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1. INTRODUCTION 

The dynamics of soil organic carbon (SOC) are controlled by the interaction of 

biological, physical, and chemical parameters. These are best measured by a combination 

of techniques such as long-term field sites with a C3↔C4 plant switch. Acid hydrolysis and 
14C- dating measure the mean residence time (MRT) of the resistant fraction. Long-term 

incubation allows the in situ biota to identify and decompose the labile SOC components. 

Statistical analysis (curve fitting) of the CO2 release curves, determines the pool size and 

of the two labile fractions (1). The effect of chemical structure is measured with pyrolysis-

molecular beam mass spectrometry (py-MBMS). The dynamics of charcoal, clay and silt 

are measured with both 13C and 14C. 

2. MATERIALS AND METHODS 

We determined SOC dynamics on continuous maize plots on formerly forested soils, 

in Ohio and Michigan and a Colorado, grassland loam site. Studies on the Colorado, 

grassland soils in a wheat-fallow rotation used 13C and 14C and acid hydrolysis to 

characterize the non-hydrolysable C (NHC) and incubation and 13C to investigate the 

contribution of the microbial biomass (2, 3). Methodology for the laboratory incubations, 

fractionation procedures, and tracer analysis are reported by Follett et al. (2), Paul et al. 

(4), and Collins et al. (5). Methodology for Py-MBMS analyses are reported by Magrini et 

al. (6).  

3. RESULTS AND DISCUSSION 

The wetland forest in Ohio had an original SOC content of 75 g C kg-1 soil. Drainage 

and cultivation dropped this to 18 g C kg-1 with a MRT of 920 ± 53 yr in the 0-20 cm layer 
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and 6607 ± 79 yr at 50-100 cm. Acid hydrolysis that removed ~ 45% of the SOC resulted 

in an MRT of 1770 ± 70yr at the surface and 9875 ± 75 yr at lower depths (4)). Continuous 

maize for 30 yr labeled 21% of the soil 13C. The C3 (non-maize) SOC had an MRT of 17 yr 

for the light fraction (LF), 38 yr for the particulate organic matter (POM), 139 yr for the silt, 

and 261 yr for the clay (Table 1). Incubation for 850 days and measurement of 13C showed 

the C4-C (maize) LF to have an MRT of 3.7 yr, while the plant residues and microbial 

biomass C within the aggregates (POM) dated 7.8 yr. The maize C in the silt had an MRT 

of 12.8 yr. The SOC associated with clay was oldest at 26.8 yr.  

The Michigan site contained 18 g C kg-1 soil in the deciduous forest, but 10 g C kg-1 in 

the cultivated. The 0-20 cm depth of the cultivated soil had a 14C MRT of 422 ± 50 yr and 

1712 yr at 50-100 cm. The non-hydrolyzable C (NHC) accounting for 45% of the SOC had 

an MRT of 977 yr at the surface, and 4406 yr at depth. The 13C measurements show that 

in both soils, the LF and POM fractions contain considerable, non-maize C in spite of an 

extensive period of maize production at both sites. The clay fraction contained the largest 

portion of the SOC. Both the silt and the clay had much slower 13C turnover rates in the 

OH soils than in the MI soil (7). This reflects differences for these soils also measured by 
14C dating. The Colorado soil lost 33% of its SOC during an 853 day incubation (2) relative 

to the ~20% loss from the forest-derived sites (5). It had 13C MRTs similar to the OH site, 

but its 14C dates were much older. The microbial biomass carbon (MBC) was comprised of 

a labile and stable fraction. The high, initial CO2 evolution is reflected in the low MRT of 

the active fraction (Ca). The NHC comprising 60% of the soil still lost 30% of its C during 

the 853-day incubation with an increase in MRT from 3175 yr to 4967 yr. There is 

microbial production and transfers of materials between pools. 

The availability of py-MBMS, that rapidly measures volatile pyrolysis products, allows 

the determination of the molecular structure of the SOC (6). The NHC, although containing 

a significant proportion of long-chain alkanes and high molecular weight aromatics still 

contained proteinaceous and carbohydrate materials protected by the soil matrix during 

hydrolysis. Acid hydrolysis, in removing some of the interfering minerals, results in higher 

pyrolysis product recovery (8). Interfering materials can also be eliminated by separation of 

humic acids under an N2 atmosphere.  

Our use of py-MBMS is shown for a cultivated, Colorado Grassland soil before and 

after an 853 dy incubation (Figure 1). The positive values for the ion intensity represent 

m/z species present in higher concentrations at day zero than after 853 days. Peaks for 

amino acids dropped significantly and show the source of some of the 58% of the soil N 

that was mineralized relative to the 33% of the soil C lost during incubation. The peaks 
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representing carbohydrates and lignin also dropped during the incubation reflecting the 

drop in both C3 and C4 constituents of the LF and POM during incubation (Tables 1 and 2). 

Our work has shown microbial production and transfers of materials between pools.  

Table 1. Distribution of C4 and C3 -C and MRT of the LF, POM, silt and clay fractions 

of two originally forested soils now in continuous maize 

 LF POM Silt Clay Total 

Ohio silty clay loam 

 C gkg-1 MRT yr C gkg-1 MRT yr C gkg-1 MRT yr C gkg-1 MRT yr C gkg-1

C4- C 0.6 3.7 1.2 7.8 0.9 13 1.1 27 3.8 

C 3-C 0.1 17 0.9 38 3.5 138 9.0 261 13.5 

Michigan loam 

C4- C 0.3 3.9 0.84 11 0.2 11 1.1 16 2.3 

C 3-C 0.2 20 1.4 33 0.9 47 4.2 40 6.7 

 

 

 

Figure 1. Py-MBMS difference spectrum for a cultivated Colorado grassland (0 day 

incubation - 853 days). Negative values show species present in higher concentration after 

853 days of incubation, positive values show species present in higher amounts at 0 days. 
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Table 2. The dynamics of analytically-determined fractions of a Colorado silt loam as 

determined by acid hydrolysis, incubation and 14C and 13C measurements 

Fraction Method of Analysis C, gkg-1 MRT, yr 
MBC labile Incubation – Fumigation 0.18 0.19 
MBC stable Incubation – Fumigation 0.19 4.6 

Ca-SOC Incubation – CO2 evolution 0.5 0.67 
Cs-SOC Incubation – CO2 evolution 3.2 24 
Cr-SOC Acid hydrolysis – 14C dating 5.4 3175 

Total SOC 14C dating 9.1 1072 
13C from wheat Incubation – 13C 4.9 7.5 
13C from native Field – 13C 4.2 41 

M cr Incubation-acid hyd-  14C 3.7 4967 
MBC = microbial biomass C, Ca = active SOC, Cs = slow C, Cr = resistant C, Mcr = 

microbial resistant, nonhydrolyzable C 

4. CONCLUSIONS 

A combination of biological analysis, such as incubation and microbial biomass 

determination, 13C and 14C tracers, soil fractionation, and matrix analysis (LF, POM, silt, 

and clay) with molecular structure analysis (py-MBMS) on long-term sites with a C3 ↔ C4 

crop switch provided the tools for determining the interacting controls in SOC dynamics. 

Mean residence times vary from a few months to 4967 yr. Long-term incubation, in which 

the soil microbiota decomposed 33% of the SOC and 58% of its N, produced microbial 

metabolites and transferred materials between pools. 
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