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ABSTRACT

BAYESIAN MODELS AND STREAMING SAMPLERS FOR COMPLEX DATA WITH

APPLICATION TO NETWORK REGRESSION AND RECORD LINKAGE

Real-world statistical problems often feature complex data due to either the structure of the

data itself or the methods used to collect the data. In this dissertation, we present three methods for

the analysis of specific complex data: Restricted Network Regression, Streaming Record Linkage,

and Generative Filtering.

Network data contain observations about the relationships between entities. Applying mixed

models to network data can be problematic when the primary interest is estimating unconditional

regression coefficients and some covariates are exactly or nearly in the vector space of node-level

effects. We introduce the Restricted Network Regression model that removes the collinearity

between fixed and random effects in network regression by orthogonalizing the random effects

against the covariates. We discuss the change in the interpretation of the regression coefficients

in Restricted Network Regression and analytically characterize the effect of Restricted Network

Regression on the regression coefficients for continuous response data. We show through simu-

lation on continuous and binary data that Restricted Network Regression mitigates, but does not

alleviate, network confounding. We apply the Restricted Network Regression model in an analysis

of 2015 Eurovision Song Contest voting data and show how the choice of regression model affects

inference.

Data that are collected from multiple noisy sources pose challenges to analysis due to potential

errors and duplicates. Record linkage is the task of combining records from multiple files which

refer to overlapping sets of entities when there is no unique identifying field. In streaming record

linkage, files arrive sequentially in time and estimates of links are updated after the arrival of each

file. We approach streaming record linkage from a Bayesian perspective with estimates calculated
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from posterior samples of parameters, and present methods for updating link estimates after the

arrival of a new file that are faster than fitting a joint model with each new data file. We gener-

alize a two-file Bayesian Fellegi-Sunter model to the multi-file case and propose two methods to

perform streaming updates. We examine the effect of prior distribution on the resulting linkage

accuracy as well as the computational trade-offs between the methods when compared to a Gibbs

sampler through simulated and real-world survey panel data. We achieve near-equivalent posterior

inference at a small fraction of the compute time.

Motivated by the streaming data setting and streaming record linkage, we propose a more

general sampling method for Bayesian models for streaming data. In the streaming data setting,

Bayesian models can employ recursive updates, incorporating each new batch of data into the

model parameters’ posterior distribution. Filtering methods are currently used to perform these

updates efficiently, however, they suffer from eventual degradation as the number of unique values

within the filtered samples decreases. We propose Generative Filtering, a method for efficiently

performing recursive Bayesian updates in the streaming setting. Generative Filtering retains the

speed of a filtering method while using parallel updates to avoid degenerate distributions after

repeated applications. We derive rates of convergence for Generative Filtering and conditions

for the use of sufficient statistics instead of storing all past data. We investigate properties of

Generative Filtering through simulation and ecological species count data.
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Chapter 1

Introduction

Complexity in data due to either the structure of the data itself or the methods used to collect the

data presents challenges to analysis. In some cases, dependence in the data presents a challenge for

otherwise standard statistical techniques. In other cases, data come from multiple sources contain-

ing errors and duplicates that must be accounted for before analysis. Data may also be streaming,

i.e., generated from some ongoing process, and analysis cannot wait until data collection is finished

to begin. In this dissertation, we present three methods for the analysis of complex data: Restricted

Network Regression, Streaming Record Linkage, and Generative Filtering. In Chapter 2, we in-

troduce restricted regression for network data to resolve collinearity between network-structured

fixed and random effects in mixed models. In Chapter 3, we develop a model for record linkage

in the streaming data setting, where noisy duplicates across files must be consolidated while files

continue to arrive. Motivated by streaming record linkage, in Chapter 4, we introduce Genera-

tive Filtering, a Markov chain Monte Carlo (MCMC) sampler for performing recursive Bayesian

updates in the streaming data setting. In Chapter 5, we close with a summary and discussion of fu-

ture work that could build on the contributions in previous chapters. The remainder of this chapter

contains background and exposition to the topics in the following chapters.

1.1 Network Data

Network data are measurements about the pairwise relationships between individuals or en-

tities. Network data are often represented as a graph where entities are points, or nodes, and

relationships are represented as lines connecting the points, or edges (Figure 1.1). The simplest

kind of network data only contain the presence or absence of a relationship between two entities.

