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Abstract— Eigendecomposition is a common technique that is
performed on sets of correlated images in a number of computer
vision and robotics applications. Unfortunately, the computation
of an eigendecomposition can become prohibitively expensive
when dealing with very high resolution images. While reducing
the resolution of the images will reduce the computational
expense, it is not known how this will affect the quality of the
resulting eigendecomposition. The work presented here gives the
theoretical background for quantifying the effects of varying the
resolution of images on the eigendecomposition that is computed
from those images. A computationally efficient algorithm for
this eigendecomposition is proposed using derived analytical
expressions. Examples show that this algorithm performs very
well on arbitrary video sequences.1

I. INTRODUCTION

Eigendecomposition-based techniques play an important
role in numerous image processing and computer vision ap-
plications. The advantage of these techniques, also referred to
as subspace methods, is that they are purely appearance based
and that they require few online computations. Variously re-
ferred to as eigenspace methods, singular value decomposition
(SVD) methods, principal component analysis methods, and
Karhunun-Loeve transformation methods [1], they have been
used extensively in a variety of applications such as face char-
acterization [2], [3] and recognition [4]-[8], lip-reading [9],
[10], object recognition [11]-[14], pose detection [15], [16],
visual tracking [17], [18], and inspection [19]-[22]. All of
these applications are based on taking advantage of the fact
that a set of highly correlated images can be approximately
represented by a small set of eigenimages [23]. Once the set
of principal eigenimages is determined, online computation
using these eigenimages can be performed very efficiently.
However, the offline calculation required to determine both the
appropriate number of eigenimages as well as the eigenimages
themselves can be prohibitively expensive.

The resolution of the given correlated images, in terms of
the number of pixels, is one of the factors that greatly affects
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in the Robotics Consortium sponsored by the U. S. Army Research Laboratory
under the Collaborative Technology Alliance Program, Cooperative Agree-
ment DAAD19-01-2-0012. The U. S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copyright
notation thereon.

the amount of offline calculation required to compute an
eigendecomposition. In particular, many common algorithms
that compute the complete SVD of a general matrix require
on the order of mn2 flops, where m is the total number of
pixels in a single image and n is the number of images. Most
users of eigendecomposition techniques would like to use as
large a resolution as is available for the original images in
order to maintain as much information as possible; however,
this frequently results in an impractical computational burden.
Thus users are typically forced to downsample their images
to a lower resolution using a “rule of thumb” or some ad hoc
criterion to obtain a manageable level of computation. The
purpose of the work described here is to develop a theoretical
background that will quantify the tradeoff between the resolu-
tion of correlated images and the “quality” of their resulting
eigendecomposition, in terms of measures that are relevant to
the user’s motivation for preforming an eigendecomposition.

The paper is organized as follows. In Section II, we explain
the fundamentals of applying eigendecomposition to related
images. We develop a mathematical background in Section
III for quantifying the amount of error introduced into an
eigendecomposition as a function of resolution. This infor-
mation is used to develop a fast SVD algorithm, outlined
in Section IV, to quickly compute the desired portion of
the eigendecomposition based on a user-specified measure of
accuracy. In Section V, we evaluate the performance of our
algorithm on a set of arbitrary video sequences. Lastly, we
give the concluding remarks in Section VI.

II. PRELIMINARIES

In this work, a grey-scale image is described by an h×v ar-
ray of square pixels with intensity values normalized between
0 and 1. Thus, an image will be represented by a matrix X
∈ [0, 1]h×v . Because sets of related images are considered
in this paper, the image vector x of length m = h × v is
obtained by “row-scanning” an image into a column vector,
i.e., x = vec(X T ). The image data matrix of a set of images
X 1, · · · , Xn is an m × n matrix, denoted X , and defined as
X = [x1 · · ·xn], where typically m � n with fixed n.

The SVD of X is given by

X = UΣV T , (1)



where U ∈ �m×m and V ∈ �n×n are orthogonal, and
Σ = [Σd 0]T ∈ �m×n where Σd = diag(σ1, · · · , σn) with
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 and 0 is an n by m − n zero
matrix. The SVD of X plays a central role in several important
imaging applications such as image compression and pattern
recognition. The columns of U , denoted ûi, i = 1, · · · ,m,
are referred to as the left singular vectors or eigenimages of
X , while the columns of V , denoted v̂i, i = 1, · · · , n, are
referred to as the right singular vectors of X .

