
DISSERTATION 
 
 
 

ADVANCING CONSERVATION GENOMICS OF MIGRATORY SPECIES TOWARD A 

FULL ANNUAL CYCLE APPROACH 

 

 

 

Submitted by 

Matthew G. DeSaix 

Department of Biology 

 

In partial fulfillment of the requirements 

For the Degree of Doctor of Philosophy 

Colorado State University 

Fort Collins, Colorado 

Fall 2023 

 

Doctoral Committee: 
 
 Advisor: Kristen C. Ruegg 
 
 W. Chris Funk 
 David N. Koons 
 Peter P. Marra 
 
  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright by Matthew George DeSaix 2023 
 

All Rights Reserved 
 



 ii 

ABSTRACT 
 
 
 

ADVANCING CONSERVATION GENOMICS OF MIGRATORY SPECIES TOWARD A 

FULL ANNUAL CYCLE APPROACH 

 
 

Global biodiversity loss is one of the foremost concerns of conservation efforts in the 21st 

century. The maintenance of genetic diversity within species is a critical factor in a species’ 

persistence and adaptive potential in the face of changing environmental conditions. Migratory 

species make up more than 12% of the global vertebrate biodiversity and pose distinct challenges 

to conservation efforts due to inhabiting different geographical regions at different times of the 

year. The field of conservation genomics provides a valuable toolkit to addressing and 

understanding global biodiversity loss but requires additional methodological developments to 

better address the conservation challenges posed by migratory species. In my dissertation, I 

demonstrate advancements in conservation genomics aimed toward better understanding 

migratory species. In my first study, I addressed the question of ecological and genomic 

vulnerability to climate change in the Brown-capped Rosy-Finch (Leucosticte australis), an 

elevational migratory songbird of conservation concern. Second, I addressed a methodological 

gap in population genomics and developed statistical genetics models for using genotype 

likelihood data from low-coverage whole genome sequencing data to implement population 

assignment. In my last study, I demonstrate the utility of low-coverage whole genome 

sequencing for population assignment with detailing migratory connectivity in the American 

Redstart (Setophaga ruticilla). Altogether, my doctoral research demonstrates how genomic tools 

can help unravel the complexities of migratory species conservation. Furthermore, the species-
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specific results are tied to knowledge gaps identified by wildlife managers and provide valuable 

information tied to conservation and management applications. 
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INTRODUCTION 
 
 
 
Background 

Global biodiversity loss is one of the foremost concerns of conservation efforts in the 21st 

century. Species’ extinctions are a well-documented component of the Anthropocene era and are 

accelerating due to factors such as global climate change and habitat loss (Steffen et al., 2007; 

Ceballos et al., 2015; Urban 2015). Complementary to extinction, numerous extant species are 

declining in abundance at alarming rates and these widespread declines further threaten 

ecosystem functioning (Dirzo et al., 2014; Rosenberg et al., 2019). It is estimated that these 

population declines across taxa have resulted in a 6-10% loss of global genetic diversity (Leigh 

et al., 2019; Exposito-Alonso et al., 2022). While the maintenance of genetic diversity within 

species is a critical factor in a species’ persistence and adaptive potential in the face of changing 

environmental conditions (Bernatchez 2016; Ceballos et al., 2017; Funk et al., 2019), this 

component has generally been lacking from global conservation initiatives (Laikre et al., 2020). 

However, as genomic tools continue to advance and become more widespread, the utility of 

genomics as an integral component of conservation and management practices is becoming 

increasingly apparent (Funk et al., 2019; Forester et al., 2022; Theissinger et al., 2023; Zamudio 

2023). 

Migratory species make up more than 12% of the global vertebrate biodiversity 

(Robinson et al., 2009) and pose distinct challenges to conservation efforts due to inhabiting 

different geographical regions or habitats at different times of the year (Runge et al., 2014). At 

each stage in the migratory annual cycle, migrant populations are subject to various stressors that 

can influence their fitness (Marra et al., 1998; Sillett et al., 2000). As a result, effective 
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conservation efforts require understanding migratory connectivity, defined as the links between 

different geographic regions used across the annual cycle (Marra et al., 2015; Webster et al., 

2002). In the past 20 years, population genetics has become a well-established means for 

tracking migratory populations, especially for studies involving large sample sizes or small-

bodied individuals (Faaborg et al., 2010). However, the value of genetic markers is often limited 

by the amount of genetic differentiation in a species and the availability of genetic data from 

individuals across the annual cycle (Faaborg et al., 2010; Lovette et al., 2004). Early methods 

relied on genetic markers that were limited to identifying only deep phylogeographic breaks 

within species (Kimura et al., 2002; Lovette et al., 2004; Ruegg & Smith, 2002). In recent years, 

next generation sequencing has facilitated the screening of a significantly larger number of 

genetic markers allowing for the delineation of breeding populations at finer spatial scales 

(Ruegg et al., 2014; DeSaix et al., 2023). Recent reductions in the cost of whole genome 

sequencing make genomics an increasingly cost-effective option for studying migratory 

connectivity and has the additional benefit of providing valuable data for assessing a species’ 

adaptive potential. 

Adaptive potential is a species’ capacity to evolve in response to environmental change, 

thus species with greater adaptive potential have more resilience to stressors such as climate 

change. While quantifying adaptive potential has traditionally relied on experimental approaches 

to measuring the additive genetic variation underlying adaptive traits, population genomics 

vastly expands the ability to test for adaptation and identify the underlying genetic variation 

(Allendorf et al., 2010; Savoleinen et al., 2013). Importantly, while experimental studies are 

often restricted to model organisms that can be manipulated in laboratory setting, the use of 

population genomics to identify signals of local adaptation can be applied across taxa. For 
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example, genetic-environment association (GEA) methods are a common population genomics 

tool used to identify putatively adaptive loci in natural populations by searching for loci with 

allele frequencies that are associated with environmental variables (Rellstab et al., 2015; Forester 

et al., 2018). By identifying putatively adaptive variation and the environmental drivers of 

selection, researchers are able to further investigate the effects of global climate change on a 

species’ adaptive potential (Razgour et al., 2019; Maier et al., 2023; Forester et al., 2023).  

While assessing adaptive potential is already a difficult task for most species (Funk et al., 

2019), this becomes further complicated in migratory species due to the dynamic nature of their 

populations’ distributions throughout the year. A critical component of understanding how 

populations are locally adapted to their environment is accurately identifying the underlying 

environmental drivers that affect fitness. One solution to address this issue is using a priori 

knowledge of a species’ life history to inform environmental variable selection in methods such 

as GEA (Hoban et al., 2016). With migratory species, identifying environmental drivers of 

adaptation requires knowledge of a species’ life history across the annual cycle – including 

factors that affect fitness as well as the broader migratory connectivity patterns that determine 

where populations are present throughout the year. While comprehensive consideration of the 

adaptive potential of a migratory species has yet to be implemented, it is clearly an important 

step for the conservation of migratory taxa. Moving toward this objective requires additional 

research to improve existing genomic methods for investigating adaptive potential as well as 

developing new genomic tools for studying migratory species. 

The overarching objective of my dissertation is to develop conservation genomics tools 

and methods to facilitate the study of migratory species. To that end, my dissertation includes 

different study systems and simulated datasets to best address my set of research questions. My 
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aim is to provide valuable results for the conservation of the species studied as well as address 

methodological aspects of the conservation genomics toolkit that are relevant across taxa. 

 

Research summary 

Chapter 1 

 In my first study, I addressed the question of ecological and genomic vulnerability to 

climate change in the Brown-capped Rosy-Finch (Leucosticte australis), a nomadic alpine 

songbird of conservation concern. Due to the alpine and nomadic life history of this species, the 

Brown-capped Rosy-Finch is one of the least studied landbirds in the United States. My work 

stemmed from initial research proposed by Colorado Parks and Wildlife, in collaboration with 

Colorado State University, University of California Santa Cruz, and Denver Museum of Nature 

and Science, to establish a baseline understanding of population abundance estimates and genetic 

health of this species. Our initial findings were published as a report to Colorado Parks and 

Wildlife (DeSaix & Ruegg, 2020) in which we used whole-genome sequencing data to detail that 

Brown-capped Rosy-Finches exhibit high gene flow across the breeding range with limited 

signatures of genetic isolation or inbreeding on any of the peripheral mountain ranges. Due to the 

concern of rapid climate change in alpine ecosystems, I directed my subsequent research with 

Brown-capped Rosy-Finch to investigate how this species may need to shift its distribution 

(ecological vulnerability) or adapt to changing conditions (genomic vulnerability) in response to 

climate change. I focused this research on a single stage of the annual cycle, the breeding range, 

to best document the methodological consolidations of this novel workflow before such work 

could be extended to examining the full annual cycle. This research was published in DeSaix et 

al. (2022) and our results highlighted that Brown-capped Rosy-Finch persistence may depend on 
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rapid adaptation to novel climate conditions in a contracted breeding range. Importantly, we also 

developed a metric for highlighting uncertainty in genomic vulnerability predictions due to novel 

climate conditions and demonstrated the need for studies to incorporate similar such metrics of 

uncertainty to highlight geographic regions for which predictions involving space-for-time 

substitutions are inappropriate (DeSaix et al., 2022).  

 

Chapter 2 

 In my second study, I addressed a methodological gap in population genomics and 

worked with researchers at Colorado State University and the National Marine Fisheries Service 

to develop statistical genetics models for using genotype likelihood data from low-coverage 

whole genome sequencing data to implement population assignment. Population assignment 

methods are a standard tool for researchers to use genetic data to study migratory connectivity 

and no such methods had been developed to accommodate genotype likelihoods, or the 

computational burden of millions of genetic markers. Thus, population genomic study of the full 

annual cycle of migratory species was unable to take advantage of low-coverage whole-genome 

sequencing data until such methods were developed and made available in user-friendly 

software. To address this missing piece of the population genomics toolkit, I implemented our 

models in an open-source Python software package, WGSassign 

(https://github.com/mgdesaix/wgsassign), which my collaborators and I used to demonstrate 

highly accurate and computationally efficient population assignment with simulated and 

empirical data sets (DeSaix et al., in review). Specifically, we showed that WGSassign can 

provide highly accurate assignment, even for samples with low average read depths (< 0.01X) 

and among weakly differentiated populations. Furthermore, we derived the Fisher information 

https://github.com/mgdesaix/wgsassign
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for allele frequency from genotype likelihood data and used that to describe a novel metric, the 

effective sample size, which figures heavily in assignment accuracy. Our development of 

WGSassign is an essential step for conservation genomics studies to be able to use genomic data 

from across the annual cycle in migratory species. 

 

Chapter 3 

 In my final doctoral study, I used our development of WGSassign to investigate 

migratory connectivity in the American Redstart (Setophaga ruticilla). The American Redstart 

was an ideal study system for a comprehensive demonstration of the utility of low-coverage 

whole genome sequencing data for the study of migratory connectivity as there were previous 

migratory connectivity studies of this species to compare to. This study was an international 

collaboration that involved researchers from Colorado State University, National Marine 

Fisheries Service, SELVA Investigación para la conservación en el Neotropico, Trinidad and 

Tobago Field Naturalists’ Club, State of Alaska Department of Fish and Game, The Ohio State 

University, The Institute for Bird Populations, Tulane University, Cornell lab of Ornithology, 

University of California Los Angeles Center for Tropical Research, and Georgetown University. 

We published this study in DeSaix et al. (2023) in which we revealed broad-scale parallel 

migration and highlighted unique population-specific patterns of connectivity in the American 

Redstart. By combining migratory connectivity results with demographic analysis of population 

abundance and trends, we provided full annual cycle conservation strategies for preserving 

numbers of individuals and genetic diversity (DeSaix et al., 2023). Notably, we highlighted the 

importance of the Northern Temperate-Greater Antilles migratory population as containing the 

largest proportion of individuals in the species. We further demonstrated the importance of 
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balancing the effective sample sizes of breeding populations to avoid assignment bias due to 

variation in the precision of allele frequency estimation. Overall, our results provide a valuable 

framework for studies that aim to use low-coverage whole genome sequencing data to 

understand the ecology and evolution of migratory species. 

 

Additional research 

In addition to the core studies enumerated in my dissertation, I have also collaborated on 

other projects pertaining to migratory species and conservation genetics. I worked with 

researchers at University of Maryland, Ithaca College, and Georgetown University on a mtDNA 

migratory connectivity study of the American Redstart which documented the nonbreeding range 

for two breeding populations that were delineated by phylogeographic patterns (DeSaix et al., 

2022). I also collaborated with a researcher at Colorado State University in a study documenting 

a library preparation protocol for obtaining high quality whole genome sequencing data from 

feathers (Schweizer & DeSaix 2022). This protocol is a valuable resource for avian conservation 

genomics studies in which feather sample collection can be more feasible than blood collection, 

especially in large-scale international collaborations. Finally, I worked with researchers at 

Colorado State University, Alaska Department of Fish and Game, University of California Los 

Angeles Center for Tropical Research, The Institute for Bird Populations, University College 

London, and Tulane University on using migratory network models for conservation 

prioritization across the annual cycle. Migratory network models use migratory connectivity data 

(as can be obtained from WGSassign, Chapter 2) and population abundance data to quantify 

connectivity between stages of the annual cycle. My primary role on this project was developing 
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an R package, mignette, which makes these methods readily available for other migratory studies 

across taxa and using a variety of data sources (https://github.com/mgdesaix/mignette/).  

 

Conclusions and significance 

Addressing the biodiversity crisis for migratory species is a pressing concern in 

contemporary conservation efforts and requires multifaceted approaches. My doctoral research 

demonstrates how genomic tools can help unravel the complexities of migratory species 

conservation. My work with the Brown-capped Rosy-Finch (Chapter 1) resulted in 

methodological advancements for inferring genomic vulnerability to climate change and 

highlighting uncertainty in predictions to novel climate conditions. The results from this research 

provide a valuable step toward the application of genomic vulnerability methods across the full 

annual cycle of migratory species as they highlight the need to properly characterize the 

complexities of climate-based predictions. Subsequently, my work developing WGSassign for 

low-coverage whole genome sequencing data (Chapter 2) and comprehensively demonstrating its 

application to the study of migratory connectivity (Chapter 3) provide valuable contributions to 

the study of migratory species. For conservation and management projects that may have limited 

financial resources, low-coverage whole genome sequencing offers a potentially cost-effective 

approach for obtaining genomic data. The ongoing development of essential population genomic 

tools is an important step toward solidifying the role of genomics in conservation and 

management. 

Furthermore, effective conservation-based research requires directly pairing research 

questions with the knowledge gaps identified by managers and policymakers (Knight et al. 2008; 

Hoban et al., 2013). In my doctoral research, the Brown-capped Rosy-Finch and American 

https://github.com/mgdesaix/mignette/


 9 

Redstart studies provided valuable information to managers that was directly requested because 

they filled knowledge gaps in the management of these species. For the Brown-capped Rosy-

Finch, the genetic results addressed Colorado Parks and Wildlife biologists’ inquiries into the 

degree of gene flow and genetic diversity across the species’ distribution. These results were an 

important component in determining that none of the sampled locations were from small, 

isolated populations that required immediate management action. The American Redstart 

migratory connectivity results informed Alaska Department of Fish and Game (ADFG) 

biologists that their breeding populations of American Redstarts likely overwinter in Mexico and 

Central America. The American Redstart is listed as a Species of Concern by the ADFG and the 

wintering information of breeding migratory birds in Alaska provides managers with the 

necessary information to target management resources. Collaborating with managers throughout 

my doctoral research was a vital component to having the research results linked to conservation 

and management application. 
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1. FORECASTING CLIMATE CHANGE RESPONSE IN AN ALPINE SPECIALIST 
SONGBIRD REVEALS THE IMPORTANCE OF CONSIDERING NOVEL CLIMATE 

 
 
 
Summary 

Species persistence in the face of climate change depends on both ecological and 

evolutionary factors. Here, we integrate ecological and whole-genome sequencing data to 

describe how populations of an alpine specialist, the Brown-capped Rosy-Finch (Leucosticte 

australis) may be impacted by climate change. We sampled 116 Brown-capped Rosy-Finches 

from 11 sampling locations across the breeding range. Using 429,442 genetic markers from 

whole-genome sequencing, we described population genetic structure and identified a subset of 

436 genomic variants associated with environmental data. We modeled future climate change 

impacts on habitat suitability using ecological niche models (ENMs) and impacts on putative 

local adaptation using gradient forest models (a genetic-environment association analysis; GEA). 

We used the metric of niche margin index (NMI) to determine regions of forecasting uncertainty 

due to climate shifts to novel conditions. Population genetic structure was characterized by weak 

genetic differentiation, indicating potential ongoing gene flow among populations. Precipitation 

as snow had high importance for both habitat suitability and changes in genetic variation across 

the landscape. Comparing ENM and gradient forest models with future climate predicted suitable 

habitat contracting at high elevations and population allele frequencies across the breeding range 

needing to shift to keep pace with climate change. NMI revealed large portions of the breeding 

range shifting to novel climate conditions. Our study demonstrates that forecasting climate 

vulnerability from ecological and evolutionary factors reveals insights into population-level 

vulnerability to climate change that are obfuscated when either approach is considered 

independently. For the Brown-capped Rosy-Finch, our results suggest that persistence may 
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depend on rapid adaptation to novel climate conditions in a contracted breeding range. 

Importantly, we demonstrate the need to characterize novel climate conditions that influence 

uncertainty in forecasting methods. 

 
Introduction 

Global climate change is dramatically affecting biodiversity and extinction rates are 

accelerating across taxonomic groups (Urban, 2015). Alpine organisms that already inhabit the 

upper elevational reaches can be at particular risk from climate change driving upslope range 

shifts due to reduced potential to shift their range (Freeman et al., 2018; Sekercioglu et al., 

2008), however, this risk may be tempered in regions that provide an abundance of 

microclimates (Seastedt & Oldfather, 2021). If range shift is not feasible, a species’ long-term 

persistence in the face of climate change will likely depend on evolutionary or behavioral 

adaptation (Aitken et al., 2008; Forester et al., 2018; Hoban et al., 2016; Hoffmann & Sgró, 

2011). Advances in ecological genomics are elucidating the genomic architecture of local 

adaptation (Hämälä & Savolainen, 2019; Savolainen et al., 2013; Tigano & Friesen, 2016) and 

providing insight into population-level responses to climate change (Bay et al., 2018; Dauphin et 

al., 2021; Fitzpatrick et al., 2021; Fitzpatrick & Keller, 2015; Rellstab et al., 2016; Ruegg et al., 

2018). While common garden experiments are widely recognized as the best method for 

identifying signals of local adaptation (Kawecki & Ebert, 2004; de Villemereuil et al., 2016), 

ecological genomic approaches provide an alternative in species where common garden 

approaches are infeasible due to constraints related to life history and conservation status (i.e. 

threatened or endangered status).   

