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ABSTRACT 

Daily precipitation over an area is studied by modeling the stochastic structure of the time-area daily 
precipitation process. Daily precipitation at a point is envisioned as a continuous random variable that has 
been truncated at zero. The zero daily precipitation amounts are considered negative amounts of unknown 
quantity. The square roots of daily precipitation at a point for a selected study region approximate a 
sample from a truncated univariate normal distribution. The multivariate normal distribution is used to 
describe the time-area variation of daily precipitation over an area. 

The means and standard deviations of the normal ized preci pitation are periodic within t he year . A 
method was developed for obtaining maximum likelihood estimates of dai ly means and standard deviations from 
the t r uncated samples. The periodic components of the means and standard deviations were described with 
Fourier series. The Fourier coefficients were related to position within the study region. Sequences of 
random components were obtained for each station in the study region by removing the periodic means and 
standard deviations. The sequences of random components were normally distributed with zero means and unity 
standard deviations and were dependent in time and space. The lag-one autocorrelation coefficients were 
found to approximate a regional constant. The lag-zero cross-correlation coefficients were found to be a 
function of inter-station distance. 

Precipitation sequences were generated for two areas in the study region using the truncated multi­
variate normal distribution model . Parameters of the model were defined usin~ the latitude and longitude of 
each station. The new sequences closely resembled the observed sequences in ll} the periodic daily means and 
standard deviations (2) the lag-one autocorrelation coefficients, (3) the lag-zero cross-correlation coef­
ficients, {4) the Markov chain wet-dry transition probabilities, and (5) the means, standard deviations, and 
skewness coefficients of 28-day and annual precipitation. 
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FOREWORD 

Hydrologic time processes have been classified for practical purposes as continuous and intermittent. 
Most cl imatologic and hydrologic time pr ocesses are continuous series, me·aning that there is a non-zero value 
of that variable at any time . Instantaneous precipitation, evaporation, sediment transport in rivers, some 
runoff (usual ly on smal l rivers with negligible under ground or surface water storage) represent the typical 
hydrologic intermittent t ime series. For some times the observed values are zeros; for other times values 
are greater than zero. Though there may be a continuous flux of water molecules through the liquid-gaseous 
or solid-gaseous inter-phases on the continental areas, with a difference in the number of molecules passing 
in two directions, the original concept of precipitation variable was designed in such a way that the process 
of instantaneous or short-interval precipitation is intermittent. 

In practice, many intermittent processes, with positi ve series values for some time intervals and zero 
values for the other time intervals, are observed as total s for given time i nterval s , usual ly counted in 
minutes, hours , days , or a longer interval . Therefore , a sequence of interval s with values greater t han zero 
is interchanged with intervals of zero val ues. This is the way many observed or computed time seri es have 
been processed and their data published. A large amount of available data of this type makes it necessary to 
design methods most feasible for their investigation and mathematical description that would permit the 
simulation of these intermittent ser ies by the data generation methods. 

Because of spatial interrelation for most of the climatolog1cal varfables, the resulting hydrologic 
var iabl es such as precipitation, evapor·ation , sediment trc~nsport, runoff of small rivers, and similar 
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variables may all have intermi ttent series that are also spatially dependent. Solutions of practical water 
resources problems require data on time series either at a point or at a set of points. When a point series 
is studied independently of time series at the other points, methods are already available for the description 
of these intermittent series in the form of mathematical models and the estimation of their parameters. The 
classical approach to univariate (or point), intermittent time series is to first describe the process by 
such random events and their time process as the sequence of zero and non-zero intervals. The difficulty in 
this approach arises from the fact that nearly all parameters , especially the interval mean, standard devi ­
ation and autocorrelation coefficients (and sometimes the skewness and kurtosis coefficients), are or may be 
periodi c. To avoid the difficulty of this combination of periodici t ies and intermittency, an approach to 
analysi s starts by dividing the annual cycle into the seasons and the daily cycle into its parts, with an 
assumption that all the parameters are constants inside these intervals. This assumption requires the break 
of cycl es into a relatively large number of seasons or parts, in order to justify it. 

When the problem of generating new samples by using the Monte Carlo (experimental statistical method) is 
posed in hydrology and water resources, with the generated data to preserve both the time and space properties 
of random variables involved, this problem becomes that of a mathematical description and that of the generation 
of new samples in case of periodic-stochastic, intermittent time series. Both t he periodicity in parameters, 
and the fact that the non-zero val ues occur at some space points while the zero values are observed simul­
taneously at the other points, create difficulties in generating new samples of multi-point intermittent time 
series. Attempts have been made to apply the combinatorial analysis and Markov chains in order to generate 
simultaneously the series of 2-3 stations, by generating first their zero and non-zero intervals, and then by 
preserving both the space and time dependences within the non-zero intervals. Researchers following this 
approach have been able to simulate only 2-3 station series. For more than four stations, the combinatorial 
approach becomes so complex that it is then difficult to extend it to cases of five , six , and more intermittent 
time series. 

The generat ion of multivariate time series, which are periodic, intermittent and also stochastical ly 
dependent both in time and space, can be best accomplished by using the approach of the multivariate normal 
distribution and the principal component analysis. It seems logical to proceed in that direction also for 
variables which have asymmetric probability distributions and periodic-stochastic, intermittent time series . 
When a multivariable process is found to be periodic-stochastic, intermittent, non-normal stochastic process, 
difficulties arise both in mathematical description and in generation of new multivariate samples. When it 
becomes feasible to study intermittency by assuming it to be a truncated process of a non-intermittent time 
ser ies, by removing periodicities in parameters, and by transforming the original variables or their resid­
uals into the normal variables, then the principal component analysis for the generation of new samples 
becomes a feasible and very desirable approach. 

The Ph.D. dissertation by Jerson Kelman, entitled "Stochastic Modeling of Intermittent Daily Hydrologic 
Series" (1976), and the Ph.D. dissertation by Clarence Wade Richardson , entitled "A Model of Stochastic 
Structure of Daily Precipitation over an Area" (1976), represent attempts to mathematically model the multi­
series processes and to generate the new multivariate samples of periodic-stochastic , intermittent time 
seri es of dai ly precipitation as asymmetrical ly distri buted random variable. As shown by the fi rst disserta­
tion, also the non-i ntermittent daily runoff series may be concetved as two intermittent processes, with 
variables transformed to normal distributions. Daily seri es are selected as typical examples of the short­
interval time series . The basic approach is then in postulating that an intermittent time series with short 
time interval is only a truncated process of a non-intermittent, discrete time series. Basical ly, it is 
assumed that the probability distribution of non-zero values of an intermittent time series is only a tail, 
or a part of , either a truncated normal distribution, or a truncated other distribution, such as gamma, 
lognormal and similar. Therefore, techniques become needed for estimation of properties of a non­
intermittent process from a periodic-stochastic, intermittent process. Techniques are further needed for the 
transformation of original variables or of their stochastic residuals in such a way that the periodic­
stochasti c, intermittent process of an asymmetric var iable becomes only the truncated part of a normal 
distribution i n case of the non-normal distribution of variables . The above two doctoral theses, one more 
tilted toward the theoretical and the other more toward the practical side, are the attempts to impl ement the 
above concepts by postulating the mathematical models and by estimating parameters of non-intermittent time 
seri es from the original , intermittent series. Once the properties of the non-1ntermtttent dtscrete time 
series ar e estimated for each point of a multi-point set of series , it then 5ecomes feasible to approximate 
closely by transformations their multivariate non-normal distribution by a multivariate normal distri~ution. 
From it then the periodic parameters can be estimated by fitting a set of harmonics in the Fourier analysis, 
and the periodic parameters appropriately removed from the seri es. The remaining stationary stochasti c 
components may be either dependent or independent time processes. For a dependent process, linear dependence 
models can be inferred and their parameters estimated. This permits the computation of the independent 
identically distributed residual s, as the time independent stochastic components (TISC-variables). Once the 
series have been reduced to a set of normal , time independent, identically distributed stochastic processes , 
their spatial lag-zero correlation matrix enables a transformation of this set of series to their principal 
components, as a new set of space and time independent normal process . To generate the new samples of mul ti­
point series , the normal independent samples are generated for each point and the reversed procedure applied 
on t hese time and space normal independent processes. Further transformations of reverse order produce the 
per iodic-stochast ic , non-intermittent process at each poi nt. They preserve then the space dependenc~. 
periodicity and t ime dependence. By equating each negative value with zero, the multivariate, periodic­
stochastic truncated (or intermittent) normal process is simulated by a set of new samples. Variables are 
then transformed from normal to the corresponding non-normal di stribution. 
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The writer of this Foreword is convinced that the approach outlined above, and studied in this paper, 
for the generation of new samples by using the Monte Carlo {or statistical experimental} sample generation 
method is a feasible, practical method to model a set of periodic-stochastic, intermittent, time and space 
dependent series. 

The other problem investigated by Dr . Jerson Kelman is the difference process applicable to the non­
intermittent discrete time series, such as the non-intermittent daily runoff series . It is assumed that 
whenever the flow increases for a river the response of the river basin is different from its response during 
the river flow decrease. Therefore, the process could be divided into two separate but interconnected 
intermittent processes: the positive intermittent process as a difference process during the runoff increase, 
and a negative intermittent process as another difference process during the runoff decrease. The two 
difference processes, each considered as an intermittent process, are then combined to become a non- intermittent 
process. 

Further research into the application of the above concept of considering the intermittent processes at 
a set of points along a line, over an area or across a space as the truncated processes of the periodic­
stochastic, non-intermittent processes, is needed to sharpen the practical aspects of this method for the 
generation of new series. 

February 1977 
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Vujica Yevjevich 
Professor-in-Charge of 
Hydrology and Water Resources Program 
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CHAPTER I 
Introduction 

Precipitation over an area is a physical process 
that occurs continuously in time. The precipitation 
process is basically a random (or stochasti c) phenom­
enon in that, given the present state, the future 
behavi or of the process can be predicted only on a 
probability basis. The precipitation process also 
contains periodic components due to the seasonal 
~ariation of precipitation within the year. The 
1nstantaneous rate of precipitation (precipitation 
intensity) is the most basic descriptor of the pre­
cipitation process. Precipi tation intensity at all 
points on the earth's surface has some value, either 
zero or greater than zero , at all points in time. 
Precipitation intensity, therefore, may be described 
as a continuous time-area stochasti c process. 

The continuous time-area precipitation process 
cannot be measured di rect ly. In measuring preci p­
itation, the process is usually made discrete in space 
by sampling the process at selected points (stations). 
The precipitation process at a point is usually . 
described by a discrete time series of precipitation 
amounts for some time interval, like an hour, day, 
month or year. Therefore, most precipitation data are 
discrete in both time and space . If precipitation 
over an area is required, the precipitation amounts 
for the desired time interval at given points are 
weighted with some weighting technique to give pre­
cipitation over t he area for the time interval. 

1. SCope and Objectives of the Study 

Thi s study is concerned with the development of a 
model of the periodic-stochastic structure of daily 
precipitation over an area or watershed. One day wa s 
chosen as the length of the discrete time interval 
because daily time series contain more information 
about the precipitation process than monthly or annual 
time series, and long records of daily precipitation 
are avail able at many locations. Daily precipitation 
i s sufficient for many water r esource projects. 

The model developed in this study is intended to 
be used to generate daily precipitation samples at 
selected points within an area. The parameters of a 
time-area daily precipitation model should be a 
function of position within a region . Therefore, the 
primary objectives of this study are (1) to develop a 
model capable of being used to generate dai ly pre­
cipitation samples at n arbitrary points within a 
region with the same time-area characteristics as 
observed samples, and (2) to regionalize t he model 
parameters within a region so that the model can be 
used anywhere within the region . 

2. Advantages of a DaiZy PNcipitation ModeZ 

The stochastic generation of large samples of 
dai ly precipitation at stations wi thin an area cannot 
add information to that contained in a historical set 
of data . However, a model capabl e of being used to 
generate daily precipitation over an area offers 
several advantages over historical daily precipitation 
data. These advantages include the fol lowing: 

1. The information contained in a historic set 
of data can be more completely extracted by 
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examining a large number of time-area 
precipitation patterns that are as likely to 
occur in the future as t he observed pattern. 

2. If the parameters of the model are deter­
mined as a function of position within t he 
region, new samples can be generated at 
points where no data have been recorded. 

3. Generated data can be immediately available 
in computer-compat ible form for analysis of 
water resource projects. Histori c data 
often must be laboriously extracted from 
publications. 

3. Approach to the ProbZem 

The basic approach used in this study was ( 1) to 
develop a model capable of describing the per iodic 
and stochastic characteristics of daily precipitation 
over an area, (2) to use daily precipitation data at 
multiple points within a region to infer the model 
parameters and (3) to test the model by generating 
long sequences of daily precipitation data for 
several stations i n an area and comparing generated 
data to historic data. 

Daily precipitation series for all stations in 
an area contain many zero values. Most precipitation 
models developed for daily or shorter time intervals 
have been restricted to a single station and utilize 
a Markov chain model for describing the probabilities 
of occurrence or nonoccurrence of precipitation 
(Smith and Schrei ber , 1973 ; and Patti son, 1965). 
These models cannot easi ly be generalized to describe 
the probabilities of rainfall at multiple points 
because the number of states involved becomes large 
and estimation of the transition probabi lities 
becomes difficult. For example, if a simple Markov 
chain is assumed to describe the probabi lity of wet 
or dry interval s at a single station, the transition 
matrix contains only four probabilities: (1) wet 
given wet on the previous interva), (2) wet given 
dry, (3) dry given wet, and (4) dry given dry. If 
the Markov chain is expanded to include n stations 
with a wet or dry state at each station , the number 
of elements in the transition matrix is given by 

{1- 1} 

where p is the number of elements in the transition 
matrix, and n is the number of stations in the 
network. With four stations, p becomes 256. A 
matrix of this size is unmanageable, and accurate 
estimati on of all the trans ition probabilities from 
historic data would be practically impossible. 

To avoid the problem involved with Markov chain 
approaches , a model for generating daily rainfall at 
multiple stations should treat daily rainfall as a 
continuous variabl e . This implies t he use of a 
multivariate distribution wi t h continuous rainfall 
amounts at discrete points in time and space. The 
only multivariate distribution for whi ch a multi­
variate generation technique has been well-developed 
is the multivariate normal distribution (Matalas, 
1967) . The model proposed here is, t herefore, based 
on the multivariate normal di str ibution. 



The assumption that the stochastic structure of 
daily precipitation over an area may be described by 
a multi variate normal distribution means that the 
daily precipitation at each point in the area must be 
normally distributed or be capable of being trans­
formed to a normal distribution. The general ap­
proach used in this study is to describe the distri­
bution of daily precipitation at each station with a 
univariate normal distribution. The integral of the 
normal distribution from -w to 0 is the probability 
of zero daily precipitation and the remainder of the 
distribution describes the distribution of rainfall 
amounts for days of measurable rainfal l. 

The daily precipitation data at each station are 
reduced to approximately second-order stationary , 
normally distributed random variabl es. These random 
variables are dependent in both time and space . The 
cross correlation coefficients between pairs of these 
random variables are used to describe the dependence 
in space. The serial correlation coefficients of the 
sequence of random variables for each station are 
used to describe the dependence in time. 

4. ProbabiZity Distributions of Point RainfaZZ 
Amounts 

Many researchers have attempted to fit a dis­
tribution to precipitation data or have transformed 
the data to obtain a fit by a particular distr ibution. 
The first attempt to fit a continuous probability 
distribution to precipitation data frequency curves 
was made by Slade (1936). He used a logarithmic 
transformation of annual rainfall amounts and fitted 
a normal distr ibution to the results. Thorn (1940) 
considered the frequency of annual preci pitation but 
fitted smooth distribution curves to the data, rather 
than using a specific distribution function. A 
similar procedure was used by Beer et. al. (1946) for 
monthly rainfall amounts. Whitcomb (1940) fitted a 
Pearson Type III curve to .monthly precipitation. 

Several transformations that would make precip­
itation data normally distributed have been studied. 
Thorn (1957) used a gamma distribution to fit storm 
amounts and then transformed the gamma distribution 
to a normal distribution. Stidd (1953) and Beals 
(1954) suggested that precipitation amounts raised to 
a fractional power are normally distributed. Stidd 
used a cube root transformation to transform annual, 
monthly and daily rainfall values to a normal distri­
bution. Beals found that daily rainfall amounts to 
the one-fourth power were normally distributed. 
Franz (1970) followed the fractional power concept of 
Stidd and Beal s and used a non-linear estimation 
technique to determine the magnitude of the nor­
malizing fractional exponent for hourly precipitation 
data. The exponents were found to range from 0. 23 to 
0.52 for the stations studied by Franz. 

Markovic (1965) studied the distributions of 
annual precipitation for several precipitation 
stations in the Western United States and Sout h­
western Canada . The normal, two-parameter log­
normal, three-parameter log-normal, two-parameter 
gamma, and three-parameter gamma probability distri­
bution functions were fit to the observe~ data for 
each precipitation station. The five functions were 
found to be applicable with a difference in the 
number of cases, whi ch passed a Chi-square test in 
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fitting the observed annual precipitation frequency 
distributions. 

5. Time Persistence in Precipi~ion 

Precipitation amounts for some interval of time 
are usually not independent of preceding values. 
Meteorological conditions at one time tend to carry 
over, or persist, into later times. The most common 
technique of determining the degree of persistence in 
a time series is by autocorrelation. The autocorre­
lation coefficients give a measure of the degree of 
linear association of values in a time series that 
are k units apart. The autocorrelation coefficient 
pk for an infinite discrete series {xi} 7=1 is defined 
by 

(1-2) 
var x1 

and may be estimated from a sample series by 

..L'~ .. -b("i'.\l"i' . ) 
., • _ ____ . ... "71-•1--:-

1 ·~ .. -~..__._, _;_i•1--'-~-''·_1_._ .. ':--=-:-:- . {1-3) 

rt; ~: ·~ . it;r(~ ·n VI~. ~!:.~ .. _ ~G!: ., .. nl/1 
where rk' k•1,2 ... , N is the k-th autocorrelation 
coefficient; N is the total number of values in the 
discrete time series; k is the units of lag, and x1 
is the value of the variable for the i -th position in 
the time series (Yevjevich, 1972a). 

Intuitively, the degree of persistance should 
decrease as the length of the time interval of a 
discrete precipitation time series increases. Yearly 
precipitation amounts have consistently been found to 
be independent. Kotz and Neumann (1959) cited 
studies by Yule (1g45) in which serial correlations 
of annual rainfall in Great Britain were found to be 
nonsignificant. Brittain f1961) also found annual 
rainfall amounts to be independent series. Monthly 
precipitation amounts have been found to be indepen­
dent in most cases (Pattison, 1965; Yevjevich and 
Karplus, 1973; and Namias, 1952). Precipitation 
amounts for time intervals of 1 day or less have 
consistently displayed persistence. Feyerherm and 
Bark (1965) found dependence in daily precipitation. 
Pattison (1965) and Franz (1970) found hourly rain­
fall to be dependent in time. 

6. Univariate Rainfall Gensration Models 

There have been many attempts to develop methods 
of generating new sequences of rainfall at a point. 
Rainfall for short time intervals, like a day or an 
hour, has been diffi cult to model because of the 
sequential persistence between rainfall amounts and 
because the time series are dominated by zero values 
(intermittent process). The occurrence or nonoccur­
rence of rainfall for short intervals, like an hour 
or a day, have normally been described by Markov 
chains. Gabriel and Neumann (1962) seemed to have 
been the first to successfully describe the occur­
rence or nonocc~rrence of daily rainfall wi th a 
Markov chain model. Additional evidence of the 
feasibility of using a Markov chain to describe the 
occurrence of sequences of wet or dry days was given 
by Caskey (1963) , Weiss (1964), and Hopkins and 



Robillard (1964). However the findings of Newnham 
(1916), Jorgensen (1949), and Cooke (1953) demon­
strated that the Markov chain was not universally 
successful. 

Smith and Schreiber (1973) tested the hypothesi s 
of sequential independence (Bernoulli model) versus a 
first-order Markov chain hypothesis for the occurrence 
of wet or dry days during the summer rainy season in 
southeastern Arizona. The Markov chain model was 
found to be signi ficantly superior to the Bernoulli 
model in reproducing the distributions of wet and dry 
run-lengths, occurrence of the first wet day in the 
season , number of runs per season, and the total 
number of rainfall days per season. 

?. Mu~tivariate Generation MOde~s 

Fiering (1964) introduced the use of mu lti­
variate techniques for generating new sequences of a 
hydrologic process at several stations . He assumed 
that annual streamflow at each site was normally 
distributed or could be rendered normal by a suitable 
transformation. By computing the eigenvectors of the 
correlation matrix, he transformed the observed data 
into sequences of principal components, with sequences 
uncorrelated and independent. A single station model 
was then used to generate the sequences of principal 
components . 

Matal as {1967) pointed out that the Fier ing 
model fails to yield new multivariate sequences that 
resemble the multivariate historic sequences in terms 
of the lag-one serial correlation coefficient s of 
each station. Matalas then presented a technique for 
generating multivariate sequences that resemble the 
historic sequences in terms of the means , standard 
deviations, lag-one serial correlation coefficients , 
and lag-zero cross-cor rel ation coefficients. The 
basic equation was 

(1-4) 

where xi+1 and x1 are vectors whose values are the 
hydrologic variable minus t he means for times i and 
i+1 form stations; A and Bare m x m matr ices, whose 
elements must be defined from t he historic data; and 
t;+1 is a vector m of random components with zero 
means and unit variances, whose elements are inde­
pendent of x1. Matalas (1967) showed that the A and 
B matrices are defined by 

-1 A • M1M0 {1-5) 

and 

{1-6) 

where M i s the lag-zero covariance matrix of the 
hi stori2 data; M1 is the lag-one cross covariance 
matrix of the histor ic data, and the superscripts -1 
and T denote the inverse and transpose of the matrix, 
respectively. Equation {1-5) may be solved by 
straightforward matrix operations. The solution of 
equation (1-6) for matrix B is more involved. 
Matalas (1967) pointed out that the principal com­
ponents analysis technique could be used to solve for 
B. However, Young {1968) described a simple and 
direct solution for B. Inherent in the Matalas model 
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is the assumption that the hydrologic process is a. 
sample from a multivariate normal distribution or may 
be reduced to a multivariate normal process. 

