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ABSTRACT 

 

 

 

A VERY CONFUSING PROBLEM: INTERPRETING KEYNESIAN WEIGHT 

 

 

 

 Initially outlined by John Maynard Keynes in 1921, Keynesian weight is a measure 

intended to characterize evidence independently of probability. As a concept that is often 

immersed in confusion, Keynesian weight requires thorough philosophical explication 

prior to any sort of legitimate use in decision-making, legal proceedings, or scientific 

inquiry. In this thesis, I attempt to explicate Keynesian weight by arguing in favor of Jochen Runde’s relative interpretation of Keynesian weight. The aim of Chapter 1 is to introduce 

the basic idea of Keynesian weight. In Chapter 2, I demonstrate that Keynes’s initial 
analysis of Keynesian weight creates an interpretative puzzle—two viable interpretations 

of Keynesian weight exist. Chapter 3 aims to solve the interpretative puzzle by consideration of how the interpretations of Keynesian weight respond to I.J. Good’s criticism of Keynesian weight. Ultimately, I argue that Good’s criticism demonstrates that 
the best interpretation of Keynesian weight is the relative interpretation.  
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CHAPTER 1: AN INTRODUCTION TO KEYNESIAN WEIGHT 

 

 

 
“A little reflection will probably convince the reader that this is a very confusing 

problem.” John Maynard Keynes, A Treatise on Probability, 85. 

§1.0  INTRODUCTION 

John Maynard Keynes altered economic orthodoxy enough to earn himself the title “inventor of macroeconomics.”1 For that reason, Keynes is typically remembered for his 

revolutionary work in economics—people rarely think of Keynes as a philosopher or statistician. However, Keynes’s 1921 A Treatise on Probability (hereafter TP) outlines a 

thorough epistemic and statistical methodology. In TP, Keynes describes a logical approach 

to the probability calculus, which is an approach that makes the tie between statistics and 

philosophy quite strong. Thanks to the work done in TP, Keynes possesses some claim to 

fame as an epistemologist, statistician, and philosopher in addition to his usual economics 

honorifics.  Unfortunately, Keynes’s logical approach to probability faces potentially 
insurmountable problems. Since the outset, Keynes faced criticisms for his unusual idea 

that probability arises from a rational assessment of the relation between the premises and 

conclusion of an argument.2 Those criticisms, which began in earnest with Frank Ramsey’s 
review of TP, only gained steam with the rise of the personalist or subjective approach to 

Bayesian probability.3 According to the traditional division of probability interpretations, 

 
1 Wapshott, Keynes Hayek, 121, 196; Skidelsky, Keynes: A Very Short Introduction, 123.  

2 Faulkner, Feduzi, McCann, Runde, “Knight, Keynes After 100 Years,” 857, 858.  
3 See Ramsey, “Truth and Probability.”  
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the Keynesian logical approach to probability is an objective Bayesian approach, in stark 

contrast to subjective Bayesianism. On any Bayesian interpretation to probability, 

probabilities represent degrees of belief.4 While the Keynesian approach to probability 

required Bayesian statisticians to attempt to determine rational degrees of belief free from 

personal bias, subjective Bayesianism allows statisticians to think of probability simply as 

degrees of belief, with only a few restrictions on how one arrives at those degrees of belief.5 

Another key difference between the Keynesian approach to probability and subjective 

Bayesianism is that Keynesian probabilities are sometimes wholly incomparable. These 

two idiosyncrasies, along with a few other problems, led to a large-scale abandonment of 

the Keynesian approach to probability. In the meantime, Ramsey, Bruno De Finetti, and 

Leonard J. Savage pioneered subjective Bayesianism by constructing a thorough apparatus for using people’s behavior to interpret and quantify degrees of belief.6 The abandonment 

of the Keynesian approach on one hand and the thorough quantitative explication of 

subjectivism on the other hand led to subjective Bayesianism becoming the orthodox form 

of Bayesianism.  

Despite the drawbacks of Keynesian probability and the rise of a competing form of 

Bayesianism, Keynes’s TP is far from a theoretical wasteland. Even after 100 years, aspects 

of the TP continue to generate interest. One particularly intriguing concept in Keynes’s TP 

 
4 Curd, Cover, and Pincock, Philosophy of Science, 620. Jane Friedman gives a succinct account of degrees of belief by describing them as “doxastic attitudes whose strengths can be measured with real numbers in the unit interval, and which are normatively bound by the axioms of the probability calculus” (“Inquiry and Belief,” 307). 
5 Curd, Cover, and Pincock, Philosophy of Science, 620.  

6 Curd, Cover, and Pincock, 620. 
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comes via his idea of the weight of arguments. At the most rudimentary level, weight of 

arguments (which I will refer to as Keynesian weight or simply weight in what follows) is 

meant to be a way of quantifying evidence independently of a probability statement. Like 

probability, Keynesian weight can be used to get more insight into your evidential 

situation. At its most basic, then, Keynesian weight is potentially another useful tool for 

statisticians, scientists, and decision-makers to add to their theoretical toolboxes.  Keynes began his discussion on weight by saying things such as, “The question to be 
raised in this chapter is somewhat novel; after much consideration I remain uncertain as to how much importance to attach to it.”7 In most of Keynes’s discussion of weight, he 

hesitates about the relevance of the concept. Despite Keynes’s hesitation, others have 

attempted to apply Keynesian weight to various issues. For example, Dale A. Nance 

proposes that optimizing Keynesian weight is a judicial role that falls under the 

responsibility of the courts.8 On Nance’s account, consideration of Keynesian weight gives 
courts an improved ability to determine when there is enough evidence available to render 

a verdict. Potential applications of Keynesian weight to other issues, such as diagnostic 

medicine, monetary policy, and decision theory more broadly, also exist. Over the course of 

this thesis, my examples tend to focus on issues in the philosophy of science and scientific 

inference. The details of how best to apply Keynesian weight to any subject are still 

contested; but generally speaking, whenever probability is considered, Keynesian weight 

can be considered as well.9  

 
7 Keynes, A Treatise on Probability, 78. 

8 Nance, “The Weights of Evidence,” 278.  
9 I am grateful to Ken Shockley for his help with this section. 
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Regrettably, Keynesian weight faces substantial challenges prior to any sort of 

legitimate application. Due to the inherent difficulty of the concept, the debate surrounding 

Keynesian weight tends to generate more heat than light. When it comes to weight, 

concepts get conflated and interpretations of concepts tend to become muddled together. 

In this thesis, my most basic goal is to shed more light on Keynesian weight while 

attempting to avoid conflation and confusion. Although this thesis cannot solve every 

problem faced by Keynesian weight, I think it can help illuminate the way forward for 

solving many of those challenges. Illuminating Keynesian weight is not an easy task, and I 

do not expect to perfectly meet my aim.  

To briefly summarize what is to come, I will say that this is a thesis largely focused 

on the challenge of how best to interpret Keynesian weight. In my mind, the best interpretation of Keynesian weight is an interpretation that sufficiently adheres to Keynes’s 
own use of weight while also putting the concept in position to be useful in contemporary 

circumstances. For any interpretation of weight to make sense, quite a bit of set-up work 

will be necessary. Accordingly, the rest of this chapter focuses on continuing to introduce 

the concept of Keynesian weight. To that end, I first motivate the concept with a discussion 

of Karl Popper’s Paradox of Ideal Evidence. Once the motivation for Keynesian weight is in 

place, I will explain various proposed applications of Keynesian weight while also 

discussing how weight relates to other similar concepts. Finally, I will conclude this first 

chapter with an analysis of two common conflations that arise in discussions involving 

Keynesian weight. The two conflations discussed at the end of this chapter will help us see 

how to find the best available interpretation of Keynesian weight, and they will provide a 

better understanding of the scope of the thesis as a whole. 
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Before digging in, it will also be helpful to provide an outline of my overall 

argument. As I said above, the overarching goal is to shed light on Keynesian weight by 

determining the best way to interpret the concept. I hope to attain my ultimate goal 

through consideration of two major interpretations of Keynesian weight. The purpose of 

Chapter 2 is to introduce and analyze those two interpretations. The upshot of that chapter 

is that the textual evidence from Keynes does not clearly favor one interpretation of the 

concept over another, which leads to an interpretative puzzle. In Chapter 3, I present I.J. Good’s critique of Keynesian weight with the hope that Good’s argument provides a way to 

approach the interpretative puzzle independently of textual evidence. In the second half of 

Chapter 3, I argue that a careful reading of Good’s critique teaches us that the best 

interpretation of Keynesian weight is Jochen Runde’s relative weight interpretation. In 

order to get to that point, we must first see why Keynesian weight matters. 

§1.1  A BRIEF TECHNICAL EXCURSION  

I believe in plain speaking. Unfortunately, clear communication often requires 

technical terms loaded with philosophical baggage. I try to make my usage of such terms 

clear when they are introduced, but I recognize that background knowledge differs from 

reader to reader. For that reason, this section provides some preliminary definitions of two 

key terms, namely probability and odds. While some rudimentary understanding of these 

two terms is essential to my whole thesis, the details of this particular section only become 

directly crucial to my argument in section two of Chapter 3 (see §3.2.1). Thus, I think that 

readers who are familiar with probability and odds are justified in skipping this section for now, if they so please. With that in order, let’s start our technical excursion into probability 
and odds.  
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In the introduction, we saw some disagreement about the nature of probability rear 

its head. Although specific battlelines are often shrouded in mystery, the debate over the 

fundamental nature of probability is well-known among philosophers, statisticians, and 

many scientists. Cutting through the noise of the debate, we should focus on the fact that 

the debate mostly focuses on the metaphysics, or fundamental nature, of probability itself. 

What things in the world, if any, does probability represent? How do we measure 

probabilities? To use fancy philosophical language, what is the ontological status of 

probability? These are the types of questions central to the well-known debate over 

probability.  

Briefly setting aside tricky issues regarding the metaphysics of probability, I think it 

is fair to say that a probability (in the statistical sense) represents the proportion of the 

occurrence of some specific type of event to the total number of events in the same general 

class of events. It might help to connect this basic formulation of probability to the classic 

example of drawing marbles from an urn. If we say that drawing marbles from a specific 

urn is the general class of events, then the statistical probability of drawing a white marble 

from that urn is the number of possible white-marble-drawings (the specific type of event) 

over the total number of possible marble-drawings from the same urn (the general class of 

events). In other words, the probability of drawing a white marble from the urn is the 

number of white marbles in the urn divided by the total number of marbles in the urn. Once 

the process of drawing marbles from the urn begins, the statistical probability is then used 

to define the expected number of white marbles drawn when randomly sampling marbles 
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from the urn.10 Accordingly, a statistical (or numerical) probability that obeys Kolmogorov’s axiomatization of probability is a number greater-than-or-equal-to zero and 

lesser-than-or-equal-to one.11, 12 In other words, probability is a number that is either zero, 

one, or some number between zero and one.  

Like probability, statistical odds is a ratio of two numbers. Statistical odds display 

the proportion of favorable outcomes to unfavorable outcomes.13 Notice the structure of 

these ratios—probability and odds utilize the exact same number in their numerators. The 

difference is that the denominator of a probability is equivalent to the sum of the 

numerator and the denominator of an analogous odds. In other words, probability and 

odds are two different ways of displaying the same information about an event. The table 

below provides examples of odds and probability representing the same basic information 

in various ways.  

 
10 Thanks to Ben Prytherch for providing his helpful expertise and insight into the phrasing of this section.  

11 Hájek, “Interpretations of Probability.” 

12 I limit myself to statistical/numerical probabilities here because (like every issue with respect to 

probability) things are contentious. Although many contemporary theorists think all probabilities are 

numerical, there is a long history of thinkers (including Keynes) who thought probabilities could legitimately 

be non-numerical. For more, see: Schum, Evidential Foundations of Probabilistic Reasoning, Chapter 2; and Fioretti, “Non-Numerical Probabilities Before Keynes.” Entirely different sorts of probabilities also exist. For 
example, L. Jonathan Cohen develops Baconian probabilities as opposed to the traditional Pascalian treatment of probabilities. See Cohen, “Twelve Questions,” 276-8 for a brief introduction. I am grateful to Jeff Kasser for 

reminding me of this detail.   

13 Technically speaking, this is a simplification. Statistical odds show the prospects of the occurrence of a 

specific type of event, and they do so by giving the ratio of that type of event over all other possible outcomes 
in the same general class of events. For what it is worth, the easiest example of odds for me to think about 

involves sports. The odds of a team winning their next game might be set at the ratio of their previous wins 

over their previous losses. Notice that this use of ‘odds’ is different from what might be referred to as ‘betting odds’, which represent a wager someone is willing to accept. Betting odds provide another way to represent 
the same basic information, but my focus is on statistical odds.  
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Table 1.1: Various examples of probabilities and odds. 

Total 

Events 

Type 1 

Events 

Non-Type 1 

Events 

Probability of 

Type 1 Event 

(fractional 

representation) 

Probability of 

Type 1 Event 

(numerical 

representation) 

Odds of Type 1 

Event 

(fractional 

representation) 

Odds of Type 1 

Event 

(numerical 

representation) 

100 92 8 92100 
0.92 928  

11.5 to 1 

96 50 46 5096 
0.52083 5046 

1.08696 to 1 

2,022 26 1996 262022 
0.01286 261996 

0.01302 to 1 

Total Favorable Unfavorable 𝐹𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒𝑇𝑜𝑡𝑎𝑙  
Favorable ÷ 

Total 

𝐹𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒𝑈𝑛𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑒 
(Favorable  ÷ 

Unfavorable) 

to 1 

 

Since they use the same information, it is straightforward to derive a probability 

from an odds or to derive an odds from a probability. All that is required is thinking about 

the ratios involved and then either adding the numerator to the denominator and setting 

that sum as the new denominator (if one is moving from odds to probability), or 

subtracting the numerator from the denominator and setting that difference to the new 

denominator (if one is moving from probability to odds). For example, say we are 

presented with a probability of 6/10 and we want to derive the odds that is analogous to 

this probability. Recall that odds is the ratio of favorable cases to unfavorable cases. Since a 

probability is provided to us, we know the number of favorable cases (6) and the total 

number of cases (10), where the total number of cases is simply the sum of favorable and 

unfavorable cases. To determine the odds of the event, we need to find the number of 

unfavorable cases. We can find the number of unfavorable cases by subtracting the number 

of favorable cases from the total number of cases. In this case, we subtract 6 from 10, which 

is 4. Thus, the ratio 6/4 is the odds that is analogous to a probability of 6/10. Due to the 

structural similarities between statistical probability and statistical odds, they are often 
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discussed as a pair. What we determine about the fundamental nature of probability 

usually translates to odds and vice versa.14  

The bounds of probability imply that when a mathematical probability is stated, the 

probability inherently provides contextual information. The metaphysical interpretation of 

probability taken determines the details of the contextual information that accompanies a 

given probability. For an orthodox subjective Bayesian, an event with a 0 probability of 

occurring implies that the subject who stated the probability totally lacks belief in favor of the event’s occurrence. In contrast, a frequentist interprets a 0 probability of an event 
happening as an indication that the event is not present in the frequencies (either past or 

hypothetical) relevant to the event happening. Of course, these are not the only 

interpretations of probability available, but they seem to currently be the most popular 

interpretations. Notice that Bayesians and frequentists agree that probabilities closer to 

zero are (for lack of a better phrase) less probable than probabilities closer to one.15 Thus, 

although their interpretations of the probabilities differ, a Bayesian and a frequentist agree 

on the basic mathematics of probability. Regardless of the preferred interpretation, 

probability lies on a scale between zero and one, and the probability’s location on the scale 
depends on the numbers in the ratio that constitutes the probability. 

 
14 I say “usually” because probability and odds convey the same information in different ways, so if we 

determine something fundamental about the way in which probability conveys information, that 

determination will not translate to odds. If, however, we determine something fundamental about the 

information itself, then that determination will apply to both probability and odds. 

