
A Path Planning Strategy for Kinematically Redundant Manipulators
Anticipating Joint Failures in the Presence of Obstacles

Rodrigo S. Jamisola, Jr. & Anthony A. Maciejewski
Electrical & Computer Engineering Department

Colorado State University
Ft. Collins, Colorado 80523-1373, USA

jamisola@engr.colostate.edu & aam@colostate.edu

Rodney G. Roberts
Electrical & Computer Engineering Department

Florida A&M-Florida State University
Tallahassee, Florida 32310-6046, USA

rroberts@wombat.eng.fsu.edu

Abstract— This work considers the failure tolerant op-
eration of a kinematically redundant manipulator in an
environment containing obstacles. In particular, the article
addresses the problem of planning a collision-free path
for a manipulator operating in a static environment such
that the manipulator can reach its desired goal despite
a single locked-joint failure and the presence of obstacles
in the environment. A method is presented that searches
for a continuous obstacle-free space between the starting
configuration and the desired final end-effector position
which is characterized in the joint space by the goal self-
motion manifold. This method guarantees completion of
critical tasks in the event of a single locked-joint failure
in the presence of obstacles.1

I. INTRODUCTION

Robot reliability has been given increased attention
throughout the last decade. This comes as a result of an
increased demand for robots that can perform tasks in
hazardous or remote environments that preclude human
intervention. Examples of such tasks include space ex-
ploration [1], [2], underwater exploration [3], and nuclear
waste disposal [4], [5], [6]. When a greater part of the
work responsibility is passed onto the robot, the successful
completion of a desired task greatly depends on the robot’s
reliability. However, robot failures are not uncommon. It
has been estimated that 28.7% of industrial robots had
a mean-time-between-failure of 100 hours or less, and
the Japanese Ministry of Labor reported that over 60%
of industrial robots had a mean-time-between-failure of
less than 500 hours [7].

A number of articles have focused on robot reliability
assessment and analysis [8], [9]. A number of methods
have been proposed for analyzing and improving robot
reliability including the use of fault trees [10], [11], [12],
neural networks [13], kinematic redundancy [6], [14],
[15], [16], and empirical formulas [17], [18], [19]. Robot
designs for reliability are described in [4], [20], [21], while
robot reliability experiments are performed in [2], [22].

1Prepared through collaborative participation in the Communications
and Networks Consortium sponsored by the U. S. Army Research
Laboratory under the Collaborative Technology Alliance Program, Co-
operative Agreement DAAD19-01-2-0012. The U. S. Government is
authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation thereon.

While one would obviously want to design a manipu-
lator to be as reliable as possible, failures will inevitably
occur. It is therefore important to develop control strate-
gies that will allow the robot to continue its task, albeit
in a degraded manner, when a failure does occur. One
approach to this is kinematic failure tolerance control. This
type of control scheme configures the robot in anticipation
of joint failures so that when a failure occurs, the robot
can gracefully recover and continue on to complete its task
[15]. A number of failure tolerant control strategies have
been proposed, including adaptive control [23], [24], [25],
reflex control [26], motion planning [27], [28], and least
squares approaches [29]. Another approach is to determine
a measure such as the kinematic failure tolerance measure
(kfm) to quantify a robot’s failure tolerance at a given
configuration [30]. The failure tolerant control scheme
would then try to optimize this value to maximize a robot’s
tolerance to a failure at a given manipulator configuration.
Types of failure modes considered include both locked-
joint [31], [16], [32] and free-swinging joint failures [33].
A real-time implementation of kinematic failure tolerant
control is demonstrated in [31].

In this paper, we address the issue of kinematic failure
tolerant control when obstacles are present in the environ-
ment. Although obstacle avoidance is a critical problem,
most studies on kinematic failure tolerance have not
considered the presence of obstacles in the environment.
One of the earliest works that did consider obstacles in
failure tolerant control is [27]. In [27], every possible con-
figuration due to a joint failure was exhaustively checked
in order to guarantee the existence of a collision-free path.
The approach presented here is based on guaranteeing
that such post-failure collision-free paths exist, without
explicitly checking every possibility.