Young and Pisano (1968) presented a modification 
of the Matalas model for generating multiple site 
monthly streamflow. Monthly streamflow data were 
made to conform to a normal distribution by using a 
logarithmic or square root transformation. The 
seasonal mean and standard deviations were removed 
usi ng a technique given by Yevjevich {1966) to yield 
second-order stationary residuals. The Matalas model 
was then used to generate new residuals and the 
cyclic patterns in the means and standard deviations 
were added. The inverse of the normality transfor­
mation was used to produce the new multisite monthly 
streamflow. 

Nicks {1974) developed a technique for gener­
ating daily rainfall at several raingages in a 
watershed. The occurrence or nonoccurrence of 
rainfall on each day at some gage on the watershed 
was generated using the Markov chain approach. When 
a wet day was generated, the location of the maximum 
rainfall amount within the area was determined , 
assuming the maximum amount could occur with equal 
probability at any gage within the network. The 
maximum daily rainfall amount was then generated 
using a skewed normal distribution . The spatial 
pattern of rainfall over the watershed was then 
generated using a deterministic-probabilistic model 
relating rainfall at a given point to the maximum 
rainfall amount. The Markov chain method of gener­
ating wet-dry sequences for a large area and the 
method of generating maximum daily amounts was found 
to be highly satisfactory. Improvements in the 
method of generating spatial patterns of rainfal l 
were found to be needed. 

8. Regionalization of Hydzoo7,ogic Parameters 

With the relatively recent advent of generation 
of hydrologic series , attention has been given to 
methods of regionalizing the parameters required to 
generate new sequences of hydrol ogic variables. 
Benson and Matalas (1967) stated that the two major 
deficienc ies in generation of hydrologic sequences 
are: (1) large errors in estimating statistical 
parameters due to errors in the original sample and 
(2) new sequences could not be generated for ungaged 
locations. To overcome these shortcomings a method 
was proposed that would use statistical parameter s 
derived from generalized relationships with hydro­
logic characteristics of a drainage basin, rather 
than the sample statistics determined from a historic 
series of data at a site. 

Yevjevich and Karplus (1973) analyzed the 
structure of monthly precipitation over an area, 
based on the concept that the process is composed of 
determi nistic components due to the seasonal nature 
of precipitation and a stationary stochastic com­
ponent. The parameters were found to follow regional 
trends. Models describing the periodicity and 
regional trends in parameters were then developed. 
When the periodicity and regional trends in monthly 
precipitation were removed, the remaining stationary 
stochastic components were found to be approximate·ly 
time independent and distributed according to the 
three-parameter gamma probability distribution 
function. The stochastic components were highly 

., 



cross-correlated and the lag-zero cross correlation 
was a function of interstation distance. The results 
of the· study showed that precipitation data at 
several points i n a region have more information on 
all parameters of a given point series than each 

4 

indi vidual series. The regionalization of the 
parameters of the process and of the coefficients of 
the periodic parameters significantly reduced the 
number of coeffi cients to be estimated. 



CHAPTER II 
Structural Model for Daily Precipitation 

The objective of this study, as stated in the 
introdu,ction, is to develop a structural model capable 
of bein9 used to generate daily precipitation at 
arbitrary locations within a watershed. Such a model 
would d,escribe the time-space variation of daily 
precipitation over an area . This chapter presents 
mathematical models describing the structure of the 
area-time daily precipitation process and models 
describing the generation process. 

The model developed in this study to describe 
daily precipitation over an area was based on a 
multivariate normal distribution. The assumption of 
a multivariate normal distribution means that the 
marginal distributions (rainfall at a point) must be 
normally distributed. However, the transformation of 
point rainfall to a normally distributed random 
variable, as stated by Franz (1970), does not insure 
that the precipitation at several points is multi­
variate normal, because normal marginal distributions 
are a necessary but not a sufficient condition for a 
multivariate normal distribution. In this study, 
however, it is assumed that, if precipitation at all 
points in an area are transformed so that each con­
forms to a univariate normal distribution, the pre­
cipitation at all points can be described by a multi­
variate normal distribution. 

1. OutZine of the Time-Area Precipitation ModeZ 

There are two basic alternatives that may be used 
in developing the structure of a model of daily 
precipitation over an area based on a multivariate 
normal distribution. The primary difference in the 
two alternatives is that with one approach the peri­
odic means and standard deviations are removed before 
the data are transformed to a normal distribution and 
with the other approach the data are transformed 
before the periodic means and standard deviations are 
removed. The steps involved in the two alternatives 
are outlined below. These steps, for each alterna­
tive, can vary depending on the outcome of the anal­
ysis for a particular set of data . 

a. AZternative I . The first alternative is to 
remove the periodic means and periodic standard 
deviations before transforming the data. The steps in 
this alternative include the following: 

1. Calculate, for each day of the year, the mean 
and standard deviation of daily precipitation 
given the occurrence of a wet day. 

2. Remove the periodic means and standard 
deviations from the original data, consid­
ering only the nonzero daily precipitation 
data. 

3. Transform the nonzero values of the new 
sequences to approximate a sampl e from a 
truncated normal distribution. 

4. Examine the time dependence (autocorrelation) 
of the transformed sequence for each station. 

5. Examine the space dependence (cross 

correlation) between sequences for pairs of 
stations. 

These steps may be simplified, depending on the 
results of the analysis. For example, if the ratios 
of the means and standard deviations calculated in 
step 1 are found to be a constant during the year, 
only the periodic standard deviations need to be 
removed in step 2 by dividing each nonzero daily 
precipitation value by the standard deviation for the 
given day. The resulting sequence would contain only 
zero or positive values. If both the means and 
standard deviatio,ns were removed by subtracting the 
means and dividing by the standard deviations, the 
resulting sequence would contain negative values for 
days with nonzero precipitation amounts smaller than 
the mean. 

b. AZternative II. The second alternative is to 
apply a normalizing transformation before inferring 
and removing the periodic means and standard devia­
tions . The steps in this alternative are as follows: 

1. Transform the nonzero data so that the data 
for each day of the year approximates a 
sample from a truncated normal distribution. 

2. Determine the mean and standard deviation for 
each day of the year using the transformed 
nonzero daily precipitation data. 

3. Remove the periodic means and standard 
deviations from the transformed data, con­
sidering only the nonzero data. 

4. Exami ne the time dependence of the stationary 
sequence for each station. 

5. Examine the space dependence between sta-
tionary sequences for pairs of stations. 

Both alternatives were examined to determine which 
alternative would give the best model for the time­
area daily precipitation process. The two alterna­
tives will be examined with actual precipitation data 
in Chapter III. (Alternative II proved to be the most 
desirable method of analysis.) In the following 
section, the concepts, procedures, and mathematics of 
the time-area dai ly precipitation model, using Alter­
native II, are given. 

The procedure used to model daily precipitation 
over an area is outlined with block diagrams in 
Figures 2-1 and 2-2. Figure 2-1 illustrates the 
concepts involved in the time-area precipitation model 
and indicates the procedure used to analyze the 
precipitation data and evaluate the model parameters. 
Figure 2-2 illustrates the procedure used to generate 
new sequences of precipitation over an area. Each 
step in the procedure is described in detail in later 
sections. The entire process is briefly outlined 
here. 

In analyzing the data and determining the model 
parameters, daily precipitation for stations within 
the region under study must be obtained (Figure 2-1). 

, 
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Figure 2-1. Diagram of precipitation data analysis procedure. 

The sequence of daily precipitation amounts {zero and 
greater t han zero) at a given station is considered as 
a sample from a continuous process contai ning both 
positive and negative values , but which has been 
truncated at zero so that all the negative values 
appear as zero. Since the model is based on a multi ­
variate normal distribution, a normalizing transfor­
mation must be applied to the data for each station. 
The transformation is applied to t he nonzero data 
only, since the zero values are assumed to be negative 
values of unknown magnitude. After the transforma­
tion, the data are assumed to be normally distributed, 
but with periodic means and standard deviations due to 
the seasonal nature of precipitation. The means and 
standard deviations are then determined for each day 
of the year at each station, the periodic component of 
the means and standard deviations are described with 
Fourier series, and the nonzero transformed data are 
standa rdized by removing the peri odic means and 
standard deviations. The nonzero values of t he new 
sequence for each station are then assumed to be a 
sample from a stationary, standard normal {mean of 
zero and variance of one) process. The serial corre­
latio~ coefficients are determined for the stationary 
sequences for al1 stations , using only the nonzero 
values. The cross correlation between the stationary 
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random components for the various stations are then 
determined. The model paramet ers {Fourier coeffi­
cients , serial correlation coefficients, and cross 
correlation coefficients) are related to position, 
inter-station distance, etc., so that t he parameters 
can be determined for any arbitrary watershed position 
and precipitation station grid. 

The generation procedure is the inverse of t he 
data-analysis procedure and is illustrated in Figure 
2-2. A hypothetical grid of precipitation stations is 
selected for the area where new precipitation se­
quences are desi red. The model parameters are deter­
mined from the grid configuration and position in the 
region. Sequences of independent standard normal 
random numbers are generated for each st ation. Serial 
and cross correl ation are added into the series by 
using equation (1-4) with t he A and B matrices prop­
erly defined. The periodic mean and standard devia­
tion are introduced into the sequence for each sta­
tion. Each sequence is then truncated (negative 
va 1 ues are set to zero) and the inverse of the no·r­
malizing transformation is applied to yield t he new, 
generated precipitation series. 
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Figure 2-2. Diagram of procedure for generating new 
precipitation sequences for an area. 

2. Mathemati cal. ModeZ. of Daiz.y Pr>ecipitat ion at 
a Point 

Let the daily precipitation at a given station 
define the random variable xp with p the year and r ,r 
the day within the year. The xp series for most 

, T 
precipitation stations are dominated by zero amounts. 
Let y be the daily precipitation series after p,r 
application of a normalizing transformation. The 
transformation chosen for this study is the square 
root transformation. The reason for choosing the 
square root transformation will be il lustrated in 
Chapter III by using the actual precipitation data. 
For the immediate purpose of developing the model 
structure, the square root transformation will be 
assumed adequate for transforming nonzero daily 
precipitation to an approximately normal distribution. 
The Yp series is given by 

,T 

- 1/2 Yp - (xp ) . 
, 'T , T 

(2-1) 

a. Approxinr:ltion of da.ity precipitation ~th 
a truncated normal. distribution. The probability 
densi ty function of a continuous , normally-distributed 
random variable, z, is given by 

7 

-~( !_:__j !.i 
f(z) = - 1- e a 

ol2ii 
(2:-2) 

where u is the expected value (or mean), and o is the 
standard deviation of the distribution. The distri­
bution of daily precipitation (either xp or Yp ) is 

1 T ,T 
actually a mixed distribution containing both discrete 
and continuous variable values. For any given day, 
there is a finite probability of zero rainfall, while 
the distribution of rainfal l amounts greater than zero 
must be described by a continuous probability density 
function . With the approach taken in this study, 
transformed daily precipitation, y , at a station is p,r 
considered as a sample from a truncated normal distri­
bution. The zero values may then be considered 
negative amounts of unknown quantity. The integral of 
the normal di stribution from -~ to 0 is the probabil­
ity of zero daily precipitation, and the remainder of 
the distribution describes the distribution of rain­
fall amounts for days with rainfall greater than zero. 
The concept is illustrated by the frequency function 
and observed frequency hi stogram shown in Figure 2-3 . 
The area under the curve to the left of zero i s the 
probability of the zero daily rainfall. Nonzero daily 
precipitation values less than 0.01 inch are recorded 
as traces and are treated as zeros in this study. The 
area under the curve between 0 and 0.1 (square root of 
0.01) is the probability of a trace amount. 
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Figure 2-3. The truncated normal distribution of 
daily precipitation with a square root 
transformation. 
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b. Estimation of~. and a, . Daily precipi­
tation at a given station exhibits a periodic com­
ponent with a basic period of 1 year, as do prac­
tically all hydrologic time series with a time 
interval less than a year. This periodic nature 
causes the time series to be nonstationary. If the 
time series is to be treated as a stationary sto­
chastic process, the periodic component must be 
detected and removed. Periodicity may be present in 
the mean, standard deviation, autocorrela.tion func­
tion, or higher order moments of a hydrologic time 
series. In this study, only the periodicity in the 
mean and standard deviation are considered. 

Because of the periodicity of the mean and 
standard deviation, ~ and a for a given station 

T T 
must be estimated for each day, '• of the year. The 
method of moments are normally used to estimate the 
mean and standard deviation of the normal distribu­
tion. However, the method of moments could not be 
used to estimate the ~ and a of the transformed 

T T 

daily precipitation data because the data were 
truncated at zero. A method given by Cohen (195D) 
for obtaining maximum likelihood estimates of the 
mean and variance of normal populations from trun­
cated samples was adapted for estimating ~. and aT. 

The method given by Cohen is summarized below for a 
singly truncated normal population with the number of 
measured and the number of unmeasured observations 
known. 

Let Yo designate the left truncation point, 
i.e . , values less than y0 cannot be measured and 
values equal to or greater than y0 are measured. Let 
n0 be the number of measured observations equal to or 
greater than y0, and let n1 be the number of unmeas­
ured observations. For the specific case of daily 
precipitation at a point, y0 is 0.10 (square root of 
0.01 inch), n0 is the number of days of measurable 
rainfall on a given day of the year, and n1 is the 
number of days with zero rainfall on a gfven day. 
Translate the origin to the left truncation point by 
wi = y1 - Yo and let y = (y0 - ~)/a. The probability 
density function of w is given by 

1 -~{y + ;>2 
f(w) = - e {2-3) 

a/2,1 

Define r0 by 

... 2 
I = - 1- re-t 12dt. (2-4) 
0 ,12; y 

The likeli hood function is given by 
W; 2 

n no 
1 

-~( y + - ) 
L = (1 - I0) 1 

1r -- e a (2-5) 
i=l a.rzn 

or 
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no w. 2 
-~ l: (y + -2.) n n a 

L = (1 _ I ) 1 (-1-) 0 e 1=1 
0 a/2,1 

{2 -6) 

Taking logarithms of equation (2-6) gives 

( 
1 ) 1 "o w1 2 

ln l • n0 ln - - 2 t {y + 0 ) + n1 ln(l - t0). 
alrw 1• 1 

(2-7} 

Taking the partial derivatives of equation (2-7) with 
respect to y and a and equating to zero yield the 
maximum likelihood estimation equations 

n 
aL A. 0 Wi 
- = n -I....- - l: (y + -) = 0 
ay 1 1 - I 0 i = 1 o 

and {2-8 ) 
n 

aL-- no+.!.,. ~ {w.{y + wi0 = o 
a a - a a c. i= 1 1 a 1

] 

where 
2 

4> = _1_ e-y /2 
l2:ii 

{2-9) 

Let . 

(2-10) 

then equations (2-8) may be written as 

a [v - y] - n1 = 0 

and 
2 o - orn1 - n2 = 0, 

} (2-11) 

where n1 and n2 are the first and second moments 
about the truncation point y0, or 

no wk 
l: ....!. . nk '" n 

i=1 0 

Eliminating a from equations (2-11) yields 

11
2 1 ( 1 ) 2 "' y-:-y y-:-y - y • 

n1 

(2:-12) 

(2-13) 

Equation (2-13) may be solved for y ~Y iterative 
techniques. The maximum l ikelihood estimate of a may 
then be determined from either of the simultaneous 
equations given as equations (2-11). The estimate of 
~ is then given by 

~=yo-ay. (2-14) 

For daily precipitation at a point the maximum 
1 i kel ihood estimates of ~ and a for T '" 1,'2, • • •, 

T T 

365 are determined by using n0, n1, n1, and n2 to 
solve equation (2-13) for y. The value of o is 

T 



then determined from equation (2-11), and v is 
determined from equation (2-14). T 

c. Determination of the stationary random 
component, cp,t' The stationary random component, 
ep , with the periodic mean and standard deviation 

, T 
removed is given by 

Yp ~ 0. , T 
(2-15) 

The per iodic movement of v and a may be described 
T T 

by using Fourier series representation . The periodic 
component of a statistic, v , with a basi c period w 
can be represented by T 

v = 
T 

m 
v + I: (A. cos 2'~~j t + B. sin 2'~~jT) 

X j::1 J w J w 
(2-16) 

where v = the value of the parameter for the t -th 
T 

interval, vx = the mean of w values of vt , m = the 
number of harmonics, w = the number of intervals in 
the basic period, Aj and Bj • the Fourier coeffi -
cients. and j is the harmonic index. The Fourier 
coefficients can be determined by 

AJ. = ~ ~ (v - v ) cos 2'11jt 
W t=1 T X w 

. (2-17) 

and 

B _ 2 W ( ) • 21fj T 
. - - I: v - v s1n • 
J W t=1 T X w 

(2-18) 

It is often more convenient to express equation (2-
16) in the form 

m 
v = v + E cJ. cos ( 2'~~JT + e .) 

T X j=1 W J 
(2-19) 

where 

B 
C~ = A~ + B~ and eJ. = arc tan - ~ , 
J J J J 

(2-20) 

while 

Aj = Cj cos ej and Bj = -Cj sin ej . (2-21) 

The Cj values are the amplitudes of the various 
harmonics, and the e. values are the phase angles of 
the harmonics. J 

For daily precipitation at a station with w = 
365, t here are 365 values of any periodic parameter, 
vt . The maximum number of harmonics that may be used 
to describe the periodic movement of v is (w - 1)/2 

T 

or 182. However, the seasonal change in v or a is 
T T 

relati vely slow for most daily precipitation series. 
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Normally only a f ew harmonics are sufficient to 
describe the periodic movement of these parameters. 
The inclusion of too many harmonics to describe vT or 
a only serves to perpetuate the sampling errors 

T 

inherent in estimating vT or at . Yevjevich and 
Karplus (1973) found that only one harmonic was 
required to describe the periodic movement of the 
mean and the standard deviation of monthly precip­
itation for stations in the central part of the 
United States. Further, they found that the same 
phase angle , aj' could be used to describe the phase 
of the harmonic of the mean or the standard deviation 
for a given station. 

Equation (2-15) can be applied only to the 
nonzero values of t he yp series because the zero 

,T 
amounts are assumed to be negative quantities of 
unknown magnitude. When equation (2-15) is applied 
to all positive values in a series , with v and a 

T T 
gi ven by the Fourier series representation, the 
result is an ep series with zero values that are 

, T 
unchanged from the yp series and positive values 

, T 
that are stationary in the mean and standard devia­
tion. The entire t p series, including the negative 

, T 
unknown amounts represented by the zeros, is assumed 
to be stationary in the mean and standard deviation 
with a mean of zero and a standard deviation of 
unity. The new variable tp will, in general, be 

, T 
dependent in time, and there may be periodicities in 
the autocorrelation coefficients and in the higher­
order moments . 

d. Determination of the serial. deperu:knce 
of t . Assuming that t he serial dependence of e p,T p,T 
can be described by a linear autoregressive model, 
t is then given by p,T 

m 
e =I: a £ + t p,t k=1 k,T p,t-k p,T (2-22) 

where ak = the regression coefficients for lag k 
,T 

and tp = the i ndependent stochastic component . 
, T 

Assuming a first-order autoregressive model, equation 
(2-22) reduces for a1 = p1 to 

>T ,T 

£ =p £ + t p,T l,T p,T-1 p,t' (2-23) 

If pl is periodic , the periodic movement can 
, t 

be described by Fourier seri es, as shown above. 
However , Yevjevich {1972b) stated, "Precipitation 
discrete series wi th time intervals as fractions of 
the year show clearly that their nonstationarity 
basically results from the periodicity in the mean 
and standard deviation ... " For the further 
development of the model, p1 will be assumed 

, T 
constant throughout the year. The periodicity of 
p1 will be investigated in Chapter III. 

, T 

The autocorrelation of zero amounts within t he 
c series is meaningless. If the autocorrelation p, T 



coefficients are computed for the &p series, 
,t 

considering only the cases when both £p,-r and £p,T+k 
are nonzero, the autocorrelation coefficients of the 
stochastic component of daily precipitation, £ , 
may be determined. p,T 

3 . Mod8Z of th6 Dependence in Space of Daily Pre­
cipitation 

The ~P series for stations in a region are 
, t 

independent in sequence but dependent in space (or 
cross correlated). The linear cross correlation 
coefficient between the ~ series at different p,T 
stations may be used to express the degree of linear 
association between the series. Considering only the 
lag-zero cross correlation, the linear space depend­
ence may be expressed by 

~p,T{i) = Po(i ,j)~P,t{j) + t p, ,{i), (2-24) 

where ~P (i) and ~P {j) are the time-independent 
, T ,T 

stationary stochastic components of equation (2-23) 
for stations i and j, p0(i,j) is the lag-zero cross 
correl ation coefficient, and t (i) is a random p1-r 
component independent of ~ (jJ. Yevjevich and p,t 
Karplus (1973) pointed out that, in general, the 
cross correlation coefficient between the t p,t 
series of two stations is a function of position of 
one of the stations, the inter-station distance, and 
the orientation of the line connecting the two 
stations. It was shown that the effects of position 
and orientation were small as compared with that of 
the inter-station distance. 