15 If we want to use common English and avoid technical definitions, then we can say that a Bayesian and a 

frequentist should agree that probabilities closer to zero have a “lower chance of occurring” than 

probabilities closer to one. But, note that some frequentists may reject the sentence as I have it worded in the 

text above. If a frequentist builds their theoretic framework around historical frequencies rather than 

hypothetical frequencies, then they might find my sentence to be problematic.  
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Odds also come with contextual information, although that information is placed on 

a different scale from the scale used with probabilities. As we saw, an odds is the ratio of 

favorable outcomes to unfavorable outcomes. By providing a ratio of two numbers, odds 

communicate more contextual information than the information provided by a simple 

count of favorable outcomes, for example. Moreover, the mathematical definition of odds 

implies that the odds of an event occurring are bounded between zero and infinity. Perhaps 

a more specific mathematical example is in order. Consider an evidential situation that 

consists in two outcomes of an event occurring and nine outcomes of the event not 

occurring. In this example, the odds of the event occurring are 2/9 or 0.222 to 1. The more 

the odds are against something, the closer the odds move to zero. In cases that feature an 

equal number of favorable and unfavorable outcomes, the odds equal exactly 1 to 1.16 In 

cases involving odds in favor of an event occurring, the odds are greater than one. For 

example, consider a case in which there are 100 favorable outcomes and 10 unfavorable 

outcomes. In this case, the odds are 100/10 which is equal to 10 to 1. 

To summarize our technical excursion: we learned that probability and odds convey 

the same basic information, Bayesians and frequentists agree on the fundamental 

mathematics of probability, and probability and odds inherently provide scales that allow 

you to immediately contextualize the information they convey. As you can probably tell, I 

am trying my best to avoid letting the nitty-gritty details of the metaphysical nature of 

probability get in the way of the main points of this thesis. Nevertheless, completely 

avoiding the debate is impossible. Ultimately, I try to couch my thesis in a loosely subjective 

 
16 For example, modify the above case so that the odds are 9/9, which is equal to a probability of 9/18 or 0.5. 



 

 11 

Bayesian probability framework, but I do not think that that decision should decrease the 

relevance of this work to someone who prefers a different interpretation of probability. I 

think what I say below is worthwhile—even when played in a different key.  

§1.2  KEYNESIAN WEIGHT BASICS  

In this section, I hope to roughly sketch the preliminary details of the concept I refer 

to as Keynesian weight. We will see numerous challenges to this general outline of 

Keynesian weight, but it is helpful to get some features of the concept front and center 

prior to moving forward. To see how Keynesian weight works, let’s first consider Karl Popper’s Paradox of 
Ideal Evidence.17 Although Popper hoped that the Paradox of Ideal Evidence would 

demonstrate problems with the Keynesian approach (and other broadly Bayesian 

approaches) to probability, it happens to provide a helpful introduction to Keynesian weight. In the “paradox”, Popper asks us to consider the probability that a coin will turn up 
heads on the next toss. At the start of this thought experiment, we lack any knowledge 

about the coin other than the fact that it looks normal. Due to the normal appearance of the 

coin, we assume that there is no reason to suspect unfair bias in the coin.18 As a result, we 

judge the probability that the coin will land on heads on the next toss to be 0.5. Then, 

Popper asks us to suppose that we find statistical evidence about the coin.19 The statistical 

evidence shows that the coin underwent a million tosses in the past, approximately half of 

 
17 The paradox arises in the article “A Third Note on Degree of Corroboration or Confirmation,” which can be 
found on 406-419 of Popper’s The Logic of Scientific Discovery.  

18 Popper, “A Third Note,” 407.  
19 Popper, 407.  
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which resulted in heads while the other half resulted in tails.20 The statistical evidence is 

meant to be ideally favorable to the hypothesis that the coin is fair, so we assume that the 

evidence is trustworthy and that it gives us no reason to suspect any bias in the coin. Given 

this new evidence, our updated probability estimate of the coin landing heads on the next 

toss is 0.5. For Popper, the paradoxical part of this result is that our probability judgement 

fails to incorporate the ideally favorable evidence in any clear way.21 In fact, the probability 

remains unchanged between the two stages of the example, even though the first 

probability incorporated quite little evidence and the second probability utilized a more 

robust set of evidence.  

This is the point at which Keynesian weight enters the picture. Keynesian weight 

gives us a way to represent the change in the amount of evidence between the two stages of the example. Based on Keynes’s outline of weight, the second probability in the “paradox” is 
weightier than the first probability. That is to say that the second probability judgement 

possesses more Keynesian weight than the first probability judgement because the second 

probability judgement uses more evidence to yield its result. Keynes gives a good summary of this feature of weight when he says that holding all else equal, “It seems plain that there 
is some sense in which a probability founded upon more evidence is superior to one founded upon less.”22 For Keynes, weight is the concept that conveys the comparative 

superiority of probabilities based on more substantial evidence.   

 
20 Popper, 407. 

21 Popper, 408. See also: Adler, Belief’s Own Ethics, 252. 

22 Keynes, qtd. in O’Donnell, Keynes: Philosophy, Economics, and Politics, 67. 
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Consideration of potential applications of Keynesian weight further clarifies the 

nature of the concept. One obvious application of weight is to the question of when it is rational to stop acquiring information “in forming a probability judgment before making a 
decision.”23 Following Alberto Feduzi, I refer to the attempt to answer that question as the 

stopping problem. The stopping problem centers around the need for a rational principle 

for deciding when a probability judgement is “good enough” to use to make a decision. Popper’s “paradox” demonstrates that probability alone is not enough to solve the stopping 
problem.24 For instance, two probability judgements, A and B, can both possess a 

probability of 0.8, even if judgement A is based on a sample size of 10 while judgement B is 

based on a sample size of 100. But Keynesian weight arises independently of probabilities. 

Consequently, weight holds the potential to provide more leverage on the stopping 

problem, and our initial analysis of Keynesian weight should make it clear how that process 

might work. Keynesian weight is designed to convey the information about the amount of 

evidence utilized in a probability judgement. By basing standards for rational stopping 

around Keynesian weight, we may be better suited to solve the stopping problem than we 

would be if we tried to rely on probability alone.25  

Another way to highlight the central features of Keynesian weight is to distinguish between what James Joyce calls “the balance of the evidence” and “the weight of the 

 
23 Feduzi, “Keynes’s Conception of Weight of Evidence,” 339.  
24 In “Probability, Anti-Resilience, and the Weight of Expectation,” David Hamer argues that there is a 

probabilistic motivation for considering new evidence, and he provides a computer model of the relationship he describes. Hamer’s argument may signal a way for probability to overcome the stopping problem.  
25 Feduzi, “On Keynes’s Conception of Weight of Evidence”, 345-8, features an account of how one might use 

weight to try to solve the stopping problem.  
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evidence.”26 In order to bring this distinction out, allow me to modify Popper’s coin 
example.27 Suppose that instead of being presented with a single coin, you are presented 

with Coin A and Coin B as well as trustworthy statistical evidence about each coin. In the 

case of Coin A, the statistical evidence indicates that the coin has undergone millions of 

tosses, exactly 50% of which landed on heads and exactly 50% of which landed on tails. As 

a result, the probability of the next toss of Coin A landing on heads is 0.5. In the case of Coin 

B, the statistical evidence indicates that the coin only underwent ten tosses since its 

production, all of which landed on heads. The resulting probability of Coin B landing on 

heads on the next toss is 1.0. Now we are in a position to see the distinction between 

balance and weight of evidence. In the case of Coin A, the evidence is perfectly balanced and 

there is a massive quantity of evidence showing that balance. Since it is exactly midway 

between 0 and 1, the probability of the next toss of Coin A resulting in heads displays the 

perfect balance of the evidence regarding Coin A. Since the evidence is perfectly balanced 

between two outcomes, the evidence fails to provide a decisive expectation about the result 

of the next toss of the coin. That said, the evidence about Coin A is quite weighty because 

there is so much of it. In the case of Coin B, the available evidence is not weighty, nor is it 

balanced between the possible outcomes of the next toss of Coin B. Instead, Coin B 

possesses a smaller evidential base, but the evidence plainly indicates that you should expect the next toss to be heads. As Joyce says, “The intuition here is that any body of 
 

26 Joyce, “How Probabilities Reflect Evidence,” 158.  
27 For the purpose of this example, I assume a frequency conception of probability in addition to what Hans Reichenbach called “the straight rule.” For more on the straight rule, see: Glymour and Eberhardt, "Hans 

Reichenbach." 
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evidence has both a kind of valence and a size.”28 Probability tells us the balance of the 

evidence, which makes probability an excellent tool for capturing the valence of the body of 

evidence. Keynesian weight is a measure meant to capture the size of the body evidence, 

rather than the balance of the evidence. As Keynes says, “The preceding paragraphs will 
have made it clear that the weighing of the amount of evidence is quite a separate process 

from the balancing of the evidence for and against.”29 

At this point, those familiar with statistics might assume that Keynesian weight is 

essentially the same thing as probable error.30 If you made that assumption, then you are in 

good philosophical company. In 1878, Charles S. Peirce presented Keynesian-weight-like 

considerations as a central feature of his argument in favor of a frequentist interpretation 

of probability as opposed to a conceptualist (i.e. Bayesian) interpretation.31 In that 

argument, Peirce recognized that as the amount of evidence relevant to a hypothesis 

increases, the probable error of that hypothesis decreases. Consequently, Peirce argues 

that probable error captures the essential functions that Keynesian weight is meant to 

capture—a decrease in probable error signifies an increase in weight. As Keynes later says, “The connection between probable error and weight, such as it is, is due to the fact that in 

scientific problems a large probable error is not uncommonly due to a great lack of 

 
28 Joyce “How Probabilities Reflect Evidence,” 158.  
29 Keynes, A Treatise on Probability, 81.  

30 Or, perhaps you have standard error in mind. Probable error was the more popular measure at the time 

Keynes and Peirce wrote, but standard error is generally preferred now. While technically different (standard 
error is much more precise), standard error and probable error are functionally equivalent for the purposes 

of this thesis. While I will talk in terms of probable error in order to remain on Keynesian turf, note that the 

arguments about probable error should apply to standard error as well. 

31 Peirce, “The Probability of Induction,” in The Essential Peirce, 160. See also: Kasser, “Two Conceptions of Weight,” 645.  
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evidence, and that as the available evidence increases there is a tendency for the probable error to diminish.”32 However, Keynes argued that there can be instances in which 

Keynesian weight increases while probable error also increases, which indicates that the 

connection between probable error and weight sometimes fails to hold.33 To demonstrate 

that point, Keynes gives a mathematical example in which new evidence eliminates some 

possibilities while also rendering previously unlikely possibilities more likely.34 Keynes’s 
mathematical example makes it plain to see how to sever the connection between weight 

and probable error. It can also be helpful to consider less-mathematically focused cases.35 

For instance, imagine you obtain new evidence relevant to your hypothesis, and the new 

evidence decreases the overall plausibility of your hypothesis in comparison to other 

hypotheses.36 Thanks to the new evidence, your hypothesis becomes weightier. That said, 

the new evidence shows you more ways in which the hypothesis can be mistaken, which 

means that the probable error of the hypothesis also increases. As a result, probable error 

does not necessarily decrease with increases in Keynesian weight. Keynesian weight and 

probable error attempt to capture related, albeit distinct, phenomena.  

Probability captures the balance of evidence nicely, but the Joyce example shows us 

that the Keynesian weight of evidence is distinct from the balance of the evidence. As such, 

some argue that the distinction between Keynesian weight and probability parallels F.H. 

 
32 Keynes, A Treatise on Probability, 82. 

33 Keynes, TP, 83.  

34 Keynes, TP, 83.  

35 By introducing a case that is less mathematically focused, I likely deviate from the technical definition of 

probable error. However, I think that the intuitive idea behind probable error remains present.   

36 Thanks to Ben Prytherch for his help with the wording in this sentence.  
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Knight’s distinction between risk and uncertainty.37 According to Knight, situations of risk 

are situations in which a probability can be attached to an inference. In contrast, situations 

of uncertainty are cases in which numerical probabilities cannot be obtained. For those 

who argue that weight indicates a commonality between Keynes and Knight, the thought is typically that Keynes’s probability is akin to Knight’s notion of risk, while Keynesian weight is akin to Knight’s notion of uncertainty. However, Faulkner, Feduzi, McCann, and Runde 

maintain that while Keynes does in fact have a risk-uncertainty distinction analogous to Knight’s distinction, Keynes’s risk-uncertainty distinction actually comes via the difference 

between numerical and non-numerical probabilities.38 Consequently, we should resist the urge to squeeze the distinction between probability and weight into Keynes’s own risk-

uncertainty distinction. The issue about numerical versus non-numerical probabilities, as 

well as Knight’s risk-uncertainty distinction, ultimately focuses on how best to 

communicate probabilities. In contrast, Keynesian weight captures how robust our 

evidence is. Accordingly, there is at best a loose connection between Keynesian weight and 

the issue of how to communicate probabilities.39 To summarize: it is wrong to think that the distinction between weight and probability is the Keynesian analogue to Knight’s risk-

uncertainty distinction.  

 
37 On page 5 of the otherwise excellent article “Keynes, Knight, and Fundamental Uncertainty,” Dimand seems 
to make this argument by maintaining that uncertainty is characterized as the direct inverse of Keynesian 

weight. Of course, much depends on what sense of uncertainty Dimand had in mind  

38 Faulkner, Feduzi, McCann, Runde, “Knight, Keynes, After 100 Years,” 863-4. Similarly, O’Donnell argues that 
the distinction is between known (which can sometimes be numerical) and unknown (which can only become numerical once known) probabilities. See O’Donnell, “Keynes and Knight,” 1131. 
39 On page 864 of “Knight, Keynes, After 100 Years,” Faulkner, Feduzi, McCann, and Runde point out that 
Knight comes up with a distinction that parallels Keynes’s distinction between weight and probability. 
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However, some nuance begins to enter the frame when we consider the relationship 

between weight and uncertainty. Recognize that another primary function of Keynesian 

weight is to provide some account of the confidence we should feel in an inference.40 In 

fact, this function of weight explains why the size of the evidential basis plays such a central 

role in determining Keynesian weight. Return to the cases of Coins A and B from above. Although the balance of Coin A’s evidential base indicates that Coin A does not favor either 
heads or tails, the vast size of the evidential base should generate a great deal of confidence 

regarding our judgements about Coin A. It would take an extremely long string of heads (or 

tails) for the evidential balance of Coin A to cause a rational agent to expect heads (or tails) 

on the next toss. The large evidential basis of Coin A should cause us to expect an equal 

chance of heads or tails on the next toss of the coin, and an equal chance on the toss after 

that, and so on. In contrast, the balance of the evidence regarding Coin B should cause us to 

expect a particular result for the next toss, but our judgements about Coin B can be easily 

upended by future tosses. It is entirely possible that our current evidence regarding Coin B 

is misleading, and that Coin B is in fact just as fair as Coin A. Although the current sample of 

tosses indicates that Coin B possesses some bias towards heads, it is possible that the next 

ten tosses of the coin will land on tails and remove any claim to bias. Accordingly, we 

should feel less confident in our judgements regarding Coin B than we feel about our 

judgements regarding Coin A.  

 
40 In this sentence, I use the phrase “should feel” because my focus is on normative claims within the realm of 
epistemology. Whenever I talk about feelings of confidence in this work, I aim to describe what a rationally 

idealized agent should experience due to changes in their evidential circumstances. Taking a normative focus is somewhat different from Keynes’s approach. Keynes tended to oscillate between descriptions of rational 
agents (in his more philosophical works) and descriptions of real people (in his economic works). 
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As Keynesian weight increases, then, our confidence should also increase.41 The 

distinction between probable error and Keynesian weight shows that this tendency may 

not always prevail, though. Recall the case in which both weight and probable error 

increased due to evidence that raised the probability of competing hypotheses. In that case, 

it is plausible to say that although the new evidence increased Keynesian weight, the new 

evidence should decrease our confidence. This brings out one of the core complexities of 

Keynesian weight. When we obtain evidence that shows us more ways in which we might 

be wrong, that evidence is often surprising. The surprise may lead to a diminished 

confidence placed in our working hypothesis. However, once the initial surprise of the 

evidence fades, we might say that our overall confidence ultimately increased as a result of 

the increase in Keynesian weight. After all, the surprising evidence painted a clearer 

picture of the overall evidential situation. After the surprising evidence is obtained, we can 

better anticipate the range of evidence we might receive in the future. In such an event, 

perhaps the confidence placed in our initial hypothesis should diminish, but the 

recognition of our clearer evidential standing regarding the inquiry at hand should 

generate more confidence overall.  

