Data cleaning
using R

C. Tobin Magle, PhD
Based on

http://www.datacarpentry.org/OpenRefine-ecoloqy-
[esson/

and

_ https://cran.r-
project.org/doc/contrib/de Jonge+van der Loo-
Intfroduction to data cleaning with R.pdf

Presenter
Presentation Notes
Hi, and welcome to Coding and cookies. I'm Tobin Magle, the Cyberinfrastructure facilitator at Colorado State University. Today we’re going to be discussing how to use the R programming language and R Studio to clean up messy data. This is based on the Data Carpentry OpenRefine curriculum and an R-project tutorial.

http://www.datacarpentry.org/OpenRefine-ecology-lesson/
https://cran.r-project.org/doc/contrib/de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf

Why is this useful?

e Data is rarely clean and tidy
» Misspellings
* White space
« Multiple variables per column
* Inconsistent coding

e Fixing it by hand takes forever

* Why not automate it with R?

Presenter
Presentation Notes
Data cleaning is important because data is rarely perfect when we receive it, and it take forever to fix by hand. Using a programming language like R to fix common data errors will save you time and make the process less error prone.

Outline

» Cleaning data during import
 read.csv() arguments ‘

 Fixing imported data
» Faceting and recoding
» Data type conversion
* Removing whitespace
» Correcting misspellings
» Splitting columns

Presenter
Presentation Notes
In this session, we’re going to discuss how to
· Use arguments to read.csv() to clean up data during import
· Correcting imported data in ways like recoding, data type conversion, correcting misspellings, removing whitespace, and splitting columns
· And how to filter and sort your data

Survey data

* Rows: observations of
individual animals

e Columns: Variables that
describe the animals

» Species, sex, date, location, etc

 Messy Data
* Misspellings
* White space
» Combined variables

Presenter
Presentation Notes
The dataset that we will be using is an ecological study of small animals.
· 	It is a tidy dataset, in that each column is a variable and each row is an observation.
· In this context, each time an animal was observed in a study, a new row was added to the spreadsheet
· Variables about that observation were recorded, like species, sex, date, and location
· However, errors in the data, like misspellings, need to be fixed.

Setup

* Download quickstart (http://bit.ly/2hvh54n)

» Open project in Rstudio by double-clicking the .Rproj file

* Look at the README file: contains information about variable
names, column classes, and spellings of species names

Presenter
Presentation Notes
To set up for this lesson,
· Download quickstart (http://bit.ly/2hvh54n)
· Open project in Rstudio by double-clicking the .Rproj file
· Look at the README file: contains information about variable names, column classes, and spellings of species names

http://bit.ly/2hvh54n

Data cleaning with read.csv arguments

e file = “data/surveys_no_header.csv”)

e header = TRUE or FALSE
e col.names =¢(...)
e colClasses =¢(...)

e na.string =c(...)

Presenter
Presentation Notes
First we’re going to talk about how to use read.csv() arguments like header, col.names, colClasses, and na.string to clean the data up during import.

Read in csv file

surveys <- (file = “data/surveys _no_header.csv”)

* What is wrong with the surveys data frame?

Presenter
Presentation Notes
First, let’s try reading in the surveys file without using any of these arguments.

Demo 1

Open the R project
Show the file structure
Open the readme file
Load the data

surveys <- read.csv(file = “data/surveys_no_header.csv”)

· Q: What’s the first problem that you see?
· A: first row read as headers. If we look at the help file for read.csv, the default for the header argument is TRUE.

Specify no header

surveys<- (file = "data/surveys_no_header.csv",
neader = FALSE)

* What’s wrong now?

