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ABSTRACT OF DISSERTATION 

OPTIMAL SAMPLING AND MODELING STRATEGIES FOR QUANTIFYING 

NATURAL RESOURCES OVER LARGE GEOGRAPHICAL REGIONS 

This study addresses three important issues related to designing an inventory 

and monitoring program of natural resources in the State of Jalisco, Mexico; 1) 

selecting an appropriate modeling approach to describe the spatial variability of 

selected variables of interest; 2) selecting an appropriate sampling design; and 3) 

selecting an appropriate plot size and sample size. 

Chapter 1 evaluates a new approach of modeling the spatial distribution of soil 

attributes over large geographical regions. A combination of three-stage least squares 

(3SLS) and multivariate regression trees (MRT) was used to model the spatial 

variability in soil texture. In 2006, 1427 soil samples were collected as part of a 

state-wide inventory and monitoring program (IMRENAT) implemented in the State 

of Jalisco, Mexico, located in the west central part of Mexico and covers an area 

approximately 78618 km2. A two-way nested stratified design was used to allocate 

samples throughout the state based on the spectral variability of land cover and 

climatic conditions. Soil samples were collected from five subplots on a 30 m x 30 m 

primary sampling unit to form a composite surface soil sample (0 - 10 cm depth). 

The final set of models described 61% of the observed variability in soil pH, 62% of 
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the variability in sand and 56% for clay. Comparison with other interpolation 

techniques such as ordinary kriging, suggest that the approach used in this study is far 

superior in terms of the accuracy and precision. 

Chapter 2 evaluates three sampling designs (i.e., simple random sampling, 

systematic sampling and two-way nested stratified design (IMRENAT)) for modeling 

the spatial variability in forest tree biomass in the State of Jalisco, Mexico. Normally 

distributed random errors were added to an existing spatial model of forest tree 

biomass and used as "truth" in this study. Monte Carlo simulations were used to 

implement the three sampling designs using samples of 500 and 1100 30 m x 30 m 

primary sampling units. Statistically, the two-way-nested stratified design 

outperformed the simple random and systematic sampling design. There was no 

significant difference between the simple random and systematic designs. The 

statistical performance of the two-way nested stratified design increased with 

increasing sample size. 

Chapter 3 evaluates the statistical properties of plot size and sample intensities 

in estimating forest stand characteristics (i.e., tree basal area, tree density and total 

number of tree species) in seasonal dry evergreen forests in Huai Kha Khaeng 

Wildlife Sanctuary, Thailand. Monte Carlo simulations were used to evaluate plot 

sizes (5 m x 5 m, 10 m x 10 m, 20 m x 20 m, 25 m x 25 m and 50 m x 50 m) and 

sample intensities (0.5%, 1%, 2%, 5%, 10%, and 15%) on a 50 ha mapped dataset. 

All plot sizes and sampling intensities provided unbiased estimates of the population 

mean and variance for tree basal area and tree density. All plot sizes and sampling 

iv 



intensities were biased with respect to estimating the total number of tree species on 

the 50 ha plot. 

Nantachai Pongpattananurak 
Department of Forest, Rangeland, 

and Watershed Stewardship 
Colorado State University 

Fort Collins, CO 80523 
Summer 2008 
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CHAPTER 1: MODELING THE SPATIAL DISTRIBUTION OF SOIL 

ATTRIBUTES AT A REGIONAL LEVEL, A CASE STUDY 

IN THE STATE OF JALISCO 

ABSTRACT 

Information on the spatial variability of soil attributes, such as soil texture and 

pH, play a crucial role in the measurement of forest ecosystems and agricultural lands. 

Selecting an appropriate technique to spatially interpolate soils data is not straightforward 

especially when dealing with large geographical regions. In this study, a new approach 

using three-stage least squares (3SLS) and multivariate regression trees (MRT) was 

illustrated to model soil texture fractions. Additionally, the comparisons of modeling 

small scale variability based on 1) a stratified tree-based approach using regression trees 

(RT) and multivariate regression trees (MRT) and 2) a geostatistical approach using 

ordinary kriging (OK) are compared and evaluated. The soils data used in this study 

were obtained from a state-wide inventory implemented in the State of Jalisco, Mexico 

conducted in 2006 and included 1427 observations on soil texture and pH. The decisions 

to use three stage least squares and multivariate regressing trees were to ensure the 

prediction of soil texture fractions summed to 100 percent. Additionally, 3SLS allowed 

the use of highly correlated dependent variables as explanatory variables in some of the 

regression models, which violates the underlining assumption of ordinary least squares. 

The 3SLS models accounted for 30%, 43% and 39% of the variability observed in sand, 

clay and pH, respectively. The RT models explained an addition 31%, 19% and 6% of 
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the observed variability in the pH, sand and clay models, respectively. With respect to 

the 3SLS + RT models, the total observed variability explained for the soil pH, sand and 

clay models were 61%, 62% and 45%, respectively. The MRT models accounted for 

19% and 17% of the observed variability in sand and clay, respectively while the final 

models (3SLS + MRT) accounted for 62% of the variability in sand and 56% for clay. 

Meanwhile, ordinary kriging explained only 9% and 17% of the observed variability in 

sand and clay, respectively. The results also suggest that only the stratified tree-based 

approach provided unbiased variance estimates for the mean response and new 

observations. The 3SLS + MRT model satisfied the constraint that the estimated values 

of the sum of sand, clay and silt summed to 100%, while 3SLS + RT had sums ranging 

from 82.19% to 121.60%. The stratified tree-based approach provided a more reliable 

model of soil attributes than ordinary kriging. 

INTRODUCTION 

Soil texture varies significantly within and across land cover types. In agricultural 

soils, for example, assessment of the spatial variability in soil texture is central to support 

a variety of management decision processes. Soil physical properties such as soil texture 

have a direct effect on water-holding capacity, cation-exchange capacity, crop yield, site 

productivity, and nitrogen loss, as well as other soil processes and conditions. Numerous 

statistical techniques have been advocated to describe and interpolate soil properties at 

the field level (McBratney et al. 2003, Scull et al. 2003). 

Historically, modeling of soil attributes has relied primarily on ordinary least 

squares (i.e., multiple linear regressions) to explain the variability of soil attributes 
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(Troeh 1964, Walker et al. 1968, Moore et al. 1993, Skidmore et al. 1997). Multivariate 

techniques have also been used, particularly when dealing with a number of redundant 

independent variables, e.g., multispectral satellite imagery (McBratney et al. 2003) and/or 

topographic factors. Discriminant analysis has also been considered as a useful tool for 

the purposes of predicting soil attributes (Bell et al. 1994, Palvik and Hole 1997, Dobos 

et al. 2001). Spatial interpolation techniques have also been used to describe the spatial 

dependency in soil attributes. For example, Odeh et al. (1994, 1995), Knotters et al. 

(1995), De Gruijter et al. (1997) and Voltz et al. (1997) studied soil depth, and other soil 

properties using geostatistical techniques such as kriging and co-kriging. Additionally, 

universal kriging which, combines low order degree polynomials of geographical 

coordinates (i.e., trend surface analysis) and ordinary kriging have been evaluated for 

predicting a wide range of soil properties (Odeh et al. 1994, Meul and Van Meivernne 

2003). Gotway-Crawford and Hergert (1997) and Meul and Meirvenne (2003) provide 

comprehensive examples of how to handle spatial soil attribute data without the 

assumption of stationarity. Generalized linear models have also been used to model and 

map soil attributes (McKenzie and Austin 1993, Gessler et al. 1995). More recently, 

classification and regression trees (CART) developed by Brieman et al. (1984) have been 

used by soil scientists as a predictive model to evaluate either continuous (Ryan et al. 

2000, Henderson et al. 2005) or categorical (Bui and Moran 2001) soil attributes. 

Most of the previous studies have concentrated on modeling soil attributes over 

small areas with a fine spatial resolution (Knotters et al. 1995, Odeh et al. 1994, Ryan et 

al. 2000). On the other hand, when modeling soil attributes over large geographical 

regions, soil scientists have focused primary on a coarse spatial resolution (Bui and 
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Moran 2001, Dobos et al. 2001, Henderson et al. 2005). Spatial models of soil attributes 

with a fine scale resolution have rarely been done over large geographical regions. 

One approach of modeling spatial data is to decompose the data into two 

components, the large-scale and the small-scale variability. The large-scale variability in 

soil attribute may be influenced by such factors as elevation, slope, aspect, precipitation, 

and so on, while the small-scale variability is potentially influenced by differences in soil 

permeability, nutrient availability and so forth. The large-scale variability is generally 

modeled using multiple regression models, while the small-scale variability is modeled 

using geostatistical techniques such as kriging. Unfortunately, when trying to model soil 

attributes over large geographical regions, the data may not be spatially correlated, or 

weakly correlated making it almost impossible to model the small-scale variability in a 

set of data using geostatistical methods. 

While the residuals from the regression models may not display any spatial 

dependency, they still contain important information useful in describing the spatial 

variability in a set of data. Reich and Aguirrie-Bravo (2008) introduced the concept of a 

tree-based stratified design capable of modeling the small-scale variability in a set of 

spatially independent data. 

Another problem that arises when modeling soil attributes are implied constraints. 

For example, soil texture is probably one of the most common attributes modeled by soil 

scientists. Modeling efforts have concentrated on dealing with only one or two 

components of soil texture (e.g., sand, clay, or both sand and clay). If the third 

component is desired it is often obtained by subtraction. Recently, Van Meirvenne and 
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Van Cleemput (2006) employed compositional ordinary kriging to simultaneously model 

soil texture while constraining the three fractions of soil texture to sum to 100%. 

In this paper, a new approach is presented for modeling soil texture fraction over 

large geographical regions based on a system of equations to ensure the three fractions of 

soil texture sum to a 100%. The method of three-stage least square (3SLS) is used to 

model the large-scale variability in soil texture (Zellner and Theil 1962). This approach 

allows one to statistically constrain the model such that the estimates of sand, silt and 

clay sum to 100%. In the case of modeling the small-scale variability, it is not clear what 

type of regression trees should be used. Thus, the main objective of this study was to 

evaluate the use of univariate and multivariate regression trees (De'ath 2002) in modeling 

the small scale variability in soil texture using the tree-based stratified approach 

advocated by Reich and Aguirrie-Bravo (2008). A secondary objective was to compare 

the use of ordinary kriging in modeling the small-scale variability with the use of the 

tree-based stratified approach. These methods are illustrated by modeling selected soil 

attributes in the Mexican State of Jalisco. 
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METHODS 

Study Area 

The State of Jalisco, Mexico is located in the west central part of Mexico, and 

covers an area of approximately 78618 km (Figure 1). Four major ecological regions 

provide the natural resources and environmental conditions that make this region one of 

the most prosperous in Mexico. The eco-regions consist of: 1) the transversal neo-

volcanic system, 2) the southern Sierra Madre, 3) the Southern and Western Pacific 

Coastal Plain and Hills and Canyons and 4) the Mexican High Plateau. Linked to these 

ecological regions are several important hydrological regions that drain to the Pacific 

Ocean (Lerma-Santiago, Huicicila, Ameca, Costa de Jalisco, Armeria-Coahuayana, 

Balsas, and El Salado). Elevations range from sea level to 4236 m. 

Soil Data 

In 2006, 1427 soil samples (Figure 1) were collected as part of a state-wide 

inventory and monitoring program (IMRENAT) implemented in the State of Jalisco, 

Mexico. A two-way nested stratified sampling design (Reich et al 2008) was used to 

allocate samples throughout the state based on the spectral variability of land cover and 

climatic conditions. Soil samples were collected from five subplots on a 30 m x 30 m 

primary sampling unit to form a composite surface soil sample ( 0 - 10 cm depth). Soil 

samples were analyzed to obtain some basic soil physical and chemical properties, 

including soil texture, soil depth and pH. Soil pH was estimated using a chemical 

measure of soil buffering, or the SMP buffer method (McLean 1982) while percent of 
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Figure 1. Locations of 1427 sample plots in the State of Jalisco, Mexico. 

7 



sand, clay and silt were determined using Bouyoucos hydrometer method (Bouyoucos 

1936, Gee and Bauder 1979, Jones 2002). The soil textural classification and frequency 

of the observed soil data is given in Table 1. 

GIS and Landsat TM Data 

Ten cloud-free Landsat 7 ETM+ images obtained between January and March, 

2004 were combined to create a seamless image using the Mosaic tool (ERDAS Inc. 

1999). The thermal band 6L and 6H with a 57 m resolution and the panchromatic band 8 

with a 14.25 m resolution were resampled to a 30 m resolution. A digital elevation model 

(DEM) with a 90 m spatial resolution, obtained from the U.S. Geological Survey (USGS) 

(Gesch et al. 2002, Rabus et al. 2003) was resampled to a 30 m spatial resolution using 

the Resample function with the Bilinear option (ARC/INFO, ESRI 1995) to correspond 

to the spatial resolution of the satellite imagery. The primary topographic attributes of 

elevation, aspect, and slope were derived from the DEM using Spatial Analyst ioo\ 

(ARCGIS 9.1, ESRI 2005). In addition, a GRID layer of 12 climate zones (Reich et al. 

2008) with a 30 m spatial resolution was incorporated as an additional covariate. All GIS 

analyses was included in ArcGIS 9.1 (ESRI 2005). 

Modeling Soil Texture and pH 

Large-Scale Variability 

In the first step of the modeling process, ordinary least square (OLS) was used to 

identify the functional form of the regression equations for describing the large-scale 

variability in clay, sand, and pH. The stepAIC function, available in the MASS Package 
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Table 1. Soil textural classification of the soil samples (n = 1427) collected in the State 

of Jalisco Mexico. 

Soil Textural Class Number of Samples Percent 

Sand 16 1.12 

Loamy Sand 123 8.62 

Sandy Loam 767 53.75 

Loam 147 10.30 

Silt Loam 2 0.14 

Sandy Clay Loam 252 17.66 

Clay Loam 69 4.84 

Silty Clay Loam 1 0.07 

Sandy Clay 9 0.63 

Clay 41 2.87 

Total 1427 100 
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(Ripely 2008) in R (R Development Core Team 2006), was used to perform a backward 

stepwise selection procedure identifying significant predictors of each variable based on 

Akaike Information Criterion (AIC) (Akaike 1969). This process identified the following 

functional form of the models for sand, silt, clay and pH: 

Sand = /(elev + sip + asp + czone + bands) 

Clay = f(sand + elev + sip + asp + czone + bands) 

Silt = /(100 - (sand + clay)) 

pH = /{clay + elev + sip + asp + czone + bands) 

where, elev = elevation, sip = slope, asp = aspect, czone = climatic zone, bands = 

Landsat-7 ETM+ bands. An important characteristic of this system of equation is the 

presence of dependent variables on the right hand side of three of the four equations. 

This clearly violates the underlying assumption of the OLS model. To address this issue, 

the system of equations were fit using three-stage least square (3SLS). 

The 3SLS approach combines two-stage least squares (2SLS) with seemingly 

unrelated regression (SUR). Two-stage least square is a method of using dependent 

variables as independent variables on the right-hand side of a regression model, while 

SUR is a technique for fitting a system of equations with cross-equation parameter 

restrictions and correlated error terms (Zellner and Theil 1962). The soil texture model 

contains three equations, which are seemingly dependent on one another. However, if the 

equations are using the same covariates, the errors obtained from OLS may be correlated 

across equations. Thus, rather than estimating the system equations individually by least 

squares, the method of SUR is applied. 
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To describe the 3SLS approach, let y. represent a vector of sample values of the 

response variable Y. The system of equations can be described by 

2, 
0 

0 

0 • 

z 2 • 

0 • 

•• 0" 

•• 0 

" Z>-

\5' 
s2 

?> 

+ 

*7i 

(1) 

or in matrix notation 

y = Z8_ + TJ 

•th 
where Z. is a design matrix of predictive variables for they linear model, including 

jointly dependent variables among the response variables (e.g. sand and clay), Sj is a 

vector of estimated coefficients associated with they"' linear model and 77. is the vector of 

independent residuals, or errors associate with they"1 linear model. 

The estimated coefficients for 3SLS model (Zellner and Theil 1962, Greene 1990) 

is given by: 

S3SLS = [z'OE-1 ®1)Z]\Z'(Z-1 ® I ) Z (2) 

where 

Z = 

,xy1x,zl 

0 

x(x'xylxz2 
... 

0 

x(xxylx'Zj 

X is a design matrix of all independent variables for sand, clay, silt and pH excluding 

4h 
jointly dependent variables, Z. is a matrix of predictive variables for they linear model 
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including jointly dependent variables, I is an identity matrix, ® represents the Kronecker 

product, and S is the variance-covariance matrix among response variables obtained from 

2SLS. Individual entries of the variance-covariance matrix are estimated as follows: 

°v = 
<Jl -Z^i,2SLs)Xyj-

Z^j2SLS) (3) 
(jti-Pt-Y^nj-pj-l) 

where, y. is the observed values of the ith response, j ; . is the observed value of the fh 

:th , response, 5i 2SLS is a vector of the estimated parameters from 2SLS for the / response, 

,th djlSLS is a vector of estimated parameters from 2SLS for they response, nt is the 

sample size of fh response, w. is the sample size ofjth response, p. is the number of 

parameters estimated for the ih response and p. is the number of parameter estimated for 

thefh response. 