At this point, it is worth noticing all the different concepts intertwined with 

Keynesian weight. The previous paragraph shows that Keynesian weight is closely related 

 
41 I use the word confidence as a replacement for what Keynes calls “certainty”. Keynes’s terminology is often 
ambiguous, but I tend to interpret him as referring to a subjective feeling of certainty. The relationship 

between Keynesian weight and subjective feelings of certainty (or confidence) is a one way to relate weight to 
works throughout the history of philosophy. For instance, one might see foundations for Keynesian weight in 

Plato’s Meno, Sextus Empiricus’s Outlines of Pyrrhonism, Jean Buridan’s theory of evidentness, Descartes’s 
Principles and Meditations, Hume’s Enquiry, and of course Peirce’s Illustrations in the Logic of Science. These 

are just some prominent examples that come to mind. If you would like to explore these connections more, I suggest starting with Loeb, “Sextus, Descartes, Hume, and Peirce.” 
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to confidence and surprise, but that the relationship between weight and these concepts is 

fuzzy at best. Moreover, we have seen that Keynesian weight is independent of probability 

and probable error, which means that any given evidential set might yield a probability 

measure, a measure of probable error, as well as some measure of weight. In 

considerations of weight, one needs to disentangle which concepts do which work. It is no wonder why Keynes said, “A little reflection will probably convince the reader that this is a very confusing problem.”42 

§1.3  HIGHER-ORDER EVIDENCE AND KEYNESIAN WEIGHT  

We already saw one potential use of Keynesian weight—as a potential solution to 

the stopping problem. Attempting to solve the stopping problem is only one of the many 

uses Keynesian weight has been put to in the last 100 years. Keynes himself also tied 

weight to the idea of liquidity preference, which is a vital measure Keynesian economics. 

Others connected Keynesian weight to the stability of belief, epistemic resilience, the 

philosophy of law, as well as the epistemology of disagreement. In this section, I hope to 

illuminate the connection between Keynesian weight and higher-order evidence. By 

analyzing that connection, we will recognize additional features of the concept. A thorough 

understanding of the main features of Keynesian weight will prove beneficial when we turn 

to our discussion of interpretations.  

In recent years, higher-order evidence became a hot topic in epistemology. Put 

simply, higher-order evidence is evidence about your evidence. Quite a bit of recent work 

considers how higher-order evidence should affect epistemic considerations. For example, 

 
42 Keynes, A Treatise on Probability, 85.  
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the epistemology of disagreement centers around how disagreement with an epistemic 

peer should affect our doxastic lives. Although peer disagreement over an issue is not 

evidence directly about the issue itself, the existence of peer disagreement can serve as 

higher-order evidence about your current epistemic position. A multitude of interesting 

questions regarding the epistemic status of peer disagreement exist, but unfortunately we 

cannot venture too far in that direction here. I bring up disagreement simply because in my 

view, the existence of peer disagreement about a judgement and the Keynesian weight of a 

probability judgement both serve as varieties of higher-order evidence about those 

respective judgements. Just as the existence of peer disagreement regarding X might cause 

one to doubt their belief in X, a low Keynesian weight of probability judgement Y might 

cause one to doubt Y. In neither case does the higher-order evidence seem to directly tell 

you much about the truth of the judgement at hand. The mere existence of peer 

disagreement over X need not indicate whether X is true or false, and the low Keynesian 

weight of Y does not show that Y is mistaken. Neither of these species of higher-order 

evidence tell us what to believe about X and Y.  In other words, unlike evidence, Keynesian weight “has no direction, which refers to the function of evidence or reasons to raise or lower the credibility of a proposition.”43 

Jonathan Adler argues that it is fallacious to think that Keynesian weight (and higher-order 

evidence generally) possesses directional bearing on belief. Adler calls this form of 

 
43 Adler, Belief’s Own Ethics, 251. Notice that Adler’s quote here is probably not true in cases where you learn 
that a proposition possesses a Keynesian weight close to zero. If you learn that a proposition entirely lacks 

evidential support, then that should probably alter the credibility of the proposition. In other words, there 

can be cases in which Keynesian weight possesses some directionality in the sense mentioned by Adler. For that reason, it is charitable to think that Adler does not use the word “credibility” in a literal manner in this 
quote.  
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fallacious thinking the directionality of weight fallacy.44 The clearest example of the directionality of weight fallacy given by Adler comes via John Stuart Mill’s argument about 
fallibility and free speech.45 According to Mill, any suppression of speech is an admission of 

infallibility because such a suppression involves deciding that the suppressed speech is 

certainly false.46 Mill argues that since we are not infallible, we should not suppress speech. 

In the case of Mill’s argument, the directionality of weight fallacy involves the role played 
by fallibility in our reasoning. Instead of affecting what we should believe, Adler views 

fallibility as a type of higher-order evidence that affects confidence in beliefs. Adler argues 

that we often misconstrue our fallibility as negative evidence running contrary to our 

current belief.47 In fact, fallibility lacks direction about what to believe.48 Just as fallibility 

can show itself in cases when we make our beliefs too strong, it can also show itself when 

we render our belief in a proposition too low.49 In this case, the fallacious thought comes 

from the assumption that fallibility implies that one will be wrong in a certain direction. 

For Adler, fallibility lacks that kind of directionality. When we are fallible about something, that implies that our judgement can be wrong “in either direction” as it were. So, contrary 
to Mill, Adler thinks that recognition of fallibility fails as a reason against the suppression of 

speech.  

 
44 Adler, 251. 

45 Adler, 255. 

46 Mill, “On Liberty,” 85. 
47 Adler, Belief’s Own Ethics, 256. 

48 Adler, 256. 

49 Adler, 256.  
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Adler clearly thought that Keynesian weight is analogous to fallibility in Mill’s 
argument, which explains the naming of the directionality of weight fallacy. For Adler, it is a 

mistake to think that considerations of weight can legitimately generate some directional 

effect on the basic probability judgement.50 Adler uses the directionality of weight fallacy to argue that Popper’s Paradox of Ideal Evidence is not a paradox at all, but rather a fallacious 
yearning for higher-order evidence (in this case, Keynesian weight) to alter probability 

judgements.51 Regardless of how successful Adler’s critique of Popper is, the directionality 
of weight fallacy exposes many of the ties between Keynesian weight and higher-order 

evidence. Consequently, when we begin to consider interpretations of Keynesian weight, 

we must keep in mind that Keynesian weight should retain ties to both the lack of 

directionality of evidence on one hand and higher-order evidence generally on the other.52 

If the tie between Keynesian weight and higher-order evidence becomes severed, then it 

will not be clear whether we are still dealing with Keynesian weight. That said, I 

acknowledge that the interaction between the directionality of evidence and Keynesian 

weight needs more investigation. At least some examples in the disagreement literature 

suggest that at some evidential threshold, increases in higher-order evidence do generate 

directional bearing on belief.53 Alas, such issues cannot concern us here.  

 
50 Adler, 251. 

51 Adler, 252. 

52 On 640 of “Two Conceptions of Weight,” Kasser also asserts that Keynesian weight lacks directionality.  
53 See Kelly, “Peer Disagreement and Higher Order Evidence,” 137 for one potential case.  
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§1.4  TWO MORE KEY POINTS REGARDING KEYNESIAN WEIGHT—
COMMON CONFLATIONS  

Before going any further, I will clarify two distinct (albeit related) points centered 

around Keynesian weight. At first glance, this section may appear like an unneeded 

appendix. However, seeing the subtlety of these points will be crucial to attaining a better 

understanding of the overall argument and avoiding quagmires of confusion in the chapters 

to come.  

§1.4.1  WEIGHT OF ARGUMENT VS .  WEIGHT OF EVIDENCE  

First, we should recognize that there is potential for some ambiguity in discussions 

of Keynesian weight generated, at least in part, by the fact that the basic idea motivating 

weight is applicable to frameworks that utilize non-Keynesian conceptions of probability. 

The idiosyncrasy of the Keynesian approach to probability shines through when Keynes introduces weight. Keynes calls the concept “weight of arguments”, a name that makes 
explicit reference to his argumentatively based approach to probability. Despite the 

idiosyncrasy of the name, one can read Chapter 6 of A Treatise on Probability, grasp the 

basic idea that motivates Keynesian weight, and then attempt to apply that basic idea to a 

different probability framework. Once the concept of weight gets separated from the rest of 

the Keynesian probability apparatus, it becomes natural to use the term weight of evidence 

in place of weight of argument. The translation of weight of argument into weight of 

evidence to better fit a different probability framework is not inherently problematic, 

provided that we do not lose valuable conceptual nuance in the translation. Nonetheless, Rod O’Donnell argues that we do lose subtleties from Keynes’s discussion of weight of 
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argument when we try to pull the concept out of its original context.54 In fact, O’Donnell 
claims that much of the literature on Keynesian weight conflates the original concept 

described by Keynes with weight of evidence, which might be an altogether different 

concept than the one Keynes had in mind.55 It is worth considering O’Donnell’s view on this 
potential conflation, if only to delineate our exact focus.  

For Keynes, a probability attaches to a logical argument as a whole rather than to 

the individual propositions of an argument.56 As such, Keynes treated all probabilities as 

conditional on the arguments that they attach to. Thus, it makes no sense to speak of the Keynesian probability of an argument’s conclusion separated from the premises of that 
argument. Like probability, Keynes saw the concept of weight to be an expression of the 

relation between the premises (or data/evidence) of an argument to the conclusion (or 

hypothesis/main claim) of an argument.57 Just as it does not make sense to speak of the 

probability of a proposition divorced from an argument on the Keynesian framework, it 

likewise does not make sense to speak about the weight of some evidence divorced from 

the argument to which the evidence pertains. In other words, Keynes intended for weight 

to measure the evidence relevant to an entire argument rather than the evidence of a single proposition. O’Donnell’s conflation argument signals the existence of subtle differences 
between what we might call the “weight of argument” and what one might call “weight of evidence.” While weight of argument describes a probability-independent expression of the 

 
54 O’Donnell, Keynes: Philosophy, Economics, and Politics, 69.  

55 O’Donnell, 69. 
56 Faulkner, Feduzi, McCann, Runde, “Knight, Keynes, After 100 Years,” 858. 
57 O’Donnell, Keynes: Philosophy, Economics, and Politics, 69.  
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relation between the premises and conclusion of an argument, weight of evidence refers to 

some general expression of the evidence at play in our probabilistic reasoning.  

Despite the apparent difference between weight of argument and weight of 

evidence, it is not clear that abandoning the idea of weight of argument causes any real 

harm for our present purposes. Ultimately, the basic idea that motivates most interpretations of Keynesian weight can be separated from Keynes’s general approach to 
probability, which largely fell out of favor. Remember that the primary question driving my 

thesis is this: Which interpretation of the Keynesian weight concept is it preferable for us to 

adopt? In order to answer that question, I will need to thoroughly explicate Keynesian 

weight. My explication will not center around textual evidence alone, but rather build in 

considerations of what we want out of a concept like Keynesian weight. That said, O’Donnell’s worry about conflation should still be noted. It is a tangential issue to this 
thesis, but the potential conflation between weight of argument and weight of evidence 

implies that translating Keynesian weight to a different probability framework might cause 

us to lose valuable insight into what Keynes actually took the concept to mean. If O’Donnell’s conflation argument is right, perhaps none of the interpretations discussed in 

this thesis are what Keynes himself meant by weight. However, whatever I say in what 

follows should still be useful for subjective Bayesians who wish to add a concept like 

Keynesian weight in their epistemological toolkit.  In reaction to O’Donnell’s conflation argument, a brief note on approaches to the 

history of philosophy might be in order, if only to contextualize the upshot of my argument. 

Here, we should ask ourselves what we mean when we say that an interpretation is the “best interpretation” of a concept to take. I do not think there is a one-size-fits-all answer to 
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that question. When determining which interpretation of Keynesian weight makes the most 

sense, we might be tempted to rest on our laurels once we determine which account 

Keynes himself would endorse (if such a task is even possible). However, I am not 

convinced that we should simply settle for the interpretation Keynes would prefer. Keynes’s frequent remarks about the confusing and novel character of weight indicate that, 
at least through the publishing of TP in 1921, he remained perplexed about weight. 

Furthermore, it is possible that Keynes wrote on weight without recognizing the various 

ways of construing the concept. For these reasons, I think Keynesian weight is an issue ripe 

for a more revisionist approach. Keynes famously said, “In the long run we are all dead.”58 Keynes’s personal long-run is now, and as such, I am not presently interested in what 

Keynes the living-breathing-man thought. Instead, I take interest in what Keynes can teach 

us about our contemporary approaches to analysis of evidence. So, in addition to textual 

consistency with A Treatise on Probability, we should also consider which interpretation of 

Keynesian weight makes the concept contribute most to contemporary literature. Not only 

is this step crucial to presenting Keynesian weight in the most charitable light, but it also 

puts Keynesian weight in a better position to illuminate any potential shortcomings in our 

current approaches to epistemology and scientific methodology. Accordingly, understand 

that in the chapters to come, I am trying to strike a balance between faithful consideration of the text and mining Keynes’s work for conceptual resources.59  

 
58 Keynes, A Tract on Monetary Reform, 80. 

59 Perhaps the approach to the history of philosophy used in this thesis is best described as a version of Jonathan Bennett’s collegial approach. See Garber, “What’s Philosophical About the History of Philosophy?” 
for an excellent analysis of various approaches to the history of philosophy.  
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§1.4.2  TWO TYPES OF PEIRCEAN WEIGHT 

Above, I mentioned that Keynesian weight can be separated from the Keynesian 

approach to probability. When that occurs, most people find it natural to begin calling the concept “evidential weight” or “weight of evidence.” Such a change in terminology leads us 
to our second nuanced dispute regarding Keynesian weight, which focuses on how to use 

the metaphor of weight of evidence. In this dispute, it is crucial to recognize that Keynesian weight often gets conflated with the concept that I.J. Good called “weight of evidence.” As 
we shall see in Chapter 3, Good argues that Keynesian weight is unworthy of being referred 

to as weight of evidence. The particular details of Good’s critique of Keynesian weight will 
come into view later. For now, let us focus on the different ways in which Good and Keynes 

use the weight metaphor.  

It did not become clear that Keynes and Good discussed wholly distinct concepts until fairly recently. In “Two Conceptions of Weight of Evidence in Peirce’s Illustrations of 

the Logic of Science,” Jeff Kasser shows that Charles S. Peirce anticipated both Keynesian weight as well as Good’s measure of weight of evidence.60 Kasser demonstrates how Peirce 

outlined both of these types of weight as early as 1878, and Kasser illustrates ways in 

which the various conceptions of weight of evidence became muddled in the literature 

since Peirce. To better illuminate the distinction between these concepts, Kasser refers to 

Keynesian weight as a version of gross weight of evidence, and (following Isaac Levi) he 

characterizes Good-Turing weight as a measure of net weight of evidence. Building on Kasser’s terminology, I consider gross weight and net weight to be two types of Peircean 

 
60 In Section 1 of “The Weights of Evidence,” Dale Nance anticipates Kasser’s distinction between types of 
weight. 
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weight. Recognition of the differences between the two types of Peircean weight is 

necessary to understanding Keynesian weight.  

As we saw above, Keynesian weight is traditionally construed as a function of the 

amount of evidence in question, which explains the name of gross weight. However, Kasser 

shows that Peirce did not use the weight of evidence metaphor to describe gross weight of 

evidence.61 Instead, Peirce reserved the weight metaphor for descriptions of net weight of 

evidence.62 Like gross weight of evidence, net weight of evidence measures the tendency of 

a probability to be altered by new evidence.63 That said, these two types of Peircean weight 

operate in quite different ways. According to Kasser, net weight of evidence describes any measure that aggregates evidence in order to capture “the extent to which evidence favors a hypothesis.”64 In this way, net weight of evidence possesses directional bearing on 

belief.65 A popular measure of net weight of evidence is the logarithm of the odds (also known as ‘log-odds’), which is a measure developed by Peirce and then later independently 
formulated by Alan Turing and Good. As Peirce and later Good demonstrate, a Bayesian 

statistician can use log-odds to quantify the impact that a “piece” of evidence should have 
on belief.66 So instead of indicating the amount of evidence utilized in an inference (like 

gross weight does), net weight of evidence demonstrates an aggregated balance of the 

 
61 Kasser, “Two Conceptions of Weight,” 639. 
62 Kasser, 637, 644. 

63 Kasser, 644. 

64 Kasser, 639. 

65 Kasser, 640. 

66 Kasser, 638. 
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evidence. For Good, weighing evidence involves putting evidence on a mathematical scale 

and using that scale to measure the extent to which that evidence (dis)favors a hypothesis. 

