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ABSTRACT 
The spatial characteristics and patterns of snow accumulation and ablation are used to 
estimate runoff volume, and timing of snowpack in mountainous regions across the western 
United States. This paper focuses on quantifying and characterizing the snow accumulation 
phase to investigate the spatio-temporal snow water equivalent (SWE) distribution in the 
Southern Rocky Mountains (SRM). Average daily SWE data were obtained from 90 
Natural Resources Conservation Service (NRCS) Snow Telemetry (SNOTEL) data 
stations from southern Wyoming to northern New Mexico for the snow years between from 
1982 to 2015. The stations range in elevation between 2268 and 3536 meters, and they 
were aggregated into seven sub-sets, based on elevation (high-low), latitude (north-south) 
and annual maximum SWE (above average, average, below average snow years).  

For the entire dataset and the seven data sub-sets, the standard deviation versus mean 
trajectories were developed. Each trajectory was comprised of average daily data points 
across the snow year, and each data point represented the standard deviation and mean 
SWE values from a sub-set of the SNOTEL stations. The trajectory can be used to describe 
and represent the change in the snowpack over the water year. Within each trajectory, the 
accumulation (increasing snowpack), hysteretic (increasing and decreasing snowpack) and 
ablation (decreasing snowpack) phases can be observed, characterized and modeled. For 
this paper, regression techniques were applied to the accumulation phase only. The 
regression form, average slope, maximum slope, minimum slope, and coefficient of 
determination values were extracted. These data were aggregated across elevation, latitude 
and snow year sub-sets, and spatial patterns were evaluated. 

Although the prior study (Egli and Jonas, 2009) used snow depth data, SWE data were the 
focus for this study. SWE data were available for a longer period of record than snow depth 
data in the SRM, and since SWE measures the mass of water rather the than depth snow, 
the physical effects of snow settling were eliminated from the analysis. The snow settling 
signature appeared in the data as noise in the standard deviation versus mean depth 
trajectory plots, compared to SWE trajectory plots. The removal of this noise, i.e., use of 
SWE trajectory plots, yielded stronger correlations than were produced using snow depth 
data. 

The accumulation phase data most closely fit a truncated linear regression model, with the 
average slopes ranging between 0.36 to 0.40 (seven sub-sets), and the average standard 
deviation values ranging between 0.042 to 0.097. While the average accumulation slopes 
were fairly similar across all seven sub-sets, latitude impacted snowpack variability more 
significantly than did elevation. Within individual years, the accumulation snowpack in the 
south region was frequently more homogenous than the north region, but when aggregated 
across the 34-year study, the accumulation snowpack in the south region was less 
consistent on an inter-annual basis. In contrast to original hypotheses, when SWE were 
discretized by both elevation and latitude, the standard deviation of the accumulation slopes 
increased, rather than decreased. Snow year (above average, average, below average) was 
found to have a negligible impact on spatial homogeneity of the accumulation snowpack, 
except within the south-high sub-set, where range in average accumulation slope was 0.10. 
Generally, the snowpack was found to be more homogenous for below average snow years 
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compared to average or above average snow years, because below average snow years 
exhibited the lowest average accumulation slopes of the three categories.  
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1.0  INTRODUCTION 
 
Across the western United States, human existence and economic activity are defined by 
and centered on the availability or scarcity of water (Kearney et al., 2014). In the Southern 
Rocky Mountains (Colorado, Southern Wyoming and Northern New Mexico), the 
snowpack is the dominant contributor to surface water flows, and in Colorado surface water 
was estimated to comprise 85% of all water withdrawals (Maupin et al., 2014). Given the 
importance of the snowpack, water resource professionals and management agencies 
monitor the accumulation and storage patterns to forecast the volume (NRCS, 2012) and 
timing <www.cbrfc.noaa.gov> of snowmelt runoff. The resulting recommendations shape 
and inform decisions that allocate limited water resources across the western United States. 
 
Data that accurately describe the snowpack characteristics are critical to management and 
monitoring efforts. The Natural Resource Conservation Service (NRCS) deploys and 
manages a network of automated snow telemetry (SNOTEL) stations to measure snowpack 
characteristics (snow water equivalent (SWE), precipitation, snow depth, and air 
temperature), with the goal of forecasting runoff volumes for rivers and streams across the 
mountainous western United States (NRCS, 2018). From the available data collected by 
the NRCS, scientists, researchers and water management professionals have developed 
methods and tools to replicate, model and/or forecast the aggregate volume, accumulation, 
ablation and runoff patterns of snowpack.  
 
In the field of snowpack melt modeling, three distinct methods have been applied: linear-
regression, temperature-index, and energy balance methods. Linear-regression techniques 
have been implemented to test correlation between SWE and total snowmelt runoff volume 
between April 1 and July 31 (Fassnacht, 2006), standard deviation and mean snow depth 
(Egli and Jonas, 2009), between peak SWE characteristics, and peak streamflow and annual 
runoff volume (Fassnacht et al., 2014). Temperature-index models apply empirical 
correlations between air temperatures and melt rates, and have been used to estimate the 
timing and quantity of peak streamflow (U.S. Army Corps of Engineers, 1956; Hock, 
2003). In contrast, energy-balance models account for the cumulative impact of measurable 
environmental and thermodynamic processes on the snowpack, and relate the remaining 
residual energy to melt volumes and rates (Hock, 2003). In this paper, the empirical 
regression approach developed by Egli and Jonas (2009) was applied to investigate the 
hysteretic dynamics of seasonal snow distribution. 
 
Egli and Jonas (2009) characterized the dynamics of spatio-temporal snow depth 
distribution for both accumulation and ablation phases based on six years of data from 77 
weather stations across the Swiss Alps. They applied analytical methods originally 
developed in the field of statistical physics by Barabási and Stanley (1995) to describe 
snowpack depth as a growing then diminishing surface over time. To visualize and analyze 
snow depth and variability across the domain, Egli and Jonas (2009) adapted a statistical 
technique from Crow and Wood (1999) and Famiglietti et al. (2008)’s soil analyses to 
present snow depth distribution (standard deviation) as a function of mean snow depth. The 
technique allowed for the identification and parameterization of mean snow depth 
distributions for accumulation and ablation phases. 
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This study applied the assumptions and methods developed by Egli and Jonas (2009) for 
the Swiss Alps to the headwaters region in the Southern Rocky Mountains (SRM), 
considering several adaptations. Across the SRM region, there are different snow 
climatologies (Fassnacht and Derry, 2010), with large spatial and elevation variability, a 
longer period of record (Fassnacht and Records, 2015), but a lower spatial density of snow 
measurement stations compared to the Alps study. While Egli and Jonas (2009) used snow 
depth, this work focused on SWE due to the longer record of SWE data compared to snow 
depth (NRCS, 2018).  
 