Presenter
Presentation Notes
To fix this issue, use the header = FALSE argument.
Demo 2
surveys<-read.csv(file = "data/surveys_no_header.csv",
 header = FALSE)

· Q: What’s wrong now?
· A: Now there are no header names. If we look at the help file for read.csv, we see an argument for column names (col.names). Look at the readme file to see what the header names should be

Add the column names

surveys<- (file = "data/surveys_no_header.csv",
header = FALSE,

col.names = c("recordID", "mo", "dy", "yr”,
"plot", "species”, "scientificName”,

"locality”, "decimallLatitude",
"decimallLongitude", "county”,
"state", "country", "sex", "hfl”,

wgt')

Presenter
Presentation Notes
To fix this issue, use the col.names argument. See the readme for the syntax to assign column names

Demo 3
surveys<-read.csv(file = "data/surveys_no_header.csv",
 header = FALSE,
 col.names = c("recordID", "mo", "dy", "yr”,
 "plot", "species", "scientificName”,
 "locality”, "decimalLatitude",
 "decimalLongitude", "county”,
 "state", "country", "sex", "hfl”,
 "wgt")
)

Data types

» Determines what you can do
with it

 Numerical = math
» Categories = group + subset

e Text = human readable

Presenter
Presentation Notes
A less obvious data cleaning issue that can be dealt with upon import is data type
· the data type of a column determines what you can do with it
· For example, you can do math on Numerical columns.
· You can use columns with categorical data to create subgroups in your data and filter by subgroup
· And free text columns are good for human-readable notes and text mining

read.csv() guesses the data type

R class

int

num

factor

chr

Description

Whole numbers

Decimal numbers

Integers with text
labels

Plain text

What you can
do?

math

math

group by

text mining

How R guesses

A column that’s all integers

A column that’s all numbers (integers or
decimal)

Columns with any text
(stringsAsFactors = TRUE)

Columns with any text
(stringsAsFactors = FALSE)

Presenter
Presentation Notes
When reading the file, the read.csv() function tries to guess the data type based on what is in the column
If the column is all numbers, it becomes either int or num, depending on whether there are any decimal numbers. You can do math on these columns, like calculating the mean
If the column contains any text, it will become either factor or character
By default, read.csv() makes text column into a factor. Factors are stored as integers with text labels, which lets you easily group your data set by this column or subset to a particular text factor. For example, the sex column could be stored as a factor as a list of 1’s and 2’s with the labels male and female.
If you use the stringsAsFactors = FALSE argument in read.csv, all text columns will be stored as character variables. Instead of storing the values as integers, they are stored as raw text. One downside to this approach is that the column will take up more room in your computer’s memory. This format is better for unstructured notes about your dataset because this type of text is harder to group into coherent categories.

Inspecting your data

str() - all columns

class() - one column

summeary() - summary stats

Example: plot variable

= str{surveys)

"data.frame’ : 35549 obs.
% recordID :int
% mo :int
3 dy Tint
5 yr T int
3 plot : int
3 species

% scientificName

3 locality

of 16 wvariab

les:

6545 5220 18932 ZQ588 7@20 Te45 8641 9495 9583 98
918111411891 ...

18 24 7 24 21 16 13 26 3@ 20 ...

1982 1982 1991
13 28 19 12 24

: Factor w/ 48 levels
: Factor w/ 29 levels
. Factor w/ B@ levels

cklawaha Arm of Lake Talquin, ca. 18 air
num MA NA NA 30.4 38.4 ...
num MA NA NA -B4.2 -87.4 ...

5 decimalLatitude :
decimallLongitude:
: Factor w/ 14 levels
: Factor w/ 9 levels
: Factor w/ B lewvels
: Factor w/ & levels
©int MA NA MA NA NA NA MA MA NA NA ...
:int MA NA NA NA NA MA NA NA NA NA ...

county
state
country
Sex

hfl

wgt

= B B B Y

> Summary(surveys)

recordID
Min. : 1
1st Qu.: BEER
Median :17775
Mean 17775
3rd Qu.:Z26b62
Max. 135549

Min.

mo
1. 088

1st Qu.: 4.008
Median : 6.080@

Mean

6.474

3rd Qu.: 9.006

Max.

212,000

1993 1987 1983 1983 1984 1984 1985

24 1591513 ...
n“’"ﬁE” TAH", "AS",

mi 5 of Quincy.”