4. Th£ Multivariate Generati on Model 

The multivariate generation procedure used here 
is a modification of that given by Matalas (1967). 
The matrix equations used by Matalas for generating 
multivariate data and for defining the matrices used 
in the generation procedure were given i n equations 
(1-4). (1-5), and (1-6). The generation equation, as 
used in this study, may be written as 

(2-25) 

where ~ i+1 is a vector of m random components; &i+l 
and t ; are vectors whose values are the generated 
hydrol ogic series for m stations with the means 
removed ; and A and Bare m x m matrices. whose 
el ements are defined in such a way that the new 
multivariate sequences preserve means, standard 
deviations, skewnesses, lag-one serial correl ation 
coefficients, and lag-zero cross correlation coeffi­
cients of the population inferred from the historic 
multivariate sequences . The Ei series generated with 
equati on (2-25) are both serially correl ated and 
cross correlated and correspond to the EP series 

, t 

given by equation (2-23). The A and B matrices are 
determined from M0 and M1 as seen from equations (1-

5) and (1-6). The M0 and M1 matrices, as defined by 
Matalas (1967), may be written 
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r 
p0(1,2)ctl"Z .,u~~~·~] 

p0(2,l)a2''l 2 Po(2,nlazan "2 (2-26) "o" . 
Po(n,l)an"l p 0(n,2)on"2 

2 
"n 

and 

rll·l , 1 (1,2)o1o2 • • • 't (l,o)o1o,] 

Pl (2, l)o2o1 pl (2)o~ . . . pl (2,n)o2on 
(2-27} "1 . . . . 

2 
Pl (n,l)on"l Pl (n,2)on"2 . . . Pl (n)on 

where p1(i) is the lag-one serial correlation coeffi-
cient of the E series for station i, p0(i ,j) fs p,T 
the lag-zero cross correlation coefficient between 
~ series for stations i and j, and p1{i ,j) is the p,T 
lag-one cross correlation coefficient between t p 

, T 
series with the series for station j lagged one unit 
relative to the series for station i. 

By mathematical definition, M1 contains the lag­
one cross-correlation coefficients. The values of 
p

1
{i,j) and p1(j,i} are not the same. Use of cross-

correlation coefficients with lags greater or smaller 
than zero implies that one random variable precedes 
the other random variable in time. For daily precip­
itation, significant lag cross-correlation coeffi ­
cients may occur as a result of frontal-type prec ip­
itation that deposits precipitation at one station 
before another station. However, the lag between the 
precipitation at two stations depends on the distance 
between the stations and the rate of movement of the 
precipitation front. Conceivably, the cross­
correlation coefffcient for lag-two (or some other 
lag) may be greater than that for lag-one. From a 
physical point of view, calculating and attempting to 
preserve the lag-one cross-correlation coefficient 
without considering other lags {both positive and 
negative) is an unsound approach. 

The model was developed to preserve the lag-zero 
cross-correlation coefficients and the lag-one serial 
correlation coefficients of daily precipitation over 
an area. There is no physical reason to attempt to 
preserve the lag-one cross-correlation coefficients. 
However, use of the multivariate generation equation, 
given in equation (2-25), requires that some estimate 
of p

1
(i,j) be made . Matalas (1967) stated that, 

assuming a lag-one Markov process, the lag-one cross­
correlation coefficient is the product of the lag­
zero cross-correlation coefficient and the lag-one 
serial correlation coefficient of the variate, whose 
events occur at time i+l, or 

(2-28) 

The appropriateness of equation (2-28) for defining 
p

1
(i,j) for daily precipitation is questionable. 

However, equation (2-28) was used to define the 
p
1
(i ,j) values contained in the off-diagonal elements 

of M
1

. The assumption of the relationship in equa­
tion (2-28) for defining p1{i,j) was made to permit 



the multivariate generation equation to be used to 
generate new sequences that preserve the lag-zero 
cross correlation coefficients and the lag-one serial 
correlation coefficients inferred from historic 
sequences, and does not imply that equation (2-28) is 
a valid description of the lag-one cross correlation 
coefficients for daily precipitation. 

In this study, the daily precipitation series, 
xp , have been normalized, using an appropriate 

tT 

transformation to give the y series. The y p,T p,T 
series have been standardized by removing the peri­
odic means and periodic standard deviations, equation 
(2-15), resulting in £ series that are assumed to p,T 
be second-order stationary, with a mean of zero and a 
standard deviation of unity. Therefore, all the o· 

1 
terms in equations (2-26) and (2-27) becomes unities. 
Using the fact that, for the c series, p0(; ,j) p,T 
Po(j,i ), the M0 matrix reduces to the symmetric 
matrix 

1 • • • Po(Z,n) 

P0(1,2) . • • p0(1,n] 
(2-29) 

Po(Z,n) . • . 1 

Using equation (2-28), M1 reduces to 

P0(1 ,2)pl(2) PI (2) • • • Po(2 ,n)pl (2) 

[

P1(1) p0(1 ,2)p1(1) . .. Po(l,n)p
1
(1] 

"t • . (2-30) 

p0(l,n)p1(n) p0(2,n)p1(n) •.. p
1
(n) 

With these simplifications, M0 is simply the lag-zero 
cross-correlation matrix of the ~ series and is '>p,T , 
symmetric with each element of the principal diagonal 
equal to unity. M1 contains the lag-one serial 
correlations on the diagonal and the off-diagonal 
elements are the product of the lag-one serial 
correlations and the lag-zero cross correlations. 

a. ReZationehip between p for the total distri­
bution and p' for the truncated distribution. The 
A and B matrices may be determined from H0 and M1, 
using equations (1-5) and (1-6). The elements of M 
and M1 are defined from sample estimates of the lag9 
one serial correlation coefficients and the lag-zero 
cross-correlation coeffi cients. The estimates of the 
serial correlation and cross-correlation coefficients 
must be determined from the £ and the c series 

p,T p,T 
that are each approximately normally distributed with 
a mean of zero and a standard deviation of unity and 
have been truncated so that values less than the 
truncation point are unknown. 

Both the lag-one serial correlation coefficients 
and the lag-zero cross-correlation coefficients are 
equivalent to the product moment correlation coeffi­
cient of a bivariate normal distribution. The sample 
estimates of the correlation coefficients must be 
obtained using only the data above the truncation 
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point (nonzero daily precipitation). The estimate of 
the correlation coefficient of a bivariate normal 
obtained from a truncated distribution is less than 
that obtained from the total distribution. This 
point is illustrated graphically in Figure 2-4. In 
this example, a sample of 100 random variables from a 
bivariate standard normal distribution were gener­
ated. The correl ation coefficient used in the 
generation procedure was 0.60. Let x1 and Y; 
represent the random variables generated using the· 
bivariate normal distribution. The x1 and yi values 
were plotted in Figure 2-4. The correlation coef­
ficient of both the total sample and the sample with 
both distributions truncated at zero (both x1 and .Yi 
nonzero) were calculated. The correl ation coeffi­
cient for the 100 points of the total sampl e was 
0.57. The correlation coefficient for the 28 points 
in the truncated sample was only 0.35 . 
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Figure 2-4. Comparison of the lag-one serial cor­
relation coefficient for the total 
sample and for the positive values only 
for a generated N(O,l) process. 

Regier and Hamden (1971) derived an expression 
relating the correlation , p', of a bivariate standard 
normal distribution that has been truncated at a 
given point, a , to the correl ation, p , of the total, 
untruncated distribution . The results apply to both 
the lag-one serial correlation and lag-zero cross 
correlation of daily precipitation when the truncated 
normal distribution approach, which was described 
earlier , is used. The results were given by Regier 
and Hamden (1971) in tabul ar form and are plotted 1n 
Figure 2-5 for the range of truncation points that 
are applicable for daily precipitation in this study. 
The truncation point of the EP and the (P series 

,~ ,T 
depends on the normalizing transformation that is 
used and the values of~ and o , equation (2-15). 

T T 

Since ~ and o change throughout the year , the 
t T 



truncation point for a given series also changes 
during the year. 

' 

0 .1 

OJ 0.1 0.1 0.4 0.1 0.1 0.7 0.1 O.t 1.0 ,. 
Figure 2-5. Relationships between the correlation, 

p ' , of a bivariate standard normal 
distribution that has been truncated at 
a given point, a, to the correlation, p, 
of the total, untruncated distribution. 

In Chapter III, the estimates of the lag-one · 
serial correlation coefficients for the total dis­
tribution, p, are obtained by applying the relation­
ship given in Figure 2-5 to the p' values calculated 
from the truncated samples. The truncation point was 
calculated for each day of the year and each station. 
The average truncation point for each station was 
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determined by weighting the truncation point for each 
day of the year by the number of nonzero observati ons 
for that day. The average truncation point for each 
station was used to convert p ' top. Similarly, the 
estimates of the lag-zero cross-correlation coeffi­
cients were obtained by applying the relationship in 
Figure 2- 5 and the average truncation point for t he 
two series to the cross-correlation coefficient 
calculated from .the two truncated ~P.• series. 

b. Determination of the new xp series. After 
·' the c series are generated, the periodic means and p,T 

periodic standard deviations are inserted into the 
generated sequence for each station to yield the yp 
series by , T 

Y =aE + 11 p,T T p,T T' (2-31) 

where the 11, and aT are given in the Fourier series 
form. The new y series obtained at this point p,T 
contain both positive and negative values. The 
negative values are assumed to represent days without 
measurable precipitation and are set to zero. The 
daily precipitation series are determined by em­
ploying the inverse of the normalizing transforma­
tion, namely 

Values of xp 
, T 

Using the 

2 xp = (yp ) . 
t 'T • T 

less than 0.01 are set to zero. 

procedure described, new xp se-
·' 

l2-32) 

quences are generated that preserve the periodic 
means and periodic standard deviations, the lag-one 
serial correlation coefficients , and the lag-zero 
cross-correlation coefficients that are obtained from 
historic xp sequences . To be of value, the new 

,T 
x sequences must also duplicate, within statis-
P·• tical limits, the mean and standard deviation of 

annual precipitation for each station, the proba­
bility of zero daily precipitation, and the other 
parameters that are inferred from the historic data. 



CHAPTER Ill 
Evaluation of the Daily Precipitation Model 

for a Selected Region 

In this chapter, the parameters of the time-area 
daily precipitation process are evaluated for a 
specific region by using the model described in the 
previous chapter, and whether the model offers a 
valid d.escription of the time-space variation of 
daily precipitation for the selected region is 
determined. 

1. The Study Region 

A region in central Texas was chosen to be used 
in evaluating the proposed model for generating daily 
precipitation at several stations in an area. The 
study region (Figure 3-1) lies between 31 degrees and 
33 degrees North latitude and 95 and 99 degrees West 
longitude. Mean annual precipitation in the study 
region increases gradually from about 25 inches along 
the west side, to about 45 inches near the east side. 
There are no abrupt topographic features within the 
region to cause major changes in precipitation 
patterns. The elevation changes gradually from about 
300 feet above mean sea level in the southeast 
portion of the region to about 1400 feet along the 
western edge. 

Figure 3-1. Location and station number of precip­
itation stations within the study region 
and the mean annual precipi tation over 
the region. 

The variation of precipitation within the year 
is complex over the region. The mean monthly pre­
cipitation for two stations is shown in Figure 3-2. 
The mean monthly precipitation pattern for Gilmer 
(station 1), located near the eastern edge of the 
study region, shows a peak of 5.50 inches in April 

13 

and a smaller peak of 4.42 inches in December . At 
Brownwood (station 2), near the western edge of the 
region, all of the monthly means are smaller than 
those at Gilmer. The largest mean monthly precip­
itation at Brownwood is 4. 50 inches in May. A 
secondary peak of 2.77 inches occurs in September. 
At both stations the smal l est mean monthly precip­
itation occurs in August. The seasonal patterns of 
precipitation for these two stations are typical of 
that for the entire region. The precipitation within 
the region is characterized by a wet period in the 
late spring, fol lowed by a dry period in mid to late 
summer. A second peak, of smaller magnitude than the 
first, occurs in the fall. The mean annual and mean 
monthly precipitation, in general, decrease from east 
to west. 
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Figure 3-2. Mean monthly precipitation for Gilmer, 
near the eastern edge of the study area, 
and Brownwood, near the western edge of 
the study area. 

Twenty precipitation stations within the study 
region were chosen for use in this investigation. 
Daily precipitation data for each station for the 40 
years (1933-1972) were assembled and used in eval ­
uating the model parameters. Data on each station 
are given in Table 3-1. 

' -



Table 3-1. Data on precipitation stations used in 
this study. 

No. St~tion "- Index 11o.Y 
latitude 
(• No~th) 

Longitude Elevation 
(• West ) (fee t ) 

1 Breckenridge 1042 32.77 98.90 1185 
2 Brownwood 1138 31.72 98. 98 1435 
3 Cente~ville 1596 31.27 95.98 330 
4 CoManche 1914 31.90 98.60 1345 
5 Cor-si tiM 2019 32.08 96.46 425 
6 Crockett 2114 31.30 95. 45 347 
7 Dallas 2244 32.85 96.85 481 
8 01alvi11e 2444 31.87 95.27 620 
9 Dublin 2598 32. 10 98.33 1502 

10 Fo~t Worth 3283 32.83 97. 05 537 
11 Gil•~ 3546 32.73 94.98 390 
12 Hewitt 4122 31.45 97.18 642 
13 H111sbo~ 4182 32. 02 97. 12 550 
14 1Cauf1111n 4705 32.58 96. 32 438 
15 La~~pasas 5018 31.05 98. 18 1024 
16 Mexh 5869 31.68 96. 48 529 
17 Palestine 6757 31.78 95. 65 600 
18 Riesel 2/ 31.45 96. 88 560 
19 Teople 8"910 31.10 97.35 700 
20 W.to 9419 31.62 97. 22 500 

~ U.S. Weathe~ 8u~au Index nudler . 
Operated by USDA Ag~icultural Research Service. 

2. Evaluation of Normalizi ng Transformat ions 

For the multivariate normal distribution model 
that was described i n Chapter II to describe the 
time-area variation of daily precipitation, the 
precipitation at a given station must approximate a 
sample from a truncated univariate normal distribu­
tion. The general transformation that was investi ­
gated in this study for transforming daily precip­
itation to approximate a sample from a normal dis-
tribution was y = xa where a is a parameter to p,T p,T 
be estimated. Values of a wi ll generally be periodic 
within the year and will vary across the region. In 
this study, a transformation was desired that could 
be used for all periods of the year and all points in 
the region. Attention was centered on three simple 
values of a to determine if one of these values 
could be used to transform the daily precipitation 
data to approximate a sample f rom a normal distri­
bution . The three transformations that were inves­
tigated were: (1) y = x (no transformation), p,T p,T 
(2) Yp,T = xp, t:112 (square root transformation), and 

(3) Yp, T = xp, T113 (cube root transformation ) . 

Data for eight of the twenty stations within the 
study region were chosen to evaluate the three trans­
formations. The eight stations were chosen so that 
al l areas of the study region were represented . The 
location of the eight stations within the study 
region is shown in Figure 3-3. 

For each precipitation station, a different 
estimate of the mean and standard deviation could be 
made for each day of the year. However. t he ~ and 

T 

aT val ues for individual days are subject to large 
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Figure 3-3. Location of eight test stations withi n 
the study region. 

" 

sampling errors due to rel atively small sample sizes . 
For comparing the three cases, the year was divided 
into 13 periods of 28 days each. Since ~ and a 

T T 

change little from one day to the next, ~ and a 
T T 

were assumed constant for the 28 days of a given 
period. By grouping the data into 28-day periods, 
the sample sizes were larger and less sampling error 
was involved in the estimation of the mean and 
standard deviation for each period. Estimating ~ 

t: 

and aT by 28-day periods caused an abrupt change in 
the two parameters from the last day of a given 
period to the fi rst day of t he next period. Such an 
abrupt change was clearly unreasonable. However, t he 
approach of dividing the year into 28-day periods was 
used only for comparing the t hree transformations. 
Later in this chapter, after the appropriate trans­
format ion has been determi ned, ~ and a are esti -
mated for each day of the year. T T 

Maximum l ikel ihood estimates, m and s • of the 
T T 

means and standard deviat ions were determined for 
each of the three cases using the truncated normal 
technique descri'bed in Chapter II. For each trans­
formation , m and s were computed for each of the 13 

T T 
periods for the eight test stations. A chi-square 
goodness-of- fit parameter was calculated for each 
period and each station to determine how wel l the 
distribution of the data with a given transformation 
approximates a normal distribution. The observed 
data were sorted into classes. The days with zero 
precipitation were included in one class, and the 
days with nonzero precipitation were sorted among 
nine other classes, depending on the amount of 
precipitation. The nine classes for days with 
nonzero precipit ation represented about equal prob­
abi l ities . The chi - square parameter was calculated 
by 

m (fi - ei)
2 

l = l: 
i=l ei 

(3-1) 

where x2 ~ the chi-square parameter , fi = t he ob­
served frequencies (number of observations in the 
class interval i), ei • the expected frequencies, and 



m = the number of class intervals. The x2 computed 
with equation (3-1) was compared to a critical chi-
square value, x6. to test the hypothesis that the 
sample was from a normal population. The x2 param­
eter wil l have a chi-square distribution with k-1 
degrees of freedom, if the population parameters were 
not estimated from sample observations. If the 
population parameters were estimated from observa­
tions, the number of degrees of freedom fs decreased 
by the number of parameters that were estimated. In 
this study, two parameters, ~ and a , were esti-

T T 

mated. With 10 intervals and two estimated param­
eters the number of degrees of freedom was 7. The 
x6 value with 7 degrees of freedom and a 0.95 level 
of significance is 14. 1. The hypothesis that the 
sample was from a normal population would be rejected 

if the x2 parameter for a particular sample and a 
given transformation was greater than 14. 1. The 
hypothesis would be accepted if x2 was less than 
14.1. 

The values of the chi-square fit parameter are 
shown for each of the 13 periods and for three 
stations in Table 3-2. The results for the Crockett 
station showed that the square root transformation 
gave x2 

< x6 for 11 of the 13 periods, and the cube 
root transformation gave x2 

< x5 for only 2 periods. 
For the Hewitt data, the square root transformation 
resulted in x2 

< x5 for 11 periods and the cube root 
transformation gave x2 < x~ for 8 periods. The 
Breckenridge results showed that the square root 
transformation resulted in x2 

< x~ for all 13 pe­
riods, while the cube root transformation produced x2 

< x~ for 3 periods. The x2 for no transformation 
(y = x) was much greater than x6 for each period and 
each station shown in Table 3-2. 

The average chi -square values for the 13 periods 
are shown for each of the eight test stations and the 
three transformations in Table 3-3. The square root 
transformation resulted in x2 

< x~ for six of the 
eight stations. The cube root transformation gave an 
average x2 

< x~ for only one of the eight stations. 
The average x2 for no transformation was much greater 
for all stations than X~· 

Typical cumulative probability distribution 
curves for data with the three transformations are 
shown in Figures 3-4, 3-5, and 3-6. The daily 
precipitation data for the third 28-day period of the 
year for the Gilmer station were used for all three 
figures. The Yp data for each transformation were 

, T 
arranged in ascending order, and the empirical 
cumulative probabilities, or plotting positions, were 
computed by 

P(y),. _ m_ 
N + 1 

(3-2) 
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where P(y) is the plotting position; m is the rank of 
the Yp value; and N is the total number of days. 

, T 
For the data shown in Figures 3-4, 3-5, and 3-6, t he 
period was 28 days long and the station series was 40 
years long; therefore, N • 40 x 28 = 1120. The 
sample contained 844 days with zero precipitation and 
276 days with measurable precipitation. The rank of 
the smallest y greater than zero was 845, and the p,'T 
plotting position was P(y) = 845/1120 = 0.754. The 
P(y) andy values for all Yp greater than zero p,T , T 
were plotted on normal probability paper and are 
shown for the three transformations in Figures 3-4, 
3-5, and 3-6. The maximum likelihood estimates of ur 
and or were used to plot the normal distribution 
cumulative probability l ine on the figures. The 
normal distribution line fit the square root data 
well throughout the range of the data (Figure 3-5). 
The x2 value was 9.4. The cube root data differed 
significantly from the normal distribution line for 
the larger precipitation amounts (Figure 3-6) and 
resulted in a x2 of 28.5. The precipitation data 
with no transformation was highly skewed and departed 
significant ly from the normal distribution line 
throughout the range of the data (Figure 3-4). The 
x2 value for no transformation was 130.3. 

These results indicated that, for the study 
region, the square root transformation is the best 
normalizing transformation of the three cases that 
were investigated. The sample x2 for the square root 
transformation was less than x6 for most of the 
samples. Therefore, the hypothesis that the samplles 
with the square root transformation were from normal 
populations was accepted. For the analysis that will 
fol low, the square root transformation will be 
assumed to be adequate for transforming the daily 
precipitation to a normal distribution. 

3. ~ateristics of the Square Root Transformation 

The density function of daily precipitation at a 
point given the occurrence of a wet day is, gener­
al ly, considered to be monotonically decreasing. 
Days with small rainfall amounts occur more fre­
quently than days with large rainfall amounts. 
Several probability density functions have been used 
to describe the distribution of daily precipitation 
amounts for days with measurable rainfall. The most 
commonly used distributions are the exponential and 
gamma distributions. 

If the distribution of daily precipitation for 
days with measurable rainfall is monotonically 
decreasing, it is appropriate to investigate the 
distribution of daily precipitation after the ap­
plication of the square root transformation . Assume 
that the two-parameter gamma distribution function, 
given by 

l3-3) 

describes the di stribution of daily precipitation, x, 
given the occurrence of nonzero daily rainfall. If 



Table 3-2. Chi-square goodness-of-fit parameter for no transformation, square root trans-
formation and cube root transformation for three precipitation stations in the 
study region. 

