0.65 

0.95 

1.15 

1.40 

1.67 

1.96 

2.47 

2.86 

1.43 

0.39 

0.27 

n = 200 

C2 

0.55 

0.81 

1.01 

1.15 

1.32 

1.50 

1.66 

1.92 

2.05 

1.33 

0.25 

0.19 

C3 

0.01 

0.35 

0.62 

0.78 

0.98 

1.19 

1.42 

1.84 

2.46 

1.00 

0.32 

0.32 

C3 

0.36 

0.63 

0.95 

1.15 

1.40 

1.68 

1.97 

2.50 

2.86 

1.43 

0.40 

0.28 

C3 

0.52 

0.80 

1.01 

1.15 

1.33 

1.51 

1.67 

1.92 

2.05 

1.33 

0.25 

0.19 

C4 

0.01 

0.34 

0.62 

0.78 

0.99 

1.21 

1.44 

1.89 

2.68 

1.01 

0.33 

0.32 

C4 

0.05 

0.66 

0.96 

1.16 

1.41 

1.68 

1.97 

2.51 

2.86 

1.44 

0.40 

0.28 

C4 

0.45 

0.79 

1.01 

1.15 

1.33 

1.53 

1.68 

1.93 

2.06 

1.34 

0.26 

0.19 
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Chapter V 

UNCERTAINTY CONSIDERATION IN MULTIVARIATE ANNUAL 

STREAMFLOWS GENERATION 

Abstract: Multivariate ARMA models have been widely used in hydrologic streamflows 

simulation and forecasting for their better performance over univariate models when sites 

of concern are statistically closely related. In addition to model uncertainty encountered 

when choosing a well fitted model for application to historical records, parameter 

uncertainty issues arise. A quantification of parameter uncertainty and its incorporation 

into the generation of synthetic streamflows are expected to improve the performance and 

reliability in both planning and management of water resources. In this study, parameter 

uncertainty associated with multivariate generation model will be considered by using 

asymptotic theory and Bayesian framework. A multivariate AR model is used for the 

underlying model and a streamflows generation will be performed with parameter 

uncertainty incorporated for sites on the Colorado River basin. The parameter 

uncertainty effect has been shown to result in generated flows with higher variance than 

historical flows (Valdes, et al, 1977). Basic statistics as well as storage and drought 

related statistics are calculated to evaluate the parameter uncertainty effect. This effect 

enlarges the variability of generated statistics, even with a sample size is 100. Upward 
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bias of generated design variables are also expected which could be explained by the 

parameter uncertainty effect. The Bayesian approach differs from the asymptotic 

approach because it shows larger variability of generated design variables, especially in 

upper quantiles for sample sizes equal to or smaller than 100. Different transformations 

are applied to the data in order to evaluate the skewness effect. A proper elimination of 

skewness of real data for the case of the multivariate generation with parameter 

uncertainty incorporated might be able to eliminate any unexpected increases in the 

variability of generated design variables, which are not found in the univariate generation. 

5.1 Introduction 

The application of multivariate stochastic models has been useful in the planning 

and management of water resources systems of several sites interdependently. Since the 

work of Fiering (1964), a number of multivariate generation models have been presented 

for streamflows simulation and forecasting in hydrology, e.g., multivariate autoregressive 

moving average (ARMA), multiple regression, and disaggregation models (Fiering, 1964; 

Matalas, 1967; Pegram and James, 1972; Valencia and Shaake, 1973; O'Cornell, 1974; 

Mejia and Rouselle, 1976; Salas and Pegram, 1977; Lettenmaier, 1980; Salas et al, 1980; 

Camachoetal, 1985). 

Multivariate ARMA models can be classified into three categories depending on 

the correlation structure of the ARMA model; full (general) multivariate ARMA models, 

transfer function ARMA models, and contemporaneous ARMA models. In particular, a 
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contemporaneous ARMA model with a structure using a diagonal parameter matrix has 

been advocated in hydrology as an alternative to the general multivariate ARMA model 

because of its simplistic structure (Salas et al, 1985). In any case, several parameter 

estimation methods for multivariate ARMA models are available and may be applied 

(Matalas, 1967; Pegram and James, 1972; O'Connell, 1974; Salas and Pegram, 1977; 

Lettenmaier, 1980; Salas et al., 1980; Camacho et al, 1985; Stedinger, et al., 1985). For 

example, Stedinger et al. (1985) compared several parameter estimation techniques for 

the contemporaneous ARMA(1,1) and proposed that maximum likelihood (ML) 

estimators of autoregressive moving average parameters based the univariate estimation 

and method of moments (MOM) estimators of residuals using model parameters behave 

the best. 

Even though a specific multivariate model has been well suited for synthetic 

streamflows generation as in the case of the univariate streamflows generation described 

in the previous chapter, parameter uncertainty remains an issue due to a small historical 

sample size. To address the issue of parameter uncertainty, Camacho, et el. (1987) 

developed asymptotic distributions of ML estimators of parameter matrix for the case of 

the contemporaneous ARMA and compared the asymptotic variances of parameter 

estimates between on the univariate estimation and on the joint estimation. They 

proposed that even though those two ML estimators are asymptotically efficient jointly 

obtained ML estimators would give the smaller asymptotic variance-covariance matrix. 

Use of joint ML estimators might be therefore more efficient in this sense and an 

approximation procedure to get ML estimators corresponding to joint estimation has been 

developed based on the approximation (Camacho, et el., 1987). Compared to 
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contemporaneous ARMA, parameter estimation of general multivariate ARMA models, 

especially those based on ML estimators, is not easy when higher order models are 

required. However, once parameter estimates are obtained the asymptotic distributions 

of ML estimators may be applied (Lufkepohl, 1993). 

Additionally, parameter uncertainty has been dealt with in the Bayesian 

framework. Based on the Bayesian multivariate regression model (Zellner, 1971), an 

evaluation of parameter uncertainty of the general multivariate AR model through the 

generation of annual streamflows was performed (Valdes et al., 1977). They applied 

Bayesian posterior distributions as a way of incorporating parameter uncertainty and 

proposed that parameter uncertainty produces synthetic streamflows with higher 

variances when compared with the historical records. 

In this study, a parameter uncertainty issue concerning the multivariate 

generation case will be discussed. Asymptotic distributions of ML estimators will be 

utilized and their performance will be compared with that from the Bayesian framework. 

Instead of the general multivariate ARMA model, a multivariate AR model will be used 

as the underlying model for its simplicity in obtaining ML estimators. Furthermore note 

that the traditional Bayesian approach will be restricted on the multivariate AR model 

because of using the multivariate regression structure. 

In the work of Vicens et al. (1975) a conjugate prior has been compared with a 

non-informative prior, which showed that a proper conjugate prior could reduce the 

parameter uncertainty effect. However, the true prior might not be the conjugate prior, 

so using the conjugate prior might lead to an incorrect posterior and affect the reliability 

of the simulation performance when the available sample size is small. Therefore, a 
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non-informative prior seems more appropriate than a conjugate prior. Previous chapters 

showed that derived posterior distributions of either AR parameters for the univariate AR 

models or disaggregation parameters have similarity with asymptotic distributions when a 

non-informative prior is used, which has been verified by structurally a correct and 

asymptotically exact Bayesian method (McLeod and Hipel, 1978; Stedinger and Taylor, 

1982). However, a redistribution of AR parameters sampled from a posterior 

distribution with the non-informative prior would be required to meet the stationary 

condition of the models since the non-informative prior of AR parameters is assumed in 

the range of from minus infinity to infinity. This modification of the parameter space 

will be applied to the model generation, which will be termed by a modified posterior 

distribution. It is also probable that using the uniform prior within the parameter space 

might be the better approach for the unknown prior but this is not considered in this study 

since the posterior distribution could not only be explicitly defined but also numerical 

calculation would be required. 

A multivariate AR model is assumed to generate annual streamflows at three 

different sites in the Colorado River basin, where the parameter uncertainty effect on the 

jointly simulated streamflows will be examined. In order to incorporate the uncertainty 

of parameter estimates into the generation of streamflows, new sets of parameter 

estimates will be sampled from their asymptotic or posterior distributions in each 

generation and then substituted for the original parameter estimates obtained from the 

historical sample. Distributions of generated basic statistics, storage related statistics, 

and drought related statistics will be compared. Additionally, a comparison of generated 

statistics based on both univariate and multivariate generations will be conducted to 
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investigate any additional parameter uncertainty effects associated with the extension of 

the univariate model to the multivariate case. Then the skewness effect combining with 

the parameter uncertainty incorporation into the multivariate generation will be discussed 

by evaluating different transformations of real data. 

5.2 Multivariate Autoregressive Model 

A general multivariate autoregressive process is given by (Matalas, 1967) 

<D(5)(Z t-n) = 8t (5.1) 

where Z, = (z(
(1),zr

(2),...,zr
(m))' is the mx\ vector with mean of n = (jum ,pi2\...,juim))' 

and z(
(,) for t = \,2,...,n, i = \,2,...,m denotes flows sequences at site i where n is 

sample size and m is the number of sites. et = {s\X),sl2),...,s\m))' is the mxl 

independent normal random vectors with zero mean vector and mxm variance-

covariance matrix A where (i,j) element of A is denoted by crir If ov = 0 for 

i*j, Equation (5.1) has the same form as m independent univariate AR model. 

0(B) = l-0]B-02B
2...--(t>pB

p is the AR operator of order p where B is 

backward shift operator. In Equation (5.1), it is assumed that the zeros of polynomial 

equations 0(2?) = 0 lie outside the unit circle such that the model is stationary. 

Generally, contemporaneous AR model results if each mxm matrix 

0 , ,0 2 , . . . ,0 is considered to be a diagonal (Camacho et al., 1985; Salas et. al, 1985). 

Thus, a contemporaneous AR model can be thought of a collection of m univariate AR 
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models with contemporaneously correlated innovations. Note that if <!>l,(£)2,...,Qp 

are upper (lower) diagonal matrices, then Equation (5.1) can be said to classified as a 

transfer function AR model, and if O l502,...,® are full matrices, then Equation (5.1) 

is a vector AR model or full multivariate model (Salas, et. al, 1985). 

5.2.1 Maximum likelihood estimators and asymptotic distributions 

Defining: 

Y = [ Z 1 - t i , Z 2 - j i , . . . , Z t - > i , . . . , Z n - n ] 

Z? = 

Z t - f i 

z t - p + l - n 

Y _ f ' 7 0 ' 7 ' 0 7° 7° I 

A = [®1 ,®2 , . . . ,OpJ 

U — [£j , £ 2 , . . . , £ t , . . . ,En J 

(mx n) 

(mp x 1) 

( mp xn) 

(mx mp ) 

(mxn) 

where Z t = ( z ^ , z ^ , . . , z D ' , H = ( ^ \ ^ , . . , / / w ) ' , and st = ( ^ , ^ , . . . , ^ 7 is 

the 777x1 independent normal random vectors with zero mean vector and mxm 

variance-covariance matrix £ . Equation (5.1) can be rewritten more simply as 

Y = AX + U (5.2a) 

or, equivalently, 

vec(Y) = (X' ® Im) vec(A) + vec(V) (5.2b) 

where vec(-) represents the vectorization operator; i.e. vec(U) represents mnx\ 
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column vector formed by stacking the columns of the mxn matrix of U , 

vec(U)(,_l)n+J. = Uy for i = l,2,...,m , j = \,2,...,n , and Im is mxm identity matrix. 

The likelihood function can be easily driven from Equation (5.2a) and the maximum 

likelihood estimators of parameter matrices ji, A, and £ are given by solving normal 

equations as follows: (Lufkepohl, 1993) 

V 
\ -i r p „ 

I* 
;=l J t=i V 

i--I®. EvZ^, 
/=i 

(5.3) 

vec(A) = ((XX'y,X^Im)(vec(Y)-vec(ii)) (5.4) 

t = -(Y-AX)(Y-AX)' 
n 

(5.5) 

where Y, X, zt are observed values of Y, X, z t . An initial value of A can be set to 

the least square estimator: A = Y X'(XX')"1 or method of moments estimators, and 

iterations are repeated until convergence is obtained to give the MLE of \i, A . 