The asymptotic variances-covariance matrix for the estimated regression 

coefficients is given by 

Var[53SLS] = [z\^ ®\)ZY. (4) 

The estimated variance an estimate j>y. is given by 

Var(yj) = MSEj(z'J.Var[Sj]Zj) (5) 

1 
a = 

a b 

c d 
and / = 

"1 0" 

0 1 
, a®I = 

'a b 0 0 

c d 0 0 

0 0 a b 

0 0 c d 
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where MSEj is the mean square error associated with they covariates obtained from Eq. 

3, Var[Sj] is the variance-covariance matrix of 3SLS coefficients associated with thejth 

response, andZy is a design matrix of the/'* covariates including jointly dependent 

variables for a given response/ 

The estimated variance associated with the prediction of a new observation is 

given by 

Var(y) = MSEj (l + S] Var\8, ]Sj ) (6) 

where y is the predicted value of the new observation and £. is a design matrix of 

covariates including jointly dependent variables associated with the new observation. 

Small-Scale Variability 

Several studies (Odeh et al. 1995, Erxleben et al. 2002, Reich et al. 2008, and 

Reich et al. 2008) have shown that the small-scale variability in a set of data can be 

described by modeling the residuals obtained from a multiple linear regression model. 

Several approaches have been suggested to account for the small-scale variability in a set 

of data. For soil modeling, ordinary kriging (OK) is a well known technique to 

interpolate soil variables when the sample data has a strong degree of spatial dependency. 

However, Reich and Aguirrie-Bravo (2008) emphasized that data collected over large 

geographical regions generally lack spatial dependency because of large separation 

distances between sample points. Thus, geostatistical methods such as kriging may not 

be appropriate for describing the small-scale spatial variability in such data. Instead, the 

residuals obtained from modeling large-scale variability (i.e., a multiple linear regression 

model) can be modeled using binary regression trees. Therefore, three statistical 
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approaches including binary regression tree, multivariate regression tree and ordinary 

kriging were evaluated in modeling the small-scale variability associated with the 

residuals from the 3SLS model. 

Tree-based approach 

To describe the small-scale variability associated with the residuals obtained 

from the 3SLS model, both binary regression trees (RT) and multivariate regression trees 

(MRT) (De'ath 2002, 2007) were evaluated in this study. Binary regression trees is a 

nonparametric and non-linear regression procedure in which the data is repeatedly and 

successively split along a set of independent variables using a binary algorithm to 

maximize variances among groups of the dependent variable (Breiman, et al. 1984, 

Chamber and Hastie 1992, Venables and Ripley 1999, Crawley, 2002). 

Reich and Aguirrie-Bravo (2008) suggested a new approach of modeling the 

small-scale variability using a tree-based stratified design. Let y(st) represent a sample 

value of the variable Fat spatial location s,. The sample data include a set of covariatesX 

which are known for all locations in the population. Multiple regression is used to model 

the large-scale spatial variability in the sample data as a linear function in/? known 

explanatory variables Xj(s,) 

A ) = A+!», ) / * ,+7 W (7) 

7=1 

where j3j,j = 0,...parep+\ unknown regression coefficients andrj(sl) is an error 

process sometimes referred to as a random field, with ̂ [7(5,.)] = 0 and covariance 

C(x, y) = Cov\^]{xj), r/[yj)). The error term in Eq. 7 is unknown because the true model is 

unknown. Once the model parameters have been estimated, the regression residuals are 
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defined as fj{si) = y{sl,)-y{st), where y(st) is the predicted value at spatial location s; 

given the explanatory variables x. (s, ) . The error process can be expressed as 

77(s,.)=77fc)+/4) (8) 

with E\JU(S( ) | fj{si)] = 0. Using the set of auxiliary variables, X as a basis of stratification 

assume 

rj{Si) = f(x(Si))+S(Si) (9) 

with E[s(s() | x(sj)] = 0, f{x{si)) is a deterministic function, and d{s.) is a zero-mean 

random term (Cocchi et al. 2002). Combining Eq. 8 and Eq. 9 

*W=/(*M)+*M oo) 

with E[rj(st) | f(x(si))] - /(x(s.)), ff(j,) = ju(s,).+ <?(*,), and £[f (J, ) | x(s,)] = 0 provided 

that //(jjandS(s i) are conditionally independent (Cocchi et al. 2002, Benedtti et al., 

2005). The mean function f(x(si)) is estimated by/using the recursive partitioning 

method introduced by Brieman et al. (1984). Combining Eq. 7 and Eq. 10 the full model 

describing the spatial variability in the sample data is given by 

^)=Ao+Z^)A+ / (^ ) ) + ^) - (n) 

To implement the tree-based stratified design, RT is applied to the residuals from 

the 3SLS model. The algorithm for RT repeatedly partitions the residuals into strata to 

minimize the variability within strata (Breiman et al 1984). The recursive procedure 

determines a split starting from a single stratum containing all residuals, and ending once 

the sample data are split into new strata which minimize the variability within strata. 

Unlike RT, MRT simultaneously partitions the residuals from all the models in the 3SLS 
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model. This ensures that the residuals from the individual models will sum to zero using 

the same tree-based algorithm. 

Defining the tree structure 

To control the partitioning of the regression trees (RT and MRT) several 

parameter have to be defined. The parameter minsplit (or called minsize in the function 

tree.control() in R) defines the number of observations (i.e., stratum size) at which the 

last split is attempted. The default value, minsplit = 5 means that the recursive partition 

keeps continuing to allocate observations into strata (i.e., terminal nodes) as long as there 

are at least five observations at a given node. Changing the parameter minsplit directly 

affects the maximum number of strata or terminal nodes and the path length of the tree 

(called tree size). The maximum number of strata has an upper bound ~nobslminsplit, 

where nobs is the number of observations in the data set. The best optimal condition to 

minimize the cost complexity (see more details in the model evaluation session) was 

identified using different minsplit options (i.e., 5, 10 and 25). After obtaining the optimal 

number of terminal nodes based on given value for minsplit, the function prune, rpart() is 

used to prune the tree by changing the argument best to the optimal number of terminal 

nodes or strata (i.e., strata size or tree size). 

Ordinary kriging 

Ordinary kriging is a common method used to interpolate spatially dependent data 

(Isaaks and Srivastava 1989, Fortin and Dale 2005). The ability to interpolate a set of 

data depends on the strength of the spatial dependency within the data. To evaluate the 
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feasibility of using kriging to interpolate the residuals from the 3SLS models, sample 

variaograms were constructed to describe how the variance changes with distance. 

The sample variogram is defined by 

1 N(h) 

where N(h) is the number of data pairs separated by distance h, yi is the observed value 

at location s{ and yj is the observed value at location j . The sample variogram models 

were fit to three theoretical variogram models: exponential, spherical, and Gaussian. 

Akaike Information Criterion (AIC) (Akaike 1969) was used to identify the best fitting 

variogram model. The spatial library for R created by Reich and Davis (2007a) was used 

to perform this operation. 

Ordinary kriging (Isaaks and Srivastava 1989, Webster and Oliver 2001) can be 

used to estimate a value of interest at any location as a weighted combination of its 

neighbors: 

1=1 

where y0 is the estimated value at a new location s0, yt is the observed value of the i 

n 

neighbor and A. are the estimated weights, subject to the constraint^ Xi = 1. 
1=1 

The weights A,t are calculated using the relationship 

X = K~lC (14) 
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C(x„x,) ... Cix^xJ 1 

: '•• : 1 

C(xn,xx) ••• C(xn,xn) 1 

1 1 1 0 

L \XX, XQ ) 

L [x2, x0) 

C(xn,x0) 

1 

where ju is a Lagrange multiplier, K is the covariance matrix among the sample data 

points, C is the vector of covariances between the point being estimated and its neighbors. The 

covariance were computed using the relationship C(h) = /(h) -a2, where a2 is the 

sample variance of the sample data. 

Variance Estimation 

A common problem in using regression analysis to describe the variability in 

spatial data is overdispersion, in which the observed variability exceeds the variability 

predicted by the model. This leads to inaccurate estimates of standard errors and 

coverage rates that are not equal to the 0.95 nominal rate. To ensure that the variance 

estimates are consistent with the true errors, both RT and MRT were used to model the 

variability in the residuals from the 3SLS model. 

The rpart Package (Ripley 2007) and the mvpart Package (De'ath, 2007), 

libraries in R, were utilized to perform univariate partitioning and multivariate 

partitioning of the 3SLS residuals, respectively. Using the function rpart(), the splitting 

rule with the default method = "anova" is used to minimize the residual sum of squares 

associated with a terminal nodes or stratum. 

Reich and Aguirrie-Bravo (2008) showed that the variance of the estimated mean 

response at a given location sh for a set of explanatory variables, x(sj) can be defined as 
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\ar(y(s.)) = vai^fc,.)) + var(<?(s.)), (15) 

where var(ff(sj)) represents the uncertainty in estimating the parameters of the 3SLS 

model and \so\S(si)) reflects the uncertainty in estimating the error (77) of the 3SLS 

model using RT or MRT. The variance var^s,.)) was computed using Eq. 5. 

The variance associated with an estimate at a new location, so is given by 

varG>(s0))
 = var07fco)) + var(z(s0)) + var[S{s0)), (16) 

where the additional term, var(z(.s0)) reflects the random variation at a new location, 50. 

The uncertainty in estimating the residual of the 3SLS, \so]S(si)j, based on RT or 

MRT were determined by standard methods for a stratified random sample (Cochran, 

1977): 

-^ 1 "*' /» 

**=-!** a?) 

and 

&l=^—-J- (18) 

where k denotes the stratum, 8U denotes the mean residual error for observations 

assigned to the kx stratum, «k is the number of observations assigned to the kth stratum, 

and a\ is the within stratum variance for the 1c stratum. The use of the sample variance 

as a measure of the uncertainty in estimating the error of the regression model is justified 

by the fact that the mean square error is the best predictor of the variance given that the 

sample data belong to the stratum. 

19 



For ordinary kriging, an estimate of the prediction variance \ar(y(sj)) at a given 

location 5, (Isaaks and Srivastava 1989, Reich and Davis 2007b) is given by: 

varCKO) = var(/7(s.)) + a\OK) (19) 

where 

d?i<X)=o*-CK-lC + fi. (20) 

Model Evaluation 

A 10-fold cross validation (Efron and Tibshrani, 1993) was used to evaluate the 

predictive performance of the fitted models of soil attributes using 3SLS + RT, 3SLS + 

MRT and 3SLS + OK. The soils data were divided into 10 parts (K = 10), each of which 

consisted of approximately 140 sample plots. The predictive models were recursively 

fitted using nine parts (K-l) of the data as a training data set and the remaining data were 

treated as an independent dataset for estimating prediction errors. Repeating this 

procedure 10 times allowed each observation to be excluded from the model and 

independently predicted by the fitted models. Following this procedure, a set of statistics 

were calculated to evaluate the predictive performance of the models. Estimates of the 

prediction errors obtaining from the K-fold cross validation (Kravchenko and Bullock 

1999, Schloeder et al. 2001, Reich et al. 2004) were compared to asses the effectiveness 

of three techniques for modeling the selected soil attributes. The prediction errors were 

inferred from the predicted minus actual values. 

In this study, AIC was used to select the covariates used in the regression models 

of sand, clay and pH. The identified covariates were fixed while performing the 10-fold 

cross validation. For the tree-based approach, the effectiveness of the models using 
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different conditions of the function "minsplit" (i.e., to control the number of observations 

before the last split), and the function "best" (i.e., to control the number of terminal nodes) 

for different soil attributes were evaluated and compared via a 10-fold cross validation. For 

simplifications, minsplit is referred as minsize to avoid redundant terminology. Several 

statistics were calculated to evaluate the predictive performance of the models. 

The effectiveness of the fitted models was evaluated using a goodness-of-

prediction statistic (G-statistic) (Agterberg 1984, Kravchenka and Bullock 1999, Guisan 

and Zimmermann 2000, Schloeder et al. 2001): 

2 A 

G-statisic= 1-
Ibf^-WJ] 
1=1 (21) 

The G-statistic is a measure of the effectiveness of a prediction relative to that which 

could have been derived using the sample mean. A G-statistic equal to one indicates 

perfect prediction, a positive value indicates a more reliable model than if one had used 

the sample mean, a negative value indicates a less reliable model than if one had used the 

sample mean, and a value of zero indicates that the sample mean should be used to 

estimate ^(5.). 

The mean absolute error (MAE) 

MAE = ±£\y(si)-y(si)\ (22) 

and the root mean squared error (RMSE) 

RMSE = \- £ \y(st) - y(Si)]
2 (23) 
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were used to evaluate the accuracy of the predictions, where y(st) is the observed value 

at a sample location 5., j>(s,.) is the estimated value at a sample location s. obtained 

from the 10-fold cross validation, and n is the total number of samples used in the 10-fold 

cross validation. 

To evaluate the ability of the three approaches in providing unbiased variance 

estimates, the standardized mean squared error (SMSE) (Reich et al. 2004) was 

calculated as follows: 

SMSE = I j ; - ^ L (24) 

where sfaj) = (y(s,.) - j>(s.)), is the true error and var(j)(,s;.)) is the estimated variance 

obtained using Eq. 15 or Eq. 16 for 3SLS plus tree-based stratified design and from Eq. 

20 for 3SLS + OK. The SMSE has a Chi-square distribution with n degree of freedom. 

A 1 - a confidence interval for SMSE under the null hypothesis of equal variances can 

be constructed using the Chi-square distribution as follows: 

Pr 

2 2 
A a A a 

n— n\— 
—2- < SMSE < 2-

n n 
\-a. (25) 

When n is large, SMSE can be approximated by a standard normal distribution with a 

mean of one and variance 21 n (SMSE ~ iV(l, 2ln)). If the SMSE falls within the interval 

1 ± 1.96*(2/«)0'5, this would indicate that the true errors and estimation errors are 

consistent at the 0.95 level confidence (Hevesi et al 1992, Reich et al. 2004). Bonferroni 

joint confidence intervals were also constructed to make inference among the SMSE's 

associated with the system of equations: 1 ± t(l-a /2g)*(2/n)05, where g is the number of 
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confidence intervals being compared, t is the Student's t value, with a type I error equal 

to a. 

Prediction coverage rates (CR) were computed assuming 95% confidence 

interval. The coverage rate indicates the proportion of individual intervals containing the 

true value. If the 95% prediction interval is unbiased, the coverage rate should not 

deviate from the nominal 0.95 rate. The 95% prediction interval was calculated assuming 

normality: 

j>(*0)±1.96Vvar(j>(s0)). (26) 

Coverage rates for the mean response were also computed assuming normality. 

A decision rule (Reich and Aguirrie-Bravo 2008) to identify an optimal minsize 

and strata sizes was used to ensure that the error in estimating the variance of the mean 

response and the prediction variances were unbiased. The cost complexity criterion (CC) 

served as a decision rule is selecting minsize and strata sizes and is defined as 

CC = -yJ(SMSEM -1)2 + (SMSEP -1)2 + ̂ -^- (27) 
df-n 

where SMSEM is the standardized mean square error of the variance for the mean 

response and SMSEP is the standardized mean square error for the prediction variance, 

MSEP is the mean squared error of prediction obtained from the 10-fold cross-validation, 

df'is the degrees of freedom of the 3SLS model and n is the number of terminal nodes or 

strata sizes in the RT or MRT model and n is the number of neighbors used to estimate 

values at a given location using ordinary kriging. 

Once the optimal criteria (i.e., minsize and strata sizes) to obtain unbiased 

estimates of the variances for RT and MRT were identified, subsets of the data were used 

to fit the system of equations using 3SLS. In spite of the 2-way nested stratified 
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sampling design (Reich et al. 2008) used to collect the data, the soil samples did not have 

a uniform distribution with respect to the soil textural classes. The soil data was sub-

sampled to avoid overweighting the soil textural classes with the "sandy loam" and 

"sandy clay loam" classes which included 767 and 252 observations, respectively (Table 

1). Each subset of the data contained the data from all soil textural classes except for the 

two dominant soil textural classes. To increase the efficiency of the regression models, 

150 samples were randomly drawn from these two soil textural classes and added to each 

subset of the data. As a result, each subset of data included 713 samples and used to 

obtain parameter estimates for the 3SLS model. This process was repeated until the 

regression coefficients converged for all soil attributes. These averaged coefficients 

served as parameter estimates to generate the final surfaces describing the large-scale 

variability in sand, silt, clay and soil pH. 

For model evaluation, the average 3SLS coefficients were applied to only one 

random subset of the data to generate a set of residuals. The 10-fold cross validation 

procedure was used to evaluate the performance of the tree-based approach (RT and 

MRT) using different conditions for the minimum stratum size {minsize) and number of 

strata (i.e., best). The optimal minsize and tree size were selected to minimize the bias 

associated with estimating the variance (SMSE) while minimizing the cost complexity 

criterion (CC). The identified optimal minsize and tree size were applied to 100 random 

subsets of the data (n = 713) to evaluate the variability among different random subsets of 

the data. Subsets of the data were drawn using sampling without replacement with fixed 

number of observations for each soil classes as mention previously. To make the 
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statistics comparable, all soil attributes used the same subset of the data by specifying a 

random seed. 