Crockett Hewitt Breckenridge 

Period y=x y=x1/2 y=x1/3 y=x y=x1/2 y•x1/3 y• x y=x1/2 y=x1/3 

1 169.1 1/ 23.8 288.0 7.1.!/ 4.~ 159.9 4.s¥t 10.oY 7.0f; 
2 201.6 12.~ 31.3 526.2 27.0 1~:~ 349.6 6.2T/ 16.7 
3 208.0 10. 3V, 20.31/ 265.3 19.w. 77.2 6. ili 16.2 
4 142.2 3. I/ 14.~ 232.9 13. 1/ 15.8 93.6 4. I 17.3 
5 207.5 10.1T/ 23.1 168.2 

1~:~ 35.3 132.2 6.~ 31.0 
6 72.3 9.7- 38. 1 119.2 36.lli 149.6 11. ili 30.51/ 7 39.9 16.31/ 44.1 74.9 2.~/ 13. 169.7 6. I 2.?f; 8 133.1 4·8f; 16.9 47.7 8.~ 21.7.!/ 126.1 3.m 5.1-
9 133.1 9. 7II 29.9 157.1 6.~ 11.1 135.8 10. I 20.4 

10 117.4 7.6 23. 5·
11 139.2 5. I 20.01/ 84 .6 10.~/ 30.8 

11 151.0 14.~ 10.5-!J 169.6 6.ili ].ill 89.1 3.~ 16.9 
12 199.8 20.3 199.3 8 . .!1 9 . .!1 34.5 13. I 34.8 
13 235.5 1~:gY 23.3 266.2 12.2 9.3 74.4 12.1- 21.9 

Avg. 154.7 w.oY 24.6 204.1 10.s.!f 15.8 128.9 7.aY 19.6 

y The x2 value is less than the x6 value of 14.1. 

Table 3-3. Average Chi-square fit parameter for no 
transformation , square root transforma­
tion, and cube root transfonmation for 
eight stations in the study regi on. 

No. Station N- y• x · yax1/2 yaxl/3 

1 Breckenr1 dge 128.9 7.~ 19.6 
2 Bro.;nwood 113.3 10.~ 23.8 
5 Corsicana 89.7 9. I 31.5 
6 Crockett 154.7 10.CP 24.~ 
7 Dallas 293.8 15.lli 12. 

11 Gilmer 167.0 9.&!1 23.7 
12 Hew1tt 204.1 10. . 15.8 
19 Te~~~~le • 357.5 25.3 16.2 

Ave. 188.4 12.:J/ 20.9 

y The x2 value 1s less than the~ value of 14.1. 

the transformation y = x112 is made, it may be shown 
t hat the distribution of y is 

2 
2 2a-1 -y /8 

g (y) = Y e ( 3-4) 
Ba r (a) 

The two-parameter gamma distribution given in 
equation (3-3} was fit to a sample of daily precip­
itation data. The data for the fourth 28-day period 
of the year at the Gilmer station was used to es­
timate the parameters. Maximum likelihood estimates 
of the a and B parameters were obtained using the 
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Cumulative probability distribution for 
daily precipitation (y ~ x) from the 
third 28-day period of the year at 
Gilmer, Texas. 

sample data. The estimated values of the parameters 
are a= 0.76 and a= 0.69. The gamma function with 
the estimated parameters may be written 

f(x} = 1.09 x-0·24 e-1·45x. (3-5) 

The observed frequency histogram and the fitted gamma 
frequency function are shown in Figure 3-7. The 
gamma function is a good fit of the observed histo­
gram. 
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the square root of daily precipitation 
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(y • x112) from the third 28-day period 
of the year at Gilmer , Texas. 
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Cumulative probability distribution for 
the cube root of daily precipitation 
(y ~ x113) from the third 28-day period 
of the year at Gi lmer, Texas. 

The estimated values of a and s, obtained from 
the sample of daily precipitation data, were substi­
tuted into equation (3-4 ). The fitted distribution 
of y, assuming x has a two-parameter gamma distri­
bution , may be written 

2 
g(y) = 2.18 i·51 e-1. 45Y (3-6) 

The observed frequency histogram of the square root 
of daily precipitation is shown in Figure 3-8. The 
fitted frequency function obtained from equation (3-
6) is also shown in Figure 3-8. The frequency 
function has a value of zero for y = 0. There is no 
data for the observed histogram for the interval 0 < 
y < 0.1, because values of y less than 0.1 (x < 0.01) 
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Figure 3-7. Daily precipitation data for the fourth 

28-day period of the year at Gilmer, 
Texas and the fitted two-parameter gamma 
frequency function. 

are recorded as zero. The observed frequency histo­
gram has a mode at the interval 0.2 s y < 0.3. The 
frequency function also has a mode, but the peak 
occurs at a y value of about 0.4. The frequency 
function is a good approximation of the observed 
histogram for values of y greater than 0.5. 

The fitted truncated normal distribution is also 
shown in Figure 3-8. The normal distribution does 
not have a mode within the range of Figure 3-8. 
Since the probability of zero daily precipitation is 
greater than 0.5 the peak of the normal di stribution 
occurs at a y value less than zero. The truncated 
normal frequency function is greater, for values of y 
less than 0.2, than both the observed histogram and 
the function determined by applying the square root 
transformation to the gamma distribution. Both 
frequency functions are good approximations of the 
observed frequency histogram for values of y greater 
than 0.5. 

If the truncated normal distribution shown in 
Figure 3-8 is used to generate new samples of the 
square root of daily precipitation , more values l ess 
than 0.2 would be generated than were observed. 
Generated values less than 0.1 are considered a trace 
and are set to zero. The values between 0. 1 and 0.2 
become daily precipitation amounts of 0.01 to 0.04 
inch, after the inverse of the transformation is 
applied. The generated sample would contain more 
days with precipitation between 0.01 and 0.04 inch 
than the observed sample. 

The observed frequency histograms shown in 
Figures 3-7 and 3-8 are typical of the distribution 
of daily precipitation for all stations in the study 
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Square root of daily precipitation data 
for the fourth 28-day period of the year 
at Gilmer, Texas, the square root 
transformation of the fitted gamma 
frequency function, and the fitted 
truncated normal frequency function. 

region. The frequency of occurrence of daily pre­
cipitation of a given amount decreases as the amount 
of daily precipitation increases. When the square 
root transformation is applied the distribution has a 
mode. The mode occurs at a small value of the square 
root of daily precipitation. The mode occurs in the 
interval 0.2 ~ y < 0.3 for some samples, like that in 
Figure 3-8. For other samples, the mode occurs in 
the interval 0.1 ~ y < 0.2 and does not seem to be a 
mode because values bel ow 0.1 are considered zero 
(Figure 2-3). The truncated normal distribution used 
in this study does not describe the mode observed in 
the distribution of the square root of daily precip­
itation. Use of the truncated normal distribution to 
generate new samples should result in samples that 
contain too many days with small rainfall amounts. 
However, days with very small precipitation amounts 
are unimportant for most hydrologic purposes. 

4. Eva~uation of A~ternative I and Alternative II 

Two basic alternatives for developing the time­
area daily precipitation model were outlined in 
Chapter II. The first alternative is to infer and 
remove the periodic means and standard deviations 
before transforming the data to approximate a sample 
from a normal distribution. The second alternative 
is to apply the normalizing transformation before 
inferring the means and standard deviations. 

There are two primary factors that cause daily 
precipitation values to be periodic within the year. 
First. the probability of the occurrence of a wet day 
may be periodic. Second, the parameters of the 
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distribution of daily precipitation given the oc­
currence of a wet day may also be periodic. If the 
probability of the occurrence of a wet day is peri­
odic within the year but the distribution of pre­
cipitation amounts given the occurrence of a wet day 
is nonperiodic, the resulting daily precipitation is 
periodic due to the frequency of occurrence of daily 
precipitation. Similarly, if the probability of a 
wet day is nonperiodic but the distribution of 
precipitation amounts given a wet day is periodic, 
the resulting daily precipitation is periodic. In 
many cases both the probability of a wet day and the 
distribution of precipitation amounts given a wet day 
are periodic. The periodic characteristics of these 
two factors, as will be shown later, affect the 
selection of the alternative to use in developing the 
model. 

Data from the Gilmer station were used to 
evaluate the two alternatives. The probability of a 
wet day, P(W), was calculated for each day of the 
year and is shown in Figure 3-9. The P(W) values 
were highly variable but displayed periodicity within 
the year . A Fourier series with two harmonics 
explained 14.2 percent of the variance of the 365 
values of P(W). The Fourier series representation, 
using two harmonics, is also shown in Figure 3-9. 

a. A~ternative I . The means and standard 
deviations of daily precipitation given the occur­
rence of a wet day were calculated for each day of 
the year. The results are shown in Figure 3-10. 
Fourier series with two harmonics explained about 10 
percent of the variance of the mean, ~~ · and 6 
percent of the variance of the standard deviation, 
o . The periodic movement of p and o is not in 
~ ~ ~ 

phase with that given in Figure 3-9 for P(W). The 
means and standard deviations have harmonics with 
about the same phase. The value of ~~/o~ was ap-
proximately constant (0.97) for all days of the year. 

The periodic means and standard deviations may 
be removed from the precipitation data by 

X - IJ 
p. ~ ~ z = --"-':..o-- -'- , xp ~ 0, 

p.~ o, ·' 
(3-7) 

or 

Use of equation (3-8) would result in both positive 
and negative values of zp for values of xp 

, 1' ,T 

greater than zero. Since p / o was approximately 
T T 

constant, the periodicity in the mean and standard 
deviation may be removed by 

X 

Z • _h!_ X '/ 0 (3-9) p,T 0~ ' p,T • 

Equation (3-9) was used to remove the perio­
dicity in the means and standard deviations of the 
daily precipitation data for the Gilmer station. The 
o values were determined from the Fourier series 

T 
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Figure 3-9. Daily values .of the probabi lity of a wet day and the fitted periodic component with two harmonics, 
Gilmer, Texas. 

representation. The zp data were transformed to 
,T 

approximate a sample from a truncated normal distri­
bution by 

Y = (z )1/2. 
p,T p,T (3-10) 

The means and standard deviations of the Yp series 
, T 

were determined for each day of the year using the 
truncated normal estimation technique. The results 
are shown in Figure 3-11. The standard deviations 
are approximately constant for the year. The means 
show a periodic movement similar to that of P(W) in 
Figure 3-9. With the truncated normal distribution 
concept that is used in this study, the probability 
of a day with zero precipitation, P(D), is given by 
the integral of the normal distribution from -~ to 
the truncation point. The probability of a wet day 
is given by 

P(W) = 1 - P(D) • (3-11) 

Since P(W) is periodic within the year and the 
standard deviation of the truncated normal distribu­
tion is constant, the mean of the truncated normal 
distribution must be periodic to properly define 
P(W). Therefore, with Alternative I separate descrip­
tions are required for the periodicity of P(W) and 
the periodicity of the parameters of the distribution 
of daily precipitation given the occurrence of a wet 
day. 
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b. Alternative II. The square root transforma­
tion was applied to all nonzero daily precipitation 
data for the Gilmer station. The mean, ~,. and the 
standard deviation, or ' were estimated for all 365 
days of the year, using the truncated normal estima­
tion technique. The results are given in Figure 3-
12. The estimates of both ~, and or have periodic 
components and large random sampling fluctuations. 
Fourier series with two harmonics were fit to the 
estimates of both ~t and or . 

All of the estimated ~, values are negative 
because P(D) is greater than 0.50 for each day of the 
year. P(D) for any day is given by the integral of 
the normal distribution from -~ to the truncation 
point . The distribution of daily precipitation, 
given the occurrence of a wet day, is given by the 
remainder of the distribution (Figure 2-3). With 
Alternative II both the periodicity of P(W) and the 
periodicity of the parameters of the distribution of 
daily precipitation given the occurrence of a wet day 
are defined by the Fourier series of ~ and a shown 
in Figure 3- 12. t T 

Figure 3- 10 shows that, with Alternative I, the 
means and the standard deviations of daily precipita­
tion given the occurrence of a wet day are directly 
proportional. Days with high means also had high 
standard deviations . The values of ~ / a were shown 

T T 
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Figure 3-10. The means and standard deviations of 
daily precipitation given a wet day and 
fitted per iodic components with two 
harmonics, Gilmer , Texas. 

to be approximately constant for al l days of the 
year . However, Figure 3- 12 shows that with Al terna­
tive II the standard deviations tend to be large when 
the means are s~ll. Since the means are negative 
and the standard deviations are posi tive, the values 
of ~ Ia are negative. For v /o to be approximately 

T T T T 

constant o must increase as~ decreases. 
T T 

Alternative II was chosen for developing the 
time-area daily precipitation model because the 
periodicity of both the probability of a wet day and 
the distribution of precipitation given a wet day 
could be described by describing the periodicity of 
the mean and standard deviation of the truncated 
normal after applying the square root transformation . 
Alternative II wil l be used in the remainder of this 
study. 

5. Deterrmination of Harrry;nica in 1.1T and oT 

The estimates of v and o , T = 1, 2, ... , 365 , 
• T T 

contain both periodic components and random sampling 
components. The random sampling fluctuations are 
particularly large i n this study because the large 
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Figure 3-11. The means and standard deviations of 
the truncated normal distribution after 
removal of the means and standard 
deviations given a wet day , Gilmer , 
Texas. 

number of days with zero precipitation on a given day 
of the year causes the nonzero sample size to be 
smal l. Values of m and s (the sample estimates of 

T T 
1.1 and o , respectively) were determined using the 

T T 

maximum likelihood technique for all 365 days of the 
year and for each station in the study region. The 
variability of m and s was illustrated i n Figure 3-

T T 
12 for a sel ected station wi thin the region. The 
random fluctuations of mt and st cause greater 
departures from the overall means than the amplitudes 
of the periodic components. This fact makes diffi­
cult the determination of the number of harmonics 
required to describe the periodic movement of v, and 
o . The inclusion of too many harmonics will per-

T 

petuate part of the sampli ng error involved in es­
timating the parameters. However, retaining too few 
harmonics will result in an inaccurate description of 
the periodic nature of the physical process. 
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Figure 3-12. Daily values of uT and crT and fitted periodic components with t wo harmoni cs , Gilmer, Texas. 

Yevjevich (1972b) outlined three approaches for 
determining the significant harmonics for describing 
the periodicity of parameters. The three approaches 
include: (1) Fisher's approach, (2) an approach 
usin~ the break point in a cumulative periodogram, 
and (3) an empirical approach using the first m 
harmonics that are required to explain a critical 
percent of the variation of the parameter. 

a. Fisher 's approach. Fisher's test is the 
cl assical method of testing each harmonic of a 
Fourier series description of a parameter for sig­
nificance. The test is based on the variance of 
indi vidual harmonics, Ci/2. If a given C~/2 value is 
not greater than a critical C~/2 value ofJ a normal 
independent stochastic process, the j -th harmonic is 
considered insignificant. The Fisher parameter for 
t he harmonic of maximum magnitude is 

c2 
g = max {3-12) 2s2. 

\) 

where s2 is the estimate of the variance of the 
\) 

parameter v. For the second and higher harmonics, 
the parameter is given by 
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c~ 
g = _ ___.JI..,--..----

2 j-l 
2s - r c~ 

\) i=1 1 

(3-13) 

If the g value for a specific harmonic is greater 
than a critical value, gc, the harmonic is signifi-
cant. A table of gc values for different sample 
sizes and probability levels is given by Yevjevich 
(1972b). 

Fisher's test is very difficult to apply in many 
cases. This is particularly true when attempting to 
determine the number of significant harmonics of a 
parameter in a very complex hydrologic time series 
with large random sampling components. Fre~uently, 
Fisher's test will indicate no significant harmonics 
in a hydrological parameter that has obvious seasonal 
fluctuation. In this study, Fisher's test was 
rejected because of the difficul ty in applying it, 
and the other two approaches given by Yevjevich were 
investigated to determine an appropriate test proce­
dure for the number of significant harmonics of u 
and o . T 

T 

b. Pe'l'iodogram break point technique. The 
portion of the variance of a parameter that is 
explained by the first m harmonics may be determined 
by 



m C~/2 
p =I: + 
m j=l s 

v 

(3-14) 

where s2 is the estimate of the variance of the 365 
v 

values of the parameter . . The cumulative periodogram 
method. was described by Yevjevich {1972b) as being 
based on the concept that Pm as a function of m is 
composed of two parts: (1) a fast ri sing part 
associated with the periodic component, and (2) a 
slow rising part associated with the random com­
ponent. Yevjevich suggested that the two parts be 
approximated by smooth curves (or straight lines) 
intersecting at a point. The number of harmonics 
corresponding to the intersection point is taken to 
be the number of significant harmonics. 

Values of m and s , t = 1, 2, ... , 365, were 
T T 

computed for selected Yp series, using the trun-
, t 

cated normal technique described earlier. A Fourier 
ser ies with 182 harmonics was fitted to each set of 
m and s values. The C~/2 values were computed and 

T T J 
the portion of the variance of the parameters ex­
plained by the first m harmonics was determined using 
equation (3-14). Periodograms of m and s were 

T T 

plotted for the selected Yp series. The per iodo-
,t 

grams for two stations are shown in Figures 3-13 and 
3- 14. The periodograms contain the fast rising part 
for the low order harmonics and the slow rising part 
for the higher order harmonics. However, the tran­
sition from the fast rising part to the slow rising 
part i s gradual for the four curves given in Figures 
3-13 and 3-14. These periodograms are typical of 
those obtained for all stations in the study region. 
An objective decision about the number of significant 
harmonics in ~ and o , based on these periodograms, 

T t 

was practically impossible. 

c . Critical, expLained variance approach. The 
third method given by Yevjevich for determining the 
number of significant harmonics of a hydrologic 
parameter is an empirical method based on determining 
the number of harmonics required to expl'ain a crit­
ical portion of the variance of the parameter. 
Experi ence has shown that for most hydrologic series 
harmonics beyond the sixth are very rarely shown to 
be significant. 

With the critical explained variance approach, 
the portion of the variance explained by the first j 
harmonics are computed by equation (3-14). The part 
of the variation explained by the first six harmonics 
is given by p6 . Two critical p values, Pmin and 
Pm , are defined. If p6 ~ p . , no significant ax m1n 
harmonics exist in the parameter. If Pmin < P6 ~ 
Pmax' all six harmonics of the parameter are sig­
nificant. If p6 > Pmax' less than six harmonics are 
significant. When less than six harmonics are found 
to be significant, the c;/2 values are arranged in 
descending order. The explained variance for each 
harmonic is determined and summed. The harmonics 
that are required to first give a pj value greater 
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than Pmax are considered the significant .harmonics. 

Empirical expressions for Pmi . and Pm , gi ven 
by Yevjevich (1972b) are n ax 

Pmin = a~ (3-15) 

and 

Pmax = 1 - Pmin (3-16) 

where ~ i s the l ength of the basic period, cis the 
highest moment used in defining the parameter, n i s 
the series length in years, and a is an empi ri cal 
constant. The suggested value for t he constant is 
a = 0.033. 

For the 40 years of daily precipi tation that 
were used in this study, w = 365 and n ~ 40. For m 

1" 

t he value of c i s 1, and for s the value of c is 2. 
T 

Using the constant a = 0.033, as suggested by 
Yevjevich, the cr i tical p values are 

Pmin(m
1

) = 0.099 

Pmax(m,) = 0.901 

Pm;n<s,) = 0.070 

Pmax(s, ) = 0.930. 

(3-17) 

(3-18) 

(3-19) 

(3-20) 

The Fourier coefficients for the first six 
harmonics of m and s were calculated for each of 

T T 
the 20 stations in the study region. The portion of 
the variance of each parameter explained by the first 
six harmonics was determined using equation (3-14). 
The results are given in Table 3-4. For 14 of the 20 
stations, p6{m

1
) was between the two critical p 

values for the mean. All 20 of the p6(sT) values 
were between the two critical standard deviation p 
values. Therefore, at thi s point in t he analysi s , 
all six harmonics of the mean and the standard 
deviation were assumed significant for stations 
within the study region. 

6. RegionaU.aation of Amptitudss and Phases i n 
Bannonics of 11

1 
and a, 

For the time-area model of daily precipitation 
to be useful at any part of the study region, the 
amplitude and phase coefficients of harmonics must be 
related to position within the region. The general 
mean of the sample daily means, m , and the amplitude 

T 

and phase angle, Cj (m), j = 1, 2, ... , 6, and ej(m), 
j = 1, 2, ... , 6, of each of the first six harmoni cs 
of the daily means are given in Tabl e 3-5 for all 20 
stations . Similarly, the general mean of the sample 
daily standard deviations, s , and the amplitude and 

T 

phase angle of the daily standard deviations, Cj(s), 
j '" 1, 2, .. . , 6, and e j ( s) , j ,. I, 2, .. . , 6, are 
given in Table 3-6. 

It was thought that the m and s values for a 
T T 

gi ven station would be proportional, resul ting in a 
constant coefficient of variation throughout the 

. year. If such were the case, the parameters 
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Table 3-4. Ratio of variances of the means and 
standard deviations for a Fourier series 
with six harmonics to the total variances 
of m 

't 
and s . 

1" 

No. sutton.._ p6(•T) p6(sT) 

1 8re<:ltenr1 clge 0.128 0.140 
2 8"*"--d 0.075 0.108 
3 Centerville 0. 112 0.081 
4 eo..nc:ht 0. 097 0.093 
s Cors1eana 0. 189 0.150 
6 CI"'(Itttt 0.092 0. 102 
7 Dallas 0. 112 0. 121 
8 01alvtlle 0. 139 0. 100 
g Oub11n 0.100 0.100 

10 Fort IIDrtJI 0.128 0.109 
11 Gn- 0. 146 0. 12% 
12 Hewitt 0. 103 0. 089 
13 H11lsboro 0.082 0.114 
14 ICiut.ul 0. 133 0.100 
15 l.ulpasas 0.1111 O. OM 
16 llu1a 0. 14f 0.011 
17 Palest1ne 0. 152 0.130 
18 R1esel 0. 095 o.on 
19 r-.1• 0. 127 0.096 
20 ... co 0.061 0. 07t 

describing the periodic movement of the standard 
deviation would not need to be related to position 
and fewer model parameters would be required. 
However, for the stations in the study region the 
periodic means and periodic standard deviations were 
slightly out of phase (Figure 3-12). This was tested 
by comparing e1(m) and e1(s) values for each station. 
If m, and s, for a gi~en station are in phase, the 
difference in e1(m) and e1(s) should be zero. The 
differences between e1(m) and e1(s ) for all 2n 
stations are shown i n Table 3-7. The value of e1(m) 
i s consistently less than e1(s) . The difference was 
significant at the 1% level . The periodic coeffi­
cient of variation, caused by the difference in phase 
of m, and sT, made it necessary to devel op equations 
relating the amplitude and phase of the standard 
deviation to position, as well as those for the mean. 

