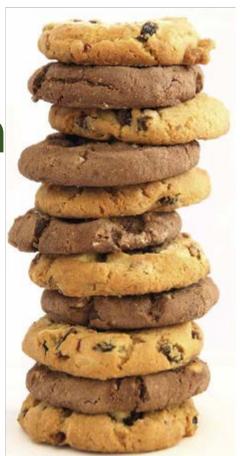


Data Visualization using R


C. Tobin Magle, PhD

02-15-2018

10:00-11:30 a.m. Morgan Library

Computer Classroom 175

Based on http://www.datacarpentry.org/R-ecology-lesson/

Outline

- Why ggplot?
- How to use it
 - Basic elements (data, aesthetics, geoms)
 - Modifications (transparency, color, grouping)
 - Themes (modifying default, using premade, saving your own)
- Exporting plots (ggsave)

Why ggplot2?

- Reproducibility
- Part of the tidyverse
- **Pretty** by default

http://varianceexplained.org/r/why-I-use-ggplot2/

Data set: survey of small animals

Stored in a data frame

Rows: observations of individual animals

- Columns: Variables that describe the animals
 - Species, sex, date, location, etc

Setup

Install R and R studio

http://www.datacarpentry.org/R-ecology-lesson/index.html#setup_instructions

- Download the quickstart files: http://tinyurl.com/kp6bxt4
- See the Basic Analysis with R lesson if you're unfamiliar with R or R studio

http://libguides.colostate.edu/data-and-donuts/r-analysis

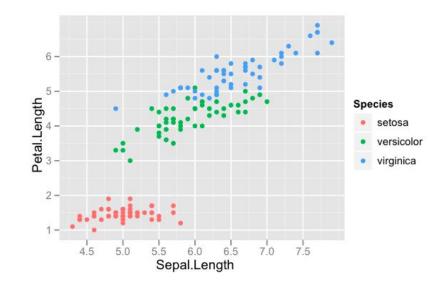
Load data into R

Import data using read_csv function

• Arguments: a csv file

• Output: a data frame

Example: surveys_complete <- read_csv('data/surveys_complete.csv')


Graphics with ggplot2

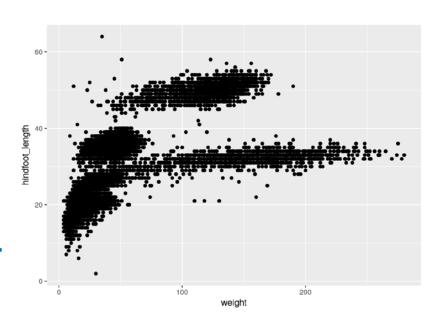
• data: tibble

aesthetics: looks

• geoms: type of plot

• Ex: points, lines, bars

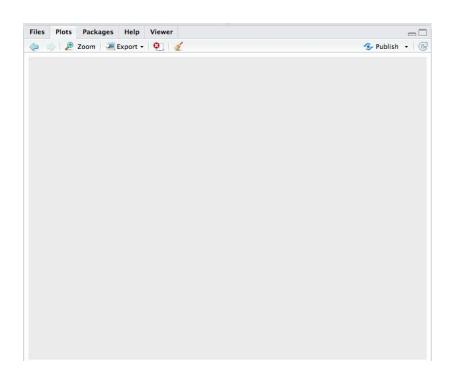
ggplot2 functions


- ggplot(): initializes ggplot object
- aes(): draws axes based on arguments
- geom_XXX(): draws points/lines etc.
- + operator: adds components to plot
 - Modular structure

Simplest ggplot

Need data, aesthetics and a geom to create a plot.

Example:



ggplot()

ggplot(data = surveys_complete)

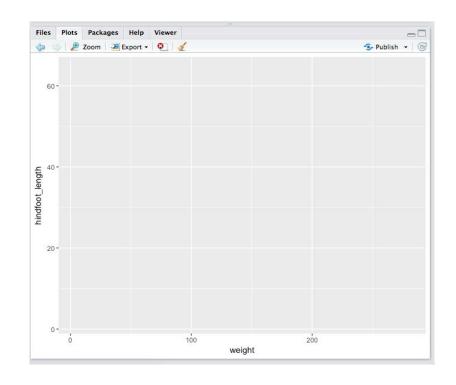
Argument: data frame

Output: blank plot area

ggplot() + aes()