Soil Attribute Classification and Mapping 

The best fitting 3SLS + MRT, 3SLS + RT and 3SLS + OK models were used to 

generate the final surfaces of selected soil attributes. The grid surfaces of the small-scale 

variability of sand, silt, clay and soil pH were produced using the conditional statements 

obtained from MRT and RT using the raster calculator in ArcGIS 9.1. The3 SLS 

surfaces and the residual surfaces generating from RT, MRT and OK for the soil 

attributes were combined to form the final surfaces of sand, silt, clay and pH as a GRID 

layer in ArcGIS 9.1. Finally, the estimated surfaces of soil texture fractions were used to 

classify each pixel in the State of Jalisco into one of 12 soil textural classes (Soil Survey 

Division Staff 1993) and plotted on a soil triangle (Oom and Lemon 2005). The final 

surface of soil pH obtained from 3 SLS + RT was classified into four different classes 

based on the degree of acidity and alkalinity (adapted from Jones 2002). Furthermore, 

the variance surfaces associated with the predicted soil attributes were developed as 

GRID layers. 
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RESULTS 

The large-scale variability of soil texture and pH were modeled as a system of 

equations using 3SLS. Results of fitting the system of equations using 100 random 

subsets of the data indicated that the model for sand had the best fit in that the model 

accounted for 43% of the variability observed in the data, followed by clay (39%) and 

then soil pH (30%) (Table 2). 

The residuals from the 3SLS model were modeled using a stratified tree-based 

approach. The influence of using different minsize and tree size on the fit statistics for the 

pH, sand and clay models are provided in Figures 2 through 4. The optimal conditions of 

minsize and tree size that minimized the cost complexity criteria for RT are given in Table 

2. The sand model had an optimal minsize of 25 and tree size of 40, while the clay model 

had a minsize of 10 and tree size of 5. In constrast, the soil pH model had a minsize of 5 

and tree size of 50. Applying the optimal minsize and tree size to the 100 random subsets 

of the data, the RT models accounted for an addition 31% of the observed variability in soil 

pH, 19% for the sand model and 6% for the clay model. The results also suggested that 

standardized mean square errors (SMSEM and SMSEP) were not significantly different 

from one (Table 2) indicating the variance estimates were consistent with the true errors. 

The prediction coverage rates for all three models were not significantly different from the 

nominal coverage rate of 0.95. The total observed variability explained by 3SLS + RT for 

the soil pH, sand and clay models were 61%, 62% and 45%, respectively (Table 2). 

For the MRT models, optimal values for minsize and tree size for the sand and clay 

models are shown in Figures 5 and 6. The cost complexity criterion indicated that a 

minsize of 25 and the tree size of 41 provided the best estimates of the variances for sand, 
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Figure 2. Influence of the minimum number of observations at a given terminal node 

{minsize = 5, 10 and 25) and tree size on a) the standardize mean square error (SMSE) for 

the mean response (SM) and predictions at new location (SP), b) the G-statistic, c) mean 

squared error of prediction (MSEP), and d) 0.95 coverage rates for the mean response 

(SM) and predictions at new locations (SP) for the soil pH model (3SLS + RT). In the 

upper left figure the two sets of straight lines represent the region in which the variance 

estimates are unbiased. The dotted lines represents the simultaneous confidence interval 

(a = 0.05), while the solid lines represents the joint confident interval (a = 0.01). 
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Figure 3. Influence of the minimum number of observations at a given terminal node 

(minsize = 5, 10 and 25) and tree size on a) the standardize mean square error (SMSE) for 

the mean response (SM) and predictions at new location (SP), b) the G-statistic, c) mean 

squared error of prediction (MSEP), and d) 0.95 coverage rates for the mean response 

(SM) and predictions at new locations (SP) for the sand model (3SLS + RT). In the 

upper left figure the two sets of straight lines represent the region in which the variance 

estimates are unbiased. The dotted lines represents the simultaneous confidence interval 

(a = 0.05), while the solid lines represents the joint confident interval (a = 0.01). 
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(minsize = 5, 10 and 25) and tree size on a) the standardize mean square error (SMSE) for 

the mean response (SM) and predictions at new location (SP), b) the G-statistic, c) mean 

squared error of prediction (MSEP), and d) 0.95 coverage rates for the mean response 

(SM) and predictions at new locations (SP) for the clay model (3SLS + RT). In the upper 

left figure the two sets of straight lines represent the region in which the variance 

estimates are unbiased. The dotted lines represents the simultaneous confidence interval 

(a = 0.05), while the solid lines represents the joint confident interval (a = 0.01). 
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squared error of prediction (MSEP), and d) 0.95 coverage rates for the mean response 

(SM) and predictions at new locations (SP) for the sand model (3SLS + MRT). In the 

upper left figure the two sets of straight lines represent the region in which the variance 

estimates are unbiased. The dotted lines represents the simultaneous confidence interval 

(a = 0.05), while the solid lines represents the joint confident interval (a = 0.01). 
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(SM) and predictions at new locations (SP) for the clay model (3SLS + MRT). In the 

upper left figure the two sets of straight lines represent the region in which the variance 

estimates are unbiased. The dotted lines represents the simultaneous confidence interval 

(a = 0.05), while the solid lines represents the joint confident interval (a = 0.01). 
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while a minsize of 5 and the tree size of 12 were optimal for predicting clay. However, 

the MRT algorithm fits a regression tree to all of the variables simultaneously requiring 

only one set of parameters. Table 2 indicates that unbiased estimates of the variances for 

the mean response and new predictions of sand and clay were not achieved when the 

same minsize and tree size were used. Thus, the final models for estimating sand and 

clay were fitted based on a minsize of 25 and a tree size of 41, because of the better fit 

associated with these parameter. This resulted in a SMSEP of 1.40 for the clay model 

which suggests that variance estimates were underestimated by 40% compared to the true 

errors. Using the optimal minsize and tree size, the MRT models accounted for an 

additional 19% and 17% of the observed variability in sand and clay, respectively. The 

final models (3LSL + MRT) for sand and clay accounted for 62% and 56% of the 

observed variability, respectively (Table 2). 

Sample variogram models were calculated for each of the soil attributes. The 

descriptive statistics of the soil data (n = 1427) revealed that the average distance among 

sample plots was 177 km and ranged from 0.35 km to 459 km (Table 3). The fitted 

sample variogram models for sand, clay, silt and pH had range parameters varying from 

5.86 km to 10 km with small a nugget effect for both the raw data and the estimated 

residuals from the 3SLS models. 

When applying ordinary kriging to the 3SLS residuals, the large values for the 

cost complexity functions for both sand and clay indicated that ordinary kriging did not 

perform well in terms of estimating the variances. The results suggest that the variance 

estimates for the mean response and new predictions were significantly different from 

one, indicating that the variance estimates were not consistent with the true errors. 
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Table 3. Descriptive statistics of the fitted variograms using the observed data and 

residuals obtained from 3SLS models. 

Observed Data Residuals from 3SLS Model 

Soil 

Attributes 

Sand 

Clay 

Silt 

pH 

Variogram 

Model 

Gaussian 

Gaussian 

Gaussian 

Exponential 

Range 

(km) 

5.86 

5.93 

6.11 

10.00 

Sill 

117.90 

66.46 

44.04 

0.68 

Nugget 

0.00 

0.00 

0.00 

0.09 

Range 

(km) 

5.48 

5.59 

5.64 

10.00 

Sill 

112.35 

62.96 

41.56 

0.58 

Nugget 

0.00 

0.00 

0.00 

0.09 
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Ordinary kriging only accounted for an additional 9% and 17% of the observed 

variability in sand and clay, respectively. The final models (3SLS + OK) accounted for a 

total of 52% and 56% of the total variability observed in sand and clay, respectively. No 

discrepancies were detected between the frequency distribution of observed and predicted 

values for the sand, clay and silt model for the 3SLS + RT and 3SLS + MRT models 

(Table 4). The maximum value of predicted sand using the 3SLS + OK model was 

126.64%, which is larger than the possible true value. The 3SLS + MRT model satisfied 

the constraint that the estimated values of the sum of sand, silt and clay equaled 100%, 

while the 3SLS + RT model had sums ranging from 82.19% to 121.60%. 

The observed and predicted soil texture fractions were also compared in a soil 

triangle plot (Figure 7). The soil triangle plots indicated that the predicted values of soil 

textural fractions obtained from 3SLS + MRT had the same pattern as the observed data, but 

with less variability. Scatter plots of the predicted values and model residuals are displayed 

in Figure 8a for the 3SLS + RT model, Figure 9a for the 3SLS + MRT model and Figure 10a 

for the 3SLS + OK model. No systematic patterns were observed in the residual plots for 

models in which the residuals were fit using a stratified tree-based approach. This was not 

the case for the model that used ordinary kriging to describe the small-scale variability in the 

residuals from the 3SLS models (sand, r = -0.46; clay, r = -0.39) (Figure 10a). Scatter plots 

of the observed and predicted values of the soil attributes are provided in Figure 8b for the 

3SLS + RT model, Figure 9b for the 3SLS + MRT model and Figure 10b for the 3SLS + OK 

model. The correlation between observed and predicted values for sand and clay from the 

3SLS + OK model was 0.47 and 0.48, respectively, which were lower than those for the 

3SLS + RT model (0.64 and 0.53) and 3SLS + MRT model (0.64 and 0.63), respectively. 
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Figure 7. Distribution of observed and predicted soil textural classes. 
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Figure 10. Scatter plots of a) predictions errors vs. predicted values, b) observed vs. 

prediction values and c) histograms of prediction errors from the three-stage least squares 

and ordinary kriging models for sand and clay when applied to the entire data set. 
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Also, histograms of the residuals from the 3SLS + RT (Figure 8c), the 3SLS + MRT (Figure 

9c) and 3SLS + OK (Figure 10c) models were approximately normally distributed, suggest 

the models did not violate the underlying assumption (i.e., the residuals were independent 

and identically normally distributed). 

Predictive surfaces of soil pH, sand, clay and silt were created as GIS layers and are 

displayed in Figure 11, while the standard deviation surfaces are displayed in Figure 12. The 

surface of soil pH was divided into four classes (Figure 11A) corresponding to acidity and 

alkalinity classification used in soil and crop management. Predictive surfaces of sand using 

3SLS + OK were created and shown in Figure 13. A map representing the 12 soil textural 

classes were also generated (Figure 14). Figure 15 compares the distribution of observed 

and predicted soil textural classes for the sample data and the state as a whole. A Chi-

square goodness of fit test indicated that the distribution of observed and the predicted 

soil textural classes were not significantly different (3SLS + RT, p-value = 0.13; 3SLS + 

MRT, p-value = 0.14). The distribution of predicted soil textural classes for the entire 

state (N = 94792466) was not significantly different from the observed data (p-value = 

0.53). 
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Figure 13. Spatial distribution of predicted sand in the State of Jalisco, Mexico based on 

three-staged least squares and ordinary kriging. 
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DISCUSSION 

The assessment of the spatial variability in soil texture is central to support a 

variety of management decision processes. Soil physical properties such as soil texture 

have influence the water-holding capacity, cation-exchange capacity, crop yields, site 

productivity, nitrogen loss, as well as other soil processes and conditions. Modeling the 

spatial distribution of soil attributes over large geographical regions at a fine spatial 

resolution presents some challenging obstacles that need to be addressed. 

First, when modeling soil attributes such as soil texture, it is implied that the sum 

of the percent sand, silt and clay equal to 100%. To address this issue the method of 

three-stage least square was introduced to simultaneously model the fractions of soil 

texture to ensure they sum to 100%. 

A second issue that is addressed in this paper deals with the problem of the lack of 

spatial dependency associated with the variables being modeled. Due to the lack of 

spatial dependency, geostatistical methods such as kriging may not be an appropriate 

technique for interpolating this type of data. For comparison purpose, ordinary kriging 

was used to interpolate the residuals from the models of sand and clay. Cross-validation 

indicated that while the estimates were unbiased, the estimated variances for the mean 

response and predictions at new locations were not adequate. The predicted surfaces 

obtained from this approach resulted in circular polygons surrounding the sample 

locations throughout the state. Such artifacts occur when the range parameter of the 

fitted variogram models are much smaller than the average distance separating the sample 

data. To address this issue, a stratified tree-based approach was used to model the 

residuals from the 3SLS models of the soil attributes. 
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This paper evaluated two approaches, the use of univariate regression trees 

applied to individual models, and multivariate regression trees which simultaneously 

modeled the residuals using a single tree structure. Cross-validation indicated that both 

approaches provided unbiased estimates of soil attributes as well as providing unbiased 

variance estimations of the mean response and predictions at unsampled locations. 

However, only the multivariate regression tree satisfied the constraint that the soil 

textural fractions sum to 100%. The final set of models accounted for 62% of the 

observed variability in sand, 56% for clay and 61% for the soil pH model. 

Results of this study indicated that the State of Jalisco is dominated by slightly 

acidic soils, particulary at the lower elevations in the western and central portions of the 

state, which is dominated by tropical dry forests. Soil pH becomes more acidic with 

increasing elevation as the forests change to temperate pine-oak forests. More neutral 

soils are found in the eastern part of the state dominated by grasslands and vegetation 

characteristic of a semi-arid environment. The state is dominated by two major soil 

classes, sandy loam and sandy clay loam. The sandy clay loam soils are found primarily 

in the coastal region dominated by tropical dry forests and the deserts in the eastern part 

of the state. Sandy clay loam and clay loam soils occur primarily in the central portion of 

the state dominated by grasslands and agricultural lands. 

Because of the nature of this study, it is difficult to compare the results of this 

study with previous studies conducted in the State of Jalisco or anywhere else in Mexico. 

Also, because of varying geographical scales and spatial resolutions used in other studies 

and the need to constrain estimates of soil fractions to sum to 100 percent, only two 

comparable studies were found in the literature. In one study, Henderson et al. (2005) 
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developed models for describing the spatial distribution of soil attributes using binary 

regression trees for the Australian continent (n = 135490) at a 250 m spatial resolution. 

The R2 values for pH and clay were reported at 67% and 44%, respectively. These 

results are similar to the results presenting in this study. In a second study, Van 

Meirvenne and Van Cleemput (2006) used compositional ordinary kriging to 

simultaneously model soil texture while constraining the three soil fractions of soil 

texture to sum to 100 percent for an area covering 3000 km2 in East Flanders, Belgium. 

The authors used a total of 4887 soil samples. The authors reported that the root mean 

square errors obtained from a 10-fold cross validation for sand and clay were 4.9 and 

10.32 respectively, which were slightly lower than those obtained in this study. 

Geostatistical techniques such kriging usually require tremendous sampling effort 

in order to capture the spatial variability in soil attributes. When dealing with large 

geographical areas, kriging might not be applicable because of the large sample size 

required to capture the spatial dependency among the soil attributes. Increasing sample 

size directly influences the cost of the survey making it prohibited in most cases. In this 

study 1427 soil samples were collected from an area covering 78618 km2. While the 

sampling intensity is substantially lower than the two studies mentioned above, the 

method of 3SLS + MRT provided comparable results given the low sampling effort and 

extent of the study area. 
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CONCLUSION 

Finding a suitable statistical approach for describing the spatial variability in a set 

of data is not considered an easy task. Based on a simulation study, the procedure of 

using either 3SLS + RT or 3SLS + MRT was able to provide reliable estimates of 

selected soil attributes over a large geographical region with the fine-scale spatial 

resolution. However, only the 3SLS + MRT approach was able to satisfy the constraint 

that estimates if sand, silt and clay to sum to 100%. The technique of combining the 

3SLS and tree-based stratified approach also assures that the final models will be 

unbiased or at least optimal in terms of estimating the variances of the mean response and 

prediction variances. As a result, confidence intervals and prediction interval can be 

constructed for individual observations, using the prediction standard deviation surfaces 

developed in this study. Standard deviation surfaces not only convey meaningful 

information on the precision of the estimates but also provide information on where 

additional sampling is required to improve the precision of the predictive models of soil 

attributes. 

It is well known that soil factors tremendously influence the productivity of forest 

and agricultural lands. Maps of soil attributes obtained from this study can serve as a 

useful surrogate explaining the spatial variability in soil attributes across large 

geographical region. Digital maps of soil attributes provided comprehensive information 

on the spatial variability of soil properties for the entire State of Jalisco at a fine spatial 

resolution (i.e., 30 m x 30 m). The GIS layers of soil attributes developed in this study 

could be used to support the applications of precision forestry and agriculture such as 
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managing soil fertility and crop production for site-specific management over both small 

and large geographical regions. 
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CHAPTER 2: EVALUATION OF THREE SAMPLING DESIGNS FOR 

DEVELOPING SPATIAL STATISTICAL MODELS 

ABSTRACT 

In natural resource studies, statistical models have been used extensively to 

account for the spatial variability in a set of data. The quality of a spatial model is 

closely related to the sampling design used to collect the sample data. Therefore, the 

reliability of estimates obtained from a spatial statistical model depends on how well the 

sample data represents the spatial variability in the population of interest. In many 

situations research scientists pay too much attention on selecting a suitable model but 

ignore how the data were collected. In this study, three sampling designs (simple 

random, systematic and stratified random sampling) were evaluated in modeling the 

spatial distribution of forest tree biomass in the State of Jalisco, Mexico. Results from a 

Monte Carlo simulation study suggested that stratifying the population based on the 

spectral properties of the vegetation provided a better fitting model compared to models 

based on simple random or systematic sampling which ignored the spectral variability in 

the population being modeled. 
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INTRODUCTION 

The main objective of natural resource sampling is to make an inference about a 

population based on a representative sample selected from the population. Depending on 

the objectives of the survey, there are several methods one could use to select the sample 

units, the most common of which is design-based sampling. Designed-based sampling 

(Cochran 1977) uses probability sampling to select sample units in order to make 

inference about the population of interest. Examples of designed-based sampling include 

simple random, stratified random and cluster sampling, to name but a few. A second 

approach used to sample a population is model-based sampling. Many statistical models 

such as a linear regression models are developed using a model-based approach. The 

goal of the model-based approach is to find an appropriate predictive model to account 

for the behavior of the variable of interest in terms of a set of auxiliary variables (Warren 

1998, Haining 2003, Lark and Cullis 2004, Stenvens 2006). In this situation, the model 

being fitted influences the way the sample data are collected. A good example of the 

model-based approach is developing an equation to predict the cubic volume of 

individual trees as function of tree diameter and tree height. Theory suggests that in 

order to minimize the variance of the mean response or the prediction variance, sample 

observations should be selected uniformly across the set of explanatory variables. In the 

case of the regression models, trees would be purposively selected such that the sample 

trees are uniformly distributed across all diameter-height classes. A disadvantage of this 

approach in selecting sample units is that the sample data can not be used to make an 

inference about the population of interest. 
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Recently, the model-assisted approach has emerged to fulfill the need of making 

inference about population (as a designed-based inference) while at the same time 

developing predictive models (Conquest 2003). The sample data are drawn from a 

population using a design-based approach while taking into consideration the requirement 

necessary for developing reliable models. Reich et al. (2008) developed a framework for 

designing multi-resource inventories based on the model-assisted design for inventorying 

and monitoring the natural resource in the State of Jalisco, Mexico. 