This work in the SRM region builds upon previous snow hydrology studies using the same 
dataset, in particular the derivation of snow-cover depletion curves (Fassnacht et al., 2016), 
the spatio-temporal variability of snowmelt factors (Fassnacht et al., 2017), the evaluation 
of snowmelt rates compared to precipitation as potential for flood risk (Fassnacht and 
Records, 2015), and snowmelt modeling (Ma, 2017; Ma et al., 2019). This paper examined 
34 water years (Oct 1, 1981 – Sept 30, 2015) of SWE data across the Southern Rocky 
Mountains to (1) compare the hysteretic nature of snow depth and SWE standard deviation 
versus mean trajectories, (2) identify regression models and parameters to approximate the 
accumulation phase of SWE trajectories over the period of record, and (3) identify 
characteristics and patterns across the SRM by sub-dividing the domain by latitude, 
elevation and snow year magnitude. 
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2.0 STUDY AREA DATA 
 
Snow water equivalent measurements are taken at over 800 Natural Resources 
Conservation Service (NRCS) Snow Telemetry (SNOTEL) stations across the western 
continental United States. There are 90 stations across the Southern Rocky Mountains 
study area that were used in this study (Figure 2-1). Stations within the study domain 
stretch from approximately 36 to 42.5 degrees North and 105 to 109 degrees West within 
the states of Colorado, northern New Mexico and southern Wyoming and across the 
elevation range of 2268 to 3536 meters (Figure 2-1). Mean daily SWE values recorded 
between water years 1982 and 2015 were obtained from the NRCS <wcc.nrc.usda.gov>. 
The available period of record for the stations was between 28 and 34 years. Quality-
controlled SWE data were obtained from Fassnacht and Records (2015).  
 

 
Figure 2-1. (a) Location, elevation group (high/low), land cover (evergreen/non-evergreen) 
and mean peak SWE (mm) of 90 SNOTEL stations across the Southern Rocky Mountains. 
(b) Location of study domain 
  

•U 

43 1 a) site map L l-»0 b) lo©ation of study dom~忙

^ 
＾云 ． [ | 嚻u《e ZI ̀  ·̀̀ ` '̀ , `a 

N...，一｀．.... 
「`

屯．~， Un i I e 
42 ~ 匕 S t a t e 

. . ....m...̀  

`,. ' 41 ~ L `,,..-'..,̀̂  i.`-r-c．丶｀土 ｀－ 卜 | .. :J 0U .. 

`` A`｀矗 `'euco 
l I • - - • 、:..I. ，＾`，國""':'

囹 40

；`乏國戸；＼
z legend 

遺 land elevation [m} 

g> 39 
- above 3750 

弋,, 

。

互138 ~ 、
~ I LJ below 2250 

``凸̀ 
station LC elevation group 
a evergreen □ high 
o non-evergreen □ low 

37 i 
`` ̀ '- 4' - `- 卜 north-south zone 

division latitude 

mean peak SWE [mm] 

36 't-知̀· 硃y. 7 
■ more than 1001 

N ■ 801 -1000 

峯 ，＇ ■601 -800 

. 401-600 , ■ 201 -400 35 
0 25 50 100 150 200 

■ less than 200 Kilometers 

109 108 107 106 105 104 
longitude [degrees West] 



 8 

3.0  METHODS 

The Methods are separated into five sections (3.1-3.5). Each section has one purpose 
(Table 3-1) and describes one step in the analysis process. 
 
Table 3-1. Outline of the methods and purpose of each section 

Methods Section Purpose 
3.1 Segment SRM domain spatially and classify the snow years 
3.2 Show derivation of standard deviation versus mean trajectory 
3.3 Compare snow depth and SWE variables for use in trajectory 
3.4 Develop regression model and parameters to describe 

accumulation phase of trajectory 
3.5 Outline statistics and categories utilized to characterize results 

 

3.1 CLASSIFICATION OF SNOTEL DATA BY LATITUDE, ELEVATION AND 
SNOW YEAR MAGNITUDE 
 
Quality-controlled water year data yielded a 24-hour average SWE value for each calendar 
day for each of the 34 water years (e.g., water year 1982 is Oct 1, 1981 to Sept 30, 1982). 
Grouping the SWE values together allowed the daily mean SWE and standard deviation 
SWE to be computed. Three groups of daily station data were considered, based on latitude 
and elevation (Table 3-2), yielding a total of seven unique mean and standard deviation 
SWE values for each calendar day. The Latitude-based group divided the SNOTEL stations 
across the SRM at 38.75 degrees north latitude into north and south sub-sets, based on 
regions of homogeneity identified with self-organizing map analyses (Fassnacht and Derry, 
2010) and correlogram analyses of accumulation slopes (Von Thaden, 2016). The Latitude- 
and elevation-based group further subdivided the north-south SNOTEL stations sub-sets 
by an elevation threshold of 2800 meters in the north and 2900 meters in the south. 
Elevation thresholds were selected to the nearest 100 meters, and to have a similar 
proportional distribution of low stations for the north and south sub-sets. 
 
Table 3-2. Outline of the discretization of SNOTEL data within the Southern Rocky 
Mountains domain 

Groups Sub-set Number of Stations 
Summary full domain 90 
Latitude-based North region 57 

South region 33 
Latitude and 
Elevation-based 

North region & High elevation 39 
North region & Low elevation 18 
South region & High elevation 25 
South region & Low elevation 8 

 
For each spatial sub-set, all 34 snow years were classified according to the annual 
maximum daily SWE measurement. Three classifications were developed: above average 
(AA), average (AVG) or below average (BA). Snow years with an annual maximum daily 
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SWE within (±) one standard deviation of the 34-year average were classified as AVG, 
while snow years with an annual maximum daily SWE value below the lower bound were 
classified as BA, and snow years with an annual maximum daily SWE above the upper 
bound were classified as AA. 
 

3.2 DERIVATION OF SWE STANDARD DEVIATION VERSUS MEAN 
TRAJECTORIES 

 
For each station (i) in the study domain, and day (t) in the snow year, the 24-hour average 
SWE value is represented by 𝑥𝑥𝑖𝑖(𝑡𝑡). Averaging these values across a single sub-set yields, 
𝑥𝑥𝚤𝚤(𝑡𝑡)������, or the mean daily SWE. For each sub-set of mean SWE values, the daily standard 
deviation 𝜎𝜎(𝑥𝑥𝑖𝑖 , 𝑡𝑡) was obtained as follows (Egli and Jonas, 2009):   
 

𝜎𝜎(𝑥𝑥𝑖𝑖 , 𝑡𝑡) = � 1
𝑁𝑁−1

∑ [ 𝑥𝑥𝑖𝑖(𝑡𝑡) −  𝑥𝑥𝚤𝚤(𝑡𝑡)������]2 𝑁𝑁
𝑖𝑖=1  (1). 

 
Thus, for each calendar day (t) between 1982 and 2015, and each sub-set of SNOTEL 
stations (i), the mean and standard deviation SWE were developed. Seven sub-sets were 
analyzed over the 34-year period of record, yielding 238 unique instances (Table 3-1).  
 