For example, the Zachary karate club network (Zachary, 1977) contains data on the presence or

absence of friendships between members of a karate club as determined by interactions between

members outside of the club. As the friendships have no directional component, we call this kind

1



(A) (B)

Figure 1.1: Examples of undirected (A) and directed (B) networks depicted as graphs. (A) The Zachary

karate club network (Zachary, 1977), showing friendships between members of a karate club. (B) Links

between US domestic terrorist websites (Zhou et al., 2005), where the direction of an edge shows a link

from one website to another. The network in (B) also contains self-edges, represented by loops.

of network undirected. By contrast, directed networks contain relationships with a directional

component. For example, the presence or absence of hyperlinks between US domestic terrorist

websites (Zhou et al., 2005) are directional – a link from one website to another is different from

a link from the second website to the first, and one link may exist without the other. In addition

to relationships between entities, networks may also contain relationships between entities and

themselves, for example, a website linking to its own pages. These relationships are represented

by loops on graphs.

More complicated networks contain not just the presence or absence of relationships, but also

measurements about those relationships. These networks are often represented as n× n relational

matrices, Y , where n denotes the number of nodes. The value of the component yij is the mea-

surement of the relationship between node i and node j. If the network is directed, then Y ̸= Y ⊤

in general, while if it is undirected, Y = Y ⊤. Examples of such networks include international

trade networks (Marrs et al., 2022) or friendship rank nomination networks (Hoff et al., 2013).

When analyzing relational matrices or networks, we are often interested in the effect of one

or more covariates on a response network. Using a (possibly generalized) linear regression model

to infer these relations is known as network regression. Network regression has been applied to
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medical meta-analysis (e.g., Li et al., 2018; Gwon et al., 2020), analysis of international politics

(e.g., Campbell et al., 2019), and social networks (e.g., Cantner and Graf, 2006). A general network

regression model is,

yij = x⊤
d,ijβd + x⊤

s,iβs + x⊤
r,jβr + εij,

where xd,ij is a vector of dyadic covariates measured on the relationship of node i to node j, xs,i

are sender covariates measured on the sending node, i, and xr,j are receiver covariates measured

on the receiving node, j. Sender and receiver covariates are also called row and column covariates,

respectively, due to the structure of the relational matrix, Y . Because of the network structure of

the response, Y , the error structure accounts for dependence among the observations, either with

random effects (Holland et al., 1983; Wang and Wong, 1987; Hoff et al., 2002; Li and Loken, 2002;

Hoff, 2005) or with covariance of ε under an exchangeability assumption (Marrs et al., 2022). In

Chapter 2, we characterize network confounding, which can occur when including both sender

or receiver covariates and network-structured random effects in the model. We then introduce

Restricted Network Regression as a model that mitigates network confounding and investigate

its performance through theory, simulation when Y is continuous and discrete, and a case study

of Eurovision Song Contest voting data. We show that Restricted Network Regression produces

estimates of unconditional regression effects with less bias and properly calibrated credible interval

coverage relative to other network regression models.

1.2 Record Linkage

Record linkage is the process of combining or matching records from multiple files, often when

no unique identifying information is available. Records may contain errors (e.g., from manual

entry) in addition to the absence of a unique identifier, which complicates the matching process.

When there are unique identifiers and no errors, the matching process is trivial, and statistical

record linkage methods are not necessary. The goal of record linkage is to identify which records

3



Figure 1.2: An example of a contradiction that may arise in a record linkage procedure, visualized as a

graph. Here three records, represented as A, B, and C, are to be linked. A is estimated to be linked to B, and

A is estimated to be linked to C, but B is not estimated to be linked to C. This is a contradiction because by

transitivity, B and C must refer to the same entity but they are not linked.

are duplicates and refer to the same entity as other records. Duplicate records representing the

same entity may appear within the same file or across multiple files. In the literature, the term

“record linkage” typically refers to the case in which files are duplicate-free and duplicates appear

across files, while “deduplication” refers to the case in which there may be duplicates within files.

In Chapter 3, we focus on the record linkage case by assuming no duplicates within the same file.