Asymptotic distributions of £, A, and L are given as follows (Ltitkepohl, 

1993) 

vec(A) ~ AMVN{vec(A), - rx(0)_1 <8>E) 
n 

V ;=1 '=1 J 

( 2 A 

vech(L) ~ AMVN vech(Z), - Bm (E <S> L)D'„ 
V 

(5.6) 

(5.7) 

(5.8) 
J 

where ~ AMVN means 'asymptotically follows multivariate normal distribution', 

I n ' rx(0) is the variance-covariance matrix of X: rx(0) = XX7w. D^ = ( D ' D m ) D 
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where Dm is a duplication matrix so that vec(A) = Dmvech(A) where vector operators 

of vec(-) and vech(-) are defined: vec(A) is mnxl column vector formed by 

stacking the columns of the mxn matrix of A, vec(A)(/1)m+( = Ay for i = l,2,...,m, 

j = \,2,...,n and vech(B) stacks the elements on and below the main diagonal of a 

square matrix B . Thus, vec(A) is m2 dimensional vector, vech(A) is 

m(m + \)l 2 dimensional vector, and Dm is m2xm(m + \)/2 matrix. For example, 

D2 and D2 associated with (2x2) A are given by 

D, 

1 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

1 

> D 2 = " Z 

"1 

0 

0 L 

0 

0.5 

0 

0 

0.5 

0 

0 

0 

1 

5.2.2 Parameter uncertainty incorporation by using Bayesian framework 

As an alternative, parameter uncertainty of multivariate AR model can be 

quantified by using posterior distributions of parameter estimates in Bayesian 

multivariate regression framework (Vales, et al., 1977). After switching the columns 

and rows, Equation (5.2a) could be rewritten as 

Z = WB + V (5.9) 

with 

Z„xm - (Zi3z2v->z„) _ 

7m (2) 
7(D (2) 
"2 z 2 

zm z(2) 
n n 

S<") 

,(m) 

M) 
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where « means sample size, m means the number of sites, and p is the order of 

multivariate AR model of concern. <I>0 = (%',ip(
Q >,...,fym>) is the function of AR 

parameters and mean terms: O 0 = ( I m - ^ O i ) n . Z and W are assumed to be 
i=l 
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normally distributed where each row of the innovation matrix V is assumed to be 

independently multivariate normal distributed with zero mean and variance-covariance 

matrix £ . Under this assumption, the joint likelihood function of B and E given 

Z,W is 

Z(B,2:|Z,W)oc|2:r /2exp! --fr(sE~1)-- / r((B-B) 'W'W(B-B)2:- (5.11) 

where S = ( Z - W B ) ' ( Z - W B ) is a matrix proportional to the sample innovation 

covariance matrix. Assuming that the priors of parameters are diffusive and 

independent such that p(B) =constant, p(L) oc |L|
 m+ , and £>(B,£)CC|L|

 m+ , the 

posterior distribution of £ given Z,W are derived by (Zellner, 1971) 

p(l.\Z,V/)~IW(S,v) (5.12) 

where v = n — mp + \ is the degree of freedom and IW denotes the inverse Wishart 

distribution. Also, the posterior distribution of B is given as the generalized 

multivariate t distribution: 

;?(B|X,Y)oc|s + (B-B) 'X'X(B-B)" / 2 (5.13) 

which is the form a generalized multivariate t distribution which has the property that 

any row or column vector of the matrix will be distributed as a multivariate t 

distribution (Zellner, 1971). Thus, it does not appear to be appropriate to apply 

Equation (5.13) to general multivariate AR model with orders greater than 1. In the 

literature by Valdes et al. (1977), this posterior distribution of the multivariate t 

distribution was implemented for only multivariate AR(1) model. On the other hand, 

when E is assumed to be known the conditional posterior pdf of vec(B) given 

231 



Z,W,L is a multivariate normal distribution with mean vec(B) and variance 

covariance matrix L (S> (WW) - 1 expressed by (Zellner, 1971) 

p(vec(B) | Z,W,E) ~ MVN (vec(B), E„]xm <2>(WW)"') (5.14) 

Note that vec(B) is a m2(p + l) dimensional vector and L<8>(W'W)_1 has the 

dimension of m2(p + l)xm2(p + \) . For more information regarding derivation of 

posterior distributions in the Bayesian framework, see Chapter 5 or Zellner (1971), 

Valdes, etal. (1977). 

5.3. Application to Colorado River Basin 

5.3.1 Parameter uncertainty effect 

As a simple example, consider the application of the 1st order trivariate 

autoregressive model TAR(l) to the generation of annual streamflows sequences. Three 

sites in Colorado River Basin which are available from USBR (2007) for years from 1905 

to 2002 (sample size is 98) are selected and the chosen sites are (1) Colorado River main 

stream above Cisco, UT (USGS site number: 9180500, site 8), (2) Green River, UT 

(USGS site number: 9315000, site 16), and (3) San Juan River above Navajo, UT (USGS 

site number: 9379500, site 19). Site locations are shown in Figure 5.1 and main 

statistics of historical data are presented in Table 5.1. Site 8 shows the largest mean 

annual flows (MAF) among the selected sites and MAFs of site 16 and site 19 correspond 

to 79% and 40% to MAF of site 8, respectively. Similar coefficients of variation may be 
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seen at each site that ranges from 0.29 to 0.41. It is also seen that the particularly close 

relationship between site 8 and site 16 as well as between site 8 and site 19 is due to a 

geomorphologic characteristics; i.e., estimated sample cross correlations are p(site 8, 

site 16)= 0.855, p (site 16, site 19)=0.766, and p (site 8, site 19)=0.562. A skewness 

test was performed to check the normality of three historical data sets, which suggested 

that the normality assumption cannot be rejected with 5% significance interval for all 

data sequences. Based on the these results for the skewness test, a transformation 

procedure was not utilized for applying the TVR(l) model. 

Initial values required for the ML estimation was given by method of moments 

estimators based on the Yule-Walker equation assuming that the initial observation vector 

z0 is equal to the last year observation vector zn , which yields ^n =0.333, <j)n = -0.070, 

</>l3 = 0.017, <p2, =0.033, <j)n =0.234, </>2i = 0.125, ^=0.089, ki =-0.030, and ^ 

-0.004. Then, from Equations (5.3)-(5.5), ML estimates of TAR(l) are obtained by: 

A =<£, = 
kx 
#21 

hi kz 
ks 
k^ 

— 

0.343 -0.082 -0.005 

0.043 0.223 0.103 

0.092 -0.034 -0.012 

(5.15) 

6.824 xlO6 

5.414xl06 

2.139xl06 

(acre-feet) (5.16) 

a-, 

a 21 

'31 

<712 

a22 

^ 3 2 

o- 1 3 " 

^ 2 3 

o-33_ 

= 

3.516x10' 

symm. 

2.487 xlO12 1.245 xlO12 

2.421xl012 0.754xl012 

0.755 xlO12 

(acre-feet) 

(5.17) 

It is notable that estimated AR parameters associated with two different sites seem very 
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small, therefore the instant causality between sites might be of major concern. As a 

model identification technique, Hipel and McLeod (1994) proposed the residual cross 

correlation function (CCF) where the residual at each site is calculated after fitting the 

univariate model. They suggested that applied time series might have the instant 

Granger causality in terms of predictability and contemporaneous model might be 

appropriate if the residual CCF is not significantly different from zero, respectively, for 

instances where the lag is not equal to zero. The calculated residual CCF (not provided 

in Figure) has been shown to be not significantly different zero for the lag greater than 0, 

thus a contemporaneous AR(1) model might be applicable for the present application. 

However, a general TAR(l) model will be used since there is no special reason to stick to 

the contemporaneous AR model with loss of generosity. 

Five thousand synthetic annual streamflows sequences are generated with the 

same size of historical flows (n =98) for each site. Aforementioned asymptotic and 

posterior distributions are then used to quantify parameter uncertainty. Different 

parameter sets are obtained from asymptotic and posterior distributions; then those 

sampled parameters were substituted for historical estimates in each generation. Clearly, 

the variance term in either asymptotic or posterior distribution is a function of the 

available sample size as well as the true parameter sets. Through the generation 

historical parameter estimates are assumed as true parameters and available sample sizes 

are set to 50, 100, and 200 in order to examine the associated sample size effects 

associated with parameter uncertainty. In order to resolve the unrealistic range of non-

informative prior (from -inf to inf), the stationary condition of TAR parameters that the 

zeros of O(B) = 0 that lie outside the unit circle will be taken into account. 
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Parameters sampled from posterior distribution that lie outside the parameter space will 

be discarded, at which point another sampling from posterior distributions will be 

performed. 

First, as a way of interpreting the effect from incorporating parameter uncertainty 

into the streamflows generation, basic statistics of generated streamflows were calculated 

and compared. Figures 5.2-5.3 and Figures 5.A1-5.A2 in Appendix illustrate quantile 

distributions of 5000 generated means, standard deviations, skewness coefficients, lag-1 

serial correlations, and cross correlations. Each set of statistics is separately calculated 

in a trace of generated streamflows set for 3 different scenarios: (1) NU: natural 

uncertainty (no parameter uncertainty) (2) AS: asymptotic approach, and (3) BA: 

Bayesian approach. In Box plots of provided Figures, two upper, middle, and lower 

lines in the box are 75, 50, 25% quantile, respectively, the whisker from the box means 

90, 10% quantile for each side, two dots outside box mean 99%, 1% quantile values, and 

'X' means historical storage capacity. As expected, the parameter uncertainty effect on 

simulated statistics increases the variability especially when sample size is relative small 

(n = 50). Increased variability of generated statistics can be still visible when n = 100 

(even when n =200) and therefore sample size of 100 might not be enough to neglect the 

effect of parameter uncertainty into the streamflows generation. Note that this is not the 

case of generated skewness coefficients since all calculated skewness show similar 

distributions with all sample sizes and sites. 

A comparison between AS and BA in terms of expected values of generated 

statistics yielded little difference in the expected generated mean, lag-1 correlation 

coefficients, and cross correlations between simulated and historical samples. However, 
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increased upward bias of generated standard deviation for BA is notable for n = 50, 

which coincided with the result by Vales et al. (1977). This positive bias of generated 

standard deviations could not be found for AS, which might have been due to using the 

multivariate normal distribution in AS instead of the Wishart distribution in BA for the 

variance-covariance parameter matrix. Furthermore, BA shows a slightly wider 

variability of generated means for n =50, but AS and BA showed similar variability of 

distributions for all examined statistics once the available sample size is equal to or 

greater than 100. 

Also performed was a comparison based on design variables of storage related 

statistics (storage capacity based on sequence peak algorithm) and drought related 

statistics (critical drought indices) by assuming that the design period Nd is equal to the 

historical sample size of 98. For more information regarding the definition and 

calculation of these statistics, see the previous chapter or Salas et al. (1980). Different 

fractions of MAF are employed as a threshold in the calculations of design variables 

where demand levels are assumed to be 100%, 80%, 60% MAF, and the same record 

length with historical flows is assumed to be a design period. Figure 5.4 represents 

quantiles of synthetic storage capacities (Sc) and critical drought magnitude (cdm ), 

critical drought length (cdl), and critical drought intensity (cdi) with d = 60% MAF 

calculated from generated annual streamflows for site 8. 

Parameter uncertainty induces different patterns of estimated quantiles of design 

variables compared to the case of NU. Expected values of generated Sc , cdm , cdl, 

and cdi are shown to be greater than those calculated from the historical samples, 

particularly when the available sample is small (n=50). A notable effect of parameter 
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uncertainty is that it results in increased upper quantiles generated for all of the design 

variables. Parameter uncertainty effects are still expected when n =100 (even «=200). 

Similar patterns of parameter uncertainty effects on quantiles of design variables are 

expected for different demand levels and sites. See quantile plots in Figures 5.A3-

5. A10 Appendix. 

Compared with AS, BA produces larger expected values and upper quantile 

estimates of Sc and cdm , especially for n =50, but this difference is inversely 

proportional to the available sample size. However, a difference remains between AS 

and BA in upper quantiles of design variables when n =100. As mentioned before, this 

difference results from using different parameter distributions of variance-covariance 

matrix of error terms in TAR(l) model. 

Table 5.2 shows the related relative bias (RBIAS ) and relative root mean square 

errors (RRMSE) of design variables for all three sites with d = 100% MAF (see the 

previous chapter for the definition of RBIAS and RRMSE ). The RBIAS and 

RRMSE are greater than the historical ones, which could be the effect of parameter 

uncertainty, and this effect is shown to decrease as sample size increases. More 

significant effects of parameter uncertainty on Sc and cdm are visible rather than cdl 

and cdi. The following example will be helpful to evaluate the difference between two 

approaches of AS and BA, which is demonstrated in Table 5.3. Consider RRMSE of 

generated storage capacities for the case with the demand level (d) of 80% MAF at site 

8. Note that RRMSE is the function of variance and square root of RBIAS. It is 

shown that BA (258% of RRMSE) gives 68% more RRMSE than AS (190% of 

RRMSE) when rc=50, but that difference between AS and BA is getting to 8% of 

237 



RRMSE when n = 200(129% of RRMSE for BA, 121% of RRMSE for AS). It is 

clear that the reduction of RRMSE for Sc with larger sample size is also valid for 

cdm , cdl, and cdi 

Additionally, the parameter uncertainty effect is also considered with the 

different demand levels. The previous chapter shows that patterns of bias (upward or 

downward) and magnitude of variability of generated design variables can be different 

depending on the assumed demand levels, even if parameter uncertainty is not 

incorporated. In the present application, it seems that a smaller demand level causes 

larger bias and larger variability of generated design variables. For this reason, the 

comparison of AS and BA in terms of the ratio relative to NU is appropriate. The 

difference of RRMSE between AS and B A in terms of the ratio relative to NU is shown 

to be dependent of different demand levels: e.g., for rc=50 the difference in increased 

RRMSE of AS and BA relative to NU regarding Sc is 7% (51%-44%) for d =100% 

MAF, 15% (58%-43%) for d=80% MAF, and 17% (56-39%) for d=60% MAF, which 

means that the B A reveals more variability of Sc for a smaller d . 

Another example is given for RRMSE of cdm , which shows the similar 

pattern with Sc. Compared with 120% in NU for d=6Q% and 77=50, AS shows 

191% of RRMSE and BA shows 250% of RRMSE which corresponds to 37% 

increased RRMSE for AS and 52% increased RRMSE for BA compared with NU 

(15% difference in increased RRMSE between AS and BA). However, the difference 

in increased RRMSE between AS and BA reduces to 8% when n =200. Also, 

different demand levels shows the range of RRMSE between AS and BA relative to NU 

by 10-15%. Similar patterns between Sc and cdm are to be expected for the reason 
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that those two statistics are conceptually related with the largest deficit over the design 

period. Similar patterns may be found of increased RRMSE by parameter uncertainty 

in cdl and cdi, but the magnitude of RRMSE which ranges 13%-34% for cdl and 

33%-56% for cdi is not as much as in the case of Sc and cdm . See Tables 5.A1-

5.A3 in the Appendix for more information regarding calculated RBIAS and RRMSE 

of generated design variables for all sites. 

To summarize the comparative analysis of AS and BA for different sample sizes 

and demand levels in terms of RRMSE of generated design variables, BA results the 

larger RRMSE (up to 11%) than AS when rc=100 but BA will be closer to AS when 

««200. That is, at least «>200 would be required to ensure the applicability of the 

asymptotic approach and use of the Bayesian approach for n <200 would be 

recommended. 

5.3.2 Comparative analysis of univariate and multivariate generation 

In order to evaluate the parameter uncertainty effect associated with the 

appropriate model selection, an additional simple univariate generation is utilized and a 

comparison will be provided. Parameter uncertainty effect on the main statistics and 

design variables based on TAR(l) model generation will be compared with the case of the 

univariate generation where streamflows of two sites are independently generated by the 

univariate AR(1) model. Depending on parameter uncertainty, consideration for four 

different cases for models are exemplified, which are (1) NUu: univariate generation 

without parameter uncertainty (natural uncertainty of model), (2) BAu: univariate 
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generation with parameter uncertainty incorporated based on Bayesian posterior 

distribution, (3) NUm: trivariate generation without parameter uncertainty, and (4) BAm: 

trivariate generation with parameter uncertainty incorporated based on Bayesian posterior 

distribution. 