Egli and Jonas (2009) utilized this methodology “to describe the evolution of the snow 
cover as a growing surface,” based on prior work by Barabási and Stanley (1995) and 
Löwe et. al. (2007). When the snow cover ( 𝑥𝑥𝚤𝚤(𝑡𝑡)������ , SWE) is considered to be a 
growing/diminishing surface across the snow year, the standard deviation 𝜎𝜎(𝑥𝑥𝑖𝑖 , 𝑡𝑡) within 
the data set reflects the magnitude of spatial variability. This paper utilized one additional 
technique adopted by Egli and Jonas (2009); plotting standard deviation 𝜎𝜎(𝑥𝑥𝑖𝑖 , 𝑡𝑡)  as a 
dependent function of mean 𝑥𝑥𝚤𝚤(𝑡𝑡)������. The approach enabled the seasonal SWE distribution 
(or snow depth, as used by Egli and Jonas, 2009) to be modeled across multiple spatio-
temporal scales, independent of time. As a result, a unique standard deviation SWE value 
was correlated to each mean SWE value. 
 

3.3 EVALUATION OF SWE AND SNOW DEPTH AS VARIABLES FOR THE 
STANDARD DEVIATION VERSUS MEAN TRAJECTORY 

 
Prior accumulation and ablation trajectory analyses by Egli and Jonas (2009) considered 
snow depth rather than SWE data. SWE data were selected because the data were available 
for a longer period of record, and at a higher spatial density than snow depth in the SRM. 
Both SWE and snow depth data were evaluated to compare accumulation phase regression 
statistics and slope coefficients between SWE and snow depth trajectories.  One snow year 
from each snow year magnitude category in the full domain sub-set was selected: 2012 
from the BA category, 2010 from the AVG category, 2011 from the AA category. For all 
three snow years, the daily standard deviation data over 90 (87) SWE (snow depth) stations 
across the full domain were plotted against the daily mean over all 90 (87) stations to 
develop both snow depth and SWE trajectories. The inflection point between accumulation 
and hysteresis periods was identified visually and used as an upper bound for regression 
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models. Linear regression equations were developed, regression statistics (slope 
coefficients, coefficient of determination values) were extracted, and differences between 
the regression data were evaluated. 
 

3.4 DEVELOPMENT OF ACCUMULATION TRAJECTORY MODELS 
 
To characterize and describe snowpack as a singular growing surface, both the regression 
model (e.g. linear, power) and inflection point parameters (e.g. slope threshold) were 
investigated. Standard deviation versus mean trajectories from seven characteristic snow 
years in the full domain sub-set were evaluated to identify the optimal regression model 
and inflection point parameters. Of the seven characteristic snow years, one to three year(s) 
of data were obtained from each snow year magnitude category to represent BA (2002, 
2012, 2013), AVG (2010) and AA (1993, 1995, 2011) snow years (Figure 3-1). Snow years 
were selected based on the presence or absence of distinct trajectory characteristics, such 
as the curvature and shape of the transition between accumulation, hysteresis and ablation 
phases, and the relationship between the maximum standard deviation SWE and maximum 
mean SWE. Special consideration was given to select trajectories with distinct behavior. 
 

 
Figure 3-1. Daily mean peak SWE (cm) in the full domain (AA = blue, AVG = green, BA 
= red), with seven characteristic years bolded and labeled. 
 
Similar to Egli and Jonas (2009), a sensitivity analysis was conducted to identify 
parameters that enable detection of the accumulation phase inflection point (Figure 3-2). 
A moving-slope difference approach was used, and three different variables were tested: 
indicator position, magnitude difference in slope, and last feasible calendar date that all 
stations could be in accumulation phase. For every data point (day) in the domain, linear 

700 

629 

600 r__1 鬥 579 

^ 5OO 

.厝- 4 

UJ 

孓(/)400 
..>< 

囹
忌o 300 | | | | 
乏

I I I I I I I I I I I I I I | | 262 

孟

。`' 200 

100 

。 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 
Snow year 



 11 

regression variables were calculated based on the adjacent data points to determine the 10-
day or 11-day average accumulation slope. A 10-day linear regression was conducted for 
the leading (9 days prior, present day), and lagging (present day, future 9 days) indicator 
positions, and an 11-day linear regression was conducted for the central indicator position 
(5 days prior, present day and future 5 days). The difference in slopes between consecutive 
days was calculated, and slope difference thresholds of 0.3 and 0.5 were tested. Large 
differences in slope were assumed to correlate with the end of the quasi-linear 
accumulation phase. Multiple dates for the feasible calendar date for all stations to be in 
accumulation phase was also tested. The feasible calendar date was included to maintain 
data quality.  
 

 
Figure 3-2. Sample standard deviation versus mean SWE trajectory (full domain, 2013), 
with accumulation start (non-linear) and the accumulation inflection point identified. The 
approximate accumulation phase (square, dashed lines) and hysteresis phase (oval, solid 
line) are included. 
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After the optimal inflection point parameters were identified, three regression methods 
were applied to the same seven years’ standard deviation versus mean SWE domain data. 
Linear (2) and truncated linear (3), and power (4), regression models were considered, 
based on prior work by Egli and Jonas (2009) and Pomeroy et al. (2004). For both the linear 
and power regressions, the entire accumulation data set from initial non-zero values 
through the inflection point were considered, and coefficients M and B and α and β were 
identified by the following equations: 
 

𝜎𝜎(𝑥𝑥𝑖𝑖 , 𝑡𝑡) =  Μ ×  𝑥𝑥𝚤𝚤(𝑡𝑡)������ + Β   (2, 3), and 
𝜎𝜎(𝑥𝑥𝑖𝑖 , 𝑡𝑡) =  𝛼𝛼 ×  𝑥𝑥𝚤𝚤(𝑡𝑡)������𝛽𝛽  (4). 
 

A truncated linear regression model was developed specifically to exclude SWE data from 
the beginning of the accumulation phase, characterized by non-linear patterns and 
significant moving-average slope variability. The non-zero initial point (first occurrence of 
mean SWE ≥ 35 mm) was selected by reviewing the standard deviation versus mean SWE 
trajectories trends visible on all seven characteristic years, with a focus to exclude the initial 
non-linear snowfall accumulation phase (Figure 3-2). 
 

3.5 METHODS TO EVALUATE ACCUMULATION TRAJECTORIES AND 
BEST-FIT MODELS  

 
After the ideal regression model and parameters were identified, both were applied to the 
accumulation phase of 238 standard deviation versus mean SWE trajectories (one 
trajectory per year in seven sub-sets (Table 3-2)). The iterative analysis was conducted with 
Python code, leveraging SciPy (Virtanen, et al. 2020) and pandas (McKinney, 2010) 
packages. For each trajectory, slope and coefficient of determination regression statistics 
were obtained. Within each sub-set, maximum, minimum, average and standard deviation 
statistics based on the 34 slope values were calculated and each snow year was identified 
as BA, AVG and AA. The upper and lower boundaries used to categorize the snow year 
were developed uniquely for each sub-set as described in Section 3-3 based on mean and 
standard deviation of the sub-set.  
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4.0 RESULTS 

4.1 EVALUATION OF SWE AND SNOW DEPTH STANDARD DEVIATION 
VERSUS MEAN TRAJECTORIES 

 
The standard deviation versus mean snow depth and SWE trajectories for the three 
characteristic snow years have similar shapes (Figure 4-1). Within the accumulation phase, 
the trajectory can be broken into two distinct sections for both SWE and snow depth: a 
non-linear, hysteretic section for low mean snow depth/SWE values (typically less than 35 
mm mean SWE), and a linear section with a positive average slope (Figure 4-1). Snow 
depth values have a higher degree of scatter along the trajectory than SWE (Figure 4-1). 
The degree of scatter is reflected in the regression statistics; coefficient of determination 
values for SWE are consistently close to 1 (linear), while coefficient of determination 
values for snow depth values are consistently lower (Table 4-1). Snow depth trajectories 
exhibit abrupt changes in the magnitude and direction of slope that are not seen for SWE 
during the accumulation phase. The linear accumulation slopes for SWE were greater than 
snow depth by 24% in 2010 and 2012, and 31% in 2011 (Table 4-1). 
 