To avoid confusion, we must clarify whether we are talking about gross weight or net weight when we use the phrase “weight of evidence.” Failure to do so only results in 
misunderstanding. In this thesis, my focus is on Keynesian weight, which is historically the 

paradigmatic instance of gross weight. However, both types of Peircean weight play a role in the chapters to come. For instance, Chapter 2 introduces Jochen Runde’s relative weight 

interpretation of Keynesian weight, which runs the risk of transforming Keynesian weight into a form of net weight of evidence. In Chapter 3, I attempt to use Runde’s relative weight interpretation in response to Good’s critique of Keynesian weight. Good’s critique will familiarize us with net weight of evidence. Ultimately, I think a careful reading of Good’s 
critique demonstrates the way in which Keynesian weight remains a measure of gross weight, even on Runde’s relative weight interpretation of Keynesian weight. By remaining a 

form of gross weight, the relative weight interpretation of Keynesian weight becomes the 

best interpretation of Keynesian weight available. Be that as it may, this chapter shows that 

Keynesian weight is shrouded in confusion. Thus, we must remain cautious in the chapters 

to come.  
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CHAPTER 2: AN INTERPRETATIVE PUZZLE 

 

 

 
“It is reasonable, therefore, to be guided to a considerable degree by the facts about 

which we feel somewhat confident, even though they may be less decisively relevant to 

the issue than other facts about which our knowledge is vague and scanty.” John 
Maynard Keynes, The General Theory of Employment, Interest, and Money, 148.  

§2.0  OUR MAIN FOCUS:  INTERPRETATIONS OF KEYNES  

Hopefully Chapter 1 made it obvious why Keynesian weight is a very confusing 

problem. Chapter 2 represents a change in pace. In some ways, the present chapter 

retreads works already completed by Jochen Runde, Brian Weatherson, and James Joyce; 

those authors worked to illuminate the different ways in which Keynes presents weight.67 

However, it is crucial to outline the basic interpretations of Keynesian weight because they 

allow us to gain a clearer picture of the concept. Furthermore, many commentators on 

Keynesian weight fail to notice (or care) that Keynes often describes weight in vastly 

different ways.68 Broadly speaking, two main interpretations of Keynesian weight exist in 

the literature.  First, Keynes’s introduction of weight seems to describe a concept in which every new “piece” of evidence adds to the absolute total of evidential weight.69 If that is all there 

 
67 See: Runde, “Keynesian Uncertainty and the Weight of Arguments,” Weatherson, “Keynes, Uncertainty and Interest Rates,” and Joyce, “How Probabilities Reflect Evidence.”  
68 As one example, Michael Emmett Brady appears to run conceptions of weight together on page 361 of “Keynes’s Theoretical Approach” when he says that a variable for weight “represents the amount of evidence 
or information or completeness of the information or the body of knowledge upon which the probability 

calculations are being based.” Additionally, Karl Popper conflates Keynesian weight with Good-Turing weight of evidence, and Popper focuses solely on weight being a measure of the amount of evidence (see “Third Note,” 406). Others only mention one interpretation of Keynesian weight—for example: Fox and Tversky, “Ambiguity Aversion,” 585. In Chapter 3, we will see both Teddy Seidenfeld and I.J. Good focus only on one 
interpretation of Keynesian weight. 

69 Keynes, A Treatise on Probability, 78. 
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is to Keynesian weight, then weight appears to simply be a measure that increases 

monotonically with the accrual of new evidence.70 This is the way Keynes’s concept has 
traditionally been read, and it is how I introduced Keynesian weight in Chapter 1. For our 

purposes, we can call this interpretation of Keynesian weight monotonic weight or the 

monotonic interpretation. On the same page of Keynes’s initial description of weight, he also 
alludes to a description of weight that is a ratio.71 Here, weight seems to be the ratio of 

relevant knowledge to relevant ignorance or the ratio of relevant knowledge to total 

relevant information.72 I follow Alberto Feduzi in calling this second conception of 

Keynesian weight relative weight or the relative interpretation.73 In certain cases, relative 

weight functions quite differently from monotonic weight. To understand why I prefer a 

relative interpretation of Keynesian weight, we must first see how a relative interpretation 

can be considered viable. That is the task to which I turn next.  

§2.1  THE BASIC PUZZLE AND SOME DESIDERATA FOR 

INTERPRETATIONS 

We are now in a position to appreciate the interpretative puzzle that confronts 

anyone analyzing Keynesian weight. Stated briefly, the puzzle comes down to the fact that 

there are at least two plausible ways to interpret Keynes’s remarks about weight in A 

Treatise on Probability (TP) and it is up to us to determine which interpretation of 

Keynesian weight makes the most sense. In order to find a solution to the interpretative 

 
70 Runde, “Keynesian Uncertainty and the Weight of Arguments,” 282; Feduzi, “Keynes’s Conception of Weight of Evidence,” 341. 
71 Keynes, A Treatise on Probability, 78.  

72 Runde, “Keynesian Uncertainty and the Weight of Arguments,” 280-1. 

73 Feduzi, “Keynes’s Conception of Weight of Evidence,” 343-5.  
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puzzle, a list of desiderata with which to assess the interpretations will prove helpful. As 

such, here is a list of basic desiderata from the preferred interpretation of Keynesian 

weight: 

1. Textual support; 

2. Maintains the distinction between Keynesian weight and probable error; 

3. Retains some believable (albeit nuanced) ties to rational feelings of 

confidence; 

4. Maintains Keynesian weight’s status as the paradigmatic species of gross 
weight of evidence, which requires the interpretation to: 

a. Preserve the connection to higher-order evidence via a lack of 

directional bearing on belief, 

b. And sustain the distinction between the balance of the evidence and 

the weight of the evidence.  

The first desideratum is fairly self-explanatory. Any interpretation worth its salt will 

feature some degree of textual support. Additionally, Chapter 1 should make the second 

desideratum clear. One great achievement of Chapter 6 of TP comes via Keynes’s 
recognition of the divergence between probable error and weight. Keynes provides a 

strong argument that shows the ways in which probable error and weight can theoretically 

come apart, even if that rarely occurs in our actual scientific practices. Moreover, Keynesian 

weight appears broad enough to apply outside of strictly statistical endeavors, while 

probable error is strictly a statistical concept. Thus, even if probable error and Keynesian 

weight turn out to be identical in statistical inference, they still cannot be identical 
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concepts.74 Accordingly, the interpretation of weight we accept should avoid causing 

weight and probable error to collapse in on one another.  

The third desideratum might be less clear than the first two, so some explanation is 

in order. Keynes refers to weight in works other than TP. In Chapter 12 of The General 

Theory of Employment, Interest, and Money, Keynes clarifies that he maintains a distinction 

between something being very improbable and being very uncertain by making a footnote 

reference to Chapter 6 of A Treatise on Probability.75 Keynes places the footnote at the end of this sentence: “It would be foolish, in forming our expectations, to attach great weight to matters which are very uncertain.”76 He continues by saying, “It is reasonable, therefore, to 
be guided to a considerable degree by the facts about which we feel somewhat confident, 

even though they may be less decisively relevant to the issue than other facts about which our knowledge is vague and scanty.”77 By using the word weight and then referring to the 

chapter on Keynesian weight, Keynes gives us an opening for figuring out what exactly he 

meant by the concept. Here, he says we should not place a large amount of weight on uncertain matters. According to Rod O’Donnell, Keynes’s original terminology for weight 
replaced the word weight with the word value, where value is used in a somewhat 

economic sense.78 With that in mind, we can safely rephrase Keynes’s point as, “We should 
 

74 Thanks to Ben Prytherch for helping me see this point.  

75 Keynes also mentions the connection between weight and Chapter 12 of General Theory in a later letter. The relevant portion of that letter can be found on page 135 of Runde’s “Keynesian Uncertainty and Liquidity Preference.” 

76 Keynes, The General Theory, 148.  

77 Keynes, The General Theory, 148.  

78 O’Donnell, Keynes: Philosophy, Economics, and Politics, 69. 
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not attach great value to matters which are uncertain.” In the next sentence, Keynes seems 
to say that we should instead value (or place great weight on) the facts about which we are 

confident, even if those facts are less relevant to the issue at hand.79  

In these sentences, I see Keynes doing two things. First, he attempts to makes 

explicit that when we are uncertain about something, we should possess low Keynesian 

weight regarding that thing. Perhaps I am incorrect to think that Keynes intends to refer 

specifically to Keynesian weight in the quote from The General Theory above. After all, the 

way in which the above quote uses Keynesian weight places some strain on the 

relationship between weight and probable error that we saw in Chapter 1. Thus, we might wonder whether Keynes’s usage aligns with the technical definition of Keynesian weight. 
However, I think that Keynes’s reference back to the explication of weight in TP indicates 

that he did in fact have Keynesian weight in mind when writing the quote above. 

Furthermore, recall that Chapter 1 assumes a monotonic interpretation of Keynesian 

weight, but Keynes himself seemed to frequently depart from a monotonic interpretation of weight. With these considerations in mind, I think it is fair to assume that Keynes’s 
intended referent in the above quote from The General Theory is Keynesian weight, and 

that it is the task of interpreters to reconcile that usage of weight with what Keynes says 

about weight in TP.  

In the quote above, Keynes does something else of note. By saying that we should be 

guided by the facts that we are more confident in, the above quote from The General Theory 

 
79 It is common for Keynes to use the word ‘weight’ in this way. Another notable use can be found on page 2 of 
A Treatise on Probability. Cohen asserts that Keynes frequently uses ‘weight’ more loosely than his technical definition; see Cohen, “Twelve Questions,” 272. 
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ties Keynesian weight to confidence in an interesting way.80 Since Keynes mentions that 

uncertainty should lead to low weight, it seems to follow that the confidence Keynes talks 

about should be warranted due to some higher degree of certainty.81 Since those facts 

possess a high degree of certainty, we should place more Keynesian weight in those facts; 

they are the valuable facts to consider when being guided by evidence. Of course, the 

connections between weight, confidence, and Keynesian (un)certainty are often difficult to 

comprehend.82 In our assessment of interpretations of Keynesian weight, however, we 

must remember that there should be some sort of plausible connection between these 

concepts. If an interpretation of Keynesian weight completely severs the tie between 

weight and confidence, then the interpretation probably is too distanced from the concept 

that Keynes had in mind.  

Several sections of Chapter 1 provide the basis for the fourth desideratum. As we 

saw in Sections 1.2 and 1.3, Keynesian weight is independent from probability, which 

means that Keynesian weight fails to tell us what to believe. Instead of possessing 

directional bearing on belief in that way, Keynesian weight measures the amount of 

evidence that gets incorporated into a probability statement. Similarly, the independence 

between Keynesian weight and probability indicates that there is a distinction between the 

Keynesian weight of the evidence and the balance of the evidence. While probability (as 

 
80 Rod O’Donnell, Sheila Dow, and Marco Crocco respectively argue that Keynesian weight is closely tied to confidence. See: O’Donnell, Keynes: Philosophy, Economics, and Politics, 73; Dow, “Keynes on Knowledge, Expectations,” 115; Crocco, “Degrees of Uncertainty in Keynes,” 13.  
81 By ‘certainty’, Keynes seems to have something like confidence in mind. Recall footnotes 37 and 38 above. 
82 Part of the difficulty stems from the fact that Keynes and contemporary commentators on Keynes use the 

word ‘(un)certainty’ in several different ways.  
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well as net weight of evidence) provides a good measure of the balance of evidence, 

Keynesian weight performs a different function. We can summarize these two points, namely Keynesian weight’s lack of directional bearing on belief and the distinction between 
the balance of the evidence and the weight of the evidence, by saying that Keynesian weight 

is the paradigmatic example of gross weight of evidence. The distinction between the two 

types of Peircean weight provides a good rule of thumb to use when considering 

interpretations of Keynesian weight. If an interpretation of Keynesian weight transforms 

the concept into the other type of Peircean weight (i.e. net weight of evidence), then that 

interpretation likely moves too far from the definition of Keynesian weight. Such a shift 

indicates a change of subject rather than a change of interpretation.  

To see how the two interpretations of Keynesian weight fare with respect to these 

desiderata, we must start with the text itself. For that reason, the sections below begin with 

selections of textual evidence in support of each respective interpretation. One thing to 

note about these selections is that sometimes Keynes seems to switch between conceptions 

on the same page or even within the same paragraph. Once the selections of text are listed, 

I begin to flesh out the details of each respective interpretation.  

§2.2  MONOTONIC KEYNESIAN WEIGHT  

§2.2.1  TEXTUAL EVIDENCE  

As the relevant evidence at our disposal increases, the magnitude of the probability 

of the argument may either decrease or increase, according as the new knowledge 

strengthens the unfavourable or the favourable evidence; but something seems to 

have increased in either case,—we have a more substantial basis upon which to rest 

our conclusion. I express this by saying that an accession of new evidence increases 

the weight of an argument. New evidence will sometimes decrease the probability of an argument, but it will always increase its ‘weight’. (Keynes, TP, 78)  
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Starting, therefore, with minimum weight, corresponding to à priori probability, the 

evidential weight of an argument rises, though its probability may either rise or fall, 

with every accession of relevant evidence. (Keynes, TP, 79) If we are to be able to treat ‘weight’ and ‘relevance’ as correlative terms, we must 

regard evidence as relevant, part of which is favourable and part unfavourable, even 

if, taken as a whole, it leaves the probability unchanged. With this definition, to say that a new piece of evidence is ‘relevant’ is the same thing as to say that it increases the ‘weight’ of the argument. (Keynes, TP, 79) 

The weight, to speak metaphorically, measures the sum of the favourable and 

unfavourable evidence, the probability measures the difference. (Keynes, TP, 85) 

§2.2.2  EXPLANATION OF MONOTONIC WEIGHT  

What I call the monotonic interpretation is the interpretation that dominates the 

literature on Keynesian weight, especially when it comes to the initial treatment of the 

concept. The early domination of the monotonic interpretation makes sense in part 

because this reading of Keynes is the most straightforward. On this interpretation, 

Keynesian weight ultimately comes down to the sheer amount of evidence that goes into a 

probability judgement. As Keynes explains, regardless of how new evidence affects a probability, we seem to have a “weightier” judgement on our hands once our judgement 

includes that new evidence. I call this reading monotonic because on it, new relevant 

evidence only ever increases Keynesian weight. Given this interpretation, the accrual of 

new evidence increases Keynesian weight. As such, the only way Keynesian weight can 

decrease is by somehow losing access to evidence. To draw an analogy to our everyday (or 

physical) notion of weight, the monotonic interpretation of Keynesian weight treats the 

accrual of evidence similarly to the addition of mass while holding the force of gravity 

constant—additional mass only ever increases weight.  

With the monotonic interpretation of Keynesian weight, we get a clear picture of 

what exactly the concept does. To see this picture, consider the following example:  
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Shirley has a credence of 0.8 that some event, E, will happen one year and one day hence. However, Shirley’s credence is newly formed, and based upon only a handful 
of relevant cases. Over the next year, Shirley gathers more relevant evidence and 

updates her credence based upon that new evidence. After 365 days of daily 

evidence-gathering and updating, Shirley’s credence fluctuated somewhat but 
ultimately settled at 0.8.  It should be clear that Shirley’s updated credence possesses a much higher 

monotonic Keynesian weight than her initial credence possessed. Although the addition of 

relevant evidence made her credence fluctuate a bit, each addition of evidence increased 

her Keynesian weight.  

One nice thing about the monotonic interpretation is that it clearly maintains the 

distinction between the balance of the evidence on one hand (which Keynes thinks is 

shown via probability) and the amount of evidence on the other hand. Since it only ever 

increases, monotonic Keynesian weight remains independent of the balance of evidence. 

Monotonic Keynesian weight also serves as evidence about your probability judgement. As 

we saw in Chapter 1, two probabilities can be equal even if they utilize extremely different 

amounts of evidence. By measuring the amount of evidence used by a probability, 

monotonic Keynesian weight preserves the connection between weight and higher-order 

evidence. In summary, monotonic Keynesian weight clearly enjoys some textual support and fares well insofar as it maintains Keynesian weight’s status as the paradigmatic case of 

gross weight of evidence.  