Record linkage is used in cases when either the removal of duplicates in itself is a goal or when

the consolidation of duplicates allows for downstream analysis. In the former case, researchers

may be interested in total population counts when individuals from the population are counted in

distinct, overlapping ways (e.g., Sadinle and Fienberg, 2013). In the latter case, a downstream

analysis may involve relating information that is only in one file to information that is only in

another (e.g., Fleming et al., 2012). When the uncertainty of each link is quantified, this uncertainty

can be incorporated into a downstream analysis (Kaplan et al., 2023).

Two broad classes of record linkage or deduplication models are Fellegi-Sunter style models

(Fellegi and Sunter, 1969), or latent entity models (e.g., Steorts, 2015). Fellegi-Sunter style models

first compare pairs of potentially linked records, then categorize pairs of records as either matched

or non-matched based on the strength of their similarity. Various restrictions may be placed on
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this categorization to avoid contradictions in the links (Figure 1.2). For example, Sadinle (2017)

disallow links from different records in one file to the same record in the other, preventing two

records in the same file from being transitively linked in violation of the record linkage assumption.

Latent entity models assume there exist unobserved true entities and simultaneously estimate the

number of true entities, the values associated with the true entities, and the associations between

records and entities. Latent entity models avoid potential link contradictions at the expense of a

more computationally demanding estimation procedure.

A commonality in the existing statistical record linkage literature is that there are a fixed num-

ber of files, and linkage is performed in a single offline procedure. In Chapter 3 we develop a

Fellegi-Sunter style record linkage model for the streaming data setting, where files are available

sequentially in time, there is no predetermined number of files, and estimates of links are de-

sired after the arrival of each file. Streaming record linkage arises in settings such as longitudinal

surveys, electronic health records, and online events databases, among others. The challenge in

streaming record linkage is to efficiently update parameter estimates as new data arrive. We define

a link constraint to avoid undesired, implied links with many files. We introduce two streaming

samplers to efficiently update model parameter estimates with the arrival of new data. We then

apply our model to both simulated and real-world record linkage data.

1.3 Streaming Data

In the streaming data setting, data arrive either continuously or in frequent batches, with no

predetermined amount of data. Estimates of model parameters are desired after each arrival of

new data. The streaming data setting arises in areas such as social network sentiment analysis

(e.g., Bifet and Frank, 2010), taxi-passenger demand prediction (e.g., Moreira-Matias et al., 2013),

and real-time anomaly detection (e.g., Ahmad et al., 2017). The streaming data setting poses a

computational challenge as obtaining model estimates becomes more time-consuming.

For Bayesian modeling, the streaming data setting fits naturally with recursive Bayesian up-

dates, where after the arrival of a new batch of data yt, the posterior distribution of the pa-
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rameters θ is updated using the previous posterior, p(θ|y1, . . . ,yt−1) as a prior and estimat-

ing the updated posterior, p(θ|y1, . . . ,yt) ∝ p(θ|y1, . . . ,yt−1)p(yt|θ). Often an additional pa-

rameter, ϕ, characterizes the distribution of yt, so the desired posterior distribution is instead

p(θ,ϕ|y1, . . . ,yt) ∝ p(θ|y1, . . . ,yt−1)p(yt|θ,ϕ)p(ϕ).

When model parameters have conjugate prior distributions, recursive Bayesian updates can be

performed analytically. Otherwise, recursive Bayesian updates can be performed using an approx-

imation to the previous posterior distribution. Posterior distributions are frequently approximated

using samples produced by Markov chain Monte Carlo. We focus on methods that perform recur-

sive Bayesian updates by resampling the existing posterior samples, which we refer to as filtering

methods, specifically Prior-Proposal-Recursive Bayes (PPRB, Hooten et al., 2021) and PPRB-

within-Gibbs (Chapter 3). These filtering methods are fast but suffer from eventual degradation as

the pool of samples is reduced through repeated application.

In Chapter 3, we first encounter the streaming data setting in the context of streaming record

linkage, where each arrival of new data is a new file to be linked to previous files. Motivated by

this application, in Chapter 4 we introduce Generative Filtering, a streaming sampler that extends

those introduced in Chapter 3. We introduce Generative Filtering, provide theoretical bounds for its

convergence to the posterior distribution, and demonstrate speed and accuracy through application

to three different models via simulated datasets and species survey data.

