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ABSTRACT

Daily precipitation over an area is studied by modeling the stochastic structure of the time-area daily
precipitation process. Daily precipitation at a point is envisioned as a continuous random variable that has
been truncated at zero. The zero daily precipitation amounts are considered negative amounts of unknown
quantity. The square roots of daily precipitation at a point for a selected study region approximate a
sample from a truncated univariate normal distribution. The multivariate normal distribution is used to
describe the time-area variation of daily precipitation over an area.

The means and standard deviations of the normalized precipitation are periodic within the year. A
method was developed for obtaining maximum 1ikelihood estimates of daily means and standard deviations from
the truncated samples. The periodic components of the means and standard deviations were described with
Fourier series. The Fourier coefficients were related to position within the study region. Sequences of
random components were obtained for each station in the study region by removing the periodic means and
standard deviations. The sequences of random components were normally distributed with zero means and unity
standard deviations and were dependent in time and space. The lag-one autocorrelation coefficients were
found to approximate a regional constant. The lag-zero cross-correlation coefficients were found to be a
function of inter-station distance.

Precipitation sequences were generated for two areas in the study region using the truncated multi-
variate normal distribution model. Parameters of the model were defined using the latitude and longitude of
each station. The new sequences closely resembled the observed sequences in ?11 the periodic daily means and
standard deviations (2) the lag-one autocorrelation coefficients, ?3) the lag-zero cross-correlation coef-
ficients, (4) the Markov chain wet-dry transition probabilities, and (5) the means, standard deviations, and
skewness coefficients of 28-day and annual precipitation.
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FOREWORD

Hydrologic time processes have been classified for practical purposes as continuous and intermittent.
Most climatologic and hydrologic time processes are continuous series, meaning that there is a non-zero value
of that variable at any time. Instantaneous precipitation, evaporation, sediment transport in rivers, some
runoff (usually on small rivers with negligible underground or surface water storage) represent the typical
hydrologic intermittent time series. For some times the observed values are zeros; for other times values
are greater than zero. Though there may be a continuous flux of water molecules through the liquid-gaseous
or solid-gaseous inter-phases on the continental areas, with a difference in the number of molecules passing
in two directions, the original concept of precipitation variable was designed in such a way that the process
of instantaneous or short-interval precipitation is intermittent.

In practice, many intermittent processes, with positive series values for some time intervals and zero
values for the other time intervals, are observed as totals for given time intervals, usually counted in
minutes, hours, days, or a longer interval. Therefore, a sequence of intervals with values greater than zero
is interchanged with intervals of zero values. This is the way many observed or computed time series have
been processed and their data published. A large amount of available data of this type makes it necessary to
design methods most feasible for their investigation and mathematical description that would permit the
simulation of these intermittent series by the data generation methods.

Because of spatial interrelation for most of the climatological variables, the resulting hydrologic
variables such as precipitation, evaporation, sediment transport, runoff of small rivers, and similar
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variables may all have intermittent series that are also spatially dependent. Solutions of practical water
resources problems require data on time series either at a point or at a set of points. When a point series
is studied independently of time series at the other points, methods are already available for the description
of these intermittent series in the form of mathematical models and the estimation of their parameters. The
classical approach to univariate (or point), intermittent time series is to first describe the process by
such random events and their time process as the sequence of zero and non-zero intervals. The difficulty in
this approach arises from the fact that nearly all parameters, especially the interval mean, standard devi-
ation and autocorrelation coefficients (and sometimes the skewness and kurtosis coefficients), are or may be
periodic. To avoid the difficulty of this combination of periodicities and intermittency, an approach to
analysis starts by dividing the annual cycle into the seasons and the daily cycle into its parts, with an
assumption that all the parameters are constants inside these intervals. This assumption requires the break
of cycles into a relatively large number of seasons or parts, in order to justify it.

When the problem of generating new samples by using the Monte Carlo (experimental statistical method) is
posed in hydrology and water resources, with the generated data to preserve both the time and space properties
of random variables involved, this problem becomes that of a mathematical description and that of the generation
of new samples in case of periodic-stochastic, intermittent time series. Both the periodicity in parameters,
and the fact that the non-zero values occur at some space points while the zero values are observed simul-
taneously at the other points, create difficulties in generating new samples of multi-point intermittent time
series. Attempts have been made to apply the combinatorial analysis and Markov chains in order to generate
simultaneously the series of 2-3 stations, by generating first their zero and non-zero intervals, and then by
preserving both the space and time dependences within the non-zero intervals. Researchers following this
approach have been able to simulate only 2-3 station series. For more than four stations, the combinatorial
agproach becomes so complex that it is then difficult to extend it to cases of five, six, and more intermittent
time series.

The generation of multivariate time series, which are periodic, intermittent and also stochastically
dependent both in time and space, can be best accomplished by using the approach of the multivariate normal
distribution and the principal component analysis. It seems logical to proceed in that direction also for
variables which have asymmetric probability distributions and periodic-stochastic, intermittent time series.
When a multivariable process is found to be periodic-stochastic, intermittent, non-normal stochastic process,
difficulties arise both in mathematical description and in generation of new multivariate samples. When it
becomes feasible to study intermittency by assuming it to be a truncated process of a non-intermittent time
series, by removing periodicities in parameters, and by transforming the original variables or their resid-
uals into the normal variables, then the principal component analysis for the generation of new samples
becomes a feasible and very desirable approach.

The Ph.D. dissertation by Jerson Kelman, entitled "Stochastic Modeling of Intermittent Daily Hydrologic
Series" (1976), and the Ph.D. dissertation by Clarence Wade Richardson, entitled "A Model of Stochastic
Structure of Daily Precipitation over an Area" (1976), represent attempts to mathematically model the multi-
series processes and to generate the new multivariate samples of periodic-stochastic, intermittent time
series of daily precipitation as asymmetrically distributed random variable. As shown by the first disserta-
tion, also the non-intermittent daily runoff series may be conceived as two intermittent processes, with
variables transformed to normal distributions. Daily series are selected as typical examples of the short-
interval time series. The basic approach is then in postulating that an intermittent time series with short
time interval is only a truncated process of a non-intermittent, discrete time series. Basically, it is
assumed that the probability distribution of non-zero values of an intermittent time series is only a tail,
or a part of, either a truncated normal distribution, or a truncated other distribution, such as gamma,
lognormal and similar. Therefore, techniques become needed for estimation of properties of a non-
intermittent process from a periodic-stochastic, intermittent process. Techniques are further needed for the
transformation of original variables or of their stochastic residuals in such a way that the periodic-
stochastic, intermittent process of an asymmetric variable becomes only the truncated part of a normal
distribution in case of the non-normal distribution of variables. The above two doctoral theses, one more
tilted toward the theoretical and the other more toward the practical side, are the attempts to implement the
above concepts by postulating the mathematical models and by estimating parameters of non-intermittent time
series from the original, intermittent series. Once the properties of the non-intermittent discrete time
series are estimated for each point of a multi-point set of series, it then becomes feasible to approximate
closely by transformations their multivariate non-normal distribution by a multivariate normal distribution.
From it then the periodic parameters can be estimated by fitting a set of harmonics in the Fourier analysis,
and the periodic parameters appropriately removed from the series. The remaining stationary stochastic
components may be either dependent or independent time processes. For a dependent process, linear dependence
models can be inferred and their parameters estimated. This permits the computation of the independent
identically distributed residuals, as the time independent stochastic components (TISC-variables). Once the
series have been reduced to a set of normal, time independent, identically distributed stochastic processes,
their spatial lag-zero correlation matrix enables a transformation of this set of series to their principal
components, as a new set of space and time independent normal process. To generate the new samples of multi-
point series, the normal independent samples are generated for each point and the reversed procedure applied
on these time and space normal independent processes. Further transformations of reverse order produce the
periodic-stochastic, non-intermittent process at each point. They preserve then the space dependence,
periodicity and time dependence. By equating each negative value with zero, the multivariate, periodic-
stochastic truncated (or intermittent) normal process is simulated by a set of new samples. Variables are
then transformed from normal to the corresponding non-normal distribution.
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The writer of this Foreword is convinced that the approach outlined above, and studied in this paper,
for the generation of new samples by using the Monte Carlo (or statistical experimental) sample generation
method is a feasible, practical method to model a set of periodic-stochastic, intermittent, time and space
dependent series.

The other problem investigated by Dr. Jerson Kelman is the difference process applicable to the non-
intermittent discrete time series, such as the non-intermittent daily runoff series. It is assumed that
whenever the flow increases for a river the response of the river basin is different from its response during
the river flow decrease. Therefore, the process could be divided into two separate but interconnected
intermittent processes: the positive intermittent process as a difference process during the runoff increase,
and a negative intermittent process as another difference process during the runoff decrease. The two
difference processes, each considered as an intermittent process, are then combined to become a non-intermittent
process.

Further research into the application of the above concept of considering the intermittent processes at
a set of points along a 1ine, over an area or across a space as the truncated processes of the periodic-
stochastic, non-intermittent processes, is needed to sharpen the practical aspects of this method for the
generation of new series.

Vujica Yevjevich

February 1977 Professor-in-Charge of
Hydrology and Water Resources Program
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CHAPTER |
Introduction

Precipitation over an area is a physical process
that occurs continuously in time. The precipitation
process is basically a random (or stochastic) phenom-
enon in that, given the present state, the future
behavior of the process can be predicted only on a
probability basis. The precipitation process also
contains periodic components due to the seasonal
variation of precipitation within the year. The
instantaneous rate of precipitation (precipitation
intensity) is the most basic descriptor of the pre-
cipitation process. Precipitation intensity at all
points on the earth's surface has some value, either
zero or greater than zero, at all points in time,
Precipitation intensity, therefore, may be described
as a continuous time-area stochastic process.

The continuous time-area precipitation process
cannot be measured directly. In measuring precip-
itation, the process is usually made discrete in space
by sampling the process at selected points (stations).
The precipitation process at a point is usually
described by a discrete time series of precipitation
amounts for some time interval, like an hour, day,
month or year. Therefore, most precipitation data are
discrete in both time and space. If precipitation
over an area is required, the precipitation amounts
for the desired time interval at given points are
weighted with some weighting technique to give pre-
cipitation over the area for the time interval.

1. Secope and Objectives of the Study

This study is concerned with the development of a
model of the periodic-stochastic structure of daily
precipitation over an area or watershed. One day was
chosen as the length of the discrete time interval
because daily time series contain more information
about the precipitation process than monthly or annual
time series, and long records of daily precipitation
are available at many locations. Daily precipitation
is sufficient for many water resource projects.

The model developed in this study is intended to
be used to generate daily precipitation samples at
selected points within an area. The parameters of a
time-area daily precipitation model should be a
function of position within a region. Therefore, the
primary objectives of this study are (1) to develop a
model capable of being used to generate daily pre-
cipitation samples at n arbitrary points within a
region with the same time-area characteristics as
observed samples, and (2) to regionalize the model
parameters within a region so that the model can be
used anywhere within the region.

2. Advantages of a Daily Precipitation Model

The stochastic generation of large samples of
daily precipitation at stations within an area cannot
add information to that contained in a historical set
of data. However, a model capable of being used to
generate daily precipitation over an area offers
several advantages over historical daily precipitation
data. These advantages include the following:

1. The information contained in a historic set
of data can be more completely extracted by

examining a large number of time-area
precipitation patterns that are as likely to
occur in the future as the observed pattern.

2. If the parameters of the model are deter-
mined as a function of position within the
region, new samples can be generated at
points where no data have been recorded.

3. Generated data can be immediately available
in computer-compatible form for analysis of
water resource projects. Historic data
often must be laboriously extracted from
publications.

3. Approach to the Problem

The basic approach used in this study was (1) to
develop a model capable of describing the periodic
and stochastic characteristics of daily precipitation
over an area, (2) to use daily precipitation data at
multiple points within a region to infer the model
parameters and (3) to test the model by generating
long sequences of daily precipitation data for
several stations in an area and comparing generated
data to historic data.

Daily precipitation series for all stations in
an area contain many zero values. Most precipitation
models developed for daily or shorter time intervals
have been restricted to a single station and utilize
a Markov chain model for describing the probabilities
of occurrence or nonoccurrence of precipitation
(Smith and Schreiber, 1973; and Pattison, 1965).
These models cannot easily be generalized to describe
the probabilities of rainfall at multiple points
because the number of states involved becomes large
and estimation of the transition probabilities
becomes difficult., For example, if a simple Markov
chain is assumed to describe the probability of wet i
or dry intervals at a single station, the transition
matrix contains only four probabilities: (1) wet
given wet on the previous interval, (2) wet given
dry, (3) dry given wet, and (4) dry given dry. If
the Markov chain is expanded to include n stations
with a wet or dry state at each station, the number
of elements in the transition matrix is given by

p=2

where p is the number of elements in the transition
matrix, and n is the number of stations in the
network. With four stations, p becomes 256. A
matrix of this size is unmanageable, and accurate
estimation of all the transition probabilities from
historic data would be practically impossible.

To avoid the problem involved with Markov chain
approaches, a model for generating daily rainfall at
multiple stations should treat daily rainfall as a
continuous variable. This implies the use of a
multivariate distribution with continuous rainfall
amounts at discrete points in time and space. The
only multivariate distribution for which a multi-
variate generation technique has been well-developed
is the multivariate normal distribution (Matalas,
1967). The model proposed here is, therefore, based
on the multivariate normal distribution.

(1-1)



The assumption that the stochastic structure of
daily precipitation over an area may be described by
a multivariate normal distribution means that the
daily precipitation at each point in the area must be
normally distributed or be capable of being trans-
formed to a normal distribution. The general ap-
proach used in this study is to describe the distri-
bution of daily precipitation at each station with a
univariate normal distribution. The integral of the
normal distribution from -« to 0 is the probability
of zero daily precipitation and the remainder of the
distribution describes the distribution of rainfall
amounts for days of measurable rainfall.

The daily precipitation data at each station are
reduced to approximately second-order stationary,
normally distributed random variables. These random
variables are dependent in both time and space. The
cross correlation coefficients between pairs of these
random variables are used to describe the dependence
in space. The serial correlation coefficients of the
sequence of random variables for each station are
used to describe the dependence in time.

4. Probability Distributions of Point Rainfall
Amounta

Many researchers have attempted to fit a dis-
tribution to precipitation data or have transformed
the data to obtain a fit by a particular distribution.
The first attempt to fit a continuous probability
distribution to precipitation data frequency curves
was made by Slade (1936). He used a logarithmic
transformation of annual rainfall amounts and fitted
a normal distribution to the results. Thom (1940)
considered the frequency of annual precipitation but
fitted smooth distribution curves to the data, rather
than using a specific distribution function. A
similar procedure was used by Beer et. al. (1946) for
monthly rainfall amounts. Whitcomb (1940) fitted a
Pearson Type III curve to monthly precipitation.

Several transformations that would make precip-
itation data normally distributed have been studied.
Thom (1957) used a gamma distribution to fit storm
amounts and then transformed the gamma distribution
to a normal distribution. Stidd %1953} and Beals
(1954) suggested that precipitation amounts raised to
a fractional power are normally distributed. Stidd
used a cube root transformation to transform annual,
monthly and daily rainfall values to a normal distri-
bution. Beals found that daily rainfall amounts to
the one-fourth power were normally distributed.

Franz (1970) followed the fractional power concept of
Stidd and Beals and used a non-linear estimation
technique to determine the magnitude of the nor-
malizing fractional exponent for hourly precipitation
data. The exponents were found to range from 0.23 to
0.52 for the stations studied by Franz.

Markovic (1965) studied the distributions of
annual precipitation for several precipitation
stations in the Western United States and South-
western Canada. The normal, two-parameter log-
normal, three-parameter log-normal, two-parameter
gamma, and three-parameter gamma probability distri-
bution functions were fit to the observed data for
each precipitation station. The five functions were
found to be applicable with a difference in the
number of cases, which passed a Chi-square test in

fitting the observed annual precipitation frequency
distributions.

5. Dime Persistence in Precipitation

Precipitation amounts for some interval of time
are usually not independent of preceding values.
Meteorological conditions at one time tend to carry
over, or persist, into later times. The most common
technique of determining the degree of persistence in
a time series is by autocorrelation. The autocorre-
lation coefficients give a measure of the degree of
linear association of values in a time series that
are k units apart. The autocorrelation coefficient
o for an infinite discrete series {x1}1=1 is defined

by
cov(x., x:.,.)
oy * R S X (1-2)
var x;

and may be estimated from a sample series by

” t :;: R LT r,‘;,z(:f: "I)(E: "M)
(a4 a7 E e 2 ]

where "k k=1,2...,N1is the k-th autocorrelation

coefficient; N is the total number of values in the
discrete time series; k is the units of lag, and X;

is the value of the variable for the i-th position in
the time series (Yevjevich, 1972a).

v (1-3)

Intuitively, the degree of persistance should
decrease as the length of the time interval of a
discrete precipitation time series increases. VYearly
precipitation amounts have consistently been found to
be independent. Kotz and Neumann (1959) cited
studies by Yule (1945) in which serial correlations
of annual rainfall in Great Britain were found to be
nonsignificant. Brittain (1961) also found annual
rainfall amounts to be independent series. Monthly
precipitation amounts have been found to be indepen-
dent in most cases (Pattison, 1965; Yevjevich and
Karplus, 1973; and Namias, 1952). Precipitation
amounts for time intervals of 1 day or less have
consistently displayed persistence. Feyerherm and
Bark (1965) found dependence in daily precipitation.
Pattison (1965) and Franz (1970) found hourly rain-
fall to be dependent in time.

6. Univariate Rainfall Generation Models

There have been many attempts to develop methods
of generating new sequences of rainfall at a point.
Rainfall for short time intervals, 1ike a day or an
hour, has been difficult to model because of the
sequential persistence between rainfall amounts and
because the time series are dominated by zero values
(intermittent process). The occurrence or nonoccur-
rence of rainfall for short intervals, 1ike an hour
or a day, have normally been described by Markov
chains. Gabriel and Neumann (1962) seemed to have
been the first to successfully describe the occur-
rence or nonoccurrence of daily rainfall with a
Markov chain model. Additional evidence of the
feasibility of using a Markov chain to describe the
occurrence of sequences of wet or dry days was given
by Caskey (1963), Weiss (1964), and Hopkins and



Robillard (1964). However the findings of Newnham
(1916), Jorgensen (1949), and Cooke (1953) demon-
strated that the Markov chain was not universally
successful.

Smith and Schreiber (1973) tested the hypothesis
of sequential independence (Bernoulli model) versus a
first-order Markov chain hypothesis for the occurrence
of wet or dry days during the summer rainy season in
southeastern Arizona. The Markov chain model was
found to be significantly superior to the Bernoulli
model in reproducing the distributions of wet and dry
run-lengths, occurrence of the first wet day in the
season, number of runs per season, and the total
number of rainfall days per season.

7. Multivariate Generation Models

Fiering (1964) introduced the use of multi-
variate techniques for generating new sequences of a
hydrologic process at several stations. He assumed
that annual streamflow at each site was normally
distributed or could be rendered normal by a suitable
transformation. By computing the eigenvectors of the
correlation matrix, he transformed the observed data
into sequences of principal components, with sequences
uncorrelated and independent. A single station model
was then used to generate the sequences of principal
components.