Ecological niche models (ENMs) are used to assess vulnerability to climate change by 

forecasting the distribution of climatic conditions that characterize an organism’s current range 
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(Guisan & Thuiller, 2005; Pacifici et al., 2015). Given the variety of terminology used in the 

literature surrounding ENMs, we will follow the guidelines set out by Sillero (2011) that ENMs 

model an organism’s ecological niche and the resulting output maps forecast habitat suitability. 

Genomic offset is a complementary approach to predicting climate vulnerability and provides a 

relative measure of the magnitude of evolutionary adaptation required for a population to track 

changing climate conditions (Capblancq et al., 2020; Fitzpatrick & Keller, 2015; Rellstab et al., 

2021). Genomic offset is based on identifying genetic-environment associations putatively 

underlying local adaptation and predicting future adaptive genetic composition based on the 

current genetic-environment associations (e.g. with gradient forest models; Fitzpatrick & Keller, 

2015). However, genomic offset predictions may ignore key ecological factors (e.g. habitat 

suitability) that would affect persistence, especially for organisms with ranges that are 

experiencing drastic environmental changes. While genomic offset has predominantly been 

assessed independently of ecological factors (Capblancq et al. 2020, Rellstab et al. 2021; but see 

Chu et al., 2021; Gougherty et al., 2021; Nielsen et al., 2021), vulnerability to climate change is a 

multifaceted problem that should be assessed with multiple methodologies and data sources 

(Dawson et al., 2011). Integrating genomic offset and ecological niche models would provide an 

understanding of the ecological factors shaping where populations could persist, and the 

evolutionary factors underlying the amount adaptation required to persist there. 

The objective of our study was to combine methods for predicting population-level 

response to climate-driven disruptions to habitat suitability and genomic adaptation to improve 

forecasting of climate vulnerability. We addressed this objective using the Brown-capped Rosy-

Finch (Leucosticte australis), an alpine-obligate species endemic to the Southern Rocky 

Mountains (Wyoming, Colorado, and New Mexico) and part of a broader species complex 
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notable for specializations to alpine sky islands and arctic tundra (Johnson et al., 2020). While 

climate change broadly results in species shifting distributions poleward and upward in elevation 

(Chen et al., 2011; Parmesan & Yohe, 2003), the Brown-capped Rosy-Finch has limited 

potential for poleward range shift given the isolation of the Southern Rocky Mountains from 

other high-elevation mountain ranges and the presence of congeneric species that already inhabit 

those mountain ranges. Furthermore, Brown-capped Rosy-Finches already occupy nesting cliffs 

at the highest elevations (above 3,350 m) of the Southern Rocky Mountains, which limits the 

possibility for major upslope range shifts, though they occupy lower elevations during the winter 

months (Johnson et al., 2020). Recent genetic studies have suggested that mountain ranges do 

not function as geographic barriers to dispersal for the North American Rosy-Finch complex 

(Black Rosy-Finch [Leucosticte atrata], Grey-crowned Rosy-Finch [Leucosticte tephrocotis], 

Brown-capped Rosy-Finch) given the level of ongoing gene flow among these species 

(Drovetski et al. 2009, Funk et al. 2021). Ongoing gene flow among Brown-capped Rosy-Finch 

populations may be an important component that mitigates genomic offset and prevents genetic 

isolation. 

Here, we outline a process to assess climate vulnerability that considers evolutionary (e.g. 

genomic offset) and ecological factors (habitat suitability; Figure 1). We aim to answer the 

question: How can estimates of genomic offset and habitat suitability be combined to improve 

forecasts of climate vulnerability? Using genome-wide sequence data, we assessed population 

genetic structure and estimated levels of inbreeding and genetic diversity in order to describe 

spatial genetic variation and appropriately inform subsequent genetic-environment association 

(GEA) analyses (Forester et al. 2018, Funk et al. 2019). We performed environmental variable 

selection to identify a subset of uncorrelated predictors for use in the GEAs and ENMs. We 
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developed ecological niche models (ENMs) using the environmental predictor data and 

presence-absence data from the citizen-science database eBird (Sullivan et al. 2009). 

Additionally, we identified a subset of genomic variants associated with the environmental data 

and used these data to model allelic turnover across the landscape with gradient forest (Ellis et 

al., 2012; Fitzpatrick & Keller, 2015). Using ensembles of global climate models for two time 

periods, 2041-2070 and 2071-2100 (AdaptWest Project 2021), we then forecast climate 

vulnerability in relation to genomic offset and habitat suitability. We demonstrate a novel 

application of the niche margin index (Broennimann et al. 2021) to highlight uncertainty in 

genomic offset predictions due to novel climate conditions.  

Specifically, this study aimed to 1) characterize the magnitude of genetic change required 

to track climate change and where populations could persist to minimize genomic offset; 2) 

predict climate-driven habitat suitability shifts into the future, and 3) compare the underlying 

climatic drivers of, and spatial vulnerability to, genomic offset and habitat suitability. The 

integration of these approaches will provide a better understanding of evolutionary and 

ecological factors underlying species response to climate change and improve our ability to 

forecast climate change impacts on biodiversity. 

 
Methods 

Field sampling and sequencing 

We sequenced feather and blood samples from 116 individuals spanning 11 sites across 

the Brown-capped Rosy-Finch breeding distribution (Table 1.1).  Samples were collected during 

the breeding season of 2017 and 2018.  Individuals from the Lost Man Lake and Independence 

Lake sites were combined as a single sampling unit for subsequent analyses based on their 

proximity (< 1 km) and the low sample sizes (5 and 1 individuals, respectively). Engineer 
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Mountain and Horseshoe Basin sites were also in close proximity (< 5 km), but we retained them 

as separate sampling units due to the larger number of individuals per site (8 and 18 individuals, 

respectively). 

We extracted DNA from blood samples using the standard protocol for Qiagen DNEasy 

Blood and Tissue Kits and we modified the protocol to maximize DNA yield from feathers. 

Whole genome sequencing libraries were prepared following modifications of Illumina’s Nextra 

Library Preparation protocol. Pooled libraries were sequenced on HiSeq 4000 lanes at Novogene 

Corporation Inc. All sequence data were quality filtered (GATK: McKenna et al., 2010; 

BCFtools: Li, 2011; Samtools: Li et al., 2009)  and aligned (Burrows-Wheeler Aligner software; 

Li & Durbin, 2009) to a high-quality Brown-capped Rosy-Finch reference genome that was 

created by Dovetail Genomics through 10x de novo assembly and HiRise Scaffolding. The 

reference genome was created from liver samples of the Brown-capped Rosy-Finch (Denver 

Museum of Nature and Science samples DMNS52416 and DMNS52417). The reference genome 

was annotated with the most recent zebra finch annotations available (NCBI GCA_008822105.2) 

using the program Liftoff (Shumate & Salzberg, 2021). For the input into all subsequent 

analyses, we extracted high-quality single-nucleotide polymorphisms (SNPs; Supporting 

information). 

 

Population genetic structure 

We performed several analyses to describe geographic patterns of genetic variation. The 

presence of closely related individuals can skew signatures of population structure so we used 

KING (Manichaikul et al., 2010) to identify and remove individuals with up to second-degree 

relationships (kinship > 0.0884). PCA provides an efficient non-model-based method for 
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assessing population structure in high-dimensionality data sets (Patterson et al., 2006). We 

implemented principal components analysis (PCA) using the R package SNPrelate (Zheng et al., 

2012) in R version 3.6.2 (R Core Team, 2019). Additionally, we estimated individual ancestry 

coefficients with the snmf function in the R package LEA (Frichot et al., 2014; Frichot & 

François, 2015), and tested a range of clusters from K=1 to 6 with 100 iterations each. Finally, 

we tested for effects of isolation by distance (linearized FST versus log10 geographic distance) 

with a Mantel test in the R package adegenet (Jombart, 2008). Pairwise FST was calculated in 

VCFtools version 0.1.13 (Danecek et al., 2011). Pairwise FST provides an estimate of genetic 

divergence between populations where higher FST values indicate higher divergence. Genetic 

divergence can increase through genetic drift but is homogenized by gene flow between 

populations. Thus, any patterns of high FST between sites can be used to identify potential 

barriers to gene flow. The interaction between levels of gene flow and effective population size 

can result in different patterns of nucleotide diversity and inbreeding. We calculated nucleotide 

diversity across 25,000 base-pair windows and individual inbreeding coefficients using 

VCFtools (Danecek et al., 2011). We estimated contemporary effective population size using the 

LD method from NeEstimator (Do et al., 2014). 

 

Bioclimatic variables 

Snow is a major component of weather that shapes alpine communities. Snow cover can 

insulate soils from extreme cold air temperatures (Neuner, 2014) and also dictate the length of 

the growing season (Jonas et al., 2008; Keller et al., 2005). In some alpine plant species, 

reductions of snow cover can result in increased frost damage and decreased plant production 

(Abeli et al., 2012; Baptist et al., 2010; Inouye, 2000). The Brown-capped Rosy-Finch feeds on a 
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variety of seeds throughout the year and on insects during the breeding season (Johnson et al., 

2020; Martin et al., 1961; Packard, 1968; Warren, 1916). Elevation is an important component of 

the Brown-capped Rosy-Finch breeding range in relation to the presence of high elevation 

nesting cliffs (Johnson et al., 2020). To encapsulate the range of bioclimatic factors that may 

influence Brown-capped Rosy-Finch alpine breeding habitat, we obtained 32 bioclimatic 

variables and elevation from the AdaptWest Project at a 1 km resolution (Wang et al. 2016, 

AdaptWest Project 2021). Variable selection involved removing correlated variables (Pearson 

correlation coefficient > 0.75) and using expert opinion to select the most likely biological 

relevant predictor from correlated sets. To best represent the current time period that corresponds 

to our sampled data, we obtained the bioclimatic variables as means across the time period of 

1991-2020 and we obtained the dataset at an appropriate resolution for Brown-capped Rosy-

Finch breeding movements (1 km). 

 

Identifying putative adaptive variants 

We used two genetic-environment association (GEA) approaches to identify a set 

candidate SNPs that are associated with environment. First, we implemented the multivariate 

approach of redundancy analysis (RDA) as it performs well for detecting weak, multilocus 

signatures of selection (Forester et al., 2018). We performed RDA using environmental and 

elevation data from individual sampling locations as the predictor variables and individual 

genotypes as the response variables. To account for isolation by distance, we created Moran 

Eigenvector Maps (MEMs) from the geographic locations of sampling data and conditioned the 

RDA model on the MEMs. All RDA analyses were conducted with the R package vegan 

(Oksanen et al., 2013) and step-wise model selection was performed using the ordistep function. 
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Multicollinearity in the model was checked with variance inflation factors (VIF) and predictors 

with a VIF greater than 10 were removed (Zuur et al., 2010). RDA component contribution was 

used to determine the number of components included for identifying candidate SNPs. Candidate 

SNPs underlying local adaptation were identified by having p-values outside a three standard 

deviation cutoff (two-tailed p-value = 0.0027).  

Second, we used latent factor mixed models (LFMM) as a univariate regression model to 

identify candidate SNPs associated with each of the predictor variables (Frichot & François, 

2015). We set the number of K latent factors based on the results from the individual ancestry 

coefficient results. For each model, we set the false discovery rate to 0.05 and calibrated the p-

values by setting the genomic inflation factor to achieve a flat p-value distribution with a peak at 

0 (François et al., 2016). LFMM analysis was conducted in R using the LEA package (Frichot & 

François, 2015). SNPs identified in both RDA and LFMM were used as the candidate SNP set 

putatively underlying local adaptation. We identified chromosomal position and gene 

information of the candidate SNPs using the Bedtools ‘closest’ function (Quinlan & Hall, 2010) 

with the annotated Leucosticte australis genome. We identified candidate genes by selecting 

SNPs within 10,000 bases from genes of known function and tested for gene ontology 

enrichment with the chicken (Gallus gallus) genome using the Gene Ontology resource 

(Ashburner et al., 2000; Carbon et al., 2021; Mi et al., 2019). 

Importantly, GEA analyses rely on the assumption that current allele frequencies are at 

equilibrium with the environment (Capblancq et al., 2020; Lasky et al., 2018). However, 

populations may experience an adaptational lag associated with historical environmental 

conditions (Browne et al., 2019). To test the influence of this assumption, we created two 



 23 

candidate SNP sets based on two temporal periods: one that temporally encompassed our sample 

period (1991 – 2020) and one based on potential adaptational lag (1961 – 1990).  

 

Geographic distribution of putative adaptive variation 

We used the gradient forest algorithm to describe the associations of spatial, 

environmental, and genetic variables (Ellis et al., 2012; Fitzpatrick & Keller, 2015). Gradient 

forest is a machine learning method developed to model ecological community turnover in 

relation to environmental gradients by creating separate random forest models for each species 

(Breiman, 2001; Ellis et al., 2012). Community turnover is then identified by aggregating 

environmental predictor importance for each species. This concept has been extended to 

landscape genetics by substituting allele frequencies at genetic loci for species and modeling 

adaptive genetic composition across the landscape (Fitzpatrick & Keller, 2015). The turnover 

functions in gradient forest allow for inference of the environmental predictors driving observed 

changes in allele frequency (Fitzpatrick & Keller, 2015). We fit gradient forest models to 

environmental and spatial data as predictors for the 9 sampling sites with at least 6 individuals 

using the package gradientForest (Smith & Ellis, 2013). We modeled adaptive genetic variation 

turnover on the landscape using the candidate SNP set as the response variable. Model tuning 

was performed on the parameters mtry (random subset of predictors used in random forest) and 

ntree (number of trees grown in each forest; Hastie et al., 2009). We evaluated model 

performance with prediction accuracy calculated from the out-of-bag samples (Ellis et al., 2012). 

We tested model performance of the candidate SNPs against a randomized model of candidate 

SNP allele frequencies and a SNP set that included putatively neutral loci (Supporting 
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information). Using the top gradient forest model, we interpolated genetic composition across the 

remaining 1 km2 cells from the breeding range for which we did not sample genetic data. 

 

Habitat suitability under climate change 

We created ENMs using the ensemble modeling approach in the R package biomod2 

(Thuiller et al. 2016; Supporting information). Presence-absence data were obtained from the 

eBird Basic Dataset (Sullivan et al., 2009) using the R package ebirdst (Strimas-Mackey et al. 

2021). We used the same uncorrelated set of environmental predictor variables as in the GEA 

analyses. Models were trained on random subsets of 80% of the data with 10 replications for 5 

algorithms (regression based methods: generalized linear model (GLM; McCullagh and Nelder 

2019), multiple adaptive regression splines (MARS; Friedman 1991), and machine learning 

methods: gradient boosting trees (GBM; Elith et al. 2008), maximum entropy (Maxent; Phillips 

et al. 2006), artificial neural networks (ANN; Lek and Guégan 1999)). Given the focus of our 

subsequent analyses on temporal forecasting, we aimed to use a set of algorithms with balanced 

biases and avoided models that tend to project extreme outcomes (Beaumont et al., 2016). Model 

performance was based on total area under the receiver operator and the relation of specificity 

and sensitivity (true skills statistic, TSS). Only the top performing algorithms were included in 

the final ensemble model. Binary rasters of suitable/unsuitable habitat were created based on a 

TSS threshold that maximized the sum of specificity and sensitivity since this has been shown to 

effectively represent presence (Jiménez-Valverde & Lobo, 2007). 

Future distribution was modeled for two time periods (2041-2070 and 2071-2100) and for 

four different Shared Socioeconomic Pathways (SSPs). The SSPs vary in the possible climate 

change challenges global socioeconomic policy will produce (O’Neill et al., 2016): SSP126 (low 
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challenges), SSP245 (medium challenges), SSP370 (high challenges), and SSP585 (high 

challenges). Given that the SSP585 scenario most closely tracks the recent climate predictions 

from the Intergovernmental Panel on Climate Change report (IPCC, 2021), we used the SSP585 

results for all figures in the main body of the article and provided details of the other scenarios in 

the Supporting information. For all possible combination of time period and SSPs (8 

combinations), we obtained 1 km resolution bioclimatic data from 13 General Circulation 

Models provided by AdaptWest (Wang et al. 2016, AdaptWest Project 2021). We test for 

upward elevational shifts in habitat suitability between current and future projections using a 

two-sample t-test for the elevation values in the suitable habitat binary rasters. 

 

Genomic offset to climate change 

Genomic offset estimates the magnitude of evolutionary adaptation needed for a 

population to keep pace with climate change (Capblancq et al., 2020; Rellstab et al., 2021). 

When using gradient forest models, genomic offset is calculated by the Euclidean distance 

between current genetic composition with the predicted genetic composition based on future 

environment (Fitzpatrick & Keller, 2015). We calculated the mean genomic offset for each cell 

across the different SSP and time period combinations of future climate. In gradient forest 

models, environmental values outside the range of the provided trained values from sampling 

sites result in extrapolation of genetic composition. We used the default method of linear 

extrapolation from the non-linear turnover functions in the gradientForest package (Smith & 

Ellis, 2013; Supporting information). 

 

Quantifying uncertainty in genetic-environment associations 
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The niche margin index (NMI) is a metric that characterizes the distance from niche 

margins with 0 representing the margin, 1 being the maximum value within the niche, and 

decreasing negative values representing distance outside the niche (Broennimann et al., 2021). 

We use this concept to quantify the niche margins of the observed environmental data from our 

sampling sites and then measure NMI for all raster cells in the genomic offset predictions of 

future climate. In our usage of NMI, negative values represent regions with novel future climate 

conditions in relation to the current observed genetic-environment associations (i.e. at the 

sampling sites). Positive NMI values represent regions with future climate conditions that are 

currently experienced on the breeding range. Thus, genomic offset predictions in regions with 

positive NMI are based on the space-for-time assumption in the gradient forest models 

(Capblancq et al., 2020), while genomic offset predictions in regions with negative NMI indicate 

higher model uncertainty due to extrapolation in the gradient forest models. 