6



Chapter 2

Restricted Regression in Networks

2.1 Introduction

Network data are measurements about the relationships between pairs of entities. These net-

work measurements can be visualized as measurements on the edges between nodes of a graph

(Becker et al., 1995). Examples of network data include relationships between potential borrowers

on peer-to-peer lending platforms (Lee and Sohn, 2022) or annual migration between countries

(Aleskerov et al., 2017). Data are typically represented as a matrix, Y , where yij is the value in

row i and column j, for i, j = 1, . . . , n. The value yij is the measurement about the dyadic re-

lationship between the sending node i and the receiving node j. If yij = yji for all i, j, then the

network is called undirected, otherwise it is called directed.

Network regression uses covariates measured on the node pairs to model the dyadic relation-

ships. An example of such a model is

yij = g(zij), (2.1)

zij = x⊤
ijβ + γij, (2.2)

where yij is the observed network measure, g(·) is a function mapping latent continuous values,

zij , to the observed yij , xij is a p-vector of covariates related to node i, node j or the relationship

from node i to node j, β is a p-vector of regression coefficients, and γij is random error. For a

binary observation yij ∈ {0, 1} indicating the presence or absence of an edge from node i to node

j, a probit version of (2.1) is given by setting

g(zij) = I(zij > 0), (2.3)

γij
i.i.d
∼ N(0, σ2), (2.4)
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where I(·) is the indicator function (Albert and Chib, 1993). For the rest of this chapter, we will

use zij to refer to a continuous latent variable resulting from the regression equation, and yij to

refer to observations related to zij through a function, g(·), possibly the identity function.

Network regression has found applications in medical meta-analysis (e.g., Li et al., 2018; Gwon

et al., 2020), analysis of international politics (e.g., Campbell et al., 2019), and social networks

(e.g., Cantner and Graf, 2006). Other methods for modeling network data include stochastic block

models (Holland et al., 1983) and exponential-family random graph models (Robins et al., 2007),

which allow inference on latent aspects of the network structure such as clusters and density. While

many different properties of a network may be of interest, our primary interest is inference for the

regression coefficients, β.

The network structure of the data creates dependence among the measurements. Observations

{yij} with one or more nodes in common, for example yij and yij′ , can be dependent due to their

common node, i. If not all of this dependence is captured by the covariates, latent random effects

can be used to account for excess variation (Holland et al., 1983; Wang and Wong, 1987; Hoff

et al., 2002; Li and Loken, 2002; Hoff, 2005). In this approach, the measurements are modeled as

conditionally independent given the latent structure. Additive node random effects can be used to

account for dependence in the observations,

γij = ai + bj + εij, (2.5)

ai ∼ ga(θa), bj ∼ gb(θb), (2.6)

εij
i.i.d
∼ N(0, σ2). (2.7)

The terms ai and bj are called sender and receiver random effects, respectively, and are meant to

capture variation due to unobserved node factors, for example, sociability and popularity in social

networks. The random effects have distributions, ga and gb, parameterized by parameters θa and

θb. These effects first appeared in the social relations model of Warner et al. (1979). Node random

effects have also been incorporated in more complex network models such as popularity-adjusted
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block models (Sengupta and Chen, 2018) and additive and multiplicative effects network models

(Hoff, 2021). An alternate approach is to model the correlation between measurements on dyads

which share a node by the residual covariance matrix under an assumption of exchangeable errors

(Marrs et al., 2022).

A key difference between the model in (2.2) with the error structure in (2.4) compared to the

error structure in (2.5) is the interpretation of the regression parameters. With the error structure in

(2.4), the regression parameters are called the unconditional regression effects because they cap-

ture the marginal effect of X on z. With (2.5), the regression parameters are called the conditional

regression effects because their value is interpreted as the effect of X conditioned on the random

effects a = (a1, . . . , an) and b = (b1, . . . , bn). For the rest of this chapter, we will distinguish be-

tween these interpretations by writing β for conditional regression effects and δ for unconditional

regression effects in (2.2).

In network-structured data, covariates can occupy the same linear space as the random effects

ai or bj . We define this collinearity as network confounding. Despite potential impacts of bias due

to network confounding, including random effects is typically desired to account for correlation

between observations due to network dependence and to allow for more accurate uncertainty quan-

tification for the regression effects. A method that mitigates network confounding would allow for

accurate estimation of the unconditional regression effects, while using random effects to account

for unobserved network-structured variability in the response.