12244373

Amphispiza b111neatu
"t " (Camporee Field) at wullwood B
: B@ BB 34 7o &

"", "Escambia",..: 12 12 12 18 2
" "Florida”, “Iaaho“ 5552
" UAUSTRALTIA, 6 5 6 TTT7
CLUEULMYLUPT,L.0 1111111

dy ¥r
Min. : 1.886 Min. 11977
1st Qu.: 9.88 1st Qu.:1984
Median :16.8@ Median :199@
Mean r16.11 Mean 11998
3rd Qu.:23.88 3rd Qu.:1997
Max. :31.886 Max. P 2082

2

Presenter
Presentation Notes
R has a set of functions that help you determine what data types read.csv assigned to your columns
The str function takes a data frame as input and outputs information about the structure of your data frame such as how many rows and columns there are, the datatype for each column, and a preview of the first records in the dataset.
The class function takes any variable as input and tells you what its data type is.
The summary function takes a data frame and gives summary statistics of each column. Note how this function treats numeric and categorical data differently in the demo.

Let’s see how these functions work.

Demo 4

Exercise 1:

 Open the readme file. Look at the column list
Do you agree with the class designations?

 Does the structure of the surveys data frame match?

Presenter
Presentation Notes
Let’s do an exercise now.
First, look at the readme file and look at the column lists
Do you agree with what the data creators want the column classes to be?
Does this match what read.csv guessed when reading in the data frame?

.

Specify column classes

surveys<- (file = "data/surveys_no_header.csv",

header = FALSE,

col.names = c("recordID", "mo", "dy",
species”, "scientificName”,
"locality”, "decimalLatitude”,
county”,

X", "hfl”, "wgt")
factor",

"plot",

"decimalLongitude",

"state", "country”, "'s
colClasses = c("character", "factor

"factor", "factor",

“factor", "factor", "factor",

"numeric"))

" "character",

numeric", "numeric”

. "numeric”,

Presenter
Presentation Notes
To specify the class of each variable, use the colClasses argument. Like the col.names argument, this argument takes a list of string created by the concatenate function.

Demo 5
surveys<-read.csv(file = "data/surveys_no_header.csv",
 header = FALSE,
 col.names = c("recordID", "mo", "dy", "yr”,
 "plot", "species", "scientificName”,
 "locality”, "decimalLatitude",
 "decimalLongitude", "county”,
 "state", "country", "sex", "hfl”, "wgt")
 colClasses = c("character", "factor", "factor", "factor", "factor",
 "factor", "factor", "character", "numeric", "numeric”,
 "factor", "factor", "factor", "factor", "numeric",
 "numeric")
)

Specify Missing data
» Specify missing data points (na.strings)
* NA — R’s standard for missing data

* Other common missing data indicators
e« ““-gspace
* -999
o ¥ - blank

Presenter
Presentation Notes
The last topic we’re going to cover in importing data is missing data
the read.csv function allows you to specify missing data points.
The character string “NA” is the default for indicating missing data
Other common missing data codes are -999 and blank
You can specify what your code is using na.strings argument when using read.csv

Specify NA strings

surveys<- (file = "data/surveys_no_header.csv",
header = FALSE,
col.names = c("recordID", "mo",

dy", "yr”,

"plot", "species", "scientificName”,

“locality”, "decimalLatitude",

"decimalLongitude”, "county”,

"state", "country"”, "sex", "hfl”, "wgt")
colClasses = c("character”, "factor" "factor" “factor", "factor",

"“factor", "factor", "character", "numeric",

"numeric”, "factor", "factor", "factor", "factor",

"numeric”, "numeric")

na.strings = c("NA", "))

Presenter
Presentation Notes
The na.strings argument takes a list of missing value indicators, in this case, “NA” and a blank as indicated in the readme file. Let’s see how this works.

Demo 6
surveys<-read.csv(file = "data/surveys_no_header.csv",
 header = FALSE,
 col.names = c("recordID", "mo", "dy", "yr”,
 "plot", "species", "scientificName”,
 "locality”, "decimalLatitude",
 "decimalLongitude", "county”,
 "state", "country", "sex", "hfl”, "wgt")
 colClasses = c("character", "factor", "factor", "factor", "factor",
 "factor", "factor", "character", "numeric",
 "numeric”, "factor", "factor", "factor", "factor",
 "numeric", "numeric")
 na.strings = c("NA", "")
)

Data cleaning after import

Type conversion

Faceting

Recoding

Removing white space

Splitting and combining columns
Clustering to fix spelling errors

Data type conversions

() — input factor or numeric

() — input characters that can be interpreted as
numbers; be careful with factors!