The paper proceeds as follows. Section II introduces
the relevant definitions and the assumptions of the paper.
Section III states a formal definition of the problem and the
conditions for a solution. Section IV details the step-by-
step process for a path planning strategy that guarantees
failure tolerance, despite the presence of obstacles, to
any single locked-joint failure. Section V illustrates an
implementation of the proposed method on a three degree-

Proceedings of the 2003 IEEE/RSJ
Intl. Conference on Intelligent Robots and Systems
Las Vegas, Nevada · October 2003

0-7803-7860-1/03/$17.00 © 2003 IEEE 142



of-freedom planar robot with circular disk obstacles scat-
tered in the environment. Lastly, Section VI contains the
conclusions of this work.

II. DEFINITION OF TERMS AND ASSUMPTIONS

A. Definitions and Terminology

We begin by defining the terminology and notation that
is used in this article. These terms are related to the
manipulator’s workspace and joint space.

The joint space, also called the configuration space,
characterizes the joint configuration of the robot. The
configuration space (C-space) is formally defined as an
n-dimensional space where n is the number of degrees
of freedom (DOFs) of the robot. The components of a
configuration in the C-space correspond to the respective
values of the individual robot joints. In this way a point in
the C-space defines a robot configuration. The mapping of
points in the C-space to points in the workspace is called
the kinematic function. The kinematic function f relates
the joint configuration θ to the end-effector position x,
i.e., x = f(θ). The quantity x is an m-dimensional vector
where m is equal to the number of degrees of freedom in
the workspace.

A manipulator is said to be kinematically redundant
if m < n, in which case the degree of redundancy is
equal to r = n − m. Because a kinematically redundant
manipulator has, by definition, extra degrees of freedom,
there are generally an infinite number of configurations
corresponding to the same end-effector location. The set
of configurations in C-space that result in the same end-
effector location x is called the pre-image of x. More
specifically, the pre-image of x is the set f−1(x) =
{θ | x = f(θ)}. The pre-image can be written as a union
of disjoint connected sets

f−1(x) =
nsm⋃

i=1

Mi (1)

where Mi is the i-th r-dimensional self-motion manifold
in the inverse kinematic pre-image, Mi ∩ Mj = ∅
when i �= j, and nsm is the number of self-motion
manifolds [34]. A self-motion manifold corresponding to
a start position xs is called a start self-motion manifold
Ms while a self-motion manifold corresponding to a goal
position xg is called a goal self-motion manifold Mg .

The next definition relates to the structure of the reach-
able C-space following a locked-joint failure. When a
locked-joint failure occurs, the failed joint can no longer
be moved so the corresponding component in the C-space
remains fixed. In other words, the reachable configurations
following a joint failure are contained in an (n − 1)-
dimensional hyperplane in the C-space, called a failure
hyperplane. For a single locked-joint failure at the config-
uration θs, a failure hyperplane Hi is given by

Hi(θs) = {θ | θi = θsi} (2)

Fig. 1. A volume of obstacle-free C-space for a 3-DOF planar robot
showing a portion of the obstacle-free goal self-motion manifold MF

g
and obstacle-free configurations. All the failure planes of configuration
θs intersect MF

g which makes successfully reaching the goal self-
motion manifold possible for any joint failure at θs. Configurations θg1,
θg3, and θg5 are contained in the failure planes of θs. Configuration
θg2 is contained in the bounding plane perpendicular to the θ3-axis, θg4

is contained in the bounding plane perpendicular to the θ1-axis, and θg6

is contained in the bounding plane perpendicular to the θ3-axis.

where θi denotes the i-th component of θ in a failure
induced C-space, θsi is the fixed value of the locked i-th
component of configuration θs, and i = 1, . . . , n. (See
Fig. 1 for a 3-DOF C-space where configuration θs is
shown with its corresponding failure planes.)

A failure hypercube is a hypercube in C-space that
includes an obstacle-free start configuration θs and a
portion of the obstacle-free goal self-motion manifold
MF

g such that all the failure hyperplanes corresponding
to the start configuration θs intersect MF

g . The F in the
superscript denotes the fact that the manifold is obstacle-
free. A failure hypercube has the form

Vsg = {θ | θHl
i
≤ θi ≤ θHu

i
for i = 1, . . . , n} (3)

where Vsg is the failure hypercube associated with the
start configuration θs and goal self-motion manifold Mg ,
Hl

i is the lower bounding hyperplane and Hu
i is the upper

bounding hyperplane such that

Hl
i = {θ | θi = θHl

i
} (4)

Hu
i = {θ | θi = θHu

i
} (5)

for i = 1, . . . , n. The values of θHl
i

and θHu
i

define the
location of their corresponding hyperplanes. Note that a
failure hypercube is not necessarily obstacle-free.