Basic statistics for each of the available sample sizes in the 4 unique cases are 

shown in Figures 5.A11-5.A13 in Appendix. Almost identical distributions of generated 

statistics are expected between univariate and multivariate generations for the cases 

without parameter uncertainty, which can be supported by similar estimates of lag-1 serial 

correlation coefficients at each site when taking either the univariate and trivariate 

estimation as shown in Table 5.1. However, increases in the expected value and 

variability of generated standard deviation are notable for small sample size (w=50) in 

the trivariate case when parameter uncertainty is included in the generation of 

streamflows. Figure 5.5 illustrates the quantile distributions of generated design 

variables with d =60% MAF for site 16 (see Figures 5.A14-5.A24 in the Appendix for 

other sites and demand levels). Note that the uncertainty incorporation effect with 

TAR(l) model is more significant on increased bias and upper quantiles of design 

variables than one in the univariate model. It is probably associated with the increased 

number of parameters or other factors. For example, currently there are 18 parameters 

for trivariate AR(1) model compared with 9 parameters for two univariate AR(1) model, 

and uncertainty associated with more parameters might result an increase in the 

variability of design variables. This increase of variability will probably be more 

dominant for smaller demand levels. Calculated RBIAS and RRMSE of generated 

design variables would be helpful in recognizing the differences between the four cases 
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as was discussed in this section. See Tables 5.A4-5.A6 in the Appendix for calculated 

RBIAS and RRMSE for generated design variables. 

5.3.3 Parameter uncertainty associated with transformation 

Even though the initial normality assumption of historical streamflows at all 

three sites in the present application would be acceptable according to a skewness applied 

with 5% significance levels, in reality the sample skewness coefficients that range 

between 0.21-0.34 show some skewness in the historical sample. Practically, most 

historical streamflows (even annual) are not exactly normally distributed (they have some 

skewness) and some transformations might be required to treat this non-zero skewness to 

ensure the normality assumption that is fundamentally required for our models. A 

power transformation is selected from several possible transformation methods and 

employed to the present historical streamflows sequences at all three sites (non-

transformation and power transformation will be referred to Case 1 and 2, respectively). 

A different parameter uncertainty effect might be expected due to the different treatment 

of the normality of data and will be discussed in this section. Case 2 produces similar 

distributions of basic statistics (as observed in Case 1 and Case 2) and demonstrates 

superior performance in preserving the historical skewness in the generated streamflows 

(See Figures 5.A25-5.A27). Figure 5.6 demonstrates quantile distributions of generated 

design variables with d =60% MAF for site 16 in Case 2 (see Figures 5.A28-5.A29). 

Additionally, see the Appendix for other sources of information. A comparison based 

on Figures 5.5 and 5.6 illustrates Case 2 yields similar patterns as in Case 1 with regard 

241 



to parameter uncertainty effects on quantiles of design variables for the univariate 

generation. Overall, Case 2 produces less variability of the quantile distributions than 

that which is found in Case 1 without parameter uncertainty. Therefore, the elimination 

of skewness of historical data would reduce the natural uncertainty of the streamflows 

generation. Case 2 would be expected to have less variability of design variables than 

Case 1 when parameter uncertainty is incorporated, which could be a consequence of the 

reduced natural uncertainty. In both Case 1 and Case 2, the trivariate generation shows 

the similar variability of quantile distributions of design variables with the univariate 

generation when parameter uncertainty is not incorporated. However, when parameter 

uncertainty is taken into account, the reduced variability of quantile estimates for the 

trivariate generation could be expected in Case 2, but not in Case 1. This difference 

between two Cases could be explained by manipulating the historical skewness and 

consequent impacts in the trivariate generation. Since the parameter uncertainty 

consideration is theoretically based on the normal assumption of sample, the existing 

skewness of historical data (even if that skewness is not shown to be significantly 

different from zero by the skewness test) could be in some cases more effective on 

quantile distributions of design variables; moreover, its impact might be boosted with the 

incorporation of parameter uncertainty. In such an example, allowing for the 

elimination of the historical skewness by transformation reduces the associated parameter 

uncertainty effect in the case of multivariate generation. 

Table 5.4 gives a brief summary of the parameter uncertainty effect on the 

storage capacity and critical drought magnitude calculated from synthetic annual 

streamflows at site 8 generated by using trivariate AR(1) model with power 
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transformation applied. Generated mean, standard deviation, and quantiles of design 

variables are shown for the Cases of NUm (without parameter uncertainty) and BAm 

(with parameter uncertainty). Compared with NUm, BAm shows about 25% and 31% 

increased expected values of generated storage capacities and about 93% and 139% 

increased standard deviations of generated storage capacities for demand levels of 100% 

MAF and 80% MAF, respectively. The parameter uncertainty shows the increased 

quantiles with a range from about 45% to 116%, and more increased quantiles of storage 

capacity would be expected by parameter uncertainty especially for the larger quantile. 

Overall, less increase by the parameter uncertainty effect is demonstrated in the generated 

critical drought magnitude compared with the generated storage capacity, except that 

similar pattern of increased statistics and quantiles by parameter uncertainty over 

different demand levels and sample serial correlations are reported for both design 

variables. 

5.4. Summary and Conclusion 

Parameter uncertainty has been embedded into the multivariate generation based 

on the multivariate AR model by using asymptotic and posterior distributions of 

maximum likelihood estimators. Increased variance of generated streamflows at each 

site has been found, which would be associated with the effect of parameter uncertainty 

as discussed by Valdes, et al. (1977). Compared to traditional generation without 

parameter uncertainty incorporation, parameter uncertainty creates an increase in 

variability of quantile distributions of basic statistics. Furthermore, design variables of 
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storage capacity and critical drought indices have been utilized to evaluate the parameter 

uncertainty effect in streamflows generation and thus increases expected values of design 

variables and increases the variability of quantile distributions of design variables as well. 

The parameter uncertainty effect remains visible when sample size is equal to 100, and 

also with a sample size of 200. Therefore, when employing the multivariate generation 

into the real hydrologic application using a small sample size, the incorporation of 

parameter uncertainty into the streamflows generation might be useful to improve the 

reliability of design variables. 

A comparative analysis of the asymptotic and Bayesian approaches has been 

performed based on an analysis using generated basic statistics and design variables. 

Compared with the asymptotic approach, the Bayesian approach produces synthetic 

streamflows with bigger standard deviations as well as associated design variables with 

upward shifted expected values and larger variability, which is more visible when the 

small sample size is equal or less than 100 and is of a smaller demand level. When the 

sample size approaches 200, the results from Bayesian approach become identical to 

those from asymptotic approach. 

In general, sample sizes that are large enough for the posterior distribution will 

be defined by only the sample structure rather than it depending on its prior. Indeed, an 

applied posterior distribution of AR parameters that is derived from the non-informative 

prior has been shown to be equivalent to an asymptotic distribution. On the other hand, 

different distributions of variance-covariance for error terms of TAR(l) models based on 

asymptotic and Bayesian approaches are available which result in an increased standard 

deviation of generated streamflows and increased variability in quantile distributions of 
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design variables. 

Theoretically, more precise posterior distributions can be obtained if the true 

prior of parameters is available, but this is not the case unless the exact prior is given. 

Thus, the modified posterior distribution with bounded parameter spaces seems 

appropriate for incorporation of parameter uncertainty into the streamflows generation. 

Use of the modified posterior distribution would be preferred for the real hydrologic 

planning and design over asymptotic distribution since there would be significant 

variability generated by the Bayesian approach as it is applied to a small sample size. 

Such an approach to ensure the reliability of streamflows generation might not be 

negligible. 

Skewness of real data might significantly effect the variability of design variables 

generated from the multivariate model with parameter uncertainty incorporated. In 

which case, a proper elimination of skewness of the real data might be useful in removing 

any unexpected increases in the variability of generated design variables. 
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Figure 5.1: Colorado River basin gauging stations (USBR, 2007) 
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Table 5.1 Basic statistics of applied annual streamflows data in Colorado River basin 

Site 8 Site 16 Site 19 

Sample mean (ac-ft) 

Sample standard deviation (ac-ft) 

Sample coefficient of variation 

Sample skewness coefficient 

Sample kurtosis coefficient 

Sample lag-1 correlation 

Estimated AR parameters 

(based on univariate ML estimator) 

Estimated lag-1 correlation 

(based on TAR(l)) 

6,824,630 

1,965,947 

0.29 

0.21 

2.63 

0.288 

5,415,641 

1,642,136 

0.30 

0.34 

2.87 

0.306 

2,148,418 

883,149 

0.41 

0.31 

2.38 

0.116 

0.287 

0.280 

0.304 

0.295 

0.115 

0.109 

Sample cross correlation 

Site 8 

Site 16 

Site 19 

Site 8 

1 

0.855 

0.766 

Site 16 

0.855 

1 

0.562 

Site 19 

0.766 

0.562 

1 
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Figure 5.2: Distributions of mean, standard deviation, skewness coefficient, and lag-1 
serial correlation calculated from 5000 different generated annual streamflows sets (site 
8) with parameter uncertainty incorporated where 'NU', 'AS', BA' mean different 
parameter uncertainty consideration: 'NU' means natural uncertainty, 'AS' means using 
asymptotic distributions, and 'BA' means using posterior distribution. Superscript * notes 
"scaled by historical statistics" and 'X' denotes historical statistics. 
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Figure 5.3: Distributions of cross correlations calculated from 5000 different generated 
annual streamflows sets with parameter uncertainty incorporated where 'NU', 'AS', BA' 
mean different parameter uncertainty consideration: 'NU' means natural uncertainty, 'AS' 
means using asymptotic distributions, and 'BA' means using posterior distribution. 
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Figure 5.4: Distributions of storage capacity (S t ) , critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 8 
given demand level of 80% MAR Superscript * notes "scaled by historical statistics" and 
'X' denotes historical statistics. 
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Figure 5.5: Distributions of storage capacity (Sc), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 
16 given demand level of 60% MAR 'NUu' means natural uncertainty based on 
univariate generation, 'BAu' means using posterior distribution based on univariate 
generation, 'NUm' means natural uncertainty based on multivariate generation, and 
'BAm' means using posterior distribution based on multivariate generation. Superscript * 
notes "scaled by historical statistics" and 'X' denotes historical statistics. 
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Figure 5.6: Distributions of storage capacity (Sc), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 
16 given demand level of 60% MAF. 'NUu' means natural uncertainty based on 
univariate generation, 'BAu' means using posterior distribution based on univariate 
generation, 'NUm' means natural uncertainty based on multivariate generation, and 
'BAm' means using posterior distribution based on multivariate generation. Superscript * 
notes "scaled by historical statistics" and 'X' denotes historical statistics. Transformation 
applied. 

252 



Table 5.2: RBIAS and RRMSE of generated design variables based on different 
parameter uncertainty consideration methods (demand level = 100%) 

Sample size 

NU 

Storage Capacity, Sc 

Rbias 50 -10 

(%) 100 -11 

200 -11 

rrmse 50 43 

(%) 100 43 

200 44 

Critical drought magnitude, cdm 

Rbias 50 50 

(%) 100 49 

200 50 

rrmse 50 73 

(%) 100 72 

200 73 

Critical drought length, cdl 

rbias 50 48 

(%) 100 49 

200 50 

rrmse 50 67 

(%) 100 68 

200 69 

Critical drought intensity, cdi 

rbias 50 6 

(%) 100 6 

200 6 

rrmse 50 23 

(%) 100 23 

200 24 

! 8 Site 16 

AS BA NU AS 

8 

-1 

-7 

77 

60 

53 

14 

2 

-6 

87 

64 

52 

-3 

-3 

-4 

46 

46 

46 

17 

7 

1 

86 

67 

56 

66 

58 

52 

109 

91 

80 

76 

63 

55 

129 

97 

84 

40 

39 

39 

63 

63 

63 

55 

46 

42 

101 

81 

71 

55 

53 

50 

84 

77 

71 

55 

53 

50 

85 

77 

72 

26 

26 

25 

47 

47 

47 

31 

28 

27 

63 

55 

50 

9 

7 

6 

28 

26 

24 

16 

11 

8 

34 

28 

26 

26 

25 

26 

37 

37 

38 

29 

27 

26 

42 

40 

38 

Site 19 

BA NU AS BA 

22 

11 

2 

95 

70 

57 

-24 

-24 

-24 

43 

43 

42 

-10 

-17 

-21 

63 

52 

48 

-7 

-18 

-23 

68 

53 

47 

63 

51 

44 

121 

86 

74 

27 

26 

26 

50 

49 

49 

37 

31 

28 

75 

61 

55 

45 

33 

28 

89 

65 

55 

30 

29 

27 

65 

56 

51 

-5 

-6 

-6 

30 

30 

30 

-2 

-4 

-5 

37 

33 

32 

-3 

-5 

-7 

40 

34 

31 

38 

31 

28 

52 

44 

40 

34 

35 

35 

45 

46 

46 

38 

36 

35 

52 

48 

48 

46 

40 

37 

60 

53 

49 
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Table 5.3: Example of comparison of RRMSE (%) of generated design variables based 
on different parameter uncertainty consideration methods (site 8) 

sample size 

Storage Capacity, 

50 

100 

200 

Critical droL 

50 

100 

200 

Critical droi 

50 

100 

200 

Critical droi. 