Confounding between covariates and random effects has been of significant interest in the

spatial statistics literature, where it is referred to as spatial confounding (Clayton et al., 1993;

Reich et al., 2006; Hodges and Reich, 2010). A typical spatial model for continuous areal data is

the Intrinsic Conditional Autoregressive (ICAR; Besag et al., 1991) model:

y = Xβ + η + ε, (2.8)

p(η) ∝ τn−G
s exp

(
−0.5τsη

⊤Qη
)
, (2.9)

ε ∼ N(0, σ2I). (2.10)
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The random effect η is intended to capture spatial variation in the response z not accounted for

by the predictors X . The random effect is regularized to have spatial variation via the matrix Q,

the Laplacian of the graph of neighboring areas. Spatial confounding occurs when a covariate is

smoothly spatially varying, as this creates a scenario when there is collinearity or near collinearity

between the fixed covariates X and spatial random effects η such that both the random effect

and the covariate are attempting to capture similar structure. Hodges and Reich (2010) noted that

estimates of regression coefficients β can be dramatically affected by the inclusion or exclusion

of random effects η, and introduced restricted spatial regression to resolve the confounding of the

random effects and covariates by orthogonalizing η against X . The restricted spatial regression

equation is expressed as

y = Xδ + (I − PX)η + ε, (2.11)

where PX = X(X⊤X)−1X⊤ is the linear projection matrix onto the column space of X . Re-

stricted spatial regression has been studied extensively in the spatial statistics literature as a means

to alleviate spatial confounding (e.g., Hodges and Reich, 2010; Hughes and Haran, 2013; Hanks

et al., 2015; Khan and Calder, 2022; Zimmerman and Hoef, 2022). Hanks et al. (2015) show that

in a Bayesian setting, inference on both β and δ can be achieved simultaneously by calculating

δ = β + (X⊤X)−1X⊤η for each posterior sample.

However, the dependence in network data is more complex than the dependence in spatial data.

In the network setting, observations are made on the relationships between nodes, and shared nodes

between two observations create dependence. This is in contrast to the areal spatial setting, where

observations are made on discrete, disjoint areas and the neighbor relation between areas creates

dependence (Figure 2.1, A & B). The additive random effects in (2.5), reflect two different ways

in which network observations can be related: sharing a sender node (observations yij and yij′)

and sharing a receiver node (observations yij and yi′j). These two types of dependence result in

a complex dependence structure (Figure 2.1, C & D). For each of these two types of dependence,

the n2 observations are divided into n groups of n observations which are all mutually dependent

within a group.

10
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Figure 2.1: Comparing spatial dependence to network dependence. (A): A map of 11 western states. (B):

The dependence graph corresponding to observations on each state in (A), where observations on states

sharing a border are dependent. (C): A directed network with 4 nodes numbered 1 through 4, and observa-

tions measured on each directed edge. (D): The network dependence graph corresponding to observations in

(C) . Each edge in the network is now a node in the dependence graph. There are two types of dependence

- observations with a common sender (blue) and a common receiver (red). Both blue and red edges form

distinct fully-connected clusters of observations.
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Spatial models in which regions can be neighboring in two distinct ways have been studied

in Reich et al. (2007) for the case of periodontal health measurements. Measurements were con-

sidered to be neighboring other measurements on the same tooth, or measurements on an adjacent

tooth, but these kinds of neighbor relations were considered to create different kinds of dependence

between measurements. The dependence in the periodontal health measurements was modeled us-

ing the random effect prior

p(η) ∝ c(τ1, τ2) exp{−0.5η⊤(τ1Q1 + τ2Q2)η}, (2.12)

where Q1 and Q2 are Laplacians for each neighbor relation. However, the distribution in (2.12)

cannot represent the same dependence as the sender and receiver random effects in (2.5) because

the distribution of η is full rank, while the distribution of the vectorized (ai + bj) is not full rank.

In this chapter we introduce Restricted Network Regression as a method that mitigates network

confounding. We approach network regression in a Bayesian framework, estimating parameters

using their posterior distributions given the data. We characterize the posterior mean and variance

of regression parameters in Restricted Network Regression with continuous data and show through

simulation that Restricted Network Regression mitigates network confounding for continuous and

binary data. Specifically, we demonstrate that a Restricted Network Regression model results in

smaller bias and posterior credible intervals that are more appropriately calibrated to capture the

generative parameter values than corresponding network regression models without random effects

or with non-restricted random effects.