Matalas (1967) pointed out that the Fiering
model fails to yield new multivariate sequences that
resemble the multivariate historic sequences in terms
of the lag-one serial correlation coefficients of
each station. Matalas then presented a technique for
generating multivariate sequences that resemble the
historic sequences in terms of the means, standard
deviations, Tag-one serial correlation coefficients,
and lag-zero cross-correlation coefficients. The
basic equation was

xi*l = Ax1 + Bci"‘l » (1'4}

where X541 and X; are vectors whose values are the

hydrologic variable minus the means for times i and
i+l for m stations; A and B are m x m matrices, whose
elements must be defined from the historic data; and
%441 1s a vector m of random components with zero

means and unit variances, whose elements are inde-
pendent of X;. Matalas (1967) showed that the A and

B matrices are defined by

-1
A= HIHO (1-5)

and

T -1,T

BB = HO - M1H0 Ml

where M, is the lag-zero covariance matrix of the
historig data; Hl is the lag-one cross covariance

matrix of the historic data, and the superscripts -1
and T denote the inverse and transpose of the matrix,
respectively. Equation (1-5) may be solved by
straightforward matrix operations. The solution of
equation (1-6) for matrix B is more involved.

Matalas (1967) pointed out that the principal com-
ponents analysis technique could be used to solve for
B. However, Young (1968) described a simple and
direct solution for B. Inherent in the Matalas model

(1-6)

is the assumption that the hydrologic process is a
sample from a multivariate normal distribution or may
be reduced to a multivariate normal process.

Young and Pisano (1968) presented a modification
of the Matalas model for generating multiple site
monthly streamflow. Monthly streamflow data were
made to conform to a normal distribution by using a
logarithmic or square root transformation. The
seasonal mean and standard deviations were removed
using a technique given by Yevjevich (1966) to yield
second-order stationary residuals. The Matalas model
was then used to generate new residuals and the
cyclic patterns in the means and standard deviations
were added. The inverse of the normality transfor-
mation was used to produce the new multisite monthly
streamflow.

Nicks (1974) developed a technique for gener- !
ating daily rainfall at several raingages in a !
watershed. The occurrence or nonoccurrence of
rainfall on each day at some gage on the watershed
was generated using the Markov chain approach. When
a wet day was generated, the location of the maximum
rainfall amount within the area was determined,
assuming the maximum amount could occur with equal
probability at any gage within the network. The
maximum daily rainfall amount was then generated
using a skewed normal distribution. The spatial
pattern of rainfall over the watershed was then
generated using a deterministic-probabilistic model :
relating rainfall at a given point to the maximum
rainfall amount. The Markov chain method of gener- 1
ating wet-dry sequences for a large area and the
method of generating maximum daily amounts was found
to be highly satisfactory. Improvements in the
method of generating spatial patterns of rainfall
were found to be needed.

8. Regionalization of Hydrologic Parameters

With the relatively recent advent of generation
of hydrologic series, attention has been given to
methods of regionalizing the parameters required to
generate new sequences of hydrologic variables. i
Benson and Matalas (1967) stated that the two major i
deficiencies in generation of hydrologic sequences A
are: (1) large errors in estimating statistical
parameters due to errors in the original sample and
(2) new sequences could not be generated for ungaged
locations. To overcome these shortcomings a method
was proposed that would use statistical parameters
derived from generalized relationships with hydro-
logic characteristics of a drainage basin, rather
than the sample statistics determined from a historic
series of data at a site.

Yevjevich and Karplus (1973) analyzed the
structure of monthly precipitation over an area,
based on the concept that the process is composed of
deterministic components due to the seasonal nature
of precipitation and a stationary stochastic com-
ponent. The parameters were found to follow regional
trends. Models describing the periodicity and
regional trends in parameters were then developed.
When the periodicity and regional trends in monthly
precipitation were removed, the remaining stationary
stochastic components were found to be approximately
time independent and distributed according to the
three-parameter gamma probability distribution
function. The stochastic components were highly



cross-correlated and the lag-zero cross correlation individual series. The regionalization of the

was a function of interstation distance. The results parameters of the process and of the coefficients of
of the study showed that precipitation data at the periodic parameters significantly reduced the
several points in a region have more information on number of coefficients to be estimated.

all parameters of a given point series than each



CHAPTER Il
Structural Model for Daily Precipitation

The objective of this study, as stated in the
introduction, is to develop a structural model capable
of being used to generate daily precipitation at
arbitrary locations within a watershed. Such a model
would describe the time-space variation of daily
precipitation over an area. This chapter presents
mathematical models describing the structure of the
area-time daily precipitation process and models
describing the generation process.

The model developed in this study to describe
daily precipitation over an area was based on a
multivariate normal distribution. The assumption of
a multivariate normal distribution means that the
marginal distributions (rainfall at a point) must be
normally distributed. However, the transformation of
point rainfall to a normally distributed random
variable, as stated by Franz (1970), does not insure
that the precipitation at several points is multi-
variate normal, because normal marginal distributions
are a necessary but not a sufficient condition for a
multivariate normal distribution. 1In this study,
however, it is assumed that, if precipitation at all
points in an area are transformed so that each con-
forms to a univariate normal distribution, the pre-
cipitation at all points can be described by a multi-
variate normal distribution.

1. Outline of the Time-Area Precipitation Model

There are two basic alternatives that may be used
in developing the structure of a model of daily
precipitation over an area based on a multivariate
normal distribution. The primary difference in the
two alternatives is that with one approach the peri-
odic means and standard deviations are removed before
the data are transformed to a normal distribution and
with the other approach the data are transformed
before the periodic means and standard deviations are
removed. The steps involved in the two alternatives
are outlined below. These steps, for each alterna-
tive, can vary depending on the outcome of the anal-
ysis for a particular set of data.

a. Altermative I. The first alternative is to
remove the periodic means and periodic standard
deviations before transforming the data. The steps in
this alternative include the following:

1. Calculate, for each day of the year, the mean
and standard deviation of daily precipitation
given the occurrence of a wet day.

2. Remove the periodic means and standard
deviations from the original data, consid-
ering only the nonzero daily precipitation
data.

3. Transform the nonzero values of the new
sequences to approximate a sample from a
truncated normal distribution.

4, Examine the time dependence (autocorrelation)
of the transformed sequence for each station.

5. Examine the space dependence (cross

correlation) between sequences for pairs of
stations.

These steps may be simplified, depending on the
results of the analysis. For example, if the ratios
of the means and standard deviations calculated in
step 1 are found to be a constant during the year,
only the periodic standard deviations need to be
removed in step 2 by dividing each nonzero daily
precipitation value by the standard deviation for the
given day, The resulting sequence would contain only
zero or positive values. If both the means and
standard deviations were removed by subtracting the
means and dividing by the standard deviations, the
resulting sequence would contain negative values for
days with nonzero precipitation amounts smaller than
the mean.

b. Alternative II. The second alternative is to
apply a normalizing transformation before inferring
and removing the periodic means and standard devia-
tions. The steps in this alternative are as follows:

1. Transform the nonzero data so that the data
for each day of the year approximates a
sample from a truncated normal distribution.

2. Determine the mean and standard deviation for
each day of the year using the transformed
nonzero daily precipitation data.

3. Remove the periodic means and standard
deviations from the transformed data, con-
sidering only the nonzero data.

4, Examine the time dependence of the stationary
sequence for each station.

5. Examine the space dependence between sta-
tionary sequences for pairs of stations.

Both alternatives were examined to determine which
alternative would give the best model for the time-
area daily precipitation process. The two alterna-
tives will be examined with actual precipitation data
in Chapter II1I. (Alternative II proved to be the most
desirable method of analysis.) In the following
section, the concepts, procedures, and mathematics of
the time-area daily precipitation model, using Alter-
native II, are given.

The procedure used to model daily precipitation
over an area is outlined with block diagrams in
Figures 2-1 and 2-2. Figure 2-1 illustrates the
concepts involved in the time-area precipitation model
and indicates the procedure used to analyze the
precipitation data and evaluate the model parameters.
Figure 2-2 illustrates the procedure used to generate
new sequences of precipitation over an area. Each
step in the procedure is described in detail in later
sections. The entire process is briefly outlined
here.

In analyzing the data and determining the model
parameters, daily precipitation for stations within
the region under study must be obtained (Figure 2-1).
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Figure 2-1.

The sequence of daily precipitation amounts (zero and
greater than zero) at a given station is considered as
a sample from a continuous process containing both
positive and negative values, but which has been
truncated at zero so that all the negative values
appear as zero. Since the model is based on a multi-
variate normal distribution, a normalizing transfor-
mation must be applied to the data for each station.
The transformation is applied to the nonzero data
only, since the zero values are assumed to be negative
values of unknown magnitude. After the transforma-
tion, the data are assumed to be normally distributed,
but with periodic means and standard deviations due to
the seasonal nature of precipitation. The means and
standard deviations are then determined for each day
of the year at each station, the periodic component of
the means and standard deviations are described with
Fourier series, and the nonzero transformed data are
standardized by removing the periodic means and
standard deviations. The nonzero values of the new
sequence for each station are then assumed to be a
sample from a stationary, standard normal (mean of
zero and variance of one) process. The serial corre-
lation coefficients are determined for the stationary
sequences for all stations, using only the nonzero
values. The cross correlation between the stationary

Diagram of precipitation data analysis procedure.

random components for the various stations are then
determined. The model parameters (Fourier coeffi-
cients, serial correlation coefficients, and cross
correlation coefficients) are related to position,
inter-station distance, etc., so that the parameters
can be determined for any arbitrary watershed position
and precipitation station grid.

The generation procedure is the inverse of the
data-analysis procedure and is illustrated in Figure
2-2. A hypothetical grid of precipitation stations is
selected for the area where new precipitation se-
quences are desired. The model parameters are deter-
mined from the grid configuration and position in the
region. Sequences of independent standard normal
random numbers are generated for each station. Serial
and cross correlation are added into the series by
using equation (1-4) with the A and B matrices prop-
erly defined. The periodic mean and standard devia-
tion are introduced into the sequence for each sta-
tion. Each sequence is then truncated (negative
values are set to zero) and the inverse of the nor-
malizing transformation is applied to yield the new,
generated precipitation series.



Select precipitation grid

Determine parameters from
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New precipitation sequences
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Figure 2-2. Diagram of procedure for generating new

precipitation sequences for an area.

2. Mathematical Model of Daily Precipitation at
a Point

Let the daily precipitation at a given station
define the random variable X5t with p the year and

the day within the year. The xp 5 series for most

precipitation stations are dominated by zero amounts.
Let yp . be the daily precipitation series after

application of a normalizing transformation. The
transformation chosen for this study is the square
root transformation. The reason for choosing the
square root transformation will be illustrated in
Chapter III by using the actual precipitation data.
For the immediate purpose of developing the model
structure, the square root transformation will be
assumed adequate for transforming nonzero daily
precipitation to an approximately normal distribution.
The Yo series is given by

. JUR (2-1)

ypnT N Pt

a. Approximation of daily precipitation with
a truncated normal distribution. The probability

density function of a continuous, normally-distributed

random variable, z, is given by

(222
L g (2-2)

f(z) =

av2r

where u is the expected value (or mean), and o is the
standard deviation of the distribution. The distri-
bution of daily precipitation (either Xy ¢ OF Yo T) is

actually a mixed distribution containing both discrete
and continuous variable values. For any given day,
there is a finite probability of zero rainfall, while
the distribution of rainfall amounts greater than zero
must be described by a continuous probability density
function. With the approach taken in this study,
transformed daily precipitation, yp i at a station is

considered as a sample from a truncated normal distri-
bution. The zero values may then be considered
negative amounts of unknown quantity. The integral of
the normal distribution from -= to 0 is the probabil-
ity of zero daily precipitation, and the remainder of
the distribution describes the distribution of rain-
fall amounts for days with rainfall greater than zero.
The concept is illustrated by the frequency function
and observed frequency histogram shown in Figure 2-3.
The area under the curve to the left of zero is the
probability of the zero daily rainfall. Nonzero daily
precipitation values less than 0.01 inch are recorded
as traces and are treated as zeros in this study. The
area under the curve between 0 and 0.1 (square root of
0.01) is the probability of a trace amount.

1no T T T T T T 2] T T
100 = Pty S TAME) -
i FITTED E
FREQUENCY
so|-"lre FUNCTION -
70 =
]
gw -
£
40 -
30 -
20 |-
» NN
-2.0 -1.0 [+] 1.0 2.0
SQUARE ROOT OF DAILY PRECIPITATION
Figure 2-3. The truncated normal distribution of

daily precipitation with a square root
transformation.



b, Estimation of u and .-

tation at a given station exhibits a periodic com-
ponent with a basic period of 1 year, as do prac-
tically all hydrologic time series with a time
interval less than a year. This periodic nature
causes the time series to be nonstationary. If the
time series is to be treated as a stationary sto-
chastic process, the periodic component must be
detected and removed. Periodicity may be present in
the mean, standard deviation, autocorrelation func-
tion, or higher order moments of a hydrologic time
series. In this study, only the periodicity in the
mean and standard deviation are considered.

Daily precipi-

Because of the periodicity of the mean and
standard deviation, Mo and 9. for a given station

must be estimated for each day, t, of the year. The
method of moments are normally used to estimate the
mean and standard deviation of the normal distribu-
tion. However, the method of moments could not be
used to estimate the o and . of the transformed

daily precipitation data because the data were
truncated at zero. A method given by Cohen (1950)
for obtaining maximum 1ikelihood estimates of the
mean and variance of normal populations from trun-
cated samples was adapted for estimating Mo and o

The method given by Cohen is summarized below for a
singly truncated normal population with the number of
measured and the number of unmeasured observations
known,

Let Yo designate the left truncation point,
i.e., values less than Yo cannot be measured and
values equal to or greater than ¥q are measured. Let
Ng be the number of measured observations equal to or
greater than Yoo and let " be the number of unmeas-

ured observations. For the specific case of daily
precipitation at a point, y, is 0.10 (square root of

0.01 inch), ny is the number of days of measurable
rainfall on a given day of the year, and Ny is the

number of days with zero rainfall on a given day.
Translate the origin to the T1eft truncation point by
W, =¥y - ygand let y = (y5 - u)/o. The probability

density function of w is given by

2
Sy + Y
flw) = L—e e (2-3)
oV 21
Define I0 by
1 2t
10 = — fe dt. (2-4)
v2r Y
The Tikelihood function is given by )
W
n o 1 -y + ;1)
L=(1-15 " = e (2-5)
i=1  o/2n

or

Mo ( w1)2
O -
n n i 8]
L=(1-10)1(1)0e 1=l . (2-6)

avem

Taking logarithms of equation (2-6) gives

1 L w 2
I””"“(:E)'ffﬂ (y +;...} 0y 1n(1-to}. (2_7)

Taking the partial derivatives of equation (2-7) with
respect to y and ¢ and equating to zero yield the
maximum 1ikelihood estimation equations

and (2-8)

where 5
gt g VIR (2-9)
I
Let
ﬂl 6
¥=g0 riprs (2-10)

then equations (2-8) may be written as
c[\’-v]-n1=0
and (2-11)
2 -
cr-mml-nz-[),

where " and n, are the first and second moments
about the truncation point Yg» OF

o w? ( ]
n, = L —. 2-12
k™ 421 Mg
Eliminating o from equations (2-11) yields
(2-13)

% (k)

Equation (2-13) may be solved for y by iterative
techniques. The maximum 1ikelihood estimate of o may
then be determined from either of the simultaneous
equations given as equations (2-11). The estimate of
u is then given by

=Yg - ov. (2-14)

For daily precipitation at a point the maximum

likelihood estimates of o and o, for t = 1,2, »o»,

365 are determined by using Ngs Nys Mys and np to
solve equation (2-13) for y. The value of o, is



then determined from equation (2-11), and u_ is
determined from equation (2-14).

e. Determination of the stationary random
aomponent, & The stationary random component,
)
€p,r? with the periodic mean and standard deviation
removed is given by

g w-PaX X y. _#0. (2-15)

The periodic movement of u, and o may be described

by using Fourier series representation. The periodic
component of a statistic, v_, with a basic period w
can be represented by ¥

m
v, ® v, + I {Aj cos giil-+ Bj sin 25134 (2-16)

j=1
= the value of the parameter for the t-th
interval, V. the mean of w values of ves M= the

number of harmonics, w = the number of intervals in
the basic period, Aj and Bj = the Fourier coeffi-

cients, and j is the harmonic index.
coefficients can be determined by

where v
3

The Fourier

L 2njt )
AJ = 5'121 {uT - v,) cos w (2-17)
and
<& e 2njt
Bj Wi rfl v, = ux] sin s (2-18)

It is often more convenient to express equation (2-
16) in the form

b= vt jgl ; cos (2T 4 050 (2-19)

where
cf = A% + 82 and o = arc tan - :i-, (2-20)

while
Aj = E:‘j cos 0 and Bj = -{:‘1 sin ej. (2-21)

The Cj values are the amplitudes of the various
harmonics, and the 0 values are the phase angles of
the harﬂnn1cs

For daily precipitation at a station with w =
365, there are 365 values of any periodic parameter,
Vo The maximum number of harmonics that may be used

to describe the periodic movement of v, is (v - 1)/2
or 182. However, the seasonal change in u oro_is
relatively slow for most daily precipitation series.

Normally only a few harmonics are sufficient to
describe the periodic movement of these parameters.
The inclusion of too many harmonics to describe u, or

9, only serves to perpetuate the sampling errors
inherent in estimating L Yevjevich and

Karplus (1973) found that only one harmonic was
required to describe the periodic movement of the
mean and the standard deviation of monthly precip-
itation for stations in the central part of the
United States. Further, they found that the same
phase angle, aj, could be used to describe the phase

of the harmonic of the mean or the standard deviation
for a given station.

Equation (2-15) can be applied only to the
nonzero values of the yp & series because the zero

amounts are assumed to be negative quantities of
unknown magnitude. When equation (2-15) is applied
to all positive values in a series, with o and o,

given by the Fourier series representation, the
result is an ¢ series with zero values that are

Pyt
unchanged from the Yo.x series and positive values

that are stationary in the mean and standard devia-
tion. The entire €p,1 series, including the negative

»
unknown amounts represented by the zeros, is assumed
to be stationary in the mean and standard deviation
with a mean of zero and a standard deviation of
unity. The new variable €p,1 will, in general, be

dependent in time, and ther; may be periodicities in
the autocorrelation coefficients and in the higher-
order moments.

d. Determination of the serial de
of €1 Assuming that the serial dependence of €,

can be described by a linear autoregressive model,
€p,t is then given by

m

(2-22)

€p|T . kfl ale EP'T'k * EP.T

where Wy the regression coefficients for lag k
and E = the independent stochastic component.

Assuming a first-order autoregressive model, equation
(2-22) reduces for % . %P, to

(2-23)

ep:f - pllr Ep$T'1 4 Epﬂ'

If P11 is periodic, the periodic movement can

be described by Fourier series, as shown above.
However, Yevjevich (1972b) stated, "Precipitation
discrete series with time intervals as fractions of
the year show clearly that their nonstationarity
basically results from the periodicity in the mean
and standard deviation . . ." For the further
development of the model, 1.« will be assumed

constant throughout the year. The periodicity of
£1.x will be investigated in Chapter III.

The autocorrelation of zero amounts within the

cp " series is meaningless. If the autocorrelation
»



coefficients are computed for the €, series,
L]
considering only the cases when both €p,r and ¢ Ju

are nonzero, the autocorrelation coefficients of the
stochastic component of daily precipitation, ¢  _,
may be determined. PsT
3. Model of the Dependence in Space of Daily Pre-
eipitation

The Ep Y series for stations in a region are

1ndependent'in sequence but dependent in space (or
cross correlated). The linear cross correlation
coefficient between the sp " series at different

stations may be used to express the degree of linear
association between the series. Considering only the
lag-zero cross correlation, the linear space depend-
ence may be expressed by

EP'T{i) u 90{1,j)£p,1(1} + tp’T(i). (2-24)

where sp T(i} and £ T{:]) are the time-independent

stationary stochastic components of equation (2-23)
for stations i and j, poli.J) is the lag-zero cross

correlation coefficient, and % T{1) is a random
component independent of & T(Ji. Yevjevich and

Karplus (1973) pointed out that, in general, the
cross correlation coefficient between the ap n

series of two stations is a function of position of
one of the stations, the inter-station distance, and
the orientation of the line connecting the two
stations. It was shown that the effects of position
and orientation were small as compared with that of
the inter-station distance.