50 

100 

200 

100% MAF 

NU 

Sc 

43 

43 

44 

jght magnitude, 

73 

72 

73 

jght length, cdl 

67 

68 

69 

AS 

77 

(44) 

60 

(28) 

53 

(17) 
cdm 

109 

(33) 

91 

(21) 
80 

(9) 

84 

(20) 

77 

(12) 
71 

(3) 
jght intensity, cdi 

23 

23 

24 

28 

(18) 
26 

(12) 
24 

(0) 

BA 

87 

(51) 
64 

(33) 

52 

(15) 

129 

(43) 

97 

(26) 
84 

(13) 

85 

(21) 
77 

(12) 
72 

(4) 

34 

(32) 

28 

(18) 
26 

(8) 

Demand level, d 

NU 

109 

105 

107 

89 

85 

86 

33 

32 

33 

45 

45 

46 

80% MAF 

AS 

190 

(43) 
140 

(25) 

121 

(12) 

139 
(36) 

110 
(23) 

97 

(11) 

46 

(28) 

38 

(16) 
36 

(8) 

52 

(13) 
50 

(10) 
47 

(2) 

BA 

258 

(58) 

160 

(34) 

129 

(17) 

177 

(50) 

123 

(31) 
103 

(17) 

50 

(34) 

39 

(18) 
36 

(8) 

62 

(27) 

53 

(15) 
50 

(8) 

NU 

125 

118 

119 

120 

115 

116 

127 

125 

125 

56 

55 

56 

60% MAF 

AS 

205 

(39) 
156 

(24) 

135 

(12) 

191 
(37) 

150 

(23) 
129 

(10) 

159 

(20) 

143 

(13) 
132 

(5) 

68 

(18) 
63 

(13) 
59 

(5) 

BA 

285 

(56) 
181 

(35) 

146 

(18) 

250 
(52) 

171 

(33) 
141 

(18) 

185 

(31) 
151 

(17) 
138 

(9) 

80 

(30) 

66 

(17) 
62 

(10) 

Note value in the parenthesis below calculated RRMSE denotes the ratio(%) of 
RRMSE based on corresponding approach relative to RRMSE based on NU. 
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Table 5.4: Example of generated storage capacity and critical drought magnitude (scaled 

by MAF) (n =50, Nd =98, Bayesian analysis, site 8, power transform applied) 

Demand level 

Case 

Storage capacity 

mean 

SD 

#0.9 

#0.95 

#0.99 

Critical drought magnitude 

mean 

SD 

#0.9 

#0.95 

#0.99 

MAF 

NUm 

4.0 

1.9 

6.6 

7.6 

9.7 

2.1 

0.7 

3.0 

3.4 

4.4 

BAm 

5.0 

24.5% 

3.6 

92.6% 

9.9 

50.4% 

12.0 

59.3% 

17.0 

74.1% 

2.4 

15.5% 

1.3 

79.6% 

3.9 

27.9% 

4.7 

38.4% 

7.0 

60.3% 

0.8MAF 

NUm 

0.9 

0.4 

1.4 

1.6 

2.1 

0.8 

0.3 

1.2 

1.4 

1.8 

BAm 

1.2 

30.5% 

0.9 

138.8% 

2.0 

45.3% 

2.5 

61.1% 

4.4 

116.0% 

1.0 

23.4% 

0.6 

84.6% 

1.7 

37.6% 

2.0 

45.6% 

3.2 

73.5% 

Note NUm: no parameter uncertainty considered (natural uncertainty), BAm: parameter 
uncertainty incorporated to trivariate AR(1) model (Bayesian) , SD: standard deviation, q09, 

#0 95' #099 means 90%, 95%, and 99% quantile, respectively. Value (%) in the column of 
BAm represents the ratio of increased storage capacity(or critical drought magnitude in BAm 
with respect to NUm. (parameter uncertainty effect) 
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Appendix 5.A: Additional Figures and Tables 
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Figure 5.A1: Distributions of mean, standard deviation, skewness coefficient, and lag-1 
serial correlation calculated from 5000 different generated annual streamflows sets (site 
16) with parameter uncertainty incorporated where 'NU', 'AS', BA' mean different 
parameter uncertainty consideration: 'NU' means natural uncertainty, 'AS' means using 
asymptotic distributions, and 'BA means using posterior distribution. Superscript * notes 
"scaled by historical statistics" and 'X' denotes historical statistics. 
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Figure 5.A2: Distributions of mean, standard deviation, skewness coefficient, and lag-1 
serial correlation calculated from 5000 different generated annual streamflows sets (site 
19) with parameter uncertainty incorporated where 'NU', 'AS', BA' mean different 
parameter uncertainty consideration: 'NU' means natural uncertainty, 'AS' means using 
asymptotic distributions, and 'BA' means using posterior distribution. Superscript * notes 
"scaled by historical statistics" and 'X' denotes historical statistics. 
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Figure 5.A3: Distributions of storage capacity (5c), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 8 
given demand level of 100% MAR Superscript * notes "scaled by historical statistics" 
and 'X' denotes historical statistics. 
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Figure 5.A4: Distributions of storage capacity (Sc), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 
16 given demand level of 100% MAR Superscript * notes "scaled by historical statistics" 
and 'X' denotes historical statistics. 
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Figure 5.A5: Distributions of storage capacity (Sc), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 
19 given demand level of 100% MAR Superscript * notes "scaled by historical statistics" 
and 'X' denotes historical statistics. 
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Figure 5.A6: Distributions of storage capacity (Sc), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 
16 given demand level of 80% MAR Superscript * notes "scaled by historical statistics" 
and 'X' denotes historical statistics. 
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Figure 5.A7: Distributions of storage capacity (Sc), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 
19 given demand level of 80% MAR Superscript * notes "scaled by historical statistics" 
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Figure 5.A8: Distributions of storage capacity (Sc), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 8 
given demand level of 60% MAR Superscript * notes "scaled by historical statistics" and 
'X' denotes historical statistics. 
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Figure 5.A9: Distributions of storage capacity (Sc), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 
16 given demand level of 60% MAR Superscript * notes "scaled by historical statistics" 
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Figure 5.A10: Distributions of storage capacity (Sc), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamfiows at site 
19 given demand level of 60% MAR Superscript * notes "scaled by historical statistics" 
and 'X' denotes historical statistics. 
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Figure 5.A11: Distributions of mean, standard deviation, skewness coefficient, and lag-1 
serial correlation calculated from 5000 different generated annual streamflows sets (site 
8) with parameter uncertainty incorporated where: 'NUu' means natural uncertainty 
based on univariate generation, 'BAu' means using posterior distribution based on 
univariate generation, 'NUm' means natural uncertainty based on multivariate generation, 
and 'BAm' means using posterior distribution based on multivariate generation. 
Superscript * notes "scaled by historical statistics" and 'X' denotes historical statistics. 

268 



n=50 n=100 n=200 

1.2 

1.1 

1 

0.9 

0.8 

• 

8 

• 

7" 

_L 

• 

s 

* 

• 

"T" 

# 

Q 
W 

-0.5 

NUu BAu 

n= 

NUm BAm 

50 

1.5 

1.25 

1 

0.75 

• 

b«d 
* 

9 

T 

M M 

* 

« 

• 

T 

_L 
* 

NUm BAm 

50 

NUu BAu NUm BAm 

n=100 

NUu BAu NUm BAm 

n=200 

Q 

NUu BAu NUm BAm 

n=100 
1 r 

w 0.5 
in 
0 

I o 
CD 

w -0.5 

- 1 • NUu BAu NUm BAm 

n=100 

1.5 

1.25 

1 

0.75 

1 r 

0.5 

0 

-0.5 

-1 

^ t * i 

NUu BAu NUm BAm 

n=200 

NUu BAu NUm BAm 

n=200 

NUu BAu NUm BAm NUu BAu NUm BAm NUu BAu NUm BAm 

Figure 5.A12: Distributions of mean, standard deviation, skewness coefficient, and lag-1 
serial correlation calculated from 5000 different generated annual streamflows sets (site 
16) with parameter uncertainty incorporated where: 'NUu' means natural uncertainty 
based on univariate generation, 'BAu' means using posterior distribution based on 
univariate generation, 'NUm' means natural uncertainty based on multivariate generation, 
and 'BAm' means using posterior distribution based on multivariate generation. 
Superscript * notes "scaled by historical statistics" and 'X' denotes historical statistics. 
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Figure 5.A13: Distributions of mean, standard deviation, skewness coefficient, and lag-1 
serial correlation calculated from 5000 different generated annual streamflows sets (site 
19) with parameter uncertainty incorporated where: 'NUu' means natural uncertainty 
based on univariate generation, 'BAu' means using posterior distribution based on 
univariate generation, 'NUm' means natural uncertainty based on multivariate generation, 
and 'BAm' means using posterior distribution based on multivariate generation. 
Superscript * notes "scaled by historical statistics" and 'X' denotes historical statistics. 
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Figure 5.A14: Distributions of storage capacity (5c), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 8 
given demand level of 100% MAR 'NUu' means natural uncertainty based on univariate 
generation, 'BAu' means using posterior distribution based on univariate generation, 
'NUm' means natural uncertainty based on multivariate generation, and 'BAm' means 
using posterior distribution based on multivariate generation. Superscript * notes "scaled 
by historical statistics" and 'X' denotes historical statistics. 
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Figure 5.A15: Distributions of storage capacity (Sc), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamfiows at site 
16 given demand level of 100% MAR 'NUu' means natural uncertainty based on 
univariate generation, 'BAu' means using posterior distribution based on univariate 
generation, 'NUm' means natural uncertainty based on multivariate generation, and 
'BAm' means using posterior distribution based on multivariate generation. Superscript * 
notes "scaled by historical statistics" and 'X' denotes historical statistics. 
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Figure 5.A16: Distributions of storage capacity (Sc), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 
19 given demand level of 100% MAR 'NUu' means natural uncertainty based on 
univariate generation, 'BAu' means using posterior distribution based on univariate 
generation, 'NUm' means natural uncertainty based on multivariate generation, and 
'BAm' means using posterior distribution based on multivariate generation. Superscript * 
notes "scaled by historical statistics" and 'X' denotes historical statistics. 
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Figure 5.A17: Distributions of storage capacity (Sc), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 8 
given demand level of 80% MAR 'NUu' means natural uncertainty based on univariate 
generation, 'BAu' means using posterior distribution based on univariate generation, 
'NUm' means natural uncertainty based on multivariate generation, and 'BAm' means 
using posterior distribution based on multivariate generation. Superscript * notes "scaled 
by historical statistics" and 'X' denotes historical statistics. 

274 



n=50,site 16 n=100,site 16 n=200, site 16 

NUu BAu NUm BAm 

n=50,site 16 

NUu BAu NUm BAm 

n=100,site 16 

NUu BAu NUm BAm 

n=200, site 16 

NUu BAu NUm BAm 

n=50,site 16 

NUu BAu NUm BAm 

n=100,site 16 

NUu BAu NUm BAm 

n=200,site 16 

NUu BAu NUm BAm 

n=50,site 16 

NUu BAu NUm BAm 

n=100,site 16 

15 

10 

5 

0 
NUu BAu NUm BAm 

n=200,site 16 

NUu BAu NUm BAm NUu BAu NUm BAm NUu BAu NUm BAm 

Figure 5.A18: Distributions of storage capacity (Sc), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 
16 given demand level of 80% MAR 'NUu' means natural uncertainty based on 
univariate generation, 'BAu' means using posterior distribution based on univariate 
generation, 'NUm' means natural uncertainty based on multivariate generation, and 
'BAm' means using posterior distribution based on multivariate generation. Superscript * 
notes "scaled by historical statistics" and 'X' denotes historical statistics. 
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Figure 5.A19: Distributions of storage capacity (5c), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamfiows at site 
19 given demand level of 80% MAR 'NUu' means natural uncertainty based on 
univariate generation, 'BAu' means using posterior distribution based on univariate 
generation, 'NUm' means natural uncertainty based on multivariate generation, and 
'BAm' means using posterior distribution based on multivariate generation. Superscript * 
notes "scaled by historical statistics" and 'X' denotes historical statistics. 
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Figure 5.A20: Distributions of storage capacity (Sc), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 8 
given demand level of 60% MAF. 'NUu' means natural uncertainty based on univariate 
generation, 'BAu' means using posterior distribution based on univariate generation, 
'NUm' means natural uncertainty based on multivariate generation, and 'BAm' means 
using posterior distribution based on multivariate generation. Superscript * notes "scaled 
by historical statistics" and 'X' denotes historical statistics. 
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Figure 5.A21: Distributions of storage capacity (Sc), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 
19 given demand level of 60% MAR 'NUu' means natural uncertainty based on 
univariate generation, 'BAu' means using posterior distribution based on univariate 
generation, 'NUm' means natural uncertainty based on multivariate generation, and 
'BAm' means using posterior distribution based on multivariate generation. Superscript * 
notes "scaled by historical statistics" and 'X' denotes historical statistics. 
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Figure 5.A22: Distributions of storage capacity (Sc ), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 8 
given demand level of 40% MAF. 'NUu' means natural uncertainty based on univariate 
generation, 'BAu' means using posterior distribution based on univariate generation, 
'NUm' means natural uncertainty based on multivariate generation, and 'BAm' means 
using posterior distribution based on multivariate generation. Superscript * notes "scaled 
by historical statistics" and 'X' denotes historical statistics. 
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Figure 5.A23: Distributions of storage capacity (Sc), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 
16 given demand level of 40% MAF. 'NUu' means natural uncertainty based on 
univariate generation, 'BAu' means using posterior distribution based on univariate 
generation, 'NUm' means natural uncertainty based on multivariate generation, and 
'BAm' means using posterior distribution based on multivariate generation. Superscript * 
notes "scaled by historical statistics" and 'X' denotes historical statistics. 
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Figure 5.A24: Distributions of storage capacity (Sc), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 
19 given demand level of 40% MAF. 'NUu' means natural uncertainty based on 
univariate generation, 'BAu' means using posterior distribution based on univariate 
generation, 'NUm' means natural uncertainty based on multivariate generation, and 
'BAm' means using posterior distribution based on multivariate generation. Superscript * 
notes "scaled by historical statistics" and 'X' denotes historical statistics. 
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Figure 5.A25: Distributions of mean, standard deviation, skewness coefficient, and lag-1 
serial correlation calculated from 5000 different generated annual streamflows sets (site 
8) with parameter uncertainty incorporated where: 'NUu' means natural uncertainty 
based on univariate generation, 'BAu' means using posterior distribution based on 
univariate generation, 'NUm' means natural uncertainty based on multivariate generation, 
and 'BAm' means using posterior distribution based on multivariate generation. 
Superscript * notes "scaled by historical statistics" and 'X' denotes historical statistics. 
Transformation applied. 
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Figure 5.A26: Distributions of mean, standard deviation, skewness coefficient, and lag-1 
serial correlation calculated from 5000 different generated annual streamflows sets (site 
16) with parameter uncertainty incorporated where: 'NUu' means natural uncertainty 
based on univariate generation, 'BAu' means using posterior distribution based on 
univariate generation, 'NUm' means natural uncertainty based on multivariate generation, 
and 'BAm' means using posterior distribution based on multivariate generation. 
Superscript * notes "scaled by historical statistics" and 'X' denotes historical statistics. 
Transformation applied. 
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Figure 5.A27: Distributions of mean, standard deviation, skewness coefficient, and lag-1 
serial correlation calculated from 5000 different generated annual streamflows sets (site 
19) with parameter uncertainty incorporated where: 'NUu' means natural uncertainty 
based on univariate generation, 'BAu' means using posterior distribution based on 
univariate generation, 'NUm' means natural uncertainty based on multivariate generation, 
and 'BAm' means using posterior distribution based on multivariate generation. 
Superscript * notes "scaled by historical statistics" and 'X' denotes historical statistics. 
Transformation applied. 
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Figure 5.A28: Distributions of storage capacity (Sc), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 8 
given demand level of 60% MAR 'NUu' means natural uncertainty based on univariate 
generation, 'BAu' means using posterior distribution based on univariate generation, 
'NUm' means natural uncertainty based on multivariate generation, and 'BAm' means 
using posterior distribution based on multivariate generation. Superscript * notes "scaled 
by historical statistics" and 'X' denotes historical statistics. Transformation applied. 
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Figure 5.A29: Distributions of storage capacity (Sc), critical drought indices: magnitude 
(cdm), length (cdl), intensity (cdi) calculated from generated annual streamflows at site 
19 given demand level of 60% MAR 'NUu' means natural uncertainty based on 
univariate generation, 'BAu' means using posterior distribution based on univariate 
generation, 'NUm' means natural uncertainty based on multivariate generation, and 
'BAm' means using posterior distribution based on multivariate generation. Superscript * 
notes "scaled by historical statistics" and 'X' denotes historical statistics. Transformation 
applied. 
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Table 5.A1: Rbias and rrmse of generated design variables based on different parameter 
uncertainty consideration methods (site 8) 