Geostatistical techniques such as kriging has been influenced by both the model-

based and sample-based approach. For example, in the field of geological exploration, 

samples can be located purposively to capture the spatial variability in the data while the 

fitted model can be used to make an inference about the population of interest. Theory 

also suggests that in order to minimize the prediction standard error associated with 

kriging, the sample data should be systematically located throughout the population of 

interest (Pettitt and McBratney 1993, Papritz and Webster 1995, Jardim and Ribeiro 

2007). Brus and De Gruijter (1997) provide a comprehensive review of designed-based 

and model-based sampling strategies for describing soil properties using geostatistical 

approches. Recently, Stevens and Olsens (2003,2004) introduced a sampling technique 

called "Spatial Balanced Sampling" which aims to spatially balance random samples 

throughout large geographical regions based on a systematic grid. The authors suggest 

that sample data with some degree of spatial regularity is more efficient than random 

samples, especially when surveying large geographical regions. Theobald et al. (2007) 

developed a new sampling technique called "Reversed Randomized Quadrant-Recursive 

Raster" based on a spatial balanced sampling design. In this approach, the inclusion 
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probability of limiting resources such as accessibility and cost are taken into 

consideration in spatially allocating samples across a landscape. However, a comparative 

study on the influence of different sampling strategies has rarely been done. Thus, the 

objective of this study was to evaluate the performance of developing a spatial statistical 

model of forest tree biomass using data obtained from two design-based approaches 

(simple random and systematic sampling) and a model-assisted approach (nested-

stratified random sampling). The recommendation of a suitable sampling design will 

assist research scientists in developing model to describe the spatial variability is a set of 

data with confidence. 

METHODS 

Study Area 

The State of Jalisco, Mexico is located in the west central part of Mexico, and 

covers an area of approximately 78618 km2. The regions complex topography, 

geological substrata and climate are combined with the history of human influence to 

create an intricate mosaic of various vegetation types. Climatic variability in 

temperature, precipitation and evaporation define three broad climatic region (Rech et al. 

2008). These zones coincide in general with those used to describe vegetation in Mexico 

(Rzedowski 1978). Furthermore, these zones define three broad ecological regions: 1) 

the first is the sub-humid tropical zone located along the Pacific coast and is 

characterized by high temperature, monsoon rain during the summer month (730-1200 

mm) and an annual dry period that ranges from 5 to 9 months. Tropical dry forests 

dominate the region and occur on terrain with elevations from sea level to 2000 m. In the 
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northern part of this zone the forests are mesic, while in the south the forests are slightly 

drier, 2) at higher elevations the sub-humid temperate zone covers the greatest portions of 

the state. Pine, oak and mixed deciduous hardwood forests dominate this zone (1000-

2500 m). Average annual rainfall ranges from 900-1500 mm. This zone gradually 

changes to 3) an arid and semi-arid zone that has a low annual precipitation of 400 mm or 

less and 8 to 12 dry months. Dominant vegetation includes mesquite-acacia and 

zerophitic shrubs. 

GIS and Landsat-7 ETM+ Data 

A digital elevation model (DEM) with a 90 m spatial resolution, obtained from 

the U.S. Geological Survey (USGS) (Gesch et al. 2002, Rabus et al. 2003) was resampled 

to a 30 m spatial resolution using the Resample function with the Bilinear option 

(ARC/INFO, ESRI1995). The primary topographic attributes which included elevation, 

aspect and slope were derived from the DEM using Spatial Analyst tool (ARCGIS 9.2, 

ESRI 2006). In addition, a GRID layer of 12 climate zones (Reich et al. 2008) with a 30 

m spatial resolution was included as an additional covariate. Ten cloud-free Landsat 7 

ETM+ images obtained between January and March, 2004 were combined to create a 

seamless image using the Mosaic tool (ERDAS Inc. 1999). The thermal bands 6L and 

6H with a 57 m resolution and the panchromatic band 8 with a 14.25 m resolution were 

resampled to a 30 m resolution. All GIS analyses were carried out using ArcGIS 9.2 

(ESRI 2006). 

Hypothetical Biomass Data 

The GIS surface of forest tree biomass developed by Reich et al. (2008) was used 

to represent the population of biomass in the sate a t a 3 0 m x 3 0 m spatial resolution. 
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Non-forested areas were not considered in this study to limit the analysis to only forested 

areas. To better represent field condition, a random error with a mean 0 and variance 

4<r2 was added to the modeled values of biomass, where <x2 is an estimate of the 

variability in forest tree biomass in the State of Jalisco. The "create random raster" tool 

available in the ArcGIS's toolbox (ArcGIS 9.2, ESRI2006) was used to generate the 

error surface. 

Sample Allocation and Sampling Designs 

The State of Jalisco was initially stratified based on the climatic variability within 

the state. The three climate zones represent the tropical, temperate and semi-arid regions 

within the state. Each climatic zones was further stratified as to whether a sample unit 

represented a forested or non-forested region resulting in a total of six strata. Nested 

within each of the six strata, ten spectral classes were identified to represent the 

variability in land cover, resulting in a total of 60 strata. Initially samples were allocated 

to the forested regions within each climatic zones based on the economic importance of 

the region. A total of 600 sample plots were allocated to the temperate region, 400 to the 

tropical region and 300 to the semi-arid region. One-hundred sample plots were allocated 

to the non-forested areas in each of the tree climatic regions, resulting in a total sample 

size of 1600 plots. Because of difficulties in establish certain plots, only 1427 were 

established in the state. 

In this study, two probability-based designs (simple random and systematic 

sampling) and one model-assisted sampling design (stratified random sampling) were 

evaluated to identify the best approach for modeling the spatial distribution of forest tree 

biomass in the State of Jalisco. Two sample sizes of 500 and 1100 were evaluated, where 
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the later reflects the sample size used in developing the original forest biomass surface. 

Only the 30 strata that were classified as being forested were considered in this study. 

For the three sampling designs, samples were allocated proportional to the size of the 

forested areas within each of the three bioclimatic zones. For the sample size of 500, the 

semi-arid, temperate and tropical zones were allocated 100, 300 and 100 sample plots, 

respectively, while for the sample size of 1100, the semi-arid, temperate and tropical zone 

were allocated 220, 660 and 220 sample plots, respectively. The three sampling designs 

were implemented independently within each of the climatic zones. For stratified 

sampling design, samples were allocated uniformly across the ten spectral classes within 

each climatic zone. 

For a given sampling design, the location of the sample plots were overlaid on the 

various GIS grids to extract information on the elevation, slope, aspect, Landsat 7 ETM+ 

bands, forest type, bioclimatic zone, and estimated forest tree biomass. 

Simple Random Sampling 

Simple random sampling (SRS) is the most basic sampling design and usually 

serves as a basis for more complicated sampling designs. It is said to be a simple random 

sample when a sample of size n is drawn from a population of size N such that all 

samples of size n have the same chance of being selected (Cochran 1977). 

Systematic Sampling 

Systematic sampling is a cost-effective design in which the samples are uniformly 

distributed throughout the population (Cochran 1977, Scheaffer et al. 2006). Systematic 

sampling minimizes travel time, compared to SRS, making it more cost efficient in that it 

provides the same amount of information at minimal cost (Scheaffer et al. 2006, Stevens 
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and Olsens 2004). If the variable of interest is randomly distributed, estimates of the 

population mean and variance are identical to that of SRS. 

A simple sequential inhibition process (SSI) (Reich and Davis 2007a) was used to 

simulate a systematic sample. The SSI process randomly locates sample plots within the 

population with the constraint that no two points can be within a given distance of one 

another. Since the state is irregular in shape, initially 2900 and 6200 samples were 

located with a minimum distance of 7200 m and 4800 m between sample points, 

respectively. Sample plots that did not fall within the state or forested areas were 

removed. The remaining sample plots were randomly thinned to a size of 500 and 1100 

plots. A spatial library (Reich and Davis 2007b) for R version 2.4.0 (R Development 

Core Team 2006) was used to simulate the SSI process. 

Stratified Random Sampling 

A stratified random sample (ST) is obtained by dividing the population elements 

into non-overlapping groups, known as strata, and then selecting a simple random sample 

from each stratum (Johnson 2000, Scheaffer et al. 2006). The objective of this design is 

to create homogenous subgroups with minimum variance within stratum. If done 

correctly, a stratified random sample should be more precise than a simple random or 

systematic sample. 

Simulation Study 

A Monte Carlo simulation was used to compare the three sampling designs 

(Fishman 1995 and Manly 1998) in modeling the spatial distribution of forest tree 

biomass. For each Monte Carlo simulation, a sample of 500 or 1100 30 m x 30 m sample 

plots were randomly selected using SRS, SSI and ST to obtain a set of data for modeling 
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the spatial distribution of forest tree biomass. This process was repeated 50 times to 

evaluate the predictive performance of the three sampling designs. Example of the 

distribution of sample locations simulated using SRS, SSI and ST are displayed in Figure 16. 

Modeling the Spatial Distribution of Biomass 

The spatial variability in forest tree biomass was modeled using an approach 

developed by Reich and Aguirrie-Bravo (2008). Let z(st) represent a sample value of the 

target variable Z at spatial location s,-. Also, assume the sample data contains a set of 

auxiliary variables (covariates) X, the values of which are known for all units in the 

population. Multiple regression is used to describe the large-scale spatial variability in the 

data as a linear function in/? known explanatory variables Xj(s,) 

*(',) = A+i>A)A+ ,7M (28) 

where/3j,j = 0,...p arep+\ unknown regression coefficients andr}{si) is an error 

process sometimes referred to as a random field, with E\rj{st)] - 0 and 

covariance C(x, y) = Cov\r]{xi), ̂ (y.)). The error term in Eq. 28 is unknown because the 

true model is unknown. Once the model parameters have been estimated, the regression 

residuals are defined as rj(sj) = z{st) - z{s.), where z{st) is the predicted value at spatial 

location s; given the explanatory variables x (sl). The error process can be expressed as 

7(sJ = ;/(*,. ) + //(*,) (29) 

with Eyj,\si) | fj{si)] = 0. Using the set of auxiliary variables, X as a basis of stratification 

assume 
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J7M = /(*MM*,) (30) 

with E[s(sj) | x{st)] = 0, f(x(sj)) is a deterministic function, and S(st) is a zero-mean 

random term (Cocchi et al. 2002). Combining Eq. 29 and Eq. 30 

7(5,) = f(x(Si))+£{Si) (31) 

withE[tj(st)I /(*(s,))]= / ( 4 0 ) , 4$ , )= ^ ( s J + ^ O * and£[ff(s,.)| x(s,)] = 0 provided 

that//(J,-)and£>(s.) are conditionally independent (Cocchi et al. 2002; Benedtti et al. 

2005). The mean function f(x(s.)) is estimated by / using the recursive partitioning 

method introduced by Brieman et al. (1984). Combining Eq. 28 and Eq. 29 the full 

model describing the spatial variability in the sample data is given by 

*M= A +£*M4+f(x{si))+s(Si). (32) 
7=1 

Variance Estimation 

The variance of the estimated mean response at a given location si, for a set of 

explanatory variables, x(sj) is given by 

var(z(s;)) = var^jv)) + var(£(s.)) (33) 

where var^s . ) ) reflects the uncertainty in estimating the parameters of the regression 

model and va.r\S[si )j reflects the uncertainty in estimating the error (77) of the regression 

model. The variance associated with an estimate at a new location, so, can be written as 

var(z(s0)) = var(7(,s0)) + var(z(s0)) + var(<f (s0)) (34) 

where the additional term, var(z(s0)) reflects the random variation at a new location, SQ. 
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The small-scale variability (i.e., estimated errors from the regression models) in 

biomass was modeled using a tree-based stratified design (Reich and Aguirrie-Bravo 

2008). Independent variables considered in the stratification included elevation, slope, 

aspect, Landsat ETM+ bands and land cover type and predicted biomass obtained from a 

multiple regression model. 

For implementing the tree-based approach, the option "minsize" in the tree 

function and the option "best" in theprune.tree function available in S-Plus (Insightful 

Crop. 2000) were fixed for a given set of simulations. The option "minszie" reflects the 

minimum number of observations required to split the data. The option "prune.tree" is 

used to prune the complete tree to have a desired number of partitions (i.e., tree size). 

Based on a preliminary study using only one simulated dataset of forest tree biomass, the 

cost complexity criterion (Reich and Aguirrie-Bravo 2008, Chapter 1) suggested that 

conditions set on the minsize and tree size for the two sample sizes were optimal in terms 

of variance estimation. In this study the options with minsize of 15 and tree size of 50 

were used for the sample size of 500 and the options with minsize of 5 and tree size of 

100 were applied to the sample size of 1100 to meet the requirement of unbiased 

estimates of the variacne. 

A generalized linear model (McCullagh and Nelder, 1989, Chambers and Hastie 

1992) was used to estimate the regression coefficients and variances associated with the 

large-scale variability of forest tree biomass. The stepAIC function (Venables and Ripley 

1999), avaialbe in the MASS Package in S, was used to perform a backward stepwise 

selection procedure identifying significant predictors of a multiple regression model 

based on Akaike Information Criterion (AIC) (Akaike 1969). To stabilize the variance of 
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biomass, a square root transformation was applied to the sample data of biomass. The 

tree function in S-Plus platform was used to perform tree-based approach for modeling 

the small-scale variability in forest tree biomass. 

Predicted values and associated standard errors (se.fit = 7) of the fitted regression 

models were obtained using the function, glm.pred <- predict.glm(object, 

predict= "response", se.fit-T), where object is a fitted glm model. The variance 

associated with estimating the regression coefficients were obtained by var(rj(sj))= 

glm.pred$se.fit2 while the uncertainty in estimating the error of the regression 

model, \so\S(si)j were calculated using standard methods for a stratified random sample 

(Cochran, 1977): 

**=—2X (35) 
n k i=i 

and 

**2 1 
nk-\ 

(36) 

where k denotes the stratum, 8hj denotes the mean residual error for observations assigned 

to the kth stratum, «k is the number of observations assigned to the kth stratum, and G\ is 

the within stratum variance for the ktb stratum. The use of the sample variance as a 

measure of the uncertainty in estimating the error of the regression model is justified by 

the fact that the mean square error is the best constant predictor given that the sample 

data belong to the stratum. 
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Jagger (2005) suggested that the functionpredict.glmQ correctly calculates the 

variance for constructing confidence limits but those for the prediction intervals are not 

correct since the variance component due to the response is taken as the dispersion value. 

Assuming normality for the prediction interval, Jagger (2005) recommends calculating 

the variance used in constructing prediction intervals by family Q$var (fitted value) * 

dispersion + se(fittedvalue)A2. Estimates of the variances used in constructing 

confidence and prediction intervals were computed by: 

var(z(,s,
|.)) = se(fitted value)A2 + &\ (st) (3 7) 

var(z(s0)) =family Q$var (fitted value) * dispersion + se(fitted value)A2 + &2
k{s;) (38), 

respectively. 

Model Evaluation 

A 9-fold cross-validation (Efron and Tibshrani, 1993) was used to evaluate the 

predictive performance of the fitted biomass models. The sample data were divided into 

9 parts (K = 9), each of which consisted of 55 and 122 observation for sample sizes of 

500 and 1100, respectively. The fitted models were recursively fitted using eight parts 

(K-l) of the data as a training data set and the remaining data as an independent data set 

for estimating the prediction errors. Repeating this procedure nine times allow each 

observation to be excluded from the model and independently predicted by fitted models. 

Following this procedure, a set of statistics were calculated to evaluate the predictive 

performance of the models. Estimates of prediction errors obtaining from the K-fold 

cross validation (Kravchenko and Bullock 1999, Schloeder et al. 2001 and Reich et al. 

2004) were compared to asses the effectiveness of the three sampling designs in 

modeling forest tree biomass. 
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The effectiveness of the fitted models was evaluated using a goodness-of-

prediction statistic (G-statistic) (Agterberg, 1984; Kravchenka and Bullock, 1999; Guisan 

and Zimmermann, 2000; Schloeder et al., 2001). 

G-statistic = 1-

f n n 

i=l 

ti^)-mj\ 
Ki=i 

(39) 

The G-statistic is a measure of the effectiveness of a prediction relative to that which 

could have been derived using the sample mean. A G-statistic equal to one indicates 

perfect prediction, a positive value indicates a more reliable model than if one had used 

the sample mean, a negative value indicates a less reliable model than if one had used the 

sample mean, and a value of zero indicates that the sample mean should be used to 

estimate z(s,). 

The mean absolute error (MAE) 

MAE = -Y\z(Sl)-z(s,)\ (40) 

and the mean squared error of prediction (MSEP) 

MSEP = -^[z(Si)-z(Si)]
2 (41) 

were used to evaluate the accuracy of the predictions, where z(s{) is the actual value at a 

sample point/, z(st) is the estimated value at a sample location / obtained from the 9-

fold cross validation, and n is the total number of samples used in the 9-fold cross 

validation. 
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The standardized mean squared error (SMSE) (Reich et al. 2004), was used to 

evaluate the reliability between the estimated variances and the true errors: 

a i ^ = I£-*lW (42) 

where, £(.s,) = (z(st)- £($,•)), is the true error and var(z(5i.)) is the estimated variance of 

the mean response / obtained from Eq. 33 for the standardized mean square error of the 

variance of the mean response (SMSEM) and from Eq. 34 for the standardized mean 

square error of the prediction variance (SMSEP). SMSE has a Chi-square distribution 

with n degree of freedom which can be used to construct a confidence interval for SMSE 

under the null hypothesis of equal variances: 

Pr 

2 2 
A a A a 

«,—- « , I — 

—2- < SMSE < 2-
n n 

= l - a . (43) 

When n is large, SMSE can be approximated by a standard normal distribution with a 

mean of one and variance 21 n (SMSE ~N(\, 2/n)). If the SMSE falls within the interval 

1 ± 1.96*(2/«)0'5, this would indicate that the true errors and estimation errors are 

consistent at the 0.95 level of confidence (Hevesi et al 1992, Reich et al. 2004). SMSE's 

were evaluated based on the same minsize and tree size for all three sampling designs. 

These intervals were used to calculate coverage rates (C V) which are defined as 

the proportion of individual confidence intervals and prediction intervals containing the 

observed value. The 95% confidence and prediction intervals were calculated assuming 

normality 

z(s0)±1.96Vvar(z(s0)). (44) 
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Multi-Response Permutation Procedure 

Multi-response permutation procedures (MRPP) were used to test for the 

significant differences among the three sampling designs and the two sample sizes. 

MRPP (Zimmerman et al. 1985, Mielke and Berry 2001) is a multivariate, 

nonparamentric statistics for testing for significant difference among groups of 

multivariate data. Unlike parametric statistics such as a Mest or F-test, Euclidean 

distances between all pairs of observations in multi-dimensional space are used to 

compute a test statistic. The test statistics does not rely on a standard normal distribution, 

but it is considered a distribution-free technique. Permutation procedures are used to 

develop a reference distribution under the null hypothesis for the purpose of testing for 

significant differences. The possible test statistics obtained from the permutation 

procedures under the null hypothesis of no difference are compared to the test statistic 

obtained from the observed data. A p-value is computed from the proportion of test 

statistics equal to or less than the observed statistic. Thus, a small p-value would indicate 

significant difference among groups. A detailed description of MRPP is provided by 

Mielke and Berry (2001). 

In this study, MRPP was used to simultaneously test significant differences 

among the test statistics used to evaluate the predictive performance of the three sampling 

designs and two sample sizes. If a significant difference was detected all pair-wise 

combinations were evaluated to facilitate comparisons among the three sampling designs. 
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RESULTS 

Average R values associated with the regression methods and G-statistic for the 

combined models indicated that stratified random sampling for sample sizes of 500 and 

1100 provided the best fit in terms of accounting for the total variability observed in the 

biomass data (Table 5 and 6). MRPP suggested that the R2 for the stratified design was 

significantly larger compared to the other two sampling designs for the sample size of 

500 (p-value < 0.001) and 1100 (p-value < 0.001) (Figure 17). MRPP also indicated that 

the R2 values associated with the simple random and systematic designs were not 

significantly different from one another (n = 500, p-value = 0.533; n = 1100, p-value = 

0.261) (Figure 17). Similarly, no significant differences were observed for the G-statistics 

for these two sampling designs (n = 500, p-value = 0.47; n = 1100, p-value = 0.79) 

(Figure 17). 

All three sample designs provided unbiased variance estimate for the n = 500 

sample size (Table 6). For the sample size of 1100 only the stratified design provided 

unbiased variance estimates due to the larger tree size used to model the small-scale 

variability in biomass. Noticeably, the averages for SMSEM and SMSEP associated with 

the stratified design for both sample sizes were closet to one. MRPP suggested that 

SMSEM's associated with the stratified design were significantly different from those 

associated with the simple random (p-value < 0.002) and systematic (p-value = 0.005) 

designs for the sample size of 500 (Figure 18), whereas, SMSEM's for the sample size of 

1100 indicated no significant difference among the three sampling design (p-value = 0.22). 

Comparing the SMSEP's obtained from the three sampling designs, the pair-wise 
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Table 5. Summary statistics for comparing the spatial models of biomass (tones/ha) 

developed using simple random sampling (SRS), systematic sampling (SSI), and 

stratified random sampling (ST) for a sample size of 500. 

Statistics1 

R2? 

G-statatic5 

SMSEM5 

CRM ? 

SMSEPC 

CRP ; 

MSEPC 

MAEP ; 

MEAN (sample) 

MEAN (model) 

Design 

SRS 

SSI 

ST 

SRS 

SSI 

ST 

SRS 

SSI 

ST 

SRS 

SSI 

ST 

SRS 

SSI 

ST 

SRS 

SSI 

ST 

SRS 

SSI 

ST 

SRS 

SSI 

ST 

SRS 

SSI 

ST 

SRS 

SSI 

ST 

Mean 

0.49 

0.50 

0.52 

0.76 

0.76 

0.77 

0.92 

0.92 

0.91 

0.975 

0.974 

0.975 

1.06 

1.05 

0.96 

0.943 

0.944 

0.951 

16.68 

16.75 

16.56 

3.23 

3.24 

3.17 

65.91 

67.18 

66.17 

60.96 

62.20 

61.13 

95% 
Lower2 

0.49 

0.49 

0.51 

0.75 

0.75 

0.76 

0.91 

0.91 

0.91 

0.973 

0.972 

0.973 

1.03 

1.02 

0.94 

0.939 

0.940 

0.947 

16.31 

16.33 

16.13 

3.19 

3.20 

3.13 

65.14 

66.24 

65.19 

60.19 

61,28 

60.05 

95% 
Upper2 

0.50 

0.51 

0.53 

0.77 

0.77 

0.78 

0.92 

0.92 

0.91 

0.977 

0.975 

0.976 

1.08 

1.08 

0.99 

0.947 

0.948 

0.954 

17.05 

17.17 

16.98 

3.27 

3.28 

3.22 

66.68 

68.11 

67.15 

61.72 

63.12 

62.20 

Median 

0.49 

0.50 

0.52 

0.76 

0.76 

0.77 

0.92 

0.92 

0.91 

0.977 

0.974 

0.976 

1.07 

1.04 

0.97 

0.943 

0.944 

0.954 

16.64 

16.55 

16.65 

3.22 

3.22 

3.18 

65.99 

66.88 

66.28 

60.63 

62.19 

61.41 

SD? 

0.03 

0.03 

0.03 

0.02 

0.02 

0.02 

0.01 

0.01 

0.01 

0.006 

0.006 

0.006 

0.10 

0.11 

0.10 

0.014 

0.015 

0.012 

1.29 

1.48 

1.50 

0.13 

0.15 

0.14 

2.72 

3.29 

3.44 

2.69 

3.23 

3.77 

Min 

0.43 

0.42 

0.46 

0.72 

0.70 

0.73 

0.88 

0.89 

0.88 

0.960 

0.956 

0.964 

0.86 

0.85 

0.77 

0.915 

0.899 

0.915 

14.35 

14.32 

13.35 

2.98 

2.93 

2.84 

59.89 

58.24 

58.95 

54.86 

53.13 

53.05 

Max 

0.56 

0.56 

0.58 

0.81 

0.81 

0.80 

0.94 

0.94 

0.94 

0.986 

0.986 

0.986 

1.24 

1.31 

1.21 

0.974 

0.972 

0.974 

19.36 

21.18 

20.46 

3.50 

3.64 

3.47 

72.65 

73.87 

74.00 

67.65 

69.44 

70.23 

The statistics are based on 50 simulations of each sampling design. 
2The lower and upper confidence bound were constructed using a t-distribution, 
t.025,49 = 2 .31 . 

?SD = standard deviation, R2 = coefficient of determination obtained from 3SLS, G-
statistic = the total variability of the mean response accounted by 3SLS + RT, SMSEM = 
standardized mean square error of the model, CRM = confidence coverage rates of the 
mean response, SMSEP = standardized mean square error of prediction, CRP = 
confidence coverage rates of prediction, MSEP = mean square error of the mean 
response, MAEP = mean absolute error of prediction. 
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Table 6. Summary statistics for comparing the spatial models of biomass (tones/ha) 

developed using simple random sampling (SRS), systematic sampling (SSI), and 

stratified random sampling (ST) for a sample size of 1100. 

Statistics1 

R2? 

G-statatistic5 

SMSEMC 

CRM ? 

SMSEP5 

CRP ? 

MSEP? 

MAEPC 

MEAN (sample) 

MEAN (model) 

Designs 

SRS 

SSI 

ST 

SRS 

SSI 

ST 

SRS 

SSI 

ST 

SRS 

SSI 

ST 

SRS 

SSI 

ST 

SRS 

SSI 

ST 

SRS 

SSI 

ST 

SRS 

SSI 

ST 

SRS 

SSI 

ST 

SRS 

SSI 

ST 

Mean 

0.48 

0.47 

0.51 

0.76 

0.76 

0.78 

1.12 

1.15 

1.09 

0.957 

0.956 

0.959 

1.12 

1.15 

1.04 

0.935 

0.932 

0.942 

16.67 

16.88 

16.83 

3.21 

3.22 

3.17 

66.69 

66.55 

65.93 

61.79 

61.63 

60.81 

95% 
Lower2 

0.47 

0.47 

0.50 

0.76 

0.76 

0.78 

1.08 

1.10 

1.05 

0.955 

0.954 

0.957 

1.10 

1.12 

1.02 

0.932 

0.929 

0.939 

16.44 

16.59 

16.56 

3.18 

3.19 

3.15 

66.12 

65.96 

65.38 

61.20 

61.06 

60.15 

95% 
Upper2 

0.49 

0.48 

0.51 

0.77 

0.76 

0.78 

1.16 

1.19 

1.12 

0.959 

0.958 

0.961 

1.14 

1.17 

1.06 

0.937 

0.935 

0.944 

16.90 

17.17 

17.10 

3.23 

3.25 

3.20 

67.26 

67.15 

66.48 

62.37 

62.20 

61.48 

Median 

0.48 

0.48 

0.51 

0.76 

0.76 

0.78 

1.09 

1.10 

1.06 

0.958 

0.955 

0.959 

1.12 

1.14 

1.04 

0.935 

0.932 

0.942 

16.65 

16.92 

16.93 

3.19 

3.23 

3.17 

67.10 

66.68 

66.18 

62.38 

61.79 

60.97 

SD ; 

0.02 

0.02 

0.02 

0.01 

0.01 

0.01 

0.14 

0.15 

0.12 

0.007 

0.006 

0.007 

0.07 

0.08 

0.07 

0.009 

0.010 

0.009 

0.81 

1.02 

0.94 

0.09 

0.10 

0.10 

2.01 

2.09 

1.93 

2.07 

2.00 

2.35 

Min 

0.42 

0.42 

0.46 

0.74 

0.73 

0.75 

0.95 

0.95 

0.94 

0.940 

0.943 

0.945 

0.98 

0.93 

0.89 

0.907 

0.908 

0.922 

15.04 

15.06 

14.88 

3.06 

3.05 

2.94 

62.77 

62.83 

60.90 

57.98 

58.41 

54.30 

Max 

0.52 

0.53 

0.56 

0.79 

0.78 

0.80 

1.61 

1.54 

1.45 

0.968 

0.965 

0.972 

1.29 

1.35 

1.23 

0.952 

0.961 

0.960 

18.62 

20.18 

18.38 

3.44 

3.47 

3.35 

70.50 

70.72 

70.94 

65.24 

66.52 

65.48 

'The statistics are based on 50 simulations of each sampling design. 
2The lower and upper confidence bound were constructed using a t-distribution, 
t.025,49 = 2 . 3 1 . 

^SD = standard deviation, R2 = coefficient of determination obtained from 3SLS, G-
statistic = the total variability of the mean response accounted by 3SLS + RT, SMSEM = 
standardized mean square error of the model, CRM = confidence coverage rates of the 
mean response, SMSEP = standardized mean square error of prediction, CRP = 
confidence coverage rates of prediction, MSEP = mean square error of the mean 
response, MAEP = mean absolute error of prediction. 
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Figure 17. Box plots comparing model statistics for simple random sampling (SRS), 

systematic random sampling (SSI), and stratified random sampling (ST) using a sample 

size of 500 and 1100. The letter below the plots indicates a pair-wise comparison among 

the sampling designs using MRPP (R = proportion of the observed variability accounted 

for by the ordinary least square model, G = proportion of the observed variability 

accounted for by the ordinary least square model plus the binary regression tree, SMSEP 

= standardized mean square error of the prediction, CRP = prediction coverage rate). 
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comparisons of MRPP indicated significant differences between the stratified and simple 

random designs (p-value < 0.001) and the stratified and systematic designs (p-value < 

0.001) (Figure 17). MRPP also suggested that SRS and SSI were not significantly 

different for the two sample sizes (n = 500, p-value - 0.39; n= 1100, p-value = 0.21). 

The average CRM's for the two sample sizes and the three sampling designs were 

significantly different from the nominal 0.95 level based on a two-tailed Mest (Table 5 

and 6). However, the sample size of 1100 provided a coverage rate (CRM) closer to the 

nominal 0.95 rate. MRPP suggested that all sampling designs were not significantly 

different for the sample size of 500 (p-value = 0.36) and 1100 (p-value = 0.11) (Figure 

18). Unlike CRM, the stratified design with a sample size of 500 resulted in an average 

CRP of 0.951 which was not significantly different from the nominal 0.95 rate (Table 5). 

Comparing the averaged CRP's obtained using a sample size of 1100, the stratified 

design yielded the closest value (0.942) to 0.95. MRPP also indicated that CRP's 

associated with the stratified design were significantly different from the simple random 

(p-value = 0.004) and systematic (p-value = 0.04) designs for the sample size of 500 

(Figure 17). For a sample size of 1100, CRP's associated with the stratified design were 

significantly different from those for the simple random (p-value < 0.001) and systematic 

(p -value < 0.001) designs (Figure 17). 

With respect to MSEP and MAEP, all three sampling designs provided similar 

results (Table 5 and 6) for both sample sizes. The stratified design provided a smaller 

MSEP and MAEP, especially with the smaller sample size. MRPP also confirmed that 

there was no significant difference among three sampling designs and sample sizes 

(Figure 18). 
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Figure 18. Box plots comparing model statistics for simple random sampling (SRS), 

systematic random sampling (SSI), and stratified random sampling (ST) using a sample 

size of 500 and 1100. The letter below the plots indicates a pair-wise comparison among 

the sampling designs using MRPP (SMSEM = standardize mean square error of the 

model, CRM = confidence coverage rate of the model, MSEP = prediction mean square 

error, MAEP = mean absolute error of prediction). 
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Reliable estimates of the population mean were obtained from the three sampling 

designs and two sample sizes. Based on a two-tailed Mest, the sample means were not 

significantly different from the simulated population mean (a = 0.05) for both sample 

sizes (Table 5 and 6). MRPP indicated no differences among the means for the three 

sampling designs and two sample sizes (Figure 18). 

Estimated population means obtained from the spatial models were significantly 

lower than the true population mean (Table 5 and 6). All three sampling designs 

systematically underestimated the population means by approximately 5 tones/ha for both 

sample sizes. This bias is due to the process used in creating hypothetical surface of 

biomass. Table 7 provides evidence that the hypothetical surface used in this study had 

larger amounts of biomass than the original biomass surface with respect to the three 

climatic zones, or the state as a whole. The process of adding the random noise and 

truncating negative estimates of biomass to zero resulted in a higher proportion of pixels 

with zero biomass, while pixels with a positive biomass increased. The net effect was to 

increase the average biomass for the state by 3.8 tones/ha. The range and the mean of 

hypothetical surface also suggested that many extreme values of biomass were introduced 

into the surface. As a result, the sample data over-sampled areas with little to no biomass 

and under-sampled area with high biomass resulting in a systematic bias in the estimates. 

In spite of this systematic bias, it does not detract from the results presented in this study. 
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Table 7. Comparison of the original biomass surface to the hypothetical biomass surface. 

Climatic Pixels with Pixels with Range Range 
Zone Biomass > 0 (%) Biomass > 0 (%) (tones/ha) (tones/ha) 

Semi-arid 

Temperate 

Tropical 

Entire State 

Semi-arid 

Temperate 

Tropical 

Entire State 

Original Biomass Surface 

1.89 16.63 621.19 45.20 

2.12 56.42 699.96 59.01 

0.37 22.58 708.41 86.16 

4.38 95.62 708.41 62.66 

Hypothetical Biomass Surface 

4.64 13.88 681.00 50.64 

10.84 47.69 779.41 62.99 

2.34 20.60 827.74 88.28 

17.83 82.17 827.74 66.46 
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Comparing Predicted Biomass Surfaces 

The final surfaces of predicted forest tree biomass were created based on models 

developed from data obtained using three different sampling designs and two sample sizes. 

To facilitate comparison, models were selected with similar R values and G-statistic. The 

means and associated mean square errors for the three sampling designs are summarized in 

Table 8 by climatic zones. In general, the systematic design tended to produce reliable 

estimate of the mean biomass for the semi-arid and temperate zone, while the stratified 

design provided more reliable estimates of the mean biomass in the temperate and tropical 

zone. However, the spatial model based on the stratified design was best in terms of the 

MSE. 

Figure 19 and 20 shows the distribution of errors (truth - predicted) throughout 

the state for the two sample sizes. Negative values indicate an overestimation of biomass 

while positive values indicate an underestimation. The three sampling designs displayed 

similar trends of underestimation in the tropical zones which are characterized as having 

high biomass. However, the underestimation of biomass was generally confined to small 

areas when using the stratified design. In the semi-arid and temperate zone, the stratified 

design overestimated less when compared to the other two designs. 
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Table 8. Summary statistics for the final predictive surfaces of biomass (tones/ha) based 

on simple random sample (SRS), systematic sampling (SSI), and stratified random 

sampling (ST) using a sample size of 500 and 1100. 

Sampling 

Designs 

SRS 

SSI 

ST 

SRS 

SSI 

ST 

Statistics 

Mean 

MSE5 

Mean 

MSE 

Mean 

MSE 

Mean 

MSE 

Mean 

MSE 

Mean 

MSE 

Population Mean (tones/ha) 

Number of Pixels 

Sample 
Size 

500 

500 

500 

500 

500 

500 

1100 

1100 

1100 

1100 

1100 

1100 

R2? 

0.500 

0.502 

0.526 

0.480 

0.475 

0.487 

G ? 

0.759 

0.760 

0.759 

0.762 

0.761 

0.761 

Semi-arid 

41.88 

3182.62 

50.22 

3116.57 

42.48 

2714.11 

42.64 

7096.35 

52.17 

4129.71 

46.35 

2842.53 

50.64 

9578434 

Climatic Zone 

Temperate 

55.58 

3859.95 

57.95 

3944.19 

53.89 

3266.19 

60.33 

8510.59 

60.64 

4791.41 

59.95 

3542.11 

62.99 

30281203 

Tropical 

74.67 

6668.99 

64.77 

6835.96 

83.47 

6085.39 

74.48 

7062.07 

79.02 

4502.07 

75.89 

2866.42 

88.28 

11868912 

?MSE = mean square error of the difference between the hypothetical surface and the 

predictive surface of biomass, R = proportion of the observed variability accounted for 

by the ordinary least square model, G = proportion of the observed variability accounted 

for by the ordinary least square model plus the binary regression tree. 
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DISCUSSION 

In this study, three sampling designs were evaluated in terms of developing a 

model to describe the spatial distribution of forest tree biomass in the State of Jalisco, 

Mexico. Model evaluation indicated that stratifying the population based on the spectral 

properties of the vegetation produced a better model than if this information was ignored 

when designing the survey. All three sampling designs provided unbiased estimates of 

the variance for the two sample sizes evaluated. 

Both the simple random and systematic designs allocated samples proportional to 

the size of the spectral classes resulting in some spectral classes being under-sampled and 

other over-sampled. Thus, these two designs may not be capturing the extent of the 

spectral variability in the population. This is especially true for the forest types that occur 

along the ridge tops in the western portion of the state. By allocating the sample 

uniformly across all spectral classes, the stratified design was able to capture more of the 

variability in the landscape for the same sampling effort when compared to the simple 

random and systematic design. With a sample size of 500 and 1100, the simulation study 

suggested that on the average the stratified design represented 12 to 14 out of 15 vegetation 

classes that occurred in the state, compared to 10 and 11 vegetation classes for the simple 

random and systematic designs, respectively. 

While the spatial models produced biased estimates of the mean biomass, this was 

attributed primarily to the method used in adding the random noise and does not detract 

from the results obtained in this study. It should be pointed out that this systematic bias 

was not present in the original forest tree biomass model developed by Reich et al. (2008). 
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The agreement between the sample mean from the state-wide inventory (55.18 tones/ha) 

and the spatial model (56.10 tones/ha) were consistent with one another. 

Stevens and Olsen (2004) and Stevens (2006) suggested that a systematic sample 

tends to spatially balance sample locations throughout a large spatial domain and 

therefore should potentially provide better statistical estimates. However, the results of 

this study indicated that both systematic and simple random sampling behaved the same 

in terms of their predictive performance. The results also suggested that the stratified 

design provided the best estimates of forest tree biomass. 

Very few studies have compared methods of modeling spatial data over large 

geographical regions in which the data lacks strong spatial dependency. In some 

situations, a geostatistical model such as kriging suggests ways to allocate the samples in 

order to capture the spatial dependency in the data. Most studies dealing with natural 

resources (e.g., Pettitt and Mcbarney 1993, Papritz and Webster 1995, Brus and De 

Gruijter 1997, Jardim and Ribeiro 2007) pay little to no attention on how to collect the 

sample data for developing a predictive model. Thus, direct comparisons of the results of 

this study to other studies are not applicable. However the results from this study agreed 

somewhat with a study by Paprttz and Webster (1995). The authors pointed out that with 

a limited sample size, stratified random samples provided accurate and precise estimates 

of soil attributes when applying kriging. 
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CONCLUSION 

Digital mapping of natural resource is important for decision making and 

management of ecosystems and natural resources. The spatial distribution of natural 

resource attributes can be developed using reliable spatial modeling techniques. 

Numerous sampling strategies have been suggested by research scientists to collect 

spatial data to develop such models. The results of this study provide evidence that the 

allocation of sample units based on spectral variability of the landscape could improve 

the predictive performance of certain types of spatial models. The use of satellite 

imagery provides detailed information on the spatial variability on the variable of interest 

throughout the landscape. The use of a stratified design based on prior knowledge of the 

spectral variability of the population of interest should increase the accuracy and 

precision of the statistical estimates of the population. The approach advocated in this 

study could benefit research scientists as well as managers interested in studying a variety 

of natural resources phenomenon that occur over large geographical regions. 
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CHAPTER 3: OPTIMAL PLOT SIZE FOR ESTIMATING TREE BASAL AREA, 

TREE DENSITY AND SPECIES ABUNDANCE FOR A SEASONAL DRY 

EVERGREEN FOREST IN THAILAND 

ABSTRACT 

No specific plot size is optimal for estimating all variables of interest in a forest 

inventory. Finding an optimal plot size is critical in designing a cost efficient forest 

inventory. This study focused on how plot size and sampling intensity influenced 

estimates of tree basal area, tree density and number of tree species in a seasonal dry 

evergreen forest in Thailand. The data used in the study comes from a mapped 50 ha plot 

in which the location, size and species of all trees with a DBH > 1 cm were known. The 

results of a simulation study indicated that plots ranging in size from 5 m x 5 m t o 5 0 m x 

50 m provided unbiased estimates of basal area and tree density irrespective of the 

sampling intensity. Nonparametric estimator of the total number of tree species provided 

reliable estimates when using a large number of small plots. Equations are presented to 

express the total time, or cost associated with estimation basal area/ha, tree/ha, and 

number of tree species as a function of plot size. These equations are used to estimate 

optimal plot size for different tract sizes, coefficient of variations and percent sampling 

errors. Increasing the variability within a population decreased the optimal plot size, 

while increasing the allowable error increased the optimal plot size. Larger tract sizes 

required a fewer number of larger plot sizes to minimize the increased cost associated 

with travel time. 
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INTRODUCTION 

Uneven-aged stands of tropical forests are diverse in both species composition 

and their structure. Because of this diversity, it is not straightforward on how best to 

sample these forests to obtain reliable estimates of things such as timber volume, basal 

area, tree density or even the number of tree species. One critical aspect of this is the 

selection of a plot size, and is one plot size optimal for all conditions. The goal of any 

survey is to make an inference about a population based on a representative sample 

selected from the population. Should one use many small plots or a few large plots? The 

answer to this question is not straightforward, and needs to be addressed to ensure the 

most efficient use of the resources available. 

Seasonal dry evergreen forests in Thailand are one of the most valuable forest 

type. This forest type contributes not only to the socio-economic well-being of the local 

Thai people but is also a crucial component of the tropical ecosystem. Due to rapidly 

decreasing landbase associated with this forest type, numerous studies (e.g., Baker 1997 

and 2001, Bunyavejchewin 1986 and 1999, Bunyavejchewin et al. 2001) have been 

conducted to understand its ecological function and process. Unfortunately, previous 

studies have rarely focused on the most efficient method of collecting this type of 

information. In many situations, the size of the plots chosen are based on the preference 

of the researchers and/or because of a traditional protocol without any scientific support. 

Obviously, finding the most appropriate plot size with respect to plot measurement time 

and travel time has never been attempted in a seasonal dry evergreen forest in Thailand. 

Thus, the main objectives of this study are: 
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1) evaluate the influence of plot size on the statistical properties of estimates of tree 

basal area, tree density and number of tree species in a seasonal dry evergreen 

forest, and 

2) develop a set of equations to estimate the total cost of a survey as a function of 

plot size, sampling variability and the desired sampling error. 

To achieve these goals, a permanent 50 ha plot representing a seasonal dry evergreen 

forest in Hua Kha Khaeng (HKK) Wildlife Sanctuary, Thailand, was used in this study. 

METHODS 

Study Area 

Huai Kha Khaeng Wildlife Sanctuary (HKK) is one of the 17 protected areas 

forming the Western Forest Complex (WFC) of Thailand. The HKK covers an area of 

2780 km2 in west central Thailand. The region is characterized by a 5-6 month dry 

season extending from November to April. Mean annual rainfall is approximately 1400 

mm. Located within this region is one of several large-scale permanent Forest Dynamic 

Plots (FDP) which is part of a larger network of permanent plots established under the 

guidance of the Center for Tropical Forest Science, Smithsonian Tropical Research 

Institute. The HKK permanent plot is 50 ha (500 m x 1000 m) in size and is located at 

15°40' N latitude and 99° 10' E longitude, about 4 km west of Kapook Kapieng Ranger 

Station in the northern part of HKK (Figure 21). The location of the plot was chosen to 

represent the climatic conditions of seasonal dry evergreen forests in Southeast Asia. 

Elevations on the plot range from 549 m to 638 m. The plot is oriented with the long axis 

aligned in the north-south direction (Figure 22) (Bunyavejchewin et al. 1998) 
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Tree Census 

The FDP census was conducted in 1994. All tree standing woody plants with a 

DBH (diameter at breast height) greater than 1 cm measured 1.30 m above ground, were 

tagged and mapped following a standard protocol (Manokaran et al. 1990, Condit 1998, 

and Bunyavejchewin et al. 2001). Estimates of basal area/ha and number of trees/ha were 

based on trees with a DBH grater than 10 cm while the total number of tree species was 

based on all trees with a DBH greater than 1 cm. 

The floristic structure of the HKK FDP was documented by Bunyavejchewin 

(2001). The plot contained 248 species of 164 genera and 61 families. The five most 

common families in terms of tree basal area were Dipterocarpaceae (21.95%), 

Annonaceae (19.36%), Lauraceae (7.81%), Euphorbiaceae (4.13%), and Sapindaceae 

(5.53%o) respectively. Annonaceae (20.87%), Eurphorbiaceae (18.95%), Sapindaceae 

(12.30%o), Rubiaceae (6.09) and Lauraceae (5.69%) were the five most abundant families 

based on tree density. The five most diverse families included Euphobiaceae (12.08%)), 

Moraceae (7.00%), Leguminoseae (6.23%), Rubiaceae (5.06%>), and Sapindaceae 

(4.28%) respectively. Seven species of Dipterocarpaceae forming the upper canopy and 

emergent layers included Anisoptera costata, Dipterocarpus alatus, D. obtusifolius, 

Hopea odorata, Shorea siamensis, S, roxburghii and Vatica cinerea. 

Plot Configuration 

Five plot sizes were evaluated in this study: 5 m x 5 m, 10 m x 10 m, 20 m x 20 m, 

25 m x 25 m, and 50 m x 50 m. The 50 ha plot was sub-divided into N = 20000, 5000, 

1250, 800 and 200 non-overlapping disjoint region corresponding to the five plot sizes, 
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respectively. To facilitate comparison among the various plot sizes, the proportion of the 

50 ha plot sampled was fixed at 0.5%, 1.0%, 2.0%, 5.0%, 10.0%, and 15.0%. Sample sizes 

associated with the various plot sizes and sample intensities are summarized in Table 9. 

Simulation Study 

For a given plot size and sample intensity, a random sample of n plots were 

selected without replacement to obtain estimates of basal area per ha, trees/ha and 

number of tree species. Estimates of the mean ( y ) basal area/ha and trees/ha were 

computed as follows: 

J = —2>,- (45) 
an /=1 

with estimated variance: 

V{y) 
fN-y,\f\\2 v2 

Nj-n 

N \a) 
s 
— (46) 
n 

!><->o2 

where, yi is the /'* observation, s2 - — is the sample variance and a is the plot 

M - 1 

size in hectares (Cochran 1977). 

Estimating the number of tree species in the population is not as simple as just 

counting the number of species on the sample plots or calculating an arithmetic mean as 

in the case of estimating basal area/ha or number of trees/ha. Bunge and Fitzpatrick 

(1993, 1995), Chao and Lee (1992), and Schreuder et al. (1999) presented some useful 

nonparametric estimators for estimating the total number of tree species in temperate 

forest in the U.S. using field data. In this study, the applicability of these nonparametric 

estimators were calculated for use in the tropical forests of Thailand. 
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Table 9. Sample sizes associated with the different sampling intensity and plot sizes. 

Plot Size (m x m) 

5 x 5 

10x10 

20x20 

25x25 

50x50 

0.5 

100 

25 

7 

4 

-

1.0 

200 

50 

13 

8 

2 

Sampling 

2.0 

400 

100 

25 

16 

4 

Intensity (%) 

5.0 

1000 

250 

63 

40 

10 

10.0 

2000 

500 

125 

80 

20 

15.0 

3000 

750 

188 

120 

30 
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Nonparametric estimators evaluated in this study were 

CCOVf = CJ (47) 

CM2f = cs+fcf/(2c2), (48) 

_£, , fci(cv)2 

\-cxl n \-cxl n 
CM3f = f s +wvj , (49) 

CP\f=. ' (50) 
l - / e x p ( - 2 c 2 / c , ) 

CMBf = cs+± J-^-, (51) 
n 

where cs is the total number of species counted on the sample plots, cx is the 

number of species occurring only once, c2 is the number of species occurring twice, 

ns f jy - n\ 
n - —^-(100) is the percentage of plots species sp occurred on, / = 

n v N j 
is a 

finite population correction factor (fpc), and 

Z(^^)2/(c5-l) 
cv2 = , with ft = Y, nsP I cs (52) 

n 

If one is sampling an infinitely large population, one can ignore the finite population 

correction factor. The nonparametric estimators were evaluated with and without the fpc. 

In selecting an estimator, it is desirable to have one that does not overestimate the true 

number of tree species on the 50 ha plot and should be as close to the true value as 

possible. 

Since no valid formula is available for calculating the variance associated with 

these nonparametric estimators, a bootstrap procedure was used to estimate the sample 
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variance (Smith and Belle 1984, Efron and Tibshirana 1994, Shao and Tu 1995, Manly 

1998). Two-hundred interactions were used to estimate the sample variances associated 

with the nonparametric estimators. 

To evaluate the statistical properties of the nonparametric estimators for 

estimating the number of tree species, Monte Carlo simulation (Fishman 1995) were used 

to sample the 50 ha plot M= 20000 times for the 5 m x 5 m plot size and M= 50000 

times for all other plot sizes. An overall sample mean (//) for the M simulations was 

calculated as 

1 M 

> " = T 7 2 > < - (53) 

where yt is the sample mean for the /th simulation. The bias of the estimator was 

computed as follows: 

C 1 M 

Bias (%) = 

1 M 

V 
100 (54) 

where ju is the true number of tree species on the 50 ha plot. To asses any bias 

associated with estimating the sample variance, the mean variance 

^_ 1 M 

(55) 

and the variance of the means 

M 

s2-=^ 
M-\ 

(56) 
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were computed. This latter variance was assumed to be an estimate of the true variance. 

An F-test was used to test if the ratio of these two variances differed significantly from 

one. 

Optimal Plot Size 

In practice, most surveys are constrained by a fixed budget limiting the number of 

sample plots that can be established and measured. In some instances, one has the 

opportunity to design a survey using a plot size that will minimize the total cost of the 

survey and still maintain the desired level of precision. 

The total time of a survey for a given tract size can be described as a function of 

the average travel time between plots, the average plot measurement time and number of 

sample plots as follows: 

T^n^+m,) (57) 

where 7]. is the total time of the survey using a plot of size Qt, ni is the sample size for a 

plot of size Qi, v(. is the average travel time between plots, and mi is the average 

measurement time for a plot of size Qi. Gambill et al. (1985) demonstrated the 

procedure of determining an optimal plot size using fixed-area plot while Reich and 

Arvantis (1992) used the same procedure for variable plot sampling. For an infinitely 

large population one can calculate the sample size using the follow formula: 

where, CVt is the coefficient of variation associated with a plot of size Qt, t is the 

Student's t value and E is the allowable sampling error (%). 
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The coefficient of variation generally decreases with increasing plot size, thus 

requiring fewer samples to achieve the same percent sampling error. The relationship 

between the coefficient of variation and plot size can be expressed as follows: 

CV, = kQ? (59) 

where c and k are constants. Reich and Arvantis (1992) noted that the c parameter 

indicates the degree of randomness for a given forest stand characteristic. 

A c - coefficient of 0.5 suggested that the variable of interest is randomly distributed. If 

c is smaller than 0.5, then sampling variability will increase faster than a random 

population. This implies that the variable of interest is aggregated. Ac- coefficient 

greater than 0.5 implies that the variable of interest has a regular distribution. 

To express the relationship in how the coefficient of variation changes with a 

change in plot size, consider the follow ratio: where the subscripts i andy link the plot 

sizeg to its coefficient of variation CV. 

^=SL. (60) 
CVj Q) 

Rearranging this equation, one can develop a relationship describing how a change in plot 

size changes the coefficient of variation: 

CVt = CVj (61) 

Substituting this relationship into Eq. 58, and simplifying, the formula for sample size 

becomes 

n^coQ? (62) 
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t2CVf 
where co= —-—i-. 

E2Q]C 

Assuming a systematic sample with a square spacing, the distance between 

sample plots is given by 

d'--hr (63) 

where, W is a target tract size, in ha, and «, is the sample size. The average travel time 

between plots (sec) is given by 

v , = ^ (64) 

where S is the rate of travel (m/sec). Substituting Eq. 62 and Eq. 63 into this equation, it 

is possible to express the rate of travel as a ruction of plot size: 

v, = ™j™. (65) 

Gambill et al. (1985) showed that plot measurement time is nonlinearly related to a plot 

of size Q. as follows 

/n,=V?C«*/)* (66) 

Qe 
where B0, Bx andi?2 are regression coefficients, zi = —L-, and e is the base for natural 

logs (or equivalent to 2.71828). Finally substituting Eq. 62, Eq. 65 and Eq. 66 into Eq. 

57, the total time, or cost of a survey for a plot of size Qi can be expressed as follows: 

T = 100 J—Q: + coQ?B0z?< (Inz,)* . (67) 
V co 
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To model the relationship between plot measurement time and plot size (Eq. 66), 

a series of concentric plots measuring 5 m x 5 m, 10 m x 10 m, 20 m x 20 m, 25 m x 25 m 

and 50 m x 50 m (n = 4 for each plot size) were randomly allocated in the HKK dry 

evergreen forest. The time required to estimate basal area/ha, number of trees/ha, and 

total number of tree species were recorded for each plot size. The average rate of travel 

time was determined by establishing four different routes of 100 m long within the HKK 

dry evergreen forest and recording the time required to walk the 100 meters. Routes were 

subjectively selected to represent different conditions of accessibility (e.g., amount of 

ground cover and slope) in the dry evergreen forest types. To model the relationship 

between plot size and the coefficient of variation, 20 concentric plots of size 5 m x 5 m, 

10 m x 10 m, 20 m x 20 m, 25 m x 25 m and 50 m x 50 m were randomly located within 

the 50 ha plot. For each plot size the coefficient of variation associated with estimating 

basal area/ha, trees/ha and number of tree species was estimated. 

RESULTS 

Basal Area per Hectare 

Based on the census of the HKK FDP in 1994, the population mean basal area for 

woody trees > 10 cm in DBH was 29.31 m per ha. In general, all plot sizes irrespective of 

the sampling intensity provided unbiased estimates of basal area (Table 10, Figure 23a). 

However, the smallest plot size of 5 m x 5 m with a 0.5% sampling intensity (n = 100) 

showed the highest bias. The mean variance decreased with increasing sampling intensity 

for all plot sizes (Figure 23b). Variances ratios were not significantly different from one, 

except for the 50 m x 50 m plot with a 1% sampling intensity (n = 2) (Figure 23c). 
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Table 10. Influence of plot size and sampling intensity in estimate the mean and variance 

of basal area and tree density using Monte Carlo simulations. 

Plot Size 

(m x m) 

5 x 5 

10x10 

20x20 

25x25 

50x50 

5 x 5 

10x10 

20x20 

25x25 

50x50 

Estimator1 

Mean 

Variance 

Mean 

Variance 

Mean 

Variance 

Mean 

Variance 

Mean 

Variance 

Mean 

Variance 

Mean 

Variance 

Mean 

Variance 

Mean 

Variance 

Mean 

Variance 

0.5 

29.52 

78.13 

29.26 

69.52 

29.33 

62.43 

29.26 

70.15 

-

-

439.10 

1714.62 

438.35 

1845.20 

438.26 

2284.61 

438.15 

3098.22 

-

-

Sampling Intensity (%) 

1 

29.30 

36.79 

29.35 

36.03 

29.29 

33.93 

29.31 

35.80 

29.34 

44.70 

438.54 

851.47 

438.47 

916.76 

438.22 

1228.72 

438.65 

1535.09 

438.69 

3225.05 

2 5 

Basal Area (m2/ha) 

29.29 

18.35 

29.28 

17.57 

29.30 

17.49 

29.29 

17.62 

29.33 

22.02 

29.32 

7.05 

29.31 

6.88 

29.34 

6.76 

29.31 

6.84 

29.31 

8.57 

Density (trees/ha) 

438.23 

421.16 

438.29 

453.91 

438.28 

630.14 

438.17 

763.20 

438.32 

1603.76 

438.40 

163.32 

438.30 

175.81 

438.30 

242.88 

438.26 

295.74 

438.32 

628.90 

10 

29.32 

3.36 

29.31 

3.26 

29.32 

3.21 

29.30 

3.24 

29.30 

4.03 

438.26 

77.36 

438.26 

83.29 

438.26 

115.75 

438.16 

140.17 

438.36 

296.24 

15 

-

-

29.30 

2.05 

29.31 

2.01 

29.31 

2.04 

29.30 

2.55 

-

-

438.21 

52.46 

438.31 

72.78 

438.29 

88.14 

438.26 

186.61 

Estimated means and variance for the 5 m x 5 m plot was based on 20000 simulations, while 

all other estimates were based on 50000 simulations. 
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Number of Trees per Hectare 

The tree density determined from the census data was 438.28 trees/ha. Similar to 

basal area/ha, all plot sizes and sampling intensities provided unbiased estimates of tree 

density (Table 10 and Figure 24a). Similarly, the estimated variances decreased with 

increasing plot size for all sampling intensities (Figure 24b). The 20 m x 20 m plot size with a 

0.5% (n = 7) and 2% (n = 25) sampling intensity yielded biased estimate of the variance 

(Figure 24c). 

Number of Tree Species 

A total of 244 species were identified on the 50 ha plot. Candidate estimators 

were chosen in terms of their accuracy and the fact that they did not overestimate the true 

number of tree species. Only two estimators, CM3f and CPlf satisfied these conditions. 

Consequently, the results will focus on only these two estimators. Summary statistics for 

CM3f'and CPlfare given in Table 11. 

CM3f: The percent bias associated with CM3f for different plot sizes and 

sampling intensities are shown in Table 11 and Figure 25a. Plot sizes and sampling 

intensity that yielded biased estimates of the total number of tree species are marked by a 

circle. This statistical significance was based on a z-test. In general, small sample sizes 

underestimated the number of tree species irrespective of the plot size. Estimates 

associated with the 5 m x 5 m and 10 m x 10 m were unbiased at a sampling intensity of 

2% and 5% but were biased with sampling intensities of 10% and 15%. Estimates using 

plot sizes of 20 m x 20 m and 25 m x 25 m were unbiased at sampling intensities 

exceeding 10%. The 50 m x 50 m plot size underestimated the number of tree species for 

all sampling intensities. 
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Table 11. Influence of plot size and sampling intensity in estimating the mean and 

variance of the number of trees species using Monte Carlo simulations. 

Plot Size 

(m x m) 

5 x 5 

10x10 

20x20 

25x25 

50x50 

5 x 5 

10x10 

20x20 

25x25 

50x50 

Estimator1 

Mean 

Variance 

Mean 

Variance 

Mean 

Variance 

Mean 

Variance 

Mean 

Variance 

Mean 

Variance 

Mean 

Variance 

Mean 

Variance 

Mean 

Variance 

Mean 

Variance 

0.5 

113.81 

206.60 

93.25 

50.83 

72.59 

38.11 

65.92 

41.24 

-

-

138.33 

1684.02 

116.48 

618.12 

80.51 

50.64 

75.01 

55.55 

-

-

< 

1 

158.74 

336.85 

139.07 

212.44 

98.34 

40.06 

90.45 

40.31 

81.37 

62.64 

167.52 

1695.50 

164.27 

1548.83 

104.31 

65.16 

99.98 

51.93 

93.96 

83.55 

Sampling Intensity (%) 

2 5 

CMSf 

208.54 

490.34 

183.89 

322.70 

138.38 

46.14 

123.56 

40.09 

107.36 

53.83 

270.47 

667.87 

241.76 

441.35 

204.07 

220.31 

190.18 

114.97 

146.00 

42.35 

CPlf 

193.28 

1563.72 

190.62 

1516.13 

149.06 

275.71 

129.32 

62.23 

122.65 

71.73 

233.23 

1753.45 

232.15 

1702.10 

230.28 

1661.49 

223.29 

1163.83 

161.93 

53.73 

10 

310.13 

749.31 

279.76 

496.96 

239.19 

252.88 

226.56 

189.93 

181.25 

37.14 

261.95 

1776.26 

276.85 

2803.80 

256.01 

1530.53 

255.34 

1526.43 

194.38 

91.22 

15 

-

-

297.73 

498.73 

256.57 

253.74 

243.87 

188.04 

206.10 

36.34 

-

-

272.12 

1542.07 

268.04 

1404.73 

267.22 

1357.49 

233.48 

356.01 

Estimated means and variance for the 5 m x 5 m plot was based on 20000 simulations, while 

all other estimates were based on 50000 simulations. 
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Variance estimates generally increased with increasing plot sizes for all sampling 

intensities (Table 11, Figure 25b). However, the largest plot size (50 m x 50 m) revealed 

the opposite trend in that the variance decreased with increasing sampling intensity. 

Variance estimates were fairly consistent when the sampling intensity exceeded 5% for 

all plot sizes. An F- test for the ratio of variances (Figure 25c), indicated that all 

estimates were biased for all sample sizes and sampling intensities. However, the 

variance ratios were fairly stable for all plot sizes and sampling intensities. 

CPlf: The relationships between the bias of CP If and sampling intensity (Figure 

26a) showed patterns similar to the bias observed for CM3f. In general, small sample 

sizes underestimated the number of tree species irrespective of this plot size. Estimates 

of the total number of true species were consistent and unbiased when using plot sizes 

smaller than 50 m x 50 m and with sampling intensity greater than 5%. 

According to Figure 26b, there was more variability associated with estimating 

the number of tree species when using CPlf. Compared to CM3f (Table 11 and Figure 

26b), for small plot sizes of 5 m x 5 m, 10 m x 10 m, and 20 m x 20 m variance estimates 

were consistent with sampling intensity over 2%. The larger plot sizes displayed more 

variability than the smaller plot size for all sampling intensity. 

The F-test for the ratio of variances indicated that all estimated variances 

associated with CPlf were biased (Figure 26c). The small plot sizes of 5 m x 5 m and 10 m 

x 10 m clearly showed an overestimation of the true variance at the lower sampling 

intensities, while the larger plot sizes tended to overestimate the variance for all sampling 

intensities. Comparing the variance ratios obtained from CPlf and CM3f the study 
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found that the estimated variances for CM?/were more consistent than those of CPlf 

even though both were biased. 

Optimal Plot Size 

Coefficients of Variation and Plot Size 

The mean and coefficient of variation based on 20 concentric plots are 

summarized in Table 12. The relationship between the coefficient of variation and plot 

size are depicted in Figure 27. The fitted regression models explained at least 98% of the 

variability in the coefficient of variation as a function of plot size (Table 13). In addition, 

the c-coefficients were all less than 0.5 (Table 13) implying that the spatial pattern of 

these variables was aggregated (Reich and Arvantis 1992). 

Plot Measurement Time and Time Traveling 

Plot measurement time of tree DBH, number of trees and counting the number of 

tree species on each plot size are reported in Table 14. Obviously, identifying tree 

species consumed more time than measuring tree DBH or counting trees, particularly for 

the larger plot sizes. The parameter estimates for the logarithmic models to predict plot 

measurement times for the three variables are shown in Table 15. All three models had 

R values greater than 0.98 indicating a good fit between the measurement time and plot 

size. 

The average travel time was estimated at 0.733 m/sec based on the four routes 

randomly established in the HKK seasonal dry evergreen forest. The four sample routes 

covered slopes ranging between 6 and 14 degrees and represented high, moderate and 

low amounts of ground cover in this forest type. 
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Table 12. Estimated sample means and coefficients of variation (CV) obtained from a 

series of concentric plot sizes (n = 20) randomly located in the 50 ha permanent plot. 

Basal Area/ha No. of Trees/ha No. of Tree Species 

Plot Size Plot Area Mean CV Mean CV Mean CV 

(mxm) (mxm) (m2/ha) (%) (trees/ha) (%) (species) (%) 

5 x 5 

10x10 

20x20 

25x25 

50x50 

0.0025 

0.0100 

0.0400 

0.0625 

0.2500 

28.11 

23.46 

26.27 

25.49 

30.13 

168.69 

88.49 

52.78 

37.58 

25.79 

480 

440 

450 

449 

460 

88.03 

46.87 

32.19 

27.63 

17.88 

1.05 

3.75 

11.35 

15.10 

35.80 

84.48 

48.07 

28.05 

21.26 

15.79 
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Table 13. Estimates of the c-coefficients and associated R2 values for the logarithmic 

models describing the relationship between coefficient of variation and plot size. 

Variables 

Basal Area per ha 

No. of Trees per ha 

No. of Tree Species 

Sample 

20 

20 

20 

Size c-coefficient 

-0.415 

-0.338 

-0.376 

R2 

0.989 

0.990 

0.985 
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Table 14. Plot measurement time of three stand characteristics for different plot sizes 

established in the HKK seasonal dry evergreen forest. 

Plot Size 
(mx m) 

5 x 5 

10x10 

20x20 

25x25 

50x50 

Plot Area 
(ha) 

0.0025 

0.01 

0.04 

0.0625 

0.25 

Sample 
Size 

4 

4 

4 

4 

4 

Counting 
Trees (sec) 

101 

179 

480 

594 

4331 

Counting 
Species (sec) 

123 

264 

819 

1124 

6454 

DBH 
Measurement (sec) 

111 

217 

635 

836 

5300 
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Table 15. Estimated regression coefficients and R2 values for the logarithmic models for 

estimating plot measuring time as a function of plot size. 

Variables 

Basal Area per ha 

No. of Trees per ha 

No. of Tree Species 

Sample 

5 

5 

5 

Size R2 

0.996 

0.984 

0.995 

Bo 

3.26 

3.09 

3.43 

B! 

1.48 

1.58 

1.41 

B2 

-1.80 

-2.14 

-1.52 
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Computing Optimal Plot Sizes 

Using the relationship developed in the previous section, Eq. 23 was solved to 

identify the optimal plot size that minimized the total time required to estimate basal 

area/ha, trees/ha or counting the number of tree species on the sample plots. The 

following sections describe how the optimal plot size changes for each of theses variables 

assuming different tract sizes, the desired percent sampling error and coefficient of 

variation. 

Optimal plot size for basal area per hectare 

Assume a preliminary sample using a 5 m x 5 m plot size had a coefficient of 

variation of 100% in a 12500 ha stand. If the rate of travel is 0.733 m/sec and the desired 

percent sampling is 15% at the 0.95 level of confidence, the equation expressing the total 

time of a survey to estimate basal area/ha is given by: 

Tt = 10419.25933a:041448 +3.867199e:0-82960z;-48138(lnz,.)-L79630. (24) 

Solving this equation iteratively for different plot sizes (Q i), it is found that n = 2 plots 

measuring 76 m x 76 m would minimize the total cost of the survey for estimating basal 

area with a 15% sampling error at the 0.95 level of confidence 

Table 16 and Figure 28 summarize how the optimal plot and associated sample 

size changes for different tract size (W), percent sampling errors (E) and initial coefficient 

of variations {CVj) for a 5 m x 5 m sample plot. 

For a given coefficient of variation for a 5 m x 5 m plot as the desired allowable 

error decreased the required sample size increased, thus requiring smaller plot sizes in 

order to minimize the total cost of the survey. Likewise as the variability associated with 
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Table 16. Optimal plot sizes and associated sample size for estimating basal area that 

minimize the total cost of the survey. 