4. The Multivariate Gemeration Model

The multivariate generation procedure used here
is a modification of that given by Matalas (1967).
The matrix equations used by Matalas for generating
multivariate data and for defining the matrices used
in the generation procedure were given in equations
(1-4), ?1-5), and (1-6). The generation equation, as
used in this study, may be written as

* Begers

where %i41 is a vector of m random components; €441
and ey are vectors whose values are the generated

hydrologic series for m stations with the means
removed; and A and B are m x m matrices, whose
elements are defined in such a way that the new
multivariate sequences preserve means, standard
deviations, skewnesses, lag-one serial correlation
coefficients, and lag-zero cross correlation coeffi-
cients of the population inferred from the historic
multivariate sequences. The €4 series generated with

equation (2-25) are both serially correlated and
cross correlated and correspond to the €p,1 series

given by equation (2-23). The A and B maErices are
determined from My and M, as seen from equations (1-

5) and (1-6). The Mo and My matrices, as defined by
Matalas (1967), may be written

E.i_'_l = AEi (2-25)
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where ol(i] is the lag-one serial correlation coeffi-
cient of the €p, 1 series for station i, 90(1.j} is

the lag-zero cr&ss correlation coefficient between

Ep i series for stations i and j, and plfi,j) is the

lag-one cross correlation coefficient between Ep =

series with the series for station j lagged one unit
relative to the series for station i.

By mathematical definition, M1 contains the lag-

one cross-correlation coefficients. The values of
91{1.1) and 91(1,1} are not the same. Use of cross-

correlation coefficients with lags greater or smaller
than zero implies that one random variable precedes
the other random variable in time. For daily precip-
jtation, significant lag cross-correlation coeffi-
cients may occur as a result of frontal-type precip-
itation that deposits precipitation at one station
before another station. However, the lag between the
precipitation at two stations depends on the distance
between the stations and the rate of movement of the
precipitation front. Conceivably, the cross-
correlation coefficient for lag-two (or some other
lag) may be greater than that for lag-one. From a
physical point of view, calculating and attempting to
preserve the lag-one cross-correlation coefficient
without considering other lags (both positive and
negative) is an unsound approach.

The model was developed to preserve the lag-zero
cross-correlation coefficients and the lag-one serial
correlation coefficients of daily precipitation over
an area. There is no physical reason to attempt to
preserve the lag-one cross-correlation coefficients.
However, use of the multivariate generation equation,
given in equation (2-25), requires that some estimate
of 91(1,11 be made. Matalas (1967) stated that,

assuming a lag-one Markov process, the lag-one cross-
correlation coefficient is the product of the lag-
zero cross-correlation coefficient and the lag-one
serial correlation coefficient of the variate, whose
events occur at time i+1, or

a1{1.51 = aoli.j) . pl(i}. (2-28)
The appropriateness of equation (2-28) for defining
p1(1,j) for daily precipitation is questionable.

However, equation (2-28) was used to define the
p1(1,3) values contained in the off-diagonal elements

of Hl. The assumption of the relationship in equa-
tion (2-28) for defining pl(i,j) was made to permit



the multivariate generation equation to be used to
generate new sequences that preserve the lag-zero
cross correlation coefficients and the lag-one serial
correlation coefficients inferred from historic
sequences, and does not imply that equation (2-28) is
a valid description of the lag-one cross correlation
coefficients for daily precipitation.

In this study, the daily precipitation series,
xp‘r, have been normalized, using an appropriate
transformation to give the yp " series. The yp .

series have been standardized'by removing the péri-
odic means and periodic standard deviations, equation
(2-15), resulting in €p,1 series that are assumed to

be second-order staticn;ry, with a mean of zero and a
standard deviation of unity. Therefore, all the oy

terms in equations (2-26) and (2-27) becomes unities.
Using the fact that, for the €y, ¢ series, po(i,j) =

pgld»i), the My matrix reduces to the symmetric
matrix

1 ﬁo“.ﬂ .. 90{1.nl
Do“vzl 1 . DG(ZJI, (2_29}
T (R T T :
noll.nl' DO{ZJ} s ww 4
Using equation (2-28), Hl reduces to
91“') ﬂo“loz)ﬂltl’ P 00(1-"}01{1}
og(1,2)04(2) py(2) . ppl2.n)0,(2)
"1 B 0 . 1 l ' . 0 al {2_30)
pllandey(n)  op(2in)eyln) . . . ay(n)

With these simplifications, HO is simply the lag-zero
cross-correlation matrix of the ¢ i series, and is

symmetric with each element of the.prfncipal diagonal
equal to unity. Ml contains the lag-one serial

correlations on the diagonal and the off-diagonal
elements are the product of the lag-one serial
correlations and the lag-zero cross correlations.

a. Relationship between p for the total distri-
bution and p' for the truncated distribution. The
A and B matrices may be determined from Mg and M,

using equations (1-5) and (1-6). The elements of Mo
and M, are defined from sample estimates of the lag=

one serial correlation coefficients and the lag-zero
cross-correlation coefficients. The estimates of the
serial correlation and cross-correlation coefficients
must be determined from the €, and the zp » series

that are each approximately normally distributed with
a mean of zero and a standard deviation of unity and
have been truncated so that values less than the
truncation point are unknown.

Both the lag-one serial correlation coefficients
and the lag-zero cross-correlation coefficients are
equivalent to the product moment correlation coeffi-
cient of a bivariate normal distribution. The sample
estimates of the correlation coefficients must be
obtained using only the data above the truncation
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point (nonzero daily precipitation). The estimate of
the correlation coefficient of a bivariate normal
obtained from a truncated distribution is less than
that obtained from the total distribution. This
point is illustrated graphically in Figure 2-4. In
this example, a sample of 100 random variables from a
bivariate standard normal distribution were gener-
ated. The correlation coefficient used in the
generation procedure was 0.60. Let X and ¥;

represent the random variables generated using the
bivariate normal distribution. The X5 and Y5 values

were plotted in Figure 2-4. The correlation coef-
ficient of both the total sample and the sample with
both distributions truncated at zero (both x; and y,

nonzero) were calculated. The correlation coeffi-
cient for the 100 points of the total sample was
0.57. The correlation coefficient for the 28 points
in the truncated sample was only 0.35.
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Figure 2-4, Comparison of the lag-one serial cor-

relation coefficient for the total
sample and for the positive values only
for a generated N(0,1) process.

Regier and Hamden (1971) derived an expression
relating the correlation, p', of a bivariate standard
normal distribution that has been truncated at a
given point, a, to the correlation, p, of the total,
untruncated distribution. The results apply to both
the lag-one serial correlation and lag-zero cross
correlation of daily precipitation when the truncated
normal distribution approach, which was described
earlier, is used. The results were given by Regier
and Hamden (1971) in tabular form and are plotted in
Figure 2-5 for the range of truncation points that
are applicable for daily precipitation in this study.
The truncation point of the €, and the ap 3 series

depends on the normalizing traﬁsformation that is
used and the values of M and o_» equation (2-15).

Since My and o, change throughout the year, the



truncation point for a given series also
during the year.

changes
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Figure 2-5. Relationships between the correlation,
p', of a bivariate standard normal
distribution that has been truncated at
a given point, a, to the correlation, p,

of the total, untruncated distribution.

In Chapter III, the estimates of the lag-one -
serial correlation coefficients for the total dis-
tribution, p, are obtained by applying the relation-
ship given in Figure 2-5 to the p' values calculated
from the truncated samples. The truncation point was
calculated for each day of the year and each station.
The average truncation point for each station was
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determined by weighting the truncation point for each
day of the year by the number of nonzero observations
for that day. The average truncation point for each
station was used to convert p' to p. Similarly, the
estimates of the lag-zero cross-correlation coeffi-
cients were obtained by applying the relationship in
Figure 2-5 and the average truncation point for the
two series to the cross-correlation coefficient
calculated from the two truncated gp . series,

b. Determination of the new xp : series. After
the e  _ series are generated, the periodic means and

per1od;c standard deviations are inserted into the
generated sequence for each station to yield the y &
series by P,

Yo, ™ Oelp,e ¥ Wy (2-31)

where the My and g, are given in the Fourier series
form. The new yp % series obtained at this point

contain both positive and negative values. The
negative values are assumed to represent days without
measurable precipitation and are set to zero. The
daily precipitation series are determined by em-
ploying the inverse of the normalizing transforma-
tion, namely

2

= (yp.x) : (2-32)

*p,t
Values of xp - less than 0.01 are set to zero.

Using the procedure described, new xp . Se-

quences are generated that preserve the periodic
means and periodic standard deviations, the lag-one
serial correlation coefficients, and the lag-zero
cross-correlation coefficients that are obtained from
historic xp . Sequences. To be of value, the new

X, . sequences must also duplicate, within statis-

tical limits, the mean and standard deviation of
annual precipitation for each station, the proba-
bility of zero daily precipitation, and the other
parameters that are inferred from the historic data.



CHAPTER Il
Evaluation of the Daily Precipitation Model
for a Selected Region

In this chapter, the parameters of the time-area
daily precipitation process are evaluated for a
specific region by using the model described in the
previous chapter, and whether the model offers a
valid description of the time-space variation of
daily precipitation for the selected region is
determined.

1. The Study Region

A region in central Texas was chosen to be used
in evaluating the proposed model for generating daily
precipitation at several stations in an area. The
study region (Figure 3-1) lies between 31 degrees and
33 degrees North latitude and 95 and 99 degrees West
longitude. Mean annual precipitation in the study
region increases gradually from about 25 inches along
the west side, to about 45 inches near the east side.
There are no abrupt topographic features within the
region to cause major changes in precipitation
patterns. The elevation changes gradually from about
300 feet above mean sea level in the southeast
portion of the region to about 1400 feet along the
western edge.

Figure 3-1.

Location and station number of precip-
itation stations within the study region
and the mean annual precipitation over
the region.

The variation of precipitation within the year
is complex over the region. The mean monthly pre-
cipitation for two stations is shown in Figure 3-2.
The mean monthly precipitation pattern for Gilmer
(station 1), located near the eastern edge of the
study region, shows a peak of 5.50 inches in April
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and a smaller peak of 4.42 inches in December. At
Brownwood (station 2), near the western edge of the
region, all of the monthly means are smaller than
those at Gilmer. The largest mean monthly precip-
jtation at Brownwood is 4.50 inches in May. A
secondary peak of 2.77 inches occurs in September.

At both stations the smallest mean monthly precip-
itation occurs in August. The seasonal patterns of
precipitation for these two stations are typical of
that for the entire region. The precipitation within
the region is characterized by a wet period in the
late spring, followed by a dry peried in mid to late
summer. A second peak, of smaller magnitude than the
first, occurs in the fall. The mean annual and mean
monthly precipitation, in general, decrease from east
to west.
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Figure 3-2. Mean monthly precipitation for Gilmer,

near the eastern edge of the study area,
and Brownwood, near the western edge of
the study area.

Twenty precipitation stations within the study
region were chosen for use in this investigation.
Daily precipitation data for each station for the 40
years (1933-1972) were assembled and used in eval-
uating the model parameters., Data on each station
are given in Table 3-1.



Table 3-1. Data on precipitation stations used in

this study.
Latitude Longitude Elevation
No. Station Name Index No.Y  (° North)  (° West) (feet)
1 Breckenridge 1042 2.n 98. 90 1185
2 Brownwood 1138 31.72 98.98 1435
3  Centerville 1596 31.27 95,98 330
4 Comanche 1914 31.90 98. 60 1345
5 Corsicama 2019 32.08 96.46 425
6 Crockett 2114 31.30 95.45 M7
7 Dallas 2244 32.85 96.85 481
B Dialville 2444 31.87 95,27 620
9  Dublin 2598 32.10 98,133 1502
10 Fort Worth 3283 32.83 97.05 537
11  Gilmer 3546 2.7 54,98 390
12 Hewitt 4122 31.45 97.18 642
13 Hil1sboro 4182 32.02 .12 550
14  Kaufman 4705 32.58 96.32 438
15 Lampasas 5018 31.05 98.18 1024
16 Mexia 5869 31.68 96,48 529
17 Palestine 6757 31.78 95.65 600
18 Riesel 2/ 31.45 96.88 560
19 Temple 8910 31.10 97.35 700
20 Maco 9419 31.62 97.22 500

é/ U.S. Weather Bureau index number.
¢/ Operated by USDA Agricultural Research Service.

2. Evaluation of Normalizing Transformations

For the multivariate normal distribution model
that was described in Chapter II to describe the
time-area variation of daily precipitation, the
precipitation at a given station must approximate a
sample from a truncated univariate normal distribu-
tion. The general transformation that was investi-
gated in this study for transforming daily precip-
itation to approximate a sample from a normal dis-

tribution was Yp,r ° x; ¢ where a is a parameter to

be estimated. Values of a will generally be periodic
within the year and will vary across the region. In
this study, a transformation was desired that could
be used for all periods of the year and all points in
the region. Attention was centered on three simple
values of o to determine if one of these values

could be used to transform the daily precipitation
data to approximate a sample from a normal distri-
bution., The three transformations that were inves-
tigated were: (1) Yo.r * %p.1 (no transformation),

p'TIIZ (square root transformation), and

_ s .
(3) Yp,r = %p,r (cube root transformation).

@)y, =x

Data for eight of the twenty stations within the
study region were chosen to evaluate the three trans-
formations. The eight stations were chosen so that
all areas of the study region were represented. The
location of the eight stations within the study
region is shown in Figure 3-3.

For each precipitation station, a different
estimate of the mean and standard deviation could be
made for each day of the year. However, the u, and

o, values for individual days are subject to large
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Figure 3-3. Location of eight test stations within

the study region.

sampling errors due to relatively small sample sizes.
For comparing the three cases, the year was divided
into 13 periods of 28 days each. Since e and 9,

change little from one day to the next, M and o,

were assumed constant for the 28 days of a given
period. By grouping the data into 28-day periods,
the sample sizes were larger and less sampling error
was involved in the estimation of the mean and
standard deviation for each period. Estimating My

and 9. by 28-day periods caused an abrupt change in

the two parameters from the last day of a given
period to the first day of the next period. Such an
abrupt change was clearly unreasonable. However, the
approach of dividing the year into 28-day periods was
used only for comparing the three transformations.
Later in this chapter, after the appropriate trans-
formation has been determined, p_ and o_ are esti-
mated for each day of the year. i

Maximum Tikelihood estimates, m_ and S. of the

means and standard deviations were determined for
each of the three cases using the truncated normal
technique described in Chapter II. For each trans-
formation, m and s were computed for each of the 13

periods for the eight test stations. A chi-square
goodness-of-fit parameter was calculated for each
period and each station to determine how well the
distribution of the data with a given transformation
approximates a normal distribution. The observed
data were sorted into classes. The days with zero
precipitation were included in one class, and the
days with nonzero precipitation were sorted among
nine other classes, depending on the amount of
precipitation. The nine classes for days with
nonzero precipitation represented about equal prob-

abilities. The chi-square parameter was calculated
by
2
m (f, -e;)
XZ = z 1 1 » 13—1)
i=1 &

where xz = the chi-square parameter, fi = the ob-

served frequencies (number of observations in the
class interval i), e; = the expected frequencies, and



m = the number of class intervals. The xz computed
with equation (3-1) was compared to a critical chi-

square value, x%- to test the hypothesis that the

sample was from a normal population. The x~ param-
eter will have a chi-square distribution with k-1
degrees of freedom, if the population parameters were
not estimated from sample observations. If the
population parameters were estimated from observa-
tions, the number of degrees of freedom is decreased
by the number of parameters that were estimated. In
this study, two parameters, Mo and g, were esti-

mated. With 10 intervals and two estimated param-
eters the number of degrees of freedom was 7. The

xg value with 7 degrees of freedom and a 0.95 level

of significance is 14.1. The hypothesis that the
sample was from a normal population would be rejected

if the XZ parameter for a particular sample and a
given transformation was greater than 14.1. The

hypothesis would be accepted if XZ was less than
14.1.

The values of the chi-square fit parameter are
shown for each of the 13 periods and for three
stations in Table 3-2. The results for the Crockett
station showed that the square root transformation

gave xz < Ig for 11 of the 13 periods, and the cube
root transformation gave x2 < Xg for only 2 periods.
For the Hewitt data, the square root transformation
resulted in x2 < Xg for 11 perijods and the cube root
transformation gave xZ < Xg for B periods. The
Breckenridge results showed that the square root
transformation resulted in 12 < xs for all 13 pe-
riods, while the cube root transformation produced x2
< xg for 3 periods. The XZ for no transformation

(y = x) was much greater than Xg for each period and
each station shown in Table 3-2.

The average chi-square values for the 13 periods
are shown for each of the eight test stations and the
three transformations in Table 3-3. The square root
transformation resulted in KZ < Xg for six of the
eight stations. The cube root transformation gave an
average xz < Xg for only one of the eight stations.
The average x- for no transformation was much greater
for all stations than xg.

Typical cumulative probability distribution
curves for data with the three transformations are
shown in Figures 3-4, 3-5, and 3-6. The daily
precipitation data for the third 28-day period of the

year for the Gilmer station were used for all three
figures. The Yp,r data for each transformation were

arranged in ascending order, and the empirical
cumulative probabilities, or plotting positions, were
computed by

P(y) = ——,
N+1

(3-2)
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where P(y) is the plotting position; m is the rank of
the yp n value; and N is the total number of days.

For the data shown in Figures 3-4, 3-5, and 3-6, the
period was 28 days long and the station series was 40
years long; therefore, N = 40 = 28 = 1120. The
sample contained 844 days with zero precipitation and
276 days with measurable precipitation. The rank of
the smallest yp 1 greater than zero was 845, and the

plotting position was P(y) = 845/1120 = 0.754. The
P(y) and yp y values for all yp . greater than zero

were plotted on normal probability paper and are
shown for the three transformations in Figures 3-4,
3-5, and 3-6. The maximum likelihood estimates of u
and a_ were used to plot the normal distribution

cumulative probability 1ine on the figures. The
normal distribution 1ine fit the square root data
well throughout the range of the data (Figure 3-5).

The xz value was 9.4, The cube root data differed
significantly from the normal distribution line for
the larger precipitation amounts (Figure 3-6) and

resulted in a xz of 28.5. The precipitation data
with no transformation was highly skewed and departed
significantly from the normal distribution line
throughout the range of the data (Figure 3-4).

XZ value for no transformation was 130.3.

The

These results indicated that, for the study
region, the square root transformation is the best
normalizing transformation of the three cases that

were investigated. The sample xZ for the square root
transformation was less than xg for most of the

samples. Therefore, the hypothesis that the samples
with the square root transformation were from normal
populations was accepted. For the analysis that will
follow, the square root transformation will be
assumed to be adequate for transforming the daily
precipitation to a normal distribution.

3. Characteristics of the Square Root Transformation

The density function of daily precipitation at a
point given the occurrence of a wet day is, gener-
ally, considered to be monotonically decreasing.