The bounding hyperplanes for a failure hypercube are
defined as follows. Two bounding hyperplanes are defined
by the two failure hyperplanes of θs that contain the

143



end points of MF
g . (See Fig. 1 where θg1 and θg5 are

contained in the failure planes of θs.) The rest of the
bounding hyperplanes are defined by the extremal points
of MF

g . By an extremal point of MF
g , we mean a

configuration with the property that one of its components
is at a minimum or maximum. For example, θg3 is an
extremal point of MF

g as its second component is at
a minimum. The i-th bounding hyperplane is tangent to
MF

g at an extremal point. (See Fig. 1 where the bounding
plane perpendicular to the θ3-axis is tangent to MF

g at
θg2, the failure plane is tangent to MF

g at θg3, and the
bounding plane perpendicular to the θ1-axis is tangent to
MF

g at θg4.) An end-point of MF
g can be an extremal

point if it is a minimum or maximum point which in
turn defines the lower or upper bounding hyperplane,
respectively. (See Fig. 1 where θg1 is contained by the
bounding plane perpendicular to the θ2-axis.) Although
the method is illustrated for a 3-DOF robot example for
easy visualization, the method is fully general and can be
applied to robots with higher DOFs.

B. Assumptions

Throughout the article we will make the following
assumptions. First, the manipulators under consideration
are redundant relative to the specified task. For exam-
ple, a planar 3-DOF manipulator is redundant relative to
positioning tasks in a planar environment while for fully
spatial tasks, at least seven degrees of freedom are needed
for the robot to be redundant. Although robot failures can
occur at random with a possibility of multiple failures
occurring at the same time, we will assume that only a
single joint failure occurs at a given time. We further
assume that the joint is locked at the instant of failure.
It is assumed that the robot is capable of detecting a joint
failure and the failed joint is immediately locked, either
due to the failure itself or to the application of fail-safe
brakes. The final assumption is that the environment is
static and known.

III. DEFINITION OF THE PROBLEM AND CONDITIONS

FOR THE EXISTENCE OF A SOLUTION

In this section, we will formally define the problem
addressed in the paper and state the conditions for a
solution to the given problem. When joint failures are
highly probable, an obstacle avoidance algorithm for path
planning that does not consider failure tolerance will not
be able to guarantee task completion. At the same time, a
failure tolerance control algorithm that does not consider
obstacles in the environment may also be inadequate.
An example of a path planning algorithm that does not
consider the possibility of a joint failure is discussed in
the following to illustrate the problem created when a joint
failure occurs.

Consider a start position xs, a goal position xg , and a
collection of obstacles scattered in the robot workspace.
Consider further an impending single joint failure. The
problem is reformulated in C-space where the start posi-
tion xs is transformed to a start self-motion manifold Ms

and the goal position xg is transformed to a goal self-
motion manifold Mg . The obstacle avoidance algorithm
then identifies an obstacle-free portion of C-space that
includes a start configuration θs and a part of the obstacle-
free goal self-motion manifold MF

g . Fig. 1 illustrates
such an algorithm for a 3-DOF planar robot where the
shown C-space volume is obstacle-free. Obstacles are
present beyond this given obstacle-free volume. The robot
then starts from configuration θp at time tp = 0 and
moves toward the goal self-motion manifold along the path
shown. Configurations θg1 and θg6 are the end points of
MF

g contained inside the obstacle-free C-space volume.
At time t = ts, when the robot is at configuration θs,
a joint failure occurs. Note that the three failure planes
of configuration θs intersect MF

g at configurations θg1,
θg3, and θg5, respectively. Thus for any joint failure at
configuration θs, the failure induced C-space would be
the corresponding failure plane at θs which provides a
possibility of reaching the goal because it contains a point
of MF

g . It is easy to see that this is not the case at the
configuration θq where a failure in joint 1 results in the
robot being constrained to be on a failure plane that does
not intersect MF

g so that the robot would not be able to
successfully finish its task. Similarly, a failure in joint 1
or joint 2 at θp would result in failure planes that do not
intersect MF

g . Hence configurations θp and θq do not
have the same failure tolerance properties as θs.

