
Data Visualization
using R
C. Tobin Magle, PhD

02-15-2018
10:00-11:30 a.m.
Morgan Library

Computer Classroom 175
Based on http://www.datacarpentry.org/R-ecology-

lesson/

Presenter
Presentation Notes
Hi, and welcome to Coding and Cookies. I’m Tobin Magle, the cyberinfrastructure facilitator at the Morgan Library at Colorado State University. Today we’re going to be covering data visualization in R using ggplot2.

http://www.datacarpentry.org/R-ecology-lesson/

Outline
• Why ggplot?

• How to use it
• Basic elements (data, aesthetics, geoms)
• Modifications (transparency, color, grouping)
• Themes (modifying default, using premade, saving your

own)

• Exporting plots (ggsave)

Presenter
Presentation Notes
In brief, we’ll
1. Discuss why you’d want to use ggplot to made graphs
2. Go over the basic elements of ggplot graphs
3. Identify modifications you can apply to these graphs
4. Learn how to create and apply themes to your graphs
5. And export plots

Why ggplot2?

• Reproducibility

• Part of the tidyverse

• Pretty by default

http://varianceexplained.org/r/why-I-use-ggplot2/

Presenter
Presentation Notes
So why use ggplot2?
· For one, using a scripting language to make graphs makes your research reproducible. You can hand your code and your data to anyone and they can reproduce your results if they can install R. But this is true of all graphics packages in R
· However ggplot2, it’s part of the tidyverse, which is a set of tools specifically designed for working with data. Because it was designed in concert with dplyr, commands from dplyr can be piped into to ggplot to create a seamless workflow.
· Finally, ggplot2 graphs look good by default, which takes a lot of work in the base R graphics package. And if you don’t like the default look, it’s easy to create and apply custom themes. This last point is a bit contentious in the R community. For a nuanced discussion, see the blog post linked to on this slide.

http://varianceexplained.org/r/why-I-use-ggplot2/

Data set: survey of small animals

• Stored in a data frame

• Rows: observations of
individual animals

• Columns: Variables that
describe the animals

• Species, sex, date, location, etc

Presenter
Presentation Notes
The data set that we’ll be working with contains data about various characteristics of small animals from an ecological study.
· Each row is data about an individual observed animal.
· Each column is one variable the describes each animal, like species, sex and weight.

Setup

• Install R and R studio
http://www.datacarpentry.org/R-ecology-lesson/index.html#setup_instructions

• Download the quickstart files: http://tinyurl.com/kp6bxt4

• See the Basic Analysis with R lesson if you’re unfamiliar with R
or R studio

http://libguides.colostate.edu/data-and-donuts/r-analysis

Presenter
Presentation Notes
for these exercises, we’re assuming that you have a basic working knowledge of R and R studio. You’ll need to
· Install both R and R Studio. See the setup instructions from Data Carpentry Linked on this slide if you need help.
· Download and unzip the quickstart files from the link on the slide. This file provides a premade working directory and file structure for this lesson.
· If you want to know how to set up a directory for yourself or are unfamiliar with R and R studio, see the Basic data analysis in R lesson linked on this slide.

http://www.datacarpentry.org/R-ecology-lesson/index.html#setup_instructions
http://tinyurl.com/kp6bxt4
http://libguides.colostate.edu/data-and-donuts/r-analysis

Load data into R

• Import data using read_csv function

• Arguments: a csv file

• Output: a data frame

Example: surveys_complete <- read_csv('data/surveys_complete.csv')

Presenter
Presentation Notes
We’ll load the data into a data frame called surveys_complete using the read_csv function. If you’re not familiar with read_csv, please go back and see the data wrangling with dplyr video for more information. The following demo uses read.csv, but that shouldn’t affect the rest of the lesson.