Table 4-1 – Comparison of linear regression slope and coefficient of determination for 
SWE (90 stations) and snow depth (87 stations) 

Snow 
year 

Slope Coefficient of determination 
SWE Snow Depth SWE Snow Depth 

2010 0.36 0.29 0.98 0.95 
2011 0.49 0.38 0.99 0.97 
2012 0.36 0.29 0.98 0.95 
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Figure 4-1. Mean and standard deviation of mean daily data for snow depth (87 SNOTEL 
stations) and SWE (90 SNOTEL stations) for the 2010 (top, green), 2011 (middle, blue) 
and 2012 (bottom, red) snow years. 
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4.2 IDENTIFICATION OF THE OPTIMAL ACCUMULATION TRAJECTORY 
MODEL AND PARAMETERS 

 
The linear, truncated linear, and power regression models each fit the measured 
accumulation phase data (seven characteristic years, full domain (Figure 4-2)) very 
effectively. Coefficient of determination values are reported to three decimal places to 
differentiate the fit (Table 4-2). The coefficient of determination values for the two linear 
models are closer to a perfect fit (1) than for the power function. By excluding SWE data 
below 35mm, the linear model the fit improves, and the average coefficient of 
determination is 0.994 for the seven characteristic years. 
 

 
Figure 4-2. Standard deviation versus mean SWE trajectory data (full domain) from 
seven characteristic snow years that were used to define accumulation inflection point 
and regression model.  
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Table 4-2 – Comparison of coefficient of determination values from three accumulation 
phase regression models for the seven study years (full domain) (see Figure 4-1). 

Snow 
year 

Linear Truncated Linear 
at 35mm 

Power 

1993 0.998 0.997 0.983 
1995 0.980 0.991 0.959 
2002 0.986 0.989 0.986 
2010 0.977 0.994 0.984 
2011 0.987 0.997 0.995 
2012 0.980 0.997 0.971 
2013 0.987 0.995 0.991 

Average 0.985 0.994 0.981 
 
 
The slope difference threshold value of 0.5 did not lead to detection of an inflection point 
for the 2010 snow year (AVG), influencing the negative NSCE and low coefficient of 
determination values for linear regression between observed and modeled inflection points 
(Table 4-3). In contrast, the slope difference threshold of 0.3 led to the detection of an 
inflection point for all seven years. With a slope difference threshold value of 0.3, both the 
central 11-day and lagging 10-day indicator position parameters reflected the observed 
inflection point (NSCE of 0.85, 0.81 respectively), and exhibited a more linear relationship 
between observed and modeled mean SWE (coefficient of determination of 0.86, 0.87 
respectively), than the leading 10-day indicator position parameter. The central 11-day (0.3 
slope difference threshold) was utilized in regression model identification and results 
assessment, because this combination of parameters yielded the most accurate results for 
the seven characteristic snow years.   
 

Table 4-3 – Accumulation phase inflection point model parameter comparison 
Slope 

Difference 
Threshold 

Indicator 
Position 

NSCE Coefficient of 
Determination 

0.3 
leading 10-day 0.71 0.76 
central 11-day 0.85 0.86 
lagging 10-day 0.81 0.87 

0.5 
leading 10-day -1.97 0.01 
central 11-day -0.31 0.55 
lagging 10-day -0.42 0.44 
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4.3 EVALUATION OF ACCUMULATION TRAJECTORIES AND BEST-FIT 
MODELS  

 
Out of the 238 trajectories, the model did not yield an inflection point or a realistic 
inflection point for nine years (3.7% of the trajectories): full domain – 2000, south – 2000, 
2012, north-high – 1984, 2001, south-high – 1987, 2000, south-low – 2000, 2008. For these 
cases, the inflection point was obtained by visual inspection. Realistic inflection points 
were assumed to occur prior to May 15th.  
 
The 34-year average of SWE accumulation slopes across all seven sub-sets range from 
0.36 (south low) to 0.40 (full domain) (Table 4-4). The maximum slope was observed in 
the full domain sub-set in 2006 (slope = 0.59), and the minimum slope was observed in the 
south low elevation sub-set in 2007 (slope = 0.12). Across the four latitude and elevation 
based sub-sets, a slight decreasing trend in average slope was observed (0.01 change per 
sub-set), from highest and northernmost (north high = 0.39) to lowest and southernmost 
(south low = 0.36). However, average slopes were fairly consistent across all seven sub-
sets. The largest range between maximum and minimum slopes was observed in the south-
low sub-set (0.40), while the smallest range was observed in the north sub-set (0.18). 
 
The 34-year average coefficient of determination (R2) and standard deviation values were 
employed to assess the degree of inter-annual variability (or scatter) on the accumulation 
phase of the standard deviation versus mean SWE trajectories (Table 4-4). The south low 
sub-set exhibits a high degree of scatter (Figure 4-3) and had the lowest coefficient of 
determination (0.95), and highest slope standard deviation (0.097) of the slopes across all 
sub-sets. Conversely, the north and north low sub-sets exhibited the highest coefficient of 
determination (0.99), but the north sub-set exhibited the lowest variation (slope standard 
deviation of 0.042). 
 

Table 4-4 – Summary of accumulation phase data 

    
Slope Statistics obtained from 34 years of 

results 
Group Sub-set Average 

slope 
Max 
slope 

Min 
slope 

Average 
slope R2 

Slope 
standard 
deviation 

Summary Full domain 0.40 0.59 0.26 0.98 0.062 
Latitude-

based 
North 0.39 0.47 0.29 0.99 0.042 
South 0.37 0.50 0.23 0.97 0.077 

Latitude 
and 

Elevation-
based 

North High 0.39 0.49 0.28 0.98 0.053 
North Low 0.38 0.47 0.26 0.99 0.049 
South High 0.37 0.57 0.23 0.97 0.083 
South Low 0.36 0.52 0.12 0.95 0.097 
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Figure 4-3. Average accumulation slopes per year for all sub-sets illustrate the inter-
annual variability of standard deviation versus mean trajectories. 
 
Little to no correlation between scatter and elevation was observed, since separating the 
south and north sub-sets by elevation into high and low sub-sets yielded equal or slightly 
lower (0.01-0.02) coefficient of determination values. Conversely, the magnitude of scatter 
and elevation appear to be correlated, because separating the south and north sub-sets by 
elevation into high and low sub-sets increased the standard deviation for all four sub-sets. 
The largest increase in standard deviation was observed in the south low sub-set, as 
standard deviation increased 0.020 (from 0.077 (south) to 0.097 (south low)), while the 
increase in standard deviation for the other three sub-sets was observed between 0.006 
(south to south high) and 0.011 (north to north high).  
 