Thus to ensure the ability to reach the goal self-motion
manifold, any start configuration should have the same
properties as configuration θs shown in Fig. 1. We state
this condition formally as:

Necessary Condition. A given obstacle-free configura-
tion θs is called a feasible configuration if all the corre-
sponding failure hyperplanes for θs intersect a portion of
the obstacle-free goal self-motion manifold MF

g , that is,

Hi(θs) ∩ MF
g �= ∅, for all i = 1, . . . , n (6)

where Hi is the failure hyperplane at θs corresponding to
joint i. This creates a guaranteed path to MF

g ensuring
a possibility of successfully reaching the goal despite a
joint failure at the start configuration θs. Note that this is
equivalent to the goal position being in the fault tolerant
workspace [30]. At this point, we have not considered the
issue of encountering obstacles along the path from θs to
MF

g so (6) is only a necessary condition. However, we
will use this condition as a preliminary check to eliminate
non-feasible solutions.

If subsequent points taken along the path towards
the goal are obstacle-free and have their corresponding

144



Fig. 2. A failure surface SF for a 3-D C-space corresponding to an
obstacle-free start configuration θs (shown at the origin) and an obstacle-
free portion of a goal self-motion manifold MF

g . Assuming that the
bounds of the failure hypercube Vsg are known, SF is then created by
generating monotonic paths within the failure hypercube and connecting
θs to points in MF

g via an obstacle avoidance algorithm. Obstacle-free
space continuity between paths is checked by connecting the adjacent
paths via straight lines.

failure planes intersect the obstacle-free goal self-motion
manifold, then it is guaranteed that there is a possibility
of successfully moving from the start position xs to the
goal position xg no matter which joint fails at any given
time. This set of points lies on a continuous obstacle-
free monotonic surface within the failure hypercube cor-
responding to the start configuration θs. Thus, if a con-
tinuous obstacle-free monotonic surface within the failure
hypercube exists, then successfully moving from a start
configuration θs to a point in MF

g is guaranteed despite
any single joint failure and despite obstacles. We formally
state this condition as:

Sufficient Condition. Consider a given failure hyper-
cube Vsg containing an obstacle-free start configuration
θs and an obstacle-free portion of the goal self-motion
manifold MF

g . If SF is a continuous obstacle-free mono-
tonic surface in Vsg such that the two conditions

θs ∈ SF and MF
g ⊂ SF (7)

hold, then an obstacle-free path to the goal is guaranteed
even if any single locked joint failure occurs. This serves
as the final check for the existence of a solution. If this
holds, a solution to the problem is guaranteed.

A failure surface is identified by generating monotonic
paths, within the bounds of the failure hypercube, that
connect θs to points along MF

g via an obstacle avoidance
algorithm. Adjacent paths can be connected via straight
lines to check for obstacle-free space continuity between
paths. If the path generations and the path connections are
collision-free, then a web of obstacle-free paths is created
which represents the failure surface SF . Fig. 2 shows a
failure surface SF for a 3-DOF C-space.

As long as the robot moves along this set of points on
the surface, then it is guaranteed that it would reach the

desired goal position for any single joint failure despite
obstacles in the workspace.

For kinematic redundancy of two or more, the self-
motion manifold is a hypersurface. The algorithm would
first choose a curve along the hypersurface as its goal
self-motion manifold. One way of choosing this curve is
by using an obstacle avoidance algorithm to identify an
obstacle-free continuous curve [35], [36]. Other desired
posture optimization criteria could also be used. Once
a hypercurve is chosen, the algorithm would proceed in
the same manner as in the case of a single degree of
redundancy.

IV. THE ALGORITHM FOR FAILURE TOLERANT

MOTION PLANNING

The steps for ensuring obstacle-free failure tolerant
paths are as follows:

1) Given the workspace start position, xs, and the
goal position, xg , transform the given workspace
positions into their equivalent C-space self-motion
manifolds: start self-motion manifold, Ms, and goal
self-motion manifold, Mg , respectively.