The remainder of this chapter is organized as follows. Section 2.2 defines network confound-

ing and requirements for methods to “alleviate” and “mitigate” network confounding. Section

2.3 introduces Restricted Network Regression, characterizes the collinearity of effects within the

Restricted Network Regression model, and provides theorems about the posterior distribution of

the regression parameters in the continuous Restricted Network Regression model. Section 2.4

describes the results of a simulation study involving both continuous and binary network regres-

sion. Section 2.5 is a case study of Eurovision Song Contest voting data showing the changes

12



in inference that occur when using a Restricted Network Regression approach, relative to models

without random effects and non-restricted random effect models. Finally, Section 2.6 closes with

a discussion.

2.2 Network Confounding

Network confounding is the collinearity between fixed effects and network-structured random

effects in a network regression model. This collinearity creates difficulty in estimating regression

parameters by introducing bias in estimates and increasing their posterior variance. In this section

we explore network confounding in more detail and define conditions for a method to alleviate or

mitigate network confounding.

Consider the network regression model,

yij = g(zij), 1 ≤ i, j ≤ n, (2.13)

z = Xβ +Aa+Bb+ ε, (2.14)

ai
i.i.d.
∼ ga(θa), (2.15)

bj
i.i.d.
∼ gb(θb), (2.16)

ε ∼ N(0, σ2
eI), (2.17)

where z is an n2-vector of latent continuous responses, X is an n2×p fixed matrix of covariates, β

is a p-vector of regression parameters, and a and b are n-vectors composed of sender and receiver

random effects, respectively, for each node in the network. The matrices A and B are n2 × n

matrices of zeros and ones which broadcast the elements of a and b into the appropriate rows of z

depending on the sender and receiver of each dyad. To match the vectorized form of z, we write y

as an n2-vector of the observed network data.

Now consider partitioning X = [1 Xs Xr Xd] into an intercept, an n2 × ps matrix of sender

covariates Xs, an n2 × pr matrix of receiver covariates Xr, and an n2 × pd matrix of dyadic

covariates Xd as done in Hoff (2021), where ps, pr, and pd are the number of sender, receiver, and
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dyadic covariates, respectively, and p = 1+ps+pr+pd. Similarly, partition β = (β0 β
⊤
s β⊤

r β⊤
d )

⊤.

The column space of the matrix A contains all n2-vectors that have repeated values for dyads with

a common sender. Similarly, the column space of the matrix B contains all n2-vectors that have

repeated values for dyads with a common receiver. Since the columns of Xs are sender covariates,

every column of Xs is in the column space of A. Therefore, we can write Xs = AX ′
s, where

X ′
s is an n × ps matrix created by collapsing equivalent rows of Xs. Since the columns of Xr

are receiver covariates, every column of Xr is in the column space of B, allowing us to write

Xr = BX ′
r. The model in (2.14) can be written

z = [1 Xd](β0 β
⊤
d )

⊤ +Xsβs +Xrβr +Aa+Bb+ ε, (2.18)

= [1 Xd](β0 β
⊤
d )

⊤ +A(X ′
sβs + a) +B(X ′

rβr + b) + ε. (2.19)

From this, we can see that βs and a are confounded in the sense that they occupy the same linear

space in the response, i.e., C(Xs) ⊂ C(A), where C is the column space operator. Similarly, βr

and b are also confounded. By restricting the random effects to be orthogonal to the fixed effects,

Restricted Network Regression (introduced formally in the next section) fixes this collinearity by

removing the intersection of the column spaces of X , A, and B.

We now distinguish between two types of methods: those that alleviate network confounding

and those that mitigate network confounding. We adapt a definition from the spatial statistics

literature to define what it means for a method to alleviate network confounding:

Definition 2.2.1. A network regression method modeling network data, y, with unconditional

regression parameters, δ, which results in posterior mean E[δ|y] and marginal posterior variances

Var(δℓ|y), ℓ = 1, . . . , p alleviates network confounding if the following conditions are met:

1. E[δ|y] = E[δNN |y]

2. Var(δNN,ℓ|y) ≤ Var(δℓ|y) ≤ Var(βNetwork,ℓ|y) for ℓ = 1, . . . , p
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Here δNN,ℓ are the unconditional regression coefficients of the corresponding network model with-

out network-structured random effects and βNetwork,ℓ are the conditional regression coefficients

from a model with non-restricted network-structured random effects.