In practice, the singular vectors ûi are not known or com-
puted exactly, and instead estimates e1, · · · , ek which form
a k-dimensional basis are used. For quantifying the accuracy
of a practical implementation of subspace methods, one of
the measures we will use is the “energy recovery ratio” [23],
denoted ρ, and defined as

ρ(X, e1, · · · , ek) =
∑k

i=1 ‖eT
i X‖2

2

‖X‖2
F

, (2)

where ‖ · ‖F denotes the Frobenius norm. To determine the
degree to which the first k2 approximated eigenimages, i.e.,
the ˜̂ui’s, span the subspace spanned by the first k1 true
eigenimages, i.e., the ûi’s, we will also use the subspace
criterion, s, which is given by

s =

√√√√ 1
k1

k2∑
i=1

k1∑
j=1

(˜̂ui · ûj)2, (3)

which is 1 if the entire subspace is spanned.

III. ANALYSIS OF SVD AT DIFFERENT RESOLUTIONS

This section gives the mathematical background that ex-
plains how to approximate high-resolution eigenimages using
the SVD computed from low-resolution images, with the
assumption that the number of columns in the image data
matrices at different resolutions remains the same.

A. A Special Case with a Closed Form SVD

We will start with an image data matrix that has a closed
form solution for the SVD at both high and low resolutions.
This closed form solution along with its properties can then
be used as a basis for the further analysis of arbitrary image
data matrix.

Consider two images with m pixels that have been row-
scanned and normalized to unit norm. The m × 2 high-
resolution image data matrix, Xh, is given by

Xh =




...
...

x̂h1 x̂h2

...
...


 =




x11 x12

x21 x22

...
...

xm1 xm2


 , (4)

where the ˆ notation indicates that the corresponding vectors
are normalized to unit norm. The pixels in x̂h1 and x̂h2 are
lexicographically ordered so that a pixel in the low-resolution
image vectors, xl1 and xl2, can be obtained by box-filtering
the consecutive pixels in x̂h1 and x̂h2, respectively. Thus, with

the integer reduction factor r, the low-resolution image data
matrix Xl is given by

Xl =
1
r




x11 + · · · + xr1 x12 + · · · + xr2

...
...

xd1 + · · · + xm1 xd2 + · · · + xm2


 , (5)

where d = m − r + 1. The critical step in calculating the
SVD of X is to determine an orthogonal matrix V that will
orthogonalize the columns of X . This matrix can be formed
as a Givens rotation that is designed to orthogonalize two
columns and results in the following V and U matrices for
Xh:

Vh =
1√
2

[
1 −sgn(x̂T

h1x̂h2)
sgn(x̂T

h1x̂h2) 1

]
,

Uh =




...
...

x̂h1±x̂h2
‖x̂h1±x̂h2‖

∓x̂h1+x̂h2
‖∓x̂h1+x̂h2‖

...
...


 , (6)

where the subscript h denotes that these matrices correspond
to Xh.2 The upper and lower signs in ± and ∓ notations in Uh

matrix correspond to the positive and the negative dot product
between the high-resolution image vectors, respectively. Note
that such closed form solutions can be obtained for these
matrices because the image vectors in Xh have equal norms.
The column vectors in Xl, however, do not necessarily have
equal norms, hence U and V matrices for Xl do not have the
same closed form solution. To find these matrices, we have to
make use of the formulas for the SVD algorithm that relies
on Givens rotations [24]. These formulas are based on the
quantities,

yl = xT
l1xl2, (7)

zl = xT
l1xl1 − xT

l2xl2, (8)

wl =
√

4y2
l + z2

l , (9)

so that

cos θ =
√

wl + zl

2wl
, sin θ =

yl

wl cos θ
(10)

if zl ≥ 0 and

sin θ = sgn(yl)
√

wl − zl

2wl
, cos θ =

yl

wl sin θ
(11)

if zl < 0. Then the V and U matrices for Xl can be given by

Vl =
[

cos θ − sin θ
sin θ cos θ

]
,

Ul =




...
...

cos θxl1+sin θxl2
‖ cos θxl1+sin θxl2‖

− sin θxl1+cos θxl2
‖−sin θxl1+cos θxl2‖

...
...