() — character or numeric

Presenter
Presentation Notes
We’ve already seen how to specify what data type you want each column to be while reading in the data.

However, you don’t have to reload the data to change the data type.
You can do this on the fly using as.character(), as.numeric() and as.factor() functions.

Factor to character

(surveys$plot) #the plot variable is a factor
surveys$plot<- (surveys$plot) #factor to character

(surveys$plot)

Presenter
Presentation Notes
Let’s say you want to convert a factor variable to a character variable. Let’s use the plot variable as an example.
- 	To verify what type it is, we can use the class function
- 	We can convert from factor to character using as.character()
- 	Use class again to verify.

Demo 7
class(surveys$plot)	#the plot variable is a factor
surveys$plot<-as.character(surveys$plot) #factor to character
class(surveys$plot)

Character to numeric

(surveys$plot)
e surveys$plot<- (surveys$plot) #character to numeric

(surveys$plot)

Presenter
Presentation Notes
Now we can also go from character to numeric using the as.numeric() function.
It works well in this case because all of the character strings are either a number or NA.
However if R can’t figure out how to go from what’s in the text to a number, you get NA

Demo 8
class(surveys$plot)
surveys$plot<-as.numeric(surveys$plot) #character to numeric
class(surveys$plot)

Numeric to factor
» class(surveys$plot)

e surveys$plot<-as.factor(surveys$plot) #character to factor

* class(surveys$plot)

Presenter
Presentation Notes
Finally, we can go from numeric back to factor using as.factor()

Demo 9
class(surveys$plot)
surveys$plot<-as.factor(surveys$plot)	#character to factor
class(surveys$plot)

Exercise 2: Factor to numeric

* Year is currently stored as factor. Try:
year <- (surveyssyr)
* What went wrong?

 How would you do it so that we get number conversions of the
label?

Presenter
Presentation Notes
Exercise: factor to numeric

Year is currently stored as factor: try:

year <- as.numeric(surveys$yr)

Q: what went wrong?
A: Remember: factors are stored as integers with text labels. Instead of converting labels to numbers, it took the numbers and stripped the labels

Q: How would you do it so that we get number conversions of the label?
A: year <- as.character(surveys$yr) #convert from factor to character
 	year <- as.numeric(surveys$yr) #convert from factor to number

Faceting with factor levels

e List factor levels: ()

sex<-surveys$sex
(sex)
(sex)
(sex)

Presenter
Presentation Notes
Now we’re going to talk about assessing data quality in factor variables. Factors are integers with text labels.
- 	Each unique text label is called a levels and represent a category
- 	The levels() function will list all of the unique labels in your data set.
- 	The nlevels() function tells you how many levels are in the dataset
- 	The summary() function will output the number of records in each level when applied to factor variables.

Let’s see how these work.

Demo 10

We’re going to use the sex variable as the example

sex<-surveys$sex
levels(sex)
nlevels(sex)
summary(sex)

Exercise 3: levels

1. Using levels, find out how many years are represented in the
census.

1. Which years have the most and least observations?

Presenter
Presentation Notes
Exercise
1. Using levels, find out how many years are represented in the census.
2. Which years have the most and least observations?

Solutions
nlevels(surveys$yr)
summary(surveys$yr)

Recoding variables

* The () function is defined in the dplyr package
 Input = a factor, <old level> = <new level>, ...
» Qutput = a new factor

(dplyr)
sex<- (sex, “P” = “other”, "R"="other", "Z" =
"other")

(sex)

Presenter
Presentation Notes
As seen in the sex example, sometimes the format we choose to collect our data in is not how we end up wanting to group for analysis. We can use recoding, or changing the text label of a level, to correct categories and fix data entry errors.