Days with small rainfall amounts occur more fre-
quently than days with large rainfall amounts.
Several probability density functions have been used
to describe the distribution of daily precipitation
amounts for days with measurable rainfall. The most
commonly used distributions are the exponential and
gamma distributions,

If the distribution of daily precipitation for
days with measurable rainfall is monotonically
decreasing, it is appropriate to investigate the
distribution of daily precipitation after the ap-
plication of the square root transformation. Assume
that the two-parameter gamma distribution function,
given by

a-1 _-x/8
f )-.x.;
(x BIu r'(a)

describes the distribution of daily precipitation, x,
given the occurrence of nonzero daily rainfall. If

’ t3‘3)



Table 3-2.

Chi-square goodness-of-fit parameter for no transformation, square root trans-

formation and cube root transformation for three precipitation stations in the

study region.

Crockett Hewitt Breckenridge
Period y=X yaxlfz y=xU3 y=x y=x1/2 y=x1/3 y=x y-—'xuz y=x1f3
1 169.1 ?.o%f 23.8 288.0 7.1 a.5f) 1599  a.9¥ 10.0¢
2 2016 12.7) 31.3 526.2 27.0 9.515 349.6 6.2 f 16.7
3 208.0 10.37, 20.3, 265.3 19.3,, 11.7 7.2 6.1y, 162
3 142.2 3.3T§ 1.0Y 23209 13.67) 15.8 93.6 4.5 17.3
5 207.5 10.1f, 23.1 168.2 9.9T§ 35.3 12.2 6.57, 31.0
6 72.3 9.7Y 381 119.2 13. 3.1 149.6 11.?1/ 30.5,,
7 9.9 16.3,, 4.1 74.9 z.aT§ 13.4Y  169.7 s.aT§ 2.6¢)
8 133.1 4.8, 16.9 7.7 8.07, 2L.7, 126.1  3.9¢, 5.17
9 1331 9.7 29.9 157.1  6.67, 11.1Y 13518 10.8)  20.4
10 117.4 7.6/ 235, 139.2 5.DI§ 20.0, 84.6 1ﬂ.aI§ 30.8
11 151.0 14.9,, 10.5% 169.6 6.57, 7.1% 89.1 3.9 16.9
12 199.8 9.515 20.3 199.3 8'415 9.8 3.5 1357 4.8
13 235.5 13.9Y 2333 266.2 12.2 9.3/ 74.4 1217 2109
Avg. 156.7 10.0Y 246 206.1 10.8~ 15.8 128.9  7.8¢ 19.6
1/ The xz value is less than the X(z) value of 14.1.
Table 3-3. Average Chi-square fit parameter for no b —r—Trr T -
transformation, square root transforma-
tion, and cube root transformation for 30 } L
eight stations in the study region.
3 p b
No. Station Name y=x ' ,_‘1/2 rxua ao b
1
1 Breckenrid 128.9 7. 19.6 L
2 Browwood | 113.3 10.? 238 "'
5 Corsicana 89.7 9.9{ 31.5 =
6 Crockett 154.7 10.0Y 24.6, 2 1o b
g e @ bm By
12 Hewi tt 204.1 10,8/ 15.8 os b
19 Temple ” 357.5 25.3 16.2 "
Ave. 188.4 12.3Y 20.9
i G g L g T e o b o
ol o8 N0 A0 80 20 0 N ”» E_ ]
1/ The xz value is less than the xg value of 14.1. CARAATIVE PROBABILITY, Plr)
Figure 3-4, Cumulative probability distribution for

the transformation y = x”z is made, it may be shown
that the distribution of y is

py2a-1 e-yzla

(3-4)
g® Ia)

gly) =

The two-parameter gamma distribution given in
equation {3-33 was fit to a sample of daily precip-
itation data. The data for the fourth 28-day period
of the year at the Gilmer station was used to es-
timate the parameters. Maximum likelihood estimates
of the o and g parameters were obtained using the
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daily precipitation (y = x) from the
third 28-day period of the year at
Gilmer, Texas.

sample data. The estimated values of the parameters
are a = 0.76 and g = 0.69. The gamma function with
the estimated parameters may be written

-0.24 -1.45x (3-5)

f(x) = 1.09 x
The observed frequency histogram and the fitted gamma
frequency function are shown in Figure 3-7. The
gamma function is a good fit of the observed histo-
gram.
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Figure 3-5. Cumulative probability distribution for
the square root of daily precipitation
(y = x1f2) from the third 28-day period
of the year at Gilmer, Texas.
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Figure 3-6, Cumulative probability distribution for

the cube root of daily precipitation

(y = x1/3] from the third 28-day period
of the year at Gilmer, Texas.

The estimated values of o and g, obtained from
the sample of daily precipitation data, were substi-
tuted into equation (3-4). The fitted distribution
of y, assuming x has a two-parameter gamma distri-
bution, may be written

g(y) = 2.18 y

The observed frequency histogram of the square root
of daily precipitation is shown in Figure 3-8. The
fitted frequency function obtained from equation (3-
6) is also shown in Figure 3-8. The frequency
function has a value of zero for y = 0. There is no
data for the observed histogram for the interval 0 <
y < 0.1, because values of y less than 0.1 (x < 0.01)

2
0.51 _-1.45y° (3-6)

17

oo v Y T T
80§ E
g .
=
3
S 40 FITTED GAMMA E
FREQUENCY FUNCTION
so b OBSERVED FREQUENCY )
HISTOSRAM
' A
o o8 1.0 18 2.0 28
DAILY PRECIPITATION
Figure 3-7. Daily precipitation data for the fourth

28-day period of the year at Gilmer,
Texas and the fitted two-parameter gamma
frequency function,

are recorded as zero, The observed frequency histo-
gram has a mode at the interval 0.2 £ y < 0.3. The
frequency function also has a mode, but the peak
occurs at a y value of about 0.4, The frequency
function is a good approximation of the observed
histogram for values of y greater than 0.5.

The fitted truncated normal distribution is also
shown in Figure 3-8. The normal distribution does
not have a mode within the range of Figure 3-8.

Since the probability of zero daily precipitation is
greater than 0.5 the peak of the normal distribution
occurs at a y value less than zero. The truncated
normal frequency function is greater, for values of y
less than 0.2, than both the observed histogram and
the function determined by applying the square root
transformation to the gamma distribution. Both
frequency functions are good approximations of the
observed frequency histogram for values of y greater
than 0.5.

If the truncated normal distribution shown in
Figure 3-8 is used to generate new samples of the
square root of daily precipitation, more values less
than 0.2 would be generated than were observed.
Generated values less than 0.1 are considered a trace
and are set to zero. The values between 0.1 and 0.2
become daily precipitation amounts of 0.01 to 0.04
inch, after the inverse of the transformation is
applied. The generated sample would contain more
days with precipitation between 0.01 and 0.04 inch
than the observed sample.

The observed frequency histograms shown in
Figures 3-7 and 3-8 are typical of the distribution
of daily precipitation for all stations in the study



oo T T T -

80 - E
FITTED TRUNCATEID
MNORMAL FREQUENCY
FUNCTION

» 80 -

L4

s SQUARE ROOT TRANSFORMATION

e OF FITTED SAMMA FREQUENCY

.0
SQUARE ROOT OF DALY PRECIPITATION

18 2.0 8

Figure 3-8. Square root of daily precipitation data
for the fourth 28-day period of the year
at Gilmer, Texas, the square root
transformation of the fitted gamma
frequency function, and the fitted

truncated normal frequency function.

region. The frequency of occurrence of daily pre-
cipitation of a given amount decreases as the amount
of daily precipitation increases. When the square
root transformation is applied the distribution has a
mode. The mode occurs at a small value of the square
root of daily precipitation. The mode occurs in the
interval 0.2 < y < 0.3 for some samples, like that in
Figure 3-8. For other samples, the mode occurs in
the interval 0.1 €y < 0.2 and does not seem to be a
mode because values below 0.1 are considered zero
(Figure 2-3). The truncated normal distribution used
in this study does not describe the mode observed in
the distribution of the square root of daily precip-
itation. Use of the truncated normal distribution to
generate new samples should result in samples that
contain too many days with small rainfall amounts.
However, days with very small precipitation amounts
are unimportant for most hydrologic purposes.

4. Evaluation of Alternative I and Alternative IT

Two basic alternatives for developing the time-
area daily precipitation model were outlined in
Chapter II. The first alternative is to infer and
remove the periodic means and standard deviations
before transforming the data to approximate a sample
from a normal distribution. The second alternative
is to apply the normalizing transformation before
inferring the means and standard deviations.

There are two primary factors that cause daily
precipitation values to be periodic within the year.
First, the probability of the occurrence of a wet day
may be periodic. Second, the parameters of the
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distribution of daily precipitation given the oc-
currence of a wet day may also be periodic. If the
probability of the occurrence of a wet day is peri-
odic within the year but the distribution of pre-
cipitation amounts given the occurrence of a wet day
is nonperiodic, the resulting daily precipitation is
periodic due to the frequency of occurrence of daily
precipitation. Similarly, if the probability of a
wet day is nonperiodic but the distribution of
precipitation amounts given a wet day is periodic,
the resulting daily precipitation is periodic. In
many cases both the probability of a wet day and the
distribution of precipitation amounts given a wet day
are periodic. The periodic characteristics of these
two factors, as will be shown later, affect the
se]e%tion of the alternative to use in developing the
model .

Data from the Gilmer station were used to
evaluate the two alternatives. The probability of a
wet day, P(W), was calculated for each day of the
year and is shown in Figure 3-9. The P(W) values
were highly variable but displayed periodicity within
the year. A Fourier series with two harmonics
explained 14.2 percent of the variance of the 365
values of P(W). The Fourier series representation,
using two harmonics, is also shown in Figure 3-9.

a. Altermative I. The means and standard
deviations of daily precipitation given the occur-
rence of a wet day were calculated for each day of
the year. The results are shown in Figure 3-10.
Fourier series with two harmonics explained about 10
percent of the variance of the mean, Hos and 6

percent of the variance of the standard deviation,
g The periodic movement of Mo and o is not in

phase with that given in Figure 3-9 for P(W). The
means and standard deviations have harmonics with
about the same phase. The value of urfor was ap-

proximately constant (0.97) for all days of the year.

The periodic means and standard deviations may
be removed from the precipitation data by

X, =M
a Paf T X
By o T 40, (3-7)
or
X u
oSl 1 A o =
2yt . 5, X5 .1 # 0. (3-8)

Use of equation (3-8) would result in both positive
and negative values of zp g for values of xD’T

greater than zero. Since "rf“r was approximately

constant, the periodicity in the mean and standard
deviation may be removed by

(3-9)

Equation (3-9) was used to remove the perio-
dicity in the means and standard deviations of the
daily precipitation data for the Gilmer station.
9. values were determined from the Fourier series

The
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Figure 3-9. Daily values of the probability of a wet day and the fitted periodic component with two harmonics,

Gilmer, Texas.

representation. The 251 data were transformed to

approximate a sample from a truncated normal distri-
bution by

1/2
PsT {zPﬂ') ’

The means and standard deviations of the yp . series

were determined for each day of the year using the

truncated normal estimation technique. The results
are shown in Figure 3-11. The standard deviations

are approximately constant for the year. The means
show a periodic movement similar to that of P(W) in
Figure 3-9. With the truncated normal distribution
concept that is used in this study, the probability
of a day with zero precipitation, P(D), is given by
the integral of the normal distribution from -« to

the truncation point. The probability of a wet day
is given by

L (3-10)

P(W) = 1 - P(D). (3-11)
Since P(W) is periodic within the year and the
standard deviation of the truncated normal distribu-
tion is constant, the mean of the truncated normal
distribution must be periodic to properly define

P(W). Therefore, with Alternative I separate descrip-
tions are required for the periodicity of P(W) and

the periodicity of the parameters of the distribution
gf daily precipitation given the occurrence of a wet
ay.
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b. Alternative II. The square root transforma-
tion was applied to all nonzero daily precipitation
data for the Gilmer station. The mean, Moo and the

standard deviation, o, were estimated for all 365

days of the year, using the truncated normal estima-
tion technique. The results are given in Figure 3-
12. The estimates of both M and o, have periodic

components and large random sampling fluctuations.
Fourier series with two harmonics were fit to the
estimates of both o and o

A1l of the estimated 8 values are negative

because P(D) is greater than 0.50 for each day of the
year. P(D) for any day is given by the integral of
the normal distribution from -= to the truncation
point. The distribution of daily precipitation,
given the occurrence of a wet day, is given by the
remainder of the distribution (Figure 2-3). With
Alternative II both the periodicity of P(W) and the
periodicity of the parameters of the distribution of
daily precipitation given the occurrence of a wet day
are defined by the Fourier series of Mo and o_ shown
in Figure 3-12. L

Figure 3-10 shows that, with Alternative I, the
means and the standard deviations of daily precipita-
tion given the occurrence of a wet day are directly
proportional. Days with high means also had high
standard deviations. The values of u /o were shown
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Figure 3-10. The means and standard deviations of

daily precipitation given a wet day and
fitted periodic components with two
harmonics, Gilmer, Texas.

to be approximately constant for all days of the
year. However, Figure 3-12 shows that with Alterna-
tive II the standard deviations tend to be large when
the means are small. Since the means are negative
and the standard deviations are positive, the values
of uT/aT are negative. For ”r/°r to be approximately

constant 9. must increase as Mo decreases.

Alternative II was chosen for developing the
time-area daily precipitation model because the
periodicity of both the probability of a wet day and
the distribution of precipitation given a wet day
could be described by describing the periodicity of
the mean and standard deviation of the truncated
normal after applying the square root transformation.
Alternative IT will be used in the remainder of this
study.

§. Determination of Harmonics in M and .

The estimates of y_and ¢ , v =1, 2, ..., 365,

contain both periodic components and random sampling
components. The random sampling fluctuations are
particularly large in this study because the large
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Figure 3-11. The means and standard deviations of

the truncated normal distribution after
removal of the means and standard
deviations given a wet day, Gilmer,
Texas.

number of days with zero precipitation on a given day
of the year causes the nonzero sample size to be
small. Values of m and S, (the sample estimates of

M and LN respectively) were determined using the

maximum 1ikelihood technique for all 365 dqys of the
year and for each station in the study region. The
variability of m and s_ was illustrated in Figure 3-

12 for a selected station within the region. The
random fluctuations of m and s, cause greater

departures from the overall means than the amplitudes
of the periodic components. This fact makes diffi-
cult the determination of the number of harmonics
required to describe the periodic movement of Mo and

.- The inclusion of too many harmonics will per=

petuate part of the sampling error involved in es-
timating the parameters. However, retaining too few
harmonics will result in an inaccurate description of
the periodic nature of the physical process.
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Yevjevich (1972b) outlined three approaches for
determining the significant harmonics for describing
the periodicity of parameters. The three approaches
include: (1) Fisher's approach, (2) an approach
using the break point in a cumulative periodogram,
and (3) an empirical approach using the first m
harmonics that are required to explain a critical
percent of the variation of the parameter.

a. Fisher's approach. Fisher's test is the
classical method of testing each harmonic of a
Fourier series description of a parameter for sig-
nificance. The test 15 based on the var1ance of

individual harmonics, C /2 If a given C; /2 value is
not greater than a cr1t1ca1 C 22 value of a normal

independent stochastic process, the j-th harmonic is
considered insignificant. The Fisher parameter for
the harmonic of maximum magnitude is
Cgax
g = E—y— . (3-12)
s

v

where si is the estimate of the variance of the

parameter v. For the second and higher harmonics,
the parameter is given by
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(3-13)

If the g value for a specific harmonic is greater
than a critical value, 9.5 the harmonic is signifi-

cant. A table of 9. values for different sample

sizes and probability levels is given by Yevjevich
(1972b).

Fisher's test is very difficult to apply in many
cases. This is particularly true when attempting to
determine the number of significant harmonics of a
parameter in a very complex hydrologic time series
with large random sampling components. Freguently,
Fisher's test will indicate no significant harmonics
in a hydrological parameter that has obvious seasonal
fluctuation. 1In this study, Fisher's test was
rejected because of the difficulty in applying it,
and the other two approaches given by Yevjevich were
investigated to determine an appropriate test proce-
dure for the number of significant harmonics of o
and g

b. Periodogram break point technique. The
portion of the variance of a parameter that is
explained by the first m harmonics may be determined

by



m C2/2

P ¥ L ~a (3-14)
j=1 Sy

where 53 is the estimate of the variance of the 365

values of the parameter. . The cumulative periodogram
method was described by Yevjevich (1972b) as being
based on the concept that p as a function of m is

composed of two parts: (1) a fast rising part
associated with the periodic component, and (2) a
slow rising part associated with the random com-
ponent. Yevjevich suggested that the two parts be
approximated by smooth curves (or straight lines)
intersecting at a point. The number of harmonics
corresponding to the intersection point is taken to
be the number of significant harmonics.

Values of m. and o W 1, 2, ..., 365, were
computed for selected yp . series, using the trun-

cated normal technique described earlier. A Fourier
series with 182 harmonics was fitted to each set of

m and S, values. The C§f2 values were computed and

the portion of the variance of the parameters ex-
plained by the first m harmonics was determined using
equation (3-14). Periodograms of m. and s, were

plotted for the selected Yp,1 series. The periodo-
3

grams for two stations are shown in Figures 3-13 and
3-14. The periodograms contain the fast rising part
for the low order harmonics and the slow rising part
for the higher order harmonics. However, the tran-
sition from the fast rising part to the slow rising
part is gradual for the four curves given in Figures
3-13 and 3-14. These periodograms are typical of
those obtained for all stations in the study region.
An objective decision about the number of significant
harmonics in My and 0. based on these periodograms,

was practically impossible.

e. Critical explained variance approach. The
third method given by Yevjevich for determining the
number of significant harmonics of a hydrologic
parameter is an empirical method based on determining
the number of harmonics required to explain a crit-
ical portion of the variance of the parameter.
Experience has shown that for most hydrologic series
harmonics beyond the sixth are very rarely shown to
be significant.

With the critical explained variance approach,
the portion of the variance explained by the first j
harmonics are computed by equation (3-14). The part
of the variation explained by the first six harmonics
is given by Pg- Two critical p values, Pmin and
Pnay® are defined. If pe £ Pmin® MO significant
harmonics exist in the parameter. If Pmin < Ps g
Pmax® all six harmonics of the parameter are sig-
nificant. If P > Prax’ less than six harmonics are

significant. When less than six harmonics are found
to be significant, the CEIZ values are arranged in

descending order. The explained variance for each
harmonic is determined and summed. The harmonics
that are required to first give a pJ value greater
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than p_.. are considered the significant harmonics.

Empirical expressions for

and p given
by Yevjevich (1972b) are max?

Pmin

w
Pmin = 2\cn (3-15)
and
Pmax = 1 = Pmin (3-16)

where w is the length of the basic period, ¢ is the
highest moment used in defining the parameter, n is
the series length in years, and a is an empirical
constant. The suggested value for the constant is
a = 0.033.

For the 40 years of daily precipitation that
were used in this study, w = 365 and n = 40. For m
the value of ¢ is 1, and for S, the value of c is 2.

Using the constant a = 0.033, as suggested by
Yevjevich, the critical p values are

pmin(m-r} = 0.099 (3-17)
pmax(mr} = 0.901 (3-18)
pmin{s1j = 0.070 (3-19)
pmax(STJ = 0.930. (3-20)

The Fourier coefficients for the first six
harmonics of m and s, were calculated for each of

the 20 stations in the study region. The portion of
the variance of each parameter explained by the first
six harmonics was determined using equation (3-14).
The results are given in Table 3-4. For 14 of the 20
stations, pﬁ(mT) was between the two critical p

values for the mean. A1l 20 of the ps(st) values

were between the two critical standard deviation p
values. Therefore, at this point in the analysis,
all six harmonics of the mean and the standard
deviation were assumed significant for stations
within the study region.