When the accumulation phase data are discretized by snow year magnitude (BA, AVG, 
AA) and sub-set, several characteristics become apparent (Figure 4-4). Generally, below 
average (BA) snow years exhibited lower average accumulation slopes than average 
(AVG) or above average (AA) snow years (six out of seven sub-sets); the lowest average 
accumulation slope – regardless of snow year – was observed in the south high region in 
the BA snow year category. The standard deviation values were fairly similar within each 
sub-set, except the south low sub-set where accumulation slopes were much more variable 
in BA snow years than AVG or AA snow years.  
 
Between the north- and south sub-sets, the average accumulation slopes for BA and AA 
snow years were fairly consistent, but a large difference in average accumulation slope was 
observed for AVG snow years. When elevation was considered in the north sub-set 
(splitting into north high and north low sub-sets), no significant impact from snow year 
category was observed, since the average slope and standard deviation values were fairly 
consistent. However, when elevation was considered in the south sub-set (south high and 
south low), significant fluctuations in average slope and standard deviation were observed. 
For example, average slopes for BA snow years decreased, AVG snow years increased, 
and AA snow years both increased (high elevation) and decreased (low elevation). 
Discretizing the south sub-set data by elevation revealed standard deviation (scatter) 
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increased for all snow years and both elevation sub-sets, except BA snow years in the 
south-high sub-set.  
 

 
Figure 4-4. The 34-year average accumulation slopes and standard deviation separated by 
peak annual daily SWE (BA, AVG and AA snow year magnitude categories) are 
presented across seven sub-sets based on elevation and latitude.  
 
The largest difference in average accumulation slope within a sub-set was observed in the 
south high sub-set, where the range between the largest (AA snow year = 0.42) and smallest 
(BA snow year = 0.32) average slopes was 0.10. The smallest difference in average 
accumulation slope within a sub-set was observed in the south low sub-set, with a range of 
0.02, between AVG (0.37) and BA (0.35) snow years. The extreme range between the 
largest and smallest accumulation slopes in south low and south high sub-sets were in 
contrast to the ranges observed in the other five sub-sets, between 0.04 and 0.06. 
Collectively, the results suggest that average accumulation slope values are correlated 
strongly, moderately, or weakly with the peak annual SWE; south low = little to no 
correlation, south high = strong correlation, other five sub-sets = moderate correlation. 
Stated differently, average accumulation values are fairly consistent for the south low sub-
set, regardless of snow year. Conversely, for the south high sub-set, average accumulation 
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slopes vary greatly, based on the snow year. For the remainder of the sub-sets, 
accumulation slopes vary to a moderate extent, based on the snow year. 
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5.0 DISCUSSION 

5.1 APPLICABILITY OF SWE AND SNOW DEPTH DATA FOR STANDARD 
DEVIATION VERSUS MEAN TRAJECTORIES 

 
An initial objective of this study was to assess whether SWE could be substituted for snow 
depth in the trajectory, since prior work by Egli and Jonas (2009) utilized snow depth data. 
The use of SWE instead of snow depth data was motivated by robustness of the available 
data. In the SRM, SWE data are available for longer period of record and greater spatial 
extent than snow depth data. A second motivation was variability in the trajectory data 
identified by Egli and Jonas (2009).  
 
Results from Section 4.1 suggest that SWE data are a good substitute for and provide 
several advantages over snow depth data. For the three snow years where regression was 
applied to snow depth and SWE data (2010, 2011, 2012), the coefficient of determination 
values were closer to 1 for SWE data (Table 4-1). The regression fit parameters confirm 
visual observations from the trajectories (Figure 4-1); the standard deviation varies less 
with SWE data than with snow depth data. In the accumulation phase, snow depth data 
lead to a trajectory with multiple standard deviation values for a given SWE value, which 
was not observed for trajectories based on SWE data (Figure 4-1). Egli and Jonas (2009) 
observed the same behavior – high variability and frequent changes in snow depth standard 
deviation. Egli and Jonas (2009) attributed this behavior to physical processes of settling 
and/or densification, which are measured by snow depth. The SWE trajectory does not 
exhibit abrupt changes in magnitude/direction or multiple values of standard deviation for 
a given SWE value, because SWE measures the mass of accumulated water rather than 
snow depth and decreases in SWE are smaller due to sublimation. The SWE trajectories 
generally do not exhibit decreases in mean SWE until the start of ablation phase, because 
mid-winter (accumulation phase) melt events are rare across the SRM (Fassnacht and 
Patterson, 2013). The use of SWE data eliminated variability due to physical processes of 
settling and densification (Figure 4-2), resulting in an accumulation trajectory to which 
regression can be applied with greater accuracy than snow depth data (Table 4-1).  
 

5.2 REVIEW OF REGRESSION MODEL AND PARAMETERS APPLIED TO 
SWE TRAJECTORY 

 
Although the original work on growing surfaces by Barabási and Stanley (1995) and Egli 
and Jonas (2009) elected to model the accumulation phase of the trajectory with a power 
function, the truncated linear model most accurately fit the accumulation phase in the SRM. 
For the seven characteristic years in the full domain sub-set, the truncated linear model 
yielded a coefficient of determination equal to, or greater than the linear or power models 
(Table 4-2). However, all three models yielded high coefficient of determination values, 
confirming prior findings by Egli and Jonas (2009) and Pomeroy et al. (2004) that both 
power and linear models can be applied to the accumulation phase across different snow 
measurement variables (snow depth/SWE) and snow hydrology regions (SRM, Swiss 
Alps).  
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The truncated linear regression model improves the fit over the non-truncated linear model 
by excluding mean SWE values below 35 mm from the regression. For all seven years 
analyzed in depth, the trajectory data below 35 mm were highly variable and had multiple 
standard deviation values for a given SWE value. The 35 mm threshold was selected to 
eliminate the majority of the variability and duplicate standard deviation values by visual 
analysis from the seven snow year trajectories studied in depth (Figure 4-2). This driver of 
this behavior is likely caused by both individual SNOTEL stations shifting from 
accumulation to ablation, and the 90-station aggregate including stations in both 
accumulation and ablation phases at the onset of the winter season. Similar behavior can 
be observed during the hysteresis period between purely accumulation and ablation phases 
(Figure 4-2). 
 
Whether generated from snow depth or SWE data, average accumulation slope values are 
a measure of spatial variability; larger slope values indicate snowpack data are more 
heterogenous, while lower slopes indicate snowpack data are more homogenous. Both 
SWE and snow depth accumulation slopes in the SRM were generally lower than the linear 
regression slopes for snow depth observed by Egli and Jonas (2009) in the Swiss Alps. In 
the SRM, snow depth accumulation slopes ranged from 0.29 to 0.38 (the average over 
2010, 2011, 2012 was 0.32), and 34-year average SWE accumulation slopes ranged 0.36 
(south low sub-set) to 0.40 (full domain) (Table 4-4). Egli and Jonas (2009) reported six-
year average accumulation slopes between 0.41 and 0.54. Physical processes, such as snow 
settling, account for the difference in slope between snow depth and SWE data, but do not 
account for the difference in snow depth slope observed between the SRM and Swiss Alps.  
 