Definition 2.2.1 is adapted from the definition of spatial confounding in Khan and Calder

(2022). This definition of alleviating network confounding reflects the intuition that models with

network confounding will result in excess uncertainty on regression parameter estimates, reflected

in large posterior variances of those parameters and that a method that alleviates network con-

founding should have lower posterior variances than one exhibiting network confounding. At the

same time, a model that alleviates network confounding should model the unconditional effects

of the fixed covariates, and so is expected to have the same posterior means as the model without

network-structured random effects.

Alleviation of network confounding has useful interpretation in terms of parameter uncertainty,

however, it does not relate directly to the accuracy of estimates made using models with network

confounding. Also, Definition 2.2.1 provides no way to compare two models if neither alleviates

network confounding. For these reasons, we introduce an alternative notion of network confound-

ing mitigation. We expect a method that mitigates network confounding relative to another ap-

proach to produce better estimates and uncertainty quantification of the unconditional regression

effects δ. We give a more precise definition of this mitigation:

Definition 2.2.2. A network regression method modeling network data, y, with unconditional re-

gression parameters, δ, which results in posterior mean E[δ|y], denoted m, and marginal posterior

100c% credible intervals Ic,ℓ, 0 < c < 1, for components δℓ, mitigates network confounding rel-

ative to another method which produces m′ and I ′c,ℓ, if for true unconditional regression effects

δ∗,

1. |E [mℓ − δ∗ℓ ]| ≤ |E [m′
ℓ − δ∗ℓ ]| for ℓ = 1, . . . , p,

2. |P (δ∗ℓ ∈ Ic,ℓ)− c| ≤
∣
∣P
(
δ∗ℓ ∈ I ′c,ℓ

)
− c
∣
∣ for ℓ = 1, . . . , p,

where the expectation in item 1 and probability in item 2 are taken over y.
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Definition 2.2.2 combines two useful model evaluations, bias and credible interval coverage,

into a comparison which can be used to evaluate the relative improvement of one model over

another in the presence of network confounding. Even if a model does not meet the requirements of

Definition 2.2.1, it can be compared to other models using Definition 2.2.2 to assess its mitigation

of network confounding.

2.3 Restricted Network Regression

For the network regression model given in (2.14)-(2.17), we propose the following Restricted

Network Regression model:

z = Xδ + (I − PX)(Aa+Bb) + ε, (2.20)

ai
i.i.d.
∼ ga(θa), (2.21)

bj
i.i.d.
∼ gb(θb), (2.22)

ε ∼ N(0, σ2In2), (2.23)

where z, X , a, b, A, B, and PX are as described earlier. This model is distinguished from the

model in (2.14)-(2.17) by the application of the projection matrix I − PX , projecting the random

effects orthogonal to the column space of X , and the interpretation of the regression effects, δ, as

unconditional on the values of the random effects. With δ related to the unconditional regression

parameters, β, by δ = β+(X⊤X)−1X⊤(Aa+Bb), the regression equation (2.20) is equivalent

to (2.14).

2.3.1 Properties of Continuous Restricted Network Regression Posterior

Distributions

In this section, we provide relationships between the posterior means and variances of Re-

stricted Network Regression and a model without random effects. With these relationships, we

show that Restricted Network Regression with a continuous response does not satisfy the condi-
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tions of Definition 2.2.1, and therefore does not alleviate network confounding. We also relate

these theoretical results to recent results in the spatial statistics literature by Khan and Calder

(2022), which showed a similar result in spatial regression.

To understand the behavior of the Restricted Network Regression model with respect to net-

work confounding, we give an expression for the posterior mean and variance of δ in the Restricted

Network Regression model.