d = 
sample size 

NU 

Storage capacity 

rbias 50 -10 

(%) 100 -11 

200 -11 

rrmse 50 43 

(%) 100 43 

200 44 

Critical drought magnitude 

rbias 50 50 

(%) 100 49 

200 50 

rrmse 50 73 

(%) 100 72 

200 73 

Critical drought length 

rbias 50 48 

(%) 100 49 
200 50 

rrmse 50 67 

(%) 100 68 

200 69 

Critical drought intensity 

rbias 50 6 

(%) 100 6 

200 6 

rrmse 50 23 

(%) 100 23 

200 24 

1% MAF d = 80% MAF 

AS BA NU AS 

8 

-1 

-7 

77 

60 

53 

14 

2 

-6 

87 

64 

52 

77 

75 

75 

109 

105 

107 

110 

91 

81 

190 

140 

121 

66 

58 

52 

109 

91 

80 

76 

63 

55 

129 

97 

84 

60 

58 

58 

89 

85 

86 

81 

70 

62 

139 

110 

97 

55 

53 

50 

84 

77 

71 

55 

53 

50 

85 

77 

72 

-4 

-5 

-5 

33 

32 

33 

2 

-1 

-3 

46 

38 

36 

9 

7 

6 

28 

26 

24 

16 

11 

8 

34 

28 

26 

29 

29 

30 

45 

45 

46 

33 

32 

30 

52 

50 

47 

d = 60% MAF 

BA NU AS BA 

142 

105 

88 

258 

160 

129 

78 

75 

76 

125 

118 

119 

113 

95 

82 

205 

156 

135 

157 

111 

93 

285 

181 

146 

103 

79 

68 

177 

123 

103 

75 

73 

73 

120 

115 

116 

107 

91 

79 

191 

150 

129 

145 

105 

89 

250 

171 

141 

5 

0 

-2 

50 

39 

36 

96 

96 

94 

127 

125 

125 

111 

104 

98 

159 

143 

132 

130 

112 

103 

185 

151 

138 

44 

36 

33 

62 

53 

50 

24 

23 

25 

56 

55 

56 

30 

28 

25 

68 

63 

59 

46 

33 

30 

80 

66 

62 
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Table 5.A2: Rbias and rrmse of generated design variables based on different parameter 
uncertainty consideration methods (site 16) 

sample size 

NU 

Storage capacity 

rbias 50 -3 

(%) 100 -3 

200 -4 

rrmse 50 46 

(%) 100 46 

200 46 

Critical drought magnitude 

rbias 50 40 

(%) 100 39 

200 39 

rrmse 50 63 

(%) 100 63 

200 63 

Critical drought length 

rbias 50 26 

(%) 100 26 

200 25 

rrmse 50 47 

(%) 100 47 

200 47 

Critical drought intensity 

rbias 50 26 

(%) 100 25 

200 26 

rrmse 50 37 

(%) 100 37 

200 38 

i% MAF d=80% MAF 

AS BA NU AS 

17 

7 

1 

86 

67 

56 

22 

11 

2 

95 

70 

57 

72 

71 

71 

104 

102 

103 

108 

88 

78 

191 

141 

120 

55 

46 

42 

101 

81 

71 

63 

51 

44 

121 

86 

74 

54 

53 

54 

82 

82 

83 

77 

64 

58 

135 

107 

94 

31 

28 

27 

63 

55 

50 

30 

29 

27 

65 

56 

51 

-20 

-20 

-20 

33 

34 

34 

-14 

-17 

-19 

41 

37 

35 

29 

27 

26 

42 

40 

38 

38 

31 

28 

52 

44 

40 

-6 

-6 

-6 

25 

26 

25 

-4 

-4 

-5 

28 

28 

26 

d = 60% MAF 

BA NU AS BA 

134 

100 

83 

266 

155 

124 

82 

81 

84 

125 

123 

127 

121 

101 

91 

213 

165 

144 

163 

118 

96 

333 

188 

147 

95 

73 

61 

172 

117 

95 

79 

77 

80 

121 

118 

121 

112 

96 

86 

194 

156 

136 

148 

111 

91 

268 

178 

140 

•12 

•16 

-18 

43 

37 

35 

114 

113 

113 

144 

143 

142 

131 

123 

116 

179 

162 

149 

147 

130 

120 

203 

171 

153 

5 

-1 

-3 

32 

29 

26 

19 

20 

22 

50 

50 

51 

24 

23 

22 

59 

56 

53 

40 

30 

25 

72 

62 

55 



Table 5.A3: Rbias and rrmse of generated design variables based on different parameter 
uncertainty consideration methods (site 19) 

d= 
sample size 

NU 

Storage capacity 

rbias 50 -24 

(%) 100 -24 

200 -24 

rrmse 50 43 

(%) 100 43 

200 42 

Critical drought magnitude 

rbias 50 27 

(%) 100 26 

200 26 

rrmse 50 50 

(%) 100 49 

200 49 

Critical drought length 

rbias 50 -5 

(%) 100 -6 

200 -6 

rrmse 50 30 

(%) 100 30 

200 30 

Critical drought intensity 

rbias 50 34 

(%) 100 35 

200 35 

rrmse 50 45 

(%) 100 46 

200 46 

1% MAF d = 80% MAF 

AS BA NU AS 

•10 

•17 

•21 

63 

52 

48 

-7 

-18 

-23 

68 

53 

47 

43 

42 

42 

71 

69 

69 

66 

54 

46 

128 

96 

81 

37 

31 

28 

75 

61 

55 

45 

33 

28 

89 

65 

55 

40 

40 

40 

64 

63 

62 

55 

47 

42 

96 

78 

70 

-2 

-4 

-5 

37 

33 

32 

-3 

-5 

-7 

40 

34 

31 

1 

2 

1 

32 

32 

32 

6 

4 

2 

43 

37 

34 

38 

36 

35 

52 

48 

48 

46 

40 

37 

60 

53 

49 

56 

56 

57 

68 

68 

70 

60 

57 

57 

76 

71 

70 

d = 60% MAF 

BA NU AS BA 

87 

58 

47 

170 

104 

82 

77 

76 

76 

104 

102 

103 

101 

87 

79 

162 

126 

112 

131 

97 

84 

208 

140 

118 

71 

51 

45 

119 

84 

72 

70 

69 

70 

95 

94 

95 

89 

78 

72 

137 

114 

103 

115 

87 

76 

172 

125 

106 

9 

3 

2 

47 

38 

35 

-36 

-36 

-36 

42 

42 

42 

-33 

-34 

-36 

44 

43 

43 

-29 

-34 

-35 

43 

43 

43 

70 

63 

59 

86 

77 

72 

71 

70 

72 

88 

87 

90 

77 

73 

72 

99 

92 

91 

91 

80 

75 

113 

100 

93 
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Table 5.A4: Rbias and rrmse of generated design variables based on univariate and 
multivariate estimations (site 8) 

Sar nple size 

Storage Capacity 

rbias 

(%) 

rrmse 

(%) 

50 

100 

200 

50 

100 

200 

Critical drought magnitud 

rbias 

(%) 

rrmse 

(%) 

50 

100 

200 

50 

100 

200 

Critical drought length 

rbias 

(%) 

rrmse 

(%) 

Critical 

rbias 

(%) 

rrmse 

(%) 

50 

100 

200 

50 

100 

200 

drought intensity 

50 

100 

200 

50 

100 

200 

NUu 

-12 

-13 

-11 

43 

43 

43 

e 

49 

48 

49 

72 

72 

71 

50 

49 

50 

69 

69 

68 

5 

5 

5 

23 

23 

23 

100% 

BAu 

2 

-4 

-8 

75 

62 

51 

58 

53 

53 

101 

87 

80 

53 

50 

51 

83 

75 

72 

6 

7 

6 

26 

25 

24 

NUm 

-10 

-11 

-11 

43 

43 

44 

50 

49 

50 

73 

72 

73 

48 

49 

50 

67 

68 

69 

6 

6 

6 

23 

23 

24 

BAm 

14 

2 

-6 

87 

64 

52 

76 

63 

55 

129 

97 

84 

55 

53 

50 

85 

77 

72 

16 

11 

8 

34 

28 

26 

NUu 

73 

73 

73 

104 

104 

103 

56 

56 

56 

84 

84 

84 

-4 

-5 

-4 

33 

33 

33 

27 

28 

28 

43 

43 

44 

80% 

BAu 

94 

82 

80 

162 

133 

118 

68 

61 

61 

119 

102 

94 

-1 

-4 

-3 

44 

38 

36 

28 

29 

29 

47 

46 

45 

NUm 

77 

75 

75 

109 

105 

107 

60 

58 

58 

89 

85 

86 

-4 

-5 

-5 

33 

32 

33 

29 

29 

30 

45 

45 

46 

BAm 

142 

105 

88 

258 

160 

129 

103 

79 

68 

177 

123 

103 

5 

0 

-2 

50 

39 

36 

44 

36 

33 

62 

53 

50 
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Table 5.A4: Rbias and rrmse of generated design variables based on univariate and 
multivariate estimations (site 8) -Continued 

60% 40% 
Sample size 

NUu BAu NUm BAm NUu BAu NUm BAm 

Storage Capacity 

rbias 50 69 

(%) 100 70 

200 70 

rrmse 50 109 

(%) 100 112 

200 111 

Critical drought mag 

rbias 50 

(%) 100 

200 

rrmse 50 

(%) 100 

200 

Critical drought length 

rbias 50 

(%) 100 

200 

rrmse 50 

(%) 100 

200 

Critical drought intensity 

rbias 50 

(%) 100 

200 

rrmse 50 

(%) 100 

200 

291 

87 

79 

79 

158 

138 

126 

78 

75 

76 

125 

118 

119 

157 

111 

93 

285 

181 

146 

413 

410 

416 

631 

635 

640 

482 

455 

454 

776 

716 

692 

466 

447 

459 

737 

702 

713 

904 

647 

558 

1552 

1018 

866 

nitude 

67 

68 

68 

105 

109 

108 

81 

75 

75 

146 

130 

120 

75 

73 

73 

120 

115 

116 

145 

105 

89 

250 

171 

141 

412 

409 

415 

630 

632 

638 

479 

452 

452 

769 

709 

689 

466 

446 

458 

735 

700 

709 

891 

642 

555 

1470 

1007 

861 

93 

94 

95 

124 

126 

125 

104 

98 

99 

152 

138 

133 

96 

96 

94 

127 

125 

125 

130 

112 

103 

185 

151 

138 

-9 

-8 

-7 

57 

58 

57 

-5 

-7 

-5 

73 

65 

60 

-6 

-7 

-6 

59 

58 

57 

22 

5 

0 

91 

71 

62 

21 

20 

21 

52 

51 

5? 