§2.3  RELATIVE KEYNESIAN WEIGHT 

§2.3.1  TEXTUAL EVIDENCE  

The question to be raised in this chapter is somewhat novel; after much 

consideration I remain uncertain as to how much importance to attach to it. The 

magnitude of the probability of an argument, in the sense discussed in Chapter III., 

depends upon a balance between what may be termed the favourable and the 

unfavourable evidence; a new piece of evidence which leaves this balance 
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unchanged, also leaves the probability of the argument unchanged. But it seems that 

there may be another respect in which some kind of quantitative comparison 

between arguments is possible. This comparison turns upon a balance, not between 

the favourable and the unfavourable evidence, but between the absolute amounts of 

relevant knowledge and of relevant ignorance respectively. (Keynes, TP, 78) The phenomenon of ‘weight’ can be described from the point of view of other 
theories of probability than that which is adopted here. If we follow certain German 

logicians in regarding probability as being based on the disjunctive judgment, we 

may say that the weight is increased when the number of alternatives is reduced, 

although the ratio of the number of favourable to the number of unfavourable 

alternatives may not have been disturbed; or, to adopt the phraseology of another 

German school, we may say that the weight of the probability is increased, as the 

field of possibility is contracted. (Keynes, TP, 85)  

In the present connection the question comes to this—if two probabilities are equal 

in degree, ought we, in choosing our course of action, to prefer that one which is 

based on a greater body of knowledge?...The question appears to me to be highly 

perplexing, and it is difficult to say much that is useful about it. But the degree of 

completeness of the information upon which a probability is based does seem to be 

relevant, as well as the actual magnitude of the probability, in making practical 

decisions. (Keynes, TP, 357-8) 

If, for one alternative, the available information is necessarily small, that does not 

seem to be a consideration which ought to be left out of account altogether. (Keynes, 

TP, 358) 

§2.3.2  EXPLANATION OF RELATIVE WEIGHT 

As Jochen Runde points out, there are two related (albeit different in presentation) 

non-monotonic interpretations of Keynesian weight. Since these interpretations are closely 

related ways of displaying the same basic information, I consider them to be two sub-

conceptions of relative weight. Taken together, these non-monotonic measures of 

Keynesian weight give us a robust picture of the relative weight interpretation. In this 

section, I will discuss these representations of relative weight as distinct. Unless noted 

otherwise, however, the rest of the thesis will treat relative weight as the disjunction of 

these two representations of relative weight.  

We see the first version of relative weight in the first quote above, which is Keynes’s 
introduction of weight in A Treatise on Probability. In that quote, Keynes points out that 
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probability is not the only tool for comparing evidence, which signals the distinction 

between weight and probability. Notice that Keynes explicitly says that this other tool for 

evidential comparisons (which I take to be weight given the context of the quote), is similar 

to probability insofar as it is a balance of information. Probability consists in a balance 

between favorable and unfavorable evidence. But this new balance Keynes suggests is a balance of relevant knowledge and relevant ignorance. As such, Keynes’s introduction of 
weight alludes to a ratio in which total evidence in our possession (or knowledge) forms 

the numerator and the total evidence we lack (or ignorance) forms the denominator.83 One 

key thing to notice about this potential measure of weight is the way in which it parallels an 

odds measure. As we saw in §1.1, statistical odds display the proportion of favorable 

outcomes to unfavorable outcomes. This version of weight displays the proportion of 

relevant knowledge to relevant ignorance, making it similar in structure to statistical odds. 

Call this version of relative weight relative weightodds. 

Later in A Treatise on Probability, Keynes turns to potential practical applications of 

weight. In those sections, Keynes gives a slightly different version of relative weight. There, he says that weight captures the “completeness of the information.”84 For simplicity’s sake, 
call this measure relative weightcomp. Runde explains that relative weightcomp is best thought 

of as a proportion (or a balance), but it is different from the ratio used to represent relative 

weightodds.85 While the ratio given at the beginning of Chapter 6 parallels an odds measure, 

 
83 See Dow, “Uncertainty: A Diagrammatic Treatment,” page 12 for more on Keynes’s use of the word ‘ignorance’. 
84 See the fourth quote from §2.3.1.  

85 Runde, “Keynesian Uncertainty and the Weight of Arguments,” 280-1. 
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the proportion given in the completeness of information quote parallels a probability 

measure. Recall from §1.1 that a probability (in the statistical sense) consists of the 

proportion of favorable outcomes over the total number of outcomes. To describe the 

completeness of information, relative weightcomp gives the ratio of relevant knowledge over 

the total amount of relevant information.86 Furthermore, we can think of the total amount 

of relevant information as the summation of relative ignorance and relative knowledge.87 

So just as one can easily transform an odds measure into a probability measure, it is 

straightforward to transform relative weightodds into relative weightcomp (or vice versa). It is 

for this reason that I see relative weightodds and relative weightcomp as two slightly different 

ways of construing a relative weight interpretation of Keynesian weight.  

No matter the presentation, relative weight features relevant knowledge in the 

numerator of its ratio, and in this discussion, relevant knowledge is equivalent to the 

amount of evidence at our disposal. In this way, monotonic weight is built into relative 

weight. However, one cannot reduce relative weight to an absolute measurement of the 

amount of evidence involved in a judgement. Instead, relative weight involves 

consideration of the amount of relevant evidence already at our disposal, and then some 

estimation of the amount of other relevant evidence outside of our purview. As Ekaterina Svetlova says, “Importantly, the concept of weight allows a meaningful discussion of 

 
86 Those who are interested in philosophical pedagogy as well as those with an interest in the overlap 

between the work of Bertrand Russell and Keynes may notice some similarities between this version of 

relative Keynesian weight and the self/not-self distinction that Russell gives in Chapter 15 of The Problems of 

Philosophy.  

87 Runde, “Keynesian Uncertainty and the Weight of Arguments,” 281. 
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gradations of ignorance and their dynamics.”88 The estimation of ignorance is admittedly 

the most difficult feature of relative weight because it asks us to quantify (or at least 

consider in a comparative, ordinal-ranking way), our ignorance.89 Ignorance can be 

represented in several different ways. Feduzi seems to suggest utilizing ungrounded, 

second-order subjective probabilities to quantify ignorance.90 If we use that method for 

quantifying our ignorance, then relative weight consists in a precise guess at how much of 

the relevant evidence our current probability judgement uses. On the other hand, we might 

try to use a little more epistemic caution when representing ignorance. A more cautious 

representation of relative Keynesian weight might come via the use of interval (or 

imprecise) probabilities as well as uninformed prior probabilities.91 Either way, some 

methodologies for quantifying ignorance exist, so this quirky aspect of the relative 

interpretation need not count against the interpretation at this stage.  

One feature unique to the relative weight interpretation is the possibility of new 

relevant evidence decreasing Keynesian weight. Relative Keynesian weight can decrease if 

 
88 Svetlova, “Relevance of Knight, Keynes, and Shackle,” 999. 

89 As Runde says, “The question is whether it is possible to talk sensibly of knowing something about our 

ignorance, or, to be more precise, of knowing something about changes of the extent of our ignorance, on 

some or other proposition” (“Keynesian Uncertainty and the Weight of Arguments,”  282). See also Svetlova, “Relevance of Knight, Keynes, and Shackle,” 996-1002. 

90 Feduzi, “Keynes’s Conception of Weight of Evidence,” 345-7.  

91 I am tempted to think estimations of ignorance should be constrained in much the same way Wesley Salmon argues prior probability estimates should be “tempered” and constrained by facts (see Salmon, “Rationality and Objectivity,” 525-33). However, I recognize that others may not share my temptation. The 

degree to which one thinks that estimations of ignorance should be constrained probably depends on how much “subjectivity” one is comfortable adding to their statistical apparatus. On a related note, Michael 

Emmett Brady argues that many scholars fail to read Chapters 15-17 of TP carefully enough to understand 

how Keynes himself hoped to apply weight. According to Brady, Keynes specified an “inexact numerical approximation approach” for application of the concept of weight (363). See Brady, “Keynes’s Theoretical Approach,” 360-3. 
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the new evidence shows us new ways in which we might be mistaken.92 New relevant 

evidence might decrease your relative weight by showing how you have underestimated 

the extent of your ignorance on a topic. In such an event, the new evidence increases your 

level of knowledge. However, the new evidence still leads to an overall decrease in relative 

weight by increasing the estimate of relevant ignorance by a larger amount than the 

associated increase in relevant knowledge. To drive this point home, let us consider an 

example in which relative weight decreases with an increase in relevant evidence. Brian 

Weatherson provides one such example.93 Weatherson describes a scenario in which we 

are playing a simple type of poker that involves betting on who has the best hand. As Weatherson says, “Before the bets start, I can work out the chance that some other player, say Monica, has a straight.”94 However, once betting starts, the information Monica 

provides via facial expressions, gestures, and vocal tones may decrease the relative weight I 

put on the chance that Monica has a straight, while keeping my probability estimate of 

 
92 On page 1003 of “Relevance of Knight, Keynes, and Shackle,” Svetlova argues that we can also learn without 
gaining new information, provided that we reexamine the information we possess and discover new 

connections. This indicates that relative weight could also decrease via reexamination of an evidential 

situation, even if no new evidence is gained. As Svetlova explains, orthodox Bayesian methodology does not 

seem to allow for changes in beliefs without gaining new information. Thus, adding relative weight to the 

Bayesian apparatus would help Bayesians overcome this potential downside of their approach. 

93 Weatherson, “Keynes, Uncertainty and Interest Rates,” 51-2. Weatherson’s example is meant to 
demonstrate the difference between precise and imprecise credences, which implies that it is intended to 

focus on the risk-uncertainty distinction. However, the example seems capable of fitting our needs. Numerous 

other examples in which new evidence actually decreases relative weight also exist. For instance, Michael Lewis’s book The Big Short describes many scenarios in which new evidence about the stock market in the 
leadup to the 2008 financial crash decreased the “weight” interested parties put on their credences regarding 

the stability of the stock market. Another recent real-life example might be James Comey reopening the 

investigation into Hillary Clinton in the leadup to the 2016 U.S. presidential election, which likely led to a 

decrease in the relative weight of most election forecast models. 

94 Weatherson, “Keynes, Uncertainty and Interest Rates,” 52.  
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Monica’s straight constant.95 Monica’s bets provide additional knowledge that gets 

incorporated into the relative Keynesian weight I possess about the proposition that she 

has a straight. Nonetheless, the way in which Monica bets creates doubt, which increases 

my estimation of my ignorance. Since my estimation of my ignorance increases at a faster pace than my knowledge about Monica’s hand, Monica’s betting leads to a net decrease in 
the weight I put on my estimation about her hand being a straight. Regardless of whether 

relative weight is represented in the odds-parallel form (relative weightodds) or in the 

probability-parallel form (relative weightcomp), Keynesian weight decreases when the ratio’s denominator grows at a faster rate than the growth in the ratio’s numerator. The 
upshot is that unlike a monotonic interpretation, relative Keynesian weight allows new 

evidence to decrease weight. 

It is also possible to see key events in the history of science as instances in which 

new evidence decreased relative Keynesian weight. For example, imagine the potential 

evidential situation faced by a 17th century astronomer who learns of Galileo’s telescopic 
discoveries. Suppose the astronomer is a relatively unbiased observer who is well-trained 

in Aristotelian physics, Ptolemaic astronomy, and Copernican astronomy. It is rational for 

such an astronomer to be confident in Aristotelian physics, especially because that system 

formed the foundation of her entire scientific framework. But it is also rational for her to be confident in the results learned through Galileo’s telescopic evidence. Of course, the 

problem is that the telescopic evidence is incompatible with large swaths of Aristotelian 

 
95 Weatherson, 51. You might doubt that the probability estimate remains constant, but the example can be set up to guarantee that the overall probability estimate does not change. For instance, perhaps Monica’s 
betting affects my probability estimate such that it fluctuates throughout the hand but ends up equivalent to 

the initial estimate. 
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physics. Thus, we can imagine our astronomer being thrown into a state of doubt by the new evidence from Galileo’s telescope. Although the evidence from the telescope increased her knowledge, it did so in a way that greatly increased the astronomer’s estimation of her 
ignorance. Accordingly, the new evidence decreased her relative Keynesian weight.96  

§2.4  SUMMARY OF INTERPRETATIONS  

With the multitude of interpretations floating around, this chapter is admittedly 

somewhat complex. For that reason, I will now briefly summarize the ground covered so 

far and create a table of the pertinent interpretations of Keynesian weight.  

At the outset of this chapter, we saw that there are two plausible ways to interpret 

the concept of Keynesian weight. First, there is the monotonic interpretation. On the 

monotonic view of weight, new relevant evidence necessarily increases Keynesian weight. 

According to the monotonic view, Keynesian weight is equivalent to the total amount of 

relevant evidence in our possession. As we saw, the monotonic interpretation of Keynes is 

generally the one accepted in the literature on weight. Despite being the most popular in 

the literature, the textual evidence on weight does not decisively count in favor of the 

monotonic interpretation.  

Second, there is the relative weight interpretation. Relative weight comes in two 

flavors, which are in rows two and three of the table below. First, there is the 

 
96 Note that this example need not correspond to the evidential situation of any actual person in history—it 

should simply paint a plausible picture of what the evidential situation of such an astronomer might 

believably be. To make the changes in Keynesian weight sharper, we can even imagine a possible world in which, simultaneously with Galileo’s telescopic evidence, some theoretical advance in another area of 

Aristotelian physics occurs and that advance makes Aristotelian physics more robust. In that case, a large portion of the change in the astronomer’s evidential situation will be reflected via weight rather than via 
probability. A different paper would consider whether decreasing Keynesian weight is a symptom of a 

Kuhnian paradigm shift. 
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representation of relative weight that parallels an odds ratio, which I have called relative 

weightodds. An equivalent representation of relative weightodds is relative weightcomp. 

Relative weightcomp has the same numerator as relative weightodds, but the denominator of 

relative weightcomp is the summation of the numerator and denominator of relative 

weightodds. Consequently, these representations of relative weight are merely different 

ways of displaying the same information. The unique aspect of the relative weight 

interpretation is that it allows new relevant evidence to result in a decrease of overall 

Keynesian weight. Although only a few recent commentators on Keynes have adopted the 

relative weight interpretation, the available textual evidence indicates that it is a plausible 

view of Keynesian weight.  

Table 2.1: List of names, suggested notations, and textual support of the considered interpretations of Keynesian 

weight. In the notation column, K is short for ‘Knowledge’ and I is short for ‘Ignorance’. Suggested notation is based on 
Runde’s “Keynesian Uncertainty and the Weight of Arguments,” 280-1. 

Interpretations of Keynesian Weight 

Name Suggested Notation Textual Support (pages) 

Monotonic Weight 𝐾 TP: 78, 79, 85 

Relative Weightodds 
 𝐾𝐼  

TP: 78, 85 

Relative Weightcomp   𝐾𝐼 + 𝐾 

TP: 85, 357-8, 358 

§2.5  REVISITING THE INTERPRETATIVE PUZZLE AND DESIDERATA  

At this stage, the tension between the monotonic and relative interpretations of 

Keynesian weight might remain cloudy. Monotonic weight measures absolute knowledge. 

As such, monotonic weight is identical to the numerator of relative weight. That 

relationship between the two interpretations implies that all cases of monotonic weight 

can be explained in terms of relative weight, making relative weight into an instance of 
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conceptual expansion. In fact, the relationship between monotonic weight and relative 

weight actually gives a fairly clean case of (a philosophical version of) logical positivist 

reductive explanation.97 As a result of this close relationship between the two 

interpretations, the interpretations do not result in any meaningful differences in a large 

swath of cases. However, the interpretations of Keynesian weight result in meaningful 

differences in some interesting cases, such as those in which relative Keynesian weight 

decreases in response to new evidence. As we saw, the monotonic interpretation dictates 

that new evidence only ever results in increases to Keynesian weight. Despite initial 

impressions otherwise, the two interpretations sometimes diverge. 

So, the two interpretations of Keynesian weight lead to meaningful differences. 

What creates an interpretative puzzle? Put simply, Keynes’s failure to realize that his 
comments on weight generate distinct interpretations of the concept creates the puzzle. It is the job of commentators on Keynes’s work to determine which version of weight is 
closer to what he took the concept to be, provided that there is an answer to that sort of 

question (maybe Keynes had no clear idea about what he meant). Most of the literature 

that touches on Keynesian weight seems to fixate on the quotes from Keynes that mention 

weight increasing with increases in new relevant evidence. Even though many 

commentators mention that Keynesian weight is meant to give a measure of the 

completeness of our information, the monotonic weight interpretation still dominates the 

formal treatment of the concept.98 Often, the relative weight interpretation fails to be 

 
97 For more on reductive explanation, see Ernest Nagel, “Issues in the Logic of Reductive Explanations.”  
98 While an excellent article overall, Nance’s “The Weights of Evidence,” provides an exemplary instance of 
mentioning the completeness of information aspect of weight without incorporating a relative weight 
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mentioned, even when an author regards Keynesian weight as a measure of completeness 

of evidence. Regardless of the failure of commentators to recognize these distinct 

conceptions of weight given by Keynes, we should now be in a position to recognize that 

the textual evidence does not decisively tell us which interpretation Keynes himself 

preferred. Keynes wavers between interpretations on the same page, and he seems to 

frequently make references in which either interpretation can plausibly be the intended 

referent. That leaves us with at least two distinct and plausible interpretations of 

Keynesian weight and no authoritative source on which interpretation should be adopted. 