The smaller accumulation slopes in the SRM could be due to differences in data density, 
period of record analyzed, or snowpack climatology. Egli and Jonas (2009) utilized data 
from 77 stations located over approximately 30,000 km2 (390 km2/station), while this study 
utilized data from 90 stations spread out over approximately 300,000 km2 (3,330 
km2/station). Differences in snow hydrology between the Swiss Alps and SRM may 
contribute as well. For example, the annual peak station-averaged snow depth observed by 
Egli and Jonas (2009) in the Swiss Alps was between 1.53-2.42 meters, while the annual 
peak station-average snow depth in the SRM was between 0.75-3.0 meters 
<wcc.nrcs.usda.gov>. The period of record Egli and Jonas (2009) considered was for six 
snow years with some variability. In this paper, three years of snow depth data illustrated 
larger inter-annual variability (Figure 4-1). In total, 34 years of SWE were considered for 
the SRM, illustrating much variability (Table 4-4, Figure 4-3). Finally, the SRM domain 
in this paper is an order of magnitude larger than the Swiss Alps region examined by Egli 
and Jonas (2009). As such, there is much difference in snowpack accumulation patterns 
across the SRM (Von Thaden, 2016) that are not seen in the Swiss Alps study domain. 
These differences across the SRM (Fassnacht and Derry, 2010) are especially pronounced 
between the northern and southern portions of the area (Figure 2-1). The SRM domain is 
large enough (>700 km north to south) that snowfall usually arrives from different storm 
systems across the domain. 
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5.3 DISCUSSION OF OBSERVED ACCUMULATION SLOPE DYNAMICS IN 
THE SRM 

 
The 34-year average accumulation slopes of standard deviation versus mean trajectories 
illustrate that similar snowpack accumulation patterns exist across the SRM, which has 
previously been detailed by Sturm and Wagner (2010). Unique snowpack accumulation 
patterns were observed across the distinct snow climatologies of the SRM previously 
identified and characterized by Fassnacht and Derry (2010). The snowpack in the south 
region was slightly more spatially homogenous than in the north region for individual 
years, because the 34-year average accumulation slope is lower in the south region than in 
the north. However, the higher standard deviation for the 34-year average accumulation 
slope in the south region indicated more inter-annual variability of the snow surface than 
in the north region. 
 
The most numerically significant impact of elevation was observed when the north and 
south sub-sets were split into high and low sub-sets, because the 34-year average standard 
deviation values increased for all elevation and latitude-based sub-sets. While the relatively 
small number of data points within the twice-divided sub-sets may account for a portion of 
this change, the results may also suggest substantial snowpack variability exists across sites 
within similar elevation and latitude ranges. However, the accumulation slopes from the 
same elevation- and latitude-based sub-sets are very similar to the latitude-based sub-sets. 
Consistency in the average accumulation slope between elevation- and non-elevation based 
sub-sets suggests that for larger spatial scales and data sets, elevation does not dramatically 
impact spatial or inter-annual snowpack accumulation patterns. 
 
When annual maximum daily SWE for each snow year is discretized into BA, AVG and 
AA snow years, clear correlations between slope, peak annual SWE, elevation and latitude 
were observed across the 34-year accumulation phase trajectories. Average accumulation 
slopes differ somewhat for BA, AVG and AA snow years for the north sub-set, and those 
differences are amplified in the north high and north low sub-sets. The consistency suggests 
that distinct snowpack accumulation patterns exist for different annual maximum SWE 
categories, and that elevation does not impact snowpack accumulation behavior. BA snow 
years exhibit the lowest average slope, corresponding to the lowest degree of spatial 
heterogeneity, followed by AA snow years, and then AVG snow years with the highest 
degree of spatial snowpack variability. Within the south low region, consistency in average 
accumulation slope across BA, AVG and AA snow years suggests peak annual SWE has 
no impact on the spatial distribution of SWE. However, the large range of standard 
deviation values in the south low sub-set reflects a unique characteristic of BA peak SWE 
snow years; a high degree of spatial variability in snowpack. 
 

5.4 FUTURE WORK RELATED TO SWE TRAJECTORIES 
 
This paper successfully applied many of Egli and Jonas (2009) methods and assumptions 
to the SRM snow climatology, compared snow depth and SWE trajectories, and modeled 
the accumulation phase of the SWE standard deviation versus mean trajectory, but a 
number of additional perspectives could be considered in future work. The ablation phase 
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and hysteretic transition period between accumulation and ablation should be characterized 
and modeled similarly. A complete model of accumulation and ablation would represent 
the entire cycle of seasonal snowpack and provide insight on the potential relations between 
elevation, latitude and snow year on snowpack as a diminishing surface. Although Egli and 
Jonas (2009) hypothesis regarding increased heterogeneity at the initiation of ablation 
phase was visually observed and additional studies may be able to characterize and quantify 
this phenomenon. Within the same period of record, statistical tests could be applied to 
trajectory characteristics to investigate potential temporal trends, patterns or markers of 
non-stationarity. Additional work could include analyses to test for correlation between 
trajectory characteristics (i.e. slope, breakpoint) and external global climatic patterns, such 
as drought indices or the Oceanic Niño Index (ONI).  
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6.0  CONCLUSIONS 
 
This study attempts to characterize and visualize the annual growth of snowpack in the 
Southern Rocky Mountains with a graphically-based trajectory methodology. For a given 
spatial domain, daily mean/standard deviation measurements of snowpack were applied to 
a linear plot, illustrating three phases of snowpack evolution: accumulation, ablation and 
mixed accumulation and ablation. Snow depth and snow water equivalent data from 90 
SNOTEL stations from 34 water years (1981-2015) were used to answer several questions: 
can snow depth and SWE be used to describe annual snowpack evolution in the Southern 
Rocky Mountains?, what regression models and parameters describe the accumulation 
phase trajectory?, and when the SWE data are divided by elevation, latitude and snow year 
magnitude, do any characteristics or patterns emerge?  
 
To characterize differences between snow depth and SWE data, trajectories for three years 
(2010-2012) in the full domain sub-set were developed, and linear regression was applied 
to the accumulation phase. Linear accumulation slopes for SWE were greater than snow 
depth by 24% in 2010 and 2012, and 31% in 2011, and multiple values of standard 
deviation for a given mean value were more likely on the snow depth trajectory. This 
hysteretic behavior was attributed to snow depth capturing the physical processes of 
settling. Snow water equivalent data did not exhibit the same behavior and do not measure 
these physical processes. 
 
Snow depth accumulation slopes for three years (2010, 2011, 2012) in the SRM were 
compared to accumulation slope values developed by Egli and Jonas (2009) in the Swiss 
Alps. Slopes in the SRM were lower than in the Swiss Alps. Data density (3,330 
km2/station in SRM, 330 km2/station in Swiss Alps) and average peak snow depth (0.7 to 
3.0 m in the SRM, 1.53 – 2.40 m in Swiss Alps) are plausible explanations for these 
differences.  
 