Demo 1: Setup
· Open R Studio project via rproj file:
o Show data in the data folder
o Show script
· Load ggplot2 and dplyr packages
· Load data using read.csv

Graphics with ggplot2

• data: tibble

• aesthetics: looks

• geoms: type of plot
• Ex: points, lines, bars

Presenter
Presentation Notes
Once the data are loaded, we’ll be using the ggplot2 package to plot these data. All ggplots contain 3 basic elements:
1. Data in the form of a tibble
2. Aesthetics that determine how the plot looks and
3. Geoms, which specify how the data should be plotted. For example, will the data be represented by points, lines, bars, etc.

ggplot2 functions

• ggplot(): initializes ggplot object

• aes(): draws axes based on arguments

• geom_XXX(): draws points/lines etc.

• + operator: adds components to plot
• Modular structure

Presenter
Presentation Notes
The ggplot2 package contains a set of functions to implement these concepts:
1. The ggplot() function initializes the ggplot object.
2. The aes() function draws the axes and other visual features. It used as an argument to the ggplot function
3. The set of geom functions like geom_points() draws the data on the plot
4. Finally, the + operator allows you to add components to the plot in a modular fashion.

Simplest ggplot

Need data, aesthetics and a geom
to create a plot.

Example:
ggplot(data = surveys_complete,

aes(x = weight,
y = hindfoot_length)) +

geom_point()

Presenter
Presentation Notes
The simplest ggplot uses all of the described function to make a plot. The example code on this slide
1. Specifies that we’re plotting data from the surveys_complete dataframe
2. Weight is plotted on the x axis, hindfoot length will be plotted on the y axis
3. The data will be represented by points.

Let’s break down these pieces of code to see what they do.

ggplot()

ggplot(data = surveys_complete)

Argument: data frame

Output: blank plot area

Presenter
Presentation Notes
First, let’s look at the ggplot function. If data is the only specified argument, the function will still initialize the plot window, but it won’t plot anything because you haven’t specified what to plot.

ggplot() + aes()
ggplot(data = surveys_complete,

aes(x = weight,
y = hindfoot_length))

ggplot arguments:
data frame + aes()

aes arguments:
• x = x axis variable
• y = y axis variable

• Output: draws axes

Presenter
Presentation Notes
If you add and the aesthetics argument which specifies what should go on the x and y axes, it draws the axes. In this case, we have weight on the x axis and hindfoot length on the y axis.

ggplot + aes + geom_point
ggplot(data = surveys_complete,

aes(x = weight,
y = hindfoot_length)) +

geom_point()

+ operator: adds point to the
specified plot area

Output: scatterplot of weigh vs.
hindfood length

Presenter
Presentation Notes
However, the data are not plotted on the graph until you specify the geom. Make sure to add the + operator at the end of the ggplot statement. In this case, we’ll be plotting the data as points using geom_point()

Let’s see how this works

Demo 2:
· gray plot area

ggplot(data = surveys_complete)

· Axes drawn

ggplot(data = surveys_complete,
 aes(x = weight,
 	 y = hindfoot_length))
Plot ggplot(data = surveys_complete, aes(x = weight,
– axes drawn
· scatter plot of hindfoot length vs weight

 	ggplot(data = surveys_complete,
 	 aes(x = weight,
 	 y = hindfoot_length)) +
 	geom_point()

Add transparency
ggplot(data = surveys_complete,

aes(x = weight,
y = hindfoot_length)) +

geom_point(alpha = 0.1)

Argument: alpha = 0.1
• 1/10 opacity
• Range: 0-1

Presenter
Presentation Notes
Now that we’ve drawn basic scatterplot, let’s customize it.
· One common customization is altering the transparency of the points
· This modification allows you to see where the points are the most dense
· We can do this by using the alpha argument in the geom_point function

Demo 3:
· Copy and paste Demo 1
· Add alpha = 0.1 as an argument to geom_point

Add color
ggplot(data = surveys_complete,

aes(x = weight,
y = hindfoot_length)) +

geom_point(alpha = 0.1,
color = "blue")

Argument: color; makes all points blue
Ref chart: http://sape.inf.usi.ch/quick-
reference/ggplot2/colour

Presenter
Presentation Notes
Now let’s add some color. We can turn the points blue by adding the color = “blue” argument to geom_point. For a full list of colors, see the color reference chart linked on this slide.