Optimal Plot Size (m x m) 
Tract Size 

(ha) 

100 
100 
100 
100 
500 
500 
500 
500 
2500 
2500 

2500 

2500 

12500 

12500 

12500 

12500 

E1 (%) 
5 
10 
15 
20 
5 
10 
15 
20 
5 
10 
15 
20 
5 
10 
15 
20 

25 
24.8 

34.9 
43.3 

50.6 

37.0 

53.8 

67.2 

78.8 

57.2 

83.8 

104.9 

123.0 

89.2 

130.9 
163.7 

191.7 

50 
18.7 

24.8 
30.2 

34.9 

26.2 

37.0 

46.0 
53.8 

39.3 
57.2 

71.5 

83.8 

60.8 

89.2 

111.6 

130.9 

75 
16.5 

20.9 
24.8 

28.5 

21.8 

30.1 

37.0 
43.2 

31.8 
45.8 

57.2 

67.0 

48.7 

71.2 
89.2 

104.6 

CV 2 ( ' 

100 
15.4 

18.7 
21.9 

24.8 

19.5 
26.2 

31.9 

37.0 

27.6 

39.3 
48.9 

57.2 

41.7 

60.8 
76.0 

89.2 

% ) 
125 
14.7 

17.4 
20.0 

22.5 

18.0 

23.6 

28.6 
33.0 

24.8 

34.9 

43.3 

50.6 

37.0 

53.8 
67.2 

78.8 

150 
14.2 

16.5 
18.7 

20.9 

17.0 

21.8 

26.2 

30.1 

22.9 

31.8 

39.3 

45.8 

33.7 

48.7 

60.8 

71.2 

175 
13.9 

15.8 
17.8 

19.6 

16.3 

20.5 

24.4 

27.9 

21.4 

29.5 

36.2 

42.2 

31.1 
44.8 
55.8 

65.4 

Optimal Sample Size (plots) 
Tract Size 

(ha) 

100 
100 
100 
100 
500 
500 
500 
500 
2500 

2500 
2500 

2500 
12500 
12500 
12500 

12500 

E (%) 
5 
10 
15 
20 
5 
10 
15 
20 
5 
10 
15 
20 
5 
10 
15 
20 

25 
7 
2 
2 
2 
4 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

50 
43 
7 
3 
2 
25 
4 
2 
2 
13 
2 
2 
2 
7 
2 
2 
2 

75 
120 
21 
7 
4 
75 
12 
4 
2 
41 
6 
2 
2 
20 
3 
2 
2 

CV (%) 
100 
239 
43 
15 
7 
161 
25 
8 
4 
91 
13 
4 
2 
46 
7 
2 
2 

125 
402 
76 
27 
13 
286 
46 
15 
7 
168 
24 
8 
4 
87 
12 
4 
2 

150 
611 
120 
43 
21 
453 
75 
25 
12 
277 
41 
13 
6 
146 
20 
7 
3 

175 
864 
174 
64 
31 
662 
114 
38 
17 
421 
63 
20 
9 
227 
31 
10 
5 

1 * 9 

E is an allowable sampling error. CV is a coefficient of variation. 

Note: The student's t value of 1.96 (a = 0.05) was used to determined an optimal plot size. 
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Figure 28. The relationship between optimal plot size and coefficient of variation for 

different tract sizes (a = 100 ha, b = 500 ha, c = 2500 ha and d = 12500 ha) and percent 
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the initial sample increased, the required number of sample required to achieve the 

desired allowable error increased thus requiring smaller sample plots to offset the 

increased cost associated with measuring more plots. As the size of the area being 

surveyed increased, the distance between samples increased thereby requiring larger 

sample plots to offset the increased travel time. 

Optimal plot sizes for tree density 

Assume a preliminary sample using a 5 m x 5 m plot size had a coefficient of 

variation of 100% in a 12500 ha stand. If the rate of travel is 0.733 m/sec and the desired 

percent sampling is 15% at the 0.95 level of confidence, the equation expressing the total 

time of a survey to estimate tree density is given by: 

Tt = 16477.632190:0-33830 +9.16018e;°'676602;-57548(lnz,.)-214059 

Solving this equation iteratively for different plot sizes (Q.), it is found that n = 8 plots 

measuring 50.4 m x 50.4 m would minimize the total cost of the survey for estimating 

tree density with a 15% sampling error at the 0.95 level of confidence 

Table 17 and Figure 29 summarize how the optimal plot and associated sample 

size changes for different tract size (W), percent sampling errors (E) and initial coefficient 

of variations (CVj) for a 5 m x 5 m sample plot. 

For a given coefficient of variation for a 5 m x 5 m plot as the desired allowable 

error decreased the required sample size increased, thus requiring smaller plot sizes in 

order to minimize the total cost of the survey. Likewise as the variability associated with 

the initial sample increased, the required number of sample required to achieve the 

desired allowable error increased thus requiring smaller sample plots to offset the 
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Table 17. Optimal plot sizes and associated sample size for estimating tree density that 

minimize the total cost of the survey. 

Optimal Plot Size (m x m) 
Tract Size 

(ha) 

100 
100 
100 
100 
500 
500 
500 
500 
2500 

2500 

2500 

2500 
12500 

12500 
12500 

12500 

E1 (%) 
5 
10 
15 
20 
5 
10 
15 
20 
5 
10 
15 
20 
5 
10 
15 
20 

25 
18.0 

24.6 

30.0 

34.7 

26.0 
36.7 

45.0 
52.1 

38.8 

55.1 

67.6 
78.1 

58.3 

82.6 
101.2 

116.7 

50 
14.0 

18.0 

21.5 

24.6 

18.8 

26.0 

31.7 
36.7 
27.4 

38.8 

47.6 
55.1 

41.0 

58.3 

71.5 

82.6 

75 
12.6 

15.4 

18.0 

20.4 

16.0 
21.4 

26.0 
29.9 

22.6 

31.6 

38.8 

44.9 

33.5 

47.5 
58.3 

67.4 

CV2 (%) 
100 
11.9 
14.0 

16.1 

18.0 

14.5 

18.8 

22.6 
26.0 

19.8 
27.4 

33.6 

38.8 

29.0 

41.0 
50.4 

58.3 

125 
11.5 

13.2 

14.8 

16.5 

13.6 
17.2 

20.4 
23.3 

18.0 

24.6 

30.0 

34.7 

26.0 

36.7 
45.0 

52.1 

150 
11.2 
12.6 

14.0 

15.4 

13.0 

16.0 

18.8 
21.4 

16.7 

22.6 

27.4 

31.6 
23.8 

33.5 
41.0 

47.5 

175 
11.0 
12.2 

13.4 

14.6 
12.5 

15.2 

17.7 
20.0 

15.8 

21.0 

25.4 

29.3 
22.1 

31.0 
38.0 

43.9 

Optimal Sample Size (plots) 
Tract Size 

(ha) 

100 
100 
100 
100 
500 
500 
500 
500 
2500 

2500 
2500 

2500 

12500 
12500 
12500 

12500 

E (%) 
5 
10 
15 
20 
5 
10 
15 
20 
5 
10 
15 
20 
5 
10 
15 
20 

25 
18 
3 
2 
2 
11 
2 
2 
2 
7 
2 
2 
2 
4 
2 
2 
2 

50 
96 
18 
6 
3 
64 
11 
4 
2 
39 
7 
3 
2 
23 
4 
2 
2 

75 
248 
48 
18 
9 
179 
31 
11 
5 
113 
18 
7 
3 
67 
11 
4 
2 

CV (%) 
100 
475 
96 
36 
18 
365 
64 
23 
11 
239 
39 
13 
7 
143 
23 
8 
4 

125 
775 
162 
62 
30 
623 
114 
40 
19 
426 
70 
24 
11 
259 
41 
14 
7 

150 
1158 
248 
96 
48 
953 
179 
64 
31 
676 
113 
39 
18 
419 
67 
23 
11 

175 
1611 
352 
138 
70 
1364 

263 
95 
46 
994 
169 
58 
27 
630 
100 
34 
16 

1 0 

E is an allowable sampling error. CV is a coefficient of variation. 

Note: The student's t value of 1.96 (a = 0.05) was used to determined an optimal plot size. 
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Figure 29. The relationship between optimal plot size and coefficient of variation for 

different tract sizes (a = 100 ha, b = 500 ha, c = 2500 ha and d = 12500 ha) and percent 

sampling errors to estimate tree density. 
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increased cost associated with measuring more plots. As the size of the area being 

surveyed increased, the distance between samples increased thereby required larger 

sample plots to offset the increased travel time. 

Optimal plot sizes of total tree species 

Assume a preliminary sample using a 5 m x 5 m plot size had a coefficient of 

variation of 100% in a 12500 ha stand. If the rate of travel is 0.733 m/sec and the desired 

percent sampling is 15% at the 0.95 level of confidence, the equation expressing the total 

time of a survey to estimate the total number of tree species is given by: 

Tt = 13153.98794g:0-37590 + 6.477655g:a7518^'40524(lnzr.)-
L51607 

Solving this equation iteratively for different plot sizes (Qt), it is found that n = 5 plots 

measuring 53 m x 53 m would minimize the total cost of the survey for estimating the 

total number of tree species with a 15% sampling error at the 0.95 level of confidence 

Table 18 and Figure 30 summarize how the optimal plot and associated sample 

size changes for different tract size (W), percent sampling errors (E) and initial coefficient 

of variations (CVj) for a 5 m x 5 m sample plot. 

For a given coefficient of variation for a 5 m x 5 m plot as the desired allowable 

error decreased the required sample size increased, thus requiring smaller plot sizes in 

order to minimize the total cost of the survey. Likewise as the variability associated with 

the initial sample increased, the required number of sample required to achieve the 

desired allowable error increased thus requiring smaller sample plots to offset the 

increased cost associated with measuring more plots. As the size of the area being 

surveyed increased, the distance between samples increased thereby required larger 
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Table 18. Optimal plot sizes and associated sample size for estimating the total number of 

tree species that minimize the total cost of the survey. 

Optimal Plot Size (m x m) 
Tract Size 

(ha) 

100 
100 
100 
100 
500 
500 
500 
500 
2500 

2500 
2500 

2500 

12500 

12500 

12500 

12500 

E1 (%) 
5 
10 
15 
20 
5 
10 
15 
20 
5 
10 
15 
20 
5 
10 
15 
20 

25 
17.3 

24.1 

29.9 

35.0 

25.6 

37.3 

46.8 
55.0 
39.6 

58.6 
73.8 
86.8 

62.4 

92.5 

116.4 

136.9 

50 
13.5 

17.3 

20.9 

24.1 

18.2 

25.6 

31.8 
37.3 
27.1 

39.6 
49.8 
58.6 

42.2 

62.4 

78.6 

92.5 

75 
12.2 

14.8 

17.3 

19.7 

15.4 

20.8 

25.6 
29.8 
22.0 

31.7 
39.6 
46.6 

33.7 

49.6 

62.4 

73.5 

CV2 (%) 
100 
11.5 
13.5 

15.4 

17.3 

13.9 

18.2 

22.1 
25.6 
19.2 

27.1 
33.8 

39.6 

28.8 
42.2 

53.0 

62.4 

125 
11.1 

12.7 

14.2 

15.8 

13.0 

16.6 

19.8 
22.8 
17.3 

24.1 
29.9 

35.0 

25.6 

37.3 

46.8 

55.0 

150 
10.9 

12.2 

13.5 

14.8 

12.4 

15.4 

18.2 
20.8 
16.1 

22.0 
27.1 

31.7 

23.3 

33.7 

42.2 

49.6 

175 
10.7 

11.8 

12.9 

14.0 

12.0 

14.6 

17.0 
19.3 
15.2 

20.4 

25.0 
29.1 

21.5 

31.0 

38.7 

45.5 

Optimal Sample Size (plots) 
Tract Size 

(ha) 

100 
100 
100 
100 
500 
500 
500 
500 
2500 

2500 

2500 
2500 

12500 

12500 
12500 

12500 

E (%) 
5 
10 
15 
20 
5 
10 
15 
20 
5 
10 
15 
20 
5 
10 
15 
20 

25 
15 
3 
2 
2 
9 
2 
2 
2 
5 
2 
2 
2 
3 
2 
2 
2 

50 
87 
15 
5 
3 
56 
9 
3 
2 
31 
5 
2 
2 
16 
3 
2 
2 

75 
228 
43 
15 
7 
160 
26 
9 
4 
94 
14 
5 
2 
50 
7 
3 
2 

CV (%) 
100 
440 
87 
32 
15 
330 
56 
19 
9 
204 
31 
10 
5 
111 
16 
5 
3 

125 
721 
148 
56 
27 
569 
100 
34 
16 
371 
57 
19 
9 
207 
30 
10 
5 

150 
1,077 

228 
87 
43 
878 
160 
56 
26 
598 
94 
31 
14 
343 
50 
16 
7 

175 
1,504 

324 
126 
63 

1,256 

236 
83 
39 
888 
143 
47 
21 
524 
76 
25 
11 

lE is an allowable sampling error. 2CV is a coefficient of variation. 

Note: The student's t value of 1.96 (a = 0.05) was used to determined an optimal plot size. 
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Figure 30. The relationship between optimal plot size and coefficient of variation for 

different tract sizes (a = 100 ha, b = 500 ha, c = 2500 ha and d = 12500 ha) and percent 

sampling errors to estimate the total number of tree species. 
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sample plots to offset the increased travel time. 

DISCUSSION 

A simulation study was carried out using a 50 ha permanent plot located in the 

Huai Kha Kheang Wildlife Sanctuary in western Thailand. While it may have been 

desirable to replicate this study using additional permanent plots, this plot is the only one 

available in Thailand representing the forest structure and species compositions of 

seasonal dry evergreen forests in Thailand. This limitation should not detract from the 

results presented in this study. 

The results of this study confirmed that estimated means and sample variances for 

basal area/ha and trees/ha were unbiased for all plot sizes and sampling intensities 

evaluated in this study. For estimating the number of tree species, the nonparametric 

estimators CM?/and CPZ/provided unbiased estimates when using small plot sizes with 

large sample sizes. For all plot sizes and sampling intensities, both estimators provided 

biased estimates of the sample variance. However, CMS/yielded more consistent 

variance estimates across all plot sizes and sampling intensities. In general, variance 

estimates for all three variables were consistent when the sampling intensity exceeds 2%. 

The variance estimates associated with estimating the number of tree species agreed with 

the study by Kenkel and Podani (1991) in Central Canada. The authors found that the 

efficiency in estimating the variance can be improved by using larger plot sizes. For 

predicting the number of tree species, the results of this study suggest that using large 

plot sizes tends to underestimate the total number of tree species and provide less 

efficient estimates of the variance for both CM?/and CPlf. 
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In practice, the design of a forest survey is limited by the cost which influences 

the number of sample plots that can be established of a given size. The spatial pattern of 

the variable being measured directly affects the variability in the population. Thus, in 

order to design the most cost efficient survey it is important to select an optimal plot size 

that will yield the most cost efficient estimate at minimal cost. However, in selecting an 

optimal plot size, one must take consideration not only the time required to measure the 

plot but also the travel time. The results of this study indicated an inverse relationship 

between plot size and sample size. For example, if it were required to use a larger sample 

size in order to achieve specified allowable error, one would be required to use a larger 

number of smaller plots to compensate for the increased cost associated with measuring 

more plots. Similar trends were observed between plot size and sample size as the 

variability in the population changed as well as the size of the population being surveyed. 

Based on the results of this study, plot size and sampling intensity did not 

influence the reliability of the statistical estimates for basal area and tree density. As a 

result, the suggested optimal plot sizes developed in this study can be used with 

confidence for estimating tree basal area and tree densities. To estimate the total number 

of tree species in a population, a small plot size with a large sample size improved the 

efficiency of the estimates. This is opposite of the results reported by Archaux et al. 

(2007). The authors suggested that for estimating the number of tree species larger plot 

sizes are more reliable than smaller one. This is particular true only when counting the 

number of species on given sample plot. However, the nonparametric estimators are 

efficient when using a small plot size which accounts for more variation in the abundance 

of tree species found in the population. 
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CONCLUSION 

Information from the permanent 50 ha plot in seasonal dry evergreen forest in 

Thailand provides a unique opportunity for an in-depth study of how plot size and 

sampling intensity influence ones ability to efficiently estimate forest stand parameters. 

The results of a Monte Carlo simulation study confirm that estimates of basal area and 

tree density were unbiased for any plot size and sampling intensity. In addition, selected 

nonparametric estimators of the number of tree species provided good estimate for small 

plot sizes and large sample sizes. Variance estimates were generally biased for all plot 

sizes and sampling intensities. 

To conduct forest inventories in the future, an optimal plot size for estimating tree 

basal area, tree density, and species abundance can be determined from the equations 

developed in this study. The equations take into consideration the variability associated 

with the characteristics of interest, while minimizing the total cost of survey which 

normally depends on the sample size, plot measurement time and travel time. To utilize 

these equations, preliminary data associated with using a 5 m x 5 m plot are required to 

prime the equation. The suggested optimal plot sizes are provided in this study as a look­

up table. 

There are many subtypes of this forest type in Thailand which vary by regions, 

climate, parent material and landform. While, the results of this study area only 

applicable to seasonal dry evergreen forests in the west central part of Thailand, 

however, the results of this study could potentially be used as a guideline in designing 

forest surveys in other parts of the country. 
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