20 

22 

23 

58 

56 

54 

24 

23 

25 

56 

55 

56 

46 

33 

30 

80 

66 

62 

369 

360 

369 

556 

549 

557 

393 

388 

392 

603 

584 

582 

405 

395 

405 

622 

609 

618 

660 

518 

469 

913 

760 

696 



Table 5.A5: Rbias and rrmse of generated design variables based on univariate and 
multivariate estimations (site 16) 

Sam 

Storage 

rbias 

(%) 

rrmse 

(%) 

Critical c 

rbias 

(%) 

rrmse 

(%) 

Critical c 

rbias 

(%) 

rrmse 

(%) 

Critical c 

rbias 

(%) 

rrmse 

(%) 

pie size 

Capacity 

Irought 

50 

100 

200 

50 

100 

200 

NUu 

-6 

-6 

-5 

45 

45 

45 

magnitude 

50 

100 

200 

50 

100 

200 

irought length 

Irought 

50 

100 

200 

50 

100 

200 

intensity 

50 

100 

200 

50 

100 

200 

38 

38 

39 

62 

62 

64 

26 

26 

27 

48 

48 

50 

24 

24 

24 

36 

36 

36 

100% 

BAu 

7 

2 

-1 

80 

64 

56 

43 

41 

39 

85 

73 

70 

28 

27 

26 

59 

54 

51 

25 

25 

24 

39 

37 

36 

NUm 

-3 

-3 

-4 

46 

46 

46 

40 

39 

39 

63 

63 

63 

26 

26 

25 

47 

47 

47 

26 

25 

26 

37 

37 

38 

BAm 

22 

11 

2 

95 

70 

57 

63 

51 

44 

121 

86 

74 

30 

29 

27 

65 

56 

51 

38 

31 

28 

52 

44 

40 

NUu 

67 

68 

68 

98 

99 

99 

49 

51 

50 

77 

78 

79 

-20 

-20 

-20 

34 

33 

34 

-7 

-8 

-8 

25 

25 

25 

80% 

BAu 

83 

75 

71 

149 

122 

112 

57 

54 

52 

105 

92 

86 

-18 

-19 

-20 

40 

37 

36 

-8 

-8 

-7 

27 

26 

25 

NUm 

72 

71 

71 

104 

102 

103 

54 

53 

54 

82 

82 

83 

-20 

-20 

-20 

33 

34 

34 

-6 

-6 

-6 

25 

26 

25 

BAm 

134 

100 

83 

266 

155 

124 

95 

73 

61 

172 

117 

95 

-12 

-16 

-18 

43 

37 

35 

5 

-1 

-3 

32 

29 

26 

292 
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Table 5.A6: Rbias and rrmse of generated design variables based on univariate and 
multivariate estimations (site 19) 

100% 80% 
Sample size 

NUu BAu NUm BAm NUu BAu NUm BAm 
Storage Capacity 

rbias 50 -37 

(%) 100 -35 

200 -36 

rrmse 50 47 

(%) 100 46 

200 46 

Critical drought magnitude 

rbias 50 13 

(%) 100 14 

200 14 

rrmse 50 38 

(%) 100 39 

200 39 

Critical drought length 

rbias 50 

(%) 100 

200 

rrmse 50 

(%) 100 

200 

Critical drought intensity 

rbias 50 

(%) 100 

200 

rrmse 50 

(%) 100 

200 

294 

-35 

-37 

-36 

56 

52 

49 

-24 

-24 

-24 

43 

43 

42 

-7 

-18 

-23 

68 

53 

47 

18 

20 

19 

46 

49 

48 

18 

18 

18 

59 

55 

50 

43 

42 

42 

71 

69 

69 

87 

58 

47 

170 

104 

82 

12 

12 

12 

47 

43 

40 

27 

26 

26 

50 

49 

49 

45 

33 

28 

89 

65 

55 

20 

21 

20 

44 

46 

44 

18 

19 

19 

51 

48 

46 

40 

40 

40 

64 

63 

62 

71 

51 

45 

119 

84 

72 

-9 

-9 

-9 

29 

29 

29 

-9 

-10 

-10 

34 

31 

31 

-5 

-6 

-6 

30 

30 

30 

-3 

-5 

-7 

40 

34 

31 

-4 

-3 

-3 

30 

31 

31 

-4 

-4 

-4 

35 

33 

31 

1 

2 

1 

32 

32 

32 

9 

3 

2 

47 

38 

35 

24 

24 

24 

33 

33 

33 

18 

21 

23 

30 

31 

32 

34 

35 

35 

45 

46 

46 

46 

40 

37 

60 

53 

49 

36 

36 

36 

44 

44 

43 

29 

33 

35 

39 

42 

43 

56 

56 

57 

68 

68 

70 

70 

63 

59 

86 

77 

72 



Table 5.A6: Rbias and rrmse of generated design variables based on univariate and 
multivariate estimations (site 19) -Continued 

Sam 

Storage 

rbias 

(%) 

rrmse 

(%) 

Critical c 

rbias 

(%) 

rrmse 

(%) 

Critical c 

rbias 

(%) 

rrmse 

(%) 

Critical c 

rbias 

(%) 

rrmse 

(%) 

pie size 

Capacity 

50 

100 

200 

50 

100 

200 

Irought magnitud 

50 

100 

200 

50 

100 

200 

Irought length 

50 

100 

200 

50 

100 

200 

Irought intensity 

50 

100 

200 

50 

100 

200 

NUu 

37 

37 

35 

61 

62 

59 

e 

33 

33 

31 

57 

57 

54 

-40 

-40 

-40 

45 

45 

45 

37 

37 

36 

46 

46 

46 

60% 

BAu 

32 

34 

34 

66 

63 

61 

28 

30 

31 

60 

57 

57 

-41 

-41 

-40 

47 

46 

45 

28 

32 

34 

43 

44 

45 

NUm 

77 

76 

76 

104 

102 

103 

70 

69 

70 

95 

94 

95 

-36 

-36 

-36 

42 

42 

42 

71 

70 

72 

88 

87 

90 

BAm 

131 

97 

84 

208 

140 

118 

115 

87 

76 

172 

125 

106 

-29 

-34 

-35 

43 

43 

43 

91 

80 

75 

113 

100 

93 

NUu 

77 

76 

74 

104 

104 

100 

76 

76 

73 

102 

103 

99 

45 

46 

44 

75 

77 

74 

53 

53 

52 

71 

71 

70 

40% 

BAu 

62 

69 

72 

101 

101 

100 

61 

68 

71 

98 

100 

99 

40 

43 

44 

76 

75 

75 

39 

45 

49 

67 

69 

69 

NUm 

170 

167 

171 

213 

209 

213 

168 

165 

170 

211 

207 

211 

58 

57 

57 

88 

86 

87 

126 

124 

130 

158 

157 

163 

BAm 

263 

206 

182 

367 

269 

233 

254 

202 

179 

348 

262 

229 

83 

68 

62 

125 

104 

95 

168 

143 

133 

209 

181 

168 

295 



Chapter VI 

PROPORTIONAL DISAGGREGATION MODEL AND PARAMETER 

UNCERTAINTY 

Abstract: In the past decades, disaggregation models have been used for synthetic 

generation of hydrologic streamflows as an alternative to multivariate and periodic 

stochastic models. In order to overcome the drawbacks associated with the large 

number of parameters and/or non-normally distributed flows in the traditional 

disaggregation model of Valencia and Schaake (1973), condensed disaggregation models 

have been utilized and have shown good performance in most cases of hydrologic 

application. However, in some of the condensed models, the generated monthly flows 

do not sum to their corresponding annual flow, requiring an adjustment. A simple 

temporal disaggregation model (called the PD model), which avoids such adjustment, is 

presented. It is based on the proportionality between the annual and seasonal flows; and 

the seasonal proportions are modeled as Dirichlet random variables. The parameters of 

the Dirichlet distribution are estimated by the method of moments and the method of 

maximum likelihood. Using streamflow data sets of the Colorado and St. Lawrence 

Rivers and simulations based on these data sets, the usefulness of the PD model is 

assessed. The PD model with the estimation methods employed did quite well in 
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preserving the seasonal means but not in preserving other statistics. It has only m 

parameters, where m is the number of seasons, which does not give it great flexibility. 

6.1 Introduction 

Since the model proposed by Valencia and Schaake (1973) became acceptable, 

disaggregation models have become widely used in the simulation of the hydrologic 

processes (Lane and Frevert, 1990; Salas et al, 1980; Grygier and Stedinger, 1990). 

Several disaggregation models are available for both temporal and spatial cases (Valencia 

and Schaake, 1973; Mejia and Rousselle, 1976; Tao and Delleur, 1976; Lane, 1979; 

Stedinger and Vogel, 1984; Stedinger et al, 1985; Santos and Salas, 1985; Grygier and 

Steinger, 1990; Lane and Frevert, 1990). Compared with traditional stochastic 

multivariate or periodic models, the advantage of disaggregation models is the 

preservation of statistical properties at more than one level, i.e. reproduction of the 

statistics at both the annual level and the monthly level or at both the key site and the sub 

sites. 

Traditional disaggregation models require a large number of parameters, e.g., for 

temporal disaggregation of annual flows into monthly flows the Valencia and Schaake 

model requires 156 parameters, which led to condensed or staged disaggregation models 

(Lane, 1979; Stedinger et al, 1985; Santos and Salas, 1985). However, there are some 

drawbacks for these disaggregation models. For example, consider the condensed 

temporal disaggregation model by Lane (1979). Since all seasonal flows are not 
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generated jointly, the sum of generated flows is not equal to the given annual flows. An 

adjustment of generated seasonal flows should be required as a post process to treat the 

discrepancies between generated annual and seasonal flows. Several adjustments have 

been proposed in the literature (Lane, 1979; Stedinger and Vogel, 1984; Pereira et al., 

1984; Grygier and Stedinger, 1988). Grygier and Stedinger (1988) compared the 

performance of the adjustment procedures based on the SPC disaggregation model 

(Stedinger et al., 1985) and discussed that use of adjustment results in the distortion of the 

marginal distribution and the proportional procedure would give the least distortion 

among several methods. This distortion of marginal distribution is common to all the 

other disaggregation models if the transformed data are modeled rather than real-space 

streamflows. This would be more severe for the temporal disaggregation than spatial 

disaggregation because seasonal flows are seldom normally distributed (Salas et al., 

1980). 

To avoid this problem of adjustment, a simple disaggregation model is proposed, 

which will be called by the proportional disaggregation (PD) model throughout this paper. 

This model simply partitions the annual flow (which can be modeled in a variety of ways 

and does not have to be normally distributed) into monthly flows in the temporal case, or, 

partitions the key-site flow into sub-site flows in the spatial case. The partitioning is 

accomplished by assuming a distribution for the monthly proportions; a Dirichlet 

distribution is used. This differs from those traditional disaggregation models that 

represent these proportions as centering parameters plus error terms, often assumed as 

multivariate normals. In the next section, model description will be given and different 

parameter estimators are compared. Additionally, parameter uncertainty will be 
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discussed based on the theoretically derived asymptotic distribution of parameter 

estimators and its effect will be examined through the real application of temporal 

disaggregation for the Colorado River and St. Lawrence River. Basic statistics and 

design variables, such as storage capacity and critical drought indices (magnitude, length, 

intensity), will be employed for comparison purposes. Spatial disaggregation is not 

illustrated. 

6.2 Proportional disaggregation model 

6.2.1 Model description 

Let X = (Xj,x2,...,xn)r be the annual flows series and 

Y = (Y1,Y2,...,Y.,...,Ym) the seasonal flows series vector to be generated where 

Yj={ylj,...,yiJ,...,ynj)
T is the y'th seasonal flow vector consisting of flow ytj at 

year i and season j , m is number of season, and n is the sample size. (X and 

Y could be similarly assigned to key-sites and sub-sites in the spatial disaggregation 

case). A simple proportional disaggregation (PD) model can be given as: 

Y = X P (6.1) 

where P = \PX,P2,...,Pm] is 1 xmrandom vector whose jth element Pj represents the 

proportion the j th each seasonal flow is of the annual flow. Realizing that 0 < P} < 1 

m 

for all j and ^ - P , = 1 , the m different proportions of Pl,P2,...,Pm are assumed to 
7=1 
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follow the Dirichlet (or multivariate beta) distribution (Fielitz and Myers, 1975) as: 

f m \ 

Y.0, 
V <=1 J 

m m fP],Pl,..Psp^P2,-pmAA,-,om)= „ yn^n7(o.i)0>/)^)(ZA) (6-2) 
rw 1=1 /=i (=i 

(=1 

in 

where, 0v02,...,0m>O . Note again ^ ^ = 1 - Marginally, the Pf's are beta 
7=1 

distributed. The mean and variance of 7 th proportion P,,j = l,2,...,m are given by: 

Mj=E(Pj)=-
0, 

in 

I.* 
, var1 W-

0, 1.0,-Oj 
V / = i 

m \ ( m \ 

2>, Z^+i 

(6.3) 

. ;=1 V /=i J 

and the expectation of a cross product with specified powers is given by: 

Mw,...rm =E(PliP2l-"Pm)=z \P\P2-'-PmfplA,..J'm-SPl>P2>-Pm)dPl>dP2>-dPlf. 

I m \ m 

( m / \ \ m 

rzfe+o)rw) 
;=1 

(6.4) 

y <=i 

m 

Using that r ( ^ . ) = ^ r ( ^ - l ) and letting ^0, =1.0 for simplicity, the covariance 
;=i 

between £th and /th proportions with orders rt and r,, covyPfP,r' J can be derived 

using: 

E(P?P?) = -

r2>, 
1.-1 ' • / - I 

. 1=1 J r{el + rk)r(el + rl)_ nfe+on^+|') 
(=0 /=0 

V /=i 

rfe)rfe) n+r - l 
(6.5) 

n(^+o 
<=0 
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r 
f m \ 

Tfe+rt)_ nfe+o 
1=0 

1=1 

rfe) fl(^+0 
1=0 

(6.6a) 

E(Pi') = 
i=i J 

A 2>« 
o-i 

rfe + rf) nfa+o 
1=0 

V i = i 

rfe) 'i-i 

n^+o 
1=0 

(6.6b) 

Thus, 

cov[/f, />/> j = E[P? PP ) - £( J ? )E{P?) 

i - i i - i 

1=0 1=0 1=0 1=0 
1 - 1 1-1 

,=0 '=0 1=0 

1-1 1-1 

=nfe+i')nfo+i') 
1=0 1=0 

/ ' l + l y - l 

(6.7) 

which for rk = r, = 1, reduces to 

c o v [ i > , , / > , ] = = - 0 ^ ( ^ + l)~ (6.8) 

which illustrates that all seasonal proportions are negatively correlated. 