Yevjevich and Karplus (1973) found a linear 
model adequate ·for relating precipitation ampl i tude 
and phase to position for two regions. Figure 3-1 
illustrates an approximately linear variation of mean 
annual precipitation with position in the region used 
1n this study. This suggests that perhaps the 
amplitude and phase of m and s for this region also 

T T 
vary linearly across the region. A linear n~el of 
the fonn 

v = a1 + a2L1 + a3L2 (3-21) 

where L1 = the station latitude and L2 = the station 
longitude was assumed to describe the regional vari­
ation of each parameter given in Tables 3-5 and 3-6. 
The equation coefficients (a1, a2, and a3) were 
evaluated for each of the 26 parameters, using step­
wise multiple linear regression. Each coefficient 
was examined to determine if it differed significantly_ 



Table 3-5. Amplitudes and phases of the f irst six 
harmonics fitted to th~ 365 daily means 
for each station. 

Station Harmonic , J 
Nu111ber Mean 2 3 4 

2 

3 

4 

6 

8 

10 

11 

12 

13 

14 

IS 

16 

17 

18 

19 

20 

- .668 CJ 0.215 -0.113 0.111 -0.135 0.054 0.042 
eJ -0.421 -1.391 -0.688 -0.562 1.457 -0.622 

-.723 cJ o.131 -o.o73 o.o11 -o.o97 o. o58 o.l44 
eJ -1.026 -1.242 0. 507 0. 021 -0.804 1.397 

-.612 c. 0.206 0.133 0.068 -0.120 -0.089 0.070 
ej -0.977 -0.439 -0. 879 -0.628 0.383 -0.854 

-.714 CJ 0.152 -0.075 0.063 -0.161 -0.096 0.107 
eJ -1.005 -1.546 -1.403 -0.168 0.152 0.215 

-.611 CJ 0.241 0.127 0.069 -0.077 -0.120 0.047 
ej -1.063 0.231 -1.143 0.099 -0.652 -1.549 

-.692 cJ 0.129 o.233 0.045 -0.047 -o.1oo 0.046 
eJ -0.895 -0.764 -0.926 -1.052 0.609 -1.469 

- . 705 cJ o.238 o.098 o.o76 -0.115 -0. 061 o.1o3 
eJ -0.994 -0.228 0.314 0.095 -1.337 -0.171 

0.192 0.091 -0.046 -0.057 -0.083 0.072 
-0.899 -0.291 0. 977 -1.231 -1.350 - 0.378 

-.584 cJ 0.152 0.040 o.o19 -0.127 o.042 o.o91 
9j -1.436 0.623 -1.235 -0.037 1.476 0.364 

-.652 CJ 0.269 0.083 0.046 -0.059· -0.051 0.054 
eJ -1.058 0.967 -0.407 -0.129' -0.785 -0.695 

0.197 0.128 0.036 -0.061 -0.020 0.107 
- 1.035 -0.806 0.293 -0.271 -0.173 0.371 

- .740 cJ o. 20s o.082 0.122 -o.074 -0.060 0.096 
eJ -1.041 0.316 -1.105 - 0.195 -0.769 -1.160 

-.688 cJ 
eJ 

-.633 cJ 
eJ 

-.652 c.l. 
eJ 

-.588 cJ 
eJ 

-.606 CJ 
eJ 

-.639 CJ 
eJ 

0.186 0.074 0.022 -0.101 0.038 0.039 
-1.005 -0.417 -0.994 0.041 0.841 -1.453 

0.271 0.04-4 0.085 -0.089 -0.023 0.032 
-0.856 0.714 -0.196 -0.271 -1.090 0.732 

0.117 0.047 0.159 -0.121 -0.023 0.021 
-0.686 0. 429 -0.623 -0.319 -0.115 0.196 

0.249 0.031 0.109 -0.051 -0.060 0.081 
-1.055 0.663 -1.199 -0.705 -0.059 -0.273 

0.187 0.172 0.083 -0.160 -0.063 J).098 
-o. 714 -0.672 -0.664 -0.415 o.006 -o.745 

0.181 0.070 0.096 -0.052 - 0.041 0.109 
-0.830 0.143 -1.463 0.147 - 0.369 0.026 

-.689 cJ o.2oe o.031 o.m -0. 143 - 0.033 o.o79 
eJ ' -1.109 -1.419 -0.650 -0.052 -1.269 -1.396 

-.667 Cj • 0.148 0.066 0.069 - 0.103 -0.018 0.067 
eJ -1.005 -0.319 -0.896 0.095 -0. 777 -1.118 

from zero. A standard t-test was used to test each 
coefficient. Each term in the equation with a 
nonsignificant coefficient was dropped from the 
equation. The equations for each parameter, with 
only the significant coefficients shown, are given in 
Table 3-8. If the coefficients of both L1 and L' for 
a particular parameter were found to be not signifi­
cantly different from zero, the parameter was taken 
to be a regional constant. In such cases, the values 
of the parameter for each of the 20 stations were 
averaged, and the average value is given in Table 3-8 
as a regional constant. Each amplitude that was 
found to be a regional constant was tested to de­
termine 1f it differed significantly from zero. If 
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Table 3-6. Amplitudes and phases of the first six 
harmonics fitted to the 365 daily stand­
ard deviations for each station . 

Station Harmonic, J 
Number Mean 3 4 6 

3 

4 

5 

6 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

.795 cJ -0. 190 -0.019 -0.019 o.o63 -0.036 -0.014 
9j -0.299 0.819 -0.229 -0.525 0. 795 -0.027 

.838 CJ -0. 118 -0.022 0.079 0.050 -0.047 -0.091 
9j -0.457 -0.561 -1.561 0.161 -1. 047 1.460 

. 857 ~j -0.090 -0. 123 0. 020 0. 056 0. 033 -0.030 
e J -0.922 -0.758 1. 529 - 0.666 o. 326 -1.108 

.843 cJ 
e J 

. 841 cJ 
ej 

. 927 cJ 
ej 

.875 cJ 
eJ 

.834 cJ 
eJ 

.781 CJ 
ej 

.825 cJ 
eJ 

. 872 cJ 
ej 

.876 cJ 
e J 

.882 cJ 
eJ 

.863 cJ 
eJ 

.820 cJ 
eJ 

.826 cJ 
eJ 

.851 cJ 
eJ 

.838 cJ 
9j 

.855 cJ 
eJ 

.829 CJ 
eJ 

-0.118 -0.036 0.039 0.080 0.042 -0.061 
-0.575 -0.229 -0. 499 -0. 171 0.392 0.526 

-0.107 -0.119 -0.023 o. 028 0. 054 0. 040 
-0.917 -0.399 1.027 0.398 -0.876 0.995 

-0.041 -0.175 0.018 -0.019 0.029 0.021 
-1. 007 -0.945 0.354 1.066 0.665 0.761 

-0.127 -0.126 -0.057 0.049 -0.027 -0.052 
-0.723 -0.601 1.227 0.170 1.083 -0.339 

-0.073 -0.089 0. 052 -0. 031 -0.054 -0. 155 
-0.675 -0.883 0. SIS 1. 398 1. 273 0.167 

-0.103 -0.073 0.048 0.045 -0.020 -0.040 
-0.904 -0.635 -0.747 -0. 009 0. 610 0. 733 

-0.155 - 0. 065 0. 032 o. 013 0. 008 -0'. 026 
-0.717 -0.252 -I. 336 -0.043 - 0.327 -1.168 

-0.078 -0. 127 0.006 0.023 - 0.024 -0'.042 
-0.926 -1.084 -1.297 -0.700 -0.363 0.961 

-0.121 -o. 090 o. 041 o. o1s -o·. 019 -o. 049 
-0.760 -0.332 1.253 0.157 1.168 -1.557 

-0.090 -0.125 0.036 0.058 -0.040 0.04-4 
-0.607 -0.881 -1.391 0.024 0.281 1.223 

-0.140 -0.072 -0.036 0.037 -0.020 0.013 
-0.677 -0.770 0.517 -0.350 0.085 -0.576 

-0.100 -0. 071 -0.041 0.043 0.023 -0.003 
-0.321 -0.496 -0.374 -0.287 I . 512 l. 325 

-0.118 -0.055 0.034 0.018 -0.002 -0.022 
-0.911 -0.982 1.456 -0.641 -0.300 -0.375 

-0.078 -0.150 -0.028 0.081 0.013 -0.031 
-0.510 -0.944 -1. 137 -0.413 -0.009 -0.987 

- 0.104 -0.082 0.040 0.011 -0.008 -0.041 
-o. S06 -o .. 778 1.262 o.435 o.295 o.o33 

-0.123 -0.073 -0.025 0.059 -0.017 0.040 
-0.871 -1.342 -0.535 -0.190 0. 339 1.561 

-0.080 -0.105 0.010 0.052 - 0.025 0.035 
-0.621 -0.777 -0.685 0.208 -0.281 1.484 

it was not significantly different from zero, it was 
assumed zero. The corresponding phase angle then 
became meaningless and was neglected. 

The mean annual precipitation in the study 
region increases from west to east with very little 
north-south change. This east-west va~iation is also 
characteristic of most of the parameters given in 
Table 3-8. Nine of the parameters are a function of 
only L2, indicating that those nine parameters change 
signi ficantly with longitude (east-west position) but 
not with latitude. Only one parameter was signif­
icantly related to only L1 (latitude), while two 
parameters were related to both L1 and L2. The east-



Table 3- 7. Comparison of the phase angle of the 
first harmonic of the mean and t he 
standard deviation . 

liD. Sution 11.- • 1(•) e1(s ) D • e1 (• )-t 1 (s ) 

1 Breckenridge -0. 421 -0. 300 -0. 121 
2 BroMIWOOd -1.026 -0. 457 -0. 569 
3 Centerville -0.978 -0. 922 -0.056 
4 Comanche -1.005 -0. 575 -0.430 
5 Corsi cana -1.063 -0. 917 -0.146 
6 Crockett -0. 895 -1.007 0.112 
7 0.1115 -0.994 -0.723 -0.271 
8 Dialv111e -0.899 -0.675 -0.224 
9 Dub11n -1.436 -0.904 -0. 532 

10 f ort llorth -1.058 -0. 717 -0.341 
11 611•r -1.035 -0. 926 -0.109 
12 Hewit t -1.041 -0.760 -0.281 
ll Hill sboro - 1. 005 -0. 607 -0. 398 
14 Kauf11an -0.856 -0. 677 -0. 179 
15 lu.,asas -0.686 -0.321 -0.365 
16 Mexia -1.055 -0. 911 -0. 144 
17 Palestine -0.714 -0. 510 -0. 204 
18 'Riesel -0.830 -0. 506 -0.324 
19 Tl!lpl e -1. 110 -0. 871 -0.239 
20 ~co -1. 005 -0. 621 -0. 384 

D • -0. 260 

so. 0.165 

t • -7 .06g!/ 

y 0 1s sign1f1cantly different fro- zero at 1 ~rcent level. 

west trend of m and ST is illustrated i n Figures 3-
15 and 3-16. r 

~-O~r------,-,----~------,-----~,------~ • z -o.s. 
~ 
a -0.4 • 

! -o.s 

~ -o.t 
Ill 

1 -0 .7. 
Ill 
~ .. -o.l. 

~ -O.t 

0 

ft A 

0 

• 0 

0 000 

• 

0 

0 

. 

. 

0 

•"""": 
. 

I -I.OL------..1... ·------L-' -----.L.. ·------.11.....----....1 

t4 t5 " 17 •• " LCINIITUOI t•w) 

Figure 3-15. Values of the general mean , mT, for al l 
stations as a function of longitude. 

Table 3-8. Equat ions rel ating ampl i tudes and phases 
to position. ~ 

~ ·~r------,-.----~r-----~------~.~-----, 

Eq~o~~t1on 

·~ 
1. 704 - o. oz4l2 

c1!•J • 
'1 •• 

-1.201 + o. o.41.1 
-0. 956 

cz!•J . 
'z • • 

s. 671 - o. 058t.2 -0.272 

~~!:J: _g:m 
c4<•> • 1. 377 - o.o1sL2 
• 4 <•> • -14. 799 + o. 1SOL2 

c5(•) • -2.496 + O. OZSLz 
e5<•> • -o. n1 

0.075 
-0.420 

2. 304 - o. o15L2 

c1 (s) • 2.366 - o.oz8l1 - o.016L2 
e1 (s) • -10.18~ + o. 098l2 

c2(s) • -2.660 + o. OZ7L2 e2(s) • -32.647 + o. J l6L1 + 0.226Lz. 

c3(s) • · 0.000 
'J($)-

c4 (s) • ·1.1M + 0.013L2 e
4

(s) • 0;"001 

c5(s) • o.ooo 
•5Cs> • 

c6cs> • -0. 023 
e
6
(s) • 0. 255 

Correlation Colfflcllftt 

0.528 

O.S59 

0. 836 

0.489 
0.459 

0.577 

0.554 

0.769 
O.S57 

0.758 
0.722 

0.511 
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Values of the general standard devia­
t ion, s , for all stations as a function 

T 

of longitude. 

For t he mean, al l six harmonics had significant 
amplitudes~ however, the amplitude and phase angles 
of the third (4 month) and the sixth (2 month) 
harmonics were regional constants. The third and 
fifth harmonics of the daily standard deviations were 
not significantly different from zero, while the 
ampl itude and phase of the s1xth harmonic of t he 
standard deviati ons were regional constants. 



The regional description of the Fourier series 
representation of the periodic mean and standard 
deviation is illustrated for two stations in Figure 
3-17. The Fourier series representations are shown 
using the coefficients for the first six harmonics 
obtained from the station data (Table 3-5 and 3-6 ) 
and the coefficients obtained for the station using 
the regionalization equations given in Table 3-8. 
The two stations represent those on the east and 'west 
sides of the study region, respectively. The repre­
sentation of m and s , obtained using the coeffi-

T T 

cients from the station m and s values, contain 
T T 

more pronounced harmonics than that obtained from the 
regionalization equations. The pronounced harmonics 
are due largely to sampling error. The r epresenta­
tion of m and s , obtained using the regionalization 

T T 

equations, are a more realistic approximation of the 
periodicity of m and s . 

T T 

1.5.---r--r--"""'T"--T"""-~--..... 

J 
Ill 
a 

-1.5 
0 IZO 110 240 300 3eO 

DAYS 

1.5 
MOWIIWOOO 

> 
~ 

E 
0.0 

a 
~ a -1.0 

-1.5 
0 ., 110 MO 300 MO 

DAYI 

Figure 3-17. Fourier series of mT and s T for two 
stations using the coeffic ients from 
actual data and the coefficients from 
the regional equations. 
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7. Test of Stationarity of cp Series 
, T 

The stationary random component, c , for each p,T 
station was determined by removing the periodic mean 
and standard deviation. The equation used to de­
termine cp,T was 

Yp,t -{i, + j!l c3(•) cos[~· eJ(•~} 
•p,t • i

1 
+ jt CJ(lll) cos [~+ ej(s1 

(3-22) 

Equation (3-22) was applied only to the nonzero 
values of the Yp series. The zero values were not 

, T 
changed. The Fo,urier coefficients for equation (3-
22) were determined for each station using the 
latitude and longitude of the station and the equa-
tions given in Table 3-8. The resulting c series p,T 
fo r each station should be second-order stationary 
(no harmonics in the mean and standard deviation) 
with a mean of zero and a standard deviation of 
unity. 

The tp series for each of the eight test 
, T 

stations given i n Table 3-3 were used to determine if 
the cp series were stationary in the means and 

, T 
standard deviations with zero means and unity stand­
ard deviations. Values of m (c) and s (c) (mean and 

T T 
standard deviation of the c ser ies for day T) f or p,t 
all 365 days of the year were determined from the 
tp series, using the maximum likelihood estimation 

, T 
technique for a truncated normal distribution. The 
truncation point of the cp series must be known to 

, T 
estimate mT( c) and sr(c). The truncation point of 
the Yp,r series (y0) was constant for all days of the 
year and all stations at a value of 0.10 (square root 
of 0.01 inch of precipitation). However, the trunca­
tion point of the t p series was variable depending 

,T 
on the day of the year and the location of the 
station. The truncation point was determined by 

Yo - m 
T • T 

£0 s 
T 

or 

(3-23) 

(3-24) 

where cr denotes the truncation point for day r for 
0 

the cp ser ies at a given station. The cT values 
,T 0 

for the stations in the study region ranged from 0.48 
to 1.19, depending on the location of t he station and 
the day of the year. 

The amplitudes and phases of the harmonics of 
the m (t) and s (c) values for the eight stations 

T T 
were calculated, and the portion of the variance of 



each explained by the first six harmonics was de-
termined. If the c series were stationary in the p,t 
mean and standard deviation the portion of the 
variance of m (c) and the portion of the ~ariance of 

T 

s (c) explained by the first six harmonics should be ,. 
less than the Pmin (m,.} and Pmin(st ) values given in 
equations (3- 17) and (3-19), respectively. The 
portion of the variance of m (c) and the portion of 

T 

the variance of s (c) explained by the first six ,. 
harmonics for the eight test stations are shown in 
Table 3-9. The general mean, m ( c), of m (c) and the 

T T 
general mean, s (c ), of s (c ) are also given in 
Table 3- 9. t ' 

Table 3-9. The general mean of m (c ), the general ,. 

No. 

1 
2 
5 
6 
7 

11 
12 
19 

mean of s (c), and the variance of m (c) 
T T 

and s (c ) explained by the first six 
T 

harmonics for eight stations~ 

Genera l llll!&ns Ex~tained variance 

Station NaN iii, (c) s, l<l •,(c) s, (c) 

Br~kenridge 0.004 0.978 0.064 0 .032 
8..--noood · 0.062 1.037 0.058 0.050 
Cor sicana · 0 .034 1.014 0 .064 0 .067 
Crockett · 0.099 1.069 0.032 0.048 
O.llas · 0.091 1.039 0.019 0.032 
Gn .. r 0.009 0. 995 0 .063 0.020 
Hewitt · 0. 088 1.031 0.035 0 .038 
Tet~Ple ·0. 043 1.017 0.042 0.035 

Average :-o.m r.m 

The value of m (c) for each of the eight sta­,. 
tions was near zero. The average value was -0 .051. 
Similarly, the s (c) values were near unity with an 

T 

average for the eight stations of 1.023. The portion 
of the variance of m (c) explained by the first six 

T 

harmonics was less than the Pm· (m ) value of o.ogg 1n t 
for all eight stations. The portion of the variance 
of s ( t ) explained by the first six harmonics was 

T 

also less than the p . (s ) value of 0.070 for all m1n ,. 
eight stations. Therefore, t he cp series for the 

, T 
20 stations in the region, produced by using equation 
(3-22), were stationary in the mean and standard 
deviation with a mean of zero and a standard devia-
tion of unity. Since they values for any fixed t p,T 
were shown to be almost normal ly distributed, the 
c values for any fixed ,. are also normally dis-p,t 
tributed. 

8. Au.tocorrel.aticm of the cp Series 
, T 

The c series are approximately stationary in p, T 
the mean and standard deviation with a mean of zero, 
a standard deviation of unity, and a variable trunca­
tion point. The cp ser ies may be either dependent •r 

27 

or independent in sequence. In genera 1 , cp wi 11 
, T 

be dependent in sequence because of the persistence 
that exists in daily precipitation. The autocorre­
lation coefficients, pk' of the truncated series may 
be estimated using equation (1-3) and considering 
only cases when c and cp +k are nonzeros. The p,T 1 T 
autocorrelation coefficients, pk' for the total, 
untruncated ser ies may then be approximated using the 
relationships given in Figure 2-5. 

a. Periodi city of pk. The pk values may be 
either periodic or constant throughout the year. The 
sample estimates. rk' of pk for lag one and lag two 
were investigated for periodicity. The daily r1 and 
r2 values were calculated by 7-day periods of the 

year for selected c series. A Fourier series with p, T 
26 harmonics was fitted to the 52 values of r1 and 
the 52 values of r2. The percent of the variance of 

r
1 

and r
2 

explained by the harmonics was determined. 
The periodograms were then plotted. The periodograms 
for two stations are shown in Figures 3- 18 and 3-19. 
The periodograms of r1 and r2 for both stations are 
near the straight line that is expected for a non­
oeriodic parameter. For further analysis of the 
autocorrelation of c , pk will be assumed nonperi-p, ,. 
odic, and only one estimate of pk will be determined 
for a given c

0 
series. 

, T 
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Periodograms of the autocorrelation 
coefficients for lag-one and lag-two of 
daily precipitation by 7-day periods, 
Breckenridge, Texas. 
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Figure 3-19. Periodograms of the autocorrelation 
coefficients for lag-one and lag-two of 
daily precipitation by 7-day periods, 
Corsicana , Texas. 

b. Values of pk. Only the lag-one autocorre­
lation coefficients are needed to define the elements 
of the M1 matrix used in the multivariate generation 
equation , equation (2-25). However , to investigate 
the autocorrelation structure of the daily precipi­
tation series, the rk values of the truncated series 
were computed up to lag 20 for several c series. p,T 
Again , only the cases when c and c +k were both p,T p, T 
nonzeros were considered. The rk value·s for the 
untruncated series were determined from Figure 2-5 
using the rk values and the average truncation point 
for the station. A typical correl ogram is given in 
Figure 3-20. 

If the first-order autoregressive model is 
appl iicabl e, the autocorrelation coefficient for 1 ag k 
is determi ned from the lag-one autocorrelation 
coefficient by 

pk = pl k (3-25) 

The pk values for a fi r st-order model , with pl 
estimated by r1, are also shown in Figure 3-20. The 
95 percent tol erance limits for rk were computed by 

-1 ± 1.961~ 
rk(95%) " N l (3-26) 

k -

where rk(95%) are the g5 percent tolerance limits for 

28 

1.0 

cu 

I 4 10 14 •• .. 10 

'-----------------------------
-·· .. T. L. 

-o.e 

-1.0 

Figure 3-20. Correlogram for Fort Worth, Texas, 
showing rk of the cp,, seri es , the 
95-percent tolerance limits , and pk for 
the first-order linear model. 

lag k, 1.96 is the standard normal deviate for a two­
tail test at t he 95 percent significance level, and 
Nk is the number of cases when both cp,T and cp,T+k 
were nonzeros. The rk(95%) values were determined 
from t he r k(95%) values using Figure 2-5. The 95 
percent tolerance limits for rk(95%) are also shown 
in Figure 3-20. Coefficients falling between the 
tolerance limits are not significantly different from 
zero. The values of rk are greater than the pk 
values for a f i rst-order model for most values of k. 

a. Areal variation of p1. The lag-one auto­
correlation coefficients of the cp series were 

, T 
calculated for all 20 stations in the study region 
and are given in Table 3-10. The r 1 values vary from 
0. 229 to 0.532. The r1 values could be related to 
position within the region. The linear model gi ven 
in equation (3- 21) was used to determi ne whether t he 
r 1 values for the 20 stations are related to the 
latitude and longitude of the stations. The multiple 
correlation coefficient was only 0.034 , and the 
coefficients of both latitude and longitude were not 
significantly different from zero. The r1 values are 
plotted as a function of station longitude in Figure 
3-21. There is no i ndication of a regional trend in 
the r1 values. The variat ion of r1 i s considered to 
be sampling variation. Therefore, the lag-one 
autocorrelation coefficient of the total , untruncated 
c series is practical ly a regional constant having p,T 
a value equal to the average value for the 20 sta­
tions, r1 = 0.385. 



Table 3-10. Lag-one autocorrelation coefficients of 
the total, untruncated c p,r ser ies for 
the 20 stations in the study region. 

No. SUtion Nl~~e Autocorn!lation coefficient, r 1 

1 Breckenridge 0.396 
2 BI"'WWNNOd 0.340 
3 Cet~terv11 1 e 0.294 
4 to.nche 0.433 s Corsi ana 0.395 
6 Crockett 0.532 
7 0.1111 0. 403 
8 Di1lv1lle 0.313 
g Dubl i n 0.459 

10 Fort Wor'tll 0. 4215 
11 611•r 0. 343 
12 Hewitt 0.335 
13 Hillsboro 0. 351 
14 ICiuf•n 0. 420 
15 LIIIPISIS 0.430 
16 Mtxil 0.333 
17 Pil estlne 0.417 
18 Riesel 0.464 
19 T~le 0. 221 
20 waco 0. 3915 

Avg. 0.385 
Std. Dev. 0. 070 

1.0 • 

... - 0.1 . 
i 
= ..,j 

0.1• .. • a • u 

i • • 
0 .4 • • . • • • • • • .. • • .. 4 

I • • 
I 
• 0.2 • c 
..,j 

O.OL-----~-------L ______ ._ ______ LL------J 

" " fl' " • 
LOIIIITUDI C'"Wt 

Figu~e 3-21. Lag-one autocorrelation coefficients of 
the 20 cp series as a function of 

, T 

station latitude. 

9, Cross Corre'Lation of the c Series p,T 
The cp series for stations in t he region are 

,T 
dependent in space as well as in time. The l ag-zero 
l inear cross-correlation coefficients, p0(i,j}, 
express for stations i and j the dependence in space 
between tp series that are independent in sequence. 

, T 
Assuming the serial dependence of the c series can p,t 
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be descri bed by a first-orde r autoregressive model, 
t he t p ~ries are given by 

, T 

~p, r = cp, t - p1cp,t -1 · 

Equation (3-27} can be applied only when both cp 

{3-27) 

,T 

and cp,t-l are ~onzeros. Many of the nonzero cp,t 
values are preceded by a zero (c 1 = 0). In t hese p, t -
cases , the serial dependence in the c ser ies p,t 
cannot be removed to yield the corresponding t 
values. p,r 

Since the independent t series for daily p,t 
precipitation could not be determined because of the 
zeros in the cp series, it was necessary to esti­,r 
mate the lag-zero cross-correlation coefficients from 
the cp series. The rel ationship between the cross-

•' correlation coefficients of the serial ly dependent 
cp series and t he cross-correlation coefficients of 

, t 
the independent ~p series was not ~nown. Bivariate 

,t 

samples of cp series were generated that were 
, t 

normally distri buted with a mean of zero and a 
standard deviation of one, dependent in sequence with 
a fi rst-order autoregressive model, and cross corre­
lated. Forty-four samples were generated with 1000 
pai rs of ep values fn each sample and with a range 

, T 
of lag-one serial-correlation coefficients and lag­
zero cross-correlation coefficients. The cross­
correlation coefficient was calcul ated for each 
generated bi variate sample of c The ser ial p,t 
correlations of the generated cp series were 

, t 
removed , usi ng equation (3-27). The cross­
correlation coefficients of the resulting bivariate 
t p series were calculated. The relationship 

, T 
between the cross-correlation coefficients of the 
cp series and the cross-correlation coeffi cients of 

, t 
t he corresponding ~P series are shown in Figure 3-, r 
22. All of the points in Figure 3-22 are near the 
li ne of equal values. Apparently, for a bivariate 
standard normal process with a first-order autore­
gressi ve model t he cross-correlation coefficients of 
the independent ~P series are equal to the cross-

• . t 

correlation coefficient s of the dependent cp 
series. ,r 

The lag-zero cross-correlation coefficients, 
Po(i ,j}, were estimated from the e series for each p,r 
station i n the region. As stated in Chapter II , the 
p0(i ,j} values could be rel ated to position within 
the region , distance between st ations i and j, and 
orientation of the line connecting stations i and j. 
Si nce the cp series contain numerous zeros , the 

,T 
sample estimate of the cross-correlation coeffic ients 
of the truncated series, ro(i,j }, may be estimated 
considering only cases where c for both stati on i p,t 
and station j are nonzeros. The sample estimates of 
the cross- correl ation coefficients for the untrun­
cated ser ies may be estimated from r0(i,j}, using 
Figure 2-5 and the average truncation point for t he 
two stations . 
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Figure 3-22. Relationship between the cross­
correlation coefficients of serially 
dependent t p series and the cross­

of 
correlation coefficients of independent 
t p series. 

, T 

With the 20 stations used in this study, there 
are 190 combinations for which the cross-correlation 
coefficients may be determined . Sixty-four combina­
tions were selected fo"r the determination of r0(i,j). 
The cross-correlation coefficients of the truncated 
series , r0(i,j), were computed for the 64 combina-

tions. using the ep data for each pair of stations. 
, t 

The r0(1 ,j) val ues were determined by using Figure 2-
5 (Table 3-11). 

Four parameters that describe the relative 
position of stations i and j and the position within 
the region were determined for each pair of stations. 
The parameters are: (1) latitude of the midpoint 
between stations i and j in degrees north, L1(i,j) ; 
(2) longitude of the midpoint between stations i and 
j in degrees west , L2(i , j); (3) distance between 
stations 1 and j in miles, d; and (4) azimuth about 
the midpoint in degrees, s. The four parameters are 
i llustrated by the definition sketch given in Fig­
ure 3-23. The values of the four parameters for the 
64 pairs of stations are given in Table 3-11. 

To determine the important variables for de­
scribing the variation of r0(i,j), the simple linear 
correlation coefficient, r, was calculated for 
r 0(i,j) against each of the four independent vari-
ables given in Table 3-11. The r values were: 
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Table 3-11. Lag-zero cross correlation, location of 
midpoint, inter-station distance, and 
azimuth for 64 pairs of stations in the 
study region. 

Cross Midpoint Olstanc~ 
Correlation L

1
( 1,J ) Lz( I,J) d 

Sta tions r 0(1,J) ( 0 N) ( 0 11) (ftl1les ) 

1- 2 
1- 3 
I· 4 
1- 9 
1·10 
1-12 
1-15 
1-17 
1·18 
2- 4 
2- 8 
2- 9 
2-10 
2-12 
2-14 
2-18 
3- 5 
3- 6 
3-11 
3-12 
3-14 
3-16 
4- s 
4- 9 
4-12 
4-15 
4-17 
4-20 
5- 6 
5- 8 
5- 9 
5-10 
5-11 
5-14 
S-17 
6- 8 
6-14 
7- 8 
7-10 
8- 9 
8-12 
8-17 
8-20 
9-10 
9-11 
9-13 
9-14 
9-18 

10·11 
11-12 
11· 13 
11-14 
11- 18 
12-17 
12·18 
12-20 
13-16 
13-20 
U -19 
15-18 
15-19 
16-17 
18- 19 
19-20 

o. 729 
0. 419 
0. 708 
0. 718 
0. 657 
0.511 
0. 512 
0. 492 
0. 591 
0.821 
0. 554 
0. 874 
0. 623 
0.669 
0.696 
0. 579 
0. 799 
0.858 
0. 729 
0. 666 
0. 747 
0.832 
0. 584 
0.826 
0. 771 
0.697 
0. 725 
0. 731 
0. 725 
0. 732 
0. 710 
0.501 
0. 739 
0.864 
0. 640 
0. 765 
0.683 
0.579 
0.916 
0.586 
0. 74& 
0.877 
0. 626 
0. 674 
0.655 
0,813 
0. 768 
0.629 
o. 579 
0. 707 
0. 702 
o. 740 
0.68& 
0. 811 
0. 911 
0.915 
0.802" 
0. 791 
0. 655 
0.696 
0. 796 
0.69) 
O. aJO 
0.815 

32.24 
32.02 
32.33 
32.43 
32.80 
32. 11 
31. 91 
3Z.27 
32. 11 
31.81 
31.79 
31.91 
32.27 
31. sa 
32. 15 
31.58 
31.68 
31.29 
32. 00 
31.36 
31.93 
31.47 
31.99 
32.00 
31.67 
31.47 
31.84 
31. 76 
31.69 
31.97 
32.09 
32. 46 
32. 40 
32.33 
31.93 
31. 58 
31.94 
32. 36 
32. 84 
31.99 
31.66 
31.&2 
31. 74 
32.46 
32.41 
32. 06 
3Z.34 
31.77 
32. 78 
32.09 
32. 38 
32. 65 
32. 09 
31.61 
31.45 
31.53 
31.85 
31.&2 
31.84 
31.25 
31.07 
31. 73 
31.27 
31.36 

98. 94 
97.44 
98.75 
98. 61 
97 .97 
98.04 
98.54 
97.27 
97.89 
98.79 
97.13 
98.65 
98. 01 
98.08 
97.65 
97. 93 
96.22 
95. 71 
95. 48 
96. 58 
96. 15 
96.23 
97. 53 
98.46 
97.89 
98. 39 
97.13 
97. 91 
95.96 
95.87 
97. 40 
96. 76 
95. 72 
96.39 
96. 05 
95.36 
95.88 
96. 06 
96.95 
96.80 
96. 2Z 
95. 46 
96.24 
97.69 
96.65 
97. 72 
97.32 
97.60 
96.01 
96.08 
96. 05 
95.65 
95.93 
96.41 
97. 03 
97.20 
96. 80 
97. 17 
96. 84 
97. 53 
97. 76 
96.06 
97.12 
97.29 

Independent variable 

L
1 

( f ,j) 

L
2

(i ,j) 

d 
B 

72.7 
209.9 

63.0 
58.4 

115.7 
141.0 
127.1 
214. 3 
155.7 

26. 8 
232. 1 
48. 4 

142.9 
114.0 
176.5 
132.6 
63. s 
33.2 

118. 7 
76.0 
93.0 
42. 2 

134. 3 
21.8 
94.0 
64. 3 

184.6 
88. 4 
83.0 
75.8 

116.9 
63.6 

102.8 
35. 6 
54.7 
41.0 

103.8 
119. 7 
12.6 

191.9 
122.9 
24. 5 

123.1 
94.6 

213.9 
75.8 

129.9 
101. 1 
129.6 
163. 5 
142. 5 
84.4 

148.1 
98.3 
18. 7 
12.0 
46. 4 
28. 3 

120.8 
85.8 
sz.o 
52.3 
38.1 
36.8 

r 

-0.281 
- 0. 116 

-0.732 
-0.273 

3.9 
119.6 
162 .7 
142.4 
87.9 

130. 3 
159 .3 
108.6 
125.8 
62.4 
87. 4 
57 . I 
57 .5 
99.4 
70.3 
98. 1 

151.8 
86.4 
3L8 
99.4 

166.8 
13Z.2 
84 . 7 
50.1 

109 .3 
155. 9 
9Z.6 

IOZ.6 
130.5 
101.0 
90.7 

144.6 
64 .1 
14 .2 

11Z. 3 
15. 9 

148.4 
124 .4 
8].7 
94 .8 
75.3 
75. 3 
81.9 
57.8 
78. 3 
94. Z 
75. 2 

1Ui.4 
9] . 1 
57. 3 
69.9 
83.0 
Sl . 3 
76. 6 
90.0 

168.0 
120.4 

1Z. 7 
3Z.Z 
71.2 
86.2 
8Z. 4 
50 . 5 
12:.7 
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Figure 3-23. Definition of the four parameters used 
to describe the relative positions of 
stations i and j and the position of 
the midpoint within the region. The 
parameters are: (1) latitude of the 
midpoint, L1(i,j); (2) longitude of the 
midpoi nt , L2(i,j); {3) inter-station 
distance, d; ( 4) az i llk.lth , a . 

The parameters describing position of the midpoint 
and orientation of the line connecting stations i and 
j are not as highly correlated with r0(i,j) as inter-
station distance . The correlation coefficient for 
L1(i,j), L2(i,j), and a are not significant at the 1 
percent level, while the correlation coefficient for 
dis significant at the 1 percent level . Therefore, 
p0(i,j ) will be assumed independent of L1(i ,j}, 
L2(i,j) and a, and a relationship bet~een p0(i ,j) and 
d will be determined. 

One of the functions investigated by Yevjevich 
and Karplus (1973) was chosen for use in this study. 
The form of the equation is given by 

a2 
Po(i ,j) = (1 + a1d) 

where a1 and a2 are coefficients that must be 

(3-28) 
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determined. The values of p0(i,j} from equation (3-
28) have the desirable characteristics of p0(i,j) • 1 

ford= 0 and p 0(i,j) = 0 ford=~ for values of a 2 
less than zero. The lag-zero cross-correlation 
coefficient should be zero ford = ~because the 
random components of daily precipitation for two 
widely spaced stations should be independent. 

A non-linear optimization technique that mini ­
mizes the error sum-of-squares for an arbitrary 
function and a given data set was used to determine 
a1 and a2 for equation (3-28), using the r0(i,j) and 
d data given in Table 3-11. The resulting equation 
is 

p 0(; ,j) = (1 + o.0028d)-1·44 (3-29) 

Equation (3-29) explained 44 percent of the variance 
of the r0(i,j) data. The data and the fitted equa-
tion are plotted in Figure 3-24. 
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Figure 3-24. Relationship between lag-zero cross 
correlation of the £ series and p,T 
inter-station distance for 64 pairs of 
stations in the study region. 



CHAPTER IV 
Simulation of Daily Precipitation Over an Area 

The purpose of this chapter is to test the model 
and regional description of parameters by generating 
daily precipitation sequences and comparing these new 
sequences to observed sequences. 

There are many characteri stics of daily pre­
cipitation that one could attempt to preserve in 
generating new sequences. It is not within the scope 
of this study to test for resemblance between new and 
observed sequences in all of these characteristics. 
However, preservation of certain important charac­
teristics is necessary for the new sequences to be 
useful for water resource applications. 

The time-area precipitation model was developed 
to preserve several stochastic-deterministic charac­
teristics of an assumed truncated multivariate normal 
process . The characteristics that the model was 
developed to preserve include: (1) the lag-one 
autocorrelation coefficient of the random component 
for each station, (2) the lag-zero cross-correlati on 
coefficient between the independent random components 
of each statipn, and (3) the periodic means and 
stand.ard deviations of the normalized daily precip­
itation values. The model and the generation proce­
dure dictate that, within the accuracy of the re­
gional description of the parameters, these charac­
teristics will be preserved for any station or group 
of stations within the study region. 

If the model reasonably describes the daily 
precipitation process over an area, the new sequences 
must closely resemble observed sequences in terms of 
several other important characteristics, even though 
the characteristics were not modeled directly. For 
example, the distribution of annual precipitation 
amounts did not enter into the formulation of the 
model. However, the ability of the model to generate 
new sequences that preserve the distribution of 
annual precipitation at any point in the region is 
essential to a realistic description of the precip­
itation regime of the region. Similarly, the dis­
tribution of precipitation amounts for each month was 
not modeled directly but must be preserved in new 
sequences to describe the seasonal characteristics of 
precipitation. Parameters expressing the dependence 
of precipitation in time and space, other than the 
parameters used in developing the model, should also 
be preserved in the new sequences. With these 
general criteria in mi nd, several statistical param­
eters were selected for comparing new sequences to 
observed sequences. These parameters are by no means 
an exhaustive list of the characteristics that should 
be preserved in generating. new precipitation se­
quences. However, the parameters that were chosen 
permi t comparing new sequences to observed sequences 
in terms of the distribution of precipi tation a­
mounts, dependence in time, and dependence in space, 
usi ng parameters that were not used in developing the 
daily precipitation model. The parameters that are 
used to compare observed and generated sequences are: 
(1) distribution of annual precipitation values for 
each station, (2) distribution of monthly (or 28-day) 
precipitation values for each station, (3) the 
probabi l ity of occurrence of a wet day for any day or 
season of the year, (4) the cross correlation of 
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annual precipi tation values among stations, and 
(5) the cross correlation of monthly (or 28-day) pre­
cipitation amounts among stations. 

Two areas within the study region were chosen 
for use in testing the time-area daily precipitation 
model. The locations of the two areas are shown in 
Figure 4-1. In practical application these areas 
could be watersheds or other entities, for which 
daily precipitation data over an area are needed. 
New daily precipitation sequences were generated for 
specific locations within each test area. Only t he 
latitude and longitude of each station were used to 
define the model parameters. The new sequences were 
compared with the observed sequences in terms of the 
above characteristics. 
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Figure 4-1. Location of two areas chosen for testing 
the time-area daily precipitation model. 

1. Tes t Area I 

Test Area I is located in the northeast part of 
the study region. Three precipitation stations were 
chosen for which daily precipitation data would be 
generated. Station I-1 was chosen to coincide with 
the Gilmer station that was used in developing the 
model parameters. The other two stations were chosen 
to coincide with precipitation stations that were not 
used in developing the model parameters. The three 
test stations were chosen at sites of actual precip­
itation stations so that the new sequences could be 
compared with observed sequences. A description of 
the precipitation stations in Test Area I is given in 
Table 4-1. The inter-station distances for the 
stations ranged from 31.1 miles to 89.8 mi les. 

Fifty years of dai ly precipitation data were 
generated for the three stations in Test Area I. The 
~T and oT values that were used in generating the 
data were described by Fourier series, using the 
regional description of the Fourier coefficients 
given in Table 3-8. The lag-one autocorrelation 
coefficient of the random component was shown in 
Chapter III to be a regional constant with a value of 



Table 4-1. Description of precipitation stations in 
Test Area I. 

Available 
Latitude Longitude data 

~- Station Na111e Index ~- (deg. north) (deg. west ) (years) 

I-1 Gilmer 
I-2 Lindale 
1-3 Long Lake 

Stations 

3546 
5228 
5327 

Gilmer-Lindale 
Gil mer-Long Lake 
Lindale- Long lake 

32.73 
32.45 
31.48 

94.98 
95.37 
95.78 

1933-72 
1932-64 
1933-72 

Inter-station distance 
(mlles) 

31.1 
89.8 
60.9 

0.335; t herefore, r1 for each station was assumed to 
be 0.385. The lag-zero cross-correlation coeffi ­
cients were computed usin9 the inter-station dis­
tances and equation (3-28). 

a. VaZues of m
1 

and \ for the new sequences. 

The new daily precipitation data were analyzed in the 
same mamner as the observed data to determine if the 
generation procedure was producing sequences with the 
desired m

1 
and S

1
• The generated data for the three 

stations in Test Area I were normalized using the 
square root transformation. The mean and standard 
deviation of t he transformed data were calculated for 
each day of the year, using the maximum likelihood 
estimation technique for a truncated normal distri ­
bution. The Fourier coefficients were calculated for 
the first six harmonics of the daily values of m

1 
and 

s . The Fourier series representation cif m and s 
T T T 

determined for the generated dat a are shown in 
Figures 4-2, 4-3, and 4-4 for the three stati ons in 
Test Area I . The m and s values that were obtained 

T T 

from th~ regionalization equations in Table 3-8 and 
used in the generation program are also shown in the 
figures. The _Fourier series representation of the mT 
and s

1 
values from the generated data approximate the 

values that were input to the generation procedure. 
The harmonics of m

1 
and s

1 
obtained from the gen-

erated data are more pronounced than the harmonics of 
m

1 
and s

1 
using the regional equations due to sam-

pling error. 