· The recode() function is defined in the dplyr package
· It takes a factor and a list of assignment statements that specify what changes you want made to the factor levels
· Its output is a new factor with the specified levels

Let’s see how this works.

Demo 11
summary(sex) #We can see that not all of the levels are M or F
library(dplyr)
sex<-recode(sex, “P” = “other”, "R"="other", "Z" = "other")
summary(sex)

Exercise 4

* Two of the scientific names have a strange symbol instead of a
space: "Dipodomys\xe6sp." and "Onychomys\xe6sp”.

» Use the recoding techniques we just learned to fix this error

Presenter
Presentation Notes
Exercise
· Two of the scientific names have a strange symbol instead of a space: "Dipodomys\xe6sp." and "Onychomys\xe6sp”.
· Use the recoding techniques we just learned to fix this error

Solution:
surveys$scientificName<- recode(surveys$scientificName,
 "Dipodomys\xe6sp." = "Dipodomys sp.",
 "Onychomys\xe6sp." = "Onychomys sp.")
levels(surveys$scientificName)

Dealing with whitespace

() — removes leading and trailing white space
* Input — character or factor
» Qutput- factor

Trim whitespace
surveys$scientificName<- (surveys$scientificName)

Type conversion back to factor
surveys$scientificName<- (surveys$scientificName)

Presenter
Presentation Notes
After looking at the levels in the scientific name column, we noticed that this dataset has a common data entry error: adding extra whitespace at the ends.
· We identified this error using factor levels
· We can use the trimws() function to remove whitespace
· Trimws takes a character or a factor and returns a character, so be careful to convert your column back to a factor if necessary!

Demo 12
levels(surveys$scientificName) #lots of similar looking levels
nlevels(surveys$scientificName)

surveys$scientificName<- trimws(surveys$scientificName) #removes whitespace
nlevels(surveys$scientificName) #error?

class(surveys$scientificName) #it’s a character
surveys$scientificName<- as.factor(surveys$scientificName) #type conversion
nlevels(surveys$scientificName) #less levels
levels(surveys$scientificName) #reduced duplications

Fix misspellings with stringdist

(stringdist) # load the stringdist library

("abc", "
"abd") #1 difference = distance of 1
("abc", "
("abc", "

("abc"

abc") #no difference = O distance

cba") #2 differences = distance of 2
def") #3 differences = max distance of 3

Presenter
Presentation Notes
Another common data cleaning error is misspellings.
· The stringdist package has functions to help identify and fix spelling errors.
· The most basic function in this package is stringdist, which looks at a pair of strings and quantifies the number of differences between the two

Demo 13
library(stringdist) #contains functions that compares strings
stringdist("abc", "abc") #no difference = 0 distance
stringdist("abc", "abd") #1 difference = distance of 1
stringdist("abc", "cba") #2 differences = distance of 2
stringdist("abc", "def") #3 differences = max distance of 3

Compare scientificNames

sp_names<-surveys$scientificName

(spnames,
"Ammospermophilus harrisii")

(sp_names)

Presenter
Presentation Notes
Now that we understand a bit how stringdist() works, let’s apply it to our dataset
Demo 14

First, let’s save the column we want to work with to a separate variable sp_names

sp_names<-surveys$scientificName

Then, let’s compare each of these species name to the species "Ammospermophilus harrisii"

stringdist(spnames, "Ammospermophilus harrisii")

We can see that at the beginning of the dataset, we see a lot of exact matches, but also a couple that are 1 or 2 letters off. This may indicate a misspelling. Let’s look at the levels in sp_names

levels(sp_names)

You can see several levels that look close to "Ammospermophilus harrisii", but aren’t exact. How can we fix these errors?

Specify correct spellings

codes<-c("Ammodramus savannarum”, "Ammospermophilus harrisii",

"Amphispiza bilineata", "Amphispiza cilineata",

"Baiomys taylori", "Calamospiza melanocorys",
"Callipepla squamata”, "Campylorhynchus brunneicapillus”,
"Chaetodipus baileyi", "Cnemidophorus tigris",
"Cnemidophorus uniparens”, "Crotalus scutalatus",

"Crotalus viridis", "Dipodomys merriami",

"Dipodomys ordii", "Dipodomys spectabilis”,
"Dipodomys sp.", "Onychomys leucogaster",

"Onychomys torridus”, "Onychomys sp.")