As such, we have an interpretative puzzle on our hands.  

The existence of an interpretative puzzle demonstrates that textual evidence fails to 

tell us which interpretation of Keynesian weight to prefer. Luckily, we already saw other 

desiderata to consider when choosing the preferred interpretation. Remember that for any 

interpretation of Keynesian weight to make sense, the interpretation must have a plausible 

relation to the issues that Keynes brings to bear on the concept. Disconformity with what 

Keynes says about weight generally should signal that we have ceased to deal with 

something worth calling Keynesian weight. As such, I will spend the next two paragraphs 

outlining impressions of how the two interpretations fare with respect to our desiderata 

for interpretations of Keynesian weight. 

Following textual support, the second item thing to be desired from an 

interpretation of Keynesian weight is an interpretation that maintains the distinction 

between weight and probable error. Luckily, I do not think either of the proposed 

 interpretation into the formal treatment of weight. Chapter 4 of O’Donnell’s Keynes: Philosophy, Economics, 

and Politics provides another instance of an assumption of a monotonic interpretation.  
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interpretations of Keynesian weight obviously creates an identity between weight and 

probable error. That said, I am tempted to give a slight edge to the relative weight 

interpretation when it comes to maintaining an intuitive understanding of the distinction 

between weight and probable error. From what I can tell, many of the instances of 

divergence between weight and probable error are precisely those instances in which one 

is forced to reevaluate their estimation of their relevant ignorance. Sometimes, new 

evidence indicates that the field of inquiry potentially contains what Nassim Nicholas Taleb 

calls black swans — high impact events with low predictability.99 In these cases, perhaps 

the new evidence gives us a clue regarding more possibilities, which increases our 

probable error. However, the new evidence itself (evidence that directly alters our 

estimation of our ignorance) can simultaneously increase our Keynesian weight. In other 

words, although probable error increases, the new evidence renders what is to come less 

surprising. Since most of the effects of the evidence in such a case seem tied to the 

estimation of ignorance, I am willing to say that relative Keynesian weight might do a 

better job at explaining the difference between weight and probable error. However, I am 

not wholly convinced of this point. Probable error maintains a precise technical definition, 

and I am not sure that monotonic weight performs poorly at explaining all cases in which 

probable error and Keynesian weight simultaneously increase or decrease. For that reason, 

 
99 Taleb, The Black Swan: The Impact of the Highly Improbable, xxii. Taleb frequently talks about black swans 

possessing low probability (i.e. being outliers), but he also frequently describes them as events with low 

predictability. I am not convinced that a low probability event is the same as an event that possesses low predictability. A great deal depends on what exactly we mean by “predictable” and “probable.” Despite these 
complications, I think black swans are helpful for analyzing the sorts of situations described in this 

paragraph. In fact, Runde argues that thorough investigation of black swans requires an apparatus capable of handling shades of what Taleb calls “unknowledge” (i.e. ignorance). Relative Keynesian weight provides just that sort of apparatus. See Runde, “Dissecting the Black Swan,” particularly pages 495-500, for more 

information.   
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I think both interpretations fare roughly the same on our second desideratum, with the 

chance that relative Keynesian weight performs slightly better. 

The third desideratum given above focuses on the relationship between Keynesian 

weight, certainty, and confidence. This desideratum is the point at which relative Keynesian 

weight and monotonic Keynesian weight truly begin to separate. We saw above that by 

definition, monotonic Keynesian weight cannot decrease. Additional evidence only 

increases monotonic Keynesian weight. However, it is obvious that confidence can 

decrease. For example, think of a case of disagreement with an epistemic peer. Although 

the existence of disagreement does not affect whether your belief is true, the discovery of 

disagreement with someone you consider to be your peer will probably cause you to doubt 

your judgement. That doubt signifies decreased confidence. Insofar as the purpose of 

Keynesian weight is to measure (even if that measure is rough) our feelings of confidence, 

monotonic Keynesian weight provides too blunt of a tool. By allowing Keynesian weight to 

decrease, relative Keynesian weight creates a closer connection to feelings of confidence. 

For that reason, relative Keynesian weight performs better when it comes to our third 

desideratum.  

Nonetheless, the interpretative puzzle remains intact. Is relative Keynesian weight 

still a form of gross weight of evidence, or is it a form of net weight of evidence? Recall that 

like gross weight of evidence, net weight of evidence gives us an idea of a probability’s 
tendency to be altered by new evidence.100 However, net weight operates differently than 

gross weight. Net weight of evidence describes any measure that aggregates evidence in 

 
100 Kasser, “Two Conceptions of Weight,” 644.  
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order to show the extent to which evidence favors a hypothesis.101 By representing our 

evidential state via a ratio of knowledge and ignorance (or knowledge and information) 

relative Keynesian weight seems to move closer to being a measure of net weight of 

evidence rather than gross weight of evidence. Consider that a high relative Keynesian 

weight indicates that the amount of relevant information we possess (i.e. knowledge) is 

greater than the amount of relevant information that we lack (i.e. ignorance). This might 

seem to suggest that a high relative weight indicates—via an aggregation of our evidence—
that the evidence greatly supports the hypothesis, regardless of the content of the 

hypothesis. At this point, it is tempting to slip into thinking that relative weight provides 

direct support to particular hypotheses. Unfortunately for relative weight, Keynes 

obviously did not intend for his concept of weight to indicate how evidence favors or disfavors a hypothesis. For instance, Keynes says, “The preceding paragraphs will have 
made it clear that the weighing of the amount of evidence is quite a separate process from the balancing of the evidence for and against.”102 As such, the relative weight interpretation 

runs the risk of transforming Keynesian weight into the wrong type of Peircean weight, 

namely net weight. On the other hand, the monotonic interpretation clearly makes 

Keynesian weight into a form of gross weight. After all, the paradigmatic example of gross 

weight of evidence is monotonic weight. In Chapter 3, we will discover why it is wrong to 

think that relative Keynesian weight is a form of net weight of evidence. At this point 

 
101 Kasser, 639. 

102 Keynes, A Treatise on Probability, 81. 
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however, monotonic weight appears to perform better than the relative weight 

interpretation when it comes to our fourth desideratum. 

In summary, neither textual support nor the relationship to probable error 

decisively favors either of our plausible interpretations of Keynesian weight. Furthermore, 

while relative weight performs much better than monotonic weight with respect to the 

connection to confidence, relative Keynesian weight runs the risk of transforming 

Keynesian weight into the wrong type of Peircean weight. Thus, even after consideration of 

the desiderata for Keynesian weight, an interpretative puzzle remains. For that reason, it 

seems likely that we will need to resort to reasons independent of Keynes’s writing on the 
topic of weight in order to determine which interpretative lens we should use when dealing 

with Keynesian weight. In Chapter 3, I show how relative weight and monotonic weight handle I.J. Good’s critique of Keynesian weight. Perhaps a Keynesian can live with the 

drawbacks of one of these interpretations if that interpretation overcomes a popular 

critique of Keynesian weight.  
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CHAPTER 3: A GOOD LESSON 

 

 

 
“No concept is fundamental if only statisticians use it.” - I. J. Good, “Weight of Evidence: 

A Brief Survey”, 250.  

§3.0  CHAPTER OVERVIEW  

In this chapter, I turn my attention to a prominent critique of Keynesian weight. The 

critique that I focus on comes from Irving John Good. Good is best known for his work 

alongside Alan Turing during the Allied code-breaking efforts at Bletchley Park in World 

War II. Amidst their efforts to break the Nazi Enigma Code, Turing and Good co-developed 

a measure that they called weight of evidence.103 In his later explication and defense of 

weight of evidence, Good critiqued Keynesian weight as a competing version of weight of evidence. I will now explain both the context and the substance of Good’s critique of 
Keynesian weight. Once the critique has been explained, I will then demonstrate how a 

defender of Keynes might use a relative weight interpretation in an attempt to circumvent Good’s main points of criticism. Ultimately, I argue that careful analysis of Good’s critique 
teaches us a lesson about the relative interpretation of Keynesian weight. Namely, we learn 

that relative Keynesian weight is indeed a type of gross weight of evidence, which helps us solve Chapter 2’s interpretative puzzle in favor of the relative weight interpretation. 

§3.1  GOOD ’S CRITIQUE  

§3.1.1  CONTEXT :  GOOD-TURING WEIGHT 

In 1985, Good provided a survey and review of weight of evidence. In that survey, Good’s primary aim was to summarize the conception of weight of evidence that he 
 

103 Hodges, Alan Turing: The Enigma, 247-9. 
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developed in conjunction with Turing during their code-breaking efforts. As an aside, I try to refer to Good’s preferred version of weight of evidence as Good-Turing weight. Good’s 
survey of Good-Turing weight includes responses from statistician Herman Rubin as well 

as philosopher Teddy Seidenfeld. Good concludes the survey with his reply to those 

responses. Although the initial survey makes no mention of Keynesian weight, Keynesian weight plays a key role in Seidenfeld’s response to Good. Consequently, the version of Good’s critique of Keynesian weight that I focus on is nested within a defense and promotion of Good’s own concept of weight. Since Good offers Good-Turing weight as a 

competitor to Keynesian weight, it will be helpful to begin with an overview of Good-Turing 

weight. Recognize that I do not intend to give a thorough analysis of Good-Turing weight; for that, the reader should turn to Good’s survey itself. Instead, I aim to summarize enough 
of the Good-Turing conception of weight of evidence in order to contrast Good-Turing 

weight with Keynesian weight.104 Good begins the survey with analysis of the metaphor “weight of evidence.” He considers the ways in which juries, detectives, and doctors “weigh their evidence” when 
making decisions.105 At the outset, it becomes clear that Good takes weight of evidence to 

 
104 One thing to recognize off the bat is that while Turing seems to be the British originator of the 

mathematics behind Good-Turing weight of evidence, Good is the one who proposes the metaphor of “weight of evidence.” As such, both Good and Turing have legitimate claim to being the eponyms of this version of 
weight. However, Kasser points out that Peirce arrived at Good-Turing weight of evidence close to 60 years 

prior to the work by Turing and Good. One of Turing’s innovations was to name the units of weight of 
evidence, but there is evidence that Peirce thought about units in a similar way to Turing. Turing called the 

units of weight of evidence bans, which refers to the town of Banbury. Banbury is where the sheets of paper used in Turing’s procedure for calculating bans at Bletchley Park were printed. Although a ban is the base 
unit, Good and Turing most commonly spoke in terms of decibans (i.e. 1/10th of a ban). See Kasser, “Two 
Conceptions of Weight,” 637-9 for details. The history of Good-Turing weight is an excellent example of Stigler’s law of eponymy (Chapter 14, Statistics on the Table).  

105 Good, “Weight of Evidence,” 249.  
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be closely related to the imagery of using a double-pan balance scale. Like using a double-

pan balance to compare the weights of objects, Good thinks weight of evidence should 

show us how the evidence in favor of a hypothesis balances against the evidence contrary 

to that hypothesis. Good takes the balancing-scale metaphor so seriously that throughout the survey, he makes frequent reference to Themis (the Greek goddess of justice), who “is 
usually represented as carrying a pair of scales.”106 Good makes it abundantly clear that he 

takes the process of weighing evidence to be fundamental to human life. He even admits 

that he takes the concept of weight of evidence to be at least as important as the concept of 

probability.107 Good’s preferred conception of weight of evidence involves some intricate 
mathematical and statistical theorizing, but his overall aim is to provide a measure that 

aligns with our common-sense notion of weighing evidence prior to making a decision. As 

he says:  

I believe that the basic concepts of probability and weight of evidence should be the 

same for all rational people and should not depend on whether you are a 

statistician. There should be a unity of rational thought applying, for example, to 

statistics, science, law, and politics. This assumption will set the tone of my survey. 

No concept is fundamental if only statisticians use it. (Good, “Weight of Evidence: A 
Brief Survey, 249-50)  

Since Good takes the double-pan balance weighing process to be so fundamental to 

human life, he thinks concepts that fail to make sense of that particular metaphor are not 

worthy of the title weight of evidence. Any concept that deviates from this metaphor in a 

substantial manner is too revisionary to count as weighing evidence.  

 
106 Good, “Weight of Evidence,” 249.  

107 Good, “Weight of Evidence,” 249.  
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Notice what the balancing metaphor tells us about Good-Turing weight. Both 

Keynesian weight and Good-Turing weight are forms of Peircean weight. While Keynes 

focuses on gross weight of evidence, the references to balancing evidence show that Good 

focuses on net weight of evidence.108 Good thinks that weight of evidence ought to provide 

a representation of the way in which evidence supports (or fails to support) a 

hypothesis.109 As such, Good-Turing weight of evidence is meant to capture what happens to our belief when we say things such as, “That evidence tipped the scales in favor of the defendant.”  
Now that we understand the metaphor Good-Turing weight is meant to capture, we 

can briefly consider the mathematics of Good-Turing weight of evidence. Put in the 

simplest possible terms, Good-Turing weight is the logarithm of the odds (or logodds) of a 

hypothesis. To see how Good-Turing weight of evidence works, we need to unpack what 

that means.  

First, recognize that since Good-Turing weight refers to the odds of a hypothesis, it 

assumes the Bayesian metaphysics of probability and odds. It takes more than a little 

stretching to make the frequentist metaphysics of probability align with the idea of a 

hypothesis possessing a probability between zero and one. To understand this point, it 

helps to first realize that frequentism about hypotheses is different from frequentism about 

events. Frequentists usually take probabilities (and thereby odds) to correspond to real-

world frequencies. In the case of events, we can repeatedly sample real-world frequencies 

 
108 Kasser, “Two Conceptions of Weight,” 637-9. 

109 Kasser, 640.  
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to find the probability of the event. However, a hypothesis cannot be repeatedly sampled. A 

hypothesis is either true of our world or it is false of our world. In the former case, the 

frequentist probability of the hypothesis being true is one, and in the latter case, the 

frequentist probability of the hypothesis being true is zero. To report a probability between 

these extremes would indicate that the frequentist, to quote Peirce, believes that “universes were as plenty as blackberries.”110 For the traditional frequentist, there is no frequentist 

probability of a single case that falls between zero and one. In contrast, since Bayesians 

think probabilities reflect degrees of belief, they can easily talk about meaningful 

probabilities of single hypotheses. The Bayesian need not check the world for an entity that 

corresponds to probability or odds.111 Thus, for the Good-Turing conception of weight of 

evidence to be a conception of any interest whatsoever, it must treat probability as a 

measure of degrees of belief. In other words, Good-Turing weight inherently utilizes some 

of the orthodox Bayesian metaphysics of probability and odds.  

Second, we should understand why Good-Turing weight features a logarithmic 

transformation of the odds of the hypothesis. Without getting bogged down in the 

mathematical details (which involve consideration of the quotient rule for logarithms), 

recognize that taking the logarithm of odds provides a mathematical picture of our 

evidence that is strikingly similar to a double-pan balance. In this case, the center of the 

scale is the number 0, while the pans of the scale span the infinite number line on either 

side of zero. To see how Good-Turing weight works on this scale, consider the odds for a 

 
110 Peirce, “The Probability of Induction,” in The Essential Peirce, 165. 

111 Technically, they might need some correspondence to betting behavior in order to utilize meaningful 

probabilities, but that is quite different from the need to find a real-world frequency. 
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hypothesis and the corresponding odds of the negation of the hypothesis. Let’s start by 
assuming that the odds for the hypothesis and the odds for its negation are equivalent at a 

ratio of 50/50. In this case, the logarithm of the odds for the hypothesis is zero, which 

means that the evidence is perfectly balanced on our scale. Now, assume that the odds for 

the hypothesis are 70/30. Because the odds for the negation of the hypothesis are simply 

the reciprocal of the odds of the hypothesis, the odds for the negation of the hypothesis are 

30/70. In this case, the logarithm of the odds for the hypothesis is 0.3678, while the 

logarithm of the odds for the negation of the hypothesis is -0.3678. By taking the logarithm 

of the odds of the hypothesis, we arrive at a scale for balancing the evidence relevant to the 

hypothesis. The scale centers itself at zero, which represents perfectly balanced evidence. 

Negative log-odds values indicate evidence against the hypothesis while positive values 

indicate evidence in support of the hypothesis.  

The mathematical apparatus outlined in the previous paragraph is the fundamental 

feature of Good-Turing weight of evidence. By seeing how the evidence regarding a 

hypothesis falls on this scale, we can see how the evidence (dis)favors our hypothesis. The 

log-odds weighs evidence in a way that parallels the process of using a balance scale to 

compare the weights of objects. We have now seen that Good-Turing weight of evidence is 

a conception of net weight of evidence, it is fundamentally Bayesian, and it features a 

mathematical apparatus that parallels a double-pan balancing scale.112 In the next section, I 

summarize Seidenfeld’s response to Good’s survey as a way to introduce Good’s critique of 
Keynesian weight.  