6. Regionalization of Amplitudes and Fhases in
Harmonics of Mo and o,

For the time-area model of daily precipitation
to be useful at any part of the study region, the
amplitude and phase coefficients of harmonics must be
related to position within the region. The general
mean of the sample daily means, ﬁ1’ and the amplitude

and phase angle, cj{m), jJ=1,2, ..., 6, and aj{m}.

j=1,2, ..., 6, of each of the first six harmonics
of the daily means are given in Table 3-5 for all 20
stations. Similarly, the general mean of the sample
daily standard deviations, S_» and the amplitude and

phase angle of the daily standard deviations, Cj(s).
j=1,2,...,6,and 0.(s), §=1,2, ..., 6, are
given in Table 3-6. J

It was thought that the m_ and S, values for a

given station would be proportional, resulting in a
constant coefficient of variation throughout the
year, If such were the case, the parameters
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Table 3-4, Ratio of variances of the means and
standard deviations for a Fourier series

with six harmonics to the total variances

of m_and s_.
t T
Station Name pgm;) pgls.)
1 Breckenridge 0.128 0.140
2 Brownwood 0.075 0.108
3 Centerville 0.112 0.081
4 Comanche 0.097 0.093
5 Corsicana 0.189 0.150
6 Crockett 0.092 0.102
7 Dallas 0.112 0.121
8 DMalville 0.139 0.100
9 Dublin 0.100 0.100
10 Fort Worth 0.128 0.109
11 G11mer 0.146 0.122
12 Hewitt 0.103 0.089
13 Hi11sboro 0.082 0.114
14 Kaufman 0.133 0.100
15 Lampasas 0.118 0.086
16 Mexia 0.149 0.086
17 Palestine 0.152 0.130
18 Riesel 0.095 0.072
19 Temple 0.127 0.096
20 Waco 0.061 0.079

describing the periodic movement of the standard
deviation would not need to be related to position
and fewer model parameters would be required.
However, for the stations in the study region the
periodic means and periodic standard deviations were
slightly out of phase (Figure 3-12). This was tested
by comparing al{m} and 31(5) values for each station.

If m_ and S, for a gfven station are in phase, the
difference in BI{m} and 31(5) should be zero. The
differences between eltm) and sl(s) for all 20
stations are shown in Table 3-7. The value of eI(m]
is consistently less than el(s). The difference was

significant at the 1% level. The periodic coeffi-
cient of variation, caused by the difference in phase
of m. and Ses made it necessary to develop equations

relating the amplitude and phase of the standard
deviation to position, as well as those for the mean.

Yevjevich and Karplus (1973) found a linear
model adequate for relating precipitation amplitude
and phase to position for two regions. Figure 3-1
illustrates an approximately linear variation of mean
annual precipitation with position in the region used
in this study. This suggests that perhaps the
amplitude and phase of m_ and S, for this region also

vary linearly across the region. A linear nodel of
the form

v=ay * ule + ust (3-21)

where L1 = the station latitude and L2 = the station

longitude was assumed to describe the regional vari-
ation of each parameter given in Tables 3-5 and 3-6.
The equation coefficients (“1' ay, and u3) were

evaluated for each of the 26 parameters, using step-
wise multiple linear regression. Each coefficient
was examined to determine if it differed significantly_



Table 3-5. Amplitudes and phases of the first six
harmonics fitted to the 365 daily means

for each station.

Station Harmonic, §
Number  Mean 1 2 3 [} ] 6
1 -,.668 t:.1 0.215 -0.113 0.111 -0.135 0.054 0.082
6y -0.421 -1.391 -0.688 -0.562 1.457 -0.622
2 -723 ¢ 0.131 -0.073 0.071 -0.097 0.058 0.144
sj -1.026 -1.242 0.507 0.027 -0.804 1.397
3 -.612 C, 0.206 0.133 0.068 -0.120 -0.089 0.070
sj -0,977 -0.439 -0.879 -0.628 0.383 -0.854
4 =714 CJ 0.152 -0.075 0.063 -0.161 -0.096 0.107
aj -1.005 -1,546 -1.403 -0.168 0.152 0.215
5 -.611 0.241 0.127 0.069 -0.077 -0.120 0.047
o -1.063 0.231 -1.143 0.099 -0.652 -1.549
6 -.692 C 0.129 0,233 0.045 -0.047 -0.100 0.046
nj -0.895 -0.764 -0.926 -1.052 0.609 -1.469
7 -.705 ¢ 0.238 0,098 0.076 -0.115 -0.061 0.103
eJ -0.994 -0.228 0.314 0.095 -1.337 -0.171
8 -.535 Ej 0.192 0,091 -0.046 -0.057 -0.083 0.072
BJ -0.899 -0,291 0.977 -1.231 -1.350 -0.378
9 -.584 Cj 0.152 0.040 0.019 -0.127 0.042 0.091
aj -1.436 0.623 -1.235 -0.037 1.476 0.364
10 -.682 (g 0.269 0,083 0,046 -0.059 -0.051 0.054
ey -1.058 0.967 -0.407 -0.129 -0.785 -0.695
11 -.587 CJ 0.197 0.128 0,036 -0.061 -0.020 0.107
eJ -1.036 -0.806 0.293 -0.271 -0.173 0.371
12 -.740 Cj 0.205 0.082 0.122 -0.074 -0.060 0.096
6y -1.041 0316 -1.105 -0.195 -0.769 -1.160
13 -.688 Cj 0.186 0.074 0.022 -0.101 0.038 0.039
ej -1.005 -0.417 -0.9%4 0.041 I'.}_.EH -1.453
14 -.633 (g 0.271 0.044 0.085 -0.089 -0.023 0.032
oj -0.856 0.714 -0.19% -0.271 -1.090 0.732
15 -.652 CJ‘ 0.117 0.047 0.159 -0.121. -0.023 0.021
nJ -0.686 0.429 -0.623 -0.319 -0.115 0.196
16 -.588 C 0.249 0.031 0.109 -0.051 -0.060 0.08
ej -1,055 0.663 -1.199 -0.705 -0.059 ~0.273
17 -.606 C 0.187 0.172 0.083 -0.160 -0.063 0.098
9_1 -0,714 -0.672 -0.664 -0.415 0.006 -0.745
18 -.639 C_] 0.181 0.070 0.096 -0.052 -0.041 0.109
oy  -0.830 0.143 -1.463 0.147 -0.369 0.026
19 -.689 CJ , 0.208 0.031 0.111 -0.143 -0.033 0.079
oy  -1.109 -1.419 -0.650 -0.052 -1.269 -1.396
20 -.667 Cj' 0.148 0.066 0.069 -0.103 -0.018 0.067
a, -1.005 -0.319 -0.89% 0.095 -0.777 -l1.118
from zero, A standard t-test was used to test each
coefficient. Each term in the equation with a

nonsignificant coefficient was dropped from the
equation. The equations for each parameter, with
only the significant coefficients shown, are given in
Table 3-8. If the coefficients of both L1 and L2 for

a particular parameter were found to be not signifi-
cantly different from zero, the parameter was taken
to be a regional constant. In such cases, the values
of the parameter for each of the 20 stations were
averaged, and the average value is given in Table 3-8
as a regional constant. Each amplitude that was
found to be a regional constant was tested to de-

termine 1f it differed significantly from zero. If
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Table 3-6. Amplitudes and phases of the first six
harmonics fitted to the 365 daily stand-
ard deviations for each station.

Station Harmonic, §
Number  Mean T Z i [} 5 [3

L .79 €, -0.190 -0.019 -0.019 0.063 -0.036 -0.014
o] 0299 0.819 -0.229 -0.525 0.795 -0.027

2 .83 C; -0.118 -0.022 0.079 0.050 -0.047 -0.091
6] -0.457 -0:561 -1:561 0161 -1.047 1.460

3 .87 C;  -0.090 -0.123 0.020 0.05 0.033 -0.030
o] -0.922 -0.758 1.529 -0.666 0.326 -1.108

4 .83 C; -0.118 -0.03 0.03 0.080 0.042 -0.061
o) -0.575 -0.229 -0.499 -0.171 0.392 0.5%6

5 .81 C; -0.107 -0.119 -0.023 0.028 0.054 0.040
ej -0.917 -0.399 1.027 0.398 -0.876 0.995

6 .927 C;  -0.041 -0.175 0.018 -0.019 0.029 0.021
6 -1.007 -0.945 0.358 1.066 0.665 0.761

7 .875 €, -0.127 -0.126 -0.057 0.040 -0.027 -0.052
o) <0723 -0.601 1.227 0.170 1.083 -0.339

8 .83 C, -0.073 -0.089 0.05 -0.031 -0.054 -0.15%
o]  -0.675 -0.883 0515 1.3% 1.273 0.167

9 781 ¢, -0.103 -0.073 0.048 0.045 -0.020 -0.040
o]  -0.904 -0.635 -0.747 -0.009 0.610 0.733

10 .825 C, -0.155 -0.065 0.032 0.013 0.008 -0.026
sg -0.717 -0.252 -1.336 -0.043 -0.327 -1.168

1 .872 ¢ -0.078 -0.127 0.006 0.023 -0.024 -0.042
o)  -0.926 -1.084 -1.297 -0.700 -0.363 0.9

12 876 Cg  -0.127 -0.090 0.041 0.015 -0.019 -0.049
o -0.760 -0.332 1.253 0.157 1.168 -1.557

13 .882 C; -0.090 -0.125 0.036 0.05 -0.040 0.044
o)  -0.607 -0.881 -1.391 0.02¢ 0.281 1.223

14 .83 C, -0.140 -0.072 -0.036 0.037 -0.020 0.013
sg -0.677 -0.770 0.517 -0.350 0.085 -0.576

15 .80 C; -0.100 -0.071 -0.041 0.043 0.023 -0.003
o -0.321 -0.49 -0.374 -0.287 1512 1.325

16 .86 C, -0.118 -0.055 0.034 0.018 -0.002 -0.022
ai 0,911 -0.982 1,456 -0.641 -0.300 -0.375

17 .81 C, -0.078 -0.150 -0.028 0.081 0.013 -0.031
s-} 20,510 -0.944 -1.137 -0.413 -0.009 -0.987

18 .838 C, -0.104 -0.082 0.040 0.011 -0.008 -0.041
eg 0,506 -0.778 1.262 0.435 0.295 0.033

19 .855 C, -0.123 -0.073 -0.025 0.059 -0.017 0.040
ai -0.871 -1.342 -0,535 -0.1%0 0.339 1.561

20 829 C; -0.080 -0.105 0.010 0.052 -0.025 0.035
o) 0621 -0777 -0.685 0.208 -0.281 1.484

it was not significantly different from zero, it was
assumed zero. The corresponding phase angle then
became meaningless and was neglected.

The mean annual precipitation in the study
region increases from west to east with very little
north-south change. This east-west variation is also
characteristic of most of the parameters given in
Table 3-8. Nine of the parameters are a function of
only LZ‘ indicating that those nine parameters change

significantly with longitude (east-west position) but
not with latitude. Only one parameter was signif-
jcantly related to only L (1atitude), while two

parameters were related to both L1 and Lz. The east-



Table 3-7.

Comparison of the phase angle of the
first harmonic of the mean and the
standard deviation.

No. Station Name 91{-) ol(s) D= el(l)-ol(s)
1 Breckenridge -0.421 ~0.300 -0.121
] Brownwood -1.026 ~0.457 -0.569
3 Centerville -0.978 -0.922 -0.056
4 Comanche -1.005 -0.575 -0.430
5 Corsicana -1.063 -0.917 -0.146
6 Crockett ~0.895 -1.007 0.112
7 Dallas -0.994 -0.723 -0.271
8 Dialville ~0.899 -0.675 -0.224
9 Dublin -1.436 -0.904 -0.532
10 Fort Worth -1.058 -0.717 -0.341
1 Gilmer -1.035 -0.926 -0.109
12 Hewitt -1.041 -0.760 -0.281
13 Hillsboro -1.005 ~0.607 -0.398
14 Kaufman ~0.856 -0.677 -0.179
15 Lampasas ~0.686 =0.321 -0.365
16 Mexia -1.055 -0,911 -0.144
17 Palestine -0.714 -0.510 -0.204
18 ‘Riesel -0.830 ~0.506 -0.324
19 Temple -1.110 -0.871 -0.239
20 Waco -1.005 -0.621 -0.384
b = -0.260
sp = 0.165
t = -7.069%
v b is significantly different from zero at 1 percent level.
Table 3-8. Equations relating amplitudes and phases
to position.
Equation Correlation Coefficient
m =  1.704 - I.'I.l:l“l.2 0.528
clﬂ = -1,201 + 0.044L, 0.559
6;(m) = . 956 -
Cy(m) = 5,671 - B.Mz 0.836
e;in} = -0.212 .
CSEI; = 0.071 -
03(m) = -0.619 -
c‘i-‘ = 1377 - 0.015L, 0.489
8y(m) = -14.799 + 0.150L; 0.459
Ce(m) = -2.496 + 0.02 0.577
.g{.; = -0.231 "2 -
c‘i-; = 0.075 -
agim) = -0.420 -
i1 = 2.304 - 0,015, 0.554
C,(s) = 2.366 - 0.028L, - 0.016L, 0.769
ai{s; = -10,185 + 0,098} g 0.557
Cy(s) = -2.660 + 0.027L, 0.758
s) = -32.647 + B..JISI.1 + 0. 225!.z D.722
Cy(s) = -0.000 e
e - 5

l::s:l : -é.g: + 0.013L,
- H el

cs[!l = 0,023
0‘[!]- 0.255
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west trend of ﬁT and §T is illustrated in Figures 3-

15 and 3-16.
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Values of the general mean, ﬁt, for all
stations as a function of longitude.
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Values_of the general standard devia-
tion, S, for all stations as a function

of longitude.

For the mean, all six harmonics had significant
amplitudes; however, the amplitude and phase angles
of the third (4 month) and the sixth (2 month)

harmonics were regional constants.

The third and

fifth harmonics of the daily standard deviations were
not significantly different from zero, while the
amplitude and phase of the sixth harmonic of the
standard deviations were regional constants.



The regional description of the Fourier series
representation of the periodic mean and standard
deviation is illustrated for two stations in Figure
3-17. The Fourier series representations are shown
using the coefficients for the first six harmonics
obtained from the station data (Table 3-5 and 3-6)
and the coefficients obtained for the station using
the regionalization equations given in Table 3-8.
The two stations represent those on the east and west
sides of the study region, respectively. The repre-
sentation of m_ and S obtained using the coeffi-

cients from the station m. and S, values, contain

more pronounced harmonics than that obtained from the
regionalization equations. The pronounced harmonics
are due largely to sampling error. The representa-

tion of m_and s_, obtained using the regionalization

equations, are a more realistic approximation of the
periodicity of m. and See

-1.5 A I A i I a
o 60 120 180 240 300 380
DAYS

Figure 3-17.

Fourier series of m, and S, for two

stations using the coefficients from
actual data and the coefficients from
the regional equations.
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7. Test of Stationarity of €p,1 Series

The stationary random component, ¢ o for each

station was determined by removing the périodic mean
and standard deviation. The equation used to de-

termine e was
Pst

s 6
o+ g (G o]}
i‘_ + Jfl I:J(n) cos [% + oJ(sEI

Equation (3-22) was applied only to the nonzero
values of the y % series. The zero values were not

changed, The Fourier coefficients for equation (3-
22) were determined for each station using the
latitude and longitude of the station and the equa-
tions given in Table 3-8. The resulting €p,t series
for each station should be second-order stationary
(no harmonics in the mean and standard deviation)
with a mean of zero and a standard deviation of
unity.

(3-22)

€ =

Pt

The €p, series for each of the eight test

stations gi;en in Table 3-3 were used to determine if
the €p,t series were stationary in the means and

standa;d deviations with zero means and unity stand-
ard deviations. Values of mr(e) and st(e) (mean and

standard deviation of the €, series for day ) for

all 365 days of the year weré determined from the
€, 1 series, using the maximum 1ikelihood estimation

teéhnique for a truncated normal distribution. The
truncation point of the e % series must be known to

estimate mr(s) and sT(e). "The truncation point of
the Yp,1 series (yu) was constant for all days of the

year and all stations at a value of 0.10 (square root
of 0.01 inch of precipitation). However, the trunca-
tion point of the ¢ & series was variable depending

on the day of the yeér and the location of the

station. The truncation point was determined by
Yg-m
T 0 T
U - (3-23)
T
or
= 8 254t
i bk o m[:‘i’ i ”{'EI} (3-24)

- i+ ng Cy(m) cos [231}- s aj(-)]

where s; denotes the truncation point for day t for
the ¢, _ series at a given station. The s; values
for the stations in the study region ranged from 0.48
to 1.19, depending on the location of the station and
the day of the year.

The amplitudes and phases of the harmonics of
the mT{:) and sT(e) values for the eight stations

were calculated, and the portion of the variance of



each explained by the first six harmonics was de-
termined. If the €, series were stationary in the

mean and standard deviation the portion of the
variance of mt{sj and the portion of the variance of

51(‘} explained by the first six harmonics should be
less than the pmin(mT) and pmin(STJ values given in

equations (3-17) and (3-19), respectively. The
portion of the variance of mr(c] and the portion of

the variance of 51(8} explained by the first six

harmonics for the eight test stations are shown in
Table 3-9. The general mean, mT{e], of mr(s) and the

general mean, s_(e), of s_(e) are also given in
Table 3-9. T T

Table 3-9. The general mean of mT(e). the general
mean of sT[e), and the variance of mT(e]
and sT[z) explained by the first six
harmonics for eight stations.—

General means Explained variance

No. Station Name mi (c) sT[;) l‘[:} 51[‘}
1 Breckenridge 0.004 0.978 0.064 0.032
2 Brownwood -0.062 1.037 0.058 0.050
5 Corsicana -0.034 1.014 0.064 0.067
6 Crockett -0.099 1.069 0.032 0.048
r Dallas -0.091 1.039 0.019 0.032

11 Gilmer 0.009 0.995 0.063 0.020

12 Hewitt -0.088 1.031 0.035 0.038

19 Temple -0.043 1.017 0.042 0.035

Average <0.051 T3

The value of ﬁT(e] for each of the eight sta-

tions was near zero. The average value was -0.051.
Similarly, the st(e) values were near unity with an
average for the eight stations of 1.023. The portion
of the variance of mT(s) explained by the first six
harmonics was less than the pmin(m1) value of 0.099

for all eight stations. The portion of the variance
of sT{c) explained by the first six harmonics was

also less than the p (sT} value of 0.070 for all

min
eight stations. Therefore, the €,1 series for the

20 stations in the region, produced by using equation
(3-22), were stationary in the mean and standard
deviation with a mean of zero and a standard devia-
tion of unity. Since the Yp, values for any fixed <

L]
were shown to be almost normally distributed, the
€, values for any fixed v are also normally dis-

tr;buted.
8. Autocorrelation of the €, Series

The €p, 1 series are approximately stationary in

the mean and standard deviation with a mean of zero,
a standard deviation of unity, and a variable trunca-

tion point. The €p,1 series may be either dependent
L]
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or independent in sequence. - will

be dependent in sequence because of the persistence
that exists in daily precipitation. The autocorre-
lation coefficients, pi, of the truncated series may

be estimated using equation (1-3) and considering

only cases when €p,1 and ©p,1+k are nonzeros. The

autocorrelation coefficients, P for the total,

untruncated series may then be approximated using the
relationships given in Figure 2-5.