 

Results 

Population genetic structure 

Whole-genome sequencing produced genomic data with an average 6x depth of coverage 

and variant filtering resulted in 429,442 SNPs for subsequent genetic analyses. We removed 12 

individuals from the data set due to relatedness. Visualizing PCA results revealed weak 

clustering of Pike’s Peak individuals from other sampling sites. The weak PCA clustering of 

individuals suggests low genetic differentiation among the sites, which was also supported by 

low pairwise FST values ranging from 0 to 0.042 (mean FST = 0.012). The Mantel test did not 

identify associations between genetic and geographic distance (r = -0.003, p-value = 0.42), but 

visualization of these pairwise comparisons revealed the Pike’s Peak population had elevated 
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genetic differentiation compared to other site comparisons. Individual ancestry coefficients had 

the lowest cross-entropy values for K=1 clusters (cross-entropy = 0.870). Results for K=2 had 

only slightly higher cross entropy (0.872) and revealed separation of Pike’s Peak individuals, 

similar to PCA results. Nucleotide diversity was similar across sampling locations (pi mean = 

0.00053, range = 0.00047-0.00056; Table 1.1). The per-individual F inbreeding statistic was also 

similar across sampling locations (F mean = 0.11, range = 0.02 – 0.25; Table 1). Effective 

population size for the five sampling locations that had sufficient sampling size ranged from 108 

– 403 (Table 1.1). 

 

Identifying putatively adaptive variants 

The final uncorrelated environmental variable set consisted of mean temperature of the 

warmest month (MWMT), precipitation as snow (PAS), and summer heat moisture index (SHM; 

mean summer temperature divided by summer precipitation), as well as elevation. For RDA, we 

retained the first MEM (MEM1) spatial predictor for accounting for population structure as it 

was uncorrelated with the other predictor variables and explained 42.4% of the spatial variation. 

Model selection in the RDA retained all predictor variables. RDA outlier SNPs putatively 

associated with climate were identified by loadings on the first constrained axis. We identified 

2,040 and 2,045 candidate SNPs from the 1961 – 1990 and 1991 – 2020 environmental predictor 

data sets, respectively. In LFMM, we used a lambda of 0.7 to achieve the optimal distribution of 

p-values for each of the four predictor tests. With K=2 latent factors, we identified 4,844 and 

4,502 candidate SNPs from the 1961 – 1990 and 1991 – 2020 environmental predictor sets, 

respectively. Intersecting the RDA and LFMM data sets identified 501 and 436 candidate SNPs 

for the 1961 – 1990 and 1991 – 2020 environmental predictor sets, respectively. Gene ontology 
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enrichment analysis identified 12 genes associated with the biological process glutamatergic 

regulation of synaptic transmission (Gene Ontology ID: 0051966, p-value = 2.69e-6, false 

discovery rate = 3.67e-2) and 6 genes associated with regulation of small GTPase mediated 

signal transduction (Gene Ontology ID: 0051056, p-value = 2.73e-6, false discovery rate = 

1.86e-2). 

 

Geographic distribution of putative adaptive variation and habitat suitability 

Our evaluation of tuning parameters in gradient forest models identified the out-of-bag 

testing accuracy to reach convergence with 100 trees (ntree = 100). Using all predictors in each 

tree (mtry = 5) achieved the highest proportion of variance explained across the predictors. The 

comparison of the two time period predictor sets, with the corresponding candidate SNPs, 

revealed similar relative predictor importance. Therefore, we continued all subsequent analyses 

with the 1991-2020 predictor set and candidate SNPs. With the candidate SNP set, raw predictor 

importance was ranked in descending order of precipitation as snow (PAS), mean temperature of 

the warmest month (MWMT), summer heat moisture index (SHM), elevation, and MEM-1 

(Figure 1.2a). The order and magnitude of importance in the top predictor variables was not 

reflected in the randomized candidate SNP set or the reference SNP set that included neutral 

variation (Figure 1.2a). Turnover functions for the predictors revealed mostly step-wise patterns 

of allelic turnover, except for sharp turnover between precipitation as snow values of 500 – 600 

mm (Figure 1.2b-f). Sampling sites were most strongly separated in genetic composition 

turnover driven by precipitation as snow (Figure 1.3a). 

Filtering eBird data resulted in 192 presence points and 4,973 absence points in the 

ENMs. The Maxent and GLM algorithms were used for the ensemble ENM as they had the 
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strongest ability in discerning species presence with high mean true skills statistic across runs 

(Maxent: 0.86 +/- 0.03 standard deviation, GLM: 0.86 +/- 0.03) and area under the receiver 

operator curve (AUC; Maxent: 0.97 +/- 0.01, GLM: 0.95 +/- 0.02). Environmental variable 

importance was similar among the algorithms with MWMT, PAS, and elevation as the most 

important variables. Binary rasters were created using a habitat suitability threshold of 0.03 

derived by maximizing the specificity and sensitivity of the model. The highest values for habitat 

suitability were produced for the highest elevation portions of the breeding range with lower 

habitat suitability in the northwestern portions of the Rocky Mountains (Figure 1.3b). 

 

Genomic offset and habitat suitability under climate change 

The magnitude of genomic offset was highly variable across the breeding range with 

some of the lowest values in the southwestern mountains (Figure 1.3c). Some of the eastern 

mountain ranges had the largest concentration of high genomic offset values (Figure 1.3c). While 

the magnitude of genomic offset increased with climate scenario and time period, the spatial 

patterns of the relatively low and high genomic offset remained the same. The ENM models 

revealed that future suitable habitat broadly became more fragmented in the 2041-2070 time 

period (Figure 1.3d). Future suitable habitat shifted upward in elevation from baseline habitat 

suitability projections by a mean of 178 m (3,367 m to 3,545 m) across all raster cells (t = -74.6, 

df = 35378, p-value < 2.2e-16, 95% CI: 173.3, 182.7). Less severe climate scenarios showed 

reduced range contraction, and range contraction increased when forecasted to the 2071-2100 

time period. 
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Quantifying uncertainty in genetic-environment associations 

For the baseline time period, the majority of the geographic region for which we 

interpolated genetic composition was within or close to the niche margins derived from our 

sampling sites (Figure 1.4a). For the 2041-2070 time period, a larger portion of the range shifted 

outside the niche margins, broadly indicating a shift to novel climate conditions. Comparing the 

environmental data among time periods showed in overall decrease in future precipitation as 

snow (Figure 1.4b) and increases in mean temperature of the warmest month (Figure 1.4c) and 

summer heat moisture index (Figure 1.4d). The largest shift to novel climate conditions occurred 

with the temperature of the warmest month (Figure 1.4c). Combining visualizations of genomic 

offset, habitat suitability, and NMI showed that the central portion of the breeding range had the 

most uncertain genomic offset predictions due to climate shifts (Figure 1.5). 

 

Discussion 

In this study, we evaluate climate change consequences related to disruptions of climate 

conditions putatively underlying local adaptation and habitat suitability on the breeding range of 

an alpine specialist, the Brown-capped Rosy-Finch. Persistence of Brown-capped Rosy-Finch 

populations in the face of climate change may depend on rapid adaptation in a contracted region 

of suitable habitat. We broadly demonstrate genomic offset predictions by themselves can be 

problematic for inferring vulnerability to climate change when 1) changes in habitat suitability 

preclude a population from persisting in a region of forecasted low genomic offset and/or 2) 

when there are widespread regions forecasted to experience novel climate conditions. 
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Comparing climate drivers of habitat suitability and local adaptation 

For the Brown-capped Rosy-Finch, precipitation as snow, mean temperature of the 

warmest month, and elevation were the strongest predictors of habitat suitability. Our results 

forecast that the lowest elevational limits of suitable habitat for Brown-capped Rosy-Finches will 

contract to higher elevations. Similar forecasts of suitable habitat loss at lower elevations have 

been made for another alpine-obligate species complex (avian genus Lagopus; Scridel et al. 

2021). Importantly, the upward elevational shift of predicted high habitat suitability may not 

necessarily correspond to a similar scale of actualized range contraction. A key factor that may 

mitigate climate change risks for alpine species, especially in the Rocky Mountains, is the highly 

heterogeneous topography of the alpine landscape (Seastedt & Oldfather, 2021). Alpine 

microtopography can result in thermal refugia along short horizontal distances that mimic air 

temperature changes of hundreds of meters upslope (Scherrer & Körner, 2010). The American 

Pika (Ochotona princeps) is an example of a small alpine species that can behaviorally adapt to 

suboptimal thermal regimes by using different microhabitats (Millar et al., 2018; Rodhouse et al., 

2017). While the thermal tolerance of the Brown-capped Rosy-Finch is unknown, behavioral 

adaptation to microhabitat use may be an important component of their climate change response. 

Given that Brown-capped Rosy-Finches nest in cliffs (Hendricks, 1977; Packard, 1968; Sclater, 

1912), small changes in nesting site selection (e.g. cliff aspect) could provide dramatic 

differences in the microhabitat climate. Research into Rosy-Finch microhabitat usage and 

physiology would provide much needed additional information regarding predicted response to 

climate change. 

The amount of precipitation as snow appears to have biological importance for both local 

adaptation and the realized niche for the Brown-capped Rosy-Finch (Figure 1.2b). In alpine plant 
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communities, snow cover can have a large effect on flower abundance and the evolution of 

adaptive traits to reduce frost damage (Inouye, 2000). In turn, this could affect Brown-capped 

Rosy-Finches foraging in the breeding season as they feed on available insects and seeds from a 

wide-range of plant species and families (Johnson et al., 2020; Packard, 1968). Our findings of 

candidate SNPs having enriched gene ontology categories – synaptic transmission (GO:0051966) 

and GTPase mediated signal transduction (GO:0051056) – provide an avenue for future research 

to understand environmental selective pressures. Of the 18 genes we identified in these gene 

ontology categories, 8 genes (CDC42SE2, RASA3, ITGB1, SLIT2, RASGEF1A, GRIK2, GRM3, 

NRXN1) are associated with cognitive function, 3 with high-altitude adaptation (GRM5, NRXN1, 

HCN1), and 2 with feather color and morphology (KITLG, GRM8). The cognitive-associated 

genes SLIT2 and GRM3 have been identified as being important to the foraging and food-caching 

habits of a montane bird, the Mountain Chickadee (Poecile gambeli; Branch et al., 2022). White-

tailed Ptarmigan (Lagopus leucura) is another alpine specialist with low genetic differentiation 

and range-wide adaptive divergence potentially associated with diet (Fedy et al., 2008; 

Zimmerman et al., 2021). For Brown-capped Rosy-Finch, further elucidating the connections 

between gene functions and local adaptation (e.g. linking genotypes and phenotypes) is an 

important next step in understanding the effects of climate change. 

 

Geographic patterns of climate vulnerability 

Our integrative forecast of range shift and genomic offset in the Brown-capped Rosy-

Finch shows that climate vulnerability from decreased habitat suitability and increased genomic 

offset do not necessarily align spatially. For example, some of the northern mountain ranges had 

low to medium values of genomic offset (Figure 1.3c) but were not forecasted to have suitable 
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habitat in the future (Figure 1.3d). However, some southwestern regions with the highest 

genomic offset (Figure 1.3c) also showed high vulnerability to loss of suitable habitat in the 

future (Figure 1.3d). Broadly, these results show that interpretation from genomic offset 

predictions alone leave out important considerations of climate vulnerability. Furthermore, these 

results underscore the importance of using multiple measures of vulnerability for informing 

conservation and management (Dawson et al., 2011; Rellstab et al., 2021). For organisms that 

inhabit regions experiencing large climate shifts, even the lowest genomic offset values may 

indicate relatively large allelic shifts required for a population to retain optimal genetic-

environment associations.  

Alpine climate conditions are changing dramatically in the Southern Rocky Mountains, 

especially in relation to snowpack (Pederson, Gray, Ault, et al., 2011; Pederson, Gray, 

Woodhouse, et al., 2011) and summer temperature increases (Pepin et al., 2022). In our study, 

NMI results suggest that the central and northwest portion of the Brown-capped Rosy-Finch 

breeding range are shifting to novel climate conditions (Figure 1.4a).  Of the bioclimate variables 

most tied to habitat suitability and putative adaptive variation, the amount of precipitation as 

snow is decreasing across the breeding range in the future (Figure 1.4b) and the mean 

temperature of the warmest month is dramatically increasing (Figure 1.4c). However, our 

characterization of change in these specific bioclimate variables is based on the ecological niche 

model predictions of range from eBird citizen science data. Importantly, citizen science data for 

this organism may be more likely to be collected at lower elevations that are more accessible to 

observers than the higher elevation portions of the breeding range. This sampling bias could 

over- (or under-) estimate the current distribution of the breeding range, as well as the 

distributions of climate values across future time periods (Figure 1.4b-d). Nonetheless, our NMI 
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measures, which were solely based on climate distance from the climate niche defined by our 

sampling sites, reveal large climate shifts across high elevation portions of the range (Figure 

1.4a). 

 

Considerations in forecasting genomic offset 

Recent reviews have highlighted a number of key assumptions and limitations that need 

to be addressed in the ongoing development of genomic offset methods for effective use in 

conservation (Capblancq et al., 2020; Rellstab et al., 2021). Genomic offset approaches assume 

that similar future conditions will result in similar genetic composition (space-for-time 

assumption). While this assumption may be problematic (e.g. multiple genetic architectures 

underlying an adaptive optimum), novel future conditions further increase the uncertainty of 

population response due to predicted genetic composition from unobserved environmental 

conditions. To address part of the uncertainty temporal extrapolation, we used the niche margin 

index highlight these regions of extrapolation to future climate conditions (Figure 1.4a). Given 

the reliance of gradient forest methods on temporal extrapolation from nonlinear turnover 

functions, potentially to novel conditions, we strongly recommend future studies to provide some 

measure of this uncertainty. Another similar assumption is that populations are at adaptive 

equilibrium with the temporal period during which genetic-environment associations are being 

tested. Long-lived species (e.g. trees) are particularly prone to violate this assumption given that 

populations may have been established centuries ago with different selection pressures (Rellstab 

et al., 2021). For the shorter-lived Brown-capped Rosy-Finch, we tested for the potential 

influence of adaptational lag by comparing environmental predictors between two baseline 

environmental periods. While our results suggested limited differences in genetic-environment 



 35 

associations with these two periods, additional study into the role of effective population size and 

genetic drift in adaptive (non)equilibrium in this this system may be insightful (Láruson et al., 

2022). 

Furthermore, incorporating factors of evolutionary adaptation into genomic 

maladaptation forecasting methods could further refine these predictions. Large populations with 

gene flow and minimal genetic drift are expected to have higher adaptive potential than small, 

isolated populations (Funk et al. 2019). Our results show that Brown-capped Rosy-Finches have 

relatively high genetic connectivity and previous studies have showed that there is introgression 

within the Rosy-Finch complex (Drovetski et al., 2009; E. R. Funk et al., 2021). Gene flow can 

promote the rapid spread of beneficial alleles among populations and also maintain standing 

genetic variation for novel selection pressures (Bernatchez, 2016; Tigano & Friesen, 2016; 

Yeaman, 2015). Given that genomic offset does not account for gene flow, estimates of genomic 

offset may overestimate or underestimate future maladaptation (Exposito-Alonso et al., 2017). In 

the case of the Brown-capped Rosy-Finch, understanding the influence of gene flow on 

adaptation to a changing environment is an important next step for incorporating these results 

into management decisions. 

 

Conclusion 

Here we show that the Brown-capped Rosy-Finch faces climate threats across their 

breeding range from changing habitat suitability and disruptions of genetic-environment 

associations. Future persistence may depend on rapid adaptation to novel climate conditions in a 

contracted breeding range. Expanding future research to forecast climate threats across the fall 

and wintering range would facilitate an assessment of climate vulnerability across the full annual 
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cycle. We also note the importance of identifying the potential for behavioral adaptation to 

alpine microrefugia that may mitigate climate change threats. The results of this study highlight 

the importance of combining multiple methods to characterize climate vulnerability in a more 

nuanced manner than provided by any of the methods alone. 
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Tables and figures 

Table 1.1. ID = four letter abbreviation for sample locations used in the manuscript. Latitude and longitude specify the coordinates for 
sampling site locations and sample size specifies the number of individuals captured at these locations. MWMT is the mean 
temperature of the warmest month (°C), PAS is the annual amount of precipitation as snow (mm), SHM is the summer heat moisture 
index (calculated by dividing MWMT by the mean summer precipitation), and the last column is the elevation of the sampling site 
(m). Pi = mean nucleotide diversity across 25000 base pair windows. F = individual inbreeding statistics. Ne = effective population 
size for locations with sufficient sample size for the linkage disequilibrium method of calculation. Two sampling sites (Engineer 
Mountain and Horseshoe Basin) from which individuals were combined as a unit for analyses due to close proximity of the sites, 

indicated by *. 