 ,(12)

2Norms in all the equations in this paper always represent the 2-norm unless
otherwise stated.



where the subscript l denotes that these matrices correspond
to Xl. The left and right singular vectors at high and low
resolutions can be compared against each other by using the
method suggested in [25]. However, the dot product of the
difference between the corresponding vectors indicate that the
bound of this error is in the range of [0, 2] for both the
right singular vectors and the interpolated eigenimages. Hence
we need to study the approximations of the high-resolution
eigenimages using the low-resolution SVD in more detail,
which is the topic of the next subsection.

B. Limitations of Interpolated Low-Resolution Eigenimages

In our previous work [25], we have shown how the interpo-
lated low-resolution eigenimages can be used as an approxi-
mation of their high-resolution counterparts. The results were
acceptable as long as the reduction in resolution is not too
great. Here we show why this is true using a simple example.

Consider Xh with m = 4. The first (unnormalized) eigen-
image of Xh is given by

uh1 =
1
2




x11 + x12

x21 + x22

x31 + x32

x41 + x42


 , (13)

where we have assumed the positive dot product between the
columns of Xh. For r = 2, the matrix Vl for the corresponding
Xl can be generated using the quantities in (7), (8), and (9).
Then the first (unnormalized) eigenimage of Xl is given by

ul1 = Xlvl1

=
1
2

(
cos θ

[
x11 + x21

x31 + x41

]
+ sin θ

[
x12 + x22

x32 + x42

])
.

The linear interpolation3 of ul1 to the size of uh1 gives

ũh1 = L

[
r1

r2

]
=

1
4




5 −1
3 1
1 3

−1 5




[
r1

r2

]
, (14)

where L gives the linear interpolation model, r1 =
0.5(cos θ(x11 + x21) + sin θ(x12 + x22)), and r2 =
0.5(cos θ(x31+x41)+sin θ(x32+x42)). Note that the columns
of the following matrix form an orthonormal basis for the
space perpendicular to the column space of L:

NL =




0.5 0.2236
−0.5 −0.6708
−0.5 0.6708

0.5 −0.2236


 . (15)

Now consider the family of all 4 × 2 matrix Xh with the
following properties:

1) The column space of Xh is perpendicular to the column
space of L.

2) The columns of Xh have unit norm.
3) The angle between the columns of Xh is α.

3Bicubic interpolation is used in [25] for better accuracy, while linear
interpolation is used here for mathematical simplicity.
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Fig. 1. This figure shows the plots for the four video sequences used in
[23], viz., 5, 6, 7, and 17 (referred here as 1, 2, 3, and 4 respectively). The
average is subtracted from the original image data matrices and the image
data matrices at different resolution are formed after reducing the original
images from m = 240 × 352 to the lower resolutions of 120 × 176, 60 ×
88, 30× 44, 15× 22, 8× 12, 4× 6, and 2× 3. The SVD is calculated at all
the resolutions and the angle (in degrees) between the first true eigenimages
at high resolution and the first interpolated low-resolution eigenimages to the
size of the high-resolution eigenimages is plotted in this figure for all four
video sequences.

This family, denoted by Xh(φ), can be parameterized by φ in
the following way:

Xh(φ) = NL

[
cos φ − sin φ
sin φ cos φ

] [
1 cos α
0 ± sin α

]
, (16)

where φ is any angle. For a particular case of Xh, when φ =
60o and α = 10o, we can see that,

ûT
hi

˜̂uhj = 0, for i, j = 1, 2. (17)

Thus the column space of the approximated eigenimages is
orthogonal to the column space of the true eigenimages, giving
the worst possible approximation even for simple Xh. Fig.
1 also shows that the interpolated eigenimages give a very
bad approximation of the true eigenimages at high resolution,
when the image data matrices consist of images at very low
resolution.

If we reconsider (16) with φ = 60o and α = 10o, we
can observe that the high-resolution right singular vectors
and low-resolution right singular vectors are only 2.33o apart.
Hence the approximation of the high-resolution eigenimages
using the low-resolution right singular vectors is a much more
promising approach.