ggplot(data = surveys_complete,

```
aes(x = weight,
y = hindfoot_length))
```

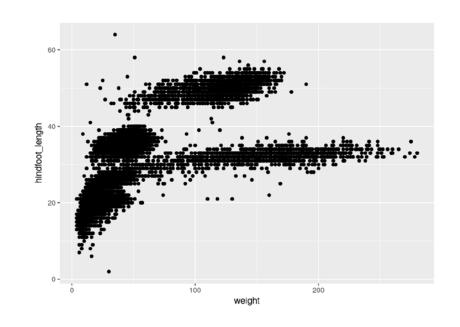

ggplot arguments:

data frame + aes()

aes arguments:

- x = x axis variable
- y = y axis variable

• Output: draws axes



ggplot + aes + geom_point

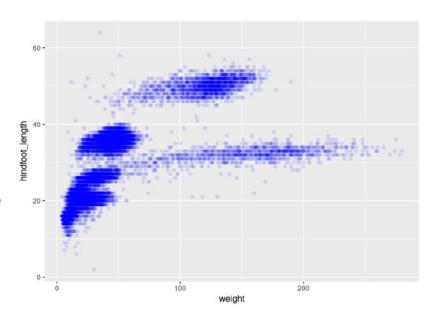
+ operator: adds point to the specified plot area

Output: scatterplot of weigh vs. hindfood length

Add transparency

Argument: alpha = 0.1

- 1/10 opacity
- Range: 0-1

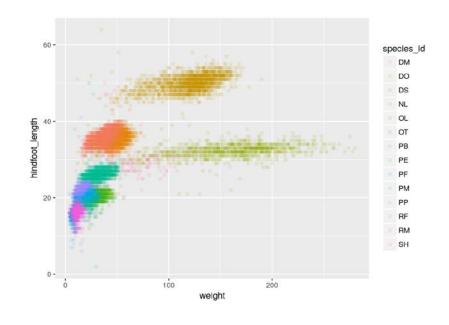


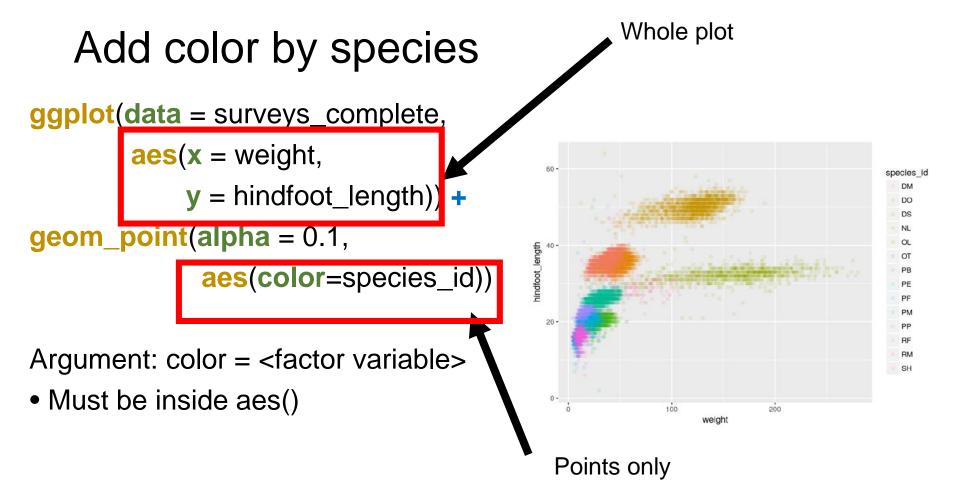
Add color

Argument: color; makes all points blue

Ref chart: http://sape.inf.usi.ch/quick-

reference/ggplot2/colour




Add color by species

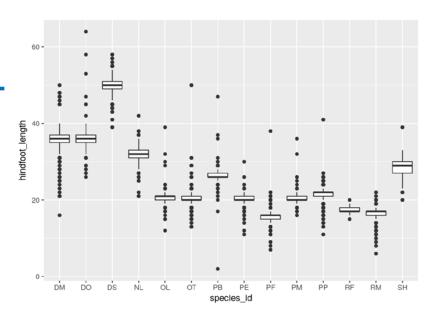
Argument: color = <factor variable>

Must be inside aes()

Exercise 1

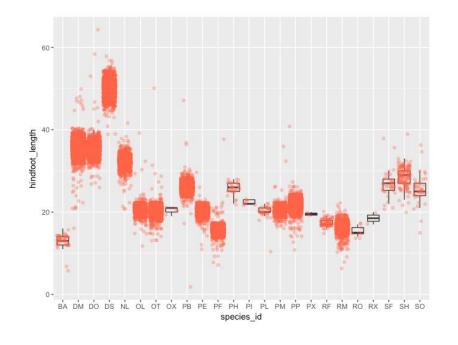
Use the previous example as a starting point.