Location ID Lat Lon N MWMT PAS SHM Elevation Pi F Ne 

Devil's Causeway DECA 40.03 -107.16 15 11.2 954 32.9 3508.6 0.00053 0.10 403 

Emma Burr 
Mountain 

EBMO 38.75 -106.41 3 10.5 413 39.9 3743.9 0.00047 0.24 - 

Engineer Mountain ENMO 37.96 -107.57 8 9.7 783 29.4 3825.7 0.00053 0.09 - 

Horseshoe Basin HOBA 37.94 -107.55 18 9.3 820 28.1 3891.4 0.00056 0.02 236 

Independence Lake LMIN* 39.14 -106.56 1 9.5 603 33.4 3937.2 0.00053* 0.13* - 

Lake Agnes LAAG 40.47 -105.89 15 10.1 927 27.1 3586.2 0.00055 0.04 - 
Lost Man Lake LMIN* 39.14 -106.57 5 9.5 603 33.4 3937.2 0.00053* 0.13* - 

Mt. Maxwell MOMA 37.24 -105.14 7 10.0 598 25.2 3825.3 0.00053 0.15 - 
Mt. Evans MTEV 39.58 -105.64 11 8.2 543 22.4 4163.8 0.00051 0.18 108 

Pike’s Peak PIPE 38.83 -105.04 21 8.8 407 17.0 4066.0 0.00052 0.02 217 
Snowy Range SNRA 41.36 -106.30 12 11.5 943 35.1 3406.7 0.00052 0.11 140 



 38 

 
 

Figure 1.1. Workflow for combining ecological niche modelling and genomic offset for 
determining population-level climate vulnerability. Genomic data and occurrence data inform 
environmental variable selection by providing the geographic points for which environmental 
correlation is calculated. Species' life history information informs which variables are selected 
from correlated pairs, resulting in an uncorrelated set of environmental variables. Candidate 
adaptive SNPs are obtained through genetic- environment association outlier analyses using the 
environmental variables and genomic data. The resulting candidate SNPs are the input into 
gradient forest models which predict adaptive genetic composition across the landscape. The 
subset of environmental variables are also used with occurrence data in ecological niche models 
to habitat suitability. Gradient forest models are used to predict adaptive genetic composition to 
future climate and the distance with the baseline environment provides the measure of genomic 
offset. Additionally, the niche margin index is calculated to quantify the extrapolation to novel 
climate. Ecological niche models are also projected to future climate to provide a measure of 
future habitat suitability. The integration of these models provides a description of where 
populations are most likely to persist in the future and the magnitude of genetic change required 
to persist there. Furthermore, regions of novel climate are depicted to highlight uncertainty in the 
forecasting method. 
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Figure 1.2. Performance of gradient forest models. (a) Raw R2 importance values for variables 
used as predictors in gradient forest model for three different datasets, which are: “All” is the 
total genomic variant set of 429,442 SNPs, “candidate” is the 436 candidate SNPs associated 
with the 1991–2020 baseline environment, and “random” is randomized genotypes of the 
candidate SNPs among the sampling locations. Using the candidate SNPs, larger raw importance 
values were obtained with the environmental predictors (precipitation as snow, mean temperature 
of the warmest month, and summer heat moisture index) than in the other two SNP sets. (b-f) the 
turnover functions from gradient forest model show the weighted cumulative importance values, 
which represent the relative importance of a variable in explaining changes in allele frequency. 
Here, only (b) precipitation as snow reveals consistently higher importance in the candidate SNP 
set than the other two datasets. 
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Figure 1.3. (a) Mapping of genetic composition from the candidate SNP gradient forest model 
with colours based on the biplot of environmental variable contribution to allele frequency 
change. Similar colours represent regions predicted to contain populations with similar genetic 
composition based on environment. Sampling sites represented by grey triangles. (b) Habitat 
suitability from the ENM for the current time period had the highest habitat suitability values in 
the highest elevation portions of the breeding range (bright yellow). The northwestern mountain 
ranges (e.g. snowy range and Devil's causeway) had some of the lower values of habitat 
suitability (darker colours). Using the future time period of 2041–2070 and the SSP 585 scenario 
we predicted genomic offset and habitat suitability. (c) Genomic offset was highly variable 
across the breeding range with some of the lowest values (blue) in the southwestern mountains 
and highest (red) in the eastern mountain ranges. (d) Habitat suitability decreased across the 
range with isolated patches of high suitability (bright yellow). 
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Figure 1.4. Identifying the magnitude of climate shift to novel conditions. (a) Calculating the 
niche margin based on our sampling sites and the niche margin index to future climate revealed 
large portions of the breeding range shifting to novel climate conditions (purple). The southern 
portions of the breeding range had the largest geographic areas retaining similar climate 
conditions (green) to the sampling sites. (b–d) of the three environmental variables in the 
gradient forest model that change temporally (i.e. excluding elevation), the largest shifts to novel 
conditions are present in the mean temperature of the warmest month. 
 

 
  



 42 

 
 

Figure 1.5. Population-level vulnerability to future climate of 2041– 2070. Colours represent 
genomic offset and the niche margin index (NMI). Genomic offset ranges from 0.05 (blue) to 
0.12 (red), and the transparency of the colours reflects NMI. Bright colours represent NMI 
within the niche margins (between 0 and 1), while decreasing negative NMI values (novel 
climate) are represented by the darkening of the colours. Genomic offset predictions are shown 
for the predicted future suitable breeding range from the ecological niche model. The current 
ENM projection (1991– 2020) is shown with shaded black lines. The central and northwestern 
portions of the range have the largest concentration of regions shifting to novel climate, and 
therefore uncertain forecasting predictions. 
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2. POPULATION ASSIGNMENT FROM GENOTYPE LIKELIHOODS FOR LOW-
COVERAGE SEQUENCING DATA 

 
 
 
Summary 

Low-coverage whole genome sequencing (WGS) is increasingly used for the study of 

evolution and ecology in both model and non-model organisms; however, effective application 

of low-coverage WGS data requires the implementation of probabilistic frameworks to account 

for the uncertainties in genotype likelihood data. Here, we present a probabilistic framework for 

using genotype likelihood data for standard population assignment applications. Additionally, we 

derive the Fisher information for allele frequency from genotype likelihood data and use that to 

describe a novel metric, the effective sample size, which figures heavily in assignment accuracy. 

We make these developments available for application through WGSassign, an open-source 

software package that is computationally efficient for working with whole genome data. Using 

simulated and empirical data sets, we demonstrate the behavior of our assignment method across 

a range of population structures, sample sizes, and read depths. Through these results, we show 

that WGSassign can provide highly accurate assignment, even for samples with low average read 

depths (< 0.01X) and among weakly differentiated populations. Our simulation results highlight 

the importance of equalizing the effective sample sizes among source populations in order to 

achieve accurate population assignment with low-coverage WGS data. We further provide study 

design recommendations for population-assignment studies and discuss the broad utility of 

effective sample size for studies using low-coverage WGS data. 
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Introduction 

In just a few years, next-generation sequencing (NGS) technologies have revolutionized 

the study of evolution and ecology in both model and non-model organisms, and have become 

established as standard tools in molecular ecology. In particular, whole genome sequencing 

(WGS) can provide sequence data from a large proportion of the genome and is increasing in 

use. While large-scale WGS projects can be prohibitively expensive at the necessary read depths 

for accurately calling individual genotypes, low-coverage WGS offers a cost-effective approach 

aimed at reducing the read depth per individual while retaining sufficient information for 

genomic analyses. However, since low-coverage WGS precludes the ability to call individual 

genotypes, probabilistic frameworks are used to account for the uncertainty in an individual’s 

genotype (Nielsen et al. 2011; Buerkle & Gompert 2013). Extending common analyses in the 

field of molecular ecology to accommodate genotype uncertainty through the direct use of 

genotype likelihoods is a necessary advance for broadening the utility of low-coverage WGS. 

The creation of probabilistic frameworks for allele frequency estimation, genotype 

calling, and single nucleotide polymorphism (SNP) calling have made low-coverage WGS 

practical for many applications (Nielsen et al. 2011, 2012; Kim et al. 2011). By first estimating 

the joint site frequency spectrum for individuals without calling individual genotypes, priors on 

allele frequency can improve the calling of individuals’ genotypes and SNPs. Population 

genetics analyses have been further advanced through the development of methods that quantify 

genetic differentiation and investigate population structure with principal components analysis, 

while accounting for uncertain genotypes (Fumagalli et al. 2013). Similarly, accurate estimates 

of individual admixture proportions (Skotte et al. 2013) and pairwise relatedness (Korneliussen 

& Moltke 2015)  can be obtained using genotype likelihoods. The widespread use of these 
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methods is facilitated by software that is both user-friendly and computationally efficient (e.g. 

ANGSD (Korneliussen et al. 2014), ngsTools (Fumagalli et al. 2014), PCangsd (Meisner & 

Albrechtsen 2018)). However, a fundamental analysis for molecular ecology yet to be developed 

for low-coverage WGS data is population assignment. 

Population assignment methods are used to determine an individual’s population of 

origin and have provided insight into ecological and evolutionary processes, such as dispersal, 

hybridization, and migration, as well as informed conservation and management decisions 

(Manel et al. 2005). The traditional assignment test uses an individual’s multilocus genotype and 

the source populations’ allele frequencies to calculate the likelihood of the genotype originating 

from each of the populations (Paetkau et al. 1995; Rannala & Mountain 1997). Using this 

framework, the recent increase in available markers (e.g., from RADseq approaches) has made 

possible highly accurate assignment of individuals among weakly differentiated populations by 

using subsets of informative loci for population structure (e.g. DeSaix et al. 2019; Ruegg et al. 

2014; Benestan et al. 2015). The traditional assignment test is readily extended to analyses such 

as genetic stock identification (GSI), to determine the proportion of source populations in a 

mixture of individuals Smouse et al. (1990). To date, methods for performing assignment tests 

require known genotypes and have not been implemented to use genotype likelihoods. 

Assignment tests are well suited for application with low-coverage WGS data, because 

they rely heavily on allele frequency estimates, for which a number of approaches are already 

developed. For accurate allele frequency estimation from low coverage WGS data, simulation 

studies have demonstrated that prioritizing larger sample sizes of individuals with lower 

sequencing depth is the most cost-effective strategy (Buerkle & Gompert 2013; Lou et al. 2021; 

Fumagalli 2013). Specific recommendations include aiming for individual sequencing depths of 
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1x (Buerkle & Gompert 2013) or having at least 10 individuals sequenced with a total per-

population sequencing depth of at least 10x (Lou et al. 2021).  The goal of these strategies is to 

maximize information for estimating allele frequencies given finite resources for sequencing 

depth and number of samples. Lower sequencing depth decreases the amount of information 

about population allele frequency, while using larger sample sizes increases the amount of 

information. However, information is not directly quantified in these studies; rather comparison 

of known versus simulated allele frequencies were used to arrive at these general rules of thumb 

(Buerkle & Gompert 2013; Lou et al. 2021). The development of an information metric that 

accounts for read-depth variation across genotypes would provide a valuable method to quantify 

the thresholds of information needed for parameter estimation with low-coverage WGS data. 

Here we present WGSassign, an open-source software package of population assignment 

tools for genotype likelihood data from low coverage WGS. The objectives of WGSassign are: 

1) provide common assignment methods that use genotype likelihoods, instead of called 

genotypes, 2) evaluate the information available in low-read-depth sequencing data for allele 

frequency estimation, and 3) achieve computational efficiency for processing large numbers of 

samples with genome-wide data. WGSassign provides methods for individual assignment, 

estimation of mixture proportions, and leave-one-out cross-validation of samples of known 

origin. Additionally, it calculates a z-score metric that can indicate when samples originate from 

an unsampled source population. For the second objective, we calculate Fisher Information and 

determine the effective sample size—the number of samples with completely observed genotypes 

that would yield the same amount of statistical information for estimating allele frequency as the 

observed genotype likelihoods in a dataset. This calculation of effective sample size has broad 

utility for population genomics studies using low-coverage WGS. 
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We validate WGSassign and investigate its behavior with an extensive set of simulations 

and demonstrate its use on two empirical datasets. In the first, we apply WGSassign to weakly 

differentiated groups of yellow warblers (Setophagia petechia). In the second, we apply 

WGSassign to two well-differentiated Chinook salmon (Oncorhynchus tshawytscha) populations 

to demonstrate that when sufficient effective sample sizes of the source population are available, 

unknown individuals can be assigned accurately, even at extremely low read depths. 

 

Methods 

WGSassign is written in Python 3 (https://www.python.org/) and requires the following 

modules: numpy (https://numpy.org/), cython (https://cython.org/), and scipy (https://scipy.org/). 

Detailed instructions for using WGSassign are available at 

https://github.com/mgdesaix/WGSassign. 

 

Population Assignment 

We assume that there are K sampled source populations to which an individual can be 

assigned using data from L biallelic loci in the genome. Let a diploid individual’s genotype at 

locus ℓ (1 ≤ ℓ ≤ L) be represented by Gℓ ∈ {0, 1, 2}, which counts the number of alleles matching 

the reference genome carried by the individual at locus ℓ. Denote by θk,ℓ the true—but typically 

unkown—frequency of the alternate allele at locus ℓ within source population k. Under the 

assumption of Hardy-Weinberg equilibrium, the probability of Gℓ, when the individual is from 

population k is: 

http://www.python.org/)
https://github.com/mgdesaix/WGSassign
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 (1) 

With low-coverage sequencing data, Gℓ is not observed with certainty. Rather, evidence 

about the unknown genotype is obtained from sequencing reads covering the locus.  Let Rℓ 

denote the sequencing read data from an individual at locus ℓ. The evidence for the state of Gℓ 

from the read data is summarized as the likelihood of the genotype given the read data, which is 

simply the probability of the read data given the genotype, considered as a function of the 

genotype:   

(2) 

Without loss of generality, we consider these likelihoods to be scaled so that they sum to 

one: gℓ,0 + gℓ,1 + gℓ,2 = 1. Such likelihoods are typically a function of the number of reads of each 

allele observed and the corresponding base quality scores, and they are computed during 

genotype calling by a variety of programs such as bcftools (Li et al. 2009; Li 2011), GATK 

(McKenna et al. 2010), and ANGSD (Korneliussen et al. 2014). An accessible review of the 

different models providing genotype likelihoods is found in (Lou et al. 2021). 

To do population assignment from the read data of an individual (rather than from 

directly observed genotypes) requires, for each locus, ℓ, the likelihood that the individual came 

from a source population k, say, given the individual’s read data. This is simply the probability 

of the read data from the individual given that the individual came from source population k, 
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with allele frequencies θk,ℓ. Thus, we require P(Rℓ|θk,ℓ), which can be calculated from (1) and (2) 

using the law of total probability: 

(3) 

If the L loci in the genome are not in linkage disequilibrium (LD), and are hence 

independent of one another, within source populations, then the likelihood of source population k 

given R, the read sequencing data across the entire genome, is simply the product over loci. 

(4) 

where θk denotes the set of all L allele frequencies in population k.  Of course, with 

lcWGS some variants may be near one another and will then likely be in LD. In such a case (4) 

is not correct, but, rather, is a composite-likelihood approximation to the true likelihood (which 

is largely intractable).  Composite likelihood estimators often produce unbiased results, but, 

because they do not take account of the dependence of different variables in the likelihood, they 

typically underestimate the uncertainty in the estimates (Larribe & Fearnhead 2011). For each 

individual of unknown origin, this likelihood can be computed for each source population, k, and 

the relative values of those likelihoods gives the evidence that the individual came from each of 

the source populations. If the prior probability πk that an individual came from source population 

k is available for k ∈ {1, . . . , K}, then the likelihoods can be used to compute the posterior 

probability that the individual came from each of the source populations: 
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(5) 

where Z is a random variable indicating the origin of the individual. 

In practice, the allele frequencies in each source population are not known with certainty. 

Accordingly, these frequencies must be estimated from sequencing read data from individuals 

known to be from the source populations (these are often referred to as “reference samples.") We 

estimate these by maximum likelihood. The probability of the read data, Rl(i), from the ith 

reference sample, given that it came from source population k, is, following (3), 

(6) 

where the genotype likelihoods are now adorned with a superscript (i) to denote they are for the ith 

reference sample. Assuming the samples from source population k are not related, the log-

likelihood for θk,ℓ given the read data from all nk reference samples from population k is: 

(7) 

In our implementation, we first use the Expectation-Maximization algorithm (Dempster 

et al. 1977) described in the supplement to Meisner & Albrechtsen (2018) to obtain the 

maximum likelihood estimates (MLEs) of the population allele frequencies, θ#!,#, from the 

reference samples. Then, when calculating P(R|θk) we substitute θ$!,$ for θ!,# calculated as 

follows: 
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(8) 

where, again, nk is the number of reference samples from source population k. This provides a 

correction for cases in which the allele exists in a source population, but was not detected in the 

reference samples from that population—effectively, it adds one more individual to the sample 

that carries one copy of the allele not previously seen in that reference population. As should be 

clear from the preceding development, the accuracy of population assignment depends, at least in 

part, on the accuracy of the estimates of the allele frequencies from each source population. The 

following section develops theory (which is then implemented in WGSASSIGN) that provides 

the user with a measure of allele frequency estimate accuracy, calculated from the genotype 

likelihoods in the reference samples, that takes account of both sample size and read depth. 

 

Fisher Information and Effective Sample Size 

 The likelihood that an individual originated from a source population depends on the read 

data (summarized as a genotype likelihood) and also on the estimated allele frequencies of the 

source populations. In turn, the accuracy of the estimated allele frequency depends on the 

number of individuals in the reference sample from the source population and read depth of 

those individuals (Buerkle & Gompert 2013; Lou et al. 2021; Fumagalli 2013). Fewer 

individuals sampled and lower sequencing depth will result in less information in the data 

regarding allele frequency. As noted above, estimates of the allele frequencies are made by 

maximum likelihood using the sequencing data on the reference samples from each source 

population. Fisher information is a statistical metric that quantifies the amount of information in 
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a sample for estimating an unknown, continuous parameter (Fisher 1922). It measures the 

curvature of the log-likelihood function, and is inversely related to the variance. In visual terms, 

a sharply peaked log-likelihood curve (i.e., one with greater curvature) for a parameter indicates 

greater certainty in the estimated parameter (and, also higher Fisher information) than a flatter 

log-likelihood function. Formally, the curvature is measured by the negative second derivative of 

the log-likelihood function. The observed Fisher information for allele frequency is that negative 

second derivative evaluated at the MLE 

(9) 

 The Io (θk,ℓ), the observed Fisher information for θk,ℓ in the reads from a single individual, 

i, is found to be: 

(10) 

 The observed Fisher information from all nk reference samples is then simply, Io(θk,ℓ) = 

∑i=1 Io (θk,ℓ). To derive 𝑛&$ our effective sample size metric for locus ℓ, we compare this observed 

Fisher information to the expected Fisher information that would be obtained from 2𝑛&$  gene 

copies with allelic type directly observed from a population in which the true allele frequency is 

θ#!,#: 

(11) 
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 Equating Io(θk,ℓ) to Ie(θk,ℓ) and solving for 𝑛&$ yields 

(12) 

This is the number of diploid individuals with perfectly observed genotypes that provides 

the same information (and hence accuracy) for estimating θk,ℓ as is available from the sequencing 

read data from the nk reference samples from source population k. We term 𝑛&$, calculated as 

above, the effective sample size of the read data from the reference samples of source population 

k at locus ℓ. In practice, to avoid issues of non-differentiability on the boundaries of the space 

(i.e., at θ = 0 or θ = 1) we calculate 𝑛&$ using θ$!,$. The effective sample size for an individual is 

then derived by taking the mean of 𝑛&$ across all loci, 𝑛& = %

&
∑ 𝑛&$&
$'%  

Fisher information and effective sample size calculated in this way are useful summaries 

for understanding the trade-offs between sequencing more individuals at lower depth versus 

fewer individuals at higher depth, at least as it pertains to accurately estimating allele 

frequencies. In the context of population assignment, the effective sample size, in particular, 

provides an accessible metric for how good (or bad) the source-population allele frequencies can 

be expected to be. As we will see later, Fisher information also provides a valuable way to 

standardize the effective sample size of the reference samples from each population—an 

important consideration when using WGSassign. A useful statistic for accomplishing this is the 

individual-specific average effective size for individual i: 

(13) 
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Where 𝐼()*θ*,$+  is the contribution to the observed Fisher information of the reads from 

individual i 

(14) 

𝑛&()) ranges between 0 and 1. 