6.2.2 Parameter estimation 

Scheme 1- MOME based on all first and second order moments; MOM1 

Several different methods of moment estimators (MOME) are available based on 
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moments of concern. Since (P, ,P2 ,...,Pm) is multivariate beta distributed, the marginal 

distribution of the proportion associated with season j , P} is given by the beta 

distribution as: 

PJ~beta{0J,20-0j) (6.9) 

for j = l,2,...m and, therefore, the first and second raw moments noted by //, 7 and 

ju2J for Pj, _/= 1,2,...AM are: 

thj=E(p)=^- (6.10) 

KJ=E{P;)=1 
1 2 srir xse-e,-i 

P ( 0 y , S 0 - 0 ; ) 

B(Gj+2,20-0,) 0j(0j+l) 

/'/Pj O-Py) ^P7 

B{0J,26-0J) Z#(£# + i) 
(6.ll) 

l " ^ 
Let Mj and M2 be the corresponding sample moments, i.e., M, • = — 2 ] - ^ - and 

1 " ' i ' , / 2 

n~ X, 
. Equating the respective sample moments to their corresponding 

<=i \ y v t J 

0, M2,. 0i +1 
population moments yields the moment equations M, , = -J- and —— = — , the u Z0 MK/ Sfl + 1 

solution of which gives the method of moments estimators (MOME) # : 

"jMOM\ ~ 1,./ 

MXl-M2j 

— if-, for j = 1,2,..m (6.12) 
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Scheme 2- MOME based on all first order moments and the second order moment of 

season one; MOM2 

0, 
Solving the moment equations, MXJ=/ilj=^L- , for j = \,2,...,m and 

M „ = °^+l) yields: 2,1 
S6>(E6> + 1) 

0 = M, 
MU-M2A 

j,MOM2 lv±\,j , , , , 2 

M2]-Mh] 

(6.13) 

This MOM scheme has been used in Fielitz and Myers (1975) and Narayanan (1990). 

Note that 0jMOMl =0jMOM2 for 7 = 1- Also, under this scheme the MOME of /uXj is 

0/ 
M, , since the MOME of //, , = —- = 

J J -L0 

M hj 
KM2,-Mlj 

in 

5X< 
7=1 

rMn-M2^ 
= MXj noting ] T M , , =1. 

Scheme 3- MOME based on all first and second order moments and an average; MOM3 

The MOME of Gj in Eq.(6.13) uses the second order moment of only season 

one, and could be expected to do well for that season at the expense of other seasons. 

The following estimation corrects such possible prejudice by replacing 
1,1 -"•'2,1 

M2,-M,\ 
by 

the average — 2_, 
m ~^ M2, - Mx 

2,i 

2 " 
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Note that the MOME of //,} is M, j as it was for scheme 2. 

Maximum likelihood estimators (MLE) 

(6.14) 

From the probability density function of Dirichlet distribution of Eq.(6.2), the 

likelihood function can be given by: 

m m f n \ 

iog/(P;e) =«iogr(Z0)-/£>gr(0,.)+i; (^-i)i0g^^ 
j=\ 7=1 v '=i y 

(6.15) 

where X> = (P\,p2>-->Pm)' °f which P]=(plj) is the l x « sample vector for 

/ = 1,2,..,« and 9 = (6},92,...9m)' . Then the first derivatives of log/(p;9) with 

respect to 9 become: 

a log/(p; 8) 
36, 

= rWV9)-rW{pj)-\o%'Ydpi] (6.16) 

where ^(x) = J log T(x) / <ix is the digamma function. The maximum likelihood 

estimates (MLE) can be obtained by setting Eq.(6.16) equal to 0. However, since such 

equation does not have a closed solution, one could find the MLE by using a numerical 

method like Newton-Raphson. Alternatively, Fisher's scoring method (Narayanan, 

1990) yields estimators that have the same asymptotic optimality as MLEs. Fisher's 

scoring method is given as: 

ri>^ 

yp. 

f c \ 

mJk \r«iJk-\ 

Var(px) 

Cov(pm,pl) 

Cov{px,pm) 

Var{pm) 

+ 

Jk-\ 

g,(p) 

£„,(P) Jk-\ 

(6.17) 
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where subscript k denotes the iteration, p0 = (pi,—,pm)'0 is the vector of the initial 

estimates, and the components of the gradient vector are gj (p) = d log / ( p ; 8) / dO}, 

j = \,2,...,m. 

The second derivatives of log/(p;9) with respect to 9 , 0k is simply derived 

from Eq.(6.15) as: 

d2 log / ( p ; 6) 

dBjdek 

= rW'<£0) for j * k 

a2 log / ( p ; 6) 

56>2 = n4 / ' (£^) -« v P' (^) . (6.18) 

The information matrix 1(8) of which 7, k th element 1(0-,0k) consists of the 

expected value of a negative second derivative of the log-likelihood function shows the 

minimal variance of the parameter estimates, which is defined by: 

A^A)= E 
a2log/(p;8) 

d0jdek j 

nx¥'(Z0) j*k 

6=H(0) 
\n^'(Z0)-nH"(0)) j = k 

. (6.19) 

Therefore, the asymptotic variance of MLE 8 is given by the inverse of information as: 

Avar(<d) = 1(G)"1 = 
1 

' ¥ ' ( 1 0 ) - ¥ ' ( 0 , ) ¥ ' (20) 

W(i,0) yij'(i:0)-xij'(0]) 

¥'(Z0) *F'(X0) 

¥'(20) 

¥'(Z0) 

V'(X0)-V'(0m) 

and the asymptotic distribution of MLE 8 is: 

0MLK ~ AMVN{ E(Q), Avar(Q)) (6.20) 

where ~ AMVN means "asymptotically distributed as multivariate normal". I(8)_1 

can be simplified by 1(6)"' = D + ^aa ' (Narayanan, 1990) where D is a diagonal 
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matrix given by D = d/tfg(«-V(6^~\"~V(#2r\...,rc~V09m)~1) , a is a mxl 

vector denoted by a = (w'(6}y\yi''(62y\...,x¥'(emyl), and 7 is a scalar given by 

/ = n*¥'(LO) 
_m 1 

l -TYs^y 
-1 

Estimators obtained by using the method of 

scoring have the same asymptotic distribution as MLEs given in Eq.(6.20). 

6.3 Application to temporal disaggregation 

6.3.1 Comparative analysis of different estimators 

Different parameter estimators based on MOM and ML are compared by using 

simulations for two different streamflows data sets at Lee's Ferry in Colorado River 

Basin and St. Lawrence River. Table 6.1 illustrate that over 70% of annual flows are 

contributed by the three months of May, June, and July at Lee's Ferry, while the monthly 

flow proportions are more similar on the St. Lawrence River. Based on assumed true 

parameter sets, 5000 different proportion sets are generated and parameters are re-

estimated by using the three different MOMEs, as well as the corresponding three 

different "MLEs" (Here MLEs in quotes refer to estimators obtained by the method of 

scoring) obtained by using the three different MOM estimates as the initial estimates. 

Figures 6.1 through 6.4 represent the distributions of the means and standard deviations 

regarding six different estimates of seasonal proportions. A comparison based on the 

variability of generated statistics shows that MOM3 reproduces the means and variances 

of proportions with the smallest variability among three different MOMEs. It is also 
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illustrated that M0M3 could reproduce the mean and variances at each season with 

similar variability as the "MLEs". Similar distributions of generated means and 

variances are expected for all "MLEs", which says that the "MLEs" are not significantly 

dependent on initial estimates as expected. This difference between different parameter 

estimators is similarly found in the case of the St. Lawrence River. Note that MOME 

results show negative bias of generated variances compared with "MLE". This results 

from the small sample size ( n =59) and it becomes smaller when the related small sample 

size is larger (see Figure 6.A1 in Appendix). Thus, preference would be given to 

"MLE" as the appropriate parameter estimation procedure for proportional 

disaggregation models. However, the MOM3 scheme does almost as well as the "MLE" 

scheme. Further, the asymptotic distribution of the MOM3 can be found using the 

central limit theorem and the delta method and can be expressed in closed form, as 

opposed to the asymptotic theory associated with "MLEs" used to get the asymptotic 

distribution of the "MLE" estimators. 

6.3.2 Model evaluation based on sample statistics 

The evaluation of the PD model was performed by examining the generated 

sample statistics for the above two streamflows sets. As in traditional disaggregation, 

the annual flows are generated outside the disaggregation model where AR(1) models are 

applied for both annual flows generations where historical flows are normalized through 

power transformations. Proportions at different seasons are calculated from the given 

historical sample and the Dirichlet distribution is fitted to the seasonal proportions when 
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parameters are estimated by using MLE3. 5000 different annual flows sets were first 

generated with the same size as the historical annual flows, and in each generation annual 

flows were disaggregated into monthly flows by using seasonal proportions generated 

from the Dirichlet distribution with the same size of the historical flows. Main statistics 

at each season were calculated from generated seasonal flows, and quantile distributions 

of those statistics are provided in Figure 6.5 and Figure 6A.2 in the Appendix. Mean 

statistics are shown to be fairly well reproduced, but it is not the case for other statistics 

in both sites. Because of its simplicity (only 12 parameters), the PD model shows the 

lack of ability to capture higher order sample moments even though the first moment 

could be implicitly preserved through the simulation. One feature of the PD model that 

illustrates inflexibility is the following. If 0, < Oj, then mean flow for season / is less 

than the mean flow for season j ; further, it can be shown that if 0l < 6'., then the 

variance of the flow for season / is less than the variance of the flow for season j . 

6.3.3 Parameter uncertainty incorporation 

The effect of parameter uncertainty in the PD model was compared by 

combining with the uncertainty effect in annual flow generations. The similar 

simulation procedure in the previous section has been applied with additional 

consideration of four different cases based on parameter uncertainty: (1) AnMu; 

(2)AnMu; (3)AuMn; and (4)AuMu where 'A' means annual, 'M' means monthly 

disaggregation, 'n' means natural uncertainty (no parameter uncertainty), and 'u' means 

parameter uncertainty. For example, in AnMu monthly flows are disaggregated with 
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parameter uncertainty incorporated from generated annual flows with only natural 

uncertainty incorporated. Parameter uncertainty effects are closely related with the 

available sample size, which were examined through the simulation by using different 

available samples sizes assumed as: n=25, 50, 100, and 200. In each generation, new 

parameter sets were sampled from the derived asymptotic distribution and substituted for 

the original parameter estimates. Figure 6.6 and Figure 6.A3-6.A7 in the Appendix 

provide basic statistics calculated from generated monthly streamflows. Also, design 

variables, e.g. storage capacity, critical drought magnitude, critical drought length, and 

critical drought intensity, were calculated based on generated monthly streamflows. 

Figures 6.7-6.10 and Figures 6.A8-6.A11 in the Appendix illustrate the quantile estimates 

of design variables for different sample sizes and demand levels for the Colorado River 

and the St. Lawrence River. The parameter uncertainty effect in the disaggregation 

model seems very small (actually hard to distinguish) compared to the parameter 

uncertainty effect in the annual flow generation on the generated design variables, which 

is consistent with the traditional disaggregation models in the previous chapter. 

6.4 Summary and Conclusion 

A simple disaggregation model was developed based on Dirichlet distribution for 

the purpose of overcoming the discrepancy caused by the normality limitation in the 

application to real-space flows. The model structure is very simple and only 12 

parameters are required for the case of the annual-monthly temporal disaggregation when 

compared with the traditional Valencia-Schaake model (156 parameters) and even the 
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condensed Lane's model (36 parameters). From the comparison of possible different 

parameter estimators, a maximum likelihood estimator shows the smallest variability of 

parameter estimates. 

The application to the real data sets demonstrates that only mean statistics could 

be well preserved through the simulation, not for higher order sample moments. 

However, the PD model preserves the design variables well regardless of demand levels, 

which is not always the case in traditional disaggregation models. Associated with the 

parameter uncertainty effect, the uncertain annual flows play the more significant role in 

the variability of generated monthly flows rather than the uncertainty of the PD 

disaggregation model. Unfortunately, this PD model does not show enough flexibility. 

That is, model verification would be needed in advance to the actual application. If the 

PD model is the true model then it performs well and is useful in addressing parameter 

uncertainty considerations. 
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Table 6.1: Basic statistics of annual and monthly streamflows (Lee's Ferry in Colorado 
River) 

Mean 
(ac-ft) 

Lee's Ferry in Colorado River 

Oct 

Nov 

Dec 

Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jul 

Aug 

Sep 

Annual 
(real) 

Annual 
(transformed) 
St. Lawrence River 

Oct 

Nov 

Dec 

Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jul 

Aug 

Sep 

Annual 
(real) 

Annual 
(transformed) 

580893 

480821 

382530 

356611 

393776 

645201 

1199946 

3037199 

4054340 

2190444 

1083174 

671371 

15076307 

549100 

3997 

3790 

3871 

3765 

3352 

3884 

4100 

4376 

4278 

4382 

4261 

3984 

48042 

2.325X109 

S. Dev. 
(ac-ft) 

272006 

141531 

95858 

78632 

97576 

211390 

512460 

1146760 

1572353 

1012249 

423971 

309698 

4365301 

128720 

357 

345 

350 

380 

348 

397 

368 

405 

413 

420 

403 

370 

4157 

3.95X108 

Cv 

0.47 

0.29 

0.25 

0.22 

0.25 

0.33 

0.43 

0.38 

0.39 

0.46 

0.39 

0.46 

0.29 

0.23 

0.09 

0.09 

0.09 

0.10 

0.10 

0.10 

0.09 

0.09 

0.10 

0.10 

0.09 

0.09 

0.09 

0.17 

skewness 

1.64 

1.21 

1.22 

0.59 

1.42 

1.08 

0.96 

0.27 

0.43 

1.13 

0.95 

1.95 

0.14 

0.01 

-0.37 

-0.38 

-0.36 

-0.11 

-0.15 

0.15 

0.09 

0.07 

0.01 

-0.13 

-0.24 

-0.31 

-0.28 

-0.07 

lag-1 corr. 