In general, ¢

a. Periodieity of py. The Pk values may be

either periodic or constant throughout the year. The
sample estimates, i of ok for lag one and lag two

were investigated for periodicity. The daily " and
r, values were calculated by 7-day periods of the
year for selected e x series. A Fourier series with
26 harmonics was fitted to the 52 values of ry and
the 52 values of ro. The percent of the variance of
" and rs explained by the harmonics was determined.

The periodograms were then plotted. The periodograms
for two stations are shown in Figures 3-18 and 3-19.
The periodograms of r and rp for both stations are

near the straight line that is expected for a non-
veriodic parameter. For further analysis of the
autocorrelation of €p,t? Pk will be assumed nonperi-

odic, and only one estimate of Py will be determined

fi i F
or a given ED.Y series
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Figure 3-18, Periodograms of the autocorrelation
coefficients for lag-one and lag-two of
daily precipitation by 7-day periods,

Breckenridge, Texas.
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Figure 3-19. Periodograms of the autocorrelation
coefficients for lag-one and lag-two of
daily precipitation by 7-day periods,

Corsicana, Texas.

b, Values of P Only the lag-one autocorre-

lation coefficients are needed to define the elements
of the Ml matrix used in the multivariate generation

equation, equation (2-25). However, to investigate
the autocorrelation structure of the daily precipi-
tation series, the rE values of the truncated series

were computed up to lag 20 for several ¢ . series.
Again, only the cases when ©p,t and €p, 14k were both
nonzeros were considered. The r, values for the

untruncated series were determined from Figure 2-5
using the r& values and the average truncation point

for the station.
Figure 3-20.

A typical correlogram is given in

If the first-order autoregressive model is
applicable, the autocorrelation coefficient for lag k
is determined from the lag-one autocorrelation
coefficient by

Pp = Py k ’ (3-25)
The Pk values for a first-order model, with °1
estimated by ry» are also shown in Figure 3-20. The

95 percent tolerance Timits for r, were computed by

-1+ I.QGJNk -2
Nk -1

ri(95%) = (3-26)

where r&[QS%) are the 95 percent tolerance 1imits for

noore
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Figure 3-20. Correlogram for Fort Worth, Texas,

showing " of the €, series, the

L]
95-percent tolerance limits, and ok for
the first-order linear model.

lag k, 1.96 is the standard normal deviate for a two-
tail test at the 95 percent significance level, and
Nk is the number of cases when both e . and €, 14k

L ]

were nonzeros. The rk(95%) values were determined
from the rL(QS%) values using Figure 2-5. The 95
percent tolerance limits for rk{95%) are also shown

in Figure 3-20. Coefficients falling between the
tolerance limits are not significantly different from
zero. The values of r, are greater than the Pk

values for a first-order model for most values of k.

e. Areal variation of £y The lag-one auto-

correlation coefficients of the €,

calculated for all 20 stations in the study region
and are given in Table 3-10. The " values vary from

0.229 to 0.532. The ™ values could be related to

position within the region. The linear model given
in equation (3-21) was used to determine whether the
" values for the 20 stations are related to the

latitude and longitude of the stations. The multiple
correlation coefficient was only 0.034, and the

coefficients of both latitude and longitude were not
significantly different from zero. The r, values are

plotted as a function of station longitude in Figure
3-21. There is no indication of a regional trend in
the ry values. The variation of ry is considered to

be sampling variation. Therefore, the lag-one
autocorrelation coefficient of the total, untruncated
. series is practically a regional constant having

series were

a ;alue equal to the average value for the 20 sta-
tions, ry = 0.385.



Table 3-10. Lag-one autocorrelation coefficients of
the total, untruncated €, series for
L]
the 20 stations in the study region.
No. Statfon Name Autocorrelation coefficient, n
1 Breckenridge 0.39%
2 Brownwood 0.340
3 Centerville 0.294
4 Comanche 0.433
5 Corsicana 0.395
6 Crockett 0.532
7 as 0.403
[:] Dialville 0.313
9 Dublin 0.459
10 Fort Worth 0.426
11 611mer 0.343
12 Hewitt 0,335
13 Hil1sboro 0.351
14 Kaufman 0.420
15 Lampasas 0.430
16 Mexia 0.333
17 Palestine 0.417
18 Riesel 0.464
19 Temple 0.221
20 Waco 0.396
Avg. 0.385
Std. Dev. 0.070
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Figure 3-21. Lag-one autocorrelation coefficients of

the 20 €p,1 series as a function of
station latitude.

9. Cross Correlation of the €p,1 Series
?

The €p,1 series for stations in the region are

dependent in space as well as in time. The lag-zero
linear cross-correlation coefficients, 90{1,j),

express for stations i and j the dependence in space
between Ep . series that are independent in sequence.

Assuming tﬁe serial dependence of the cp % series can

»
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be described by a first-order autoregressive model,
the Ep . Series are given by

g (3-27)

Pt . Ep'T v DIEP'T"I '
Equation (3-27) can be applied only when both L

and €p,1-1 are nonzeros. Many of the nonzero €,
values are preceded by a zero (e, _; =0). In these
»
series

cases, the serial dependence in the €,

cannot be removed to yield the corresponding ¢
values. Ps¥

Since the independent £p 5 series for daily

]
precipitation could not be determined because of the
zeros in the Ep 3 series, it was necessary to esti-

mate the lag-zero cross-correlation coefficients from
the €t series. The relationship between the cross-

L]
correlation coefficients of the serially dependent

€p,t series and the cross-correlation coefficients of
the independent Ep ” series was not known. Bivariate

samples of €, series were generated that were

normally distributed with a mean of zero and a
standard deviation of one, dependent in sequence with
a first-order autoregressive model, and cross corre-
lated. Forty-four samples were generated with 1000
pairs of €, 1 values in each sample and with a range

of lag-one serial-correlation coefficients and lag-
zero cross-correlation coefficients. The cross-
correlation coefficient was calculated for each
generated bivariate sample of €p,r The serial

correlations of the generated ¢ . series were

removed, using equation (3-27). ’The Cross-
correlation coefficients of the resulting bivariate
ap . series were calculated. The relationship

between the cross-correlation coefficients of the
Ep . series and the cross-correlation coefficients of

L]
the corresponding & ¥ series are shown in Figure 3-

22. A1l of the points in Figure 3-22 are near the
line of equal values. Apparently, for a bivariate
standard normal process with a first-order autore-
gressive model the cross-correlation coefficients of
the independent £ = series are equal to the cross-

correlation coefficients of the dependent €p,

series. g
The lag-zero cross-correlation coefficients,

pgli.d), were estimated from the ¢ _ series for each

station in the region. As stated 15 Chapter II, the
po(i,j) values could be related to position within

the region, distance between stations i and j, and
orientation of the line connecting stations i and j.
Since the ¢ - series contain numerous zeros, the

sample est1m5te of the cross-correlation coefficients
of the truncated series, ré(i,j), may be estimated

considering only cases where e for both station i

s T
and station j are nonzeros. Tne sample estimates of
the cross-correlation coefficients for the untrun-
cated series may be estimated from ré(f.d]. using

Figure 2-5 and the average truncation point for the
two stations.
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Figure 3-22. Relationship between the cross-
correlation coefficients of serially

dependent €, series and the cross-
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correlation coefficients of independent

Ep.r series.

With the 20 stations used in this study, there
are 190 combinations for which the cross-correlation
coefficients may be determined. Sixty-four combina-
tions were selected for the determination of ro(i,j).

The cross-correlation coefficients of the truncated
series, rb(1._1]. were computed for the 64 combina-

tions, using the ¢ " data for each pair of stations.
The r0{1 ,J) values were determined by using Figure 2-
5 (Table 3-11).

Four parameters that describe the relative
position of stations i and j and the position within
the region were determined for each pair of stations.
The parameters are: (1) latitude of the midpoint
between stations i and j in degrees north, Ll(i.j];

(2) longitude of the midpoint between stations i and
j in degrees west, Lz(i,j}; (3) distance between

stations 1 and j in miles, d; and (4) azimuth about
the midpoint in degrees, 8. The four parameters are
illustrated by the definition sketch given in Fig-
ure 3-23. The values of the four parameters for the
64 pairs of stations are given in Table 3-11.

To determine the important variables for de-
scribing the variation of rO(i,J). the simple linear

correlation coefficient, r, was calculated for
ro(i,d) against each of the four independent vari-

ables given in Table 3-11. The r values were:

Table 3-11.

Lag-zero cross correlation, location of
midpoint, inter-station distance, and
azimuth for 64 pairs of stations in the
study region.

Cross Midpoint Distance
Correlation  L,(1.4) Lz{i..ll d Azimuth
Stations roftsd) (°w) (°W) (miles) (degrees)
1- 2 0.729 32,24 98.94 72.7 3.9
1- 3 0.419 32,02 97.4 209.9 119.6
1- 4 0.708 32,33 98.75 63.0 162.7
1- 9 0.718 32.43  98.61 58.4 142.4
1-10 0.657 32,80  97.97 115.7 87.9
1-12 0.511 32.11  98.04 141.0 130.3
1-15 0.512 31.91  98.54 127.1 159.3
1-17 0.492 32,27 97.27 214.3 108.6
1-18 0.591 32,11 97.89 155.7 125.8
2- 4 0.821 31.81  98.79 26.8 62.4
2- 8 0.554 31.79  97.13 232.1 87.4
2- 9 0,874 31.91  98.65 48.4 57.1
2-10 0.623 32,27 98.01 142.9 57.5
2-12 0.669 31.58  98.08 114.0 99.4
2-14 0. 696 32,15 97,65 176.5 70.3
2-18 0.579 31.58 97,93 132.6 98.1
-5 0.799 31.68  96.22 63.5 151.8
3- 6 0.858 31.29 95.71 33.2 86.4
3-11 0.729 32.00 95.48 118.7 31.8
3-12 0.666 31.36  96.58 76.0 99.4
3-14 0.747 31.93  96.15 93.0 166.8
3-16 0.832 31.47  96.23 42.2 132.2
4. 5 0.584 31.99  97.53 134.3 84.7
4- 9 0.826 32.00 98.46 21.8 50.7
4-12 0.771 31.67  97.89 9.0 109.3
4-15 0.697 31.47  98.39 64.3 155.9
4-17 0.725 31.84 97,13 184.6 92.6
4-20 0.731 31.76  97.91 88.4 102.6
5- 6 0.725 31.69  95.9 83.0 130.5
5- 8 0.732 31.97  95.87 75.8 101.0
5- 9 0.710 32.09 97.40 116.9 90.7
5-10 0.501 32.46  96.76 63.6 144.6
5-11 0.739 32.40 95.72 102.8 64.1
5-14 0.864 32,33 96.39 35.6 14.2
5-17 0.640 31.93  96.05 54.7 112.3
6- 8 0.765 31.58  95.36 41.0 15.9
6-14 0.683 31,94  95.88 103.8 148.4
7- 8 0.579 32,36 96.06 119.7 124.4
7-10 0.916 32.84  96.95 12.6 83.7
8- 9 0.586 31,99 96.80 191.9 94.8
8-12 0.748 31.66  96.22 122.9 76.3
=" gel7 0.877 31.82  95.46 28.5 75.3
8-20 0.626 31.74 96.24 123.1 8L.9
9-10 0.674 32.46  97.69 94.6 57.8
9-11 0.655 32,41 96.65 213.9 78.3
9-13 0,813 32,06 97.72 75.8 94.2
9-14 0.768 32.34  97.32 129.9 75.2
9-18 0.629 31,77 97.60 101.1 116.4
10-11 0.579 32,78 96.01 129.6 93.1
11-12 0.707 32.09  96.08 163.5 57.3
11-13 0.702 32,38 96.05 142.5 69.9
11-14 0.740 32.65  95.65 84.4 83.0
11-18 0.688 32.09 95.93 148.1 53.3
12-17 0.811 31.61  96.41 98.3 76.6
12-18 0.911 31.45 97.03 18.7 90.0
12-20 0.915 31.53 97.20 12.0 168.0
13-16 0.802 31.85  96.80 46.4 120.4
13-20 0.797 jl.e2  97.17 28.3 12.7
14-19 0.655 31.84 .84 120.8 2.2
15-18 0.69% 31.25  97.53 85.8 71.2
15-19 0.79 31.07 97.76 52.0 86.2
16-17 0.693 31,73 96.06 52.3 82.4
18-19 0.830 31,27  97.12 38.1 50.5
19-20 0.816 31.36  97.29 3.8 12.7
Independent variable r

L1[i.J} -0.281

L,y(,3) -0.116

d -0.732

B -0.273
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Figure 3-23. Definition of the four parameters used
to describe the relative positions of
stations i and j and the position of
the midpoint within the region. The
parameters are: (1) latitude of the

midpoint, Ll{i.J); (2) longitude of the
midpoint, Lz(i,j]; (3) inter-station
distance, d; (4) azimuth, B.

The parameters describing position of the midpoint
and orientation of the 1ine connecting stations i and
Jj are not as highly correlated with ro{i,j) as inter-

station distance. The correlation coefficient for
Ll{i.j}. Lz{i,j), and g are not significant at the 1

percent level, while the correlation coefficient for
d is significant at the 1 percent level. Therefore,
po(i.j) will be assumed independent of Ll(i,j].

thi,j) and 8, and a relationship between pD(i,j) and
d will be determined.

One of the functions investigated by Yevjevich
and Karplus (1973) was chosen for use in this study.
The form of the equation is given by

2
00“:\” = (1+ Gld)

where @ and a, are coefficients that must be

(3-28)

determined. The values of po(i,j} from equation (3-
28) have the desirable characteristics of pO(i,j} =1
for d = 0 and pg(i,j} = (0 for d = » for values of o)

less than zero. The lag-zero cross-correlation
coefficient should be zero for d = = because the
random components of daily precipitation for two
widely spaced stations should be independent.

A non-linear optimization technique that mini-
mizes the error sum-of-squares for an arbitrary
function and a given data set was used to determine
a; and a, for equation (3-28), using the rﬂ(i,j) and
d data given in Table 3-11. The resulting equation
is

polind) = (1 + 0.0028d)"1-44 (3-29)

Equation (3-29) explained 44 percent of the variance
of the ro(i,j} data. The data and the fitted equa-

tion are plotted in Figure 3-24,

Lo
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Relationship between lag-zero cross
correlation of the €, series and

inter-station distance for 64 pairs of
stations in the study region.

Figure 3-24.



CHAPTER IV
Simulation of Daily Precipitation Over an Area

The purpose of this chapter is to test the model
and regional description of parameters by generating
daily precipitation sequences and comparing these new
sequences to observed sequences.

There are many characteristics of daily pre-
cipitation that one could attempt to preserve in
generating new sequences. It is not within the scope
of this study to test for resemblance between new and
observed sequences in all of these characteristics.
However, preservation of certain important charac-
teristics is necessary for the new sequences to be
useful for water resource applications.

The time-area precipitation model was developed
to preserve several stochastic-deterministic charac-
teristics of an assumed truncated multivariate normal
process. The characteristics that the model was
developed to preserve include: (1) the lag-one
autocorrelation coefficient of the random component
for each station, (2) the lag-zero cross-correlation
coefficient between the independent random components
of each station, and (3) the periodic means and
standard deviations of the normalized daily precip-
itation values. The model and the generation proce-
dure dictate that, within the accuracy of the re-
gional description of the parameters, these charac-
teristics will be preserved for any station or group
of stations within the study region.

If the model reasonably describes the daily
precipitation process over an area, the new sequences
must closely resemble observed sequences in terms of
several other important characteristics, even though
the characteristics were not modeled directly. For
example, the distribution of annual precipitation
amounts did not enter into the formulation of the
model. However, the ability of the model to generate
new sequences that preserve the distribution of
annual precipitation at any point in the region is
essential to a realistic description of the precip-
itation regime of the region. Similarly, the dis-
tribution of precipitation amounts for each month was
not modeled directly but must be preserved in new
sequences to describe the seasonal characteristics of
precipitation. Parameters expressing the dependence
of precipitation in time and space, other than the
parameters used in developing the model, should also
be preserved in the new sequences. With these
general criteria in mind, several statistical param-
eters were selected for comparing new sequences to
observed sequences. These parameters are by no means
an exhaustive 1ist of the characteristics that should
be preserved in generating new precipitation se-
quences. However, the parameters that were chosen
permit comparing new sequences to observed sequences
in terms of the distribution of precipitation a-
mounts, dependence in time, and dependence in space,
using parameters that were not used in developing the
daily precipitation model. The parameters that are
used to compare observed and generated sequences are:
(1) distribution of annual precipitation values for
each station, (2) distribution of monthly (or 28-day)
precipitation values for each station, (3) the
probability of occurrence of a wet day for any day or
season of the year, (4) the cross correlation of
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annual precipitation values among stations, and
(5) the cross correlation of monthly (or 28-day) pre-
cipitation amounts among stations.

Two areas within the study region were chosen
for use in testing the time-area daily precipitation
model. The locations of the two areas are shown in
Figure 4-1. In practical application these areas
could be watersheds or other entities, for which
daily precipitation data over an area are needed.
New daily precipitation sequences were generated for
specific locations within each test area. Only the
latitude and longitude of each station were used to
define the model parameters. The new sequences were
compared with the observed sequences in terms of the
above characteristics.
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Figure 4-1. Location of two areas chosen for testing

the time-area daily precipitation model.

1. Test Area I

Test Area [ is located in the northeast part of
the study region. Three precipitation stations were
chosen for which daily precipitation data would be
generated. Station I-1 was chosen to coincide with
the Gilmer station that was used in developing the
mode] parameters. The other two stations were chosen
to coincide with precipitation stations that were not
used in developing the model parameters. The three
test stations were chosen at sites of actual precip-
itation stations so that the new sequences could be
compared with observed sequences. A description of
the precipitation stations in Test Area I is given in
Table 4-1. The inter-station distances for the
stations ranged from 31.1 miles to 89.8 miles.

Fifty years of dajly precipitation data were
generated for the three stations in Test Area I.
u and . values that were used in generating the

data were described by Fourier series, using the
regional description of the Fourier coefficients
given in Table 3-8. The lag-one autocorrelation
coefficient of the random component was shown in
Chapter III to be a regional constant with a value of

The



Table 4-1. Description of precipitation stations in

Test Area I.
Available
Latitude Longitude data
Mo. Station Name Index No. (deg. north) (deg. west) (years)
I-1  Gilmer 3546 32.73 94.98 1933-72
I-2 Lindale 5228 32.45 95.37 1932-64
1-3  Long Lake 5327 31.48 95.78 1933-72
Stations Inter-statjon distance
miles
Gilmer-Lindale 31.1
Gilmer-Long Lake 89.8
Lindale-Long Lake 60.9

0.385; therefore, " for each station was assumed to

be 0.385. The lag-zero cross-correlation coeffi-
cients were computed using the inter-station dis-
tances and equation (3-28?.

a. Values of m and S, for the new sequences.

The new daily precipitation data were analyzed in the
same manner as the observed data to determine if the
generation procedure was producing sequences with the
desired m. and S, The generated data for the three

stations in Test Area I were normalized using the
square root transformation. The mean and standard
deviation of the transformed data were calculated for
each day of the year, using the maximum 1ikelihood
estimation technique for a truncated normal distri-
bution. The Fourier coefficients were calculated for
the first six harmonics of the daily values of m and

S, The Fourier series representation of m. and S,

determined for the generated data are shown in
Figures 4-2, 4-3, and 4-4 for the three stations in
Test Area I. The m_ and S, values that were obtained

from the regionalization equations in Table 3-8 and
used in the generation program are also shown in the
figures. The Fourier series representation of the m_

and s. values from the generated data approximate the

values that were input to the generation procedure.
The harmonics of m. and S, obtained from the gen-

erated data are more pronounced than the harmonics of
m. and S, using the regional equations due to sam-

pling error.