2) Choose configurations from Ms and identify those
that are obstacle-free. Record these configurations
and label them as MF

s . Similarly, the obstacle-free
portion of the goal self-motion manifold is denoted
as MF

g .
3) For each configuration in MF

s , the corresponding
failure hyperplanes are checked against intersections
with the goal self-motion manifold Mg . If all
the corresponding hyperplanes for configurations in
MF

s intersect MF
g , record all the intersections to

form a subset ΘH of MF
g . Each configuration in

MF
s that has a corresponding θH ∈ΘH is saved

to form a subset Θs of MF
s . (This step uses the

necessary condition in Section III.)
4) Identify the bounds of the failure hypercube Vsg

associated with each configuration θs ∈ Θs.
5) For each failure hypercube Vsg , check for the

existence of a failure surface SF . This is done by
using an obstacle avoidance algorithm to generate
monotonic paths from a start configuration θs to
points in MF

g . Straight line connections between
paths are used to check for the continuity of the
obstacle-free space between paths.

6) If the path generations and straight line connections
between paths are obstacle-free, the result is a con-
tinuous web of paths representing the failure surface
SF corresponding to Vsg . If no SF exists for any
failure hypercube Vsg , then it is not guaranteed that
the robot can successfully complete its task for any
single locked-joint failure with the given obstacles
in the environment. (This step uses the sufficient
condition in Section III.)

145



Fig. 3. A 3-DOF planar robot with three distinct sets of obstacles in the environment. For each scenario, the robot configuration shown is the feasible
start configuration θs for which a failure surface SF is found. Scenarios (a) and (b) have xs at [200, 0]T and xg at [100, 0]T . Scenario (c) has xs at
[250, 0]T and xg at [100, 0]T . The robot has equal link lengths of 100 units and each obstacle has a diameter of 40 units. In all cases the robot can
reach the desired position xg from the shown start configuration θs despite any single joint failure.

TABLE I

THE SET OF START CONFIGURATIONS SHOWN IN FIG. 3 WITH THE CORRESPONDING COORDINATES OF THE

FAILURE PLANES THAT INTERSECT THE OBSTACLE-FREE GOAL SELF-MOTION MANIFOLD.

Fig. 3 Start Configuration Failure Plane Intersection with Obstacle-Free Goal Self-Motion Manifold MF
g

θs1 θs2 θs3 θH11 θH12 θH13 θH21 θH22 θH23 θH31 θH32 θH33

(a) -73.3 114.0 -23.0 -73.3 179.4 -105.9 -113.4 114.0 65.8 -154.0 178.6 -23.0

(b) 66.7 -119.1 45.1 66.7 -179.4 112.8 118.7 -119.1 -60.2 133.3 -179.2 45.1

(c) 23.5 -73.0 70.9 23.5 -178.6 155.3 -0.3 -73.0 179.4 108.9 -179.4 70.9

7) Given that an SF exists, to move from the start
position, xs, towards the goal position, xg , the
manipulator has to move from start configuration
θs along the continuous web of paths that represents
the failure surface SF toward MF

g . Because SF is
known to be collision-free, as long as the manipu-
lator moves along the surface it would be free from
collision and at the same time it can reach the goal
from any failure hyperplane.

The computational complexity of the proposed al-
gorithm is highly dependent on the method used for
computing the start and goal self-motion manifolds, and
the method used for collision detection. For a single
degree of redundancy, the computational complexity is
O(mn2) + O(mnp) where p is the number of obstacles
in the workspace. The first term is the contribution for the
computation of the start and goal self-motion manifolds,
while the second term is the contribution due to collision
detection.

V. A 3-LINK PLANAR ROBOT EXAMPLE

An implementation of the path planning algorithm
discussed here is shown for a 3-DOF planar robot. The
robot has equal link lengths of 100 units and is required
to move from a start position xs to a goal position xg

in the workspace as shown in Fig. 3. Each disk obstacle
has a diameter of 40 units. In Figs. 3(a) and 3(b), the

start position is xs = [200, 0]T while in Fig. 3(c) the start
position is xs = [250, 0]T . In all cases the goal position is
xg = [100, 0]T .