 
112 The reader may also notice that Good-Turing weight measures what we saw Joyce call “the balance of evidence.”  
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§3.1.2  GOOD ’S CRITIQUE OF KEYNESIAN WEIGHT 

Seidenfeld begins his response to Good by drawing a humorous comparison 

between philosophy and horseradish. Paraphrasing a character in Dr. Zhivago, Seidenfeld 

says that philosophy 

is good if taken in small amounts in combination with other things. But it is not good 

in large amounts by itself. The risk with philosophy, as with horseradish, is the 

temptation to use ever stronger concentrations to maintain the sensation of that 

first taste. Soon you are serving up pure horseradish! (Seidenfeld in Good, “Weight of Evidence,” 264. ). Seidenfeld’s discussion of horseradish illuminates his worry about Good’s weight of 
evidence. For Seidenfeld, Good’s explication and application of weight of evidence risks 
being pure philosophical horseradish rather than the clarification of a useful tool for 

decision-making. Seidenfeld’s main question for Good comes down to how to use weight of 

evidence in a decision. Like many, Seidenfeld does not see a straightforward application of 

Good-Turing weight of evidence.113 Seidenfeld analyzes two potential applications of 

weight of evidence, neither of which he considers fruitful uses of the concept.  

In the first potential application of Good-Turing weight discussed by Seidenfeld, 

Seidenfeld introduces Keynesian weight in an analysis of the stopping problem.114 Seidenfeld says, “For Keynes, weight of evidence cannot be defined by probability as he sees weight monotonically increasing with increasing evidence.”115 From this quote, we see that 

Seidenfeld maintained a monotonic interpretation of Keynesian weight, which will prove 

 
113 Seidenfeld in Good, “Weight of Evidence,” 265.  

114 See §1.2 for a refresher on the stopping problem.  

115 Seidenfeld, 265. While Seidenfeld talks about Keynes’s conception of “weight of evidence”, §1.4.1 showed 

that Keynes never used that specific phrasing. As such, it is not clear that Keynes would see Keynesian weight 

as a competitor to Good-Turing weight.  
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crucial to our analysis of Good’s critique. Seidenfeld continues by noting the way in which 

Keynes considered tying weight to the stopping problem, but that Keynes eventually concluded that the application of weight of evidence is a “very confusing problem.”116 Seidenfeld then summarizes Good’s own contributions to the stopping problem, but points out that “the general theory of optimal stopping is tangential to Good’s concept of 
weight.”117 The intended upshot is that weight of evidence (of any variety) fails to 

substantially figure into solutions to the stopping problem.  

Good couches his critique of Keynes in his reply to Seidenfeld. I now quote Good’s 
treatment of Keynes at length: Keynes’s definition of weights of arguments, in which he puts all the weight in one 

scale, whether they are positive or negative, is like interpreting weight of evidence 

as the weight of the documents on which they are printed. I think, if not horseradish, 

it is at least a crummy concept in comparison with the explicatum of weight of 

evidence that I support. Keynes himself said of his discussion (1921, p. 71) “...after 
much consideration I remain uncertain as to how much importance to attach to it. The magnitude of the probability of an argument…depends upon a balance between what may be termed the favourable and unfavourable evidence…”. In other words 

he clearly recognizes that Themis is right to use both scales. It is a standard English 

expression that the weight of evidence favours such and such. Of course this refers 

to the balance of the evidence, not to the sum of all the pieces irrespective of their 

signs.  If you must have a quantitative interpretation of Keynes’s “weight of arguments”, just compute the weights of evidence in my sense for each “piece” of evidence and 
add their absolute values. This then is yet another application of my explicatum, to give a somewhat quantitative interpretation to the crummy one. But Keynes’s 
discussion of this matter is purely qualitative. (Good, “Weight of Evidence: A Brief 
Survey,” 267-8)  Like Keynes, Good often wrote with a pithy and pejorative pen. Good’s critique of 

Keynesian weight borders on polemical, which indicates that he was at least a little 

 
116 Seidenfeld, 265.  

117 Seidenfeld, 265.  
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perturbed to see Good-Turing weight compared to Keynesian weight. In the next section, I analyze Good’s critique of Keynesian weight with the aim of reconstructing the substance 

of the criticisms while simultaneously removing (or at least explaining) the polemics.  

§3.1.3  RECONSTRUCTING GOOD ’S CRITIQUE 

The most obvious problem that Good seemed to have with Keynesian weight is the 

lack of a scale for the evidence, where a scale is taken to be something that allows comparisons between “pieces” of evidence. Based on the last paragraph in the above quote 
from Good, it seems as though Good interpreted measuring total accumulated evidence as 

the only function of Keynesian weight. Consequently, Good operates with a monotonic 

interpretation of Keynesian weight in mind. Recall that on the monotonic interpretation, 

Keynesian weight increases with any additions to the evidence involved in the probability 

judgement, regardless of how the additional evidence affects the probability judgement.118 

Accordingly, monotonic Keynesian weight only ever provides a single, absolute value for 

the weight of a probability judgement. Since Keynesian weight is meant to measure the 

gross amount of evidence incorporated into a probability judgement, using a single number makes sense. However, Good’s comments indicate that he did not see Keynesian weight as 
a useful statistical measure.  

To understand why, let us think about what we might mean when we say that a 

concept features a scale. We might say that the minimum qualification needed for 

something to be considered a scale is the capacity to permit comparisons between two 

 
118 To the best of my knowledge, Keynes does not say much about how much weight increases with increases 

in evidence. However, Brady seems to maintain that Keynes gave a fully fleshed-out apparatus for the functioning of weight. See Brady, “Keynes’s Theoretical Approach” for more details. 
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entities, whether the entities are objects, sets of objects, events, sets of events, or even 

something more abstract such as hypotheses. Building on that basic definition, we might 

say that a scale should also allow us to quantify some quality of an entity in order to assess 

differences in that quality between entities. This is the sense in which an engineer’s ruler, a 
thermometer, or even the Richter scale is a scale.  

At first pass, we might think that Good criticizes Keynesian weight because Good 

thinks that Keynesian weight fails to amount to any sort of scale whatsoever. However, 

when translated into a non-Keynesian approach to probability, monotonic Keynesian 

weight should meet the initial, simple definition of a scale.119 Furthermore, notice that 

insofar as we can reach agreement about the method of quantifying the Keynesian weight 

of hypotheses, monotonic Keynesian weight plausibly meets the more stringent definition 

of a scale. For example, let us assume that details regarding units of monotonic Keynesian 

weight have been worked out and that we have all agreed that one Maynard (however we 

might define that) is the proper unit for measuring Keynesian weight. Perhaps one 

judgement possesses a Keynesian weight of 15 Maynards while a second judgement weighs 

30 Maynards. So long as we can coherently say that the second judgement weighs 15 

Maynards more than the first judgement weighs, we can also say that monotonic Keynesian 

weight provides a scale for quantifying differences. To be fair, when Good describes Keynes’s treatment of weight as “purely qualitative,” he alludes to the difficulty of how to 

solve the unit problem and quantify monotonic Keynesian weight. How do you quantify the 

 
119 Keynes argues that just as it is sometimes impossible to compare Keynesian probabilities, it will sometimes be impossible to compare Keynesian weights. See O’Donnell, Keynes: Philosophy, Economics, and 

Politics, 71. I interpret this as a holdover from the Keynesian probability apparatus.  
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monotonic Keynesian weight of two wildly different types of evidence? Answering that 

question is a difficult problem without a clear answer as far as I can tell. However, we should recognize that Good’s critique is not centered solely around the unit problem or the 
potential failure of Keynesian weight to include any scale whatsoever.  

For Good, the problem with Keynesian weight is that it puts all the evidence, 

whether that evidence is in favor or against a hypothesis, on the same scale. As he says in an 

earlier work:  

The expression [weight of evidence] was used by J.M. Keynes (1921, p. 71) in a less 

satisfactory sense, to apply to the total bulk of evidence whether any part of it 

supports or undermines a hypothesis, almost as if he had the weight of the 

documents in mind. (Good, Good Thinking, 160)  

Even if we determine units that quantify Keynesian weight, Keynesian weight still 

fails to differentiate between evidence that supports a hypothesis and evidence that runs contrary to a hypothesis. In Good’s mind, weighing the evidence should be a process that 

puts the evidence in favor of the judgement on one side of a figurative double-pan balance scale, and then puts the evidence against the judgement in the other “pan” of the balance 
scale. Such a process signals how well the available evidence supports a hypothesis.  

Monotonic Keynesian weight fails to provide a weighing apparatus like the one Good 

describes. The process of weighing evidence provided by the monotonic interpretation of 

Keynesian weight places all the available evidence relevant to a hypothesis together in 

order to see how much evidence went into the judgement. A major problem with the 

monotonic interpretation of Keynesian weight is figuring out what the relevant contrast 

class is supposed to be. That is to say that on the monotonic interpretation of Keynesian 

weight, it will be difficult to say whether a hypothesis, taken by itself, possesses a 

substantial Keynesian weight. Of course, when we compare two hypotheses, we may 
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(sometimes) be able to determine which hypothesis possesses a higher monotonic 

Keynesian weight.120 It should become even easier to understand the weight of a 

hypothesis if we develop units for monotonic weight, like the Maynards mentioned above. 

But the point is that units alone do not provide the context we need when we seek to understand the “weightiness” of a hypothesis—some experience of the units in action is 

required to understand the meaning of the units.  

The difficulties pertaining to the determination of the relevant contrast class make it 

challenging to see what a measure of monotonic Keynesian weight tells us about the way 

evidence supports a hypothesis. Does this monotonic Keynesian weight indicate that the 

hypothesis is well supported? That question remains unanswered (unless there is a 

competing hypothesis with a Keynesian weight that we can compare to the Keynesian 

weight of the first hypothesis). As a result, monotonic Keynesian weight fails to provide a 

contrast class to use when determining how well-supported a hypothesis is. This is the 

reason that Good would have considered the statement, “This hypothesis is based upon 2,000 ‘pieces’ of evidence,” as useful as “This hypothesis is printed on 200 pieces of paper.” 
Because it does not implicitly feature a contrast class, Keynesian weight lacks a scale that 

corresponds to the idea of weighing evidence on a double-pan balance.  At this point, it is important to recognize how deeply Good’s criticism cuts. Good 
seems to get at a more fundamental problem regarding what we should expect out of our 

statistical and theoretical concepts. Recall Good’s insistence on weight of evidence being 
 

120 This assumes either that the two hypotheses have the same general type of evidence or that we have 

developed some methodology for comparing the Keynesian weights of different types of evidence. Even then, 

though, making such comparisons is tricky. Keynesian weight seems like Keynesian probability in that 

comparisons are not always possible. Thanks to Jeff Kasser for reminding me of this point.   
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“the same for all rational people” and not dependent on statistical training.121 Good took 

the process of weighing evidence to be fundamental to human inquiry. After all, the Greek 

goddess of justice and fairness used a scale to weigh evidence! The problem with Keynesian 

weight is not just that it lacks use-value, but rather that it deviates too much from our normal understanding of weighing evidence. In Good’s mind, weighing evidence must 

describe a process that measures the balance of the evidence, and he presents several real-life examples to support that interpretation of weighing evidence. For Good, Keynes’s 
notion is simply too distanced from our use of the phrase from which it derives its name.  

By using a crude methodology to put all evidence on the same scale, Keynesian 

weight struggles to capture our everyday intuitions regarding weighing evidence. By failing 

to capture those intuitions, it becomes unclear how to apply Keynesian weight, which 

makes the concept lose appeal. To put the final nail in the Keynesian-weight coffin, Good 

describes how to use Good-Turing weight of evidence to quantify monotonic Keynesian 

weight. So, Keynesian weight lacks a tie to our understanding of weighing evidence and it 

can easily be superseded by Good-Turing weight of evidence. On this view, Keynesian 

weight appears under-motivated at best and downright misleading at worst. No wonder 

Good called Keynesian weight crummy. 

§3.2  RELATIVE KEYNESIAN WEIGHT RESPONSE  

Both Good and Seidenfeld discussed Keynesian weight with the monotonic 

interpretation in mind. Nonetheless, Chapter 2 showed that the monotonic interpretation 

of Keynesian weight is not the only game in town. Do Good’s criticisms affect both 
 

121 Good, “Weight of Evidence,” 249-50. 



 

 67 

interpretations of Keynesian weight in the same way? In this section, I will argue that the answer to that question is “No.” More specifically, I think that a relative weight 
interpretation avoids the most straightforward reading of Good’s criticisms because 
relative weight features the general type of scale that Good seeks in a conception of 

evidential weight. However, analysis of the scale implicit to relative Keynesian weight 

indicates that Keynesian weight is meant to be utilized in a different way than the scale 

used in Good-Turing weight. Accordingly, applying the relative Keynesian weight interpretation to Good’s critique leads to a deeper understanding of that critique. Before 
getting to that deeper reading, let us see how exactly a relative weight interpretation allows 

an advocate of Keynesian weight to respond to the most straightforward reading of Good.  

§3.2.1  THE SCALE OF RELATIVE WEIGHT 

Above, we saw that the process of weighing that Good wants out of a conception of 

weight utilizes a scale that allows one to easily judge how evidence supports a hypothesis. 

Such a scale seems to require a contrast class for making judgements of evidential support. 

Here, I argue that a relative weight interpretation of Keynesian weight provides a scale in 

this sense. Recall that the two formulations of relative Keynesian weight considered in 

Chapter 2 parallel probability and odds measures respectively (see Table 2.1 for a quick 

refresher). Thus, in order to understand why relative Keynesian weight inherently involves 

a scale, we will be well-served to first briefly return to the mathematical nature of 

probability and odds (see §1.1 above). In the next paragraphs, I will explain how the 

mathematical nature of probability and odds shows that probability and odds both feature 

a scale in the sense Good uses the word.  
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In §1.1, we saw that almost everyone agrees about the mathematical nature of 

probability and odds, even if they disagree about the interpretations of these terms. The 

agreement over the mathematics of probability may seem inconsequential, but it is crucial 

to understanding how probability (and consequently odds) inherently provide a scale for 

comparisons. On its own, a number conveys little information. This is the problem with the 

monotonic interpretation of Keynesian weight—the measure simply does not provide the 

contextual information necessary to make the concept worthwhile. If I walked up to you and said, “My hypothesis has a monotonic Keynesian weight of 15,” then you would not 

know what that means unless I gave you information about the Keynesian weight of other 

similar hypotheses. We saw above that provision of units for measuring monotonic 

Keynesian weight would ease this problem, but units do not entirely overcome the 

problem.  

In contrast to monotonic Keynesian weight, a first-order probability inherently 

communicates information that allows us to contextualize its implications. If I were to walk up to you and say, “This event has a probability of occurring of 0.99,” then despite lingering 

questions about the relevant interpretation of that probability, you would know that I take 

the event to be far more probable than not. Since a probability is definitionally bound 

between 0 and 1, it inherently involves a contrast class with which we can glean 

information. Furthermore, positive and negative evidence do not alter probabilities in 

exactly the same way.122 When we add more favorable outcomes to our evidential set, the 

 
122 ‘Pieces’ of positive and negative evidence might alter a probability by the same magnitude, but the 

direction of the changes in probability will be opposite. Accordingly, positive and negative evidence might 

have a mirrored effect on a probability, but they will not alter the probability in exactly the same way.  
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probability increases. When we add more unfavorable outcomes to our evidential set, the 

probability decreases. At the extremes (i.e. close to 0 or 1), these changes in probability 

become smaller and smaller. However, the important thing to recognize is that a 

probability decreases when unfavorable evidence is added to our evidential set, and it 

increases when favorable evidence is added to our evidential set. Contrast that mechanism 

with monotonic Keynesian weight, which Good criticizes because it treats all evidence 

identically. 

In §1.1, we similarly saw how odds inherently convey information with which we 

can contextualize their meaning, although that information is placed on a different scale from the one used with probabilities. When someone says, “The odds of this hypothesis being true are 50/10,” the very definition of odds allows you to immediately know that the 

odds point in favor of the truth of the hypothesis. Accordingly, the mathematical treatment 

of odds and probabilities implies that they inherently feature a scale ripe for making 

comparative judgements.  