Demo 4:
· Copy and Paste Demo 2
· Add color = blue as an argument to geom_point

http://sape.inf.usi.ch/quick-reference/ggplot2/colour

Add color by species
ggplot(data = surveys_complete,

aes(x = weight,
y = hindfoot_length)) +

geom_point(alpha = 0.1,
aes(color=species_id))

Argument: color = <factor variable>
• Must be inside aes()

Presenter
Presentation Notes
We can also use color to tell us something about the data. For example, we can colorize the points based on a factor variable, in this case species id. To do this, we can alter the aesthetics within geom_point with the argument color = species_id.

Demo 5:
· Copy and Paste Demo 3
· Change color = blue to aes(color = species_id)
· Need to use aes because it’s referencing the data frame instead of one color

Add color by species
ggplot(data = surveys_complete,

aes(x = weight,
y = hindfoot_length)) +

geom_point(alpha = 0.1,
aes(color=species_id))

Argument: color = <factor variable>
• Must be inside aes()

Points only

Whole plot

Presenter
Presentation Notes
At this point, you might be wondering why we are using the aes function in two different parts of the ggplot code.
· The aes statement in the ggplot function affects the aesthetics of the whole plot
· The aes statement in the geom_point function affects only the points.
· In this case, you could move color = species id into the first aes statement and it wouldn’t make a difference, but if you are layering multiple geoms on the plot, it becomes important.

Exercise 1

• Use the previous example as a starting point.

• Add color to the data points according to the plot from which the
sample was taken (plot_id).

• Hint: Check the class for plot_id. Consider changing the class
of plot_id from integer to factor. Why does this change how R
makes the graph?

Presenter
Presentation Notes
Exercise 1:
• Use the previous example as a starting point.
• Add color to the data points according to the plot from which the sample was taken (plot_id).
Hint: Check the class for plot_id. Consider changing the class of plot_id from integer to factor. Why does this change how R makes the graph?

Solution:
· Copy and paste previous example
· Change species_id to as.factor(plot_id)

Plot factor variables with box plot
ggplot(data = surveys_complete,

aes(x = species_id,
y = hindfoot_length)) +

geom_boxplot()

aes arguments:
• x: species id (factor)
• y: hinfoot length (numeric)

Presenter
Presentation Notes
Now let’s look at some other geoms we can use starting with box plots.
· Box plots work best with a factor variable on the x axis and a numeric variable on the y axis.
· 	The syntax for using a boxplot geom is geom_boxplot()
· Let’s see how this works

Demo 6:
· Ggplot = surveys complete
· Aes = x = species id, y = hindfoot length
· Geom = geom_boxplot()
· Creates box plots with median, quartiles and outlier points

Overlay points on a box plot

ggplot(data = surveys_complete,
aes(x = species_id,

y = hindfoot_length)) +
geom_boxplot(alpha = 0) +
geom_jitter(alpha = 0.3,

color = "tomato")

Presenter
Presentation Notes
We said before that you can overlay multiple geoms on the same plot. Let’s add some jittered points to the box plot we just made.

Demo 7:
· Copy/paste the previous box plot graph
· Add alpha = 0 as an argument of geom_boxplot so we can see the points
· Add geom_jitter with the arguments alpha = 0.3 and color = “tomato”
o Jitter plots the points so that they are spread out horizontally on the x axis
· See that the points are densest in the box plots, as you’d expect.
· You can also get a sense of the number of observations for each species

Exercise 2: Violin plot

• Plot the same data as in the previous example, but as a Violin
plot

• Hint: see geom_violin().

• What information does this give you about the data that a box
plot does?