We also implement a z-score calculation for determining whether an individual’s 

genotype is unlikely to have come from one of the K source populations, but rather, from an 

unsampled population. In short, we determine the expected distribution of log probabilities of an 

individual’s genotype likelihood data arising from a population (given the individual’s allele 

counts across loci and the population’s allele frequencies), using a central limit theorem 

approximation.  The z-score is then calculated by subtracting the mean expected likelihood from 

the observed likelihood and dividing the difference by the standard deviation of the expected 

likelihoods. Given that the actual distribution of the z-score is likely to deviate from a standard 

normal distribution, we further standardize the observed z-score by the z-scores of the reference 

individuals from the source populations. Individuals truly from an assigned population are 

expected to have z-scores within several standard deviations of the normal distribution, while 

individuals from an unsampled but differentiated population are expected to have z-scores that 

fall below the expected range of a standard unit normal random variate. 

Simulations to illustrate the effective sample size 

We used the R programming language to run simulations that illustrate how Fisher 

information and effective sample size vary across a range of simulated read depths and true allele 

frequencies. Our simulations assumed a sample size of 100 diploid individuals and a single 
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biallelic locus, with allelic types within individuals being independent of each other. For each 

individual, we simulated read depth from a Poisson distribution with mean Dave and allelic types 

upon each read by sampling from the two gene copies within the individual with equal 

probability and switching the allelic type with probability 0.01 for each read to simulate 

sequencing errors. Genotype likelihoods from the reads were calculated according to the 

simulation model. We calculated the maximum likelihood estimate (MLE) for θ from the 

genotype data as the observed proportion of alleles, and for the sequencing read data, we used 

the EM algorithm to compute the MLE. Using these estimates, we then computed the observed 

information from the genotypes and from the genotype likelihoods. To determine the effective 

sample size, we calculated the expected information for observed genotypes, assuming the true 

value of θ was the MLE from genotype likelihoods and then used (12). We ran these simulations 

across values of Dave ∈ {0.1, 0.5, 1, 2, 3, 4, 5, 7, 10, 15, 20, 30, 50} and values of θ ∈ {0.01, 

0.05, 0.10, . . . , 0.90, 0.95, 0.99}, simulating 50 replicate samples for each combination. 

 

Genetic Simulations 

To demonstrate the efficacy of WGSassign in performing population assignment for a 

range of samples, read depths and genetic differentiation among populations we simulated a 

series of genetic datasets using msprime (Kelleher et al. 2016). In the first simulation, we 

implemented two-population island models with an effective population size of 1000 individuals 

in each population. We simulated ancestry for a genomic sequence of 108 bases with a 

recombination rate of 10−8 and a mutation rate of 10−7. To vary the genetic differentiation 

between populations, we varied the lineage migration rate parameter between 0.0005 and 0.05 in 

20 equal increments. From both populations we sampled 10, 50, 100, or 500 individuals. 
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Pairwise FST was calculated between the two populations using the sampled individuals and the 

genetic variants were output in variant call format. Genotype likelihoods were produced with 

vcfgl (https://github.com/isinaltinkaya/vcfgl) based on mean read depths of 0.1X, 0.5X, 1X, 5X, 

10X, or 50X. For each of the 480 parameter combinations (10 migration rates, 4 sample sizes, 

and 6 read depths) we simulated 10 replicates, for a total of 2,400 simulated datasets. We used 

bcftools (Li et al. 2009; Li 2011) to remove any SNPs with a minor allele frequency less than 

0.05. We converted the data to Beagle file format with custom scripts, and used these data as 

input into WGSassign. 

To determine the influence of sampling design (i.e. number of samples in a source 

population and their read depths), as well as amount of genetic differentiation, on assignment 

accuracy, we calculated the effective sample size and leave-one-out (LOO) assignment accuracy 

for each population. In WGSassign, LOO is performed by iteratively removing an individual of 

known origin from its source population, calculating allele frequencies within the source 

populations using the remaining individuals, and then calculating the likelihood that the removed 

individuals originated from each of the different source populations. The LOO method is widely 

used to avoid the bias that arises from using training data that also includes data being tested. 

The assigned population was determined by maximum likelihood. We also measured the run 

time for the calculation of allele frequency and effective sample size, as well as the LOO 

calculation.  

In the second simulation, we assessed the influence on assignment accuracy of using 

unequal effective sample sizes of source populations. In population assignment applications, 

unequal sample sizes in different populations will result in different levels of precision in the 

allele frequency estimation. We implemented two-population island models as in the previous 

https://github.com/isinaltinkaya/vcfgl


 65 

simulation, but included all sample combinations of 10, 50, and 100 individuals for the two 

populations. We also used 10 equal increments of migration rates from 0.005 to 0.05, and 

simulated read depths of 1X, 5X, and 10X. We then filtered by a minor allele frequency of 0.05 

and randomly selected 100,000 SNPs to be used for the effective sample size calculation and 

LOO assignment. 

In the third simulation, we assessed the performance of the WGSassign z-score metric for 

determining whether an individual of unknown origin being assigned to a population is actually 

from an unsampled population. We implemented a three-population stepping-stone model with 

20, 60, or 110 individuals using msprime. Individuals had simulated mean read depths of 1X or 

5X, and we customized vcfgl (https://github.com/isinaltinkaya/vcfgl) to output allele counts for 

the major and minor alleles. We used populations 1 and 2 in the stepping-stone model as 

reference populations and calculated the reference z-scores using WGSassign from all but 10 of 

the individuals in these two populations. We assigned 10 individuals from population 3 and 10 

from population 2 to the reference populations (1 and 2) using WGSassign. We calculated the z-

scores of these individuals’ assignments to demonstrate the behavior of the z-score metric for 

correctly assigned individuals (i.e., the individuals from population 2 that were assigned to 

population 2) versus individuals from an unsampled population (i.e., the individuals from 

population 3 that were assigned to population 2). 

 

Application to Empirical Data 

We used WGSassign on data from yellow warblers to test its accuracy when applied to 

individuals from a species exhibiting isolation by distance (Bay et al. 2021; Gibbs et al. 2000). 

Previous work on yellow warblers has found weak differentiation between populations, with 
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pairwise FST values on the order of 0.01 or less (Gibbs et al. 2000). Blood samples from 105 

individuals was collected via brachial venipuncture in the years 2020 and 2021. These served as 

reference samples from 3 populations—North, Central, and South—previously described in Bay 

et al. (2021) and Gibbs et al. (2000). We extracted DNA from blood using the manufacturer’s 

protocol for Qiagen DNEasy Blood and Tissue Kits. Whole genome sequencing libraries were 

prepared following modifications of Illumina’s Nextera Library Preparation protocol (Schweizer 

& DeSaix 2023) and sequenced on a HiSeq 4000 at Novogene Corporation Inc., with a target 

sequencing depth of 2X per individual.  

Sequences were trimmed with TrimGalore version 0.6.5 

(https://github.com/FelixKrueger/TrimGalore) and mapped to the NCBI yellow warbler 

reference genome (Sayers et al. 2022) (accession number JANCRA010000000) using the 

Burrows-Wheeler Aligner software version 0.7.17 (Li & Durbin 2009). After mapping, the 

resulting SAM files were sorted, converted to BAM files, and indexed using Samtools version 

1.9 (Li et al. 2009). We used MarkDuplicates from GATK version 4.1.4.0 (McKenna et al. 2010) 

to mark read duplicates and clipped overlapping reads with the clipOverlap function from 

bamUtil (https://genome.sph.umich.edu/wiki/BamUtil:_clipOverlap). To reduce sequencing 

depth variation, we used the DownsampleSam function from GATK to down sample reads from 

BAM files with greater than 2X coverage, to 2X coverage. To identify genetic markers from 

low-coverage WGS data, we used stringent filtering options in ANGSD version 0.9.40 

(Korneliussen et al. 2014). We retained reads with a mapping quality of at least 30 and base 

quality of at least 33. We retained SNPs that had read data in at least 50% of individuals and a 

minor allele frequency greater than 0.05. The filtered variants were output as genotype 

likelihoods and stored in a Beagle-formatted file. 

https://github.com/FelixKrueger/TrimGalore
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We implemented principal components analysis (PCA) to ensure reference samples from 

each of our source populations actually showed geographic signatures of clustering in the PCA. 

Genetic differentiation among the breeding populations was calculated by creating site allele 

frequency files for each breeding population and calculating FST in ANGSD (Korneliussen et al. 

2014). In order to assess our ability to accurately assign individuals of unknown origin to 

breeding populations, we determined the accuracy of assignment of the known breeding origin 

individuals using WGSassign’s leave-one-out approach.  

For the second empirical dataset, we applied WGSassign to previously published data 

from Chinook salmon (Thompson et al. 2020) to assess its utility in situations with low to 

extremely low read depth and poor-quality DNA. For this scenario, we entertained the task of 

assigning Chinook salmon to either the Klamath River basin, or the Sacramento Basin. These 

populations are quite distinct, with pairwise FST values between the basins on the order of 0.1. 

So, it should be quite easy to distinguish fish from the two basins. However, in whole genome 

sequencing data from Thompson et al. (2020) there were several fish from rivers in the Klamath 

basin collected from carcasses with low read depth. These fish were excluded from most 

analyses in Thompson et al. (2020) because they did not reliably cluster with other fish from 

their populations on a PCA; however we evaluate here if their basin of origin can be recovered 

using WGSassign. Additionally, through downsampling of reads from the BAM files we 

investigate if average read depths as low as 0.001X in the sample being assigned can deliver 

accurate assignments. 

We included fish from the closely related Feather River Spring, Feather River Fall, San 

Joaquin Fall, and Coleman Late Fall collections as members of the Sacramento River source 

population, while fish from the closely related Salmon River Fall and Spring and Trinity River 
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Fall and Spring collections constitute samples from the Klamath River source population. With 

64 fish in each source population, we removed the 12 fish from each that had the fewest 

sequencing reads to serve as our 24 “unknown” fish to be assigned to the populations. The 

remaining 52 in each population served as the reference samples.  

The genotype likelihoods for the reference sample were in a VCF file produced by 

GATK. This was filtered using bcftools (Danecek et al. 2021) to retain only biallelic SNPs with 

a minor allele frequency > 0.05 which were missing data in fewer than 30% of the samples. 

Additionally, data from chromosome 28, which holds a region strongly differentiated between 

spring-run and fall-run Chinook salmon (Thompson et al. 2020) was excluded. These genotype 

likelihoods were stored in a Beagle-formatted file using a custom script.  

The data for the test samples were extracted from BAM files. We used samtools stats (Li 

et al. 2009) to determine the average read depth in each BAM and used that number with 

samtools view to downsample each BAM five times with five separate seeds to average read 

depth levels of 0.001X, 0.005X, 0.01X, 0.05X, 0.1X, 0.5X, and 1.0X, when those read depths 

were lower than the full read depth of the file.  Genotype likelihoods for the 24 individuals were 

then called with ANGSD v0.940 (Korneliussen et al. 2014) using the -sites options to call only 

the sites found in the Beagle-formatted file of the reference samples. After genotype likelihood 

estimation in the test samples, the Beagle file of reference samples was filtered to include only 

the sites output by ANGSD. The resulting Beagle files were then passed to WGSassign to 

compute the likelihood of population origin for each of the test fish, and the results were plotted 

using R version 4.0 (R Core Team 2022). 
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Results 

Effective Sample Size Simulations 

As expected, observed Fisher information for allele frequency from sequencing read data 

increases as the average sequencing depth increases, reaching a limit at the observed information 

from fully observed genotypes. The absolute value of the observed Fisher information varies 

widely over the different allele frequencies, however the relative values of information from 

genotypes and from sequencing reads varies less, and the effective sample size is largely 

consistent across the range of minor allele frequencies from 0.05 to 0.5, showing the effective 

sample size to be a useful metric. Fisher information and effective sample size are shown for 

three representative values of θ (0.05, 0.3, and 0.5) in Figure 2.1. The flattening of the curves for 

observed information from sequencing data as the average read depth increases indicates the 

diminishing returns of additional sequencing depth versus additional samples, for estimating 

allele frequencies that has been noted previously (Buerkle & Gompert 2013; Lou et al. 2021; 

Fumagalli 2013). 

 

Genetic Simulations 

In the first simulation, genetic differentiation between the sampled individuals from the 

two populations ranged from -0.003 - 0.13 FST. Across all read depths within each category of 

number of samples (10, 50, 100, 500), assignment accuracy increased with genetic 

differentiation, and generally high assignment accuracy was achieved even with low genetic 

differentiation (Figure 2.2). Accuracy above 90% was reached for all simulations within the 500 

samples category with FST > 0.004, 100 samples category with FST > 0.006, 50 samples category 

with FST > 0.015, and the 10 samples category with FST > 0.043. When excluding simulations 
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with populations with the lowest effective sample sizes (< 0.1 individuals), high assignment 

accuracy was reached for all simulations at FST > 0.015 (Figure 2.2). Within each sample size 

category, increasing average read depth, and therefore effective sample size, resulted in higher 

assignment accuracy, especially when populations had weak genetic differentiation (Figure 2.2). 

Runtime for the simultaneous calculation of Fisher information, effective sample size, 

and allele frequency for populations in WGSassign was fast. With 2 populations and 100,000 

loci being analyzed in parallel with 20 threads, runtime was less than 10 seconds for populations 

with 100 samples or less, and between 15 and 30 seconds for populations with 500 samples. 

Leave-one-out assignment requires population allele frequency to be recalculated for each 

individual in the population, and time required for that re-calculation increases linearly with 

sample size. Accordingly, runtime for LOO cross-validation is expected to increase quadratically 

with increasing number of samples per population, and we observe this: for 100 samples for the 

two populations at 1X mean individual read depth LOO assignment had a mean runtime of 51 

seconds and for 500 samples run time was 1,743 seconds. Run times also increase with lower 

read depth due to the increase in iterations needed in the expectation-maximization algorithm for 

allele frequency calculation used from PCangsd (Meisner & Albrechtsen 2018). 

When FST is greater than 0.01, effective sample sizes as low as approximately 3 

individuals achieve assignment accuracy of greater than 90% (Figure 2.3). Examining 

simulations with weak genetic differentiation (0.005 < FST < 0.01), shows that a minimum 

effective sample size of 10 individuals is needed for consistently high assignment accuracy 

(Figure 2.3). At the weakest genetic differentiation of FST < 0.005, consistently high assignment 

accuracy is not necessarily achieved across all simulations, but a minimum effective sample size 

of 100 individuals is needed for an assignment accuracy of greater than 80%. 
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Assignment bias due to unequal sample sizes 

Our simulation results for unequal sample sizes demonstrate that high assignment bias 

occurs when populations have different numbers of samples (Figure 2.4). When populations have 

the same number of samples, with the same average read depths, assignment accuracy overall 

increases with genetic differentiation and there is no evidence of bias, with one population 

having higher accuracy than another population. However, when populations have unequal 

sample sizes, individuals from the less-sampled population tend to be assigned to the more-

sampled population, even when genetic differentiation is higher (FST > 0.01). This bias is 

exacerbated when effective sample size is lower (i.e. the populations have lower read depths). 

 

Determining an individual’s origin from an unsampled population 

At higher genetic differentiation (FST > 0.1), samples can readily be identified as coming 

from an unsampled population using the z-score metric in WGSassign (Figure 2.5). At such high 

differentiation, individuals from an unsampled population tend to have z-scores less than 3 

compared to individuals correctly assigned to a population having z-scores in (−3, 3), as expected 

of a standard unit normal.  With weaker genetic differentiation (FST < 0.1), sample size and read 

depth have a more noticeable effect on the behavior of the z-score metric (Figure 2.5). Generally, 

higher source sample sizes and read depths allow individuals from unsampled populations to be 

distinctively identified from individuals that are truly from a source population. 

Application to Empirical Data 

Yellow warbler reference samples were accurately assigned to either the North, Central, 

or East populations using leave-one-out self-assignment. All 35 reference samples from both the 
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North and East populations were assigned with 100% accuracy, and of the 35 birds from the 

Central population, 34 were correctly assigned. 

Chinook salmon were accurately assigned to either the Sacramento or Klamath river 

basins even at read depths as low as 0.001X (Figure 2.6). All 12 test samples from the 

Sacramento river were correctly assigned at all read depth levels, and, of the 12 Klamath test 

fish, 11 were correctly assigned at all read depth levels, while one was correctly assigned at all 

read depth levels except for one of the five replicates at read depth 0.001X. The four samples 

with lowest full read depth (the four at the bottom of Figure 2.6) have log-likelihood ratios that 

are noticeably smaller than those of the remaining 20 fish at all downsampled read depth levels, 

possibly indicating that, in addition to being samples with low depth, they might also have 

yielded very poor quality DNA. 

 

Discussion 

Here, we present WGSassign and demonstrate its utility for population assignment with 

low-coverage WGS data. Our results, from both simulated and empirical data, show that low-

coverage WGS data can be used to achieve high assignment accuracy even among weakly 

differentiated populations (FST < 0.01). We show that balancing effective sample size among 

populations is essential for avoiding assignment bias due to variation in the precision of allele 

frequency estimation for different populations. Effective sample size can also be used to guide 

decisions in study design for choosing the number of samples and sequencing depth in a given 

population. The ability to perform population assignment on large numbers of individuals, cost-

effectively sequenced at low-coverage across the whole genome, further expands the utility of 

low-coverage WGS for population and conservation genomics. 
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Performance of WGSassign and implications for population-assignment studies 

Our implementation of WGSassign allows users to perform population-assignment 

analyses from genotype likelihood data.  Features of WGSassign include standard and leave-one-

out (LOO) population assignment, as well as calculations of effective sample sizes (of both 

individuals and populations) and a z-score metric for determining whether an individual is from 

an unsampled population. Importantly, as implemented, these analyses can be parallelized 

across, which allows for fast computation of data produced from low-coverage WGS, even for 

computationally intensive applications such as LOO assignment. Studies of wild populations are 

typically limited in the number of samples available for sequencing, where 50 may be a large 

number of samples for a given population. With such a sample size, leave-one-out assignment at 

a standard low-coverage read depth of 1X could be expected to have a runtime on the order of 

for multiple populations and a million loci. 