The obstacles were selected in such a way that the
robot will have difficulty finding a failure surface SF for
a given scenario, i.e., a given xs, xg , and workspace [37].
Obstacles were added until eventually, the robot was left
with a single feasible start configuration θs where a failure
surface SF exists. For each scenario in Fig. 3, the robot
configuration shown is the feasible start configuration θs

that has a corresponding SF .
Table I shows the values of the start configuration

θs = [θs1, θs2, θs3]T corresponding to each scenario in
Fig. 3. The planes H1, H2, and H3 are the corresponding
failure planes that intersect the obstacle-free goal self-
motion manifold MF

g at θHi
= [θHi1, θHi2, θHi3]

T

where i = 1, 2, 3.
Obstacles in scenario Fig. 3(a) were chosen in a more

random manner such that the robot “squeezed its way
through” to find a feasible start configuration θs where a
corresponding SF exists. Obstacles in scenario Fig. 3(b)
were chosen in such a way that they will have a more
linear arrangement such that the robot is in a “walled” or
“pipe-like” environment. Obstacles in scenario Fig. 3(c)
were chosen randomly as in Fig. 3(a), however, the start
configuration is further away from the robot’s base. Notice
that the most difficult obstacles in Fig. 3(c) are wider apart

146



Fig. 4. A projection of the self-motion manifolds, drawn in broken
lines, for xg = [100, 0]T (outermost oblong), xs = [200, 0]T

(middle oblong), and xs = [250, 0]T (innermost oblong). The start
configuration θs that corresponds to each scenario in Fig. 3 and their
corresponding failure plane intersections with the obstacle-free goal self-
motion manifold MF

g are shown. The surface bounded by solid lines
represent the failure surface SF for each θs.

from each other compared to the most difficult obstacles
in Fig. 3(a). The reason is because in Fig. 3(c), the robot
links are more stretched out at the start position xs, and if
a joint failure occurs at the start configuration, the robot
would need a bigger obstacle-free sweep area for it to
reach the goal position xg .

Fig. 4 shows a projection of the C-space self-motion
manifolds, drawn in broken lines, corresponding to
workspace positions in Fig. 3. The goal position xg =
[100, 0]T corresponds to the outermost oblong self-motion
manifold, xs = [200, 0]T corresponds to the center oblong
self-motion manifold, and xs = [250, 0]T corresponds to
the innermost oblong self-motion manifold. Also shown
are the start configurations θs for the each scenario in
Fig. 3 and the corresponding failure plane intersection θHi

with the obstacle-free goal self-motion manifold MF
g .

Notice that the straight lines connecting the start configu-
ration θs to θHi

are along the failure planes corresponding
to θs. The failure planes are orthogonal to each other
but do not appear orthogonal in the figure because the
projection is taken at an angle. The failure surface SF for
each θs is the surface bounded by the solid lines. Indeed,
as shown in Fig. 4, a failure surface SF exists that would
guarantee successfully reaching the goal despite obstacles
in the environment and despite any single joint failure at
any time.

VI. CONCLUSION

The problem of guaranteeing failure tolerant operation
of a kinematically redundant manipulator in an environ-
ment containing obstacles was considered. In particular,
conditions were determined which guarantee that a ma-
nipulator could successfully reach a goal position in the
workspace from a given start position despite any single

locked-joint failure and despite the presence of obstacles
in a static environment. Based on these conditions an algo-
rithm was introduced that would search for a continuous
obstacle-free monotonic surface between an obstacle-free
start configuration and an obstacle-free goal self-motion
manifold in C-space that would determine the existence of
a failure tolerant path for a given robot and environment.
The method would help in deciding whether to proceed
or reposition a robot so that it is guaranteed that a critical
task can be completed in the presence of obstacles.2

VII. REFERENCES

[1] E. C. Wu, J. C. Hwang, and J. T. Chladek, “Fault-
tolerant joint development for the space shuttle re-
mote manipulator system: Analysis and experiment,”
IEEE Trans. Robot. Automat., vol. 9, no. 5, pp. 675–
684, Oct. 1993.

[2] G. Visentin and F. Didot, “Testing space robotics
on the Japanese ETS-VII satellite,” ESA Bulletin-
European Space Agency, 1999.

[3] P. S. Babcock and J. J. Zinchuk, “Fault-tolerant
design optimization: Application to an autonomous
underwater vehicle navigation system,” in Proc. 1990
Symp. Autonom. Underwater Vehicle Technol., Wash-
ington, D.C., June 5-6 1990, pp. 34–43.

[4] R. Colbaugh and M. Jamshidi, “Robot manipulator
control for hazardous waste-handling applications,”
J. Robot. Syst., vol. 9, no. 2, pp. 215–250, 1992.

[5] W. H. McCulloch, “Safety analysis requirements for
robotic systems in DOE nuclear facilities,” in Proc.
2nd Specialty Conf. Robot. Challenging Environ.,
Albuquerque, NM, June 1-6 1996, pp. 235–240.

[6] M. L. Leuschen, I. D. Walker, and J. R. Cavallaro,
“Investigation of reliability of hydraulic robots for
hazardous environment using analytic redundancy,”
in Proc. Annual Rel. Maintain. Symp., Washington,
D.C., Jan. 18-21 1999, pp. 122–128.

[7] B. S. Dhillon, Robot Reliability and Safety. New
York: Springer-Verlag, 1991.

[8] J. F. Engelberger, “Three million hours of robot field
experience,” Ind. Robot, pp. 164–168, June 1974.

[9] B. S. Dhillon and A. R. M. Fashandi, “Safety and
reliability assessment techniques in robotics,” Robot-
ica, vol. 15, no. 6, pp. 701–708, Nov.-Dec. 1997.

[10] K. Khodabandehloo, “Analysis of robot systems us-
ing fault and event trees: Case studies,” Rel. Eng.
Syst. Safety, vol. 53, no. 3, pp. 247–264, Sept. 1996.

2The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research Laboratory
or the U. S. Government.

147



[11] I. D. Walker and J. R. Cavallaro, “The use of fault
trees for the design of robots for hazardous environ-
ments,” in Proc. Annual Rel. Maintain. Symp., Las
Vegas, NV, Jan. 22-25 1996, pp. 229–235.

[12] C. Carreras and I. D. Walker, “Interval methods for
fault-tree analysis in robotics,” IEEE Trans. Robot.
Automat., vol. 50, no. 1, pp. 3–11, March 2001.

[13] J. Lee, “Measurement of machine performance
degradation using a neural network model,” Comput.
Ind., vol. 30, no. 3, pp. 193–209, Oct. 1996.

[14] S. Tosunoglu and V. Monteverde, “Kinematic and
structural design assessment of faul-tolerant manip-
ulators,” Intell. Automat. Soft Comput., vol. 4, no. 3,
pp. 261–268, 1998.

[15] A. A. Maciejewski, “Fault tolerant properties of kine-
matically redundant manipulators,” in Proc. IEEE
Int. Conf. Robot. Automat., vol. 1, Cincinnati, OH,
May 13-18 1990, pp. 638–642.

[16] R. G. Roberts and A. A. Maciejewski, “A local mea-
sure of fault tolerance for kinematically redundant
manipulators,” IEEE Trans. Robot. Automat., vol. 12,
no. 4, pp. 543–552, Aug. 1996.

[17] D. L. Schneider, D. Tesar, and J. W. Barnes, “Devel-
opment & testing of a reliability performance index
for modular robotic systems,” in Proc. Annual Rel.
Maintain. Symp., Anaheim, CA, Jan. 24-27 1994, pp.
263–271.

[18] D. L. Hamilton, I. D. Walker, and J. K. Bennett,
“Fault tolerance versus performance metrics for robot
systems,” Rel. Eng. Syst. Safety, vol. 53, pp. 309–
318, 1996.

[19] B. S. Dhillon and N. Yang, “Formulas for analyzing
a redundant robot configuration with a built-in safety
system,” Microelectron. Rel., vol. 37, no. 4, pp. 557–
563, April 1997.

[20] W. S. Ng and C. K. Tan, “On safety enhancements
for medical robots,” Rel. Eng. Syst. Safety, vol. 54,
no. 1, pp. 35–35, Oct. 1996.