C. Using Low-Resolution Right Singular Vectors

Note that Vh and Vl represent V matrices at two different
resolutions, but for the same images. Also both these matrices
are of the same size. Hence we can use Vl to approximate Uh



(denoted Ũh) and Σh (denoted Σ̃h), i.e.,

ŨhΣ̃h = XhVl

=




...
...

x̂h1 x̂h2

...
...




[
cos θ − sin θ
sin θ cos θ

]
. (18)

If we denote the first and the second column of ŨhΣ̃h by
a1 and a2, respectively, the first column after Gram-Schmidt
orthogonalization will be

˜̂uh1 =
a1

‖a1‖ =
cos θx̂h1 + sin θx̂h2√

1 + 2yh sin θ cos θ
, (19)

where yh = x̂T
h1x̂h2. Here we start with column a1, because

it is likely to be of larger norm than a2.
To check as to how much the approximated eigenimages

differ from the correct ones, consider the difference4,

∆uh1 = ûh1 − ˜̂uh1

=
x̂h1 + x̂h2√
2(1 + yh)

− cos θx̂h1 + sin θx̂h2√
1 + 2yh sin θ cos θ

. (20)

The square of the norm of ∆uh1 is given by

‖∆uh1‖2 = 2 −
√

2(1 + yh)
cos θ + sin θ√

1 + 2yh sin θ cos θ
, (21)

whose extremal θ values (denoted θ∗) will give the best case
and the worst case conditions on Xh for the approximation of
ûh1. The problem of finding the θ∗ values of (21) is equivalent
to finding the θ∗ values of

f(θ) = sgn(cos θ + sin θ)

√
1 + sin 2θ

1 + yh sin 2θ
. (22)

Differentiating (22) with respect to θ (for cos θ + sin θ �= 0,
i.e., for θ �= 3π

4 + nπ) gives

f ′(θ) =
sgn(cos θ + sin θ)(1 − yh) cos 2θ√

1 + sin 2θ(1 + yh sin 2θ)3/2
. (23)

We thus have the following candidate θ∗ values:

1) cos 2θ∗ = 0 ⇒ 2θ∗ = (2n+1)π
2 ⇒ θ∗ = (2n+1)π

4

2) sin 2θ∗ = −1 ⇒ 2θ∗ = (4n+3)π
2 ⇒ θ∗ = (4n+3)π

4

3) cos θ∗ + sin θ∗ = 0 ⇒ θ∗ = (4n+3)π
4

Hence we can conclude that the candidate θ∗ values are θ∗ =
(2n+1)π

4 (odd multiples of 45o). With all non-negative entries
in Xh, the θ values will always be bounded by 0 and π

2 .
Hence the only θ∗ value in this case is 45o, which gives the
best-case scenario as shown in Table I. We must also check the
boundary condition θ values (0 and π

2 ), which give the worst-
case scenarios (refer to Table I) for degree of error depending
on the value of yh, with the results being worst when yh = 0.
However, note that, as yh → 0, the problem of finding the
high-resolution eigenimages becomes ill-defined. For image

4The components of Xh are considered to be all non-negative here. The
analysis of the case when Xh contains negative components will be similar
to the one presented in this section.

TABLE I

ûh1 · ˜̂uh1 AND ‖∆uh1‖ FOR DIFFERENT θ∗ VALUES

Case # θ∗ ûh1 · ˜̂uh1 ‖∆uh1‖ Comments

1 0
√

1+yh
2

2 − √
2(1 + yh) worst case

2 π
4

1 0 best case (u’s line up)

3 π
2

√
1+yh

2
2 − √

2(1 + yh) worst case

data matrices with only two images, the θ∗ values for the
approximation of the correct second eigenimage, ˜̂uh2 remains
the same.

It is instructive to consider the worst case θ∗ values in Table
I. When θ∗ = 0,

UlΣl =




...
...

ûl1 ûl2

...
...