Seven characteristic snow years (1993, 1995, 2002, 2010-2013) were selected to identify a 
regression model (linear, truncated linear, and power) and boundary condition parameters 
to detect the end of the accumulation phase and the beginning of mixed accumulation and 
ablation phases. The seven years were selected from the full domain sub-set with a 
distribution of snow year magnitude values (3 below average (BA), 1 average (AVG), and 
3 above average (AA)), and unique trajectory characteristics. The seven-year average 
coefficient of determination for linear and power models were equal (0.98). Eliminating 
the initial hysteretic period (mean SWE < 35mm) from the linear model yielded a 
coefficient of determination = 0.99. Using the slope difference method, an 11-day moving 
average and slope difference threshold of 0.3 most accurately predicted the end of 
accumulation phase, compared to visual observation. The truncated linear model and slope 
difference parameters were used to analyze the accumulation slopes for 238 trajectories, 
based on all combinations of latitude (north/south split by 38.75 degrees north), elevation 
(high/low split by 2800 m (north) and 2900 m (south)) and snow year (above/below/within 
one standard deviation from the mean annual peak SWE). 
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Across all seven sub-sets the 34-year average accumulation slopes ranged from 0.36 (south 
low) to 0.40 (full domain), with 1-year slope values ranging from 0.59 (2006, full domain) 
to 0.12 (2007, south low). The 34-year average slope standard deviation values were lowest 
for the north (0.42) subset and highest in the south low (0.97) subset. The results suggest 
latitude influences snowpack variability: north of 38.75 degrees (north-based subsets) there 
is less interannual variability (south-based sub-sets) and south of 38.75 degrees there is 
more variability, especially below elevation 2900 m. 
 
For all sub-sets BA snow years exhibited lower average accumulation slopes than AA snow 
years, suggesting snowpack variability is positively correlated with maximum annual peak 
SWE. South of 38.75 degrees and above 2900 meters (south high sub-set), AA snow years 
(average slope = 0.42) yield less variability in snowpack, and BA snow years (average 
slope = 0.32) exhibit substantial variability in snowpack. Perhaps unexpectedly, in the 
south low sub-set, average slope values are nearly identical for AA (0.36), AVG (0.36) and 
BA (0.35) snow years. Within the south low sub-set, a high degree of interannual variability 
in snowpack was noted (average accumulation slope standard deviation = 0.13). 
 
From a relative perspective (minor/moderate/major), the study results suggest snowpack 
variability is influenced by elevation (moderate and dependent on latitude and snow year 
combination), latitude (moderate), and snow year (minor). 
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APPENDIX 

A. DERIVATION OF STANDARD DEVIATION VERSUS MEAN 
TRAJECTORIES 

A.1 DEVELOPMENT AND METHODOLOGY FOR THE REGRESSION 
METHOD 

 
Three best-fit regression methods were fit to the accumulation data: linear, truncated linear 
(excluding mean SWE <35mm), and power for seven snow years with unique accumulation 
phase characteristics (Figures 1-A1 and 1-A2). The 11-day moving-average breakpoint 
method identified in the Methods section was used to identify the end of the accumulation 
phase.  
 
The truncated linear model (Linear-1) yielded the largest coefficient of determination 
values in 6 of 7 years (Table A.1-1). 
 

Table A.1-1 – Regression parameters and coefficients of determination for three 
regression methods based on data from seven characteristic snow years  

  Linear Linear - 1 Power-2 
  R2 b m R2 b m R2 alpha beta 
1993 0.998 3.48 0.432 0.997 6.58 0.425 0.983 0.809 0.715 
1995 0.980 9.26 0.459 0.991 23.43 0.393 0.959 0.680 0.753 
2002 0.986 7.26 0.431 0.989 9.13 0.419 0.986 1.260 0.608 
2010 0.977 16.52 0.405 0.994 28.01 0.364 0.984 1.412 0.614 
2011 0.987 11.23 0.495 0.997 29.90 0.435 0.995 1.086 0.702 
2012 0.980 8.36 0.359 0.997 14.79 0.326 0.971 1.229 0.592 
2013 0.987 7.56 0.450 0.995 16.64 0.406 0.991 1.257 0.623 
1-(exclude SWE prior to 35 mm)           
2-(y=alpha*x^beta)               
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Figure A.1-1. The accumulation phase of the standard deviation versus mean SWE 

trajectory data set is presented for seven characteristic years. This is the data set utilized 
for the linear regression model. 

 

 
Figure A.1-2. The accumulation phase of the standard deviation versus mean SWE 

trajectory data set is presented for seven characteristic years. This is the data set utilized 
for the truncated linear regression model. 
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A.2 DEVELOPMENT OF INFLECTION POINT IDENTIFICATION METHOD 
 
A variety of approaches were tested to determine a replicable method to identify the 
inflection point between the purely accumulation, and mixed accumulation/ablation 
phases, independent of the regression model applied to the accumulation phase. The three 
approaches tested were variations of those employed by Jonas and Egli (2009); complete 
linear regression for each day of the snow year, and compare regression slopes between 
days. Leading, lagging and centralized daily linear regression methods were tested, with 
date ranges varying between 10 (leading/lagging) and 11 days (central). Preliminary 
attempts to implement this method resulted in many false positives – changes in slope 
above the threshold, but much earlier than the measured accumulation phase terminated. 
To mitigate false positives, a minimum date threshold was included to disallow pre-
emptive terminations of the accumulation phase.  
 
After a series of preliminary analyses, two slope difference thresholds were identified for 
larger-scale analyses. The two slope difference thresholds (0.3 and 0.5) were tested with 
leading 10-day, lagging 10-day, and central 11-day methods for seven snow years. The 
seven years selected for testing exhibited unique characteristics on the plot of standard 
deviation versus mean SWE. Results were compared to the observed inflection point, 
which was determined through visual inspection. Based on the observed inflection point, 
the Nash-Sutcliffe model coefficient of efficiency was calculated to assess how accurately 
the predicted inflection point aligned with the observed inflection point (Table A.2-1, A.2-
2, Figure A.2-1 and Figure A.2-2). 
 

Table A.2-1 – Comparison of breakpoint prediction values of mean SWE for slope 
difference threshold of 0.3 

 Observed mean SWE Modeled 

 Year   
leading 
10-day 

central 
11-day 

lagging 
10-day 

1993 629 527 624 525.8 
1995 411 348 347 342.1 
2002 262 174 261 252.9 
2010 343 414 444 390.5 
2011 445 455 454 445.4 
2012 317 313 316 316.4 
2013 295 296 303 295.5 

          
  NSCE 0.706 0.847 0.810 
  R2 0.757 0.855 0.870 
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Figure A.2-1. The ideal model is represented by the one to one line, allowing the three 

methods (leading 10-day, central 11-day and lagging 10-day) to be compared against the 
ideal, visually observed inflection point mean SWE value for a slope difference threshold 

of 0.3. 
 