- Add color to the data points according to the plot from which the sample was taken (plot_id).
- Hint: Check the class for plot_id. Consider changing the class of plot_id from integer to factor. Why does this change how R makes the graph?



Plot factor variables with box plot

```
ggplot(data = surveys_complete,
    aes(x = species_id,
    y = hindfoot_length)) +
geom_boxplot()
```


aes arguments:

- x: species id (factor)
- y: hinfoot length (numeric)

Overlay points on a box plot

Exercise 2: Violin plot

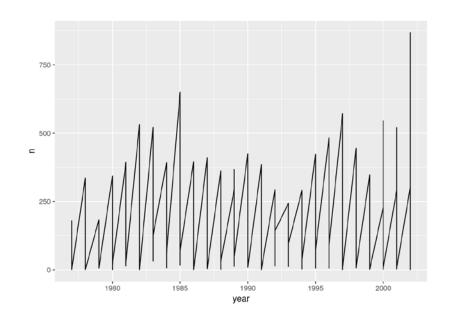
- Plot the same data as in the previous example, but as a Violin plot
 - Hint: see geom_violin().
- What information does this give you about the data that a box plot does?

Time series data

Reshape data:

```
yearly_counts <- surveys_complete %>%
group_by(year, species_id)
%>%
tally
```

	year [‡]	species_id	n [‡]
1	1977	DM	181
2	1977	DO	12
3	1977	DS	29
4	1977	OL	1
5	1977	OX	2
6	1977	PE	2
7	1977	PF	22
8	1977	PP	3
9	1977	RM	2
10	1978	DM	336
11	1978	DO	21
12	1978	DS	272
13	1978	NL	23
14	1978	OL	35
15	1978	ОТ	45
16	1978	PE	12
17	1978	PF	33
18	1978	PM	2
19	1978	PP	23

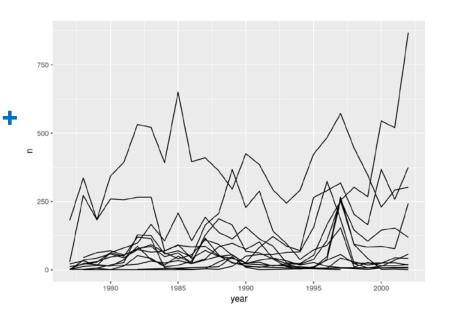


Time series data

geom_line()

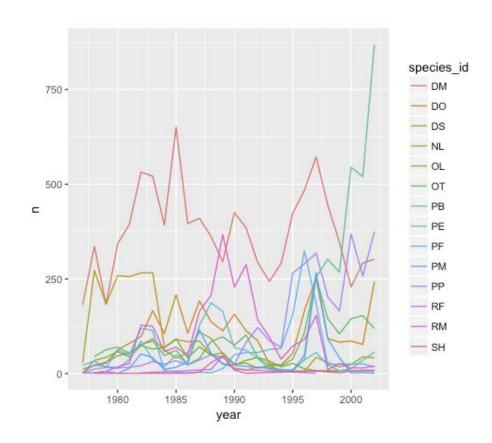
Arguments:

- Data = yearly counts
- X = year
- Y = n (# observations)