A Fourier series with six harmonics explained 
20.8 pe·rcent of the variance of m

1 
and 14.1 percent 

of the variance for s
1 

from the generated data for 
Gilmer . Using the observed data for Gilmer, six har­
monics explained 14.6 percent of the variance of m

1 

and 12.2 percent of the vari ance of s . The sampling 
T 

random components of m
1 

and s
1 

from the generated 
data were about the same as that from the observed 
data. The generation model seems to produce, within 
the accuracy of the regional equations, new sequences 
with m and s having the same periodic characteris-

T T 

tics and random variations as the observed data. 
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Figure 4-2. Fourier series representation of m and 
T 

s
1 

determined from the generated data 
and obtained from the regional equations 
for Gi lmer , Texas. 
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Figure 4- 3. Fourier series representation of m
1 

and 
s, determined from the generated data 
and obtained from the regional equations 
for Lindale , Texas . 

b. Autocorre~tion of &p from generated data . 
, T 

The random component, c , of the new sequences for p,T 
each of the three stations was determined by removing 
the periodic m, and s, from the transformed data . 
The Fourier series description of m and s shown 

T T 

above were used to define m and s values for each 
'T T 

day. The cp values were determined using equation 
, T 

(3-22). The lag-one autocorrelation coefficients, 
ri, of the truncated new series were estimated using 

'•I 
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Figure 4-4. Fourier series representation of m, and 
s, determined from the gene·rated data 
and obtained from the regional equations 
for Long Lake, Texas. 

equation (1-3) considering only cases when €P and •• 
cp,r+l were nonzeros. The autocorrelation coeffi-
cients , r1, for the total, untruncated series were 
approximated by using ri and Figure 2-5. The r1 
values of the generated sequences for each station 
are given in Table 4-2. The three values are not 
significantly different from the assumed regional 
constant of 0.385. 

Table 4-2. Lag-one autocorrelation coefficients of 
the new sequences for the three stations 
in Test Area I. 

No. Station r' 1 rl 

I-1 Gilmer 0.106 0.343 
1-2 Lindale 0.121 0.378 
I-3 long lake 0.139 0.417 

Average 0.378 

c . Cross aorreZation of c from generated p,T 
data . The lag-zero cross-correlation coefficients of 
the dependent c series for each of the three pairs p, t 
of stations in Test Area I were examined. The cross­
correlation coefficients for the truncated series, 
ro(i,j), were estimated considering only cases where 
€P for both stations were nonzeros. The estimates 

, T 

of the cross correlation coefficients for the untrun­
cated series were determined by using ro(i,j) and 
Figure 2-5. The cross-correlation coefficients, 
determined from the generated data, are compared in 
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Table 4-3 with those calculated with equation (3-28) 
for use in generating the data. For two of the three 
pairs of stations , the r0(i,j) values determined from 
the generated data were not significantly different 
(5 percent level) from the ro(i, j) values obtained by 
equation (3-28). Therefore, it may be concluded that 
the generation model produces new sequences with the 
desired lag-zero cross-correlation coefficients of 
t he random components for the stations within the 
area. 

Table 4-3. Lag-zero cross correlation for the 
stations in Test Area I from (1) the 
re~ional model, equation (3-29), and 
(2) the generated data. 

Sttt1011s 
Distance Lag-zero cross-correlati011 coeffic ient 
(•fles) Equatt011 3-29 ~rated data 

61l11tr -L1ndale 31.1 
6f111tr·l011g lake 89.8 
lindale-long Lake 60.9 

0.887 
0.724 
0.797 

o.gos!/ 
0.767 
0. 829 

y The cross-<oM"ehtiOII c:Mfficient of the generated data is 
significantly diffe1'81t (5 perc~t level) fro. the cross 
correl&tiOft co-ffici~t obtained by equatiOII (3-29). 

d. Distribution of 28-day and annuaZ totaZs . 
The underlyin~ assumption of this study is that the 
time-area structure of the square root of daily 
precipitation may be approximated by a truncated 
multivariate normal distribution. No assumption is 
made about the distribution of precipitation for time 
intervals longer than 1 day. However, if the assump­
tion of a truncated multivariate normal distribution 
for daily precipitation is a good description of the 
physical process, the sequences generated using the 
model should produce precipitation amounts for 
intervals longer than 1 day that are distributed in a 
similar way to that of the observed data. Interval 
lengths of 28 days and 365 days (1 year) were chosen 
to compare the distributions of the generated data 
with the observed data for intervals longer than 1 
day. The total precipitation for each 28-day period 
of the year and the annual totals were determined for 
both the observed and generated sequences for the 
three stations in Test Area I. Three parameters were 
chosen to describe the distributions of the 28-day 
and annual totals: (1) the mean, (2) the standard 
deviation, and (3) the skewness coefficient. The 
values of these three parameters for both the ob­
served and generated sequences were calculated for 
each 28-day period of the year and for the annual 
totals. The results are shown for the three stations 
in Tables 4-4, 4-5, and 4-6. The means, standard 
deviations, and skewness coefficients from the 
generated data compared well with those from the 
observed data. The means and the standard deviations 
for each 28-day period and for the 1 year were tested 
to determine if the parameters for the generated data 
differed significantly from the parameters for the 
observed data. A standard t-test for the equivalence 
of two means from normal populations was used to 
determine if the means were significantly different. 
The distributions were not normal , as shown by 



the positive skewness coefficients. However, most of 
the skewness coefficients were relatively smal l so 
that the assumption of normal populations for the 
purpose of testing the hypothesis that the means were 
equal di d not introduce any great error. An F-ratio 
test for the equivalence of two variances from normal 
populations was used to determine if the standard 
deviations were significantly different. 

Table 4-4. Means, standard deviations, and skewness 
coefficients of observed and generated 
28-day and annual precipitation, Gilmer , 
Texas. 

Mean Standard deviati on 
Dbserved Generated Observed Generated SkNness coefficient 

Period (Inches) (inches ) (Inches) (inches) Observed Generated 

1 3.06 3.18 1.98 2.24 0.35 1.39 
2 3.55 3.5~ 1.70 3.01 0.17 1.56 
3 3.10 2.1 1.78 1.86 0. 70 2.07 
4 3.49 2. 74 2.21 2.10 0.89 0.91 
5 5.41 5.23 3. 19 4.39 0. 86 1.54 
6 3. 60 3.60 2.70 2.88 0. 88 2.27 
7 2.84 3.91 2.17 4.~ 0. 78 2.18 
8 2. 46 1.89 2.71 1. 1.53 1.13 
9 2.82 2.49 2.23 1. 75 2.06 0.73 

10 2.67 3.49 2.05 3.53 0. 71 1.78 
11 3.07 2.36 2.25 2.65 0.89 1.39 
12 3.82 4.29 2.43 3.65 0.61 1.84 
13 3.82 3.44 2.69 2.60 1.05 0.89 

Annual 43.71 42.45 10.82 10.41 a. 44 0.49 

y The •an of the generated data fs significantly different 
fi'OII the • •n of the observed dati at the S percent l evel. 

y The standard deviation of t he generated dttl fs significantly 
different f i'OII the s ttndard devhtlon of the obsti"Yed data at 
the 5 percent level . 

Table 4-5. Means, standard deviations, and skewness 
coeffi cients of observed and generated 
28-day and annual precipitation, Lindale, 
Texas. 

Mean Standard deviation 
Observed Gellerated Observed Gelierated Ske'>ft1ess coefficient 

Period (Inches ) (inches) (Inches) (inches) · !!liserved Genera tid 

1 3.36 3.01 2.43 2.02 1.00 0.87 
2 3.53 3.1~ 1.74 2.88 0.59 1.99 
3 3.22 2.2 1. 97 1.93 1.35 2. 98 
4 3.72 2. 80 2.85 2.47 1.78 1.31 
5 5.46 5.18 3.14 4.64 0. 70 2.16 
6 3.78 4.00 2.57 3.23 1.26 2.06 
7 2.79 3.16 2.13 3.15 1.16 2.26 
8 2.3Z 2.15 2.15 2.35 L60 2.03 
9 2.76 2.61 2'.48 2.10 2.93 1.01 

10 2.57 3.69 1.92 3.56 0.60 1.35 
11 3.21 2.48 2.47 2.97 0.97 1.66 
12 4.02 4. 16 2.47 3.26 0 .52 2.04 
13 3.87 3.54 2.65 2.41 0.45 0.61 

Annu.ol 44.91 42.31 10.63 11.39 0.33 0.39 

y The ••n of the generated data fs significantly different 
fi'OII the ••n of the observed dlta at the 5 percent 1 eve 1 • 
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Table 4-6. Means. standard deviations , and skewness 
coefficients of observed and generated 
28-day and annual precipitation , Long 
Lake, Texas. 

Mean Standard deviation 
!!liserved Geliertted Observed Gifierated Sketmess coefficient 

Period (inct1es) (Inches) (Inches) (Inches) Observed l:efterned 

1 3.09 3.11 1. 94 1.87 0.32 1.54 
2 3.13 2. 97 1.64 2.33 0.02 1.17 
3 2.64 2.34 2.06 2.08 0.18 1.95 
4 3.34 2.94 2.04 2.89 0.30 2.43 
5 4.80 4 .89 3.97 4.06 1.68 2.46 
6 3.15 3.98 1. 75 3. 97 0.65 2.41 
7 2.50 2.96 2.36 2.80 I. 76 I. 76 
8 1.82 2.23 2.48 2.60 2.66 2.62 
9 2.48 2.16 1.71 1.91 0.63 2.04 

10 2.81 3.50 2.32 3.27 2.01 1. 53 
11 3.08 2.11 2.89 2.26 1.94 1.60 
12 3.80 3.72 3.55 3. 71 2.94 2. 31 
13 3.25 3.52 1.71 2.77 0.51 0.58 

Annual 40.09 40.50 10.51 11.07 0. 79 0.15 

The mean of the generated data differed sig­
nificantly {5 percent level ) from the mean of the 
observed data for only one 28-day period for two of 
the t hree stations. The means of the generated data 
for period 3 for Gilmer and Lindale were signifi ­
cantly less than that from the observed data. The 
hypothesis that the mean precipitation amounts from 
the observed data and the means from the generated 
data were f rom the same popul ation was accepted for 
all other periods for the three stations. The mean 
annual precipitation amounts from the generated data 
were very cl ose to that from the observed data for 
all three stations. None of the differences in 
annual means were si gnificant at the 5 percent 
level. 

The standard deviations of the 28-day totals for 
t he generated data differed significantly from the 
standard deviations of the observed data for only one 
period for Gi lmer. None of the standard deviations 
of the generated data for Lindale or Long Lake 
differed significantly from the standard deviation·s 
of the observed data. 

The peri odic means and standard deviations of 
the 28-day totals f rom both the observed and gen­
erat ed data are illustrated in Figures 4-5, 4-6, and 
4-7. The seasonal patterns of the means and the 
standard deviations of the generated data corre­
sponded closely with that of the observed data. The 
largest 28-day mean occurred during period 5 for al l 
stations for both the observed data and the generated 
data. A smaller peak occurred during periods 12 and 
13 for both observed and generated data. The smal l­
est mean 28-day precipitation occurred duri~g period 
8. The seasonal pattern of standard deviations were 
similar to that for the means, except that the peaks 
were not as pronounced . 

e. ProbabiU.ty of a wet day. The probability 
of a wet day or a dry day at a point is often de­
scribed by a Markov chain. The Markov 'chain approach 
requires the definition of the probabilities of a wet 
day, given a wet day on the previous day, P{W/W), and 
a dry day given a dry day on the previous day, P{D/0). 
The other two t ransit ion probabilities, P(D/W) and 
P(W/0), may be defined from the first two 
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Figure 4-5. Means and standard deviations of t he 28-
day totals from 40 years of observed 
data and 50 years of generated data, 
Gilmer, Texas. 
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Figure 4-7. Means and standard deviations of the 28-
day totals from 40 years of observed 
data and 50 years of generated data, 
Long Lake, Texas. 

probabiliti es . With the time-area model used in this 
study, the transition probabilities are not modeled 
directly. However, if the assumed first order Markov 
model with a constant lag-one autocorrelation coeffi­
cient adequately describes the dependence structure, 
the generated data should have approximately the same 
transition probabilities as the observed data . 

The generated and observed data for the three 
stations i n Test Area I were analyzed to determine 
sample estimates of P(W/W) and P(D/D) for each day of 
t he year. The probabilities were grouped by 28-day 
periods and the. average P(W/W) and P(D/D) were 
determined for each station and each period. The 
average P( W/W) and P(D/D) val ues for each 28-day 
period are given in Tables 4-7, 4-8, and 4-9 for both 
t he generated data and the observed data. The 
transition probabilities were tested, using the 
normal approximation to the binomial distribution, to 
determine i f the probabili ties obtained from the 
generated data differed significantly from that 
determined from the observed data. In general , both 
P{W/W) and P(D/D) from the generated data were g,ood 
approximations of that from the observed data. 
Several of the probabil ities from the generated data 
differed signi ficantly (5 percent level) from that of 
the observed data. There seemed to be a tendency for 
P(D/D) from the generated data to be less than P(D/D) 
from the observed data. However, the probabilities 
from the observed and generated data were remarkably 
close considering these probabilities were not 
modeled directly. 



Table 4-7. Markov chain transition probabilities of 
observed and generated data for 13 28-day 
periods, Gilmer, Texas. 

Period 
P!llllll 

oliser-Yed Generated 
P!0/0~ 

!lliservid -era ted 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0.472 0.449 0.820 0.76~ 
0.468 0.477 0.793 0.757E 
0.367 0.355 0.790 O.lli,y 
0.343 0.359 0.793 0. 
0.461 0.479 0.790 0.795 
0.428 0.372 0.826 0.816 
0.396 0.4~ 0.849 0.830 
0.384 0.3 0.855 0.870 
0.393 o ... w 0.841 0.836 
0.426 0.32 0.875 0.~~ 0.337 0.305 0.857 0.8 ~ 
0.451 0.438 0.851 0.79 y 
0.465 0.442 0.824 0.767 

y The tr1nsition probability fn. the generated data is 
signifiuntly different fro. the observH d•ta at the 
5 percent level. 

Table 4-8. Markov chain transition probabilities of 
observed and generated data for 13 28-day 
periods, Lindale, Texas. 

Period 
P(ll£11~ 

!!Sservid - nerated 
P(D£0~ 

illiservea - nerated 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0.501 0.4~ 0.809 o.noY 
0. 553 0.4~ 0.770 0.784y 
0.408 0.36~ 0. 780 0.841 
0.428 0. 34 1/ 0. 792 0.82jy 
0.437 0.49!;-" 0. 768 0.81 
0.486 0.436 ·0.809 0.822r.: 
0.431 0.390 0.862 0.81~ 
0.384 0.341 0.852 0.88 
0.392 0. 3731/ 0.841 0.849 
0.435 o. 361T/ 0.872 0.~~ 0.385 0.31~/ 0.857 0 .8 y 
0.520 0.38~/ 0.842 0.7:!Y 
0.543 0.451- 0.819 0.7 

y The transition probability from the generated data Is 
significantly different from the observed data at the 
5 percent level . 

f. Cross corroel.ati cm of 28-day and annual. 
totats. The time-area daily precipitation model 
developed in this study uses the lag-zero cross­
correlation coefficients of the t series to p, r 
describe the dependence of daily precipitation in 
space. It was illustrated above that the cross­
correlat ion coefficients of the daily generated data 
were not significantly different from that for the 
observed data. The purpose of this section is to 
compare the space dependence of the generated and 
observed data for intervals longer than 1 day . 

The cross-correlation coefficients of the 28-day 
totals and the annual totals were calculated for each 
of the three pairs of stations in Test Area I using 
both the generated and the observed data. The 
results are given in Tables 4-10, 4-11, and 4-12. 
The cross-correlation coefficients of the 28-day 
totals of the generated data for t~e Gilmer and 
Lindale stations (Table 4-10) were not signi fi cantly 
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Table 4-9. Markov chain transition probabilities of 
observed and generated data for 13 28-day 
periods, Long Lake, Texas. 

Per iod 
Pjll[ll!en 

Ol>serve<l erate<l 
PjO[O~ 

06serve<l nerate<l 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0 . 435 0.420 0.833 o.mY 
0.444 0.4051/ 0.801 0.776 
0.303 0.3~ 0.821 0.845 
0.283 0.36 0:841 0.84~ 
0.378 0.442 0.832 0.80 
0.381 0.401 0.855 o. 834r.: 
0.355 0.376 0.892 0.83~ 
0.315 0.347 0 .912 0 .87 
0 .289 0.323 0.866 0 .8~ 
0.418 0.435 0 .885 0.85 
0.295 0.279 0.880 0.892gY 
0.411 0.341 0 .862 0 . 82 
0.404 0.463 0.841 0.826 

y The transition probability from the generated data Is 
significantly different fro~~ the observed data at the 
5 percent 1 eve 1 • 

different (5 percent level) from the cross­
correlation coefficients of the 28-day observed data 
for 12 of the 13 28-day periods. The cross­
correlation coefficient of the annual totals of the 
generated data was not significantly different from 
the cross-correlation coefficient of the observed 
annual totals. Similarly, the cross-correlation 
coefficients of the 28-day totals of the generated 
data for the Gilmer and Long Lake stations {Table 4-
11) were not significantly different from the cross­
correlation coeffi cients of the observed data for 12 
of the 13 28-day periods or for the annual totals . 
Only two of the cross-correlation coefficients of the 
28-day totals of the generated data were signifi­
cantly different from the observed data for the 
Lindale and Long Lake stations (Table 4-12). 

Table 4-10. Cross correlation coefficients of 
obser ved and generated 28-day and annual 
precipitation, Gilmer and Lindale, 
Texas. 

Cross-correlation coefficient 
Pe~;od !lliservea aata l:eiiera te<l i!.u 

1 0.920 0.825 
2 0.912 0.859 
3 0.908. 0.862 
4 0.907 0.788 
5 0.894 0.878 
6 0.838 0.88~ 
7 0.667 0.90 
8 0.702 0.731 
9 0.751 0.758 

10 0.744 0.794 
11 0.843 0.727 
12 0.898 0.852 
13 0.913 0 .851 

Average 0.838 0.824 

Annual 0.906 0.812 

y The cross-correlation coefficient of the gene~ated 
data is significantly dtffe~ent fn. the crosra>rre­
htlon coefficient of the observed d1ta at the S 
percent level . 



Table 4-11. Cross correlation coefficients of 
observed and generated 28-day and annual 
precipitation, Gilmer and Long Lake, 
Texas. 

Cross-correlation coefficient 
Pertod Observea oata Generateo data 

1 0.768 0.612 
2 0.773 0. 719 
3 0.600 0.627 
4 0.712 0.60~ 
5 0.538 0. 77 
6 0.488 0.625 
7 0.655 0.634 
8 0.502 0.583 
9 0.658 0.439 

10 0.556 0.445 
11 0.788 0.701 
12 0. 714 0.735 
13 0.726 0.555 

Average 0.652 0.620 

Annual 0.760 0.625 

!! The cross-correlation coefficient of the generated 
data is signif icantly different from the cross-corre­
lation coefficient of the observed data at the 5 
percent 1 eve 1. 

Table 4-12. Cross correlation coefficients of 
observed and generated 28-day and annual 
precipitation, Lindale and Long Lake, 
Texas . 

Cross-coM"elatfon coeffi cient 
Period !lliiervia ilaii ~rateil ilata 

1 0.763 0.708 
2 0.723 0.7~ 
3 0.619 0.704 
4 0.730 0.660 
5 0.771 0.81~ 
6 0.481 0. 75 
7 0.599 (,.]~ 8 0.278 0.86 
9 0. 572 0.603 

10 0.828 0.727 
11 0.735 0.763 
12 0.763 0.711 
13 Q.:.lli. 0.684 

Average 0.666 0. 733 

Arlnual 0.817 0.756 

y The cross-correhtton coefficient of the generated 
data Is s igni f icantly different ff'OII ·the cross-cor re­
lation coeff i cient of t he observed daU at the 5 
percent lnel . 

Most of the cross-correlat ion coef f icients of 
the 28-day totals and annual totals from the gen­
erated data were not significantly different from the 
28-day totals and annual totals of the observed data. 
The average of the 13 28-day cross-correlation 
coefficient s and the annual cross-correl ation coef ­
ficients are plotted with respect to inter-station 
distance in Figure 4-8. The decrease in cross­
correlation coefficients with increasing int er-
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station distance is about the same for the generated 
and observed data. The time-area daily precipitation 
model does not dir ectly preserve the cross­
correlation coefficients for intervals longer than 1 
day. However, by preserving the lag-zero cross­
correlation coefficients of the random components the 
model produces new series with cross correlation 
coefficients for intervals of 28 days or longer that 
are close to t he cross -correl ation coef ficien t s of 
the observed data. 
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Cross correlation coefficients of 28-day 
totals and annual totals as a function 
of inter-station distance. 

2. Test Arosa II 

Test Area II is in the south-central part of the 
study region {see Figure 4-1). Three precipitation 
stations were again chosen for which dai ly precip­
itation data woul d be generated. A descr iption of 
the three precipitation stat ions in Test Area II is 
given in Table 4-13. Station Il-l {Hewitt) is one of 
the stations used in developin~ the model parameters. 
Stations II-2 {Troy) and II-3 {McGregor) were not 
used in developing the model parameters . Onl y 20 
years of observed data were available for stat ions 
II-2 and II-3. The three stations in Test Area II 
are closer together than the three stations in Test 
Area I. The i nt er -station distances fo r the stations 
ranged from 15.1 miles to 18.8 miles. 

The time-area dai ly precipi tation model was used 
to generate 50 years of precipitation data for the 
three stations in Test Area II. The generated data 
were compared with t he obser ved data. The values of 
m and s for the new sequences were not computed for 

T T 

Test Area II because of the results for Test Area I 
(Figures 4-2, 4-3, and 4-4) indicated that the 
generat ion model wil l reproduce the m and s values 

T T 



Table 4-13. Description of precipitation stations in 
Test Area II. 