Implicit in standard population assignment tests is that there will always be a population 

with a maximum likelihood of assignment, even if the individual does not originate from any of 

the reference populations. To address this issue, we developed a z-score metric for testing 

whether an individual could be from an unsampled population. The z-score is based on the 

individual’s observed likelihood of assignment in relation to the expected likelihood from a 

hypothetical individual from the same population with the same allele count data as the 

individual being tested. The z-score metric functions as expected at higher genetic differentiation 

(FST > 0.05) and with larger source populations by distinguishing the majority of individuals 

incorrectly assigned as having much lower z-scores (outside the 90% expected mass of the 

distribution of z-scores) than correctly assigned individuals. We recommend that any studies that 
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may have incomplete sampling coverage of all genetically distinct populations test for correct 

assignment with the z-score metric. However, since this metric is limited by sample size and 

genetic differentiation, a robust approach toward using it would involve, first, observing the 

metric’s behavior by testing it upon individuals of known origin, calculating z-scores both for the 

population they are from and the other populations. 

For high assignment accuracy, source populations need to have sufficient effective 

sample sizes in relation to genetic differentiation among the populations. However, individual 

samples being assigned can have extremely low read depth for accurate assignment. Our results 

from downsampled Chinook salmon data showed that individuals were still correctly assigned 

when individual samples had average read depths as low as 0.001X. This has powerful 

implications for population assignment studies, especially those that are conducted at a large 

scale. For example, in the mid-2000’s an arduous, international, multi-laboratory study was 

undertaken to standardize a DNA database of 13 microsatellite loci for genetic stock 

identification of Chinook salmon at a coast-wide scale (Seeb et al. 2007). With today’s 

sequencing power, a low-coverage WGS approach could provide a cost-effective method for 

creating a reference baseline of known populations without the need for extensive 

standardization of genetic makers. Fish of unknown origin could be sequenced at very low read 

depth, and still be accurately assigned to populations from the reference baseline. 

A potential benefit of low-coverage WGS over other sequence data for population 

assignment, is that low-coverage WGS provides more markers for assignment to weakly 

differentiated populations. Population assignment studies with RADseq data have commonly 

used SNP filtering methods for selecting the most informative loci for assignment to weakly 

differentiated populations (DeSaix et al. 2019; Ruegg et al. 2014; Benestan et al. 2015). Further 
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identifying a subset of informative loci (e.g. < 200) can be cost-effective for genotyping large 

numbers of individuals for the purpose of assignment (Ruegg et al. 2014; Larison et al. 2021). 

However, our results highlight that high assignment accuracy is possible with low-coverage 

WGS data without the need for extensive analysis to determine the most informative loci. For 

example, high assignment accuracy was obtained with Yellow Warbler samples from weakly 

differentiated populations using 5,301,626 sites. 

Furthermore, DNA quantity and quality requirements for RAD-seq methods—and even 

some chip-based genotyping methods—can be more stringent than they are for low-coverage 

whole genome sequencing. For example, reliable WGS data can be obtained from the tiny 

quantities of DNA adhering to the tip of a feather (Schweizer & DeSaix 2023), which is not 

possible with RAD-seq methods. Thus, being able to perform population assignment from low 

coverage whole genome sequencing data considerably expands the types of tissues available for 

sampling. And finally, using genotype data that is restricted to loci that are purposely biased 

toward detecting population structure (e.g. a SNP chip or hybridization-capture panel) limits the 

extent of analyses those data can be appropriately used for. Low-coverage WGS provides 

genome-wide data useful for population assignment in weakly differentiated populations, but it is 

also useful for demographic modeling, inference of population differentiation, detection of 

selection, and association studies (to name a few) because it has not been previously ascertained, 

and hence, biased. 

 

Accounting for population sample size and read depth with effective sample size 

Our development of the effective sample size metric provides a powerful tool for 

population genomics studies using low-coverage WGS data. Previous studies have provided 
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recommendations for the number of individuals and sequencing depth required to accurately 

estimate allele frequencies with low-coverage WGS data (Buerkle & Gompert 2013; Lou et al. 

2021; Fumagalli 2013). Effective sample size provides a metric to quantify these 

recommendations and determine the precision of allele frequency estimation needed for different 

applications. For example, the recommendation of (Lou et al. 2021) of at least 10 individuals 

with 1X average sequencing depth for allele frequency estimation can be quantified as an 

effective sample size of 2.3 individuals in the simulations from this study (Figure 2.7). For 

assignment to populations with moderate to strong differentiation (FST > 0.01), population 

effective sample sizes of at least 2.3 individuals are sufficient for achieving consistently high 

assignment accuracy (Figure 2.3). However, at weaker genetic differentiation among 

populations, effective sample size needs to be increased for accurate assignment. Furthermore, 

for similar levels of effective sample size, populations with 10 samples tend to perform worse 

than populations with more samples. These results suggest that sequencing more individuals at 

lower read depths can be a more effective study-design strategy than sequencing fewer 

individuals at higher read depths. One reason that using more individuals for source populations 

may improve assignment accuracy is that it increases the likelihood of detecting low-frequency 

alleles. 

Effective sample size can facilitate population-assignment study design by determining 

target numbers of individuals and average read depth for source populations. Our results show 

how effective sample size quantifies different study design options. For example, in our 

simulations a population with 10 samples with mean read depths of 1X had a mean effective 

sample size of 2.3 individuals. Increasing the total read depth of the population from 10X to 50X 

could be done by increasing the sequencing depth of the 10 individuals to 5X or increasing the 



 77 

sampled number of individuals to 50 and keeping the mean individual sequencing depth at 1X. 

The simulation results show that increasing the sequencing depth produces an effective sample 

size of 7.2 individuals, while increasing sample size results in an effective sample size of 17.1 

individuals (Figure 2.7). Quantifying the amount of information gain for different study designs 

can inform researchers on how to more efficiently allocate resources for sequencing efforts. Our 

simulation results show that disproportionate effective sample sizes among source populations 

can result in biased assignment of individuals to the populations with the highest effective 

sample sizes. We recommend that population assignment studies use the LOO assignment in 

WGSassign to determine if biased assignment is occurring. If all individuals across populations 

have similar average read depths, then subsetting source populations to the same number of 

samples for allele frequency calculation should remove this bias. However, different populations 

may tend to have higher or lower read depths, especially if different DNA sources are used, 

which will result in different effective sample sizes despite equal numbers of individuals. In this 

case, the individual effective sample size (Equation 13) output from WGSassign can be used to 

determine how many individuals to remove from the populations with the highest effective 

sample sizes. Alternatively, individuals could be further downsampled to reduce their effective 

sample size, which would decrease the overall population’s effective sample size. Studies using 

low-coverage WGS data for population assignment can explore these different strategies with 

WGSassign to determine what is most effective for their datasets. 

 

Further improvements for population assignment 

Currently in our implementation of WGSassign, the issue of only a single allele being 

observed in a population, and thereby producing a likelihood of 0, is avoided by correcting a 
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population with a minor allele frequency of 0 by treating the locus as having a rare allele that 

would be observed in a single copy if another individual was to be sampled. Another approach 

that could potentially improve performance would be to specify a formal prior for the allele 

frequencies in each population (Rannala & Mountain 1997). Additionally, using a prior that 

accounts for the a priori expectation that allele frequencies at a locus are expected to be similar 

between weakly differentiated populations (Falush et al. 2003; Pella & Masuda 2006) may 

further improve performance of population assignment. We expect that the parameters of these 

more complex prior distributions could be estimated in an empirical Bayes approach (Maritz 

2018) from the n-dimensional site frequency spectrum (Mas-Sandoval et al. 2022). 

 

Conclusion 

Low-coverage WGS is increasingly becoming more practical as sequencing costs decline 

and library preparation protocols are optimized for a wide-range of study systems (Schweizer & 

DeSaix 2023; Therkildsen & Palumbi 2017). In this paper, we present the WGSassign software 

which expands the types of analyses that can be done from genotype likelihoods. We 

demonstrate with simulated and empirical data that highly accurate and computationally efficient 

population assignment can be performed, even with weakly differentiated populations. We 

provide the software as open-source to facilitate further improvements on our developments in 

the field of molecular ecology. 
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Tables and figures 

 

Figure 2.1. a) Observed information calculated for simulated data summarized either as fully 
observed genotypes (purple) or as genotype likelihoods (orange) computed from sequencing read 
data of different depths simulated from the genotypes. Fully observed genotype data is not 
affected by read depth, but an independent set of fully observed genotypes was simulated for 
each different value of read depth, and these are all shown in the figure. b) Effective sample sizes 
calculated for simulated genotype likelihood data. In each figure the facet headers give the true 
population allele frequency, the x-axis gives the average read depth in the simulations, and the 
distribution of quantities in the $y$ direction are summarized as boxplots showing the median 
(dark line) the first and third quartiles (the edges of the boxes) the largest (or smallest) value no 
further than 1.5x the interquartile range from the first and third quartiles (the 
whiskers) and outliers beyond the whiskers (individual points). 
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Figure 2.2. Leave-one-out (LOO) assignment accuracy for known source individuals increases 
as genetic differentiation increases. Each point represents a single one of 4,633 simulation runs 
of the two-population island model when effective sample sizes were greater than 0.1 
individuals. Panels are ordered by the number of individuals (10, 50, 100, 500) sampled from 
each of the two populations. The proportion of correctly assigned individuals, via LOO cross-
validation for one population is given on the y-axis and genetic differentiation between the two 
populations is on the x-axis. The points are colored by effective sample size log10 scale) of the 
population. Assignment accuracy in simulation runs with similar genetic differentiation tends to 
be greater for populations with greater effective sample size (lighter colors) than smaller 
effective sample sizes (darker colors). The variation in assignment accuracy decreases as more 
samples are used in the source population, with the highest amount of variation when 10 samples 
are used and the least amount of variation when 500 samples are used. 
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Figure 2.3. Increasing effective sample size results in an increase in LOO assignment accuracy. 
The proportion of correctly assigned individuals, using LOO cross-validation, for one 
population, is given on the y-axis and effective sample size (log10 scale) of the population is on 
the x-axis. Similar values of effective sample size results in a similar range of assignment 
accuracy, however the number of samples also influences the accuracy at lower effective 
samples sizes and with weaker genetic differentiation. Some of the effect of sample size, separate 
from effective sample size, can be explained by LOO assignment removing an individual from 
the source population during assignment, which will disproportionately decrease the precision of 
allele frequency estimation for smaller sample sizes than larger sample sizes. 
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Figure 2.4. Unequal sample sizes among source populations result in decreased assignment 
accuracy due to differences in the precision of allele frequency estimation among the 
populations. Here, the two populations had either 10, 50, or 100 samples used for estimating 
allele frequency and then assigned via leave-one-out. When both populations had the same 
number of samples ("Equal" column), assignment accuracy generally increased as Fst increased 
and was similar for either population. When Population 1 had fewer samples than Population 2 
("Pop1 < Pop2" column), the assignment accuracy of Population 1 was generally less than that of 
Population 2, and the reverse was demonstrated when Population 1 had more samples than 
Population 2 ("Pop1 > Pop2" column). The reduction in assignment accuracy from biased sample 
sizes was also more pronounced with lower read depth. 
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Figure 2.5. Results from the three-population stepping-stone model demonstrate the behavior of 
the z-score metric in identifying individuals from an unsampled population (Pop3) assigned to a 
population in the reference compared to individuals correctly assigned to their source population 
of origin (Pop2). Symmetric lines subtending 90%, 99%, and 99.9% of the mass of a standard 
unit normal random variate are given by vertical lines (dotted, dashed, and solid, respectively). 
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Figure 2.6. Log likelihood ratios for assignment at different read depth levels for the Chinook 
salmon data. On the $y$-axis are different Chinook salmon samples, labeled by their population, 
a colon, their ID number, and then in parentheses the average read depth of their aligned data at 
full depth.  On the $x$-axis is the log-likelihood ratio in favor of assignment to their own 
(correct) population on a ``pseudo-log'' scale that accommodates negative values.  Positive 
numbers indicate correct assignment. Colors denote the read depths after downsampling. There 
are five points for each individual at each value of downsampling, reflecting the 5 different seeds 
used for downsampling. 
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Figure 2.7. The relation between read depth and number of samples in determining the effective 
sample size highlights the potential for different sampling design strategies for achieving similar 
effective sample size. For example, if the target effective sample size is 10, then sequencing 500 
individuals at 0.1x would likely overshoot the target, 50 individuals at 0.5x would be close to the 
target, and 10 individuals at >10x coverage would be close to the target.  
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3. LOW-COVERAGE WHOLE GENOME SEQUENCING FOR HIGHLY ACCURATE 
POPULATION ASSIGNMENT: MAPPING MIGRATORY CONNECTIVITY IN THE 

AMERICAN REDSTART (SETOPHAGA RUTICILLA) 
 
 
 

Summary 

Understanding the geographic linkages among populations across the annual cycle is an 

essential component for understanding the ecology and evolution of migratory species and for 

facilitating their effective conservation. While genetic markers have been widely applied to 

describe migratory connections, the rapid development of new sequencing methods, such as low-

coverage whole genome sequencing (lcWGS), provides new opportunities for improved 

estimates of migratory connectivity. Here, we use lcWGS to identify fine-scale population 

structure in a widespread songbird, the American Redstart (Setophaga ruticilla), and accurately 

assign individuals to genetically distinct breeding populations. Assignment of individuals from 

the nonbreeding range reveals population-specific patterns of varying migratory connectivity. By 

combining migratory connectivity results with demographic analysis of population abundance 

and trends, we consider full annual cycle conservation strategies for preserving numbers of 

individuals and genetic diversity. Notably, we highlight the importance of the Northern 

Temperate-Greater Antilles migratory population as containing the largest proportion of 

individuals in the species. Finally, we highlight valuable considerations for other population 

assignment studies aimed at using lcWGS. Our results have broad implications for improving our 

understanding of the ecology and evolution of migratory species through conservation genomics 

approaches. 
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Introduction 

Long-distance migratory species pose distinct challenges to studies of ecology, evolution, 

and conservation because they occupy different geographical regions throughout the year that 

can be separated by thousands of kilometers.  At each stage in the migratory annual cycle, 

migrant populations are subject to various stressors that can influence their fitness (Marra et al., 

1998; Sillett et al., 2000). As a result, effective conservation efforts require understanding 

migratory connectivity, defined as the links between different geographic regions used across the 

annual cycle (Marra et al., 2015; Webster et al., 2002). In the past 20 years, population genetics 

has become a well-established means for tracking migratory populations, especially for studies 

involving large sample sizes or small-bodied individuals (Faaborg et al., 2010). However, the 

value of genetic markers is often limited by the amount of genetic differentiation in a species and 

the availability of genetic data from individuals across the annual cycle (Faaborg et al., 2010; 

Lovette et al., 2004). 

Population assignment methods originated in the early 1980s and 1990s as a means of 

identifying breeding origins of migratory individuals back to distinct tributaries (in the case of 

fish) or geographic regions (in the case of bears) (Grant et al., 1980; Paetkau et al., 1995; 

Rannala & Mountain, 1997). Early methods relied on genetic markers that were limited to 

identifying only deep phylogeographic breaks within species (Kimura et al., 2002; Lovette et al., 

2004; Ruegg & Smith, 2002). In recent years, next generation sequencing has facilitated the 

screening of a significantly larger number of genetic markers allowing for the delineation of 

breeding populations at finer spatial scales (Battey et al., 2018; DeSaix et al., 2019; Ruegg et al., 

2014). Cost-effective delineation of patterns of migratory connectivity was made possible by 

designing single nucleotide polymorphisms (SNP) assays for a subset of these markers that were 
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particularly useful for population assignment (Larison et al., 2021; Rueda-Hernández et al., 

2023; Ruegg et al., 2014). While recent reductions in the cost of whole genome sequencing have 

made it possible to directly use low-coverage whole genome sequencing (lcWGS) data to screen 

migrant samples, the lack of software capable of dealing with the increase in marker number has 

prevented this method from being used for population assignment (DeSaix et al. in review). 

Low-coverage WGS has made sequencing more affordable for non-model organisms by 

reducing the sequencing effort per individual, however it has distinct challenges. One of these 

challenges is dealing with low sequencing read depths per individual, which necessitates the use 

of probabilistic frameworks for genotype calling to account for the uncertainty inherent in the 

data (Nielsen et al., 2011, 2012). Accurate estimates of parameters such as allele frequency can 

be obtained by prioritizing larger sample sizes of individuals with lower sequencing depth 

(Buerkle & Gompert, 2013; Fumagalli et al., 2013; Lou et al., 2021). Guidelines for achieving 

accurate allele frequency estimation with lcWGS include sequencing individuals at a minimum 

of 1X coverage (Buerkle & Gompert, 2013) or having at least 10 individuals sequenced with a 

total sequencing depth of at least 10X (Lou et al., 2021).  To take advantage of lcWGS data for 

population assignment, DeSaix et al. (in review) recently developed a software package, 

WGSassign, that accounts for uncertainty inherent to lcWGS data in population assignment tests. 

Results from extensive simulations, as well as two empirical data sets, demonstrated that 

accurate assignment with lcWGS data is possible for weakly differentiated populations (DeSaix 

et al., in review). Here, for the first time, we use lcWGS data to assign migrants to their 

population of origin.  

The American Redstart (Setophaga ruticilla) is an ideal system for evaluating the 

potential gains in effectiveness achievable by using lcWGS data for population assignment 
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because previous studies using a variety of methods provide a strong foundation for 

comparisons. The American Redstart is a widely distributed migratory songbird with a breeding 

distribution across North America and stationary nonbreeding distribution throughout the 

Caribbean, northern South America, Central America, and Mexico (Sherry et al., 2016). For 

several decades, the American Redstart has been a model species for understanding migratory 

ecology and has been used to elucidate territoriality on the wintering grounds (Marra et al., 

1993), foraging behavior (Lovette & Holmes, 1995), habitat selection (Marra & Holmes, 2001; 

Sherry & Holmes, 1996), and carry-over effects of stressors across the annual cycle (Marra et al., 

1998; Studds & Marra, 2011). Phylogeographic structure has previously been detected between a 

small region in the Maritime Provinces, specifically in Newfoundland and New Brunswick in the 

northeastern portion of the range, and the rest of the continental breeding range using mtDNA 

(Colbeck et al., 2008). Subsequent analysis of migratory connectivity (i.e., the migratory 

connections between breeding and nonbreeding habitats across a species’ annual cycle) using 

mtDNA revealed that Newfoundland breeders overwintered on the islands of Puerto Rico and the 

Dominican Republic, while continental breeding birds overwintered across the entire 

nonbreeding range (DeSaix et al., 2022). Stable isotope studies have shown strong migratory 

connectivity, with eastern breeding birds overwintering in the Caribbean and western breeding 

birds overwintering in Central America and Mexico (Marra et al., 1998; Norris et al., 2006; 

Studds et al., 2021), but whether these migratory differences correspond to genetic 

differentiation has not been tested.  

