

1

2

SPIN WAVE PROPAGATION IN NON-UNIFORM MAGNETIC FIELDS

Michael J. Kabatek,^{1,2} J. Derek Tucker,² Mingzhong Wu,¹ and Carl E. Patton ^{1,2}

¹ Department of Physics, Colorado State University, Colorado, USA

² Department of Electrical and Computer Engineering, Colorado State University, Colorado, USA

3

4

Introduction

Previous research on spin waves has mainly involved spin wave excitations and propagation in spatially uniform magnetic fields. This work reports high resolution time- and space-resolved imagining of spin wave propagation in spatially non-uniform magnetic fields.

Field Configurations

The experiment was preformed with three specific non-uniform field configurations. These consisted of a field that increases with position, decreases with position, and has a decrease followed by an increase.

Experimental Configuration

Yttrium iron garnet (YIG) film: 7.2 μ m thick, 2.2 mm wide, 46 mm long. Carrier frequency of input pulse: 5.515 GHz. Width of input pulse: 35 ns.

Spatial Evolution

Spin waves undergo a change in wavelength during the propagation through spatially non-uniform magnetic fields.

Wave Number Characteristics

5

6

The wave number increases in a spatially increasing field and decreases in a spatially decreasing field. This change in wave number is also reversible, as shown by the sagging field.

Conclusion

□ The carrier wave number of spin wave pulses increases in a spatially increasing magnetic field and decreases in a spatially decreasing magnetic field.

□ The wave number change for a general spatially varying static field is reversible.

These field dependent wave number properties present potential microwave signal processing applications.

This work was support in part by

• the U.S. Army Research Office, MURI Grant W911NF-04-1-0247 • the Russian Foundation for Basic Research, Grant 05-02-17714