With the mathematical treatment of probability and odds in place, we can now see 

why relative Keynesian weight features the sort of scale that Good seeks out of weight of 

evidence. Let us start by considering the conception of relative Keynesian weight that 

parallels odds, which I called relative weightodds. As we saw in Chapter 2, relative weightodds 

is the ratio of relevant knowledge over relevant ignorance. The mathematical operation of 

relative weightodds is just like the mathematics of odds.123 In cases in which relevant 

 
123 It is tempting to try to perform a logarithmic transformation of relative weightodds in order to make it more 

comparable to Good-Turing weight. We might try to take the logarithm of relative weightodds to try to give it a 

scale that ranges from negative infinity to positive infinity and centers around zero. However, it is difficult to see what such a scale would tell us in the case of relative Keynesian weight. As we will soon see, Good’s 
critique will show us that relative weight is fundamentally a conception of gross weight of evidence. By giving 
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ignorance far exceeds relevant knowledge, relative weightodds will be less than 1 and 

approach 0. For example, imagine a scenario in which I find (what I know to be) a coin, and 

I flip it twice. Suppose that I have never seen a coin like it before and I have no idea where 

it may have come from. Assume I lack knowledge about the date and location of the 

production of the coin, the materials involved in making the coin, the intended use of the 

coin, and so on. In this scenario, my previous two flips of the coin and my knowledge that it 

is a coin exhaust all of my relevant knowledge about the next flip.124 In this case, I possess 

little relevant knowledge regarding the coin in comparison to the vast amount of relevant 

ignorance regarding the coin. Consequently, the relative weightodds of my probability 

judgement of the result of the next flip of the coin will be less than one. We can imagine 

another case that reverses the amounts of relevant knowledge and relevant ignorance. 

Perhaps I was present when the coin was made with an extremely precise machine (which 

I invented) for making biased coins. In that case, my relevant knowledge about the coin 

would far exceed my relevant ignorance regarding the coin. Although I will not know the 

result of every flip (provided the coin is not totally biased), the relative weightodds of my 

probability judgement about the next flip of the coin will be far greater than one. Since 

relative weightodds is a ratio of relevant knowledge over relevant ignorance, it inherently 

features a useful scale for understanding the way in which evidence supports a probability 

judgement.  

 
it a scale similar to the scale suited to a leading conception of net weight of evidence, we seem to be packing 

too much into our conception of Keynesian weight. I leave this point for the reader to cogitate upon.  

124 Perhaps the knowledge of the location of the next flip in space and time should be added to our 

consideration of relevant knowledge. Defining ‘relevance’ is a tricky issue, but there are several subjective 

Bayesian solutions to that problem (including use of log-odds!). See Fitelson, “A Bayesian Account” for more 
information. 
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In Chapter 2, we saw how relative weightcomp parallels a probability measure. Recall 

that a probability measure is a ratio of favorable outcomes over all possible outcomes. In 

the case of relative weightcomp, the numerator of the ratio is relevant knowledge while the 

denominator of the ratio is all relevant information. Thus, relative weightcomp is a ratio that 

communicates the amount of relevant knowledge possessed in comparison to the set of all 

relevant information pertaining to the judgement. Since it is a ratio, relative weightcomp is a 

measure that comes with a contrast class inherently built into it. Just like a probability, 

relative weightcomp is bound between zero and one. The zero case indicates that we take 

ourselves to completely lack relevant knowledge regarding the probability judgement, and 

the case in which relative weightcomp equals one indicates that we think that we possess all 

of the information relevant to the probability judgement. Relative weightcomp might provide 

an even more intuitive scale for Keynesian weight (than relative weightodds) since we can 

think of relative weightcomp as an estimate of the completeness of our relevant information. 

Regardless, it is clear that relative weightcomp features a scale similar to the scale provided 

by mathematical probabilities.  

Both relative weightodds and relative weightcomp allow new evidence to decrease 

Keynesian weight. Allowing new evidence to decrease Keynesian weight is a crucial feature 

of any relative weight interpretation of Keynesian weight. By allowing evidence to lower Keynesian weight, the relative weight interpretation of Keynesian weight sidesteps Good’s 
critique about Keynesian weight putting all evidence, regardless of sign, on the same scale.  

§3.2.2  A  DEEPER READING OF GOOD ’S CRITIQUE 

A relative weight interpretation fails to get Keynesian weight all of the way out of the woods because Good’s critique is more subtle than it first appears. Suppose we are 
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testing a hypothesis that features a somewhat high initial measure of relative Keynesian 

weight. In the course of testing that hypothesis, assume we receive some unfavorable but 

not wholly surprising evidence. Although the evidence we received in this example runs 

contrary to our hypothesis, it fails to give us reason to doubt our estimation of our 

ignorance. For that reason, the new evidence increases relative Keynesian weight, despite 

rendering our hypothesis less likely. Moreover, although the evidence is unfavorable to our 

hypothesis, the evidence still increases relative Keynesian weight by the same degree 

favorable evidence of the same variety would increase it. Consequently, Good might 

maintain that even on the relative weight interpretation, Keynesian weight still forces us to 

put all evidence, whether positive or negative, on the same scale. Accordingly, a relative weight interpretation of Keynesian weigh still ultimately falls victim to Good’s critique, at 
least in some cases. Although the deeper reading of Good’s critique shows that a relative weight 
interpretation of Keynesian weight falls victim to Good’s complaint, the deeper reading simultaneously solves our interpretative puzzle from Chapter 2. The subtlety in Good’s 
critique brings out a crucial difference between the analyses of Good and Keynes. I think 

that the fundamental difference between Keynesian weight and Good-Turing weight comes from the fact that these measures operate on different “levels” of analysis. Consider some 
evidence that runs contrary to the truth of our hypothesis. As competent Bayesians, we can 

clearly see that the evidence decreases the probability placed on the truth of our hypothesis. According to Good’s critique and discussions of weight of evidence, such 
contrary evidence should decrease the weight of evidence in favor of our hypothesis. The 

Good-Turing conception of weight of evidence operates in this fashion; a change in 
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probability necessitates a change in Good-Turing weight. Our deeper reading of Good’s 
critique indicates that Keynesian weight fails to operate in this manner, regardless of the 

interpretation taken. For Keynes, the probability of the hypothesis is (by definition) 

independent of the weight of the hypothesis. Thus, the contrary evidence actually increases 

the Keynesian weight placed on the hypothesis, provided that the evidence fails to alter our 

understanding of our ignorance of the situation.  

I want to drive home the difference in levels of analysis between Keynesian weight 

and Good-Turing weight with one more toy example. Suppose we have two competing, 

exclusive and exhaustive hypotheses. Call them A and not-A. Suppose that the Bayesian 

probability in favor of the truth of hypothesis A is 0.99 and consequently the Bayesian 

probability in favor of the truth of not-A is 0.01. Both hypotheses are based on the same 

100 cases of evidence, and all the evidence is of the same general type. The probabilities 

indicate that A is much more likely to be true than hypothesis not-A. This fact is 

represented nicely by the Good-Turing weight of evidence of these hypotheses. In the case 

of A, the Good-Turing weight of evidence is 1.99564 bans (which is Turing’s unit for 
measuring Good-Turing weight). In the case of hypothesis not-A, the Good-Turing weight of 

evidence is -1.99564 bans. Good’s fundamental critique seems to come down to the fact 
that Keynesian weight does not do a good job of representing this difference between 

hypotheses such as A and not-A. Regardless of the interpretation of Keynesian weight 

taken, the Keynesian weight of hypotheses A and not-A will be the same because both 

hypotheses are based on the same exact evidence. Keynesian weight fails to convey the 

balance of the evidence in the evidential set. Thus, Keynesian weight fails to tell us which 

hypothesis we should believe to be true.  
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Despite this failure, Keynesian weight is not crummy. Rather than telling us which 

particular hypothesis to believe in, Keynesian weight tells us something about the 

inferential waters in which we tread. When we say that the Bayesian probability of the 

truth of hypothesis A equals 0.99, we know that this means that our current evidence 

indicates that A is more likely to be true than not-A. However, that probability says quite 

little about the nature of the evidential set that the probability is based on.  

Is this the type of inquiry in which we are likely to attain the truth? Or is this the 

type of inquiry in which truth currently escapes our grasp, regardless of what our best 

hypotheses say? Is this the type of inquiry in which we are likely to gain a high degree of 

warranted confidence? Are we confident in our current hypotheses? Should we even hold 

beliefs in this sort of inquiry? It seems to me that Keynesian weight is meant to answer 

these sorts of questions. By making reference to our current evidence regarding a 

hypothesis and our best estimate of our ignorance of the remaining relevant information 

out there, relative Keynesian weight gives us an approximate idea of how to answer these 

questions. Unlike Good-Turing weight, Keynesian weight is not meant to tell us how our 

evidence favors a hypothesis. Instead, Keynesian weight tells us how much stock, worth, or 

weight to put into any of our hypotheses in the specified area of inquiry. The way in which 

relative weight accomplishes that task is different from the way in which monotonic weight 

tries to accomplish the task. By utilizing a scale that parallels probability or odds, relative 

weight attempts to tell us how much evidence is at our disposal in a way that also provides 

context as to how much more relevant information might be out there. Monotonic weight 

provides no such context.  
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I think the crucial difference between Keynesian weight and Good-Turing weight 

comes down to the questions that each conception of weight attempts to answer. Like a 

Bayesian probability, Good-Turing weight tells us something about our degree of belief in 

the truth of the hypothesis. In contrast, Keynesian weight gives us a picture of the overall 

amount of relevant evidence upon which the hypothesis is based. As such, it is more natural 

to read Keynesian weight as a measure of our confidence in our judgements about a hypothesis, regardless of what those judgements happen to be. By applying Good’s critique 
to relative Keynesian weight, we learn that regardless of the interpretation selected, 

Keynesian weight serves a different inferential role than the role served by Good-Turing 

weight.  

§3.2.3  THE SOLUTION TO THE INTERPRETATIVE PUZZLE  

The difference in levels of analysis taken by Good-Turing and Keynesian weight teaches us something interesting about Good’s critique of Keynesian weight. Insofar as 

Good criticizes the fact that Keynesian weight always treats all evidence alike, his critique 

fails. There is a plausible interpretation of Keynesian weight (i.e., relative weight) that can 

avoid putting all evidence on a single scale. On the relative interpretation of Keynesian 

weight, certain types of evidence, namely evidence that increases our estimation of our 

ignorance, decrease Keynesian weight. The relative weight interpretation allows defenders 

of Keynesian weight to sidestep Good’s critique in many cases.  However, if Good’s critique centers around the failure of Keynesian weight to 
indicate how evidence favors or disfavors a hypothesis (which seems to be the case), then 

even Keynesians who take a relative weight interpretation fall subject to Good’s critique. Thorough consideration of Good’s critique shows that relative Keynesian weight fails to tell 
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us anything about the balance of the evidence relevant to a hypothesis. As a result, Good 

shows that relative weight still operates on a different level of analysis than the level of 

analysis taken by Good-Turing weight. While Good-Turing weight provides an analysis of 

how evidence favors or disfavors a hypothesis, relative Keynesian weight provides a 

picture of the amount of evidence our hypothesis is based on.  Consequently, Good’s critique teaches us something about relative Keynesian weight. Despite the fact that relative weight can decrease, Good’s critique shows us that 
relative weight is truly a measure of what Kasser called “gross weight of evidence.” By 
showing us that the relative interpretation of Keynesian weight still renders Keynesian 

weight to be a measure of gross weight, Good helps us solve the interpretative puzzle 

surrounding Keynesian weight. When initially introduced, the relative weight 

interpretation of Keynesian weight appears far too revisionary. It can seem like a subject 

change rather than a plausible interpretation of the text. Then, we start to see some textual 

evidence in support of the relative weight interpretation, and it begins to appear less 

revisionary. But a nagging question remains: is relative weight actually the concept Keynes 

had in mind when he introduced weight? For it to be so, we need to see the ways in which 

relative weight can account for the text that seems to speak in favor of a monotonic 

interpretation of Keynesian weight. I hope that Chapter 2 showed that the text is not 

decisive toward either interpretation of Keynesian weight. But we still might wonder 

whether relative weight counts as a measure of gross weight of evidence rather than net 

weight of evidence. Our assessment of the desiderata at the end of Chapter 2 showed that 

the interpretative puzzle seems to boil down to whether relative weight is the proper type 

of Peircean weight. No conception of Keynesian weight will be acceptable if it transforms 
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Keynesian weight into something other than a gross weight measure because such a 

transformation would indicate a shift in concepts rather than an alternative interpretation 

of a concept. Moreover, the textual evidence in favor of the monotonic interpretation of 

Keynesian weight shows that Keynesian weight must be a measure of gross weight in some 

fashion.  Since Good’s critique applies to relative Keynesian weight, Good’s critique shows us 

that relative weight is still a measure of gross weight of evidence. Like other measures of 

gross weight of evidence, relative Keynesian weight operates on a different level of analysis 

than the level of analysis taken by net weight of evidence. Even though relative weight 

features a scale similar to the scale of probability or odds, it is not a measure of the balance 

of evidence in a probabilistic inference. By illuminating the fact that relative weight 

remains a measure of gross weight, Good gives us grounds for solving the interpretative 

puzzle in favor of relative Keynesian weight. Now, it is worth briefly considering how fatal Good’s critique actually is if it is fundamentally a criticism of Keynesian weight’s failure to be a measure of net weight of 

evidence. In my view, if Good is critiquing Keynesian weight simply because it is a gross 

weight measure, then his criticism seems thin. Good does not explain why we should limit 

our focus to net weight. Instead, Good seems to hold a basic preference for the information 

provided by net weight rather than the information provided by gross weight. But a 

preference is not an argument. Both types of weight provide useful information. 

Additionally, since gross weight and net weight of evidence are meant to fulfill different 

tasks, they should not be treated as direct competitors. In fact, it is plausible to use 

conceptions of gross weight and net weight of evidence in conjunction with one another. To 
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that end, we can use the Good-Turing log-odds conception of net weight of evidence as a 

way to show how decisively our evidence points in (dis)favor of a hypothesis. Then, we can 

also provide a measure of relative Keynesian weight in an attempt to demonstrate how 

convincing our evidence is based on our best estimations of how much evidence is out 

there. An approach ecumenical to both conceptions of weight exists. 

§3.3  CONCLUSION  

In Chapter 1, I tried to untangle the web of issues tangentially related to Keynesian 

weight in order to limit the focus of the thesis. To accomplish that task, I introduced the two types of Peircean weight, which Kasser calls “gross weight of evidence” and “net weight of evidence.” We saw that the traditional and most-straightforward interpretation of 

Keynesian weight makes Keynesian weight out to be a paradigmatic type of gross weight of 

evidence. In Chapter 2, I outlined the monotonic and relative interpretations of Keynesian 

weight as well as the interpretative puzzle generated by these two interpretations. In that 

chapter, I attempted to show that the less-traditional relative weight interpretation of 

Keynes possesses strong textual support, although that textual support fails to decisively 

resolve the interpretative puzzle. Furthermore, the relative weight interpretation of Keynes 

runs the risk of turning Keynesian weight into a measure of net weight of evidence. In Chapter 3, I applied the relative weight interpretation to I.J. Good’s critique of Keynesian weight in order to discover whether Good’s critique gives us leverage on the interpretative 

puzzle. We discovered that because relative Keynesian weight utilizes scales that parallel probability and odds, relative weight is able to answer Good’s critique of Keynesian weight 
when we take a straightforward reading of that critique. The scales of relative Keynesian 
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weight allow certain kinds of evidence to decrease weight, which means that relative 

Keynesian weight does not treat all evidence exactly alike.  

That said, we also discovered that even when we use a relative interpretation, 

Keynesian weight and Good-Turing weight operate on different levels of analysis. We can 

see this when we consider a case of using these two concepts to weigh a hypothesis and its 

negation. In this case, the Keynesian weights are equivalent, while the Good-Turing weights 

possess opposite signs. This test case shows us that relative weight is still a form of gross 

weight of evidence rather than a conception of net weight of evidence. Accordingly, a deeper reading of Good’s critique shows us that the relative weight interpretation of 

Keynesian weight avoids collapsing into a form of net weight. In other words, a relative 

weight interpretation preserves the distinction between the two types of Peircean weight. 

Thus, Keynesian weight is not in direct competition with Good-Turing weight of evidence. 

By illuminating the ways in which relative Keynesian weight differs from his preferred conception of net weight of evidence, Good’s critique of Keynes gives us grounds for solving 
the interpretative puzzle in favor of relative weight of evidence. Despite traditional 

interpretations to the contrary, Keynesian weight is relative weight.  
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