0.54 

0.76 

0.83 

0.70 

0.55 

0.48 

0.47 

0.59 

0.63 

0.83 

0.78 

0.64 

0.28 

0.28 

0.98 

0.98 

0.96 

0.89 

0.93 

0.91 

0.92 

0.96 

0.97 

0.98 

0.99 

0.99 

0.75 

0.73 

proportion 
to annual 

3.9 

3.2 

2.5 

2.4 

2.6 

4.3 

8.0 

20.1 

26.9 

14.5 

7.2 

4.5 

8.3 

7.9 

8.1 

7.8 

7.0 

8.1 

8.5 

9.1 

8.9 

9.1 

8.9 

8.3 
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Figure 6.1: Distributions of means and standard deviations of proportions. (MOME, Lee's 
Ferry in Colorado River basin) where '*' denotes the mean and standard deviation 
calculated from assumed true parameters. 
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Figure 6.2: Distributions of means and standard deviations of proportions. (MLE, Lee's 
Ferry in Colorado River basin) where '*' denotes the mean and standard deviation 
calculated from assumed true parameters. 
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Figure 6.3: Distributions of means and standard deviations of proportions. (MOME, St. 
Lawrence River) where '*' denotes the mean and standard deviation calculated from 
assumed true parameters. 
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Figure 6.4: Distributions of means and standard deviations of proportions. (MLE, St. 
Lawrence River) where '*' denotes the mean and standard deviation calculated from 
assumed true parameters. 
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Figure 6.5: Basic statistics of generated monthly streamflows (AnMn, Lee's Ferry in 
Colorado River basin) 
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Figure 6.6: Basic statistics of generated monthly streamflows (AnMu, n=25, Lee's Ferry 
in Colorado River basin) 
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Figure 6.7: Quantile estimates of generated storage capacities Sc* (Lee's Ferry in 
Colorado River basin) where * denotes scaled by historical storage capacity. 
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Figure 6.8: Quantile estimates of generated critical drought magnitude cdm* (Lee's 
Ferry in Colorado River basin) where * denotes scaled by historical storage capacity. 
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Figure 6.9: Quantile estimates of generated critical drought magnitude cdl (Lee's Ferry 
in Colorado River basin). 
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Figure 6.10: Quantile estimates of generated critical drought magnitude cdi* (Lee's 
Ferry in Colorado River basin) where * denotes scaled by historical storage capacity. 
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Appendix 6.A: Additional Figures and Tables 
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Figure 6.A1: Distributions of means and standard deviations of proportions. (MOME, St. 
Lawrence River) where '*' denotes the mean and standard deviation calculated from 
assumed true parameters. 
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Figure 6.A2: Basic statistics of generated monthly streamfiows (St. Lawrence River) 

325 



x 10 x 10 

O 

N J M M J S 
Month 

N J M M J S 
Month 

N J M M J S 
Month 

O 

N J M M J S 
Month 

1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

» 

A .;iv 
• • \ - - ^ T 

hu 

fffl 

v^V- '% 
I e " 1 e. 
9 T- . 1 
r 

• • 
• • • . . * 

o 

D-J F-M A-M J-J A-S 
Month-Month 

N J M M J 
Month 

Figure 6.A3: Basic statistics of generated monthly streamflows (AuMn, «=25, Lee's 
Ferry in Colorado River basin) 
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Figure 6.A4: Basic statistics of generated monthly streamflows (AuMu, n=25, Lee's 
Ferry in Colorado River basin) 
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Figure 6.A5: Basic statistics of generated monthly streamfiows (AnMu, n=25, St. 
Lawrence River) 
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Figure 6.A6: Basic statistics of generated monthly streamflows (AuMn, n =25, St. 
Lawrence River) 
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Figure 6.A8: Quantile estimates of generated storage capacities Sc* (St. Lawrence 
River) where * denotes scaled by historical storage capacity. 
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Figure 6.A9: Quantile estimates of generated critical drought magnitude cdm* (St. 
Lawrence River) where * denotes scaled by historical storage capacity. 
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Figure 6.A10: Quantile estimates of generated critical drought magnitude cdl (St. 
Lawrence River). 
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Figure 6.A11: Quantile estimates of generated critical drought magnitude cdi* (St. 
Lawrence River) where * denotes scaled by historical storage capacity. 
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Chapter VII 

CONCLUSIONS, CONTRIBUTIONS, AND 

RECOMMENDATIONS 

7.1 Summary and Conclusions 

The limited sample size of historical flows causes the uncertainty of parameter 

estimates of the streamflow generation models, which consequently affects behaviors of 

the synthetic streamflows and related design variables required for the design and 

planning of real hydrologic systems. In this study, the impact of parameter uncertainty 

was taken into account based on different streamflow simulation techniques. For 

comprehensive remarks and conclusions for the different methods and procedures, refer 

to corresponding chapters. In summary, several conclusions obtained from this study 

are as follows: 

(1) Annual streamflow generation: Overall, the uncertainty effect of the mean 

parameter and the AR(1) parameter makes a significant impact on the generated 

streamflow statistics and related design variables. The uncertain mean 
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parameter shows the significant effect on the generated mean and uncertain 

AR(1) parameter affects on the generated serial correlation. Two different 

demand level options, such as fixed mean (FM) and simulated mean (SM) were 

employed for calculating design variables where the uncertainty of the mean 

parameter and the AR(1) parameter was shown to be dominant, respectively. 

Distinguishable effect on design variables by uncertain parameters is still visible, 

even though the sample size is 100 in option FM. The parameter uncertainty 

effect is related with the different fraction of demand levels: the mean uncertainty 

effect becomes less significant, while the uncertainty of the AR(1) parameter 

becomes more significant for smaller demand levels for adopted application. 

This difference between asymptotic and Bayesian approaches is notable for all 

applied different sample sizes in the St. Lawrence River, which has a long term 

memory, but not for the case in the Colorado River Basin. When the sample 

size is greater than 100, asymptotic analysis might be applicable for incorporating 

parameter uncertainty into the generation of annual streamflows. Using a 

bootstrap as an alternative for incorporating the parameter uncertainty showed 

similar variability as natural uncertainty, thus the parameter uncertainty effect is 

difficult to evaluate with the bootstrap technique. 

(2) Temporal disaggregation model: It is notable that even for large sample size 

(« =100), the parameter uncertainty could be found in increased variabilities of 

design variables. LAST and SPC show almost similar variabilities of generated 

storage and drought related statistics in terms of parameter uncertainty. The 
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Bayesian approach shows larger variabilities of design variables for a smaller 

sample size (n <50) than asymptotic distribution and the difference between two 

approaches is more visible for the St. Lawrence River case. Parameter 

uncertainty in the disaggregation model affects little on the mean and standard 

deviation of generated monthly flows but more on the month-to-month serial 

correlation and month-to-annual correlation. The effect of natural uncertainty in 

annual streamflow generation is more significant than parameter uncertainty in 

the temporal disaggregation model, which is closely associated with the model 

structure that the sum of monthly flows would be equal to the annual flow, and 

the proportionality of monthly flows would be preserved. Parameter uncertainty 

in the annual flow generation is propagated into simulated monthly streamfiows 

through the disaggregation stage and generates significant effect on calculated 

storage and drought statistics by increasing their variability. 

(3) Spatial disaggregation model: Two approaches, asymptotic and Bayesian, were 

able to explain the variability resulted from parameter uncertainty similarly in 

most sample statistics, an exception being cross-correlations. A little wider 

variability and upward bias of generated storage and drought related statistics 

were reported when using the Bayesian distribution for small sample size. A 

sample size of at least 100 would be required if the asymptotic distribution is 

utilized for the parameter uncertainty consideration. That is, for the Bayesian 

approach, the effect of non-informative prior, which results in much variability of 

parameters than the exact prior, becomes negligible, and sample information 
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might be enough to interpret the variability of uncertain parameters. The effect 

of parameter uncertainty of the disaggregation procedure was not as significant 

on the generated means, standard deviations, and lag-1 serial correlations as the 

natural uncertainty of given input variables. Likewise, the effect of the 

parameter uncertainty of the disaggregation model on the utilized storage 

capacity and critical drought indices was also not as significant as the natural 

uncertainty of input variables. However, cross correlations of generated flows 

were much influenced by parameter uncertainty of the disaggregation. If any 

statistics, which are based on cross correlations, are to be required in the practical 

design problem, parameter uncertainty of the disaggregation model would 

become more significant. When the parameter uncertainty of input variables 

was incorporated into the disaggregation, increased variabilities of key-stations 

was shown to propagate into the generated sub-station flows, more significantly 

for smaller sample sizes. Thus, uncertain parameters regarding input variables 

might cause important consequences on the related determination of reservoir 

size as illustrated by increased variabilities of storage capacities and critical 

drought indices. In this case, parameter uncertainty of the disaggregation model 

results in the additional increase over those by parameter uncertainty regarding 

input variables. The parameter uncertainty still exhibits its effect on the 

variability of generated storage capacities and drought indices even when the 

sample size is equal to 100. 

(4) Multivariate AR model: Compared to traditional generation without parameter 
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uncertainty incorporation, parameter uncertainty creates an increase in variability 

of quantile distributions of basic statistics and increases the variability of quantile 

distributions of design variables as well. Compared with the asymptotic 

approach, the Bayesian approach reproduces synthetic streamflows with bigger 

standard deviations, as well as associated design variables with upward shifted 

expected values and larger variability, which are more visible when the small 

sample size is equal or less than 100 and is of a smaller demand level. When 

the sample size approaches 200, the results from the Bayesian approach become 

identical to those from the asymptotic approach. A skewness of real data might 

be significantly effective on the variability of design variables generated from the 

multivariate model with parameter uncertainty incorporated. In this case, a 

proper elimination of skewness of the real data might be useful in removing any 

unexpected increases in the variability of generated design variables. 

(5) Proportional disaggregation model: A simple disaggregation model was 

developed based on Dirichlet distribution for the purpose of overcoming the 

discrepancy caused by the normality limitation in the application to real-space 

flows. The model structure is very simple, and only 12 parameters are required 

for the case of the annual-monthly temporal disaggregation when compared with 

the traditional Valencia-Schaake model (156 parameters) and even the condensed 

Lane's model (36 parameters). From the comparison of possible different 

parameter estimators, a maximum likelihood estimator shows the smallest 

variability of parameter estimates. The application to the real data sets 
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demonstrates that only mean statistics could be well preserved through the 

simulation, not for higher order sample moments. However, the PD model 

preserves the design variables well regardless of demand levels, which could be 

compared with traditional disaggregation models. Associated with the 

parameter uncertainty effect, the uncertain annual flows play the more significant 

role in the variability of generated monthly flows rather than the uncertainty of 

the PD disaggregation model. Unfortunately, it is supposed that this PD model 

could not show enough flexibility eligible to the generation of streamfiows with 

the different statistical characteristics. That is, model verification would be 

needed in advance of the actual application. The uncertainty consideration of 

parameters could not resolve the flexibility of the model since the parameter 

uncertainty shows the tight dispersion range of parameter variability. 

7.2 Contributions and recommendations 

In this study, a sample size of 100 was shown not to be large enough to justify 

the effect of parameter uncertainty. The parameter uncertainty effect remains visible 

when sample size is equal to 100, and even to a sample size of 200. However, the 

determination of what constitutes an adequate sample size depends on how much 

variability of design variables can be tolerated in a practical sense. In most applications 

for real streamflow generation, the available sample size is usually less than 100. The 

incorporation of parameter uncertainty issues into the streamflow simulation is of 

importance, and thus the precision and reliability of generated streamfiows will be 
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improved. 

Generally in the Bayesian framework, the posterior will be explained by only the 

sample structure rather than depending on its prior when sample sizes are large enough. 

Indeed, an applied posterior distribution of parameters that is derived from the non-

informative prior has been shown to be equivalent to an asymptotic distribution when the 

sample size is larger than 100. On the other hand, different distributions of variance-

covariance for error terms of univariate or multivariate stochastic models based on 

asymptotic and Bayesian approaches are available which result in an increased standard 

deviation of generated streamflows and increased variability in quantile distributions of 

design variables. Theoretically, more precise posterior distributions can be obtained if 

the proper prior of parameters are available, but this is not the case unless the exact prior 

is given. Thus, modified posterior distributions with bounded parameter spaces seem 

appropriate for incorporation of parameter uncertainty into the streamflows generation. 

Use of the modified posterior distribution would be preferred for the real hydrologic 

planning and design over asymptotic distribution since there would be significant 

variability generated by the Bayesian approach as it is applied to a small sample size. 

Such an approach to ensure the reliability of streamfiow generation might not be 

negligible. 

The uncertainty of parameters of temporal and spatial disaggregation models has 

been shown to not be as significant on the first and second moments of disaggregated 

flows as the uncertainty of input variables, i.e., parameter uncertainty regarding generated 

annual flow or key-site flow, which was shown to be closely related with the parameter 

uncertainty effect on design variables. However, it was notable that parameter 
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uncertainty of disaggregation models affects the month-to-month and month-to-annual 

correlations (temporal case) or cross correlations (spatial case) greater than parameter 

uncertainty of input variables. If the comprehensive consideration of those correlations 

is to be required more seriously in the synthetic streamflows based on disaggregation 

models, parameter uncertainty might result in much reliability. 

Recommendations for further studies are: 

(1) The parameter uncertainty has been shown the variability of simulated design 

variables. Developing and applying the design criteria to tolerate this variability 

would be helpful in real design and planning of water resource systems. 

(2) In this study, theoretical distributions of parameters were employed to quantify 

the uncertainty and incorporate into the streamflow generation. Comparison 

with the numerical method such as one based on the Markov Chain Monte Carlo 

method, would give greater insight for investigating the parameter uncertainty in 

the hydrologic simulation. 

(3) This study showed that the parameter uncertainty effect could be closely related 

with the assumed transformation procedure (associated skewness effect of real 

data). More studies are required for the related uncertainty effect of 

transformation besides parameter uncertainty to improve the ability and 

applicability of streamflow generation. 

(4) The parameter uncertainty effect has been comprehensively examined throughout 

the different generation models, especially traditional disaggregation models. In 

spite of the good performance of conventional disaggregation models, adjustment 
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techniques are still important to relieve the normality assumption of applied 

streamflows in the model, which would distort the marginal distribution of real 

space flows. A proportional disaggregation model was suggested as an 

alternative in the last chapter, but the model flexibility was not satisfied because 

its short number of parameters was not enough to preserve statistics of interest. 

Expansion of that model to a more general case would be recommended. 
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