Presenter
Presentation Notes
Exercise 2:

Plot the same data as in the previous example, but as a Violin plot
• Hint: see geom_violin().
• What information does this give you about the data that a box plot does
Solution:
· Copy and paste boxplot w/o the jitter geom
· Replace geom_boxplot with geom_voilin
· Shows you how many observations are at each y value by the width of the violin

Time series data

Reshape data:
yearly_counts <- surveys_complete %>%

group_by(year, species_id)
%>% tally

Presenter
Presentation Notes
Now we’re going to plot time series data using geom_line().
· But first, we need to reshape the surveys_complete data frame
· The code on this slide illustrates how to do this using the dplyr package. For more information, see the coding and cookies session on data wrangling
· The output of this code generates a new data frame with year and species id as columns, plus a new column called n that represents the number of observations of a given species in a given year.

Time series data
ggplot(data = yearly_counts,

aes(x = year,
y = n)) +

geom_line()

Arguments:
• Data = yearly counts
• X = year
• Y = n (# observations)

Presenter
Presentation Notes
To plot these data as a line graph,
· We’ll specify that data = yearly counts
· Specify we want year on the x axis and n on the y axis
· And that we should draw a line between the points

Demo 8:
ggplot(data = yearly_counts,
 	aes(x = year,
 	y = n)) +
geom_line()

doesn’t tell you much, because it’s not separated by species

Separate by species
ggplot(data = yearly_counts,

aes(x = year,
y = n,
group = species_id)) +

geom_line()

New aes argument: group
• Makes a line for each species id

Presenter
Presentation Notes
To make a line for each species, we can add a new argument, group, to the aes function.

Demo 9:
· Copy/paste demo 6
· Add group = species_id to aes
· Now there’s a line for each species_id
· But we can’t tell which line represents which species

Color by species

ggplot(data = yearly_counts,
aes(x = year, y = n,

group = species_id,
color = species_id)) +

geom_line()

Combine group and color to create
species_id legend

Presenter
Presentation Notes
To fix this, we can color the lines based on species_id

Demo 10:
· Copy/paste demo 7
· Add color = species id
· See there’s a legend showing which line is what species

Exercise #3

• Use what you just learned to create a plot that depicts how the
average weight of each species changes through the years.

• Hint: reshape the data using the following code

yearly_weight <- surveys_complete %>%
group_by(year, species_id) %>%
summarize(avg_weight = mean(weight))

Presenter
Presentation Notes
Exercise 3:

· Use what you just learned to create a plot that depicts how the average weight of each species changes through the years.
· Hint: reshape the data using the following code

yearly_weight <- surveys_complete %>% 	
group_by(year, species_id) %>%
 	summarize(avg_weight = mean(weight))
Solution:
· Copy paste code for counts
· Replace df with yearly_weight
· Replace y = n with y = avg_weight

Publication quality graph

Presenter
Presentation Notes
Now that we’ve got an informative graph of species observations over the years, let’s get it publication ready.
· First, I’d remove the gray background and
· Make the axis labels more descriptive
· As well as increasing the font size
· We can do this using premade themes and the theme function

Applying a premade theme
ggplot(data = yearly_counts,

aes(x = year, y = n,
color = sex,
group = sex)) +

geom_line() +
theme_bw()

• See ?theme_bw() to see
descriptions of all ggplot themes

Presenter
Presentation Notes
First, let’s apply the premade black and white theme. If you want to see what other themes are available, see ?theme_bw.

Demo 11:
· Copy paste the time series graph code
· Add theme_bw()
· ?theme_bw

Customize axis labels with labs()

ggplot(data = yearly_counts,
aes(x = year,

y = n,
color = species_id)) +

geom_line() +
labs(title = ’Observed Species in time',

x = 'Year of observation',
y = 'Count') +

theme_bw()

Presenter
Presentation Notes
This theme is nicer, but we can tweak it to make it exactly what we want. For example, you might want to change the wording on the axis labels. You can do this using the labs() function.