[ ‖ul1‖ 0
0 ‖ul2‖

]
, (24)

where ul1 = xl1 and ul2 = xl2. By definition,

ûl1 · ûl2 = 0 ⇒ xT
l1xl2

‖xl1‖ · ‖xl2‖ = 0 ⇒ xT
l1xl2 = 0. (25)

When θ∗ = π/2, we obtain the same condition as in (25). This
condition indicates that we will get the worst-case scenarios
only when there is no overlap between the reduced image
vectors at low resolution. To check for the conditions on the
corresponding high-resolution image vectors, let m = 4 and
r = 2. Then, xT

l1xl2 = 0 ⇒
x̂T

h1x̂h2 + x11x22 + x21x12 + x31x42 + x41x32 = 0. (26)

With all the components of Xh non-negative, all the individual
products on the LHS must be 0 to satisfy the condition in (26),
which is highly unlikely for most images.

While the above analysis cannot be easily extended to
arbitrary Xh, one can experimentally evaluate the quality of
the eigenimage approximation. The approximation of the ith

eigenimage of Xh (denoted ũhi) can be given by ũhi =
Xh · v̂li, where v̂li denotes the ith right singular vector for Xl

with low-resolution images. These approximated eigenimages
can be decomposed to obtain the orthonormal basis using the
QR decomposition of U = QR, giving Û = Q, where Q
is an orthogonal matrix whose columns give the orthonormal
basis ˜̂uhi’s for ũhi’s and R is an upper triangular matrix. The
norms of the ũhi’s can be used as an approximation of the
corresponding singular values of Xh.

Fig. 2 shows that using the low-resolution right singular vec-
tors give a much better approximation of the high-resolution
eigenimages than those obtained using the interpolated low-
resolution eigenimages (shown in Fig. 1). This motivates a
computationally efficient technique for the fast eigendecom-
position of a set of correlated images that takes advantage of
the similarity between the right singular vectors at different
resolutions. Our proposed algorithm is presented in the next
subsection.
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Fig. 2. This figure shows the plots for same four video sequences used in
Fig. 1 with same image reduction procedure. The first plot shows the angle
(in degrees) between the first right singular vectors at high resolution and at
the lower resolutions, while the second plot shows the angles between the
first true eigenimage and its approximation using our proposed method for all
four video sequences at the lower resolutions.

IV. FAST EIGENDECOMPOSITION ALGORITHM

Our objective is to determine the first k left singular vectors
of X . Chang et al. [23] proposed a computationally efficient
algorithm for the eigendecomposition of correlated images. We
will use this algorithm as a benchmark for the accuracy and the
computational efficiency while finding the first k eigenimages
of X , because this is the fastest algorithm known to us. The
approach in [23] was motivated by the fact that for a planar
rotation of a 2-D image, analytical expressions can be given
for the eigendecomposition, based on the theory of circulant
matrices. These analytical expressions turned out to be good
approximations of the eigendecomposition of arbitrary video
sequences with better computational efficiency. Our algorithm
uses this algorithm to reduce the images in the temporal
dimension and then uses the theoretical background given in
Section III to reduce the images in the spatial dimension. The
following steps summarize the proposed algorithm:

1) Generate the Fourier matrix, F , and its real part, H , for
X and determine the smallest number p such that

ρ(XT ,h1, · · · ,hp) =
∑p

i=1 ‖Xhi‖2

‖X‖2
F

> µ, (27)

where µ is the user-specified reconstruction ratio.
2) Reduce XHp spatially to XqHp such that each of its

columns has q pixels with q > p. (The matrix XHp is
readily available after Step 1.)

3) Compute the SVD of XqHp = ÛqΣ̂qV
T
q =∑p

i=1 σ̃iũiṽT
i .

4) Find the product (XHp)Vq and apply the QR decompo-
sition to obtain the approximation of ûi’s.

5) Return ˜̂u1, · · · , ˜̂uk such that ρ(X, ˜̂u1, · · · , ˜̂uk) > µ.

We now briefly analyze the computational expense of our
algorithm. The cost incurred in Step 1, i.e., estimation of the
smallest number p, requires O(mnp) flops. Step 2 involves
the reduction of the columns of XHp to get XqHp, which
requires O(mp) flops. In Step 3, the cost of computing the
SVD of the q×p matrix XqHp requires O(qp2) flops. In Step
4, multiplication of XHp with Vq requires O(mp2) flops and
the QR decomposition of (XHp)Vq requires O(2mp2 − 2

3p3)
flops. Finally, in Step 5, determination of the dimension k
requires O(mnk) flops. If p � n, then the total computation
required is O(mnp).