A Fourier series with six harmonics explained
20.8 percent of the variance of m_ and 14.1 percent
of the variance for S, from the generated data for

Gilmer. Using the observed data for Gilmer, six har-
monics explained 14.6 percent of the variance of m.

and 12.2 percent of the variance of Sy The sampling
random components of m. and S, from the generated

data were about the same as that from the observed

data. The generation model seems to produce, within
the accuracy of the regional equations, new sequences
with m. and S, having the same periodic characteris-

tics and random variations as the observed data.
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Figure 4-2, Fourier series representation of m and
s, determined from the generated data

and obtained from the regional equations
for Gilmer, Texas.
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Figure 4-3. Fourier series representation of m. and

S, determined from the generated data

and obtained from the regional equations
for Lindale, Texas.

b. Autocorrelation of €p,1 from generated data.
L]
The random component, ep 3 of the new sequences for
L]

each of the three stations was determined by removing
the periodic m and s_ from the transformed data.

The Fourier series description of m and S, shown
above were used to define m and S, values for each
day. The e; values were determined using equation

’
(3-22). The lag-one autocorrelation coefficients,
ri, of the truncated new series were estimated using
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Figure 4-4, Fourier series representation of m and

S, determined from the generated data

and obtained from the regional equations
for Long Lake, Texas.

equation (1-3) considering only cases when €1 and
€p, 141 were nonzeros. The autocorrelation coeffi-
cients, e for the total, untruncated series were
approximated by using ri and Figure 2-5. The "

values of the generated sequences for each station
are given in Table 4-2. The three values are not

significantly different from the assumed regional

constant of 0.385.

Table 4-2, Lag-one autocorrelation coefficients of

the new sequences for the three stations
in Test Area I.

No. Station ri "
I-1 Gilmer 0.106 0,343
1-2 Lindale 0.121 0.378
1-3 Long Lake 0.139 0.417
Average 0.378

¢. Cross correlation of e from generated

PaT
data. The lag-zero cross-correlation coefficients of
the dependent Bt series for each of the three pairs

of stations in Tést Area | were examined. The cross-
correlation coefficients for the truncated series,
rb(i,j]. were estimated considering only cases where

€p,1 for both stations were nonzeros. The estimates

of the cross correlation coefficients for the untrun-
cated series were determined by using r6{1,j) and

Figure 2-5. The cross-correlation coefficients,
determined from the generated data, are compared in
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Table 4-3 with those calculated with equation (3-28)
for use in generating the data. For two of the three
pairs of stations, the ro(i,j) values determined from

the generated data were not significantly different
(5 percent level) from the ry(i,J) values obtained by

equation (3-28). Therefore, it may be concluded that
the generation model produces new sequences with the
desired lag-zero cross-correlation coefficients of
the random components for the stations within the
area,

Table 4-3. Lag-zero cross correlation for the
stations in Test Area I from (1) the
regional model, equation (3-29), and
(2) the generated data.

Distance Lag- cros rrelation coefficient
Stations (miles) Equation 3-3 Generated data
GiImer-Lindale a1 0.887 0.905Y/
6ilmer-Long Lake 89.8 0.724 0.767
Lindale-Long Lake 60.9 0.797 0.829

1/ The cross—correlation coefficient of the generated data is
significantly different (5 percent level) from the cross
correlation coefficient obtained by equation (3-29).

d. Distribution of 28-day and anmual totals.
The underlyind assumption of this study is that the
time-area structure of the square root of daily
precipitation may be approximated by a truncated
multivariate normal distribution. No assumption is
made about the distribution of precipitation for time
intervals longer than 1 day. However, if the assump-
tion of a truncated multivariate normal distribution
for daily precipitation is a good description of the
physical process, the sequences generated using the
model should produce precipitation amounts for
intervals longer than 1 day that are distributed in a
similar way to that of the observed data. Interval
lengths of 28 days and 365 days (1 year) were chosen
to compare the distributions of the generated data
with the observed data for intervals longer than 1
day. The total precipitation for each 28-day period
of the year and the annual totals were determined for
both the observed and generated sequences for the
three stations in Test Area I. Three parameters were
chosen to describe the distributions of the 28-day
and annual totals: (1) the mean, (2) the standard
deviation, and (3) the skewness coefficient. The
values of these three parameters for both the ob-
served and generated sequences were calculated for
each 28-day period of the year and for the annual
totals. The results are shown for the three stations
in Tables 4-4, 4-5, and 4-6. The means, standard
deviations, and skewness coefficients from the
generated data compared well with those from the
observed data. The means and the standard deviations
for each 28-day period and for the 1 year were tested
to determine if the parameters for the generated data
differed significantly from the parameters for the
observed data. A standard t-test for the equivalence
of two means from normal populations was used to
determine if the means were significantly different.
The distributions were not normal, as shown by



the positive skewness coefficients. However, most of
the skewness coefficients were relatively small so
that the assumption of normal populations for the
purpose of testing the hypothesis that the means were
equal did not introduce any great error. An F-ratio
test for the equivalence of two variances from normal
populations was used to determine if the standard
deviations were significantly different.

Table 4-4, Means, standard deviations, and skewness
coefficients of observed and generated

28-day and annual precipitation, Gilmer,

Texas.
Mean Standard deviation
ser ra erve era Skewness coefficient
Period (inches) (inches) (inches) (inches) ser Generat,
1 3.06 3.18 1.98 2.24 0.35 1.39
2 3.55 3.51l 1.70 3.01 0.17 1.56
3 3.10 2.15—/ 1.78 1.86 0.70 2.07
4 3.49 2.74 2.21 2.10 0.89 0.91
5 5.41 5.23 .19 4.39 0.86 1.54
6 3.60 3.60 2.70 2.88 0.88 2.21
7 2.84 3.9 2.17 4.03 0.78 2.18
8 2.46 1.89 2.71 1.503/ 1.53 1.13
9 2.82 2.9 2.23 1.75% 2.06 0.73
10 2.67 3.49 2,05 3.53 0.71 1.78
11 3.07 2.3 2.25 2.65 0.89 1.39
12 3.82 4.29 2.43 3.65 0.61 1.84
13 3.2 3.44 2.69 2.60 1.05 0.89
Annual 43,71  42.45 10.82 10.41 0.44 0.49
1/ The mean of the generated data is significantly different
from the mean of the observed data at the 5 percent level.
2/ The standard deviation of the generated data is significantly
different from the standard deviation of the observed data at
the 5 percent level.
Table 4-5. Means, standard deviations, and skewness

coefficients of observed and generated
28-day and annual precipitation, Lindale,

Texas.
Mean Standard deviation
Observed Generated ervi era Skewness coefficient
Period (inches) (inches) (inches) (finches)® Observed Generated
1 3.36 3.01 2.43 2.02 1.00 0.87
2 3,53 3.191 1.74 2.88 0.59 1.99
3 2 2.20Y 1.97 1.9 1.35 2.98
4 .72 2.80 2.85 2.47 1.78 1.31
5 5.46 5.18 .14 4.64 0.70 2.16
6 3.78 4.00 2.57 3.2 1.26 2.06
7 2.1 3.16 2.13 315 1.16 2.26
8 2.32 2.15 2.15 2.35 1.60 2.03
9 2.76 2.61 2.48 2.10 2.93 1.01
10 .87 .69 1.92 3.56 0.60 1.35
11 3.21 2.48 2.47 2.97 0.97 1.66
12 4.02 4.16 2.47 3.26 0.52 2.04
13 .87 3.54 2.65 2.41 0.45 0.61
Annual 44.91 42.31 10.63 11.39 0.33 0.39

1/ The mean of the generated data {s significantly different
from the mean of the observed data at the 5 percent level.
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Table 4-6. Means, standard deviations, and skewness
coefficients of observed and generated
28-day and annual precipitation, Long

Lake, Texas.

Mean Standard deviation
Observed Generated e erated Skewness coefficient
Period (inches) (finches) [(inches) (finches) serve erated
1 3.09 3.1 1.94 1.87 0.32 1.54
2 .1 .n 1.64 2.33 0.02 1.17
3 2.64 2.34 2.06 2.08 0.78 1.95
4 3.4 2.94 2.04 2.89 0.30 2.43
5 4.80 4.89 3.97 4.06 1.68 2.46
6 315 3.98 1.75 3,97 0.65 2.41
7 2.50 2.9 2.36 2.80 1.76 1.76
8 1.8 2.23 2.48 2.60 2.66 2.62
9 2.48 2,16 1.1 1.91 0.63 2.04
10 2.81 3.50 2.3 3.27 2.01 1.53
1 3.08 2.11 2.89 2.26 1.94 1.60
12 3.80 3. 72 3.55 3N 2.94 .31
13 3.25 3.52 171 2.717 0.51 0.58
Annual 40,09 40.50 10.51 11.07 0.79 0.15

The mean of the generated data differed sig-
nificantly (5 percent level) from the mean of the
observed data for only one 28-day period for two of
the three stations. The means of the generated data
for period 3 for Gilmer and Lindale were signifi-
cantly less than that from the observed data. The
hypothesis that the mean precipitation amounts from
the observed data and the means from the generated
data were from the same population was accepted for
all other periods for the three stations. The mean
annual precipitation amounts from the generated data
were very close to that from the observed data for
all three stations. None of the differences in
annual means were significant at the 5 percent
lTevel.

The standard deviations of the 28-day totals for
the generated data differed significantly from the
standard deviations of the observed data for only one
period for Gilmer. None of the standard deviations
of the generated data for Lindale or Long Lake
differed significantly from the standard deviations
of the observed data.

The periodic means and standard deviations of
the 28-day totals from both the observed and gen-
erated data are illustrated in Figures 4-5, 4-6, and
4-7, The seasonal patterns of the means and the
standard deviations of the generated data corre-
sponded closely with that of the observed data. The
largest 28-day mean occurred during period 5 for all
stations for both the observed data and the generated
data, A smaller peak occurred during periods 12 and
13 for both observed and generated data. The small-
est mean 28-day precipitation occurred during period
8, The seasonal pattern of standard deviations were
similar to that for the means, except that the peaks
were not as pronounced.

e. Probability of a wet day. The probability
of a wet day or a dry day at a point is often de-
scribed by a Markov chain. The Markov chain approach
requires the definition of the probabilities of a wet
day, given a wet day on the previous day, P(W/W), and
a dry day given a dry day on the previous day, p(D/D).
The other two transition probabilities, P(D/W) and
P(W/D), may be defined from the first two
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Figure 4-5. Means and standard deviations of the 28-
day totals from 40 years of observed
data and 50 years of generated data,
Gilmer, Texas.
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day totals from 33 years of observed
data and 50 years of generated data,
Lindale, Texas.
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Figure 4-7. Means and standard deviations of the 28-

day totals from 40 years of observed
data and 50 years of generated data,
Long Lake, Texas.

probabilities. With the time-area model used in this
study, the transition probabilities are not modeled
directly. However, if the assumed first order Markov
model with a constant lag-one autocorrelation coeffi-
cient adequately describes the dependence structure,
the generated data should have approximately the same
transition probabilities as the observed data.

The generated and observed data for the three
stations in Test Area I were analyzed to determine
sample estimates of P(W/W) and P(D/D) for each day of
the year. The probabilities were grouped by 28-day
periods and the average P(W/W) and P(D/D) were
determined for each station and each period. The
average P(W/W) and P(D/D) values for each 28-day
period are given in Tables 4-7, 4-8, and 4-9 for both
the generated data and the observed data. The
transition probabilities were tested, using the
normal approximation to the binomial distribution, to
determine if the probabilities obtained from the
generated data differed significantly from that
determined from the observed data. In general, both
P(W/W) and P(D/D) from the generated data were good
approximations of that from the observed data.
Several of the probabilities from the generated data
differed significantly (5 percent level) from that of
the observed data. There seemed to be a tendency for
P(D/D) from the generated data to be less than P(D/D)
from the observed data. However, the probabilities
from the observed and generated data were remarkably
close considering these probabilities were not
modeled directly.



Table 4-7. Markov chain transition probabilities of
observed and generated data for 13 28-day
periods, Gilmer, Texas.

P(W/W) P(D/D !
Period Generat 1 rat

1 0.472 0.449 0.820 0.760¢/
2 0.468 0.477 0.793 0.757¢)
3 0.367 0.355 0.790 o.sar,/
4 0.343 0.359 0.793 0.834%/
5 0.461 0.479 0.790 0.795
6 0.428 0.372 0.826 0.816
7 0.396 0.439, 0.849 0.830
8 0.384 0.333Y 0.855 0.870
9 0.393 0.447 0.841 0.836
10 0.426 0.323Y 0.875 0.856,
11 0.337 0.305 0.857 08967/
12 0.451 0.438 0.851 0.7

13 0.465 0.442 0.824 0.767%/

1/ The transition probability from the generated data is
significantly different from the observed data at the
5 percent level.

Table 4-8. Markov chain transition probabilities of
observed and generated data for 13 28-day
periods, Lindale, Texas.

PW/W P(D/D
Period Serv rat serve rat
1 0.501 0.448¢/ 0.809 a0.770Y
z 0. 553 0.4541 0.770 0784,
3 0,408 0.360, 0.780 0.841
3 0.428 0.3831/ 0.792 0824,
| 2 = iE B
7 0.431 0.390 0,862 0 817}/
8 0.384 0.341 0.852 0.883/
I B o i iE
; “310Y 0.857 0.890%
1 0.520 3:3&2;2 0.842 07877/
13 0.543 0.451 0.819 0784

1/ The transition probability from the generated data is
significantly different from the observed data at the
5 percent level.

f. Cross correlation of 28-day and annual
totals. The time-area daily precipitation model
developed in this study uses the lag-zero cross-
correlation coefficients of the %o, series to

L]
describe the dependence of daily precipitation in
space, It was illustrated above that the cross-
correlation coefficients of the daily generated data
were not significantly different from that for the
observed data. The purpose of this section is to
compare the space dependence of the generated and
observed data for intervals longer than 1 day.

The cross-correlation coefficients of the 28-day
totals and the annual totals were calculated for each
of the three pairs of stations in Test Area I using
both the generated and the observed data. The
results are given in Tables 4-10, 4-11, and 4-12.

The cross-correlation coefficients of the 28-day
totals of the generated data for the Gilmer and
Lindale stations (Table 4-10) were not significantly

Table 4-9. Markov chain transition probabilities of
observed and generated data for 13 28-day
periods, Long Lake, Texas.

P(W/M) P(0/D)

Period Dbserved Generated Observed Generated
1 0.435 0.420 0.833 0.797%/
2 0.444 0.405, 0.801 0.776
3 0.303 0. 358y 0.821 0,845
4 0.283 0. 366~/ 0’841 0.848,
5 0.378 0.442 0.832 0.800Y
6 0.381 0.401 0.855 0834,
7 0.355 0.376 0.892 08314/
8 0.315 0.347 0.912 0.873Y/
9 0.289 0.323 0.866 0.858,
10 0.418 0.435 0.885 0.853Y/
11 0.295 0.279 0.880 0.8%2,
12 0.411 0.341 0.862 0.829Y/
13 0.404 0.463 0.841 0.826

1/ The transition probability from the generated data is
significantly different from the observed data at the
5 percent level.

different (5 percent level) from the cross-
correlation coefficients of the 28-day observed data
for 12 of the 13 28-day periods. The cross-
correlation coefficient of the annual totals of the
generated data was not significantly different from
the cross-correlation coefficient of the observed
annual totals. Similarly, the cross-correlation
coefficients of the 28-day totals of the generated
data for the Gilmer and Long Lake stations (Table 4-
11) were not significantly different from the cross-
correlation coefficients of the observed data for 12
of the 13 28-day periods or for the annual totals.
Only two of the cross-correlation coefficients of the
28-day totals of the generated data were signifi-
cantly different from the observed data for the
Lindale and Long Lake stations (Table 4-12).

Table 4-10. Cross correlation coefficients of
observed and generated 28-day and annual
precipitation, Gilmer and Lindale,
Texas.

Cross-correlation coefficient

Period a ra ata
1 0.920 0.825
2 0.912 0.859
3 0.908 0.862
4 0.907 0.788
g g gg 0.878
K 0.885
7 0.667 0.903Y/
8 0.702 0.731
9 0.751 0.758
10 0.744 0.794
1 0.843 0.727
12 0.898 0.852
13 0.913 0.851
Average 0.838 0.824
Annual 0.906 0.812

1/ The cross-correlation coefficient of the generated
data is significantly different from the cross-corre-
lation coefficient of the observed data at the 5
percent level. ;



Table 4-11. Cross correlation coefficients of
observed and generated 28-day and annual

precipitation, Gilmer and Long Lake,

Texas.
Cross-correlation coefficient
Period Observed data Generated data
1 0.768 0.612
2 0.773 0.719
: 0.?00 0.627
0.712 0.604
5 0.538 0.775Y
6 0.488 0.625
7 0.655 0.634
8 0.502 0.583
9 0.658 0.439
10 0.556 0.445
11 0.788 0.701
12 0.714 0.735
13 0.726 0,555
Average 0.652 0.620
Annual 0.760 0.625
1/ The cross-correlation coefficient of the generated
data is significantly different from the cross-corre-
lation coefficient of the observed data at the 5
percent level.

Table 4-12. Cross correlation coefficients of
observed and generated 28-day and annual
precipitation, Lindale and Long Lake,
Texas.

Cross-correlation coefficient
Period Observed data Generated data
1 0.763 0.708
2 0.723 0.786
3 0.619 0.704
4 0.730 0.662
5 0.7 0.81
7 0599 i
) L.
8 0.278 0.863"/
9 0.572 0.603
10 0.828 0.727
11 0.73§ 0.763
12 0.763 0.711
13 0.797 0.684
Average 0.666 0.733
Annual 0.817 0.756

1/ The cross-correlation coefficient of the generated
data s significantly different from the cross-corre-
lation coefficient of the observed data at the §
percent level.

Most of the cross-correlation coefficients of
the 28-day totals and annual totals from the gen-
erated data were not significantly different from the
28-day totals and annual totals of the observed data.
The average of the 13 28-day cross-correlation
coefficients and the annual cross-correlation coef-
ficients are plotted with respect to inter-station
distance in Figure 4-8, The decrease in cross-
correlation coefficients with increasing inter-

station distance is about the same for the generated
and observed data. The time-area daily precipitation
model does not directly preserve the cross-
correlation coefficients for intervals longer than 1
day. However, by preserving the lag-zero cross-
correlation coefficients of the random components the
model produces new series with cross correlation
coefficients for intervals of 28 days or longer that
are close to the cross-correlation coefficients of
the observed data.
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Figure 4-8. Cross correlation coefficients of 28-day
totals and annual totals as a function
of inter-station distance.

2. Test Area IT

Test Area II is in the south-central part of the
study region (see Figure 4-1). Three precipitation
stations were again chosen for which daily precip-
itation data would be generated. A description of
the three precipitation stations in Test Area II is
given in Table 4-13. Station II-1 (Hewitt) is one of
the stations used in developing the model parameters.
Stations II-2 (Troy) and II-3 ?Hcﬁregor) were not
used in developing the model parameters. Only 20
years of observed data were available for stations
II-2 and II-3, The three stations in Test Area II
are closer together than the three stations in Test
Area I. The inter-station distances for the stations
ranged from 15.1 miles to 18.8 miles.

The time-area daily precipitation mode] was used
to generate 50 years of precipitation data for the
three stations in Test Area II. The generated data
were compared with the observed data. The values of
m. and S. for the new sequences were not computed for

Test Area II because of the results for Test Area I
(Figures 4-2, 4-3, and 4-4) indicated that the
generation model will reproduce the m_and s values



Table 4-13, Description of precipitation stations in

Test Area II.

Available
Latitude Long{ tude data
No. Station name Index Mo. (deg. north) (deg. west) (years)

I1-1  Hewitt 4122 31.45 97,18

1933-72
11-2 Troy 9153 31.20 97.30 1953-72
11-3 McGregor 5757 31.43 97.42 1953-72
Stations Inter-station distance
miles
Hewitt-Troy 18.8
Hewi tt-McGregor 15.1
Troy-McGregor 17.6

obtained from the regionalization equations in Table
3-8, Similarly, the autocorrelation and cross
correlation of the ¢ series from the Test Area II

Pt

generated data were not investigated. The Test
rea I results indicated that the model would produce
new sequences with lag-one autocorrelation coeffi-
cients near the assumed regional constant. The Test
Area I results also demonstrated that the daily
precipitation model would generate sequences with
lag-zero cross-correlation coefficients near that
given by equation (3-29). Since the autocorrelation
and cross-correlation coefficients are not a function
of regional position, the results apply to Test

Area II as well as Test Area I.

The Test Area II generated data were compared
with the observed data in terms of the distribution
of 28-day and annual totals, the probabilities of wet
or dry days, and the cross-correlation coefficients
of 28-day and annual totals.

a. Distribution of 28-day and annual totals.
The total precipitation for each 28-day period and
the annual totals were determined for both the
observed and generated data for the three stations in
Test Area II. The means, standard deviations, and
skewness coefficients were calculated for each 28-day
period and for the annual totals, using both the
observed and the generated data for each station.
The results are shown in Tables 4-14, 4-15, and 4-16
and in Figures 4-9, 4-10, and 4-11. The means and
standard deviations of the 28-day totals and the
annual totals were tested to determine whether the
parameters for the generated data differed signifi-
cantly from those of the observed data.

None of the three mean annual precipitation
amounts from the generated data differed signifi-
cantly from the mean annual precipitation from the
observed data. Only one of the three annual standard
deviations differed significantly from the standard
deviations of the observed data. The mean annual
precipitation for stations in Test Area Il is about
10 inches less than that for stations in Test Area I.
The time-area daily precipitation model accurately
accounts for the differences in mean annual precip-
itation with position in the region.

The seasonal patferns of the 28-day means and
standard deviations from the generated data were, in

Table 4-14, Means, standard deviations, and skewness
coefficients of observed and generated
28-day and annual precipitation, Hewitt,

Texas.

Mean Standard deviation
Toet) (fncms) (1sches) (inches) omeey-cyifisies
Period (inches) (inches) (inches) (inches) Servi ra

1 177 2.48 LM 211 0.78 2.28
2 2.32 2.36 143 1.4 0.27 0.69
3 1.87 2.37 143 2.08 0.71 1.73
" 2.57 2.20 212 1.9, 1.79 1.41
5 448 3.6 62 2.39Y 1.26 0.78
6 301 2.63 1.83 2.48 0.38 2,36
7 7] a¥ 2o 2o 1.72 0.71
8 157 1.91 196 2.4 2.38 2.37
9 2.86 2.35 297 2.08Y 1.90 0.85
10 2.76 2.84 2,64 2.2 1.48 0.97
1 2.67 2.07 210 2.23 0.92 1.67
12 2,38 2.35 212 1.88 1.38 0.98
13 1.9 217 147 2.09 0.90 2.54
Annual 3217 3.1 8.81  7.84 0.41 0.59

1/ The standard deviation of the generated data is significantly
different from the standard deviation of the observed data at
the 5 percent level.

2/ The mean of the generated data {s significantly different
from the mean of the observed data at the 5 percent level.
Table 4-15. Means, standard deviations, and skewness

coefficients of observed and generated
$B—day and annual precipitation, Troy,
exas.

an Standard deviation
Sery nera Observed Generated Skewness coefficient
Period (inches) (inches) (inches) (inches) Serv nera

1 1.75 2.20 170 2.20 1.64 3.62
2 2.65 2.00 150 1.47 0.40 0.84
i Z® ve, 14 Le 028 148
A .B 1. 1. & »
5 5.44 e/ 3 2.0¥ 0.78 0.39
[ 2.51 2.79 1.84 2.69 0.84 2.08
7 1.67 2.20 2.05 2.05 1.41 1.34
8 177 2.06 2,03  2.14 2018 1.41
9 2.42 2.74 189 2.43 1.3 202
10 3,70 2.87, 282  2.46 0.87 1.35
1 3.31 2.0 296 211 1.50 1.83
12 2.37 1.97 139 1.3 -0.02 0.47
13 1.9 2.08 152 1.86 1.14 1.34
Annual  33.50  30.66 888 7.1l -0.18 0.68

1/ The mean of the generated data is significantly different
from the mean of the observed data at the 5 percent level,

2/ The standard deviation of the generated data is significantly
different from the standard deviation of the observed data at
the 5 percent level.

general, a good representation of the means and
standard deviations of the observed data. Most of
the means and standard deviations of the 28-day
totals from the generated data were not significantly
different from that of the observed data. The
generated data contained only one 28-day mean for
Hewitt, two means for Troy, and one mean for McGregor
that were significantly different from the means of
the observed data. Similarly, the generated data
contained only two 28-day standard deviations for
Hewitt, one standard deviation for Troy, and three



Table 4-16. Means, standard deviations, and skewness
coefficients of observed and generated
28-day and annual precipitation, .

McGregor, Texas.

Mean Standard deviation
Servi rat Ser erat Skewness coefficient
Period (inches) (inches) (inches) (inches) served Generate
1 1.87 & 1.86 2.22 1.59 3.26
2 2.38 2.07 1.44 1.37 0.29 0.64
3 1.65 2.45 1.39 1.82 0.99 0.67
4 2.41 2.16 2.3 1.941 2.90 1.41
5 5.14 3.65 .41 2.45Y 1.45 1.01
6 3.14 2.78 3.30 2.97 2.20 2.15
7 2.02 2.57 2.62 2.56u 1.69 1.48
8 2.20 2.14 3.4 2.29¥ 1.4 1.29
g 2.3 2.;8 1.41 1.82 0.27 0.55
1 3.29 2.79 2.47 2.18 0.66 1.30
1 .22 .66/ 238  1.63/ 0.60 1.27
12 2.02 2,14 1.34 1.70 0.01 0.83
13 1.61 2.24 1.36 2.48 1.07 1.67
Annual 33,35 31.51 10.89 ?.5?y 0.37 " 0.62

1/ The standard deviation of the generated data is significantly
different from the standard deviation of the observed data
at the 5 percent level.

2/ The mean of the generated data is significantly different
from the mean of the observed data at the 5 percent level.
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Figure 4-9. Means and standard deviations of the 28-

day totals from 40 years of observed
data and 50 years of generated data,
Hewitt, Texas.

standard deviations for McGregor that were signifi-
cantly different from the standard deviations of the
observed data.

b. Probability of a wet day. The Markov chain
transition probabilities were computed from the
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Figure 4-10. Means and standard deviations of the
28-day totals from 20 years of observed
data and 50 years of generated data,
Troy, Texas.
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observed and the generated data for the three sta-
tions in Test Area II. The average P(W/W) and P(D/D)
for each 28-day period are given in Tables 4-17, 4-
18, and 4-19. The transition probabilities obtained
from the generated data were tested to determine
whether they differed significantly from the proba-
bilities obtained from the observed data. The
agreement between P(W/W) and P(D/D) from the gen-
erated data and P(W/W) and P(D/D) from the observed
data for Test Area Il was about the same as that for
Test Area 1. Several of the probabilities from the
generated data were significantly different from that
of the observed data. In most cases P(D/D) values
for generated data were less than P(D/D) from the
observed data, but both P(D/D) and P(W/W) from the
generated data were good approximations of that from
the observed data.

Table 4-17. Markov chain transition probabilities of
observed and generated data for 13 28-
day periods, Hewitt, Texas.

P(W/W) P(D/D

Period Observed Generated serv erat
1 0.447 a.ass,}/_f 0.840 0.825
2 0.479 0.351 0.807 0.796
3 0.316 0.354 0.832 0.836
4 0.384 0.352 0.845 0.848
5 0.445 0.428,, 0.805 0.795
6 0.438 0.353Y 0.843 0.822,
7 0.385 0.342 0.900 0.847¢/
8 0.363 0.348 0.916 0.878¢/
9 0.362 0.330, 0.874 08521/
10 0.467 0.2621) 0.883 0.851%/
1 0,404 0.3297) 0.877 0.876,
12 0.455 0.325¢) 0.870 0.814Y/
13 0.465 0.37 0.865 0.845

1/ The transition probability from the generated data is
significantly different from the observed data at the
5 percent level,

Table 4-18, Markov chain transition probabilities of
observed and generated data for 13 28-
day periods, McGregor, Texas.

P(W/W) P(D/D)

Period Observed  Generated Observed Generated
1 0,461 0.387 0.879 0.822Y
2 0.405 0.347 0.840 u.any
3 0.258 0.349 0.879 0.821
4 0.325 0.336 0.876 0.849
5 0.442 0.435 0.815 0.803
6 0.292 0.374 0.860 0.8311
7 0.410 0.353 0.930 0.8641/
8 0.327 0.331 0.916 o.avarf
9 0,328 0.368, 0.874 0.836%/

10 0.414 0.245Y 0.861 0.848
11 0.295 0.311 0.878 0.881,,
12 0.461 0.348 0.891 0.839~
13 0.391 0.341 0.871 0.856

1/ The transition probability from the generated data is
significantly different from the observed data at the
5 percent level.
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Table 4-19. Markov chain transition probabilities of
observed and generated data for 13 28-
day periods, Troy, Texas.

P(W/W) P(D/0)
Period ser . Generated Observed Generated
1 0.341 0.418Y/ 0.854 0.830
2 0.391 0.368, 0.823 0.807
3 0.215 0,345 0.845 0.821,
3 0.332 0.371 0.878 0.843Y
5 0.430 0.437 0.825 0.797
6 0.311 0.321 0.877 0.
7 0.271 0.317 0.903 0.8657)
8 0.476 0.313 0.913 0.8751)
g 0. 356 0.351 0.869 0.828/
10 0.375 0.340, 0.857 0.851
1 0.337 o.mﬁ 0.891 0.875,
12 0.337 0.297 0.885 0.839/
13 0.389 0.365 0.885 0,846/

1/ The transition probability from the generated data is
s‘lgnifi:ant‘l{ different from the observed data at the 5
percent level,

e, Cross corrvelation of 28-day and anmual
totale. The cross correlation coefficients of the
28-day totals and the annual totals were calculated
for both the observed and generated data for each of
the three pair of stations in Test Area II. The
results are given in Tables 4-20, 4-21, and 4-22.
The cross-correlation coefficients obtained from the
generated data were tested to determine whether they
differed significantly from the cross-correlation
coefficients obtained from the observed data. The
agreement between the cross correlation coefficients
from the generated data and that from the observed
data for Test Area II is similar to that for Test
Area 1. The average of the 13 28-day cross-
correlation coefficients from the generated data were
close to that of the observed data for all three
pairs of stations. The annual cross-correlation
coefficients from the generated data were less than
that from the observed data for two pairs of stations
and greater than that from the observed data for one
pair of stations. These results reinforce the
conclusion drawn from the Test Area I results that
for intervals of 28-days or longer the cross-
correlation coefficients of the generated data are
close to the cross-correlation coefficients of the
observed data.



Table 4-20. Cross correlation coefficients of
observed and generated 28-day and annual
precipitation, Hewitt and Troy, Texas.

Cross-correlation coefficient

Period Observed data Generated data

1 0.883 0.934

2 0.900 0.844

3 0.924 0.873

4 0.650 0.838

5 0.878 0.803

6 0.797 0.803

7 0.927 0.818

8 0.847 0.887

9 0.598 0.829

10 0.810 g.als

11 0.793 917

12 0.942 0.796Y

13 0.937 0.826
Average 0.837 0.845
Annual 0.919 0.845

1/ The cross-correlation coefficient of the generated

data is significantly different from the cross-corre-
lation coefficient of the observed data at the §
percent level.

Table 4-21. Cross correlation coefficients of

observed and generated 28-day and annual
precipitation, Hewitt and McGregor,
Texas.

Cross~-correlation coefficient

Period Observi ata Generat ata
; i 1
0. 0.
3 0.974 0.8351/
3 0.964 0.8887/
5 0.964 0.735¢/
6 0,559 0.85¢%/
7 0.917 0.889
a 0.932 0.8921
9 0.623 0.877%/
10 0.836 0.869
11 0.944 0.881
12 0.888 0.853
13 0.954 0.915
Average 0.878 0.867
Annual 0.888 0.892

1/ The cross-correlation coefficient of the generated
data is significantly different from the cross-corre-
lation coefficient of the observed data at the 5
percent level.
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Table 4-22.

Cross correlation coefficients of
observed and generated 28-day and annual
precipitation, Troy and McGregor, Texas.

Cross-correlation coefficient

Period Observed data Generated data

1 0.897 0.950

4 0.902 0.821

3 0.917 0.853

4 0.627 0.839

5 0.841 0.830

6 0.798 0.876

7 0.833 0.829

8 0.878 0.900

9 0.615 0.756

10 D.?g4 3.829

11 0.753 .862

12 0.912 0.726Y

13 0.869 0.823
Average 0.818 0.838
Annual 0.907 0.815

1/ The cross-correlation coefficient of the generated

data is significantly different from the cross-corre-
lation coefficient of the observed data at the 5
percent level.



CHAPTER V
Discussion and Conclusions

Precipitation over an area, observed at discrete
points in space, is the result of the interaction of
many atmospheric variables. The number of varijables
and the complexity of the processes are too great to
attempt a purely deterministic description of the
phenomena. This study is an effort to gain an
understanding of the time-area daily precipitation
process by modeling the stochastic structure of the
process. Hopefully, the model will also be of
practical value for generating new time-area daily
precipitation sequences for water resource applica-
tions.

The stochastic structure of daily precipitation
over an area was modeled by using a multivariate
normal distribution. The multivariate normal ap-
proach had previously been applied to hydrologic
series that did not contain zeros, like continuous
streamflow or monthly precipitation. This study is
an attempt to apply the approach to an intermittent
process, like daily precipitation, that contains many
zero values,

The parameters of the time-area daily precip-
itation model were determined as a function of
position within a region. New precipitation series
were generated for two areas within the region. The
new series were similar to the observed series in
many of the important time-area characteristics. The
model successfully preserved: (1) the periodic means
and standard deviations of the normalized daily
precipitation, (2) the lag-one autocorrelation
coefficients of the daily random components for each
station, (3) the lag-zero cross-correlation coeffi-
cients between the daily random components for each
pair of stations, and (4) the means, standard devi-
ations, and skewness coefficients of 28-day and
annual precipitation. The model was not developed to
preserve the Markov chain wet-dry transition proba-
bilities or the cross-correlation structure among
stations for intervals longer than 1 day. The
transition probabilities and the cross-correlation
coefficients of 28-day totals and annual totals from
generated sequences were often significantly dif-
ferent from the transition probabilities and cross-
correlation coefficients from the observed data.
These differences probably indicated that the model
failed to accurately describe the time and space
dependence structure of daily precipitation. How-
ever, both the Markov chain transition probabilities
and the cross-correlation structure for intervals of
28 days or longer were close enough to that from the
observed data so as not to impair the usefulness of
the new sequences for most applications.

Basically, this study has shown that the trun-
cated multivariate normal distribution is a useful
model of daily precipitation over an area, if pre-
cipitation at a point can be transformed to approx-
imate a truncated normal distribution. Specific
conclusions resulting from this study are:

1. The square root proved to be adequate for
transforming daily precipitation to conform to a
truncated normal distribution for stations in the
study region. A different transformation may be
required in other regions.
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2. Maximum 1ikelihood estimates of the means
and standard deviations of the truncated samples of
normalized daily precipitation may be obtained using
the method given by Cohen (1950).

3. The seasonal nature of precipitation can be
described using a Fourier series representation of
the means and standard deviations of transformed
daily precipitation at a point. Six harmonics were
assumed to describe the complex periodic movement of
the means and standard deviations of the truncated
normal distribution for the stations in the study
region. The relatively large number of harmonics
were required because of periodicity in both the
probability of a wet day and the distribution of
precipitation amounts given the occurrence of a wet
day. The number of Fourier coefficients to be
estimated for each parameter is 2m+l, where m is the
number of harmonics. The relatively large number of
harmonics for stations in the study region greatly
increases the number of coefficients. For most
regions, the precipitation pattern during the year is
less complex than that for the study region, and
fewer harmonics would be required to describe the
periodic movement of the means and standard devia-
tions.

4. The harmonics of the means and standard
deviations were not in phase for the stations in the
study region. If the phase of the harmonics of the
means and standard deviations had been the same,
fewer coefficients would have been required. Sam-
pling error may have caused part of the difference in
phase for the two parameters. However, the periodic
variation in precipitation could not be preserved by
assuming that the harmonics of the means and standard
deviations had the same phase.

5. The regional precipitation trend may be
described by relating the coefficients of the peri-
odic parameters to position within the region. The
amplitudes and phases of harmonics of the daily means
and standard deviations were related to station
latitude and longitude, using a simple linear equa-
tion. Annual precipitation in the study region
increased from west to east with 1ittle north-south
change. This east-west trend was reflected in the
equations relating the coefficients to position in
the region. Most of the coefficients were a function
of longitude and were independent of latitude. Some
of the coefficients were regional constants.

6. The random component of daily precipitation
for each station, determined by removing the periodic
means and standard deviations was approximately
stationary in the mean and variance with a mean of
zero, a variance of unity, and a variable Tower limit
(truncation point). The means and standard devia-
tions used in obtaining the random components were
determined using the Fourier series representations
with the coefficients given by the regional trend
equations.

7. The lag-one autocorrelation coefficient of
the random component of daily precipitation was
approximately a regional constant with a value of
0.385. The autocorrelation coefficients for lags




greater than 1 day were greater than that given by a
first-order Markov model. However, only the lag-one
autocorrelation coefficient was used for generating
new sequences of daily precipitation for an area.
This simplication of the time dependence structure
may explain why P(D/D) from the generated data tended
to be less than P(D/D) from the observed data.

8. The cross-correlation coefficients between
the random components of daily precipitation for
stations in the study region were a function of
inter-station distance and independent of regional
position and orientation (azimuth).

This study raised several questions that could
not be answered within the scope of the study. Some
of the topics for future research include:

1. Determine general normalizing transforma-
tions applicable for daily precipitation for any
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region using the truncated normal concept. The
square root transformation was satisfactory for the
region used in this study. Different transformations
may be required for other regions.

2. Develop methods of discerning the signif-
icant harmonics of periodic parameters for which the
sampling error is large with respect to the ampli-
tudes of the harmonics. The sampling errors of the
daily means and standard deviations in this study
were greater than the amplitudes of the harmonics.

No suitable method was available to accurately define
the number of harmonics for the two parameters.

3. Investigate the autocorrelation structure of
the random components of daily precipitation. The
results of this study showed greater persistence in
daily precipitation than that given by a first-order
Markov model.
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bution. The multivariate normal distribution is used to
describe the time-area variation of daily precipiation over
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A method was developed for obtaining maximum likelihood
estimates of daily means and standard deviations from the
truncated samples. The periodic means and standard deviations
are described by Fourier series. The Fourier coefficients
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