Presenter
Presentation Notes
First, we need a list of the correct spellings. You can find the code to specify the correct spellings in the README file.

Demo 15
Tell R what the correct spellings are (from readme)
codes<-c("Ammodramus savannarum", "Ammospermophilus harrisii", 	
 "Amphispiza bilineata", "Amphispiza cilineata", 	
 	"Baiomys taylori", "Calamospiza melanocorys",
 "Callipepla squamata", "Campylorhynchus brunneicapillus",
 "Chaetodipus baileyi", "Cnemidophorus tigris",
 "Cnemidophorus uniparens", "Crotalus scutalatus",
 "Crotalus viridis", "Dipodomys merriami",
 "Dipodomys ordii", "Dipodomys spectabilis",
 "Dipodomys sp.", "Onychomys leucogaster",
 "Onychomys torridus", "Onychomys sp.") 	

Approximate string matching

« amatch() — matches strings to a list of accepted values

* input — a sequence of strings and a sequence of acceptable values

» QOutput — a sequence of numbers matching position in table
* No match = NA

#create a list of which names match each codes
I<- (x = sp_names, #the list of things you want to code
table = codes) #the list of acceptable values

Presenter
Presentation Notes
Now, we can use a more advanced function, amatch(), which matches strings to a list of accepted values
· amatch() accepts a sequence of strings to be “cleaned” (in this case sp_names), and a sequence of acceptable values (which are called codes).
· Amatch’s output is a sequence of numbers that correspond to the position of the matching value in the list of acceptable values (codes).
· If the algorithm cannot find a match, the output is NA.

Let’s try amatch on our dataset

Demo 16

#create a list of which names match each codes
i<-amatch(x = sp_names, 	#the list of things you want to code
 	table = codes) 	#the list of acceptable values

Quality control

#data frame with columns for raw text and the assigned code
Sp_names_df<- (rawtext = sp_names,
code = codesJi])

Look at sp_names_df: do you see NAs?

Presenter
Presentation Notes
The default settings for amatch don’t work with every dataset, so we have to do some quality control
· First, let’s make a data frame that puts the original text next to the code assigned by amatch()
· Then, we’ll see how many of them were assigned NA. The goal is to get all species assigned to something in codes

Demo 17
#create a data frame that compares the raw text to the assigned code
sp_names_df<-data.frame(rawtext = sp_names, #list of uncorrected species names
 code = codes[i]) #looks up which code it was match to
Look at the new data frame: I’m seeing a lot of NAs. So, our matching algorithm doesn’t work the way we want it to.

Method name
osa

v
dl

hamming

Ics
ggram
cosine
jaccard
jw
soundex

Description

Optimal string aligment, (restricted Damerau-Levenshtein
distance).

Levenshtein distance (as in R's native adist).

Full Damerau-Levenshtein distance.

Hamming distance (a and b must have same nr of
characters).

Longest common substring distance.

g-gram distance.

cosine distance between g-gram profiles

Jaccard distance between g-gram profiles

Jaro, or Jaro-Winker distance.

Distance based on soundex encoding (see below)

For more information see stringdist-metrics documentation

Presenter
Presentation Notes
The amatch can use different clustering algorithms to match messy data to pre-defined codes.
To change the clustering algorithm that amatch uses, see the method argument
The default method is doesn’t always work: it depends on the dataset. For example, some of these algorithms are better for fixing typing errors and others are better at fixing phonetic mispellings
For our purposes today, we’re going to leave the methods used as a black box. If you want more information, see the documentation for stringdist-metrics.
Let’s try a different method

http://127.0.0.1:26677/help/library/utils/html/adist.html

Specify matching method

I<-amatch(sp_names, codes,
method = "cosine")

#create comparison df again
sp_names_df<-data.frame(rawtext = sp_names,

code = codesJi])

Look at sp_names_df: do you see NAS?