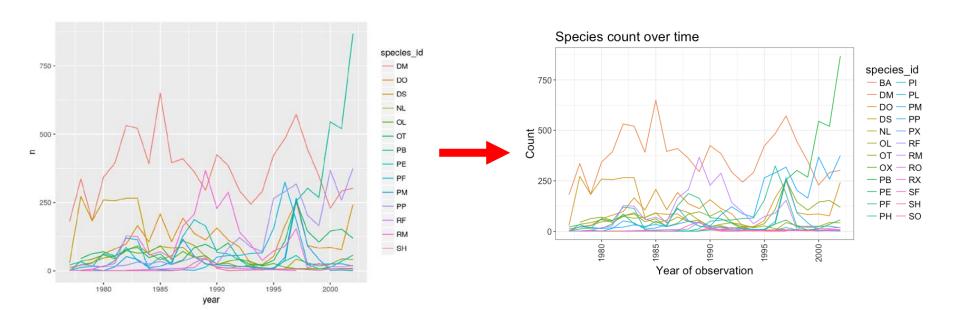
Separate by species

New aes argument: group


Makes a line for each species id

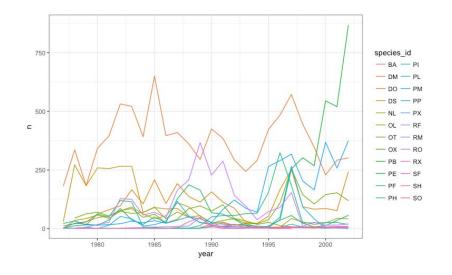
Color by species

Combine group and color to create species_id legend

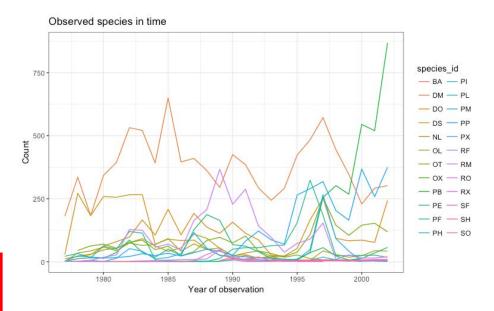

Exercise #3

- Use what you just learned to create a plot that depicts how the average weight of each species changes through the years.
- Hint: reshape the data using the following code

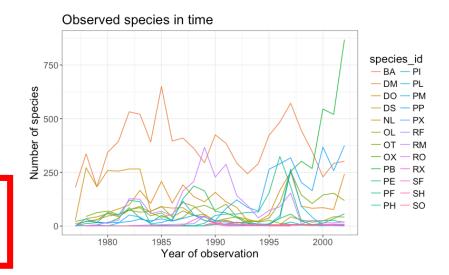
```
yearly_weight <- surveys_complete %>%
    group_by(year, species_id) %>%
    summarize(avg_weight = mean(weight))
```



Publication quality graph

Applying a premade theme


 See ?theme_bw() to see descriptions of all ggplot themes

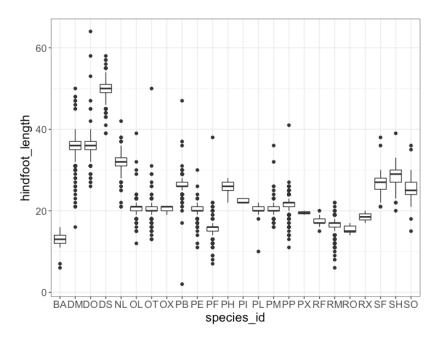
Customize axis labels with labs()


```
ggplot(data = yearly_counts,
       aes(x = year,
            y = n
           color = species_id)) +
geom_line() +
labs(title = 'Observed Species in time',
     x = Year of observation'
     v = 'Count') +
theme_bw()
```


Customize font size with element_text()

```
ggplot(data = yearly_counts,
      aes(x = year,
           y = n,
           color = species_id)) +
geom_line() +
labs(title = Observed Species in Time',
         i cai di doscivation,
    y = 'Count') +
 heme bw() +
theme(text=element text(size=16,
                           family="Arial"))
```


See **?theme** for more theme arguments
See **?margin** for more ggplot theme elements



Create your own theme

```
arial_theme <- theme_bw()+
theme(text = element_text(size=16,
family="Arial"))
```


Apply your theme

Save your plot with **ggsave**()

- Save a plot to a variable
- ggsave: saves plot to a file
 - Arguments: name of file, ggplot variable, width + height
 - Output: a png file

Example:

ggsave("name_of_file.png", my_plot, width=15, height=10)

Need help?

- Email: tobin.magle@colostate.edu
- Data Management Services website: http://lib.colostate.edu/services/data-management
- Data Carpentry: http://www.datacarpentry.org/
 - R Ecology Lesson:
 http://www.datacarpentry.org/R-ecology-lesson/04-visualization-ggplot2.html
- Ggplot2 Cheat Sheets:
 - https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf