DISSERTATION

OPTIMAL SAMPLING AND MODELING STRATEGIES FOR QUANTIFYING

NATURAL RESOURCES OVER LARGE GEOGRAPHICAL REGIONS

Submitted by
Nantachai Pongpattananurak

Department of Forest, Rangeland, and Watershed Stewardship

In partial fulfillment of the requirements
For the Degree of Doctor of Philosophy
Colorado State University
Fort Collins, Colorado

Summer 2008



UMI Number: 3332754

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 3332754
Copyright 2008 by ProQuest LLC.
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC

789 E. Eisenhower Parkway
PO Box 1346

Ann Arbor, Ml 48106-1346



COLORADO STATE UNIVERSITY

May 14, 2008

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED
UNDER OUR SUPERVISION BY NANTACHAI PONGPATTANANURAK
ENTITLED “OPTIMAL SAMPLING AND MODELING STRATEGIES FOR
QUANTIFYING NATURAL RESOURCES OVER LARGE GEOGRAPHICAL
REGIONS” BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY.

mittee on Graduate Work

/

Celedonio Aguirre-Bravo

Mohammed A. Kalkhan

o=

i Rajiv Khosla

e

Robin M. Reich, Adviser

Michael J. MF fredo, Interim Department Head

i



ABSTRACT OF DISSERTATION

OPTIMAL SAMPLING AND MODELING STRATEGIES FOR QUANTIFYING

NATURAL RESOURCES OVER LARGE GEOGRAPHICAL REGIONS

This study addresses three important issues related to designing an inventory
and monitoring program of natural resources in the State of Jalisco, Mexico; 1)
selecting an appropriate modeling approach to describe the spatial variability of
selected variables of interest; 2) selecting an appropriate sampling design; and 3)
selecting an appropriate plot size and sample size.

Chapter 1 evaluates a new approach of modeling the spatial distribution of soil
attributes over large geographical regions. A combination of three-stage least squares
(3SLS) and multivariate regression trees (MRT) was used to model the spatial
variability in soil texture. In 2006, 1427 soil samples were collected as part of a
state-wide inventory and monitoring program (IMRENAT) implemented in the State
of Jalisco, Mexico, located in the west central part of Mexico and covers an area
approximately 78618 km?. A two-way nested stratified design was used to allocate
samples throughout the state based on the spectral variability of land cover and
climatic conditions. Soil samples were collected from five subplots on a 30 m x 30 m
primary sampling unit to form a composite surface soil sample (0 — 10 cm depth).

The final set of models described 61% of the observed variability in soil pH, 62% of
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the variability in sand and 56% for clay. Comparison with other interpolation
techniques such as ordinary kriging, suggest that the approach used in this study is far
superior in terms of the accuracy and precision.

Chapter 2 evaluates three sampling designs (i.e., simple random sampling,
systematic sampling and two-way nested stratified design (IMRENAT)) for modeling
the spatial variability in forest tree biomass in the State of Jalisco, Mexico. Normally
distributed random errors were added to an existing spatial model of forest tree
biomass and used as “truth” in this study. Monte Carlo simulations were used to
implement the three sampling designs using samples of 500 and 1100 30 m x 30 m
primary sampling units. Statisticaﬂy, the two-way-nested stratified design
outperformed the simple random and systematic sampling design. There was no
significant difference between the simple random and systematic designs. The
statistical performance of the two-way nested stratified design increased with
increasing sample size.

Chapter 3 evaluates the statistical properties of plot size and sample intensities
in estimating forest stand characteristics (i.e., tree basal area, tree density and total
number of tree species) in seasonal dry evergreen forests in Huai Kha Khaeng
Wildlife Sanctuary, Thailand. Monte Carlo simulations were used to evaluate plot
sizes(Smx5m, 10mx 10m,20m x 20 m, 25 m x 25 m and 50 m x 50 m) and
sample intensities (0.5%, 1%, 2%, 5%, 10%, and 15%) on a 50 ha mapped dataset.
All plot sizes and sampling intensities provided unbiased estimates of the population

mean and variance for tree basal area and tree density. All plot sizes and sampling
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intensities were biased with respect to estimating the total number of tree species on

the 50 ha plot.

Nantachai Pongpattananurak
Department of Forest, Rangeland,
and Watershed Stewardship
Colorado State University

Fort Collins, CO 80523

Summer 2008
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CHAPTER 1: MODELING THE SPATIAL DISTRIBUTION OF SOIL
ATTRIBUTES AT A REGIONAL LEVEL, A CASE STUDY

IN THE STATE OF JALISCO

ABSTRACT

Information on the spatial variability of soil attributes, such as soil texture and
pH, play a crucial role in the measurement of forest ecosystems and agricultural lands.
Selecting an appropriate technique to spatially interpolate soils data is not straightforward
especially when dealing with large geographical regions. In this study, a new approach
using three-stage least squares (3SLS) and multivariate regression trees (MRT) was
illustrated to model soil texture fractions. Additionally, the comparisons of modeling
small scale variability based on 1) a stratified tree-based approach using regression trees
(RT) and multivariate regression trees (MRT) and 2) a geostatistical approach using
ordinary kriging (OK) are compared and evaluated. The soils data used in this study
were obtained from a state-wide inventory implemented in the State of Jalisco, Mexico
conducted in 2006 and included 1427 observations on soil texture and pH. The decisions
to use three stage least squares and multivariate regressing trees were to ensure the
prediction of soil texture fractions summed to 100 percent. Additionally, 3SLS allowed
the use of highly correlated dependent variables as explanatory variables in some of the
regression models, which violates the underlining assumption of ordinary least squares.
The 3SLS models accounted for 30%, 43% and 39% of the variability observed in sand,

clay and pH, respectively. The RT models explained an addition 31%, 19% and 6% of



the observed variability in the pH, sand and clay models, respectively. With respect to
the 3SLS + RT models, the total observed variability explained for the soil pH, sand and
clay models were 61%, 62% and 45%, respectively. The MRT models accounted for
19% and 17% of the observed variability in sand and clay, respectively while the final
models (3SLS + MRT) accounted for 62% of the variability in sand and 56% for clay.
Meanwhile, ordinary kriging explained only 9% and 17% of the observed variability in
sand and clay, respectively. The results also suggest that only the stratified tree-based
approach provided unbiased variance estimates for the mean response and new
observations. The 3SLS + MRT model satisfied the constraint that the estimated values
of the sum of sand, clay and silt summed to 100%, while 3SLS + RT had sums ranging
from 82.19% to 121.60%. The stratified tree-based approach provided a more reliable

model of soil attributes than ordinary kriging.

INTRODUCTION

Soil texture varies significantly within and across land cover types. In agricultural
soils, for example, assessment of the spatial variability in soil texture is central to support
a variety of management decision processes. Soil physical properties such as soil texture
have a direct effect on water-holding capacity, cation-exchange capacity, crop yield, site
productivity, and nitrogen loss, as well as other soil processes and conditions. Numerous
statistical techniques have been advocated to describe and interpolate soil properties at
the field level (McBratney et al. 2003, Scull et al. 2003).

Historically, modeling of soil attributes has relied primarily on ordinary least

squares (1.e., multiple linear regressions) to explain the variability of soil attributes



(Troeh 1964, Walker et al. 1968, Moore et al. 1993, Skidmore et al. 1997). Multivariate
techniques have also been used, particularly when dealing with a number of redundant
independent variables, e.g., multispectral satellite imagery (McBratney et al. 2003) and/or
topographic factors. Discriminant analysis has also been considered as a useful tool for
the purposes of predicting soil attributes (Bell et al. 1994, Palvik and Hole 1997, Dobos
et al. 2001). Spatial interpolation techniques have also been used to describe the spatial
dependency in soil attributes. For example, Odeh et al. (1994, 1995), Knotters et al.
(1995), De Gruijter et al. (1997) and Voltz et al. (1997) studied soil depth, and other soil
properties using geostatistical techniques such as kriging and co-kriging. Additionally,
universal kriging which, combines low order degree polynomials of geographical
coordinates (i.e., trend surface analysis) and ordinary kriging have been evaluated for
predicting a wide range of soil properties (Odeh et al. 1994, Meul and Van Meivernne
2003). Gotway-Crawford and Hergert (1997) and Meul and Meirvenne (2003) provide
comprehensive examples of how to handle spatial soil attribute data without the
assumption of stationarity. Generalized linear models have also been used to model and
map soil attributes (McKenzie and Austin 1993, Gessler et al. 1995). More recently,
classification and regression trees (CART) developed by Brieman et al. (1984) have been
used by soil scientists as a predictive model to evaluate either continuous (Ryan et al.
2000, Henderson et al. 2005) or categorical (Bui and Moran 2001) soil attributes.

Most of the previous studies have concentrated on modeling soil attributes over
small areas with a fine spatial resolution (Knotters et al. 1995, Odeh et al. 1994, Ryan et
al. 2000). On the other hand, when modeling soil attributes over large geographical

regions, soil scientists have focused primary on a coarse spatial resolution (Bui and



Moran 2001, Dobos et al. 2001, Henderson et al. 2005). Spatial models of soil attributes
with a fine scale resolution have rarely been done over large geographical regions.

One approach of modeling spatial data is to decompose the data into two
components, the large-scale and the small-scale variability. The large-scale variability in
soil attribute may be influenced by such factors as elevation, slope, aspect, precipitation,
and so on, while the small-scale variability is potentially influenced by differences in soil
permeability, nutrient availability and so forth. The large-scale variability is generally
modeled using multiple regression models, while the small-scale variability is modeled
using geostatistical techniques such as kriging. Unfortunately, when trying to model soil
attributes over large geographical regions, the data may not be spatially correlated, or
weakly correlated making it almost impossible to model the small-scale variability in a
set of data using geostatistical methods.

While the residuals from the regression models may not display any spatial
dependency, they still contain important information useful in describing the spatial
variability in a set of data. Reich and Aguirrie-Bravo (2008) introduced the concept of a
tree-based stratified design capable of modeling the small-scale variability in a set of
spatially independent data.

Another problem that arises when modeling soil attributes are implied constraints.
For example, soil texture is probably one of the most common attributes modeled by soil
scientists. Modeling efforts have concentrated on dealing with only one or two
components of soil texture (e.g., sand, clay, or both sand and clay). If the third

component is desired it is often obtained by subtraction. Recently, Van Meirvenne and



Van Cleemput (2006) employed compositional ordinary kriging to simultaneously model
soil texture while constraining the three fractions of soil texture to sum to 100%.

In this paper, a new approach is presented for modeling soil texture fraction over
large geographical regions based on a system of equations to ensure the three fractions of
soil texture sum to a 100%. The method of three-stage least square (3SLS) is used to
model the large-scale variability in soil texture (Zellner and Theil 1962). This approach
allows one to statistically constrain the model such that the estimates of sand, silt and
clay sum to 100%. In the case of modeling the small-scale variability, it is not clear what
type of regression trees should be used. Thus, the main objective of this study was to
evaluate the use of univariate and multivariate regression trees (De’ath 2002) in modeling
the small scale variability in soil texture using the tree-based stratified approach
advocated by Reich and Aguirrie-Bravo (2008). A secondary objective was to compare
the use of ordinary kriging in modeling the small-scale variability with the use of the
tree-based stratified approach. These methods are illustrated by modeling selected soil

attributes in the Mexican State of Jalisco.



METHODS

Study Area

The State of Jalisco, Mexico is located in the west central part of Mexico, and
covers an area of approximately 78618 km? (Figure 1). Four major ecological regions
provide the natural resources and environmental conditions that make this region one of
the most prosperous in Mexico. The eco-regions consist of: 1) the transversal neo-
volcanic system, 2) the southern Sierra Madre, 3) the Southern and Western Pacific
Coastal Plain and Hills and Canyons and 4) the Mexican High Plateau. Linked to these
ecological regions are several important hydrological regions that drain to the Pacific
Ocean (Lerma-Santiago, Huicicila, Ameca, Costa de Jalisco, Armeria-Coahuayana,

Balsas, and El Salado). Elevations range from sea level to 4236 m.

Soil Data

In 2006, 1427 soil samples (Figure 1) were collected as part of a state-wide
inventory and monitoring program (IMRENAT) implemented in the State of Jalisco,
Mexico. A two-way nested stratified sampling design (Reich et al 2008) was used to
allocate samples throughout the state based on the spectral variability of land cover and
climatic conditions. Soil samples were collected from five subplots on a 30 m x 30 m
primary sampling unit to form a composite surface soil sample (0— 10 cm depth). Soil
samples were analyzed to obtain some basic soil physical and chemical properties,
including soil texture, soil depth and pH. Soil pH was estimated using a chemical

measure of soil buffering, or the SMP buffer method (McLean 1982) while percent of
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Figure 1. Locations of 1427 sample plots in the State of Jalisco, Mexico.
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sand, clay and silt were determined using Bouyoucos hydrometer method (Bouyoucos
1936, Gee and Bauder 1979, Jones 2002). The soil textural classification and frequency

of the observed soil data is given in Table 1.

GIS and Landsat TM Data

Ten cloud-free Landsat 7 ETM+ images obtained between January and March,
2004 were combined to create a seamless image using the Mosaic tool (ERDAS Inc.
1999). The thermal band 6L and 6H with a 57 m resolution and the panchromatic band 8
with a 14.25 m resolution were resampled to a 30 m resolution. A digital elevation model
(DEM) with a 90 m spatial resolution, obtained from the U.S. Geological Survey (USGS)
(Gesch et al. 2002, Rabus et al. 2003) was resampled to a 30 m spatial resolution using
the Resample function with the Bilinear option (ARC/INFO, ESRI 1995) to correspond
to the spatial resolution of the safellite imagery. The primary topographic attributes of
elevation, aspect, and slope were derived from the DEM using Spatial Arnalyst tool
(ARCGIS 9.1, ESRI 2005). In addition, a GRID layer of 12 climate zones (Reich et al.
2008) with a 30 m spatial resolution was incorporated as an additional covariate. All GIS

analyses was included in ArcGIS 9.1 (ESRI 2005).

Modeling Soil Texture and pH
Large-Scale Variability

In the first step of the modeling process, ordinary least square (OLS) was used to
identify the functional form of the regression equations for describing the large-scale

variability in clay, sand, and pH. The step4IC function, available in the MASS Package



Table 1. Soil textural classification of the soil samples (n = 1427) collected in the State

of Jalisco Mexico.

Soil Textural Class Number of Samples Percent
Sand 16 1.12
Loamy Sand 123 8.62
Sandy Loam 767 53.75
Loam 147 10.30
Silt Loam 2 0.14
Sandy Clay Loam 252 17.66
Clay Loam 69 4.84
Silty Clay Loam 1 0.07
Sandy Clay 9 0.63
Clay 41 2.87
Total 1427 100




(Ripely 2008) in R (R Development Core Team 2006), was used to perform a backward
stepwise selection procedure identifying significant predictors of each variable based on
Akaike Information Criterion (AIC) (Akaike 1969). This process identified the following
functional form of the models for sand, silt, clay and pH:

Sand = f(elev + slp + asp + czone + bands)

Clay = f(sand + elev + slp + asp + czone + bands)
Silt = f(100 - (sand + clay))

pH = f(clay + elev + slp + asp + czone + bands)

where, elev = elevation, slp = slope, asp = aspect, czone = climatic zone, bands =
Landsat-7 ETM+ bands. An important characteristic of this system of equation is the
presence of dependent variables on the rivght hand side of three of the four equations.
This clearly violates the underlying assumption of the OLS model. To address this issue,
the system of equations were fit using three-stage least square (3SLS).

The 3SLS approach combines two-stage least squares (2SLS) with seemingly
unrelated regression (SUR). Two-stage least square is a method of using dependent
variables as independent variablés on the right-hand side of a regression model, while
SUR is a technique for fitting a system of equations with cross-equation parameter
restrictions and correlated error terms (Zellner and Theil 1962). The soil texture model
contains three equations, which are seemingly dependent on one another. However, if the
equations are using the same covariates, the errors obtained from OLS may be correlated
across equations. Thus, rather than estimaﬁng the system equations individually by least

squares, the method of SUR is applied.
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To describe the 3SLS approach, let y, represent a vector of sample values of the

response variable Y. The system of equations can be described by

» zZ, 0 0 | 4, 7,
A B i g
J;j 0 0 - Z;]6;] |n,
or in matrix notation
y=Z§+Q

where Z , is a design matrix of predictive variables for the ;7™ linear model, including
jointly dependent variables among the response variables (e.g. sand and clay), &, isa
vector of estimated coefficients associated with the j* linear model and 7 ; is the vector of

. . . . b 1-
independent residuals, or errors associate with the ;* linear model.

The estimated coefficients for 3SLS model (Zellner and Theil 1962, Greene 1990)

is given by:
8 215 -1 51 50t
Oygrg = [Z (= ®I)Z} Z'(z" ®Dy (2)
where
X(XX)'XZ, 0
Z= : X(XX)'XZ, : :
0 X(XX)'XZ,

X is a design matrix of all independent variables for sand, clay, silt and pH excluding

jointly dependent variables, Z ; is a matrix of predictive variables for the 7" linear model
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including jointly dependent variables, I is an identity matrix, ® = represents the Kronecker
product, and X is the variance-covariance matrix among response variables obtained from

~ 2SLS. Individual entries of the variance-covariance matrix are estimated as follows:

OA_ij _ 62 _Zigi,ZSLS),(yj “Zj5j2SLs) 3)
(ni v __1)(’71' —P; _1)

where, y, s the observed values of the i response, y,is the observed value of the j’h

response, 5})2 55 18 @ vector of the estimated parameters from 2SLS for the i* response,

A

0. is a vector of estimated parameters from 2SLS for the /” res onse, n, is the
/,28LS P J P ;

sample size of i response, n ; 18 the sample size of j’h response, p, is the number of
parameters estimated for the i response and p ; s the number of parameter estimated for

the j” response.
The asymptotic variances-covariance matrix for the estimated regression

coefficients is given by
A P A1
Var[53SLS]=[Z > ®1)Z}. (4)

The estimated variance an estimate 3, is given by

Var(9,) = MSE,(Z'Var($,1Z,) )
a b 0 0
1 [a b I ¢ d 00
a= and [ = , a®I =
c 0 ‘ 0 0 a b
00 ¢ d



where MSE is the mean square error associated with the j™ covariates obtained from Eq.

3, Var[é‘ ;] is the variance-covariance matrix of 3SLS coefficients associated with the j’h
response, and Z, 1s a design matrix of the 7" covariates including jointly dependent
variables for a given response j.

The estimated variance associated with the prediction of a new observation is
given by

Var(3) = MSE, (1 + S'Var[8, 15, ) (6)

where 7 is the predicted value of the new observation and S is a design matrix of
covariates including jointly dependent variables associated with the new observation.

Small-Scale Variability

Several studies (Odeh et al. 1995, Erxleben et al. 2002, Reich et al. 2008, and
Reich et al. 2008) have shown that the small-scale variability in a set of data can be
described by modeling the residuals obtained from a multiple linear regression model.
Several approaches have been suggested to account for the small-scale variability in a set
of data. For soil modeling, ordinary kriging (OK) is a well known technique to
interpolate soil variables when the sample data has a strong degree of spatial dependency.
However, Reich and Aguirrie-Bravo (2008) emphasized that data collected over large
geographical regions generally lack spatial dependency because of large separation
distances between sample points. Thus, geostatistical methods such as kriging may not
be appropriate for describing the small-scale spatial variability in such data. Instead, the
residuals obtained from modeling large-scale variability (i.e., a multiple linear regression

model) can be modeled using binary regression trees. Therefore, three statistical
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approaches including binary regression tree, multivariate regression tree and ordinary

kriging were evaluated in modeling the small-scale variability associated with the

residuals from the 3SLS model.
Tree-based approach

To describe the small-scale variability associated with the residuals obtained
from the 3SLS model, both binary regression trees (RT) and multivariate regression trees
(MRT) (De’ath 2002, 2007) were evaluated in this study. Binary regression trees is a
nonparametric and non-linear regression procedure in which the data is repeatedly and
successively split along a set of independent variables using a binary algorithm to
maximize variances among groups of the dependent variable (Breiman, et al. 1984,
Chamber and Hastie 1992, Venables and Ripley 1999, Crawley, 2002).

Reich and Aguirrie-Bravo (2008) suggested a new approach of modeling the

small-scale variability using a tree-based stratified design. Let y(sl.) represent a sample

value of the variable Y at spatial location s; The sample data include a set of covariates X
which are known for all locations in the population. Multiple regression is used to model
the large-scale spatial variability in the sample data as a linear function in p known

explanatory variables x;(s;)
,B0+Zx ),B +77 ) (7)

where B, j =0,... p are p+1 unknown regression coefficients and 77(s l.) is an error
process sometimes referred to as a random field, with £ [77(5‘,- )] = 0 and covariance
Clx,y)= Cov(n(x,. ) n(y ; )) The error term in Eq. 7 is unknown because the true model is

unknown. Once the model parameters have been estimated, the regression residuals are
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defined as 7(s,) = y(s,)— 5(s,), where $(s,) is the predicted value at spatial location s,
given the explanatory variables x, (s ; ) The error process can be expressed as

)= (s, )+ s, ®
with £ [,u(s,. )] ﬁ(si )] = 0. Using the set of auxiliary variables, X as a basis of stratification

assume

is,) = flxls, )+ 6(s,) ©)
with E[8(s, )| x(s,)]= 0, f(x(s,)) is a deterministic function, and &(s, ) is a zero-mean
random term (Cocchi et al. 2002). Combining Eq. 8 and Eq. 9

n(s,)= flxls,))+els,) (10)
with El(s, )| f(x(s, )= £(x(s,)), e(s,)= u(s, )+ 6(s,), and Ele(s, )| x(s,)]= 0 provided
that 4(s, )and 8(s, ) are conditionally independent (Cocchi et al. 2002, Benedtti et al.,
2005). The mean function f(x(s,)) is estimated by f using the recursive partitioning

method introduced by Brieman et al. (1984). Combining Eq. 7 and Eq. 10 the full model

describing the spatial variability in the sample data is given by
p
s, )= By + 2 xls ), + (s )+ £(s,)- (11)
j=1

To implement the tree-based stratified design, RT is applied to the residuals from
the 3SLS model. The algorithm for RT repeatedly partitions the residuals into strata to
minimize the variability within strata (Breiman et al 1984). The recursive procedure
determines a split starting from a single stratum containing all residuals, and ending once
the sample data are split into new strata which minimize the variability within strata.

Unlike RT, MRT simultaneously partitions the residuals from all the models in the 3SLS

15



model. This ensures that the residuals from the individual models will sum to zero using

the same tree-based algorithm.

Defining the tree structure

To control the partitioning of the regression trees (RT and MRT) several
parameter have to be defined. The parameter minsplit (or called minsize in the function
tree.control( ) in R) defines the number of observations (i.c., stratum size) at which the
last split is attempted. The default value, minsplit = 5 means that the recursive partition
keeps continuing to allocate observations into strata (i.e., terminal nodes) as long as there
are at least five observations at a given node. Changing the parameter minsplit directly
affects the maximum number of strata or terminal nodes and the path length of the tree
(called tree size). The maximum number of strata has an upper bound ~nobs/minsplit,
where nobs is the number of observations in the data set. The best optimal condition to
minimize the cost complexity (see more details in the model evaluation session) was
identified using different minsplit options (i.c., 5, 10 and 25). After obtaining the optimal
number of terminal nodes based on given value for minsplit, the function prune.rpart() is
used to prune the tree by changing the argument best to the optimal number of terminal

nodes or strata (i.e., strata size or tree size).

Ordinary kriging

Ordinary kriging is a common method used to interpolate spatially dependent data
(Isaaks and Srivastava 1989, Fortin and Dale 2005). The ability to interpolate a set of

data depends on the strength of the spatial dependency within the data. To evaluate the
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feasibility of using kriging to interpolate the residuals from the 3SLS models, sample
variaograms were constructed to describe how the variance changes with distance.

The sample variogram is defined by

1 N(h)

—y)? (12)
2N(h);(y’ ¥;)

y(h) =
where N(h) is the number of data pairs separated by distance /4, y, is the observed value

at location s; and y; is the observed value at location j. The sample variogram models

were fit to three theoretical variogram models: exponential, spherical, and Gaussian.
Akaike Information Criterion (AIC) (Akaike 1969) was used to identify the best fitting
variogram model. The spatial library for R created by Reich and Davis (2007a) was used
to perform this operation.

Ordinary kriging (Isaaks and Srivastava 1989, Webster and Oliver 2001) can be
used to estimate a value of interest at any location as a weighted combination of its

neighbors:

Jo =2 Az, (13)
i=1

where 7, is the estimated value at a new location s,, y, is the observed value of the i

neighbor and A, are the estimated weights, subject to the constraintz A, =1.

i=1

The weights A, are calculated using the relationship

A=K"C (14)
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i 4JC

A C(x,,x,) ... C(x,x,) 1 1 (xpxoﬂ
/12 - 1 C(xz,xo)
: C(xn’xl) “ae C(x,,,x,,) 1 M

A, { . ) 0 C(x,i,xo)

where (£ is a Lagrange multiplier, K is the covariance matrix among the sample data
points, C is the vector of covariances between the point being estimated and its neighbors. The

covariance were computed using the relationship C(k) = y(h)—c?, where & is the

sample variance of the sample data.

Variance Estimation

A common problem in using regression analysis to describe the variability in
spatial data is overdispersion, in which the observed variability exceeds the variability
predicted by the model. This leads to inaccurate estimates of standard errors and
coverage rates that are not equal to the 0.95 nominal rate. To ensure that the variance
estimates are consistent with the true errors, both RT and MRT were used to model the

variability in the residuals from the 3SLS model.

The rpart Package (Ripley 2007) and the mvpart Package (De’ath, 2007),
libraries in R, were utilized to perform univariate partitioning and multivariate
partitioning of the 3SLS residuals, respectively. Using the function rpart( ), the splitting
rule with the default method = “anova” is used to minimize the residual sum of squares
associated with a terminal nodes or stratum.

Reich and Aguirrie-Bravo (2008) showed that the variance of the estimated mean

response at a given location s;, for a set of explanatory variables, x(s, ) can be defined as
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var(y(s,)) = var(i(s, ) + varl§(s,)), (15)

where var(ﬁ(sl. )) represents the uncertainty in estimating the parameters of the 3SLS

model and Var(5 (s, )) reflects the uncertainty in estimating the error (7 ) of the 3SLS
model using RT or MRT. The variance var(#(s, ) was computed using Eq. 5.

The variance associated with an estimate at a new location, sg is given by

Var(y (s 0 )) = Var(ﬁ (s 0 )) + Var(z (s 0 )) + var (3 (s 0 )) ’ (16)
where the additional term, var(z(s, )) reflects the random variation at a new location, so.

The uncertainty in estimating the residual of the 3SLS, var(é' (s, )), based on RT or

MRT were determined by standard methods for a stratified random sample (Cochran,

1977):

1 My

é%k = 3ki 17)

and

O, =— (18)

where k denotes the stratum, & ., denotes the mean residual error for observations
assigned to the K™ stratum, ny is the number of observations assigned to the A" stratum,
and &2 is the within stratum variance for the k™ stratum. The use of the sample variance

as a measure of the uncertainty in estimating the error of the regression model is justified
by the fact that the mean square error is the best predictor of the variance given that the

sample data belong to the stratum.
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For ordinary kriging, an estimate of the prediction variance var(y(s,)) at a given

location s, (Isaaks and Srivastava 1989, Reich and Davis 2007b) is given by:

var(y(s,)) = var(ii(s;)) + G cox, (19)

where

Broxy=06"~C'K'C+p. (20)

Model Evaluation

A 10-fold cross validation (Efron and Tibshrani, 1993) was used to evaluate the
predictive performance of the fitted models of soil attributes using 3SLS + RT, 3SLS +
MRT and 3SLS + OK. The soils data were divided into 10 parts (K = 10), each of which
consisted of approximately 140 sample plots. The predictive models were recursively
fitted using nine parts (K-1) of the data as a training data set and the remaining data were
treated as an independent dataset for estimating prediction errors. Repeating this
procedure 10 times allowed each observation to be excluded from the model and
independently predicted by the fitted models. Following this procedure, a set of statistics
were calculated to evaluate the predictive performance of the models. Estimates of the
prediction errors obtaining from the K-fold cross validation (Kravchenko and Bullock
1999, Schloeder et al. 2001, Reich et al. 2004) were compared to asses the effectiveness
of three techniques for modeling the selected soil attributes. The prediction errors were
inferred from the predicted minus actual values.

In this study, AIC was used to select the covariates used in the regression models
of sand, clay and pH. The identified covariates were fixed while performing the 10-fold

cross validation. For the tree-based approach, the effectiveness of the models using
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different conditions of the function “minsplif” (i.e., to control the number of observations
before the last split), and the function “besf” (i.e., to control the number of terminal nodes)
for different soil attributes were evaluated and compared via a 10-fold cross validation. For
simplifications, minsplit is referred as minsize to avoid redundant terminology. Several
statistics were calculated to evaluate the predictive performance of the models.

The effectiveness of the fitted models was evaluated using a goodness-of-
prediction statistic (G-statistic) (Agterberg 1984, Kravchenka and Bullock 1999, Guisan
and Zimmermann 2000, Schloeder et al. 2001):

Xn:b}(si)—j}(si)]

G-statisic = || 2! ~ |- @2n
2lvts,)-565,)]

The G-statistic is a measure of the effectiveness of a prediction relative to that which
could have been derived using the sample mean. A G-statistic equal to one indicates
perfect prediction, a positive value indicates a more reliable model than if one had used
the sample mean, a negative value indicates a less reliable model than if one had used the

sample mean, and a value of zero indicates that the sample mean should be used to
estimate y(s, ).

The mean absolute error (MAE)

MAE =3 |5(s,) - 5(s.) 22)

and the root mean squared error (RMSE)

RMSE =\/%i[y(si)—ﬁ(si)]2 (23)
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were used to evaluate the accuracy of the predictions, where y(s;)is the observed value
at a sample location s,, y(s,) is the estimated value at a sample location s, obtained

from the 10-fold cross validation, and 7 is the total number of samples used in the 10-fold
cross validation.

To evaluate the ability of the three approaches in providing unbiased variance
estimates, the standardized mean squared error (SMSE) (Reich et al. 2004) was

calculated as follows:

_1 86s)
SMSE == 2 o) (24)

where &(s,) = (y(s,)— 7(s,)), is the true error and var(j(s,)) is the estimated variance

obtained using Eq. 15 or Eq. 16 for 3SLS plus tree-based stratified design and from Eq.
20 for 3SLS + OK. The SMSE has a Chi-square distribution with » degree of freedom.
A 1-a confidence interval for SMSE under the null hypothesis of equal variances can

be constructed using the Chi-square distribution as follows:

2 2
X«

"I < SMSE <2

n n

X
Pr

=l-a. (25)

When # is large, SMSE can be approximated by a standard normal distribution with a
mean of one and variance 2/n (SMSE ~ N(1, 2/n)). If the SMSE falls within the interval

1 + 1.96*(2/n)", this would indicate that the true errors and estimation errors are

consistent at the 0.95 level confidence (Hevesi et al 1992, Reich et al. 2004). Bonferroni
joint confidence intervals were also constructed to make inference among the SMSE’s

associated with the system of equations: 1+ #(1- & /2g)*(2/n)>, where g is the number of
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confidence intervals being compared, # is the Student’s t value, with a type I error equal
to .

Prediction coverage rates (CR) were computed assuming 95% confidence
interval. The coverage rate indicates the proportion of individual intervals containing the
true value. If the 95% prediction interval is unbiased, the coverage rate should not
deviate from the nominal 0.95 rate. The 95% prediction interval was calculated assuming

normality:
P(s,)£1.964/var(p(s, ). (26)

Coverage rates for the mean response were also computed assuming normality.

A decision rule (Reich and Aguirrie-Bravo 2008) to identify an optimal minsize
and strata sizes was used to ensure that the error in estimating the variance of the mean
response and the prediction variances were unbiased. The cost complexity criterion (CC)

served as a decision rule is selecting minsize and strata sizes and is defined as

MSEP

—n

CC = \(SMSEM —1)’ +(SMSEP-1)" +

(27)

where SMSEM is the standardized mean square error of the variance for the mean
response and SMSEP is the standardized mean square error for the prediction variance,
MSEP is the mean squared error of prediction obtained from the 10-fold cross-validation,
dfis the degrees of freedom of the 3SLS model and » is the number of terminal nodes or
strata sizes in the RT or MRT model and # is the number of neighbors used to estimate
values at a given location using ordinary kriging.

Once the optimal criteria (i.e., minsize and strata sizes) to obtain unbiased
estimates of the variances for RT and MRT were identified, subsets of the data were used

to fit the system of equations using 3SLS. In spite of the 2-way nested stratified
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sampling design (Reich et al. 2008) used to collect the data, the soil samples did not have
a uniform distribution with respect to the soil textural classes. The soil data was sub-
sampled to avoid overweighting the soil textural classes with the “sandy loam” and
“sandy clay loam” classes which included 767 and 252 observations, respectively (Table
1). Each subset of the data contained the data from all soil textural classes except for the
two dominant soil textural classes. To increase the efficiency of the regression models,
150 samples were randomly drawn from these two soil textural classes and added to each
subset of the data. As a result, each subset of data included 713 samples and used to
obtain parameter estimates for the 3SLS model. This process was repeated until the
regression coefficients converged for all soil attributes. These averaged coefficients
served as parameter estimates to generate the final surfaces describing the large-scale
variability in sand, silt, clay and soil pH.

For model evaluation, the average 3SLS coefficients were applied to only one
random subset of the data to generate a set of residuals. The 10-fold cross validation
procedure was used to evaluate the performance of the tree-based approach (RT and
MRT) using different conditions for the minimum stratum size (minsize) and number of
strata (i.e., best). The optimal minsize and tree size were selected to minimize the bias
associated with estimating the variance (SMSE) while minimizing the cost complexity
criterion (CC). The identified optimal minsize and tree size were applied to 100 random
subsets of the data (n = 713) to evaluate the variability among different random subsets of
the data. Subsets of the data were drawn using sampling without replacement with fixed

number of observations for each soil classes as mention previously. To make the
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statistics comparable, all soil attributes used the same subset of the data by specifying a

random seed.

Soil Attribute Classification and Mapping

The best fitting 3SLS + MRT, 3SLS + RT and 3SLS + OK models were used to
generate the final surfaces of selected soil attributes. The grid surfaces of the small-scale
variability of sand, silt, clay and soil pH were produced using the conditional statements
obtained from MRT and RT using the raster calculator in ArcGIS 9.1. The3 SLS
surfaces and the residual surfaces generating from RT, MRT and OK for the soil
attributes were combined to form the final surfaces of sand, silt, clay and pH as a GRID
layer in ArcGIS 9.1. Finally, the estimated surfaces of soil texture fractions were used to
classify each pixel in the State of Jalisco into one of 12 soil textural classes (Soil Survey
Division Staff 1993) and plotted on a soil triangle (Oom and Lemon 2005). The final
surface of soil pH obtained from 3SLS + RT was classified into four different classes
based on the degree of acidity and alkalinity (adapted from Jones 2002). Furthermore,
the variance surfaces associated with the predicted soil attributes were developed as

GRID layers.
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RESULTS

The large-scale variability of soil texture and pH were modeled as a system of
equations using 3SLS. Results of fitting the system of equations using 100 random
subsets of the data indicated that the model for sand had the best fit in that the model
accounted for 43% of the variability observed in the data, followed by clay (39%) and
then soil pH (30%) (Table 2).

The residuals from the 3SLS model were modeled using a stratified tree-based
approach. The influence of using different minsize and tree size on the fit statistics for the
pH, sand and clay models are provided in Figures 2 through 4. The optimal conditions of
minsize and tree size that minimized the cost complexity criteria for RT are given in Table
2. The sand model had an optimal minsize of 25 and tree size of 40, while the clay model
had a minsize of 10 and tree size of 5. In constraét, the sQil pH model had a minsize of 5
and tree size of 50. Applying the optimal minsize and tree size to the 100 random subsets
of the data, the RT models accounted for an addition 31% of the observed variability in soil
pH, 19% for the sand model and 6% for the clay model. The results also suggested that
standardized mean square errors (SMSEM and SMSEP) were not significantly different
from one (Table 2) indicating the variance estimates were consistent with the true errors.
The prediction coverage rates for all three models were not significantly different from the
nominal coverage rate of 0.95. The total observed variability explained by 3SLS + RT for
the soil pH, sand and clay models were 61%, 62% and 45%, respectively (Table 2).

For the MRT models, optimal values for minsize and tree size for the sand and clay
models are shown in Figures 5 and 6. The cost complexity criterion indicated that a

minsize of 25 and the tree size of 41 provided the best estimates of the variances for sand,
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Figure 2. Influence of the minimum number of observations at a given terminal node

120

(minsize = 5, 10 and 25) and tree size on a) the standardize mean square error (SMSE) for

the mean response (SM) and predictions at new location (SP), b) the G-statistic, ¢) mean

squared error of prediction (MSEP), and d) 0.95 coverage rates for the mean response

(SM) and predictions at new locations (SP) for the soil pH model (3SLS + RT). In the

upper left figure the two sets of straight lines represent the region in which the variance

estimates are unbiased. The dotted lines represents the simultaneous confidence interval

(o= 0.05), while the solid lines represenfs the joint confident interval (o = 0.01).

28



1——SNE ;
a 1.2 ‘ ops | b
- - - - -SMI0r
11 gRNITEES SP10
T — s
1.0 s
S os| L L
n
0.8 7 \
Y I - .
4 .
"’
0.7 7
EA
#
0.6
0.5 -
0 20 40 60 80 100 120
Tree Size (terminal nodes)
260
250
C
240
230
o
W o220
=
210 -
200 | Y N
5 | minsize5
190 | =« - -minsize10 |
. ; i
7 ! — — minsize25 |
180 I —
0 20 40 60 80 100 120

Tree Size (terminal nodes)

0.9

0.8

G-statistic

0.6

age Rat

ovel

} minsize$
} = - = =minsize10
— — minsize25
20 40 60 80 100 120
Tree Size (terminal nodes)
sMm5 !
SP5
«« = «SMI0 ;

[ e SP10

20 40 60 80 100 120
Tree Size (terminal nodes)

Figure 3. Influence of the minimum number of observations at a given terminal node
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the mean response (SM) and predictions at new location (SP), b) the G-statistic, ¢) mean

squared error of prediction (MSEP), and d) 0.95 coverage rates for the mean response

(SM) and predictions at new locations (SP) for the sand model (3SLS + RT). In the

upper left figure the two sets of straight lines represent the region in which the variance

estimates are unbiased. The dotted lines represents the simultaneous confidence interval

(o= 0.05), while the solid lines represents the joint confident interval (o = 0.01).
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left figure the two sets of straight lines represent the region in which the variance

estimates are unbiased. The dotted lines represents the simultaneous confidence interval

(o= 0.05), while the solid lines represents the joint confident interval (a = 0.01).
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squared error of prediction (MSEP), and d) 0.95 coverage rates for the mean response
(SM) and predictions at new locations (SP) for the sand model (3SLS + MRT). In the
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while a minsize of 5 and the tree size of 12 were optimal for predicting clay. However,
the MRT algorithm fits a regression tree to all of the variables simultaneously requiring
only one set of parameters. Table 2 indicates that unbiased estimates of the variances for
the mean response and new predictions of sand and clay were not achieved when the
same minsize and tree size were used. Thus, the final models for estimating sand and
clay were fitted based on a minsize of 25 and a tree size of 41, because of the better fit
associated with these parameter. This resulted in a SMSEP of 1.40 for the clay model
which suggests that variance estimates were underestimated by 40% compared to the true
errors. Using the optimal minsize and tree size, the MRT models accounted for an
additional 19% and 17% of the observed variability in sand and clay, respectively. The
final models (3LSL + MRT) for sand and clay accounted for 62% and 56% of the
observed variability, respectively (Table 2).

Sample variogram models were calculated for each of the soil attributes. The
descriptive statistics of the soil data (n = 1427) revealed that the average distance among
sample plots was 177 km and ranged from 0.35 km to 459 km (Table 3). The fitted
sample variogram models for sand, clay, silt and pH had range parameters varying from
5.86 km to 10 km with small a nugget effect for both the raw data and the estimated
residuals from the 3SLS models.

When applying ordinary kriging to the 3SLS residuals, the large values for the
cost complexity functions for both sand and clay indicated that ordinary kriging did not
perform well in terms of estimating the variances. The results suggest that the variance
estimates for the mean response and new predictions were significantly different from

one, indicating that the variance estimates were not consistent with the true errors.
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Table 3. Descriptive statistics of the fitted variograms using the observed data and

residuals obtained from 3SLS models.

Observed Data Residuals from 3SLS Model
Seil Variogram Range Range
Attributes Model (km) Sil  Nugget (km) Sill Nugget
Sand Gaussian 5.86 11790  0.00 548 11235 0.00
Clay Gaussian 5.93 66.46 0.00 559 6296 0.00
Silt Gaussian 6.11 44.04 0.00 564 41.56 0.00
pH Exponential ~ 10.00 0.68 0.09 10.00  0.58 0.09
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Ordinary kriging only accounted for an additional 9% and 17% of the observed
variability in sand and clay, respectively. The final models (3SLS + OK) accounted for a
total of 52% and 56% of the total variability observed in sand and clay, respectively. No
discrepancies were detected between the frequency distribution of observed and predicted
values for the sand, clay and silt model for the 3SLS + RT and 3SLS + MRT models
(Table 4). The maximum value of predicted sand using the 3SLS + OK model was
126.64%, which is larger than the possible true value. The 3SLS + MRT model satisfied
the constraint that the estimated values of the sum of sand, silt and clay equaled 100%,
while the 3SLS + RT model had sums ranging from 82.19% to 121.60%.

The observed and predicted soil texture fractions were also compared in a soil
triangle plot (Figure 7). The soil triangle plots indicated that the predicted values of soil
textural fractions obtained from 3SLS + MRT had the same pattern as the observed data, but
with less variability. Scatter plots of the predicted values and model residuals are displayed
in Figure 8a for the 3SLS + RT model, Figure 9a for the 3SLS + MRT model and Figure 10a
for the 3SLS + OK model. No systematic patterns were observed in the residual plots for
models in which the residuals were fit using a stratified tree-based approach. This was not
the case for the model that used ordinary kriging to describe the small-scale variability in the
residuals from the 3SLS models (sand, r = -0.46; clay, r = -0.39) (Figure 10a). Scatter plots
of the observed and predicted values of the soil attributes are provided in Figure 8b for the
3SLS + RT model, Figure 9b for the 3SLS + MRT model and Figure 10b for the 3SLS + OK
model. The correlation between observed and predicted values for sand and clay from the
3SLS + OK model was 0.47 and 0.48, respectively, which were lower than those for the

3SLS + RT model (0.64 and 0.53) and 3SLS + MRT model (0.64 and 0.63), respectively.

35



"UOTJBIASD pIepUE)S = (IS 921

3y} UL S3POU [RUILLIS) JO BJEN)S JO JOGUINU = SZIS 331) “B)ep 3y J[ds 0} pambox suoneAIdsqo Jo 19quINU WNWIUIW = JZISUIU |

P8  ELIL 86'1C 8691 vy91 6¢'11 6L°8" - — LTyl Led
89°'tT  ¥99C1 L699 8¢°09 89°6S 91'ES 9CCeE - — LTv1 pueg SuidLoyy + STISE
[4: 83 (4474 [4°% (4 £6°TC 0L7¢CT 15°0C §9°0 4! S LTv1 HIS

809  €L8Y 0L 0t 90°L1 IT°LT 6£¢€l ot'¢- A S LTV Aep)

86’8 8666 w69 1¥°09 95°6S 06'tS 69'7C Tl S LTY1 pueg

869  8¥'IS 9t°0C 90°LT 6591 95Tl ot ¢- 8% sT LTyl Le)

LT6 8¢°S6 6L'S9 I+09 Y865 68'VvS 69'7C 8% §C LTrl pue§ LI + STISE
€90 8011 099 LT9 LT9 ¥8'S r8'¢ 0¢ S LTyl yd

8’9 69°0¢ ¥L0C 90°LT WLy 0T'¢l e8¢~ S 01 LTP1 Kep)

106 75768 £9°69 109 63°6S YLYS 0¢'1¢ 0v ST LTvl pueg LA + S'ISE
60 L0l §8'9 LT9 079 19°¢ €0y - - LTv1 yd

00°L 00'9¢ 00°LT £SCC 00'CC oLl 00°0 — - Levl HIS

L8'6 0r'1IL [4 44 90°L1 05°'St YT 01 0¢°0 - — LTY1 Kel)
651 0586 0L69 1¥'09 S¥'09 8v'1S 0v'LT — - LTI pues B)B( PIAIISqQO
as Xe]N  d[JuUENd) UBIA UBIPN duUENd  WN IS | A2S  IUS ANqUPY PPOIAl

pig IST %n -unu Jdueg oS

]S BJep 213U 2y} 03 parjdde sjopowr panyy 2y} UO paseq saInqLIe [10S paoIpaId pue paAIISqo Jo uonnqLusi(y ‘¢ Aqe..

36



% Sand

Observed

% Sand
Predicted

Figure 7. Distribution of observed and predicted soil textural classes.

37



19§ ©JBp AINUS Y]
01 parjdde uaym 1j1s pue Aepo ‘pues ‘Hd [10s 10J S[OpOW 33J) UOISSIIFoI pue sarenbs 1sed] 9881S-991Y) oY) WOLJ SI0LD uoroIpard

Jo sweiSoisiy (o pue sonjeA uonoIpaid “SA paAIdsqo (q ‘sanfeA pajoIpaid “sA s10112 suororpaid (& Jo sjo1d 1011e0S g 9m3L]

(ns) slenpisay (Kepo) sjenpisy (pues) sienpisay (Hd) senpisay
oF 06 0Z 0L O O)-  Og- o0 o0z 0 02z OFr
o o o ro
=2 Z z 3 Z 4
I=3 - Q =
8 ¢ g s 3 g S
N & g 8 & g
8 o ) S o N o0
B N gy & FOo o
g 3 g 3 g 3 8 3
8 & & S % S
2 ) ) w T
= w 3 o bl F S =
3 & 8 % 8 # s §
2 A d
° -8
s Hd
WS paAIRSIO Kejo paniasqQ Hd poAISsSqO
0S5 Oy OE 0Z O O 0L 09 05 OF OE OZ Ob O o0 6 8 L 9 S ¥
) I 1 1 L 1 1 1 1 13 | 1 i i ©w 1
[ ©
.3 e 3 Ls 3 D
S 2 2 © g g
o » m m o m =
@ g Fé & g
Ly 2 Ly o g 2
= c 2 -3 2 |. z
o o — W
Ly 2 B e m 3 & 2
° ¢ a @ m 2
A - X
s 2 ] T8 3 s q
Fo oo ~
0% o -3 Fg °
§9°0=14 €60 =4 y90=4 990 =4
(£x+571SE) Ws pajoiped (+s71sE) ABia pejopely {14+87S€) pues pajoipay (14+87S€) H pajaipad
05 O Of 02 O O 06 08 0L 09 0S5 Ov O€ Lo 6 8 £ 8 §
. 1 1 1 1 L L 1t 1 1 1 1 Lo, B 1 1 1 1
o W o ° |
. (=]
- N
o
L & o
=3 - P .M
P A P ° P
Lo @ © -0 o o [
[ o @ o o
a a c c
c { = C o © c
[ o o [ o
- o 23 I3 @
-2 oLy
8
') L w of W
rS oS |4
o Y © °
o

38



19s BIBp 2Inus o) 03 pordde
usym J[1s pue Ae[o ‘pues ‘Hd [10S 10J S[OPOUI 9211 UOISSaITal djeLiBAT)NW puE salenbs 1sea] a8e)s-0a1y) oY) WOy SI0L10 UooIpaid

Jo sweidoysty (o pue sonjea uonoipald 'sA PaAIasqo (q ‘sanjea paoipaid 'sA sioxe suonoipaid (e jo sjord soneos 6 9ISy

(ws) sienpisay (Aepo) sfenpisay (pues) senpisay

0

a3 £ . F g8 Z
8 3 g 3 3
g g 3 &
= f y § .
3 ©c 5 3 .m
g 3 : .5
[=) )
g @ 5 S 7
L E 8 & S &
8 g J
Aep s pues
NS poAlasqO Aepo parigsqo pues paAesqD
s o o 0 Ol [ 0. 09 05 or 06 0z O O 004 08 09 or 0z
il 3 ! L1 i A 1 L 1 1 . 1 ] n
ol-© o ° < -
3 3 I
L2 2 2 g
r3 & g -5 g
o g 2 g
Q n «
N @ ° g ®
° = ° 2 |l o a3
a0 I w D o =
@ © @ 7]
-8 W ° I ° e
° - o e » % » ¢
M of ©o = o =z Aﬂ
° r 5 o a )
Fe 2 s a = ° 3
° 3 ° ° e ° - m ~ ° ~
b0 =1 €90 =4
UdAHSISE) WS pajapald
0 0z
1 1
= m —.C ° )
% o
[=3
ﬁ 5 N ﬁ
o o
x a Fra I
* obo & e 8 ° g
ﬁ a -4 ° oo &
o 5 -3 & . s
Ly @ @ La @
n
F=1 n
Ly I B v
° g ° .8 o o I

39



©
[}
=]
hel
[7:]
[}
v
=)
£
o]
b 3
2
)]
—)
[}
™
8
e}
f=
©
[
el
B
0
Q
o
a

Number Sample Plots

r=-0.46

-50

Predicted sand (35LS+Kriging)

r=0.47

400 600

200

40 60 80 100
Observed sand
sand
T T .' 1
-50 0 50 100

Residuals (sand)

Residuals

Predicted clay (3SLS+Kriging)

Number Sample Plots

20 40

-40 -20 O

-60

300 500

100

1

1

20 40 60

Predicted clay (3SLS+Kriging)

r=0.48

Observed clay

clay

Residuals (clay)

Figure 10. Scatter plots of a) predictions errors vs. predicted values, b) observed vs.

prediction values and c) histograms of prediction errors from the three-stage least squares

and ordinary kriging models for sand and clay when applied to the entire data set.
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Also, histograms of the residuals from the 3SLS + RT (Figure 8c), the 3SLS + MRT (Figure
9c) and 3SLS + OK (Figure 10c) models were approximately normally distributed, suggest
the models did not violate the underlying assumption (i.e., the residuals were independent
and identically normally distributed).

Predictive surfaces of soil pH, sand, clay and silt were created as GIS layers and are
displayed in Figure 11, while the standard deviation surfaces are displayed in Figure 12. The
surface of soil pH was divided into four classes (Figure 11A) corresponding to acidity and
alkalinity classification used in soil and crop management. Predictive surfaces of sand using
3SLS + OK were created and shown in Figure 13. A map representing the 12 soil textural
classes were also generated (Figure 14). Figure 15 compares the distribution of observed
and predicted soil textural classes for the sample data and the state as a whole. A Chi-
square goodness of fit test indicated that the distribution of observed and the predicted
soil textural classes were not significantly different (3SLS + RT, p-value = 0.13; 3SLS +
MRT, p-value = 0.14). The distribution of predicted soil textural classes for the entire
state (N = 94792466) was not significantly different from the observed data (p-value =

0.53).
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Figure 13. Spatial distribution of predicted sand in the State of Jalisco, Mexico based on

three-staged least squares and ordinary kriging.
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predicted values obtained form the three-stage least squares plus regression tree (3SLS +

RT) and three-stage least square plus multivariate regression tree (3SLS + MRT) models.
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DISCUSSION

The assessment of the spatial variability in soil texture is central to support a
variety of management decision processes. Soil physical properties such as soil texture
have influence the water-holding capacity, cation-exchange capacity, crop yields, site
productivity, nitrogen loss, as well as other soil processes and conditions. Modeling the
spatial distribution of soil attributes over large geographical regions at a fine spatial
resolution presents some challenging obstacles that need to be addressed.

First, when modeling soil attributes such as soil texture, it is implied that the sum
of the percent sand, silt and clay equal to 100%. To address this issue the method of
three-stage least square was introduced to simultaneously model the fractions of soil
texture to ensure they sum to 100%.

A second issue that is addressed in this paper deals with the problem of the lack of
spatial dependency associated with the variables being modeled. Due to the lack of
spatial dependency, geostatistical methods such as kriging may not be an appropriate
technique for interpolating this type of data. For comparison purpose, ordinary kriging
was used to interpolate the residuals from the models of sand and clay. Cross-validation
indicated that while the estimates were unbiased, the estimated variances for the mean
response and predictions at new locations were not adequate. The predicted surfaces
obtained from this approach resulted in circular polygons surrounding the sample
locations throughout the state. Such artifacts occur when the range parameter of the
fitted variogram models are much smaller than the average distance separating the sample
data. To address this issue, a stratified tree-based approach was used to model the

residuals from the 3SLS models of the soil attributes.
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This paper evaluated two approaches, the use of univariate regression trees
applied to individual models, and multivariate regression trees which simultaneously
modeled the residuals using a single tree structure. Cross-validation indicated that both
approaches provided unbiased estimates of soil attributes as well as providing unbiased
variance estimations of the mean response and predictions at unsampled locations.
However, only the multivariate regression tree satisfied the constraint that the soil
textural fractions sum to 100%. The final set of models accounted for 62% of the
observed variability in sand, 56% for clay and 61% for the soil pH model.

Results of this study indicated that the State of Jalisco is dominated by slightly
acidic soils, particulary at the lower elevations in the western and central portions of the
state, which is dominated by tropical dry forests. Soil pH becomes more acidic with
increasing elevation as the forests change to temperate pine-oak forests. More neutral
soils are found in the eastern part of the state dominated by grasslands and vegetation
characteristic of a semi-arid environment. The state is dominated by two major soil
classes, sandy loam and sandy clay loam. The sandy clay loam soils are found primarily
in the coastal region dominated by tropical dry forests and the deserts in the eastern part
of the state. Sandy clay loam and clay loam soils occur primarily in the central portion of
the state dominated by grasslands and agricultural lands.

Because of the nature of this study, it is difficult to compare the results of this
study with previous studies conducted in the State of Jalisco or anywhere else in Mexico.
Also, because of varying geographical scales and spatial resolutions used in other studies
and the need to constrain estimates of soil fractions to sum to 100 percent, only two

comparable studies were found in the literature. In one study, Henderson et al. (2005)
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developed models for describing the spatial distribution of soil attributes using binary
regression trees for the Australian continent (n = 135490) at a 250 m spatial resolution.
The R? values for pH and clay were reported at 67% and 44%, respectively. These
results are similar to the results presenting in this study. In a second study, Van
Meirvenne and Van Cleemput (2006) used compositional ordinary kriging to
simultaneously model soil texture while constraining the three soil fractions of soil
texture to sum to 100 percent for an area covering 3000 km” in East Flanders, Belgium.
The authors used a total of 4887 soil samples. The authors reported that the root mean
square errors obtained from a 10-fold cross validation for sand and clay were 4.9 and
10.32 respectively, which were slightly lower than those obtained in this study.
Geostatistical techniques such kriging usually require tremendous sampling effort
in order to capture the spatial variability in soil attributes. When dealing with large
geographical areas, kriging might not be applicable because of the large sample size
required to capture the spatial dependency among the soil attributes. Increasing sample
size directly influences the cost of the survey making it prohibited in most cases. In this
study 1427 soil samples were collected from an area covering 78618 km*. While the
sampling intensity is substantially lower than the two studies mentioned above, the
method of 3SLS + MRT provided comparable results given the low sampling effort and

extent of the study area.
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CONCLUSION

Finding a suitable statistical approach for describing the spatial variability in a set
of data is not considered an easy task. Based on a simulation study, the procedure of
using either 3SLS + RT or 3SLS + MRT was able to provide reliable estimates of
selected soil attributes over a large geographical region with the fine-scale spatial
resolution. However, only the 3SLS + MRT approach was able to satisfy the constraint
that estimates if sand, silt and clay to sum to 100%. The technique of combining the
3SLS and tree-based stratified approach also assures that the final models will be
unbiased or at least optimal in terms of estimating the variances of the mean response and
prediction variances. As a result, confidence intervals and prediction interval can be
constructed for individual observations, using the prediction standard deviation surfaces
developed in this study. Standard deviation surfaces not only convey meaningful
information on the precision of the estimates but also provide information on where
additional sampling is required to improve the precision of the predictive models of soil
attributes.

It is well known that soil factors tremendously influence the productivity of forest
and agricultural lands. Maps of soil attributes obtained from this study can serve as a
useful surrogate explaining the spatial variability in soil attributes across large
geographical region. Digital maps of soil attributes provided comprehensive information
on the spatial variability of soil properties for th¢ entire State of Jalisco at a fine spatial
resolution (i.e., 30 m x 30 m). The GIS layers of soil attributes developed in this study

could be used to support the applications of precision forestry and agriculture such as
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managing soil fertility and crop production for site-specific management over both small

and large geographical regions.
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CHAPTER 2: EVALUATION OF THREE SAMPLING DESIGNS FOR

DEVELOPING SPATIAL STATISTICAL MODELS

ABSTRACT

In natural resource studies, statistical models have been used extensively to
account for the spatial variability in a set of data. The quality of a spatial model is
closely related to the sampling design used to collect the sample data. Therefore, the
reliability of estimates obtained from a spatial statistical model depends on how well the
sample data represents the spatial variability in the population of interest. In many
situations research scientists pay too much attention on selecting a suitable model but
ignore how the data were collected. In this study, three sampling designs (simple
random, systematic and stratified random sampling) were evaluated in modeling the
spatial distribution of forest tree biomass in the State of Jalisco, Mexico. Results from a
Monte Carlo simulation study suggested that stratifying the population based on the
spectral properties of the vegetation provided a better fitting model compared to models
based on simple random or systematic sampling which ignored the spectral variability in

the population being modeled.
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INTRODUCTION

Thé main objective of natural resource sampling is to make an inference about a
population based on a representative sample selected from the population. Depending on
the objectives of the survey, there are several methods one could use to select the sample
units, the most common of which is design-based sampling. Designed-based sampling
(Cochran 1977) uses probability sampling to select sample units in order to make
inference about the population of interest. Examples of designed-based sampling include
simple random, stratified random and cluster sampling, to name but a few. A second
approach used to sample a population is model-based sampling. Many statistical models
such as a linear regression models are developed using a model-based approach. The
goal of the model-based approach is to find an appropriate predictive model to account
for the behavior of the variable of interest in terms of a set of auxiliary variables (Warren
1998, Haining 2003, Lark and Cullis 2004, Stenvens‘2006). In this situation, the model
being fitted influences the way the sample data are collected. A good example of the
model-based approach is developing an equation to predict the cubic volume of
individual trees as function of tree diameter and tree height. Theory suggests that in
order to minimize the variance of the mean response or the prediction variance, sample
observations should be selected uniformly across the set of explanatory variables. In the
case of the regression models, trees would be purposively selected such that the sample
trees are uniformly distributed across all diameter-height classes. A disadvantage of this
approach in selecting sample units is that the sample data can not be used to make an

inference about the population of interest.
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Recently, the model-assisted approach has emerged to fulfill the need of making
inference about population (as a designed-based inference) while at the same time
developing predictive models (Conquest 2003). The sample data are drawn from a
population using a design-based approach while taking into consideration the requirement
necessary for developing reliable models. Reich et al. (2008) developed a framework for
designing multi-resource inventories based on the model-assisted design for inventorying
and monitoring the natural resource in the State of Jalisco, Mexico.

Geostatistical techniques such as kriging has been influenced by both the model-
based and sample-based approach. For example, in the field of geological exploration,
samples can be located purposively to capture the spatial variability in the data while the
fitted model can be used to make an inference about the population of interest. Theory
also suggests that in order to minimize the prediction standard error associatevd with
kriging, the sample data should be systematically located throughout the population of
interest (Pettitt and McBratney 1993, Papritz and Webster 1995, Jardim and Ribeiro
2007). Brus and De Gruijter (1997) provide a comprehensive review of designed-based
and model-based sampling strategies for describing soil properties using geostatistical
approches. Recently, Stevens and Olsens (2003, 2004) introduced a sampling technique
called “Spatial Balanced Sampling” which aims to spatially balance random samples
throughout large geographical regions based on a systematic grid. The authors suggest
that sample data with some degree of spatial regularity is more efficient than random
samples, especially when surveying large geographical regions. Theobald et al. (2007)
developed a new sampling technique called “Reversed Randomized Quadrant-Recursive

Raster” based on a spatial balanced sampling design. In this approach, the inclusion
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probability of limiting resources such as accessibility and cost are taken into
consideration in spatially allocating samples across a landscape. However, a comparative
study on the influence of different sampling strategies has rarely been done. Thus, the
objective of this study was to evaluate the performance of developing a spatial statistical
model of forest tree biomass using data obtained from two design-based approaches
(simple random and systematic sampling) and a model-assisted approach (nested-
stratified random sampling). The recommendation of a suitable sampling design will
assist research scientists in developing model to describe the spatial variability is a set of

data with confidence.

METHODS

Study Area

The State of Jalisco, Mexico is located in the west central part of Mexico, and
covers an area of approximately 78618 km?. The regions complex topography,
geological substrata and climate are combined with the history of human influence to
create an intricate mosaic of various vegetation types. Climatic variability in
temperature, precipitation and evaporation define three broad climatic region (Rech et al.
2008). These zones coincide in general with those used to describe vegetation in Mexico
(Rzedowski 1978). Furthermore, these zones define three broad ecological regions: 1)
the first is the sub-humid tropical zone located along the Pacific coast and is
characterized by high temperature, monsoon rain during the summer month (730-1200
mm) and an annual dry period that ranges from 5 to 9 months. Tropical dry forests

dominate the region and occur on terrain with elevations from sea level to 2000 m. In the
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northern part of this zone the forests are mesic, while in the south the forests are slightly
drier, 2) at higher elevations the sub-humid temperate zone covers the greatest portions of
the state. Pine, oak and mixed deciduous hardwood forests dominate this zone (1000-
2500 m). Average annual rainfall ranges from 900-1500 mm. This zone gradually
changes to 3) an arid and semi-arid zone that has a low annual precipitation of 400 mm or
less and 8 to 12 dry months. Dominant vegetation includes mesquite-acacia and

zerophitic shrubs.
GIS and Landsat-7 ETM+ Data

A digital elevation model (DEM) with a 9Q m spatial resolution, obtained from
the U.S. Geological Survey (USGS) (Gesch et al. 2002, Rabus et al. 2003) was resampled
to a 30 m spatial resolution using the Resample function with the Bilinear option
(ARC/INFO, ESRI 1995). The primary topographic attributes which included elevation,
aspect and slope were derived from the DEM using Spatial Analyst tool (ARCGIS 9.2,
ESRI 2006). In addition, a GRID layer of 12 climate zones (Reich et al. 2008) with a 30
m spatial resolution was included as an additional covariate. Ten cloud-free Landsat 7
ETM+ images obtained between January and March, 2004 were combined to create a
seamless image using the Mosaic tool (ERDAS Inc. 1999). The thermal bands 6L and
6H with a 57 m resolution and the panchromatic band 8 with a 14.25 m resolution were
resampled to a 30 m resolution. All GIS analyses were carried out using ArcGIS 9.2

(ESRI 2006).
Hypothetical Biomass Data

The GIS surface of forest tree biomass developed by Reich et al. (2008) was used

to represent the population of biomass in the sate at a 30 m x 30 m spatial resolution.
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Non-forested areas were not considered in this study to limit the analysis to only forested
areas. To better represent field condition, a random error with a mean 0 and variance
4o was added to the modeled values of biomass, where ¢ is an estimate of the
variability in forest tree biomass in the State of Jalisco. The “create random raster” tool
available in the ArcGIS’s toolbox (ArcGIS 9.2, ESRI 2006) was used to generate the

error surface.

Sample Allocation and Sampling Designs

The State of Jalisco was initially stratified based on the climatic variability within
the state. The three climate zones represent the tropical, temperate and semi-arid regions
within the state. Each climatic zones was further stratified as to whether a sample unit
represented a forested or non-forested region resulting in a total of six strata. Nested
within each of the six strata, ten spectral classes were identified to represent the
variability in land cover, resulting in a total of 60 strata. Initially samples were allocated
to the forested regions within each climatic zones based on the economic importance of
the region. A total of 600 sample plots were allocated to the temperate region, 400 to the
tropical region and 300 to the semi-arid region. One-hundred sample plots were allocated
to the non-forested areas in each of the tree climatic regions, resulting in a total sample
size of 1600 plots. Because of difficulties in establish certain plots, only 1427 were
established in the state.

In this study, two probability-based designs (simple random and systematic
sampling) and one model-assisted sampling design (stratified random sampling) were
evaluated to identify the best approach for modeling the spatial distribution of forest tree

biomass in the State of Jalisco. Two sample sizes of 500 and 1100 were evaluated, where
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the later reflects the sample size used in developing the original forest biomass surface.
Only the 30 strata that were classified as being forested were considered in this study.
For the three sampling designs, samples were allocated proportional to the size of the
forested areas within each of the three bioclimatic zones. For the sample size of 500, the
semi-arid, temperate and tropical zones were allocated 100, 300 and 100 sample plots,
respectively, while for the sample size of 1100, the semi-arid, temperate and tropical zone
were allocated 220, 660 and 220 sample plots, respectively. The three sampling designs
were implemented independently within each of the climatic zones. For stratified
sampling design, samples were allocated uniformly across the ten spectral classes Within
each climatic zone.

For a given sampling design, the location of the sample plots were overlaid on the
various GIS grids to extract information on the elevation, slope, aspect, Landsat 7 ETM+

bands, forest type, bioclimatic zone, and estimated forest tree biomass.

Simple Random Sampling

Simple random sampling (SRS) is the most basic sampling design and usually
serves as a basis for more complicated sampling designs. It is said to be a simple random
sample when a sample of size # is drawn from a population of size N such that all

samples of size n have the same chance of being selected (Cochran 1977).
Systematic Sampling

Systematic sampling is a cost-effective design in which the samples are uniformly
distributed throughout the population (Cochran 1977, Scheaffer et al. 2006). Systematic
sampling minimizes travel time, compared to SRS, making it more cost efficient in that it

provides the same amount of information at minimal cost (Scheaffer et al. 2006, Stevens

64



and Olsens 2004). If the variable of interest is randomly distributed, estimates of the
population mean and variance are identical to that of SRS.

A simple sequential inhibition process (SSI) (Reich and Davis 2007a) was used to
simulate a systematic sample. The SSI process randomly locates sample plots within the
population with the constraint that no two points can be within a given distance of one
another. Since the state is irregular in shape, initially 2900 and 6200 samples were
located with a minimum distance of 7200 m and 4800 m between sample points,
respectively. Sample plots that did not fall within the state or forested areas were
removed. The remaining sample plots were randomly thinned to a size of 500 and 1100
plots. A spatial library (Reich and Davis 2007b) for R version 2.4.0 (R Development

Core Team 2006) was used to simulate the SSI process.

Stratified Random Sampling

A stratified random sample (ST) is obtained by dividing the population elements
into non-overlapping groups, known as strata, and then selecting a simple random sample
from each stratum (Johnson 2000, Scheafter et al. 2006). The objective of this design is
to create homogenous subgroups with minimum variance within stratum. If done
correctly, a stratified random sample shduld be more precise than a simple random or

systematic sample.
Simulation Study

A Monte Carlo simulation was used to compare the three sampling designs
(Fishman 1995 and Manly 1998) in modeling the spatial distribution of forest tree
biomass. For each Monte Carlo simulation, a sample of 500 or 1100 30 m x 30 m sample

plots were randomly selected using SRS, SSI and ST to obtain a set of data for modeling
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the spatial distribution of forest tree biomass. This process was repeated 50 times to
evaluate the predictive performance of the three sampling designs. Example of the

distribution of sample locations simulated using SRS, SSI and ST are displayed in Figure 16.
Modeling the Spatial Distribution of Biomass
The spatial variability in forest tree biomass was modeled using an approach

developed by Reich and Aguirrie-Bravo (2008). Letz(s,) represent a sample value of the

target variable Z at spatial location s; Also, assume the sample data contains a set of
auxiliary variables (covariates) X, the values of which are known for all units in the
population. Multiple regression is used to describe the large-scale spatial variability in the

data as a linear function in p known explanatory variables x;(s;)
z{s;)= ﬂo+2x B, +7ls,) (28)

where B, j = 0,... p are p+1 unknown regression coefficients and 71(s,) is an error
process sometimes referred to as a random field, with £[n(s, )] = 0 and
covariance C(x, y) = Cov(n(xi ),n(y ; )) The error term in Eq. 28 is unknown because the
true model is unknown. Once the model parameters have been estimated, the regression
residuals are defined as7(s,) = z(s, ) - (s, ), where £(s, ) is the predicted value at spatial
location s; given the explanatory variables x (si ) The error process can be expressed as
n(s;)=7ls,)+ uls,) (29)
with E Lu(s,. ) 7(s,)]= 0. Using the set of auxiliary variables, X as a basis of stratification

assume
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Als,) = flx(s, )+ 6(s,) (30)
with E[8(s, )| x(s,)]= 0, f(x(s,)) is a deterministic function, and 5(s, ) is a zero-mean
random term (Cocchi et al. 2002). Combining Eq. 29 and Eq. 30

n(s,)= 7 (x(s, ) +(s,) 31)
with E[r(s, )| f(x(s, )] = f(x(s.), e(s,)= uls, )+ 8(s,), and E[e(s, )1 x{s, )] = 0 provided

that 4(s, Jand & ( ) are conditionally independent (Cocchi et al. 2002; Benedtti et al.

2005). The mean function f (x(s ; ))is estimated by f using the recursive partitioning

method introduced by Brieman et al. (1984). Combining Eq. 28 and Eq. 29 the full

model describing the spatial variability in the sample data is given by

(s )= ﬂo+Z B, + flx(s, )+ es,). (32)

Variance Estimation

The variance of the estimated mean response at a given location s, for a set of

explanatory variables, x(s, ) is given by

var(z(s, )) var(7(s, )+Var(§( )) (33)

where var(7(s, )) reflects the uncertainty in estimating the parameters of the regression

model and Var(g (sl. )) reflects the uncertainty in estimating the error (77 ) of the regression

model. The variance associated with an estimate at a new location, sg, can be written as
Var(z(s0 )) = Var(ﬁ(s0 )) + Var(z(so) + Var(é (s0 )) (34)

where the additional term, var(z(s, ) reflects the random variation at a new location, s.
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The small-scale variability (i.e., estimated errors from the regression models) in
biomass was modeled using a tree-based stratified design (Reich and Aguirrie-Bravo
2008). Independent variables considered in the stratification included elevation, slope,
aspect, Landsat ETM+ bands and land cover type and predicted biomass obtained from a
multiple regression model.

For implementing the tree-based approach, the option “minsize” in the tree
function and the option “best” in the prune.tree function available in S-Plus (Insightful
Crop. 2000) were fixed for a given set of simulations. The option “minszie” reflects the
minimum number of observations required to split the data. The option “prumne.tree” is
used to prune the complete tree to have a desired number of partitions (i.e., tree size).
Based on a preliminary study using only one simulated dataset of forest tree biomass, the
cost complexity criterion (Reich and Aguirrie-Bravo 2008, Chapter 1) suggested that
conditions set on the minsize and tree size for the two sample sizes were optimal in terms
of variance estimation. In this study the options with minsize of 15 and tree size of 50
were used for the sample size of 500 and the options with minsize of 5 and tree size of
100 were applied to the sample size of 1100 to meet the requirement of unbiased
estimates of the variacne.

A generalized linear model (McCullagh and Nelder, 1989, Chambers and Hastie
1992) was used to estimate the regression coefficients and variances associated with the
large-scale variability of forest tree biomass. The stepAIC function (Venables and Ripley
1999), avaialbe in the MASS Package in S, was used to perform a backward stepwise
selection procedure identifying significant predictors of a multiple regression model

based on Akaike Information Criterion (AIC) (Akaike 1969). To stabilize the variance of
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biomass, a square root transformation was applied to the sample data of biomass. The
tree function in S-Plus platform was used to perform tree-based approach for modeling
the small-scale variability in forest tree biomass.

Predicted values and associated standard errors (se.fit = T) of the fitted regression
models were obtained using the function, gim.pred <- predict.glm(object,
predict="response”, se. fit=T), where object is a fitted glm model. The variance

associated with estimating the regression coefficients were obtained by var(7(s, )=
gim. pi’ed$se.ﬁt 2 while the uncertainty in estimating the error of the regression

model, Var(c;' (s, )) were calculated using standard methods for a stratified random sample

(Cochran, 1977):

gk = W (35)

and

6, =" (36)

where k denotes the stratum, 5, denotes the mean residual error for observations assigned

to the k™ stratum, ny is the number of observations assigned to the kh stratum, and &7 is

the within stratum variance for the K™ stratum. The use of the sample variance as a
measure of the uncertainty in estimating the error of the regression model is justified by

the fact that the mean square error is the best constant predictor given that the sample

data belong to the stratum.
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Jagger (2005) suggested that the function predict.gim() correctly calculates the
variance for constructing confidence limits but those for the prediction intervals are not
correct since the variance component due to the response is taken as the dispersion value.
Assuming normality for the prediction interval, Jagger (2005) recommends calculating
the variance used in constructing prediction intervals by family()$var(fitted value) *
dispersion + se(fitted value)”2. Estimates of the variances used in constructing

confidence and prediction intervals were computed by:
var(2(s, ) = se(fitted value)*2 + 61 s,) (37
Var(f(so)) = family() $var(fitted value) * dispersion + se(fitted value)"2 + &, (Si) (38),

respectively.

Model Evaluation

A 9-fold cross-validation (Efron and Tibshrani, 1993) was used to evaluate the
predictive performance of the fitted biomass models. The sample data were divided into
9 parts (K = 9), each of which consisted of 55 and 122 observation for sample sizes of
500 and 1100, respectively. The fitted models were recursively fitted using eight parts
(K-1) of the data as a training data set and the remaining data as an independent data set
for estimating the prediction errors. Repeating this procedure nine times allow each
observation to be excluded from the model and independently predicted by fitted models.
Following this procedure, a set of statistics were calculated to evaluate the predictive
performance of the models. Estimates of prediction errors obtaining from the K-fold
cross validation (Kravchenko and Bullock 1999, Schloeder et al. 2001 and Reich et al.
2004) were compared to asses the effectiveness of the three sampling designs in

modeling forest tree biomass.
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The effectiveness of the fitted models was evaluated using a goodness-of-
prediction statistic (G-statistic) (Agterberg, 1984; Kravchenka and Bullock, 1999; Guisan

and Zimmermann, 2000; Schloeder et al., 2001).

n 2
Y z(s)-26)]
G-statistic= |- Lo

n

Y z(s)-z(s)]

i=1

(39)

The G-statistic is a measure of the effectiveness of a prediction relative to that which
could have been derived using the sample mean. A G-statistic equal to one indicates
perfect prediction, a positive value indicates a more reliable model than if one had used
the sample mean, a negative value indicates a less reliable model than if one had used the
sample mean, and a value of zero indicates that the sample mean should be used to
estimate z(s;).

The mean absolute error (MAE)

MAE = —};i‘z(si) —~ 2(s,) (40)

i=.

and the mean squared error of prediction (MSEP)

MSEP =13 [2(5,) - 3(5,)] (41)

i=1
were used to evaluate the accuracy of the predictions, where z(s,) is the actual value at a
sample pointi, Z(s,) is the estimated value at a sample location i obtained from the 9-

fold cross validation, and 7 1is the total number of samples used in the 9-fold cross

validation.
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The standardized mean squared error (SMSE) (Reich et al. 2004), was used to

evaluate the reliability between the estimated variances and the true errors:

SMSE-—Z &(s,) (42)

P Var(é( ))
where, £(s,) = (z(sl.) - 2(s,.)), is the true error and Var(é(si)) is the estimated variance of
the mean response i obtained from Eq. 33 for the standardized mean square error of the
variance of the mean response (SMSEM) and from Eq. 34 for the standardized mean
square error of the prediction variance (SMSEP). SMSE has a Chi-square distribution
with » degree of freedom which can be used to construct a confidence interval for SMSE

under the null hypothesis of equal variances:

xz_a_ le_g
Pr| —2 < SMSE < =1-a. (43)
n n

When # is large, SMSE can be approximated by a standard normal distribution with a
mean of one and variance 2/n (SMSE ~ N(1, 2/n)). If the SMSE falls within the interval
1 + 1.96*(2/n)**, this would indicate that the true errors and estimation errors are
consistent at the 0.95 level of confidence (Hevesi et al 1992, Reich et al. 2004). SMSE’s

were evaluated based on the same minsize and tree size for all three sampling designs.

These intervals were used to calculate coverage rates (CV) which are defined as
the proportion of individual confidence intervals and prediction intervals containing the
observed value. The 95% confidence and prediction intervals were calculated assuming

normality

2(s,) £1.96,/var(2(s,)) . (44)
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Multi-Response Permutation Procedure

Multi-response permutation procedures (MRPP) were used to test for the
significant differences among the three sampling designs and the two sample sizes.
MRPP (Zimmerman et al. 1985, Mielke and Berry 2001) is a multivariate,
nonparamentric statistics for testing for significant difference among groups of
multivariate data. Unlike parametric statistics such as a r-test or F-test, Euclidean
distances between all pairs of observations in multi-dimensional space are used to
compute a test statistic. The test statistics does not rely on a standard normal distribution,
but it is considered a distribution-free technique. Permutation procedures are used to
develop a reference distribution under the null hypothesis for the purpose of testing for
significant differences. The possible test statistics obtained from the permutation
procedures under the null hypothesis of no difference are compared to the test statistic
obtained from the observed data. A p-value is computed from the proportion of test
statistics equal to or less than the observed Statistic. Thus, a small p-value would indicate
significant difference among groups. A detailed description of MRPP is provided by

Mielke and Berry (2001).

In this study, MRPP was used to simultaneously test significant differences
among the test statistics used to evaluate the predictive performance of the three sampling
designs and two sample sizes. If a significant difference was detected all pair-wise

combinations were evaluated to facilitate comparisons among the three sampling designs.
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RESULTS

Average R? values associated with the regression methods and G-statistic for the
combined models indicated that stratified random sampling for sample sizes of 500 and
1100 provided the best fit in terms of accounting for the total variability observed in the
biomass data (Table 5 and 6). MRPP suggested that the R? for the stratified design was
significantly larger compared to the other two sampling designs for the sample size of
500 (p-value < 0.001) and 1100 (p-value < 0.001) (Figure 17). MRPP also indicated that
the R? values associated with the simple random and systematic designs were not
significantly different from one another (n = 500, p-value = 0.533; n = 1100, p-value =
0.261) (Figure 17). Similarly, no significant differences were observed for the G-statistics
for these two sampling designs (n = 500, p-value = 0.47; n = 1100, p-value = 0.79)
(Figure 17).

All three sample designs provided unbiased variance estimate for the n = 500
sample size (Table 6). For the sample size of 1100 only the stratified design provided
unbiased variance estimates due to the larger tree size used to model the small-scale
variability in biomass. Noticeably, the averages for SMSEM and SMSEP associated with
the stratified design for both sample sizes were closet to one. MRPP suggested that
SMSEM’s associated with the stratified design were significantly different from those
associated with the simple random (p-value < 0.002) and systematic (p-value = 0.005)
designs for the sample size of 500 (Figure 18), whereas, SMSEM’s for the sample size of
1100 indicated no significant difference among the three sampling design (p-value = 0.22).

Comparing the SMSEP’s obtained from the three sampling designs, the pair-wise
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Table 5. Summary statistics for comparing the spatial models of biomass (tones/ha)
developed using simple random sampling (SRS), systematic sampling (SSI), and

stratified random sampling (ST) for a sample size of 500.

Statistics' Design  Mean  95%  95%  Median SD° Min  Max
Lower Upper2
R¥ SRS 0.49 0.49 0.50 0.49 003 043 056

SSI 0.50 0.49 0.51 0.50 0.03 042 056
ST 0.52 0.51 0.53 0.52 003 046  0.58
G-statatic® SRS 0.76 0.75 0.77 0.76 0.02 072 081
SSI 0.76 0.75 0.77 0.76 002 070  0.8]
ST 0.77 0.76 0.78 0.77 002 073 080
SMSEM* SRS 0.92 0.91 0.92 0.92 001 088 094
SSI 0.92 0.91 0.92 0.92 001 089 094
ST 0.91 0.91 0.91 0.91 001 088 094
CRM* SRS 0975 0973 0977 0977 0006 0960 0.986
SSI 0974 0972 0975 0974 0006 0956 0.986
ST 0975 0973 0976 0976  0.006 0.964 0.986
SMSEP* SRS 1.06 1.03 1.08 1.07 010 08 124
SSI 1.05 1.02 1.08 1.04 011 085 131
ST 0.96 0.94 0.99 0.97 010 077 121
CRP® SRS 0943 0939 0947 0943 0014 0915 0974
SSI 0.944 0940 0948 0944 0.015 0.899 0972
ST 0.951 0.947 0.954 0.954 0.012 0.915 0.974
MSEP*® SRS 1668 1631 17.05 1664 129 1435 1936
SSI 1675 1633  17.17 1655 148 1432 21.18
ST 1656 1613 1698 1665 150 1335 2046
MAEP* SRS 3.23 3.19 327 322 013 298 350
SSI 3.24 3.20 3.28 3.22 0.15 293 364
ST 3.17 3.13 3.22 3.18 014 284 347
MEAN (sample) SRS 6591 65.14 6668 6599 272 59.89 7265
SSI 67.18 6624 6811  66.88 329 5824 73.87
ST 66.17 6519 67.15 6628 344 5895 74.00
MEAN (model) SRS 6096 60.19 6172  60.63 269 5486 67.65
SSI 6220 6128  63.12 6219 323 5313 69.44
ST 61.13 6005 6220 6141 377 53.05 7023

'The statistics are based on 50 simulations of each sampling design.

>The lower and upper confidence bound were constructed using a t-distribution,
tozs, 40 = 2.31.

*SD = standard deviation, R* = coefficient of determination obtained from 3SLS, G-
statistic = the total variability of the mean response accounted by 3SLS + RT, SMSEM =
standardized mean square error of the model, CRM = confidence coverage rates of the
mean response, SMSEP = standardized mean square error of prediction, CRP =
confidence coverage rates of prediction, MSEP = mean square error of the mean
response, MAEP = mean absolute error of prediction.
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Table 6. Summary statistics for comparing the spatial models of biomass (tones/ha)
developed using simple random sampling (SRS), systematic sampling (SSI), and

stratified random sampling (ST) for a sample size of 1100.

Statistics' Designs  Mean 95% 95%  Median SD°  Min Max
Lower? Upper2
RS SRS 0.48 0.47 0.49 0.48 002 042 052
$s1 0.47 0.47 0.48 0.48 0.02 042 053
ST 0.51 0.50 0.51 0.51 002 046  0.56
G-statatistic® SRS 0.76 0.76 0.77 0.76 001 074 079
SSI 0.76 0.76 0.76 0.76 001 073 078
ST 0.78 0.78 0.78 0.78 001 075 080
SMSEM°® SRS 1.12 1.08 1.16 1.09 0.14 095 16l
SSI 1.15 1.10 1.19 1.10 015 095 154
ST 1.09 1.05 1.12 1.06 0.12 094 145
CRM* SRS 0957 0955 0959 0958 0.007 00940 0968

SSI 0.956 0.954 0.958 0.955 0.006 0943 0.965
ST 0.959 0.957 0.961 0959  0.007 0945 0972

SMSEP* SRS 1.12 1.10 1.14 1.12 0.07 0.98 1.29
SSI 1.15 1.12 1.17 1.14 0.08 0.93 1.35
ST 1.04 1.02 1.06 1.04 0.07 0.89 1.23
CRP*® SRS 0.935 0.932 0.937 0.935 0.009 0907 0.952

SSI 0.932 0.929 0.935 0.932 0.010 0908 0.961
ST 0.942 0.939 0.944 0942  0.009 0922 0.960
MSEP*® SRS 16.67 16.44 16.90 16.65 081 15.04 18.62
SSI 16.88 16.59 17.17 16.92 .02 15.06 20.18
ST 16.83 16.56 17.10 16.93 094 1488 1838

MAEP*® SRS 3.21 3.18 3.23 3.19 0.09 3.06 3.44
SSI 3.22 3.19 325 323 0.10 3.05 347
ST 3.17 3.15 3.20 3.17 0.10 2.94 3.35
MEAN (sample) SRS 66.69 66.12 67.26 67.10 201 6277 7050

SSI 66.55 65.96 67.15 66.68 2.09 6283 70.72
ST 65.93 65.38 66.48 66.18 1.93  60.90 70.94
MEAN (model) SRS 61.79 61.20 62.37 62.38 207 5798 6524
SSI 61.63 61.06 62.20 61.79 2.00 5841 66.52
ST 60.81 60.15 61.48 60.97 235 5430 6548

'The statistics are based on 50 simulations of each sampling design.

>The lower and upper confidence bound were constructed using a t-distribution,
tozs, 49 = 2.31.

SD = standard deviation, R? = coefficient of determination obtained from 3SLS, G-
statistic = the total variability of the mean response accounted by 3SLS + RT, SMSEM =
standardized mean square error of the model, CRM = confidence coverage rates of the
mean response, SMSEP = standardized mean square error of prediction, CRP =
confidence coverage rates of prediction, MSEP = mean square error of the mean
response, MAEP = mean absolute error of prediction.
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Figure 17. Box plots comparing model statistics for simple random sampling (SRS),
systematic random sampling (SSI), and stratified random sampling (ST) using a sample
size of 500 and 1100. The letter below the plots indicates a pair-wise comparison among
the sampling designs using MRPP (R* = proportion of the observed variability accounted
for by the ordinary least square model, G = proportion of the observed variability
accounted for by the ordinary least square model plus the binary regression tree, SMSEP

= standardized mean square error of the prediction, CRP = prediction coverage rate).
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comparisons of MRPP indicated significant differences between the stratified and simple
random designs (p-value < 0.001) and the stratified and systematic designs (p-value <
0.001) (Figure 17). MRPP also suggested that SRS and SSI were not significantly
different for the two sample sizes (n = 500, p-value = 0.39; n= 1100, p-value = 0.21).

The average CRM’s for the two sample sizes and the three sampling designs were
significantly different from the nominal 0.95 level based on a two-tailed #-test (Table 5
and 6). However, the sample size of 1100 provided a coverage rate (CRM) closer to the
nominal 0.95 rate. MRPP suggested that all sampling designs were not significantly
different for the sample size of 500 (p-value = 0.36) and 1100 (p-value = 0.11) (Figure
18). Unlike CRM, the stratified design with a sample size of 500 resulted in an average
CRP of 0.951 which was not significantly different from the nominal 0.95 rate (Table 5).
Comparing the averaged CRP’s obtained using a sample size of 1100, the stratified
design yielded the closest value (0.942) to 0.95. MRPP also indicated that CRP’s
associated with the stratified design were significantly different from the simple random
(p-value = 0.004) and systematic (p-value = 0.04) designs for the sample size of 500
(Figure 17). For a sample size of 1100, CRP’s associated with the stratified design were
significantly different from those for the simple random (p-value < 0.001) and systematic
(p -value < 0.001) designs (Figure 17).

With respect to MSEP and MAEP, all three sampling designs provided similar
results (Table 5 and 6) for both sample sizes. The stratified design provided a smaller

MSEP and MAEP, especially with the smaller sample size. MRPP also confirmed that
there was no significant difference among three sampling designs and sample sizes

(Figure 18).
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Figure 18. Box plots comparing model statistics for simple random sampling (SRS),

systematic random sampling (SSI), and stratified random sampling (ST) using a sample

size of 500 and 1100. The letter below the plots indicates a pair-wise comparison among

the sampling designs using MRPP (SMSEM = standardize mean square error of the

model, CRM = confidence coverage rate of the model, MSEP = prediction mean square

error, MAEP = mean absolute error of prediction).
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Reliable estimates of the population mean were obtained from the three sampling
designs and two sample sizes. Based on a two-tailed #-test, the sample means were not
significantly different from the simulated population mean (a = 0.05) for both sample
sizes (Table 5 and 6). MRPP indicated no differences among the means for the three
sampling designs and two sample sizes (Figure 18).

Estimated population means obtained from the spatial models were significantly
lower than the true population mean (Table S and 6). All three sampling designs
systematically underestimated the population means by approximately S tones/ha for both
sample sizes. This bias is due to the process used in creating hypothetical surface of
biomass. Table 7 provides evidence that the hypothetical surface used in this study had
larger amounts of biomass than the original biomass surface with respect to the three
climatic zones, or the state as a whole. The process of adding the random noise and
truncating negative estimates of biomass to zero resulted in a higher proportion of pixels
with zero biomass, while pixels with a positive biomass increased. The net effect was to
increase the average biomass for the state by 3.8 tones/ha. The range and the mean of
hypothetical surface also suggested that many extreme values of biomass were introduced
into the surface. As a result, the sample data over-sampled areas with little to no biomass
and under-sampled area with high biomass resulting in a systematic bias in the estimates.

In spite of this systematic bias, it does not detract from the results presented in this study.
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Table 7. Comparison of the original biomass surface to the hypothetical biomass surface.

Climatic Pixels with Pixels with Range Range
Zone Biomass > 0 (%) Biomass >0 (%) (tones/ha) (tones/ha)

Original Biomass Surface

Semi-arid 1.89 16.63 621.19 45.20
Temperate 2.12 56.42 699.96 59.01
Tropical 0.37 22.58 708.41 86.16
Entire State 4.38 95.62 708.41 62.66

Hypothetical Biomass Surface

Semi-arid 4.64 13.88 681.00 50.64
Temperate 10.84 47.69 779.41 62.99
Tropical 2.34 20.60 827.74 88.28
Entire State 17.83 82.17 827.74 66.46
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Comparing Predicted Biomass Surfaces

The final surfaces of predicted forest tree biomass were created based on models
developed from data obtained using three different sampling designs and two sample sizes.
To facilitate comparison, models were selected with similar R? values and G-statistic. The
means and associated mean square errors for the three sampling designs are summarized in
Table 8 by climatic zones. In general, the systematic design tended to produce reliable
estimate of the mean biomass for the semi-arid and temperate zone, while the stratified
design provided more reliable estimates of the mean biomass in the temperate and tropical
zone. However, the spatial model based on the stratified design was best in terms of the
MSE.

Figure 19 and 20 shows the distribution of errors (truth — predicted) throughout
the state for the two sample sizes. Negative values indicate an overestimation of biomass
while positive values indicate an underestimation. The three sampling designs displayed
similar trends of underestimation in the tropical zones which are characterized as having
high biomass. However, the underestimation of biomass was generally confined to small
areas when using the stratified design. In the semi-arid and temperate zone, the stratified

design overestimated less when compared to the other two designs.
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Table 8. Summary statistics for the final predictive surfaces of biomass (tones/ha) based
on simple random sample (SRS), systematic sampling (SSI), and stratified random

sampling (ST) using a sample size of 500 and 1100.

Climatic Zone

Sampling Sample
Designs Statistics  Size R* G°®  Semi-arid Temperate Tropical
SRS Mean 500 0.500 0.759 41.88 55.58 74.67
MSE*® 500 3182.62 3859.95 6668.99
SS1 Mean 500 0.502 0.760 50.22 57.95 64.77
MSE 500 3116.57 3944.19 6835.96
ST Mean 500 0.526 0.759 42.48 53.89 83.47
MSE 500 2714.11 3266.19  6085.39
SRS Mean 1100 0480 0.762 42.64 60.33 74.48
MSE 1100 7096.35 8510.59 7062.07
SSI Mean 1100 0475 0.761 52.17 60.64 79.02
MSE 1100 4129.71 4791.41 4502.07
ST Mean 1100 0.487 0.761 46.35 59.95 75.89
MSE 1100 2842.53 3542.11 2866.42
Population Mean (tones/ha) 50.64 62.99 88.28
Number of Pixels 9578434 30281203 11868912

*MSE = mean square error of the difference between the hypothetical surface and the
predictive surface of biomass, R?= propdrtion of the observed variability accounted for
by the ordinary least square model, G = proportion of the observed variability accounted

for by the ordinary least square model plus the binary regression tree.
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DISCUSSION

In this study, three sampling designs were evaluated in terms of developing a
model to describe the spatial distribution of forest tree biomass in the State of Jalisco,
Mexico. Model evaluation indicated that stratifying the population based on the spectral
properties of the vegetation produced a better model than if this information was ignored
when designing the survey. All three sampling designs provided unbiased estimates of
the variance for the two sample sizes evaluated.

Both the simple random and systematic designs allocated samples proportional to
the size of the spectral classes resulting in some spectral classes being under-sampled and
other over-sampled. Thus, these two designs may not be capturing the extent of the
spectral variability in the population. This is especially true for the forest types that occur
along the ridge tops in the western portion of the state. By allocating the sample
uniformly across all spectral classes, the stratified design was able to capture more of the
variability in the landscape for the same sampling effort when compared to the simple
random and systematic design. With a sample size of 500 and 1100, the simulation study
suggested that on the average the stratified design represented 12 to 14 out of 15 vegetation
classes that occurred in the state, compared to 10 and 11 vegetation classes for the simple
random and systematic designs, respectively.

While the spatial models produced biased estimates of the mean biomass, this was
attributed primarily to the method used in adding the random noise and does not detract
from the results obtained in this study. It should be pointed out that this systematic bias

was not present in the original forest tree biomass model developed by Reich et al. (2008).
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The agreement between the sample mean from the state-wide inventory (55.18 tones/ha)
and the spattal model (56.10 tones/ha) were consistent with one another.

Stevens and Olsen (2004) and Stevens (2006) suggested that a systematic sample
tends to spatially balance sample locations throughout a large spatial domain and
therefore should potentially provide better statistical estimates. However, the results of
this study indicated that both systematic and simple random sampling behaved the same
in terms of their predictive performance. The results also suggested that the stratified
design provided the best estimates of forest tree biomass.

Very few studies have compared methods of modeling spatial data over large
geographical regions in which the data lacks strong spatial dependency. In some
situations, a geostatistical model such as kriging suggests ways to allocate the samples in
order to capture the spatial dependency in the data. Most studies dealing with natural
resources (e.g., Pettitt and Mcbarney 1993, Papritz and Webster 1995, Brus and De
Gruijter 1997, Jardim and Ribeiro 2007) pay little to no attention on how to collect the
sample data for developing a predictive model. Thus, direct comparisons of the results of
this study to other studies are not applicable. However the results from this study agreed
somewhat with a study by Paprttz and Webster (1995). The authors pointed out that with
a limited sample size, stratified random samples provided accurate and precise estimates

of soil attributes when applying kriging.
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CONCLUSION

Digital mapping of natural resource is important for decision making and
management of ecosystems and natural resources. The spatial distribution of natural
resource attributes can be developed using reliable spatial modeling techniques.
Numerous sampling strategies have been suggested by research scientists to collect
spatial data to develop such models. The results of this study provide evidence that the
allocation of sample units based on spectral variability of the landscape could improve
the predictive performance of certain types of spatial models. The use of satellite
imagery provides detailed information on the spatial variability on the variable of interest
throughout the landscape. The use of a stratified design based on prior knowledge of the
spectral variability of the population of interest should increase the accuracy and
precision of the statistical estimates of the population. The approach advocated in this
study could benefit research scientists as well as managers interested in studying a variety

of natural resources phenomenon that occur over large geographical regions.
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CHAPTER 3: OPTIMAL PLOT SIZE FOR ESTIMATING TREE BASAL AREA,
TREE DENSITY AND SPECIES ABUNDANCE FOR A SEASONAL DRY

EVERGREEN FOREST IN THAILAND

ABSTRACT

No specific plot size is optimal for estimating all variables of interest in a forest
inventory. Finding an optimal plot size is critical in designing a cost efficient forest
inventory. This study focused on how plot size and sampling intensity influenced
estimates of tree basal area, tree density and number of tree species in a seasonal dry
evergreen forest in Thailand. The data used in the study comes from a mapped 50 ha plot
in which the location, size and species of all trees with a DBH > 1 cm were known. The
results of a simulation study indicated that plots ranging in size from 5 m x 5 m to 50 m x
50 m provided unbiased estimates of basal area and tree density irrespective of the
sampling intensity. Nonparametric estimator of the total number of tree species provided
reliable estimates when using a large number of small plots. Equations are presented to
express the total time, or cost associated with estimation basal area/ha, tree/ha, and
number of tree species as a function of plot size. These equations are used to estimate
optimal plot size for different tract sizes, coefficient of variations and percent sampling
errors. Increasing the variability within a population decreased the optimal plot size,
while increasing the allowable error increased the Optimal plot size. Larger tract sizes
required a fewer number of larger plot sizes to minimize the increased cost associated

with travel time.
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INTRODUCTION

Uneven-aged stands of tropical forests are diverse in both species composition
and their structure. Because of this diversity, it is not straightforward on how best to
sample these forests to obtain reliable estimates of things such as timber volume, basal
area, tree density or even the number of tree species. One critical aspect of this is the
selection of a plot size, and is one plot size optimal for all conditions. The goal of any
survey is to make an inference about a population based on a representative sample
selected from the population. Should one use many small plots or a few large plots? The
answer to this question is not straightforward, and needs to be addressed to ensure the
most efficient use of the resources available.

Seasonal dry evergreen forests in Thailand are one of the most valuable forest
type. This forest type contributes not only to the socio-economic well-being of the local
Thai people but is also a crucial component of the tropical ecosystem. Due to rapidly
decreasing landbase associated with this forest type, numerous studies (e.g., Baker 1997
and 2001, Bunyavejchewin 1986 and 1999, Bunyavejchewin et al. 2001) have been
conducted to understand its ecological function and process. Unfortunately, previous
studies have rarely focused on the most efficient method of collecting this type of
information. In many situations, the size of the plots chosen are based on the preference
of the researchers and/or because of a traditional protocol without any scientific support.
Obviously, finding the most appropriate plot size with respect to plot measurement time
and travel time has never been attempted in a seasonal dry evergreen forest in Thailand.

Thus, the main objectives of this study are:
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1) evaluate the influence of plot size on the statistical properties of estimates of tree
basal area, tree density and number of tree species in a seasonal dry evergreen
forest, and

2) develop a set of equations to estimate the total cost of a survey as a function of
plot size, sampling variability and the desired sampling error.

To achieve these goals, a permanent 50 ha plot representing a seasonal dry evergreen

forest in Hua Kha Khaeng (HKK) Wildlife Sanctuary, Thailand, was used in this study.

METHODS

Study Area

Huai Kha Khaeng Wildlife Sanctuary (HKK) is one of the 17 protected areas
forming the Western Forest Complex (WFC) of Thailand. The HKK covers an area of
2780 km? in west central Thailand. The region is characterized by a 5-6 month dry
season extending from November to April. Mean annual rainfall is approximately 1400
mm. Located within this region is one of several large-scale permanent Forest Dynamic
Plots (FDP) which is part of a larger network of permanent plots established under the
guidance of the Center for Tropical Forest Science, Smithsonian Tropical Research
Institute. The HKK permanent plot is 50 ha (500 m x 1000 m) in size and is located at
15°40" N latitude and 99°10" E longitude, about 4 km west of Kapook Kapieng Ranger
Station in the northern part of HKK (Figure 21). The location of the plot was chosen to
represent the climatic conditions of seasonal dry evergreen forests in Southeast Asia.
Elevations on the plot range from 549 m to 638 m. The plot is oriented with the long axis
aligned in the north-south direction (Figure 22) (Bunyavejchewin et al. 1998)
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Figure 21. The permanent 50 ha plot is located in Huai Kha Khaeng (HKK) Wildlife

Sanctuary, western Thailand.
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Tree Census

The FDP census was conducted in 1994. All tree standing woody plants with a
DBH (diameter at breast height) greater than 1 cm measured 1.30 m above ground, were
tagged and mapped following a standard protocol (Manokaran et al. 1990, Condit 1998,
and Bunyavejchewin et al. 2001). Estimates of basal area‘/ha and number of trees/ha were
based on trees with a DBH grater than 10 cm while the total number of tree species was
based on all trees with a DBH greater than 1 cm.

The floristic structure of the HKK FDP was documented by Bunyavejchewin
(2001). The plot contained 248 species of 164 genera and 61 families. The five most
common families in terms of tree basal area were Dipterocarpaceae (21.95%),
Annonaceae (19.36%), Lauraceae (7.81%), Euphorbiaceae (4.13%), and Sapindaceae
(5.53%) respectively. Annonaceae (20.87%), Eurphorbiaceae (18.95%), Sapindaceae
(12.30%), Rubiaceae (6.09) and Lauraceae (5.69%) were the five most abundant families
based on tree density. The five most diverse families included Euphobiaceae (12.08%),
Moraceae (7.00%), Leguminoseae (6.23%), Rubiaceae (5.06%), and Sapindaceae
(4.28%) respectively. Seven species of Dipterocarpaceae forming the upper canopy and
emergent layers included Anisoptera costata, Dipterocarpus alatus, D. obtusifolius,

Hopea odorata, Shorea siamensis, S, roxburghii and Vatica cinerea.

Plot Configuration

Five plot sizes were evaluated in this study: Smx 5 m, 10 m x 10 m, 20 m x 20 m,
25 m X 25 m, and 50 m x 50 m. The 50 ha plot was sub-divided into N = 20000, 5000,

1250, 800 and 200 non-overlapping disjoint region corresponding to the five plot sizes,

100



respectively. To facilitate comparison among the various plot sizes, the proportion of the
50 ha plot sampled was fixed at 0.5%, 1.0%, 2.0%, 5.0%, 10.0%, and 15.0%. Sample sizes

associated with the various plot sizes and sample intensities are summarized in Table 9.

Simulation Study

For a given plot size and sample intensity, a random sample of n plots were
selected without replacement to obtain estimates of basal area per ha, trees/ha and

number of tree species. Estimates of the mean ( y ) basal area/ha and trees/ha were

computed as follows:

I
y=—>y, (45)

an -

with estimated variance:

P(3) =[N];"]G) s; (46)

- =2
where, y, is the i observation, s* = —’Z:‘:L::Ii is the sample variance and a is the plot
size in hectares (Cochran 1977).

Estimating the number of tree species in the population is not as simple as just
counting the number of species on the sample plots or calculating an arithmetic mean as
in the case of estimating basal area/ha or number of trees/ha. Bunge and Fitzpatrick
(1993, 1995), Chao and Lee (1992), and Schreuder et al. (1999) presented some useful
nonparametric estimators for estimating the total number of tree species in temperate
forest in the U.S. using field data. In this study, the applicability of these nonparametric

estimators were calculated for use in the tropical forests of Thailand.
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Table 9. Sample sizes associated with the different sampling intensity and plot sizes.

Plot Size (m x m)

Sampling Intensity (%)

0.5 1.0 2.0 5.0 10.0 15.0

5x5 100 200 400 1000 2000 3000
10x 10 25 50 100 250 500 750
20x 20 13 25 63 125 188
25x25 4 16 40 80 120
50 x 50 - 2 4 10 20 30
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Nonparametric estimators evaluated in this study were

cS

CCOVf = “ein’ (47)
CM2f =c, + fcl I(2c,), (48)
e falev)
CM37 fl—cl/n+1—c1/n’ 4
CPLf = % 50
1- fexp(-2¢,/¢,)’ (°0)
cmBf = ¢ + =Vl 51)
n

where ¢, is the total number of species counted on the sample plots, ¢, is the

number of species occurring only once, ¢, is the number of species occurring twice,

) _
T, = —2 (100) is the percentage of plots species sp occurred on, f = ( NN n) isa
n

finite population correction factor (fpc), and

2., = 2)" e, = 1)

2
cv .5
T

,with #=Y"7_ /¢, (52)

If one is sampling an infinitely large population, one can ignore the finite population
correction factor. The nonparametric estimators were evaluated with and without the fpc.
In selecting an estimator, it is desirable to have one that does not overestimate the true
number of tree species on the 50 ha plot and should be as close to the true value as
possible.

Since no valid formula is available for calculating the variance associated with

these nonparametric estimators, a bootstrap procedure was used to estimate the sample
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variance (Smith and Belle 1984, Efron and Tibshirana 1994, Shao and Tu 1995, Manly
1998). Two-hundred interactions were used to estimate the sample variances associated
with the nonparametric estimators.

To evaluate the statistical properties of the nonparametric estimators for
estimating the number of tree species, Monte Carlo simulation (Fishman 1995) were used
to sample the 50 ha pldt M =20000 times for the 5 m x 5 m plot size and M = 50000

times for all other plot sizes. An overall sample mean ( 4 ) for the M simulations was

calculated as

Mk

:[‘: Yi. (53)

1
e

I
LN

where ¥, is the sample mean for the i™ simulation. The bias of the estimator was

computed as follows:

Mz

1 —
Miyi H

i
—_

Bias (%) = 100 (54)

U

where u is the true number of tree species on the 50 ha plot. To asses any bias

associated with estimating the sample variance, the mean variance

A 1 & ..
V() =—>V (). (55)
M3
and the variance of the means
L 2
D - A)
s; = —. 56
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were computed. This latter variance was assumed to be an estimate of the true variance.
An F-test was used to test if the ratio of these two variances differed significantly from

one.

Optimal Plot Size

In practice, most surveys are constrained by a fixed budget limiting the number of
sample plots that can be established and measured. In some instances, one has the
opportunity to design a survey using a plot size that will minimize the total cost of the
survey and still maintain the desired level of precision.

The total time of a survey for a given tract size can be described as a function of
the average travel time between plots, the average plot measurement time and number of
sample plots as follows:

T, =n(v,+m,) (57)
where T, is the total time of the survey using a plot of size Q,, », is the sample size for a
plot of size Q;, v, is the average travel time between plots, and m, is the average

measurement time for a plot of size Q,. Gambill et al. (1985) demonstrated the

procedure of determining an optimal plot size using fixed-area plot while Reich and
Arvantis (1992) used the same procedure for variable plot sampling. For an infinitely

large population one can calculate the sample size using the follow formula:

Ccvir?
I’ll- = E2

(58)

where, CV; is the coefficient of variation associated with a plot of size Q,, ¢ is the

Student’s t value and E is the allowable sampling error (%).
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The coefficient of variation generally decreases with increasing plot size, thus
requiring fewer samples to achieve the same percent sampling error. The relationship

between the coefficient of variation and plot size can be expressed as follows:

CV, = kQs (59)

where cand k are constants. Reich and Arvantis (1992) noted that the ¢ parameter
indicates the degree of randomness for a given forest stand characteristic.

A c- coefficient of 0.5 suggested that the variable of interest is randomly distributed. If
c is smaller than 0.5, then sampling variability will increase faster than a random
population. This implies that the variable of ipterest is aggregated. A c- coefficient

greater than 0.5 implies that the variable of interest has a regular distribution.

To express the relationship in how the coefficient of variation changes with a
change in plot size, consider the follow ratio: where the subscripts 7 and ; link the plot

size Q to its coefficient of variation CV:

v, _9r
v, g

(60)
Rearranging this equation, one can develop a relationship describing how a change in plot
size changes the coefficient of variation:
CKZCVJ[&]. 61
Qs
J
Substituting this relationship into Eq. 58, and simplifying, the formula for sample size

becomes

n, = QX (62)

106



2 2
£V

where @= o
o

Assuming a systematic sample with a square spacing, the distance between

4 [10000% )
ni

where, W is a target tract size, in ha, and #; is the sample size. The average travel time

sample plots is given by

between plots (sec) is given by
y, =—L (64)

where § is the rate of travel (m/sec). Substituting Eq. 62 and Eq. 63 into this equation, it

is possible to express the rate of travel as a fuction of plot size:

y, = 100 ‘/@ : (65)
O Vo

Gambill et al. (1985) showed that plot measurement time is nonlinearly related to a plot

of size O, as follows

m, = Byz/ (Inz,)" (66)
where B, B, and B, are regression coefficients, z, = Qe ,and e is the base for natural
J
logs (or equivalent to 2.71828). Finally substituting Eq. 62, Eq. 65 and Eq. 66 into Eq.

57, the total time, or cost of a survey for a plot of size (O, can be expressed as follows:

T, =1000,72.0¢ + @0 B,z" (Inz,)" (67)
(47
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To model the relationship between plot measurement time and plot size (Eq. 66),
a series of concentric plots measuring Smx5m, 10 mx 10m, 20 m x 20 m, 25 m x 25 m
and 50 m x 50 m (n = 4 for each plot size) were randomly allocated in the HKK dry
evergreen forest. The time required to estimate basal area/ha, number of trees/ha, and
total number of tree species were recorded for each plot size. The average rate of travel
time was determined by establishing four different routes of 100 m long within the HKK
dry evergreen forest and recording the time required to walk the 100 meters. Routes were
subjectively selected to represent different conditions of accessibility (e.g., amount of
ground cover and slope) in the dry evergreen forest types. To model the relationship
between plot size and the coefficient of variation, 20 concentric plots of size S m x 5 m,
10mx 10 m, 20 m x 20 m, 25 m x 25 m and 50 m x 50 m were randomly located within
the 50 ha plot. For each plot size the coefficient of variation associated with estimating

basal area/ha, trees/ha and number of tree species was estimated.

RESULTS

Basal Area per Hectare

Based on the census of the HKK FDP in 1994, the population mean basal area for
woody trees > 10 cm in DBH was 29.31 m? per ha. In general, all plot sizes irrespective of
the sampling intensity provided unbiased estimates of basal area (Table 10, Figure 23a).
However, the smallest plot size of 5 m x 5 m with a 0.5% sampling intensity (» = 100)
showed the highest bias. The mean variance decreased with increasing sampling intensity
for all plot sizes (Figure 23b). Variances ratios were not significantly different from one,

except for the 50 m x 50 m plot with a 1% sampling intensity (» = 2) (Figure 23c¢).
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Table 10. Influence of plot size and sampling intensity in estimate the mean and variance

of basal area and tree density using Monte Carlo simulations.

Plot Size Sampling Intensity (%)
(m x m) Estimator' 0.5 1 2 5 10 15
Basal Area (m*/ha)
5x5 Mean 29.52 29.30 29.29 29.32 29.32 -

Variance 78.13 36.79 18.35 7.05 3.36 -

10x 10 Mean 29.26 29.35 29.28 29.31 29.31 29.30
Variance 69.52 36.03 17.57 6.88 3.26 2.05

20x20 Mean 29.33 29.29 29.30 29.34 29.32 29.31
Variance 62.43 33.93 17.49 6.76 3.21 2.01

25x25 Mean 29.26 . 29.31 29.29 29.31 29.30 29.31
Variance 70.15 35.80 17.62 6.84 3.24 2.04

50 x 50 Mean - | 29.34 29.33 29.31 29.30 29.30
Variance - 44.70 22.02 8.57 4.03 2.55

Density (trees/ha)
5x5 Mean 439.10 43854 43823 438.40 438.26 -

Variance  1714.62 851.47 421.16 163.32 77.36 -

10x 10 Mean 438.35 43847 43829 43830 43826 438.21
Variance 184520 916.76 45391 175.81 83.29 52.46

20 x 20 Mean 438.26 43822 43828 438.30 43826  438.31
Variance  2284.61 1228.72 630.14 24288 115.75 72.78

25x 25 Mean 438.15  438.65  438.17 43826 438.16 438.29
Variance  3098.22 1535.09 763.20 29574  140.17 88.14

50 x 50 Mean - 438.69 43832  438.32 43836 438.26
Variance - 3225.05 1603.76 62890 296.24 186.61

'Estimated means and variance for the 5 m x 5 m plot was based on 20000 simulations, while

all other estimates were based on 50000 simulations.
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Figure 23. Influence of plot size and sampling intensity on a) percent bias, b) estimated
sample variance, and c) ratio of the mean variance to the variance of means for estimating

basal area per hectare. Significant differences are indicated by a circle.
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Number of Trees per Hectare

The tree density determined from the census data was 438.28 trees/ha. Similar to
basal area/ha, all plot sizes and sampling intensities provided unbiased estimates of tree
density (Table 10 and Figure 24a). Similarly, the estimated variances decreased with
increasing plot size for all sampling intensities (Figure 24b). The 20 m x 20 m plot size with a
0.5% (n=7) and 2% (n = 25) sampling intensity yielded biased estimate of the variance

(Figure 24c).
Number of Tree Species

A total of 244 species were identified on the 50 ha plot. Candidate estimators
were chosen in terms of their accuracy and the fact that they did not overestimate the true
number of tree species. Only two estimators, CM3fand CP1f satisfied these conditions.
Consequently, the results will focus on only these two estimators. Summary statistics for
CM3fand CPIfare given in Table 11.

CM3f: The percent bias associated with CM3f for different plot sizes and
sampling intensities are shown in Table 11 and Figure 25a. Plot sizes and sampling
intensity that yielded biased estimates of the total number of tree species are marked by a
circle. This statistical significance was based on a z-test. In general, small sample sizes
underestimated the number of tree species irrespective of the plot size. Estimates
associated with the S m x 5 m and 10 m x 10 m were unbiased at a sampling intensity of
2% and 5% but were biased with sampling intensities of 10% and 15%. Estimates using
plot sizes of 20 m x 20 m and 25 m x 25 m were unbiased at sampling intensities
exceeding 10%. The 50 m x 50 m plot size underestimated the number of tree species for

all sampling intensities.
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Table 11. Influence of plot size and sampling intensity in estimating the mean and

variance of the number of trees species using Monte Carlo simulations.

Plot Size Sampling Intensity (%)
(m x m) Estimator’ 0.5 1 2 5 10 15
CM3f
5x5§ Mean 113.81 158.74 208.54 270.47 310.13 -
Variance 206.60 336.85 490.34 667.87 749.31 -
10x10 Mean 93.25 139.07 183.89 241.76  279.76  297.73
Variance 50.83 21244 32270 44135 49696  498.73
20x20 Mean 72.59 98.34 138.38  204.07  239.19  256.57
Variance 38.11 40.06 46.14 22031  252.88  253.74
25x 25 Mean 65.92 90.45 123.56 190.18 226.56 243.87
Variance 41.24 40.31 40.09 11497  189.93 188.04
50 x 50 Mean - 81.37 107.36  146.00  181.25  206.10
Variance - 62.64 53.83 42.35 37.14 36.34
CPIf
5x5 Mean 138.33  167.52  193.28  233.23  261.95 -
Variance 1684.02 1695.50 1563.72 1753.45 1776.26 -
10x10 Mean 116.48 16427 190.62  232.15 276.85 272.12
Variance 618.12 1548.83 1516.13 1702.10 2803.80 1542.07
20x20 Mean 80.51 104.31 149.06  230.28 256.01 268.04
Variance 50.64 65.16 27571 1661.49 1530.53 1404.73
25x 25 Mean 75.01 99.98 12932 22329 25534  267.22
Variance 55.55 51.93 62.23 1163.83 1526.43 1357.49
50 x 50 Mean - 93.96 122.65 161.93 194.38 233.48
Variance - 83.55 71.73 53.73 91.22 356.01

'Estimated means and variance for the 5 m x 5 m plot was based on 20000 simulations, while

all other estimates were based on 50000 simulations.
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Variance estimates generally increased with increasing plot sizes for all sampling
intensities (Table 11, Figure 25b). However, the largest plot size (50 m x 50 m) revealed
the opposite trend in that the variance decreased with increasing sampling intensity.
Variance estimates were fairly consistent when the sampling intensity exceeded 5% for
all plot sizes. An F- test for the ratio of variances (Figure 25c), indicated that all
estimates were biased for all sample sizes and sampling intensities. However, the
variance ratios were fairly stable for all plot sizes and sampling intensities.

CPIf: The relationships between the bias of CPIf and sampling intensity (Figure
26a) showed patterns similar to the bias observed for CM3f. In general, small sample
sizes underestimated the number of tree species irrespective of this plot size. Estimates
of the total number of true species were consistent and unbiased when using plot sizes
smaller than 50 m x 50 m and with sampling intensity greater than 5%.

According to Figure 26b, there was more variability associated with estimating
the number of tree species when using CPIf. Compared to CM3f(Table 11 and Figure
26b), for small plot sizes of 5 m xr5 m, 10 m x 10 m, and 20 m x 20 m variance estimates
were consistent with sampling intensity over 2%. The larger plot sizes displayed more
variability than the smaller plot size for all sampling intensity.

The F-test for the ratio of variances indicated that all estimated variances
associated with CP1f were biased (Figure 26¢). The small plot sizes of Sm x 5 mand 10 m
x 10 m clearly showed an overestimation of the true variance at the lower sampling
intensities, while the larger plot sizes tended to overestimate the variance for all sampling

intensities. Comparing the variance ratios obtained from CP1fand CM3f, the study
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found that the estimated variances for CM3f were more consistent than those of CP1f

even though both were biased.
Optimal Plot Size
Coefficients of Variation and Plot Size

The mean and coefficient of variation based on 20 concentric plots are
summarized in Table 12. The relationship between the coefficient of variation and plot
size are depicted in Figure 27. The fitted regression models explained at least 98% of the
variability in the coefficient of variation as a function of plot size (Table 13). In addition,
the c-coefficients were all less than 0.5 (Table 13) implying that the spatial pattern of

these variables was aggregated (Reich and Arvantis 1992).
Plot Measurement Time and Time Traveling

Plot measurement time of tree DBH, number of trees and counting the number of
tree species on each plot size are reported in Table 14. Obviously, identifying tree
species consumed more time than measuring tree DBH or counting trees, particularly for
the larger plot sizes. The parameter estimates for the logarithmic models to predict plot
measurement times for the three variables are shown in Table 15. All three models had
R? values greater than 0.98 indicating a good fit between the measurement time and plot
size.

The average travel time was estimated at 0.733 m/sec based on the four routes
randomly established in the HKK seasonal dry evergreen forest. The four sample routes
covered slopes ranging between 6 and 14 degrees and represented high, moderate and

low amounts of ground cover in this forest type.
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Table 12. Estimated sample means and coefficients of variation (CV) obtained from a

series of concentric plot sizes (n = 20) randomly located in the 50 ha permanent plot.