Here we aim to demonstrate the effectiveness of using lcWGS data for population 

assignment of nonbreeding individual using the American Redstart as a model species. Our main 

objectives were: 1) Identify population-specific migratory connectivity in the American Redstart 
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using lcWGS data, 2) Assess conservation implications of migratory connectivity by identifying 

relative abundance and trends in population size, and 3) Provide study design recommendations 

to facilitate the use of lcWGS data in other population assignment studies. Our results have broad 

implications for improving our understanding of the ecology and evolution of migratory species 

through conservation genomics approaches. 

 

Methods 

Genetic sampling and library preparation 

Sample site locations were chosen to maximize sampling coverage across the breeding 

and nonbreeding ranges of the American Redstart. We used genetic samples from a total of 330 

individuals: 182 individuals from 16 locations across the breeding range and 148 individuals 

from 15 locations in the nonbreeding range. Sample collection occurred between 1993 and 2022 

and consisted of either blood from brachial venipuncture or feathers. We extracted DNA from 

blood samples using the standard protocol for Qiagen DNEasy Blood and Tissue Kits and we 

modified the protocol to maximize DNA yield from feathers (Schweizer & DeSaix, 2023). 

Whole genome sequencing libraries were prepared following modifications of Illumina’s 

Nextera Library Preparation protocol (Schweizer & DeSaix, 2023). Pooled libraries were 

sequenced on eight HiSeq 4000 lanes at Novogene Corporation Inc with a target sequencing 

depth of 2X per individual. 

 

Bioinformatics 

We trimmed the sequence data to remove potential PCR artifacts using the program 

TrimGalore version 0.6.5 (https://github.com/FelixKrueger/TrimGalore), a wrapper for Cutadapt 

https://github.com/FelixKrueger/TrimGalore
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(Martin, 2011). We used the Burrows-Wheeler Aligner software version 0.7.17 (Li & Durbin, 

2009) to map reads to a reference genome from the closely related Yellow Warbler (Setophaga 

petechia; Bay et al. 2018). After mapping, the resulting SAM files were sorted, converted to 

BAM files, and indexed using Samtools version 1.9 (Li et al., 2009). We marked read duplicates 

with MarkDuplicates from GATK version 4.1.4.0 (McKenna et al., 2010) and clipped 

overlapping reads with the clipOverlap function from bamUtil 

(https://genome.sph.umich.edu/wiki/BamUtil:_clipOverlap). Sequencing depth for individuals 

was calculated using MEAN_COVERAGE output from the CollectWgsMetrics function from 

GATK (McKenna et al., 2010) which specifies genomic coverage excluding reads that do not 

pass quality filters. Initial population genetics analyses revealed a large effect in the data due to 

high variation in sequencing depth among individuals. To reduce sequencing depth variation, we 

followed the recommendations of Lou & Therkildsen (2022) and used the DownsampleSam 

function from GATK to randomly down sample reads from BAM files with greater than 2X 

coverage, to 2X coverage. 

To identify genetic markers from low-coverage WGS data, we used stringent filtering 

options in ANGSD version 0.9.40 (Korneliussen et al., 2014). We retained reads with a mapping 

quality of at least 30 and base quality of at least 33. SNPs were identified based on a p-value of 

less than 1e-6. We retained SNPs that had read data in at least 50% of individuals (n = 165), a 

minor allele frequency greater than 0.05, and minimum and maximum total depths of 231 and 

924, respectively. The minimum total depth threshold was chosen by the minimum number of 

individuals required to call a variant (n = 165) multiplied by the mean sequencing depth of all 

individuals (1.4X). The maximum total depth threshold was determined by 2 * total number of 

https://genome.sph.umich.edu/wiki/BamUtil:_clipOverlap
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individuals * mean sequencing depth. The filtered variants were output as genotype likelihoods 

and used in subsequent analyses. 

 

Genetically distinct breeding populations 

Given that signatures of population structure can be skewed by closely related 

individuals, we used NGSrelate version 2 (Hanghøj et al., 2019; Korneliussen & Moltke, 2015) 

to identify and remove individuals with with up to second-degree relationships (kinship > 

0.0884). We implemented principal components analysis (PCA) and estimated individual 

admixture proportions using Pcangsd (Meisner & Albrechtsen, 2018), which estimates individual 

allele frequencies to minimize bias from low and variable sequencing depth. We determined the 

number of genetically distinct breeding populations of American Redstarts by identifying 

congruent geographic signatures of clustering in the PCA with groupings of individuals based on 

admixture proportions. Posterior probabilities of group membership from the admixture 

proportions were visualized on a base map from Natural Earth (naturalearthdata.com) with each 

group specified by a different colour, and clipped to the breeding range of the American Redstart 

(Strimas-Mackey et al., 2021). Colour transparency was scaled such that the highest posterior 

probability of group membership is opaque while the smallest posterior probability is 

transparent. Visualization was performed in R (R Core Team, 2021). Genetic differentiation 

among the breeding populations was calculated by creating site allele frequency files for each 

breeding population and calculating FST in ANGSD (Korneliussen et al., 2014). In addition to 

summarizing global FST values for pairwise population genetic differentiation, we performed 

sliding window calculations of FST across the genome using 50kb windows and 10kb steps. 
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Effective sample size and population assignment 

To assess our ability to accurately assign individuals of unknown origin to breeding 

populations, we first determined the accuracy of assignment of the known breeding origin 

individuals using a leave-one-out approach implemented in WGSassign (DeSaix et al. in review). 

Leave-one-out avoids assignment bias by iteratively removing an individual from their given 

source population, re-estimating the allele frequency of the source population, and then 

calculating the likelihood of the individual’s assignment to each population. Otherwise, 

assignment accuracy results will be upwardly biased due to individuals’ genotype information 

being present in the allele frequency estimates of the source population they are being assigned 

to. Another source of bias in assignment tests is variation in the precision of allele frequency 

estimation, which arises from populations having different numbers of samples and/or having 

differences in sequencing depth of their individuals. To mitigate this bias, we tested two other 

approaches for source population sampling design: 1) we randomly subsampled individuals from 

breeding so all breeding populations had the same number of individuals as the population with 

the fewest samples (size-standardized breeding populations; SSBPs) and 2) we followed the 

guidelines in DeSaix et al. (in review) to subsample individuals from the breeding populations to 

standardize the effective sample sizes of the breeding populations (effective-size-standardized 

breeding populations; ESSBPs). Effective sample size is a Fisher information metric that 

determines the comparable number of individuals with known genotypes that would reflect the 

same variance in estimated allele frequency as the sampled low-coverage individuals (DeSaix et 

al., in review). The purpose of ESSBPs is to equalize the effective sample size among 

populations by removing individuals from the populations with the highest effect sample sizes, 

thereby making the precision of allele frequency estimation similar among the different 



 97 

populations. We used WGSassign to calculate each breeding population’s effective sample size 

for the SSBPs and ESSBPs and performed leave-one-out assignment. We also performed 

standard assignment with all breeding individuals that had been removed from the SSBPs and 

ESSBPs. Leave-one-out assignment for the full data set and the combined leave-one-out 

assignment and standard assignment accuracy were compared across all three source population 

sampling designs. Posterior probabilities of assignment to a population were determined by 

dividing the maximum likelihood of assignment over the sum of all likelihoods. A cut-off of 0.8 

was used for the posterior probability to determine if an individual was confidently assigned to a 

population. 

 

Low-coverage and population assignment 

Since the majority of our nonbreeding and breeding samples were feathers and blood, 

respectively, we expected the nonbreeding samples to have lower sequencing depth than 

breeding samples. Therefore, to ensure that we could still achieve high assignment accuracy at 

lower depths for the nonbreeding samples, which have unknown breeding origin, we first tested 

assignment accuracy with low coverage breeding samples of known origin. We used the set of 

individuals from our ESSBPs to estimate population allele frequencies (our training set) and used 

the remaining breeding samples as a test set. We created two data sets from the test set 

individuals by randomly down sampling reads from the BAM files of these individuals to 0.1X 

and 0.01X using the DownsampleSam function from GATK (Mckenna et al., 2010). These two 

thresholds were based on the majority of the nonbreeding samples being greater than 0.1X and 

the lowest coverage sample being 0.02X. To determine the accuracy of assignment of individuals 
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with low sequencing depths, we assigned the test sets back to the standardized breeding 

populations and compared the population assigned with the known population of origin.  

 

Determining breeding origin of individuals on the nonbreeding range 

We assigned individuals sampled from the nonbreeding range to the ESSBPs using 

WGSassign. Since these individuals are of unknown origin, we assumed the accuracy of their 

assignment would be comparable to the accuracy achieved with known breeding samples. 

Individuals at the periphery or boundaries of genetically distinct populations may have admixed 

genomes that are not truly representative of either population. While posterior probabilities of 

assignment are typically used to detect admixture and determine confidence of assignment, our 

preliminary results showed that posterior probabilities of assignment were unreliable with 

lcWGS data (see Results and Discussion). Therefore, we split up the genotype likelihood data 

into 10 subsets of 400,000 SNPs, in order of genomic region, for each individual and used a 

consistency of assignment threshold of 0.8 (i.e., at least 8 of the 10 datasets being assigned to the 

same population) to determine confidence in assignment. We validated this approach on the 47 

breeding individuals used as the testing set for the ESSBPs and then used it for the 148 

individuals from the nonbreeding range. 

 

Demographic analysis 

We estimated relative population size indices and population trends (1968-2021) for each 

of the five breeding populations and across the entire breeding range using Breeding Bird Survey 

(BBS) data (Pardieck et al., 2020). The BBS provides standardized detection data of avian 

species during the main part of the breeding season (June) which is collected by observers along 
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24.5 mile transects (routes). We used a hierarchical over-dispersed Poisson model (Sauer et al., 

2011) to analyze the BBS data. All BBS routes within a 50-km buffer of a breeding population 

polygon, defined by our PCA and admixture results, were assigned to that breeding population. 

This breeding population assignment was then included as the fixed stratum intercept and trend 

effects of the log-linear model of the Poisson mean. We estimated current (2017-2021) 

population size indices by summarizing posterior distributions of estimated mean route-level 

counts that were weighted by geographic area encompassed by the breeding population polygon 

and the proportion of routes in the polygon with American Redstart detections (Sauer & Link, 

2011). Long-term trends in population size were estimated as the geometric mean of yearly 

changes from 1968-2021 (Sauer & Link, 2011). We implemented the hierarchical model in 

JAGS 4.3.1 (Plummer, 2003) using the jagsUI (Kellner & Meredith, 2021) package in R (R Core 

Team, 2022). We assigned vague prior distributions for all model parameters and 

hyperparameters. Posterior distributions were derived from 40,000 simulated values of four 

chains from the posterior distribution after an adaptive phase of 20,000 iterations and burn-in of 

10,000 samples of the Gibbs sampler and thinning by 3. Markov chains were determined to have 

successfully converged based on 𝑅#<1.1 for posterior estimates of all parameters (Gelman & Hill, 

2007).  

 

 

Results 

Genetically distinct breeding populations 

Sequencing efforts resulted in sequences from 330 individuals with a mean coverage of 

1.6X (range: 0.02X – 5.2X). For the 182 breeding samples, the mean coverage was 1.7X (range: 
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0.6X – 5.2X), while the 148 nonbreeding samples had a mean coverage of 1.5X (range: 0.02 – 

3.4X). Down sampling individuals above 2X coverage to 2X coverage, resulted in an overall 

mean coverage of 1.4X (1.5X for breeding samples, 1.3X for nonbreeding samples). Our SNP 

filtering produced genotype likelihood data for 4,722,390 variants. We removed 13 individuals 

from subsequent analyses due to high relatedness by removing a single individual from each 

related pair. Principal components analysis with the breeding samples revealed five genetic 

clusters that aligned with geography: Western Boreal (Alaska to Saskatchewan), Basin Rockies 

(South Dakota and Montana), Southern Temperate (from Missouri, east to Maryland, south to 

Louisiana), Northern Temperate (from Minnesota, east to Quebec, south to Pennsylvania), and 

Maritime Provinces (New Brunswick and Newfoundland). Admixture results for five groups 

revealed a similar delineation of individuals as in the principal components analysis (Figure 3.1). 

Pairwise FST values among these breeding populations had a mean of 0.009 and ranged from the 

weakest differentiation (FST = 0.004) between the Northern Temperate and Southern Temperate 

groups and the strongest (FST = 0.018) between Maritime Provinces and Basin Rockies. Genome-

wide analysis of FST revealed that the generally weak genetic differentiation among populations 

was punctuated by regions of elevated genetic differentiation. Based on our comprehensive 

sampling of the core regions of the American Redstart breeding range and the population 

structure results, we expect there to be no unsampled genetically distinct breeding populations. 

For example, while we did not sample individuals from Alaska, we expect Alaska breeding birds 

to be a part of the Western Boreal breeding population. 
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Effective sample size and assignment 

Breeding populations ranged in number of samples from 27 (Maritime Provinces and 

Basin Rockies) to 47 (Southern Temperate) and ranged in effective sample size from 12.3 – 24.6. 

Mean accuracy of leave-one-out assignment with these individuals was 89.3% (151 out of 169 

individuals), and accuracy by breeding population ranged from 63.0% (Maritime Provinces) to 

100% (Southern Temperate and Basin Rockies). All 18 individuals that were inaccurately 

assigned were assigned to a breeding population with higher effective sample size than the 

known breeding population (Figure 3.2). All posterior probabilities of assignment (accurate and 

inaccurate) were greater than 0.8.  

The SSBPs all had 27 samples but ranged in effective sample size from 12.3 – 16.1. The 

mean accuracy of assignment was 97.0% (164 out of 169 individuals) for the leave-one-out 

assignment with the 135 individuals in the SSBPs and standard assignment for the remaining 34 

individuals. Three individuals were incorrectly assigned in the leave-one-out assignment test and 

two individuals were incorrectly assigned in the standard assignment test. All five incorrectly 

assigned individuals were assigned to a breeding population with higher effective sample size 

than the known breeding population (Figure 3.2). 

The ESSBPs ranged in number of samples from 21 (Basin Rockies) to 27 (Maritime 

Provinces) but had minimal variation in their effective sample sizes (range: 12.0 – 12.5). Mean 

assignment accuracy was 99.4% (168 out of 169 individuals) for the leave-one-out-assignment 

with the 122 individuals in the ESSBPs and standard assignment for the remaining 47 

individuals. Only one individual was incorrectly assigned from the Northern Temperate 

population to the Southern Temperate population, and this did not correspond to a breeding 

population with higher effective sample size. Interestingly, this same individual (sampled in 
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Minnesota from the Northern Temperate population) also stands out in the PCA results as 

clustering more closely with individuals from the Southern Temperate population. Given the 

higher accuracy of assignment with the ESSBPs, compared to the other sets of breeding 

individuals, we continued subsequent assignment testing using only the ESSBPs data set as the 

source populations. 

 

Testing sequence depth thresholds for assignment 

To test whether lower coverage data would affect our ability to accurately assign 

breeding individuals, we used the 47 individuals from the breeding populations, that were not 

used in the ESSBPs, as a testing set for further down sampling. We did not down sample 

individuals from the ESSBPs because we did not want to lower the effective sample size of the 

source populations, but rather test how well we could assign individuals with lower coverage 

given the effective sample sizes of our source populations (and the amount of genetic 

differentiation among them). The testing set consisted of 22 individuals from the Southern 

Temperate population, 14 individuals from the Northern Temperate population, 6 individuals 

from Basin Rockies population, and 5 individuals from the Western Boreal population. The 

sequencing depth of these 47 individuals ranged from 0.6X – 2.0X. Down sampling these 

individuals to 0.1X resulted in 100% assignment accuracy, and further down sampling to 0.01X 

resulted in 97.9% accuracy (one individual from the Southern Temperate population assigned to 

the Northern Temperate population; Table 3.1). The individual incorrectly assigned from the 

Southern Temperate population was from a sampling site in Pennsylvania which is on the border 

of our boundary for the Southern Temperate and Northern Temperate populations.  
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Nonbreeding assignment 

Implicit in the assignment of the nonbreeding individuals to breeding populations is that 

the breeding origin of these individuals is unknown. Given that assignment to the ESSBPs had an 

accuracy of 99.4% (168 out of 169 samples) for individuals with sequencing coverage of 0.6X – 

2.0X, and accuracy of 97.9% (46 out of 47 individuals) for individuals down sampled to 

sequencing coverage of 0.01X, we assumed that we could correctly assign nonbreeding 

individuals (sequencing coverage range: 0.02X – 2.0X, mean 1.3X) with high confidence. 

Assignment of the 148 nonbreeding individuals resulted in the largest number of individuals 

being assigned to the Northern Temperate population (n = 64) and the least number of 

individuals being assigned to the Basin Rockies population (n = 2). Of the 148 individuals, 139 

individuals had assignment consistency of at least 0.8 for the 10 subsets of data, and these 

individuals were used to infer migratory connectivity. Testing consistency of assignment on the 

47 breeding individuals identified three individuals with assignment consistency of < 0.8. One of 

these individuals from Minnesota was previously identified as an outlier in the PCA, and the 

other two individuals were from Pennsylvania, which is on the boundary of the Southern 

Temperate and Northern Temperate populations. 

Mapping of the nonbreeding assignment results revealed patterns of strong migratory 

connectivity across the breeding range. Notably, the Maritime Provinces breeding population has 

strong connectivity with eastern Colombia, the Northern Temperate breeding population with the 

Greater Antilles, the Southern Temperate breeding population with the Lesser Antilles, and the 

Western Boreal breeding population with Central America and Mexico. 
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Demographic analysis 

Using 1,766 BBS routes from 1968-2021, we estimated the range-wide trend in 

population size to be -0.29% per year (95% CI: -0.57, -0.02). Trends among the breeding 

populations were variable (Table 3.2). The Northern Temperate breeding population was 

estimated to be increasing by 0.67% per year (95% CI: 0.33, 1.01). The Southern Temperate 

breeding population was estimated to be declining by 0.34% per year (95% CI: -0.75, 0.06), but 

the credible intervals were overlapping 0, thus indicating potential stability in that population. 

The remaining three populations (Basin Rockies, Maritime Provinces, and Western Boreal) were 

all estimated to be declining and had negative values for the upper bounds of the 95% credible 

intervals. The Northern Temperate population had the highest relative abundance of 3.70 (95% 

CI: 3.09, 4.52), followed by Maritime Provinces (1.96; 95% CI: 1.57, 2.49), Western Boreal 

(0.66; 95% CI: 0.52, 0.84), Southern Temperate (0.15; 95% CI: 0.13, 0.17), and Basin Rockies 

(0.01; 95% CI: 0.01, 0.02). The density of the number of birds per BBS route was highest in the 

Maritime Provinces (30.56; 95% CI: 24.33, 38.60), followed by Northern Temperate (15.16; 

95% CI: 12.68, 18.54), Western Boreal (1.66; 95% CI: 1.31, 2.10), Southern Temperate (0.67; 

95% CI: 0.58, 0.78), and Basin Rockies (0.16; 95% CI: 0.10, 0.25).  