Avallable 
Lat ftude Long ltude dat• 

No . Station na• Index Ho. (deg. north) (deg. west) (years ) 

Il - l Htw1tt 
11-2 Troy 
11-3 McGregor 

Stations 

Hew1 tt-Troy 
Hew1 tt-Hc6regor 
Troy-Hc&regor 

4122 
9153 
5757 

31.45 
31.20 
31.43 

97.18 
97.30 
'97.42 

Inter-station distance 
(•lies) 

18.8 
15.1 
17.6 

1933-72 
1953-72 
1953-72 

obtained from the regionalization equations in Table 
3-8. Similarly , the autocorrelation and cross 
correlation of the t series from the Test Area II p,T 
generated data were not investigated. The Test 
Area I results indicated that the model would produce 
new sequences with lag-one autocorrelation coeffi ­
cients near the assumed regional constant . The Test 
Area I results also demonstrated that the daily 
precipi tation model would generate sequences with 
l ag-zero cross-correlation coefficients near that 
given by equation (3-29). Since the autocorrelation 
and cross-correlation coefficients are not a function 
of regional position, the results apply to Test 
Area II as well as Test Area I. 

The Test Area II generated data were compared 
with the observed data in terms of the distribution 
of 28-day and annual totals, the probabiliti es of wet 
or dry days, and the cross-correlation coefficients 
of 28-day and annual totals. 

a. Di.stM.buti.on of 28-day and annuaL totals . 
The total precipitation for each 28-day period and 
the annual totals were determined for both the 
observed and generated data for the three stations in 
Test Ar~a II. The means, standard deviations, and 
skewness coefficients were calculated for each 28-day 
period and for the annual totals, using both the 
observed and the generated data for each station. 
The resul ts are shown in Tables 4-14, 4-15, and 4-16 
and in Figures 4-9, 4-10, and 4-11. The means and 
standard deviations of the 28-day totals and the 
annual totals were tested to determine whether the 
parameters for the generated data differed signifi­
cantly from those of the observed data. 

None of the three mean annual precipitation 
amounts from the generated data differed signifi­
cantly from the mean annual precipitation from the 
observed data. Only one of the three annual standard 
deviations differed significantly from the standard 
deviations of the observed data. The mean annual 
precipitation for stations in Test Area II is about 
10 inches less than that for stations in Test Area I. 
The time-area daily precipitation model accurately 
accounts for the differences in mean annual precip­
itation with position in the region. 

The seasonal patterns of the 28-day means and 
standard deviations from the generated data were, in 
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Table 4-14. Means, standard deviations, and skewness 
coefficients of observed and generated 
28-day and annual precipitation, Hewitt, 
Texas. 

IIHn 
ObServed Giiiiratid 

Standard deviation 
Observed Generated Sktt~~~ess coefficient 

Period (Inches) (Inches) (Inches) (Inches) 06servid lliiier•tid 

1 1.17 2. 48 1.34 2.11 0.78 2.28 
2 2.32 2.36 1.43 1.44 0.27 0.69 
3 1.87 2.37 1.43 2.08 0.71 1. 73 
4 2.57 2.20 2.12 1.9~ 1.79 l.U 
5 4.48 3.67 3. 62 2.3 1.26 0.74 
6 3.01 2.63y 1.83 2.48 0. 38 2.86 
7 1.77 2.77 2.01 2.07 1.7Z 0. 71 
8 1.57 1.91 1.96 2.~ 2.38 2.37 
9 2.86 2.35 2.97 2. 1.90 0.85 

10 2.76 2.84 2.64 2.27 1.48 0. 97 
11 2.67 2.07 2. 10 2.23 0.92 1.67 
12 2.38 2.35 2.12 1.88 1.38 0.98 
13 1.99 2.17 1.47 2.09 0.90 2.54 

Ann111l 32.17 32.17 8.81 7.84 0.41 0.59 

y The standard deviation of the generated dati Is slgnlfle~ntly 
different f~ the stlndud deviation of the observed dat• at 
the 5 percent level. 

y The -n of' the generated dati Is slgnl flcantly different 
fro. the ... n of the observed data at the 5 percent level . 

Table 4-15. Means, standard deviations, and skewness 
coefficients of observed and generated 
28-day and annual precipitation, Troy, 
Texas. 

Mean Standard deviation 
06servid Generated Observed Genentid Skewness coefflctent 

Period (Inches) (Inches) (inches) (ln~hes) Observid i:eneratid 

I 1.75 2.20 1.70 2.20 1.64 3.62 
2 2.65 2.00 1.50 1.47 0.40 0.84 
3 1.69 2.16 1.27 1.67 1.09 1.11 
4 2.18 1.~ 1.47 1.64y 0.25 1.48 
5 5.44 3. 3.67 2.17 0.74 0.39 
6 2.51 2.79 1.84 2.69 0.84 2. 08 
7 1.67 2.20 2.05 2.05 1.41 1.34 
8 1.77 2.06 2.03 2.14 2.18 1 .. 41 
9 2. 42 2. 74 1.89 2.43 1.36 2.02 

10 3.70 2. 87 !I 2.82 2.46 0.87 1.35 
11 3.31 2.01 2.96 2.11 1.50 1.83 
12 2.37 1. 97 1.39 1. 36 -0.02 0.47 
13 I. 92 2.08 1.52 1.86 1.14 1.34 

Annual 33.50 30.66 8.88 7. 11 -0.14 0.68 

!J The mean of the generated data Is significantly different 
fro11 the mean of the observed data at the 5 percent level. 

y The standard deviation of the generated data Is significantly 
different fi"'OII the standard deviation of the observed data at 
the S percent 1 eve 1. 

general , a good representation of the means and 
standard deviations of the observed data. Most of 
the means and standard deviations of the 28-day 
total s from the generated data were not significantly 
different from that of the observed data. The 
generated data contai ned only one 28-day mean for 
Hewitt, two means for Troy, and one mean for McGregor 
that were significantly di fferent from the means of 
the observed data. Similarly, the generated data 
contained only two 28-day standard deviations for 
Hewitt, one standard deviation for Troy, and t hree 



Table 4-16. Means, standard deviations, and skewness 
coefficients of observed and generated 
28-day and annual precipitation, . 
McGregor, Texas. 

!lean Standard deviation 
Observed Generated Observed Generated Skeooness coefficient 

Period (Inches) (inches) (Inches) (inches) Observ~ Generated 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Annual 

11 

y 

a.o 

• 4.0 

! •a.o 
• i LO 

1.0 

1.87 2.31 1.86 2.22 l. 59 3.26 
2.38 2.07 1.44 1.37 0.29 0.64 
1.65 2.45 1.39 1.82 0.99 0.67 
2.41" 2. 16 2.33 1.9;.v 2.90 1.41 
5.14 3.65 4.41 2.4 1.45 1.01 
3.14 2.78 3.30 2. 97 2.20 2.15 
2.02 2. 57 2.62 2.56~ 1.69 1.48 
2.20 2.14 3.44 2.2 3.41 1.29 
2.33 2.48 1.41 1.82 0.27 0.55 
3.29 2.7~ 2.47 2.1~ 0.66 1.30 
3.22 1.6 2.38 1.6 0.60 1.27 
2.02 2.14 1. 34 1. 70 0.01 0.83 
1.61 2.24 1.36 2.48 1.07 1.67 

33.35 31.51 10.89 7.57y 0.37 • 0.62 

The standard deviation of the generated dat a is sign I flcantly 
different fro~~ the standard deviation of the observed data 
at the 5 percent level. 
The ••n of the generated dttl Is s1gn1flcantly dlff•rent 
fi'OII the nean of the observed data at the 5 percent 1 eve 1 . 
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Figure 4-9. Means and standard deviations of the 28-

day totals from 40 years of observed 
data and 50 years of generated data, 
Hewitt, Texas. 

standard deviations for McGregor that were signifi ­
cantly different from the standard deviations of the 
observed data. 

b . Probability of a ~Jet day. The Markov chain 
transi tion probabilities were computed from the 
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observed and the generated data for the three sta­
tions in Test Area II . The average P(W/W) and P(0/0) 
for each 28-day period are given in Tables 4-17, 4-
18, and 4-19. The transition probabilities obtained 
from the generated data were tested to determine 
whether they differed significantly from the proba­
bilities obtained from the observed data. The 
agreement between P(W/W) and P(0/0) from the gen­
erated data and P(W/W) and P(0/0) from the observed 
data for Test Area II was about the same as that for 
Test Area I. Several of the probabilities from the 
generated data were significantly different from that 
of the observed data. In most cases P(0/0) values 
for generated data were less than P(0/0) from the 
observed data, but both P(0/0) and P(W/W) from the 
generated data were good approximations of that from 
the observed data. 

Table 4-17. Markov chain transition probabilities of 
observed and generated data for 13 28-
day periods, Hewitt, Texas. 

Perfod 
P(WLW~ 

Observed en era ted 
PtDLD~ 

Observednerlttd 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0. 447 0.39~ 0.840 0.825 
0.479 0.351 0.807 0. 796 
0.316 0.354 0.832 0.836 
0.384 0.352 0.845 0.848 
0.445 0.4281/ 0.805 0.795 
0.438 0.35~ 0.843 0.822~ 
0.385 0.342 0.900 0.84~ 
0.363 0.348 0.916 0.87 ~ 
0.362 0.3301/ 0.874 0.852 I 
0.467 0.26ffi 0.883 0 .851-
0.404 0. 32ili 0.877 0 .876y 
0.455 0.3261/ 0.870 0. 814 
0.465 0.37 0.865 0.845 

Y The transition probabflfty from the generated data Is 
significantly different from the observed data at the 
5 percent level. 

Table 4-18. Markov chain transition probabiliti es of 
observed and generated data fo r 13 28-
day periods, McGregor, Texas. 

Period 
P(WLW6-e 

Observed - nerateCI Observed 
P(0£0) 

GenerneCI 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0.461 0.387 0.879 0.8221/ 
0.405 0.347 0.840 0.817y 
0.258 0.349 0.879 0.821 
0.325 0.336 0.876 0.849 
0.442 0.435 0.815 0.803 
0.292 0.374 0.860 0.83ili 
0.410 0.353 0.930 0.86ili 
0.327 0.331 0.916 0.8761/ 
0.328 0.368sY 0.874 0.83 
0.414 0.24 0.861 0.848 
0.295 0.311 0.878 0.88~ 
0.461 0.348 0.891 0.83 
0.391 0.341 0.871 0.856 

y The transition probability fr0111 the generated data 1s 
significantly different from the observed data at the 
5 percent level. 
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Table 4-19. Markov chain transition probabilities of 
observed and generated data for 13 28-
day perio~s, Troy, Texas. 

P(W/W) P(0/0) 
Period Observed . Generated Observed Generated 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0.341 
0.391 
0.215 
0.332 
0.430 
0.311 
0.271 
0.476 
0.356 
0.375 
0.337 
0.337 
0.389 

o.c1cY 
0.36~1/ 
0.34F 
0.371 
0.437 
0.321 
0.317 
0.313 
0.351 
0. 3401/ 
0.291y 
0.297 
0.365 

0.854 
0.823 
0.845 
0.878 
0.825 
0.877 
0.903 
0.913 
0.869 
0.857 
0.891 
0.885 
0.885 

0.830 
0.807 
0.82~1/ 
0.84P 
0.~!~ 
0.~, 
0.86~/ 
0.87;:r, 
0.828=' 
0.851 
0.87~1/ 
0.83!1'/ 
0. 84!>=' 

y The tr-ansition p~ility froa the gener1ted data Is 
significantly different fi"'OI the observed data It the 5 
percent 1 evel . 

a. Cross aor>rel.ation of 28-day and annual. 
totaZ.s . The cross correlation coefficients of the 
28-day totals and the annual totals were calculated 
for both the observed and generated data for each of 
the three pai r of stations in Test Area II. The 
results are given in Tables 4-20, 4-21, and 4-22. 
The cross-correlation coefficients obtained from. the 
generated data were tested to determine whether they 
differed significantly from the cross-correlation 
coefficients obtained from the observed data. The 
agreement between t he cross correlation coefficients 
from the generated data and that from the observed 
data for Test Area II is similar to that for Test 
Area I. The average of the 13 28-day cross­
correlation coefficients from the generated data were 
close to that of the observed data for all three 
pairs of stations. The annual cross-correlation 
coefficients from the generated data were less than 
that from the observed data for two pairs of stations 
and greater than that from the observed data for one 
pair of stations. These results reinforce the 
conclusion drawn from the Test Area I results that 
for intervals of 28-days or longer the cross­
correlation coefficients of the generated data are 
close to the cross-correlation coefficients of the 
observed data. 



Table 4-20. Cross correlation coefficients of 
observed and generated 28-day and annual 
precipitation, Hewitt and Troy, Texas. 

Cross-correlation coefficient 
Period 1l6serveil data ~enerated data 

1 0.883 0.934 
2 0.900 0.844 
3 0.924 0. 873 
4 0.650 0.838 
5 0.878 0.803 
6· 0. 797 0.803 
7 0. 927 0.818 
8 0.847 0.887 
9 0.598 0.829 

10 0.810 0. 818 
ll 0.793 0.91~ 
12 0.942 0.79 
13 0.937 0.826 

Average 0.837 0.845 

Annual 0.919 0.845 

y The cross-correlation coefficient of t he genl!'rated 
data is significantly different from the cross-corre­
lation coefficient of the observed data at the 5 
percent level. 

Table 4-21. Cross correlation coefficients of 
observed and generated 28-day and annual 
precipitation, Hewitt and McGregor, 
Texas. 

Cross-correlation coefficient 
PeTiod Observed data Generated data 

1 0.969 0. 940 
2 0.880 o. 8~s¥t 3 0.974 0.83~ 
4 0.964 0.88 
5 0.964 0.73~ 
6 0.559 0.854!1 
7 0.917 0.889 
8 0.932 0. 892!1 
9 0.623 0.877 

10 0.836 0.869 
11 0. 944 0. 881 
12 0.888 0.853 
13 0.954 0.915 

Average 0.878 0.867 

Annual 0.888 0.892 

'!/ The cross-correlation coefficient of the generated 
data Is significantly different from the cross-corre­
lation coefficient of the observed data at the 5 
percent I eve 1. 
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Table 4- 22. Cross correlation coefficients of 
observed and generated 28-day and annual 
precipitation, Troy and McGregor, Texas. 

Cross-correlation coefficient 
Period 1l6servi!a data llenerated da.ta 

1 0.897 0. 950 
2 0.902 0.821 
3 0.917 0.853 
4 0.627 0.839 
5 0. 841 0.830 
6 0.798 0.876 
7 0.833 0.829 
8 0.878 0.900 
9 0.615 0.756 

10 0.794 0.829 
11 0. 753 0.86~ 
12 0.912 0.72 
13 0.869 0.823 

Average 0.818 0.838 

Annual 0.907 0.815 

y The cross-correlation coefficient of the generated 
data Is significantly different fi"'ftt the cross-corre­
lation coefficient of the observed data at the 5 
perce.nt 1 eve 1 . 



CHAPTER V 
Discussion and Conclusions 

Precipitation over an area, observed at discrete 
points in space, is the result of the interaction of 
many atmospheric variables. The number of variables 
and the complexity of the processes are too great to 
attempt a purely deterministic description of the 
phenomena. This study is an effort to gain an 
understanding of the time-area daily precipitation 
process by modeling the stochastic structure of the 
process. Hopefully, the model will also be of 
practical value for generating new time-area daily 
precipitation sequences for water resource applica­
tions. 

The stochastic structure of daily precipitation 
over an ar ea was modeled by using a multivariate 
normal distribution. The multivariate normal ap­
proach had previously been applied to hydrologic 
series that did not contain zeros, like continuous 
streamflow or monthly precipitation. This study is 
an attempt to apply the approach to an intermittent 
process, like daily precipitation, that contains many 
zero values. 

The parameters of the time-area daily precip­
itation model were determined as a function of 
position within a region. New precipitation series 
were generated for two areas within the region. The 
new series were simi lar to the observed series in 
many of the important time-area characteristics. The 
model successfully preserved: (1) the periodic means 
and standard deviations of the normalized daily 
precipitation , (2) the lag-one autocorrelation 
coefficients of the dai ly random components for each 
station, (3) the lag-zero cross-correlation coeffi­
cients between the daily random components for each 
pair of stations, and (4) the means, standard devi­
ations , and skewness coefficients of 28-day and 
annual precipitation. The model was not developed to 
preserve the Markov chain wet-dry transition proba­
bilities or the cross-correlation structure among 
stations for intervals longer than 1 day. The 
transition probabilities and the cross-correlation 
coefficients of 28-day totals and annual totals from 
generated sequences were often significantly dif­
ferent from the transition probabi li ties and cross­
correlation coefficients from the observed data. 
These differences probably indicated that the model 
failed to accurately describe the time and space 
dependence structure of daily precipitation. How­
ever, both the Markov chain transition probabilities 
and the cross-correlation structure for interval s of 
28 days or longer were close enough to that from the 
observed data so as not to impair the usefulness of 
the new sequences for most appli cations . 

Basical ly, this study has shown that the trun­
cated multivariate normal distribution is a useful 
model of daily precipitation over an area, if pre­
cipitation at a point can be transformed to approx­
imate a truncated normal distribution. Specific 
conclusions resulting from this study are: 

1. The square root proved to be adequate for 
transforming daily precipitation to conform to a 
truncated normal distribution for stations in the 
study region. A different transformation may be 
required in other regions. 
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2. Maximum likelihood estimates of the means 
and standard deviations of the truncated samples of 
normalized daily precipitation may be obtained using 
the method given by Cohen (1950). 

3. The seasonal nature of precipitation can be 
described using a Fourier series representation of 
the means and standard deviations of transformed 
daily precipitation at a point. Six harmonics were 
assumed to describe the complex periodic movement of 
the means and standard deviations of the truncated 
normal distribution for the stations in the study 
region. The relatively large number of harmonics 
were requi red because of peri odicity in both the 
probability of a wet day and the distribution of 
precipitation amounts given the occurrence of a wet 
day. The number of Fourier coefficients to be 
estimated for each parameter is 2m+l, where m is the 
number of harmonics. The relatively large number of 
harmonics for stations in the study region greatly 
increases the number of coefficients . For most 
regions , the precipitation pattern during the year is 
less complex than that for the study region, and 
fewer harmonics wou ld be required to describe t he 
periodic movement of the means and standard devia­
tions. 

4. The harmonics of the means and standard 
deviations were not in phase for the stations in the 
study region. If the phase of the harmonics of the 
means and standard deviations had been the same, 
fewer coefficients would have been required. Sam­
pling error may have caused part of t he difference in 
phase for the two parameters. However, the periodic 
variation in precipitation could not be preserved by 
assuming that the harmonics of the means and standard 
deviations had the same phase. 

5. The regional precipitation trend may be 
described by relating the coefficients of the peri­
odic parameters to position within the region. The 
amplitudes and phases of harmonics of the daily means 
and standard deviations were related to station 
latitude and longitude, using a simple linear equa­
tion. Annual precipitation in the study region 
increased from west to east with little north- south 
change. This east-west trend was reflected in the 
equations relating the coefficients to position in 
the region. Most of the coefficients were a function 
of longitude and were independent of l atitude . Some 
of the coefficients were regional constants. 

6. The random component of daily precipitation 
for each station, determined by removing the periodic 
means and standard deviations was approximately 
stationary in the mean and variance with a mean of 
zero, a variance of unity , and a variable lower limit 
(truncation point). The means and standard devia­
tions used in obtaining the random components were 
determined using t he Fourier series representations 
wi th the coefficients given by the regional trend 
equations . 

7. The lag-one autocorrelation coefficient of 
the random component of daily precipitation was 
approximately a regional constant with a value of 
0.385. The autocorrelation coefficients for lags 
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greater than 1 day were greater than that given by a 
first-order Markov model. However, only the lag-one 
autocorrelation coefficient was used for generating 
new sequences of daily precipitation fo r an area. 
This simplication of the time dependence structure 
may explain why P(D/D) from the generated data tended 
to be less than P(D/D) from the observed data. 

8. The cross-correlation coefficients between 
the random components of daily precipitation for 
stations in the study region were a function of 
inter-station distance and independent of regional 
position and orientation (azimuth). 

This study raised several questions that could 
not be answered within the scope of the study. Some 
of the topics for future research include: 

1. Determine general normalizing transforma­
tions applicable for daily precipitation for any 
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region using the truncated normal concept. The 
square root transformation was satisfactory for the 
region used in this study. Different transformations 
may be required for other regions. 

2. Develop methods of discerning the signif­
icant harmonics of periodic parameters for which the 
sampling error is large with respect to the ampli­
tudes of the harmonics. The sampling errors of the 
daily means and standard deviations in this study 
were greater than the amplitudes of the harmonics. 
No suitable method was available to accurately define 
the number of harmonics for the two parameters. 

3. Investigate the autocorrelation structure of 
the random components of daily precipitation. The 
results of this study showed greater persistence in 
daily precipitation than that given by a first-order 
Markov model . 
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sequences of standardized random components were normally 
distributed with zero means and unity s tandard deviations 
and were dependent in time and space. The lag-one auto­
correlation coefficients were fou nd to be a regional 
constant, as a function of inter-station distance. 

Precipitation sequences were generated for two areas in 
the study region using the truncated multivariate normal 
distribution model. Parameters of the model were defined 
using the latitude and l ongitude of each station. The new 
sequences closely resembled the observed sequences. 
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Abstract : Daily precipitation over an area is modeled as the 
time-area process. Daily precipitation at a point is en­
visioned as a continuous variable that has been truncated 
at zero. The zero precipitation is considered negative 
unknown quantity. The square roots of daily precipi~ation 
are approximated by a truncated univariate normal distri­
bution. The multivariate normal distribution is used to 
describe the time-area variation of daily precipiation over 
an area. 

A method was developed for obtaining maximum likelihood 
estimates of daily means and standard deviations from the 
truncated samples. The periodic means and standard deviations 
are described by Fourier series. The Fourier coeffi cients 
were related to position within the study region. The 
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