Basal Area/ha No. of Trees/ha  No. of Tree Species

Plot Size  Plot Area Mean Cv Mean CvV Mean Cv
(mxm) (mxm) (mz/ha) (%) (trees/ha) (%) (species) (%)

5x5 0.0025 28.11 168.69 480 88.03 1.05 84.48
10x 10 0.0100 23.46 88.49 440 46.87 3.75 48.07
20x 20 0.0400 26.27 52.78 450 32.19 11.35 28.05
25x 2§ 0.0625 2549 37.58 449 27.63 15.10 21.26
50 x S0 0.2500 30.13 25.79 460 17.88  35.80 15.79
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Table 13. Estimates of the c-coefficients and associated R? values for the logarithmic

models describing the relationship between coefficient of variation and plot size.

Variables Sample Size c-coefficient R?

Basal Area per ha 20 -0.415 0.989
No. of Trees per ha 20 -0.338 0.990
No. of Tree Species 20 -0.376 0.985
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Table 14. Plot measurement time of three stand characteristics for different plot sizes

established in the HKK seasonal dry evergreen forest.

Plot Size Plot Area Sample Counting Counting DBH
(m x m) (ha) Size Trees (sec) Species (sec) Measurement (sec)
5x5 0.0025 4 101 123 111
10x10 0.01 4 179 264 217
20x 20 0.04 4 480 819 635
25x 25 0.0625 4 594 1124 836
50 x 50 0.25 4 4331 6454 5300
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Table 15. Estimated regression coefficients and R* values for the logarithmic models for

estimating plot measuring time as a function of plot size.

Variables Sample Size R By B, B

Basal Area per ha 5 0.996 3.26 1.48 -1.80
No. of Trees per ha 5 0.984 3.09 1.58 -2.14
No. of Tree Species 5 0.995 3.43 1.41 -1.52
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Computing Optimal Plot Sizes

Using the relationship developed in the previous section, Eq. 23 was solved to
identify the optimal plot size that minimized the total time required to estimate basal
area/ha, trees/ha or counting the number of tree species on the sample plots. The
following sections describe how the optimal plot size changes for each of theses variables
assuming different tract sizes, the desired percent sampling error and coefficient of
variation.

Optimal plot size for basal area per hectare

Assume a preliminary sample using a 5 m x 5 m plot size had a coefficient of
variation of 100% in a 12500 ha stand. If the rate of travel is 0.733 m/sec and the desired
percent sampling is 15% at the 0.95 level of confidence, the equation expressing the total

time of a survey to estimate basal area/ha is given by:

T, =10419.259330;'** +3.867199Q, >z ** (Inz,) ' **°.  (24)

Solving this equation iteratively for different plot sizes ( Q,), it is found that n = 2 plots

measuring 76 m x 76 m would minimize the total cost of the survey for estimating basal
area with a 15% sampling error at the 0.95 level of confidence

Table 16 and Figure 28 summarize how the optimal plot and associated sample
size changes for different tract size (W), percent sampling errors (F) and initial coefficient
of variations (CV}) for a 5 m x 5 m sample plot.

For a given coefficient of variation for a 5 m x 5 m plot as the desired allowable
error decreased the required sample size increased, thus requiring smaller plot sizes in

order to minimize the total cost of the survey. Likewise as the variability associated with
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Table 16. Optimal plot sizes and associated sample size for estimating basal area that

minimize the total cost of the survey.

Optimal Plot Size (m x m)
Tract Size CVZ (%)
(ha) E' (%) 25 50 75 100 125 150 175
100 5 248 187 165 154 14.7 14.2 13.9
100 10 349 248 209 187 17.4 16.5 15.8
100 15 433 302 248 219 200 187 17.8
100 20 506 349 285 248 225 209 19.6
500 5 370 262 218 195 18.0 17.0 16.3
500 10 53.8 37.0 30.1 262 236 21.8 205
500 15 672 460 37.0 319 286 262 244
500 20 78.8 538 432 37.0 330  30. 27.9
2500 5 572 393 318 276 248 229 214
2500 10 83.8 572 458 393 349 318 295
2500 15 1049 715 572 489 433 393 362
2500 20 123.0 838 670 572 506 458 422
12500 5 892 608 48.7 417 370 33.7 311
12500 10 1309 892 712 60.8 538 487 4438
12500 15 163.7 1116 892 760 672 608 558
12500 20 191.7 1309 1046 892 788 712 654
Optimal Sample Size (plots)
Tract Size CV (%)
(ha) E (%) 25 50 75 100 125 150 175
100 5 7 43 120 239 402 611 864
100 10 2 7 21 43 76 120 174
100 15 2 3 7 15 27 43 64
100 20 2 2 4 7 13 21 31
500 5 4 25 75 161 286 453 662
500 10 2 4 12 25 46 75 114
500 15 2 2 4 8 15 25 38
500 20 2 2 2 4 7 12 17
2500 5 2 13 41 91 168 277 421
2500 10 2 2 6 13 24 41 63
2500 15 2 2 2 4 8 13 20
2500 20 2 2 2 2 4 6 9
12500 5 2 7 20 46 87 146 227
12500 10 2 2 3 7 12 20 31
12500 15 2 2 2 2 4 7 10
12500 20 2 2 2 2 2 3 5

'E is an allowable sampling error. *CV is a coefficient of variation.

Note: The student’s t value of 1.96 (a = 0.05) was used to determined an optimal plot size.
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the initial sample increased, the required number of sample required to achieve the
desired allowable error increased thus requiring smaller sample plots to offset the
increased cost associated with measuring more plots. As the size of the area being
surveyed increased, the distance between samples increased thereby requiring larger

sample plots to offset the increased travel time.

Optimal plot sizes for tree density

Assume a preliminary sample using a S m x 5 m plot size had a coefficient of
variation of 100% in a 12500 ha stand. If the rate of travel is 0.733 m/sec and the desired
percent sampling is 15% at the 0.95 level of confidence, the equation expressing the total

time of a survey to estimate tree density is given by:

Tvi — 16477632 1 9Qi-0.33830 + 9. 1 601 8Qi-0.676602i1.57548 (ln z, )-2.14059

Solving this equation iteratively for different plot sizes ( Q,), it is found that n = 8 plots

measuring 50.4 m x 50.4 m would minimize the total cost of the survey for estimating
tree density with a 15% sampling error at the 0.95 level of confidence

Table 17 and Figure 29 summarize how the optimal plot and associated sample
size changes for different tract size (W), percent sampling errors () and initial coefficient
of variations (CV}) for a 5 m x 5 m sample plot.

For a given coefficient of variation for a S m x 5 m plot as the desired allowable
error decreased the required sample size increased, thus requiring smaller plot sizes in
order to minimize the total éost of the survey. Likewise as the variability associated with
the initial sample increased, the required number of sample required to achieve the

desired allowable error increased thus requiring smaller sample plots to offset the
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Table 17. Optimal plot sizes and associated sample size for estimating tree density that

minimize the total cost of the survey.

Optimal Plot Size (m x m)
Tract Size CV? (%)
(ha) E'(%) 25 50 75 100 125 150 175
100 5 18.0 140 126 11.9 11.5 11.2 11.0
100 10 246 180 154 14.0 13.2 12.6 12.2
100 15 30,0 215 18.0 16.1 14.8 14.0 13.4
100 20 347 246 204 18.0 16.5 15.4 14.6
500 5 260 18.8 16.0 14.5 13.6 13.0 12.5
500 10 36.7 260 214 18.8 17.2 16.0 15.2
500 15 450 31.7 260 226 20.4 18.8 17.7
500 20 521 367 299 260 233 21.4 20.0
2500 5 388 274 226 19.8 18.0 16.7 15.8
2500 10 551 388 316 274 24.6 22.6 21.0
2500 15 676 476 388 336 30.0 27.4 254
2500 20 78.1 551 449 388 34.7 31.6 29.3
12500 5 583 41.0 335 290 26.0 23.8 22.1
12500 10 82.6 583 475 410 36.7 33.5 31.0
12500 15 101.2 715 583 504 45.0 41.0 38.0
12500 20 1167 826 674 583 52.1 47.5 43.9
Optimal Sample Size (plots)
Tract Size , CV (%)

(ha) E (%) 25 S0 75 100 125 150 175

100 5 18 96 248 475 7175 1158 1611
100 10 3 18 48 96 162 248 352
100 15 2 6 18 36 62 96 138
100 20 2 3 9 18 30 48 70
500 5 11 64 179 365 623 953 1364
500 10 2 11 31 64 114 179 263
500 15 2 4 11 23 40 64 95
500 20 2 2 5 11 19 31 46
2500 5 7 39 113 239 426 676 994
2500 10 2 7 18 39 70 113 169
2500 15 2 3 7 13 24 39 58
2500 20 2 2 3 7 11 18 27
12500 5 4 23 67 143 259 419 630
12500 10 2 4 11 23 41 67 100
12500 15 2 2 4 8 14 23 34
12500 20 2 2 2 4 7 11 16

'E is an allowable sampling error. 2CV is a coefficient of variation.

Note: The student’s t value of 1.96 (a = 0.05) was used to determined an optimal plot size.
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Figure 29. The relationship between optimal plot size and coefficient of variation for
different tract sizes (a = 100 ha, b = 500 ha, ¢ = 2500 ha and d = 12500 ha) and percent

sampling errors to estimate tree density.
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increased cost associated with measuring more plots. As the size of the area being
surveyed increased, the distance between samples increased thereby required larger

sample plots to offset the increased travel time.

Optimal plot sizes of total tree species

Assume a preliminary sample using a 5 m x 5 m plot size had a coefficient of
variation of 100% in a 12500 ha stand. If the rate of travel is 0.733 m/sec and the desired
percent sampling is 15% at the 0.95 level of confidence, the equation expressing the total

time of a survey to estimate the total number of tree species is given by:

T;- — 13 153 -98794Qi-0.37590 + 6.477655Qi-0.75182}.40524 (ln Zi )—1.51607

Solving this equation iteratively for different plot sizes (Q,), it is found that n = 5 plots

measuring 53 m x 53 m would minimize the total cost of the survey for estimating the
total number of tree species with a 15% sampling error at the 0.95 level of confidence

Table 18 and Figure 30 summarize how the optimal plot and associated sample
size changes for different tract size (), percent sampling errors (£) and initial coefficient
of variations (C¥}) for a 5 m x 5 m sample plot.

For a given coefficient of variation for a 5 m x 5 m plot as the desired allowable
error decreased the required sample size increased, thus requiring smaller plot sizes in
order to minimize the total cost of the survey. Likewise as the variability associated with
the initial sample increased, the required number of sample required to achieve the
desired allowable error increased thus requiring smaller sample plots to offset the
increased cost associated with measuring more plots. As the size of the area being

surveyed increased, the distance between samples increased thereby required larger
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Table 18. Optimal plot sizes and associated sample size for estimating the total number of

tree species that minimize the total cost of the survey.

Optimal Plot Size (m x m)
Tract Size CV? (%)
(ha) E' (%) 25 50 75 100 125 150 175
100 5 173 135 122 11.5 11.1 10.9 10.7
100 10 24.1 17.3 14.8 13.5 12.7 12.2 11.8
100 15 299 209 173 15.4 14.2 13.5 12.9
100 20 35.0 24.1 19.7 17.3 15.8 14.8 14.0
500 5 256 182 154 13.9 13.0 12.4 12.0
500 10 373 256 208 18.2 16.6 154 14.6
500 15 46.8 31.8 25.6 22.1 19.8 18.2 17.0
500 20 55.0 373 298 25.6 22.8 20.8 19.3
2500 5 39.6 27.1 220 19.2 17.3 16.1 15.2
2500 10 58.6 396 31.7 27.1 24.1 22.0 20.4
2500 15 73.8 498 396 33.8 29.9 27.1 25.0
2500 20 86.8 586 46.6 39.6 35.0 31.7 29.1
12500 5 624 422  33.7 28.8 25.6 23.3 21.5
12500 10 92,5 624 49.6 42.2 37.3 33.7 31.0
12500 15 1164 786 624 53.0 46.8 42.2 38.7
12500 20 1369 925 735 62.4 55.0 49.6 455
Optimal Sample Size (plots)
Tract Size CV (%)
(ha) E (%) 25 50 75 100 125 150 175
100 5 15 87 228 440 721 1,077 1,504
100 10 3 15 43 87 148 228 324
100 15 2 5 15 32 56 87 126
100 20 2 3 7 15 27 43 63
500 5 9 56 160 330 569 878 1,256
500 10 2 9 26 56 100 160 236
500 15 2 3 9 19 34 56 83
500 20 2 2 4 9 16 26 39
2500 5 5 31 94 204 371 598 888
2500 10 2 5 14 31 57 94 143
2500 15 2 2 5 10 19 31 47
2500 20 2 2 2 5 9 14 21
12500 5 3 16 50 111 207 343 524
12500 10 2 3 7 16 30 50 76
12500 15 2 2 3 5 10 16 25
12500 20 2 2 2 3 5 7 11

'E is an allowable sampling error.

2CV is a coefficient of variation.

Note: The student’s t value of 1.96 (a = 0.05) was used to determined an optimal plot size.
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Figure 30. The relationship between optimal plot size and coefficient of variation for
different tract sizes (a = 100 ha, b =500 ha, ¢ = 2500 ha and d = 12500 ha) and percent

sampling errors to estimate the total number of tree species.
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sample plots to offset the increased travel time.

DISCUSSION

A simulation study was carried out using a 50 ha permanent plot located in the
Huai Kha Kheang Wildlife Sanctuary in western Thailand. While it may have been
desirable to replicate this study using additional permanent plots, this plot is the only one
available in Thailand representing the forest structure and species compositions of
seasonal dry evergreen forests in Thailand. This limitation should not detract from the
results presented in this study.

The results of this study confirmed that estimated means and sample variances for
basal area’ha and trees/ha were unbiased for all plot sizes and sampling intensities
evaluated in this study. For estimating the number of tree species, the nonparametric
estimators CM3f and CPIfprovided unbiased estimates when using small plot sizes with
large sample sizes. For all plot sizes and sampling intensities, both estimators provided
biased estimates of the sample variance. However, CM3f yielded more consistent
variance estimates across all plot sizes and sampling intensities. In general, variance
estimates for all three variables were consistent when the sampling intensity exceeds 2%.
The variance estimates associated with estimating the number of tree species agreed with
the study by Kenkel and Podani (1991) in Central Canada. The authors found that the
efficiency in estimating the variance can be improved by using larger plot sizes. For
predicting the number of tree species, the results of this study suggest that using large
plot sizes tends to underestimate the total number of tree species and provide less
efficient estimates of the variance for both CM3fand CPIf.
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In practice, the design of a forest survey is limited by the cost which influences
the number of sample plots that can be established of a given size. The spatial pattern of
the variable being measured directly affects the variability in the population. Thus, in
order to design the most cost efficient survey it is important to select an optimal plot size
that will yield the most cost efficient estimate at minimal cost. However, in selecting an
optimal plot size, one must take consideration not only the time required to measure the
plot but also the travel time. The results of this study indicated an inverse relationship
between plot size and sample size. For example, if it were required to use a larger sample
size in order to achieve specified allowable error, one would be required to use a larger
number of smaller plots to compensate for the increased cost associated with measuring
more plots. Similar trends were observed between plot size and sample size as the
variability in the population changed as well as the size of the population being surveyed.

Based on the results of this study, plot size and sampling intensity did not
influence the reliability of the statistical estimates for basal arca and tree density. As a
result, the suggested optimal plot sizes developed in this study can be used with
confidence for estimating tree basal area and tree densities. To estimate the total number
of tree species in a population, a small plot size with a large sample size improved the
efficiency of the estimates. This is opposite of the results reported by Archaux et al.
(2007). The authors suggested that for estimating the number of tree species larger plot
sizes are more reliable than smaller one. This is particular true only when counting the
number of species on given sample plot. However, the nonparametric estimators are
efficient when using a small plot size which accounts for more variation in the abundance

of tree species found in the population.
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CONCLUSION

Information from the permanent 50 ha plot in seasonal dry evergreen forest in
Thailand provides a unique opportunity for an in-depth study of how plot size and
sampling intensity influence ones ability to efficiently estimate forest stand parameters.
The results of a Monte Carlo simulation study confirm that estimates of basal area and
tree density were unbiased for any plot size and sampling intensity. In addition, selected
nonparametric estimators of the number of tree species provided good estimate for small
plot sizes and large sample sizes. Variance estimates were generally biased for all plot
sizes and sampling intensities.

To conduct forest inventories in the future, an optimal plot size for estimating tree
basal area, tree density, and species abundance can be determined from the equations
developed in this study. The equations take into consideration the variability assoéiated
with the characteristics of interest, while minimizing the total cost of survey which
normally depends on the sample size, plot measurement time and travel time. To utilize
these equations, preliminary data associated with using a 5 m x 5 m plot are required to
prime the equation. The suggested optimal plot sizes are provided in this study as a look-
up table.

There are many subtypes of this forest type in Thailand which vary by regions,
climate, parent material and landform. While, the results of this study area only
applicable to seasonal dry evergreen forests in the west central part of Thailand,
however, the results of this study could potentially be used as a guideline in designing

forest surveys in other parts of the country.
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