

Sustainable Development of Polymers for a Circular Plastics Economy

Robin Cywar, Pl: Eugene Chen CSU Department of Chemistry

How is plastic made?

- Plastics are made of polymers
- Monomers become polymers by a repetitive chemical reaction
- Different monomers lead to different physical properties: melting temperature, flexibility, strength, etc.
- Metal catalysts are often used to reduce energy input and control molecular-level structure

Challenges in Plastic Recycling

MONOMER POLYMER PRODUCT

Chemical Recycling

- + virgin quality material regenerated
- + less raw materials
- energy input vs. material output
- select materials, nascent stage

Objective

To prepare and chemically recycle a plastic material with green catalysts and methods

What was known:

- Monomers with the 'gene' for full chemical recyclability can be (de)polymerized by metal-based catalysts.
- Organic (metal-free) catalysts have demonstrated sustainability & performance advantages: economic, environmental, polymer applications

What we aimed to discover:

- Efficient, metal-free catalyst systems to make and completely disassemble polymers
- Advantages over metal catalysts
- ❖ Mechanical properties of the recyclable plastic material

Design & Results

I. Hypothesis-driven search for the best catalyst system

II. Scale-up best performing system

- □ Produce large quantities for mechanical testing
- □ Dynamic Mechanical Analysis (DMA): How do material properties change with heat? i.e., what temperature is the plastic [melt] processable?
- ☐ **Tensile analysis**: how far and with how much force can the material be stretched?
- ☐ Compare data to other plastics

Results

Conclusions & Ongoing work

Organic catalysts led to several advantages:

- Higher yield
- Higher molecular weight (good for mechanical properties)
- Less purification required (less waste)
- Increased thermal stability (no metal contamination)

Methods could be scaled up to prepare large samples for mechanical testing

 Structure/property relationships of recyclable monomer/polymer systems being studied in Chen lab/start-up company, SusMer

International collaborators are evaluating the plastic

- As a packaging material (gas barrier properties)
- As a membrane material (water purification)

References & Acknowledgments

- ❖ Professor Eugene Chen, Dr. Jianbo Zhu
 ❖ Szekely Group (collaborators) KALIST (
- Szekely Group (collaborators) KAUST, Saudi Arabia
 Sardon Group (collaborators) BERC-POLYMAT, Spain
- Cywar, R.M., J.-B. Zhu, and E. Y.-X. Chen, *Polymer Chemistry*, **2019**, 3097-3106.
- 2. Hong, M. and E. Y.-X. Chen, *Nature Chemistry*, **2016**, *8*, 42-49.
- 3. Zhu, J.-B.; Watson, E. M.; Tang, J.; Chen, E. Y.-X. *Science* **2018**, *360*, 398–403.
- Zhu, J.-B. and E.Y.-X. Chen, Angew. Chem. Int. Ed. 2018, 57, 12558-12562.
 Hong, M. and E.Y.-X. Chen, Trends Chem., 2019. 1, 148-151.