 
 

Table A.2-2 – Comparison of breakpoint prediction values of mean SWE for slope 
difference threshold of 0.5 

 Observed mean SWE Modeled 

 Year   
leading 
10-day 

central 
11-day 

lagging 
10-day 

1993 629 235 628 526 
1995 411 348 347 342 
2002 262 259 261 256 
2010 343 0 0 1 
2011 445 455 454 445 
2012 317 313 316 316 
2013 295 294 302 297 

          
  NSCE 0.706 0.847 0.810 
  R2 0.757 0.855 0.870 
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Figure A.2-2. The ideal model is represented by the one to one line, allowing the three 
methods (leading 10-day, central 11-day and lagging 10-day) to be compared against the 
ideal, visually observed inflection point mean SWE value for a slope difference threshold 

of 0.5. 
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B. DERIVATION AND EVALUATION OF ACCUMULATION SLOPES 
 
The process of identifying inflection points, and executing a linear regression for each 
trajectory (34 years of data, 7 sub-sets) was simplified with development of a number of 
Python scripts. However, the method and parameters were not able to identify a point of 
inflection for 1 one instance out of 238 (0.42%). For this trajectory (north-low sub-set, 
1987, Figure 2-1), the inflection point was easily identified visually, but was not detected 
numerically. 
 

 
Figure B-1. The standard deviation versus mean SWE trajectory for the north-high sub-

set in the snow year 1987 illustrates an un-detected sharp inflection point. 
 
After reviewing the raw data obtained through Python scripts, nine specific instances with 
false inflection points were discovered. False inflection points were defined as occurring 
after day 250 of the water year (i.e. June, well after melt phase should have begun), and 
often were characterized by a coefficient of determination substantially lower than 0.7. 
This occurred throughout all sub-sets, over a variety of years (1 in the summary sub-set 
(2000), 2 in the south sub-set (2000, 2012), 2 in the north-high sub-set (1984, 2001), 2 in 
the south-high sub-set (1987, 2000), 2 in the south-low sub-set (2000, 2008)). The local 
slope near the visually observed breakpoints ranged from 0.286 to 0.465 [0.391, 0.384, 
0.292, 0.322, 0.371, 0.286, 0.391, 0.465, 0.402 respectively]. The issue appeared to be 
more prevalent in extreme water years (5 in low, 3 in high and 1 in mid), according to the 
definition of water year was described in the Methods section. 
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Figure B-2. The breakpoint detection methods assigned an unrealistic breakpoint and 

average accumulation slope for the year 2000 (summary); actual slope was 0.391. 
 

 
Figure B-3. The breakpoint detection methods assigned an unrealistic breakpoint and 

average accumulation slope for the year 2000 (south); actual slope was 0.384. 
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Figure B-4. The breakpoint detection methods assigned an unrealistic breakpoint and 

average accumulation slope for the year 2012 (south); actual slope was 0.291. 
 

 
Figure B-5. The breakpoint detection methods assigned an unrealistic breakpoint and 
average accumulation slope for the year 1984 (north-high); actual slope was 0.322. 

180 

160 

0 

00 

42O 1l1 
[EE)3MS 

uo11e

>ao 
p,epue1s 

80 

60 

40 

20 

。 。

- Full year 

一Seriesl

一Linear (Seriesl) 

so 100 150 200 

Mean daily SWE (mm) 

250 300 350 

400 

350 

0 

0 

0 

0 

0 

OSOSO 32211 (EE

)3MS 

uo11e

>ao 
p,epue1s 

so 

。 。

- Full year 

一Seriesl

一Linear (Seriesl) 

100 200 300 400 500 600 

Mean daily SWE (mm) 

700 800 900 



 38 

 
Figure B-6. The breakpoint detection methods assigned an unrealistic breakpoint and 
average accumulation slope for the year 2001 (north-high); actual slope was 0.371. 

 

 
Figure B-7. The breakpoint detection methods assigned an unrealistic breakpoint and 
average accumulation slope for the year 1987 (south-high); actual slope was 0.286. 
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Figure B-8. The breakpoint detection methods assigned an unrealistic breakpoint and 
average accumulation slope for the year 2000 (south-high); actual slope was 0.319. 

 

 
Figure B-9. The breakpoint detection methods assigned an unrealistic breakpoint and 

average accumulation slope for the year 2000 (south-low); actual slope was 0.465. 
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Figure B-10. The breakpoint detection methods assigned an unrealistic breakpoint and 

average accumulation slope for the year 2000 (south-low); actual slope was 0.402. 
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C. PRELIMINARY REVIEW OF ABLATION PHASE IN THE SRM  
 
Preliminary work on the ablation phase of the standard deviation versus mean SWE 
trajectory was completed, and the fit of two functions were tested and compared. Both a 
power law and modified exponential function (Egli and Jonas (2009)) were fit to the 
ablation phase data from seven characteristic snow years. The Excel solver function was 
used to identify regression parameters for the power law function (Table C-1). Regression 
parameters for the modified exponential function were not calculated. Preliminary results 
indicate the modified exponential function more accurately represents the ablation 
trajectory (Figures C-1 and C-2), based on visual inspection. 
 

Table C-1 – Curve-fitting parameters and coefficient of determination summary for 
ablation phase 

 Year R2 alpha beta 
1993 0.972 2.76 0.539 
1995 0.988 2.39 0.630 
2002 0.976 2.28 0.625 
2010 0.966 2.21 0.691 
2011 0.978 2.43 0.657 
2012 0.980 1.75 0.759 
2013 0.985 2.28 0.614 

 

Figure C-1. The melt phase of the standard deviation versus mean SWE trajectory is 
presented for seven characteristic years, and illustrates the applicability of regression with 

the power function. 
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Figure C-2. The melt phase of the standard deviation versus mean SWE trajectory for the 

summary sub-set is included in solid lines, and the discrete points were obtained with 
Excel solver for the modified exponential function. 
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D. PRELIMINARY WORK ON IMPACT OF OCEANIC NIñO INDEX  
 
Although conceptual in nature, preliminary visual comparisons between ONI and the 
annual maximum daily mean peak SWE were developed. Three-month mean Sea Surface 
Temperature (SST) records pertinent to the study of the ONI cycle were obtained from 
National Oceanic and Atmospheric Administration (NOAA) for calendar years 1950 
(September-October-November, SON) through 2017 (October-November-December, 
OND and November-December-January (NDJ)). Calendar year data were transformed into 
water year data, and the SON, OND and NDJ data from the prior calendar year were 
included into the water year data. This was done to match up water year mean SWE records 
against three-month mean SST records. The relative strength rating of the ENSO cycles 
(very strong El Niño (EN) and strong La Niña (LN)) between water year 1982 and 2017 
were analyzed (Figure D-1). 
 
Neither strong nor consistent correlations between ONI cycles and the annual maximum 
daily mean peak SWE were not observed in a preliminary visual analysis of the four 
elevation- and latitude-based sub-sets and aggregated sub-sets. For example, ONI cycles 
did not appear correlated to the highest/lowest/median peak SWE values, as they are 
distributed sporadically between the 4th and 25th highest peak SWE values. When peak 
SWE were broken into four quadrants, variability only increased. 
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