Demo 12:
· Copy paste Demo 9
· Add labs function with title, x and y as arguments
o Title is the plot title (Observed species in time)
o X is x axis label (year of observation)
o Y is y axis label (count)

Customize font size with element_text()
ggplot(data = yearly_counts,

aes(x = year,
y = n,
color = species_id)) +

geom_line() +
labs(title = Observed Species in Time',

x = 'Year of observation',
y = 'Count') +

theme_bw() +
theme(text=element_text(size=16,

family="Arial"))
See ?margin for more ggplot theme
elements

See ?theme for more theme
arguments

Presenter
Presentation Notes
The new labels are an improvement, but they are a little hard to read. We can change the font size and type with the theme() and element_text() functions

Demo 13:
· Copy paste demo 10
· Add theme
o Text = element text (size = 16, family = Arial)

Create your own theme

arial_theme <- theme_bw()+
theme(text = element_text(size=16,

family="Arial"))

Presenter
Presentation Notes
Once you get the graph the way you want it, you can save all the theme elements into a custom theme which is stored in a variable. In this case, we’re starting with the black and white theme, but changing the font to 16 point Arial.

Apply your theme

ggplot(surveys_complete,
aes(x = species_id,

y = hindfoot_length)) +
geom_boxplot() +
arial_theme

Presenter
Presentation Notes
You can apply this theme to any plot of your choice. For example, a box plot

Demo 14:
· Copy and paste box plot example
· Add arial theme

Save your plot with ggsave()

• Save a plot to a variable

• ggsave: saves plot to a file
• Arguments: name of file, ggplot variable, width + height
• Output: a png file

Example:
ggsave("name_of_file.png", my_plot, width=15, height=10)

Presenter
Presentation Notes
Finally, you can export your plots to a file using the ggsave function.
· First, save the plot to a variable
· Then run the ggsave function
o First artgument is the name of the file
o Second is the variable that holds the plot
o Then the width and height in inches

Demo 15:
· Save the box plot to a variable
· Ggsave(“boxplot.png”, box_plot, width = 15, height = 10)
· Open new image file to see.

Need help?
• Email: tobin.magle@colostate.edu

• Data Management Services website:
http://lib.colostate.edu/services/data-management

• Data Carpentry: http://www.datacarpentry.org/
• R Ecology Lesson:
http://www.datacarpentry.org/R-ecology-lesson/04-visualization-ggplot2.html

• Ggplot2 Cheat Sheets:
• https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf

Presenter
Presentation Notes
Thanks for listening. As always, if you have any questions about this material or any other data management topic, please don’t hesitate to contact me at the email address on this slide. Other data management topics we cover can be found on our Data management services web site. If you would like to view the full material that this lesson was based on, see the data carpentry R ecology ggplot lesson. Finally, the ggplot2 cheat sheet is a great resource when you’re coding on your own.

mailto:tobin.magle@colostate.edu
http://lib.colostate.edu/services/data-management
http://www.datacarpentry.org/
http://www.datacarpentry.org/R-ecology-lesson/04-visualization-ggplot2.html
https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf

	Data Visualization using R
	Outline
	Why ggplot2?
	Data set: survey of small animals
	Setup
	Load data into R
	Graphics with ggplot2
	ggplot2 functions
	Simplest ggplot
	ggplot()
	ggplot() + aes()
	ggplot + aes + geom_point
	Add transparency
	Add color
	Add color by species
	Add color by species
	Exercise 1
	Plot factor variables with box plot
	Overlay points on a box plot
	Exercise 2: Violin plot
	Time series data
	Time series data
	Separate by species
	Color by species
	Exercise #3
	Publication quality graph
	Applying a premade theme
	Customize axis labels with labs()
	Customize font size with element_text()
	Create your own theme
	Apply your theme
	Save your plot with ggsave()
	Need help?