[21] J. Trevelyan, “Simplifying robotics - a challenge for
research,” Robot. Autonom. Syst., vol. 21, no. 3, pp.
207–220, Sept. 1997.

[22] M. Savsar, “Reliability analysis of a flexible manu-
facturing cell,” Rel. Eng. Syst. Safety, vol. 67, no. 2,
pp. 147–152, Feb. 2000.

[23] Y. Ting, S. Tosunoglu, and D. Tesar, “A control struc-
ture for fault-tolerant operation of robotic manipu-
lators,” in Proc. IEEE Int. Conf. Robot. Automat.,
vol. 3, Atlanta, GA, May 2-6 1993, pp. 684–690.

[24] K. S. Tso, M. Hecht, and N. I. Marzwell, “Fault-
tolerant robotic system for critical applications,” in
Proc. IEEE Int. Conf. Robot. Automat., vol. 3, At-
lanta, GA, May 2-6 1993, pp. 691–696.

[25] Y. Ting, S. Tosunoglu, and R. Freeman, “Actuator

saturation avoidance for fault-tolerant robots,” in
Proc. 32nd Conf. Decision Contr., San Antonio, TX,
Dec. 1993, pp. 2125–2130.

[26] T. S. Wikman, M. S. Branicky, and W. S. New-
man, “Reflexive collision avoidance: A generalized
approach,” in Proc. IEEE Int. Conf. Robot. Automat.,
vol. 3, Atlanta, GA, May 2-6 1993, pp. 31–36.

[27] C. J. J. Paredis and P. K. Khosla, “Fault tolerant task
execution through global trajectory planning,” Rel.
Eng. Syst. Safety, vol. 53, pp. 225–235, 1996.

[28] S. K. Ralph and D. K. Pai, “Computing fault tolerant
motions for a robot manipulator,” in Proc. IEEE Int.
Conf. Robot. Automat., vol. 1, Detroit, MI, May 10-
15 1999, pp. 486–493.

[29] J. Park, W.-K. Chung, and Y. Youm, “Failure recov-
ery by exploiting kinematic redundancy,” in 5th Int.
Workshop Robot Human Commun., Tsukuba, Japan,
Nov. 11-14 1996, pp. 298–305.

[30] C. L. Lewis and A. A. Maciejewski, “Fault tolerant
operation of kinematically redundant manipulators
for locked joint failures,” IEEE Trans. Robot. Au-
tomat., vol. 13, no. 4, pp. 622–629, Aug. 1997.

[31] K. N. Groom, A. A. Maciejewski, and V. Balakrish-
nan, “Real-time failure-tolerant control of kinemat-
ically redundant manipulators,” IEEE Trans. Robot.
Automat., vol. 15, no. 6, pp. 1109–1116, Dec. 1999.

[32] C. L. Lewis and A. A. Maciejewski, “Dexterity opti-
mization of kinematically redundant manipulators in
the presence of joint failures,” Comput. Electr. Eng.,
vol. 20, no. 3, pp. 273–288, 1994.

[33] J. D. English and A. A. Maciejewski, “Fault toler-
ance for kinematically redundant manipulators: An-
ticipating free-swinging joint failures,” IEEE Trans.
Robot. Automat., vol. 14, no. 4, pp. 566–575, Aug.
1998.

[34] J. W. Burdick, “On the inverse kinematics of re-
dundant manipulators: Characterization of the self-
motion manifolds,” in Proc. IEEE Int. Conf. Robot.
Automat., vol. 1, Scottsdale, AZ, May 14-19 1989,
pp. 264–270.

[35] A. A. Maciejewski and C. A. Klein, “Obstacle
avoidance for kinematically redundant manipulators
in dynamically varying environments,” Int. J. Robot.
Res., vol. 4, no. 3, pp. 109–117, Fall 1985.

[36] O. Khatib, “Real-time obstacle avoidance for manip-
ulators and mobile robots,” Int. J. Robot. Res., vol. 5,
no. 1, pp. 90–98, 1986.

[37] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H.
Overmars, “Probabilistic roadmaps for path planning
in high-dimensional configuration spaces,” IEEE
Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580,
Aug. 1996.

148


	MAIN MENU
	PREVIOUS MENU
	--------------------------------
	Search CD-ROM
	Search Results
	Print