 

Discussion 

The results of this study demonstrate that lcWGS data is well-suited for highly accurate 

population assignment, even with weakly differentiated population structure. In the American 

Redstart, lcWGS data provided an improvement over previous migratory connectivity studies 

using genetic and stable isotope data (DeSaix et al., 2022; Norris et al., 2006; Studds et al., 2021) 

by allowing us to identify five genetically distinct breeding populations and clearly delineate 
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population-specific nonbreeding ranges. Identifying migratory connectivity of genetically 

distinct populations is an essential step toward full annual cycle conservation aimed at preserving 

unique genetic variation. To this end, we integrate the migratory connectivity results with 

analysis of population abundance and trends to demonstrate the conservation implications of the 

observed population-specific migratory patterns. More broadly, we also show that when using 

lcWGS data for population assignment it is essential to implement a sampling design that 

balances effective sample size across source populations to avoid assignment bias that arises from 

variation in sequencing depth and population sample size. 

 

Mapping migratory connectivity 

Population structure analyses identified five genetically distinct breeding populations 

with weak genetic differentiation, in contrast to a previous mtDNA analysis that identified only 

two populations split by a phylogeographic break (Colbeck et al., 2008). Our delineation of the 

Maritime Provinces breeding population in the far northeast portion of the range corresponds 

with the Newfoundland population from the mtDNA analysis. Colbeck et al. (2008) 

hypothesized that the phylogeographic separation of Newfoundland and mainland American 

Redstart populations was the result of two refugia during Pleistocene glaciations. Our findings of 

weak genetic differentiation between the Maritime Provinces and other breeding populations 

suggest that there is ongoing gene flow among these populations. However, the limited 

admixture of individuals sampled in Newfoundland supports the notion that geographic 

separation of the island provides some barrier to gene flow, which has been demonstrated in 

several other avian species (Ralston et al., 2021). The weakest genetic differentiation was found 

among the Western Boreal, Northern Temperate, and Southern Temperate breeding populations 



 106 

(FST: 0.004-0.006), suggesting limited barriers to gene flow. The Basin Rockies breeding 

population had higher genetic differentiation with the eastern breeding populations than the more 

northern Western Boreal population, which corresponds to the Great Plains functioning as a 

barrier to gene flow. 

Using the five genetically distinct breeding populations allowed us to document at a fine 

scale more complex migratory patterns than previously identified. At the continental scale, our 

results broadly correspond to previous stable isotope studies that found eastern breeding 

American Redstarts overwintered in the eastern nonbreeding range and western breeders 

overwintered in the west (Norris et al., 2006; Studds et al., 2021). In several other species of 

Nearctic–Neotropical migrants, similar patterns of parallel migration have also been observed 

(Fraser et al., 2013; Garcia-Perez & Hobson, 2014; González-Prieto et al., 2017; Rushing et al., 

2014). However, in contrast to previous isotope analyses in American Redstart (Norris et al., 

2006; Studds et al., 2021), our use of genomic data allowed us to clearly differentiate Maritime 

Provinces and Northern Temperate breeding birds and revealed that individuals breeding in the 

Maritime Provinces do not follow the parallel migration pattern. Parallel migration would result 

in these breeders being found in the far eastern portion of the nonbreeding range (e.g., Lesser 

Antilles and Trinidad and Tobago). Instead, individuals from the Maritime provinces bypass the 

Caribbean portion of the nonbreeding range and have a “leap-frog” migratory pattern to eastern 

Colombia. One explanation for the discordance of the Maritime Provinces migratory 

connectivity patterns from the rest of the breeding populations is the phylogeographic separation 

of these regions documented by Colbeck et al. (2008). Migration routes are influenced by the 

historical separation of Pleistocene glacial refugia (Newton, 2008; Ruegg et al., 2006) and in the 

American Redstart, an Atlantic Shelf (near the Maritime Provinces) and eastern continental 
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refugia are hypothesized to have caused the observed phylogeographic separation of these 

regions (Colbeck et al., 2008). A previous mtDNA analysis of American Redstart migratory 

connectivity only detected several individuals from the Maritime Provinces population in the 

Caribbean islands of the Dominican Republic and Puerto Rico but lacked samples from South 

America (DeSaix et al., 2022). Our results suggest that the Maritime Provinces breeding 

population has the strongest connectivity with eastern Colombia, but given our limited sampling 

across South America the full extent of the population’s connectivity across South America is 

unknown. 

Our use of genomic data allowed us to characterize migratory connectivity at a fine scale 

and identify distinct regions on the wintering range that separate breeding populations. In 

southern Central America, a clear split between the two sampling sites in Costa Rica, a 

separation of 360 km, occurs where the northern site predominantly has individuals from the 

Western Boreal breeding population and the southern site has individuals from the Southern 

Temperate population. This split corresponds with a biogeographic separation of drier broadleaf 

forest in the northern Pacific side of Costa Rica and moist broadleaf forest in the southern Pacific 

side (Corrales, Bouroncle, & Zamora 2015). Another geographic split in breeding origin occurs 

between the Lesser Antilles (Southern Temperate) and the Greater Antilles (Northern 

Temperate) in the Caribbean. Sampling of American Redstarts in Colombia was limited to the 

eastern slopes of the East Andes, and may not represent the wider Andes, given that the three 

chains of the Andes that run through Colombia influence connectivity patterns in the Canada 

Warbler, Cardellina canadensis (González-Prieto et al., 2017). Further population assignment 

studies that include sampling of American Redstarts from the Central and Western Andes, and 
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the Caribbean region of Colombia, may identify the Andes Mountains as another barrier in the 

nonbreeding region, creating geographic splits in breeding origin for this species.  

 

Conservation implications 

Describing migratory connectivity is essential for informing effective wildlife 

conservation and management decisions involving migratory species (Martin et al., 2007; Small-

Lorenz et al., 2013).  Our delineation of five breeding populations, and their linkages to 

wintering regions, provides the necessary information to prioritize regions for conservation 

(Ruegg et al., 2020) and improve our understanding of the underlying drivers of abundance. 

While our demographic analysis highlights that the species is declining overall from 1966 – 

2021, there is wide variation in trends among the breeding populations. The Northern Temperate 

population has the largest population of American Redstarts on the breeding grounds and is 

increasing in abundance. One potential explanation for the increase in abundance is that birds in 

the southern portion of the breeding range have shifted their breeding latitude northward in 

response to climate change, as has been documented in other Nearctic-Neotropical migrants 

(Gómez et al., 2021; Rushing et al., 2020). In this scenario, genetic differentiation would also 

likely erode between the Northern Temperate and Southern Temperate populations and our 

genetic differentiation results do highlight these two populations as having the weakest genetic 

differentiation (FST = 0.004) of all breeding population comparisons. However, our demographic 

results do not depict a correspondingly large decline in the Southern Temperate breeding 

population which would be the source population of northward movement. Given that the 

Northern Temperate breeding population has strong connectivity with the Greater Antilles 

archipelago in the Caribbean, efforts aimed at conserving the greatest proportion of the global 
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distribution of American Redstarts could focus on the Northern Temperate-Greater Antilles 

migratory population.  

The Maritime Provinces population had the second highest abundance of American 

Redstarts and the highest density of individuals. Despite being geographically adjacent to the 

Northern Temperate breeding population, Maritime Provinces individuals were detected almost 

exclusively outside the Caribbean, along the eastern slopes of the Andes of Colombia. Our 

demographic analysis highlighted the Maritime Provinces to be the second fastest declining 

population. Thus, future research into the stressors driving this decline could focus on the 

breeding region as well as stationary nonbreeding region of eastern Colombia. Notably, other 

populations of long-distance migratory birds connected to the Eastern Andes are also 

experiencing declines, including populations of Canada Warbler (Wilson et al., 2018) and 

Cerulean Warbler, Setophaga cerulea (Raybuck et al., 2022). Additionally, in species such as the 

Canada Warbler, migration routes between North and South America can concentrate in small 

regions of Central America which can also affect population trends (Roberto-Charron et al., 

2020). Given the phylogeographic split of the Maritime Provinces breeding population with the 

mainland (Colbeck et al., 2008), conservation of this migratory population may also be important 

for preserving genetic diversity within the species. The Western Boreal population, ranging from 

Alaska to Saskatchewan, was characterized by the demographic analysis as having the third 

highest abundance and density, with population declines larger than the range-wide decline. 

Strong migratory connectivity with Mexico and Central America highlights the need for 

conservation efforts to focus on the most western portion of the range for this migratory 

population. 
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The Southern Temperate breeding population is unique in American Redstarts, in that 

nonbreeding individuals were sampled in both the far eastern Caribbean as well as in Central 

America. Our lack of sampling between these regions in northern South America precludes our 

ability to describe whether there is a migratory divide within the Southern Temperate population, 

or individuals are spread across this portion of the nonbreeding range. While weak connectivity 

across a large nonbreeding distribution could promote resilience from stressors on any single 

portion of the nonbreeding distribution (Finch et al., 2017), this makes targeting regions for 

conservation difficult.  

 

Low-coverage WGS for population assignment 

In addition to elucidating fine-scale migratory connectivity patterns in the American 

Redstart, our results provide important considerations for other population assignment studies 

using lcWGS. We found that balancing effective sample sizes of the source populations to within 

one effective individual of each other was essential for accurate assignment. Even when the 

actual number of individuals used per population was the same, variation in mean depth (1.3X – 

1.9X) between populations skewed the effective sample sizes, resulting in decreased assignment 

accuracy. Other studies with known genotypes from RADseq have demonstrated the influence of 

actual sample size on overall assignment accuracy but not how it affects assignment bias 

(Benestan et al., 2015; DeSaix et al., 2019). The effective sample sizes needed per population for 

accurate assignment and the degree of standardizing these values will depend on the population 

structure of the study system. For example, study systems with higher genetic differentiation 

between populations may not need to finely standardize effective sample size to achieve high 

assignment accuracy. We suggest that other population assignment studies similarly evaluate the 
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influence of source population effective sample size on known source individuals before 

assigning individuals of unknown origin. Reducing the effective sample size of a sampled 

population can be achieved by either removing individuals or down sampling the read depth. In 

this study, we chose to remove individuals, and used the individuals’ effective sample sizes as a 

guide for how many individuals to remove from each population (resulting in 21 – 27 samples 

per population). For studies with smaller sample sizes, it may be worthwhile to investigate if 

retaining all individuals but down sampling reads is a better alternative for standardizing 

effective sample sizes to retain more variation from individuals. Additionally, it may be 

important for studies with widespread admixture across populations to refine their sample 

selection for source populations by removing the more admixed individuals. Finally, studies with 

poor assignment accuracy to weakly differentiated populations may benefit from identifying a 

subset of informative loci based on elevated signatures of genetic differentiation (Ruegg et al., 

2014; DeSaix et al., 2019). For example, our genome-wide FST calculations reveal regions of 

elevated genetic differentiation that could be used to identify a smaller subset of SNPs for 

performing assignment. However, given our initial high assignment accuracy using the full set of 

SNPs (n = 4,722,390) and the computational efficacy of WGSassign with these data, we suggest 

studies should first evaluate population assignment with genome-wide data to determine if the 

more labor-intensive process of informative SNP selection is warranted for their study system. 

Importantly, here we demonstrate that individuals with very low whole genome coverage 

(0.01X – 0.1X) can still be accurately assigned to source populations with sufficient effective 

sample sizes. These results suggest that increasing the number of samples and decreasing 

individual sequencing depth is an effective study design strategy for population assignment. For 

migratory connectivity studies, increased sampling (both number of individuals at each location 
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and the number of locations sampled) across nonbreeding stages of the annual cycle can 

drastically improve our understanding of population-level connectivity at low cost. Combined 

with cost-effective approaches for library preparation (e.g. Schweizer & DeSaix, 2023; 

Therkildsen & Palumbi, 2017), lcWGS is increasingly becoming economically feasible for a 

wide-range of studies. However, a trade-off with lcWGS is that the sequence data processing 

requires additional costs associated with time spent on the bioinformatics analysis. For studies 

interested in population assignment with a large number of samples, increasing the number of 

samples per lane, thereby decreasing the mean average sequencing depth, may make lcWGS 

economically feasible compared to other sequencing methods. For a comprehensive review of 

coverage guidelines for different types of analyses with low-coverage WGS data see Lou et al. 

(2021). 

An interesting aspect of our results was that all posterior probabilities of assignment were 

> 0.8, even for potentially admixed individuals. A standard method to determine assignment 

confidence in population assignment studies is to use a cutoff value for posterior probabilities of 

assignment (DeSaix et al., 2019; Ruegg et al., 2014). Individuals with low posterior probabilities 

of assignment (e.g., < 0.8) can be highly admixed. Thus, it is inaccurate to classify them as from 

a specific population. However, we suspect that with lcWGS data, the high prevalence of loci 

with single read results in the likelihood being highest for a homozygous genotype. Thus, 

admixed individuals may “switch” their population of maximum likelihood depending on the 

loci used for assignment. Our use of an assignment consistency threshold addressed this concern 

by creating subsets of genomic data for population assignment to determine if individuals could 

reliably be assigned to a single population when different loci were used. Testing the assignment 

consistency threshold with known source individuals revealed three individuals with inconsistent 
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assignment (< 0.8, i.e., 8 out of 10 genomic datasets) and were likely admixed between pure 

Northern Temperate and Southern Temperate populations. These results highlight that the 

consistency of assignment may be more reliable than posterior probabilities for confidently 

assigning individuals of unknown origin. Further development of spatially explicit assignment 

methods for genotype likelihood data would be helpful for determining the likely origin of 

admixed individuals at the periphery of source populations. 

 

Conclusion 

Low-coverage WGS is a powerful and potentially cost-effective approach for population 

assignment studies. We demonstrate that high assignment accuracy can be obtained for weakly 

differentiated populations, even for individuals with very low sequencing coverage (< 0.1X). We 

further demonstrate the importance of balancing the effective sample sizes of source populations 

to avoid assignment bias due to variation in the precision of allele frequency estimation. By 

applying these methods to the American Redstart, we reveal broad-scale parallel migration and 

highlight unique population-specific patterns of connectivity. In combination with our 

demographic analysis, we demonstrate the importance of the Northern Temperate-Greater 

Antilles migratory population to the total abundance of the species. Furthermore, our 

identification of nonbreeding regions for the genetically distinct breeding populations provides a 

foundation for a full annual cycle approach towards preserving genetic diversity. Together, our 

results provide a valuable framework for studies that aim to use lcWGS to understand the 

ecology and evolution of migratory species. 
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Tables and figures 

Table 3.1. Assignment accuracy of the known breeding samples used as the testing set (n = 47) 
for the effective size standardized breeding populations. Down sampling to both 0.1X and 0.01X 
achieved high assignment accuracy. 
 
Depth Western 

Boreal 

Basin Rockies Southern 

Temperate 

Northern 

Temperate 

Total 

Full 100% (5/5) 100% (6/6) 100% (22/22) 93% (13/14) 98% (46/47) 
0.1X 100% (5/5) 100% (6/6) 100% (22/22) 100% (14/14) 100% (47/47) 
0.01X 100% (5/5) 100% (6/6) 95% (21/22) 100% (14/14) 98% (46/47) 
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Table 3.2. Demographic analysis of Breeding Bird Survey data for breeding populations of 
American Redstart. 
 
Population No. of BBS 

routes 

Average trend 

(95% CI) 

Relative abundance 

index (95% CI) 

Route density 

(95% CI) 

Western 
Boreal 

228 -0.90 (-1.54, -
0.27) 

0.66 (0.52, 0.84) 1.67 (1.31, 2.11) 

Basin 
Rockies 

84 -2.38 (-3.40, -
1.30) 

0.01 (0.01, 0.02) 0.16 (0.10, 0.25) 

Southern 
Temperate 

673 -0.34 (-0.75, 0.06) 0.15 (0.13, 0.17) 0.67 (0.58, 0.78) 

Northern 
Temperate 

615 0.67 (0.33, 1.01) 3.70 (3.10, 4.52) 15.16 (12.68, 
18.54) 

Maritime 
Provinces 

166 -1.26 (-1.73, -
0.77) 

1.97 (1.57, 2.49) 30.56 (24.33, 
38.60) 
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Figure 3.1. The population structure on the breeding range is delineated by five genetically 
distinct clusters (colored polygons) from the results of the admixture analysis (top panel). 
Population structure was determined using 169 individuals from 16 sites (black points) on the 
breeding range. Individuals sampled from the non-breeding range were determined to originate 
from a given breeding population through population assignment tests (n = 138; colored circles). 
The point colors on the nonbreeding range represent the breeding population of maximum 
likelihood of assignment and the extent of the nonbreeding range is provided by the grey 
polygon. Strong migratory connectivity is evident from the general separation of breeding 
population assignment across the wintering range. 
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Figure 3.2. Population assignment of known breeding individuals revealed assignment bias from 
unequal effective sample sizes. Circles represent the breeding populations (colored), with circle 
size representing effective sample size, and arrows represent the assignment of individuals from 
their known breeding population to their assigned population. Arrows are scaled in size by the 
number of individuals assigned. Colored arrows represent the correct individuals assigned to a 
breeding population, whereas black arrows indicate incorrect assignment to a different 
population. A) When using all samples to calculate allele frequencies in breeding populations, all 
incorrectly assigned individuals (n = 18) were assigned to a population with higher effective 
sample size. B) Standardizing breeding populations by sample sizes (27 individuals per 
population) resulted in less incorrect assignment (n = 5), but all individuals were still assigned to 
another population with higher effective sample size. C) Standardizing breeding populations to 
approximately the same effective sample size (~12 effective individuals), resulted in only one 
individual being incorrectly assigned. In all cases, incorrect assignment was typically to a 
geographically neighboring population.  
  

12.315.1 16.1 20.624.6
Effective 
sample size

Individual 
assignment

Breeding 
population

Assigned 
population

Maritime 
Provinces

Western 
Boreal

Basin 
Rockies

Northern 
Temperate

Southern 
Temperate

12.313.9 16.1 13.813.0

12.312.1 12.0 12.512.3

A) All samples

B) Sample size standardized 

C) Effective size standardized
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