V. EXPERIMENTAL RESULTS

We consider the problem of eigendecomposition of images
representing successive frames of arbitrary video sequences.
Specifically, we consider eight video sequences that are used
in [23], viz., 5, 6, 7, 17, 9, 8, 15, and 20 (referred to here
as videos 1 through 8, respectively). Images in the first four
sequences and the last four sequences have resolution of 240×
352 and 240 × 320, respectively.

Our algorithm was used to calculate the partial SVD of
X for each set, with an energy recovery ratio threshold of
0.95. The matrix XHp was reduced so that its columns
contained the row-scanned images of size 8 × 12, thus fixing
the value of q to 96. Table II summarizes the performance of
the algorithm, showing k1, k2, p, and the computation times.
Compared to the direct SVD, the speedup factors with our
algorithm are in the range of 0.92 − 47.06, depending on
the value of p. The difference between ρ(X, û1, · · · , ûk1) and
ρ(X, ˜̂u1, · · · , ˜̂uk2) for each set was less than 0.30%, with an
average of 0.13%, which reveals that {˜̂u1, · · · , ˜̂uk2} provides
a very good approximate basis for the first k1 eigenimages
{û1, · · · , ûk1}. Compared to Chang’s algorithm, the value of
k2 remains the same except for the third sequence, where
one more eigenimage is required to satisfy the given energy
recovery ratio threshold. At the same time, because the SVD
computation is performed on a much smaller matrix XqHp,
our algorithm is computationally more efficient, which is
evident from the table entries.

The resultant eigenimages for all the video sequences were
also compared using the difference measures defined in [25].
Fig. 3 shows the general behavior for most of the video
sequences when comparing their SVD’s. The plots for the
singular values show that the relative error between the true
and the approximated singular values is almost negligible. In
particular, the relative error between these values varies from
0% to 11.70% indicating a good approximation of the true
singular values at high resolution. The maximum principal
angles between the subspaces containing the true and the
approximated eigenimages show that the maximum principal
angle is 43.21o for k1 = k2 = 15. The measure s between
these two subspaces exhibits similar behavior to that of the
maximum principal angles and its value is 0.9822 for k1 =
k2 = 15. Both these plots indicate that the true and the
approximated eigenimages span the same vector space when
the full dimension is used.



TABLE II

RESULTS FOR DIFFERENT ALGORITHMS

Proposed algorithm Chang’s algorithm MATLAB SVD
Video Time (s) k2 p Time (s) k2 p Time (s) k1

1 11.2070 15 15 18.8590 15 15 67.2910 15
2 3.7950 4 6 13.4600 4 6 67.2920 4
3 73.9310 67 68 88.1430 66 68 67.3320 63
4 68.9240 63 65 78.6590 63 65 67.3320 60
5 3.6460 4 6 13.1600 4 6 62.2240 4
6 1.3220 1 2 11.8480 1 2 62.2240 1
7 6.9210 10 11 15.6930 10 11 62.2440 9
8 4.0670 5 7 13.5900 5 7 62.1840 5
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Fig. 3. This figure shows different plots of the error measures calculated for
video #5 used in [23] that is representative of the general behavior for most
of the video sequences when the approximated SVD was compared with the
true SVD. The first column shows the plot of the singular values for high-
resolution images and its difference with the approximated singular values
using the modified algorithm. The first plot in the second column shows the
maximum principal angles (in degrees) between the respective eigenspaces,
when the subspace dimension was varied from 1 to 15, while the remaining
plot shows the subspace criterion measure, when the subspace dimension was
varied from 1 to 15.

VI. CONCLUSION

We have presented a theoretical background for quantifying
the tradeoff associated with performing eigendecomposition on
correlated images at lower resolutions in order to mediate the
high computational expense of performing these calculations
at high resolutions. Using this background, we have modified
the fastest known algorithm for computing the eigenspace
decomposition of correlated images to obtain a more computa-
tionally efficient algorithm. The proposed algorithm enjoys the
advantage of making use of the similarity within the images
along with the similarity between the images. Examples show
that the algorithm performs very well even on arbitrary video
sequences.
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