WILDLIFE MANAGEMENT PRACTICES IN SOUTH AFRICA DRIVE CREATION OF HYBRID ZONES

Nicole Benjamin-Fink & Brian Reilly 13/9/2016, IWRS

The problem.. Historically....

- Re-establishing sp' in areas of extinction
- Ironically..... extinction of pure genetic lineages via hy
- Impacting endangered, indigenous, & rare sp

Traditional Ag. & cattle farming Wildlife ranching within the private

 Diminished economic profitability & increase in stock theft

- 9,000 private wildlife ranches (>20.5 m ha)
- +15,000 domestic livestock & wildlife

Conservation constrains ...

1. Natural process may not occur

(e.g., dispersal, emigration, colonization, and prey-predator dynamics due to small, isolated, and enclosed areas)

2. Private ranches struggle to balance economic profitability & genetic concerns

(e.g., inbreeding and bottlenecks)

3. Intensified wildlife management practices

Market drivers for WTPs

 hunting (67%), game trading (28%), game meat production (>20%) trophy hunting, ecotourism

WTP shape ecosystem dynamics

 Commercialized wildlife ranching promotes WTP amongst private landowners > 50 countries

• USA & SA have the highest utilization

WTP promotes conservation

 Historically, an effective conservation tool bringing sp back from the brink of extinction via rewilding and reintroductions

Southern white rhinoceros (*Ceratotherium simum simum*) Black wildebeest (*Connochaetes gnou*) Bontebok (*Damaliscus dorcas*) Cape mountain zebra (*Equus zebra zebra*)

Ironically, genetic integrity jeopardized

- W/B lineage diverged from a shared ancestor merely 1.8 myr
- Sort evolutionary scale for reproductive barrier when sympatric
- Hy' on Abe Bailey reserve = pop culled

Social structures & niche occupancy

- Female herd
- Bachelor herds
- Territorial or solitary bulls

- B W/B ----- woodlands & grasslands
- B W/B ----- regions with trees

- WB hy' focus of a number of prominent papers (Corbet & Robinson 1991; Ackermann *et al.* 2010; Grobler *et al.* 2005, 2011; Roed et al. 2011)
- Alarmingly, a significant proportion of game translocations may involve wildebeest
- no comprehensive database indicating the location, or even existence, of pure black WB.

What is hybridization and how is it possible

- Hy' is one of the most important conservation challenges facing wildlife worldwide in the 21st century
- Threatens endangered, indigenous, rare sp', & hence ecosystems
- Reduced genotypic variance and phenotypic resilience
- Accelerating at an alarming rate

What we did ?

- (1) Analyze dispersal patterns
- (2) Identify which species is primarily translocated
- (3) Asses sustainability of the translocation practice
- (4) Identify implications of this practice on the function of provincial protected areas protected (PPAs)
- (5) Offer a feasible framework; employ Bayesian modeling

How we did it

- 6,929 translocated W/B
- 275 private ranches & 3 PPAs
- over 5 years

We defined WTP

- (1) A game capture company is hired to translocate game
- (2) Official permits obtained via gov`
- (3) Process included: (i) capture, (ii) handling, (iii) relocation, & (iv) release.

(excluding public auctions)

- Identifiable genetic markers are none exsistant
- extrapolate the impact of barriers to gene flow on potential hybridization occurrences, (suggestive of a potential hybrid zone).
- response variable (i.e., presence of overlapping wildebeest).

Translocation efforts alter interspecies and intraspecies dynamics

Translocation occur amongst multiple PPAs and private ranches within and across provincial borders

Black & blue WB translocation account for a sustainable & profitable market sector

Revenue generated from WB	% of revenue generated from WB	Revenue generated from all game
translocation	translocations	translocations
16.8	17.99	93.7
18.9	15.65	120.8
18.5	17.27	107.4
19.9	18.48	107.8
32.8	34.83	94.3

Policy interventions and hybridization rates

Management Practice	T test	
fences	10.6373	0.001108 **
waterholes	0.0204	0.886472
feeding grounds	9.8327	0.020043*

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Findings

- (1) W/B are introduced to the private and commercial industry from **multiple sources**
- (2) Black W/B males of reproductive age are primarily translocated
- (3) Revenue from W/B accounted for 20.8% of WTs

Expert knowledge generated

- (1) identify the appropriate factors
- (2) widest possible range of realistic probability for each node, in addition to that of input links and output states
- (3) predict posterior consequences & provide reasoning;
- (4) determine feasibility of various mgt plans

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$
(1)

This relationship indicates that the posterior is

proportional to the likelihood of a priori data: $p(\theta|D) \propto p(D|\theta)p(\theta)$ (2)

Parameterization

-Netica

monitoring sampling runs in real time

-Prior to parameterization, all variables were discredited into states

-Stochasticity lies in the distribution rather than the production of a single value

-nonlinear mixed effects = fixed effects

- Expert knowledge = fixed data

- Experts were asked to generate the widest possible range of realistic probabilities and to predict posterior consequences
- Experts and stakeholders were treated as one group (objs)

Encapsulation, inheritance, polymorphism, and abstraction

- Encapsulation-sole inclusion of interfacing nodes while hiding others (complexity is broken down)
- Inheritance- shared code between networks, maximizing programming efficacy.
- hierarchical structure- scope, definition, implementation, and relevance

Risk assessment

- T. Klagsbrun, S. Vrahimis.

- Many SA game owners, managers, scientists, & gov` officials who generously donated their time and knowledge