Presenter
Presentation Notes
Through trial and error I happen to know that the cosine method works well here. Let’s apply it.

Demo 18
i<-amatch(sp_names, codes,
 method = "cosine")

#create comparison df again
sp_names_df<-data.frame(rawtext = sp_names,
 code = codes[i])

Look at df: do you see NA - no

More QC

#Are there any unassigned? - not at the top
((sp_names_df$code))

#is this the same as the original dataset?

(is.na(sp_names_df$code) ==
((surveys$scientificName))

Presenter
Presentation Notes
We know that there are less unassigned values than there was with the default clustering method. However, It’d take too long to go through the entire dataset by hand. Let’s automate some of the QC using the is.na function

Luckily, we have a function that identifies NA values: is.na()
Is.na returns a TRUE/FALSE list of whether or not the value at that position is NA
Because true = 1 and false = 0 we can use sum to find out the total number of NAs
We can also use the == operator to see if the number of NAs in the recoded data matches the number of NAs in the original data set.

Demo19
#Are there any unassigned?
sum(is.na(sp_names_df$code))

#is this the same as the original dataset?
sum(is.na(sp_names_df$code)) == sum(is.na(surveys$scientificName))

#assign the coded column back to original df
surveys$scientificName<-sp_names_df$code

Splitting columns using separate()

() — turns a single character column into multiple columns

* Found in the tidyr package

surveys<- (data = surveys, #your data frame
col = scientificName, #column to split
sep=c(""), #what to split on
into = c("genus", "sp"), #names of new columns
remove = FALSE #keeps original column

Presenter
Presentation Notes
The final common data problem is having multiple variables in one column.
We can split columns into multiple columns based on a delimiter using the separate function
Separate is found in the tidyr package. We’ll talk more about tidyr in the data wrangling lesson
As input, separate takes a data frame, the name of the column you want to split, the separator you want to split by and the names of the new columns you want to split into
It’s output is a new data frame with the columns separated
Let’s see how this works.

Demo 20
surveys<-separate(data = surveys, #your data frame
 	col = scientificName, #column to split
 	sep = c(" "), #what to split on
 into = c("genus", "sp", #names of new columns
 	remove = FALSE
)

Need help?

 Email: tobin.magle@-colostate.edu

« Data Management Services website:
http://lib.colostate.edu/services/data-management

« Data Carpentry: http://www.datacarpentry.org/

* R Ecology Lesson:
http://www.datacarpentry.org/OpenRefine-ecoloqy-lesson/

« Data cleaning reference .

* https://cran.r-project.org/doc/contrib/de_Jonge+van_der_Loo-
Introduction_to_data_cleaning_ with R.pdf

Presenter
Presentation Notes
Thanks for listening. I hope you found this session to be helpful.
· Please email me at the address on this slide if you need help.
· Also, check out our data management pages for more information.
· Also, the source material I used for this lesson is linked to on this slide.

mailto:tobin.magle@colostate.edu
http://lib.colostate.edu/services/data-management
http://www.datacarpentry.org/
http://www.datacarpentry.org/OpenRefine-ecology-lesson/
https://cran.r-project.org/doc/contrib/de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf

	Data cleaning using R
	Why is this useful?
	Outline
	Survey data
	Setup
	Data cleaning with read.csv arguments
	Read in csv file
	Specify no header
	Add the column names
	Data types
	read.csv() guesses the data type
	Inspecting your data
	Exercise 1:
	Specify column classes
	Specify Missing data
	Specify NA strings
	Data cleaning after import
	Data type conversions
	Factor to character
	Character to numeric
	Numeric to factor
	Exercise 2: Factor to numeric
	Faceting with factor levels
	Exercise 3: levels
	Recoding variables
	Exercise 4
	Dealing with whitespace
	Fix misspellings with stringdist
	Compare scientificNames
	Specify correct spellings
	Approximate string matching
	Quality control
	Slide Number 33
	Specify matching method
	More QC
	Splitting columns using separate()
	Need help?