Theorem 2.3.1. In a continuous Restricted Network Regression model with two additive normally

distributed node-level random effects,

y = Xδ + (I − PX)Aa+ (I − PX)Bb+ ε, (2.24)

p(δ) ∝ 1, (2.25)

a ∼ N(0, σ2
aI), b ∼ N(0, σ2

bI), ε ∼ N(0, σ2
εI), (2.26)

the posterior distribution of δ will have mean and variance

E[δ|y] = (X⊤X)−1X⊤y, (2.27)

Var(δ|y) = (X⊤X)−1E[σ2
ε |y]. (2.28)

The proof of this theorem is provided in Appendix A.1. The prior distribution of σ2
ε is not

specified for this theorem, but will partially determine E[σ2
ε |y]. The posterior mean in (2.27) is

equal to the posterior mean from a model without network-structured random effects, as required

by Definition 2.2.1. Therefore Restricted Network Regression alleviates network confounding if

and only if the inequality on the posterior variances in Definition 2.2.1 is true. We show this

property of the posterior variances using a more general model with two restricted random effects.
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Theorem 2.3.2. Consider the restricted regression model with two random effects,

y = Xδ +W1η1 +W2η2 + ϵ, (2.29)

p(δ) ∝ 1, (2.30)

p(η1|τ1) ∼ τ
rank(F1)/2
1 exp

{

−
τ1
2
η⊤
1 F1η1

}

, (2.31)

p(η2|τ2) ∼ τ
rank(F2)/2
2 exp

{

−
τ2
2
η⊤
2 F2η2

}

, (2.32)

ϵ ∼ N(0, I/τϵ). (2.33)

If W1 and W2 have orthonormal columns such that C(X), C(W1) and C(W2) are pairwise

orthogonal, F1 and F2 are positive definite symmetric matrices, τj ∼ gamma(aj, bj) for j = 1, 2,

τϵ ∼ gamma(aϵ, bϵ) and

E[r1|y]/b1 + E[r2|y]/b2
E[τ1]/b1 + E[τ2]/b2

≤ E[σ2
ϵ,NN |y], (2.34)

where rj = τj/τϵ for j = 1, 2, then Var(δℓ|y) ≤ Var(δNN,ℓ|y) for ℓ = 1, . . . , p.

The proof of this theorem is provided in Appendix A.1. This theorem shows that under the

specified conditions, a model with two random effects restricted to be orthogonal to the covariates

yields posterior variances that do not meet the conditions in Definition 2.2.1. Applying Theorem

2.3.2 to Restricted Network Regression with W1 = (I − PX)A, W2 = (I − PX)B, and F1 =

F2 = In shows that Restricted Network Regression with a continuous response does not meet the

conditions in Definition 2.2.1.

Khan and Calder (2022) prove similar theorems for restricted spatial regression models of the

form,

y = Xδ +Wη + ε, (2.35)

p(η|τs) ∝ τ rank(F )/2
s exp

{

−
τs
2
η⊤Fη

}

(2.36)

ε ∼ N(0, I/τε), (2.37)
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observing that that the model form in (2.35)-(2.37) encompasses the ICAR model, the non-spatial

model, and restricted spatial regression models from Reich et al. (2006), Hughes and Haran (2013),

and Prates et al. (2019). The model in (2.35)-(2.37) is “restricted” if C(X) and C(W ) are orthog-

onal. In fact, this form also encompasses continuous network models that include one additive

sender or one additive receiver random effect, but not both, motivating the need for Theorem 2.3.2.

2.4 Simulation Study

In this section we investigate properties of Restricted Network Regression through simulation.

We confirm the theoretical results from Section 2.3.1 using continuous network data and show

that neither continuous nor binary Restricted Network Regression alleviate network confounding.

However, we show that both mitigate network confounding relative to non-restricted network re-

gression and network regression with no random effects. All of the following simulations involve

data with varying levels of excess nodal variation, using models with both sender/receiver covari-

ates and sender/receiver random effects.

In addition to evaluating Restricted Network Regression, we chose to evaluate choices of prior

distribution on σ2
a and σ2

b . A common choice is the inverse-gamma distribution, e.g., in the amen

package (Hoff et al., 2020). However, the half-Cauchy distribution, σa ∼ Cauchy+(0, 1), is a less

informative distribution recommended by Gelman (2006) for random effect variances in hierarchi-

cal models. We compare five models:

(NoRE) Network model with no random effects,

(NR.ig) Network model with additive random effects and inverse-gamma priors,

(NR.hc) Network model with additive random effects and half-Cauchy priors,

(RNR.ig) Network model with restricted additive random effects and inverse-gamma priors,

(RNR.hc) Network model with restricted additive random effects and half-Cauchy priors.
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We show that Restricted Network Regression mitigates network confounding by providing esti-

mates of δ with lower bias and properly calibrated credible intervals.

2.4.1 Simulation 1: Continuous Network Data

Continuous network data were simulated from the network model in (2.14)-(2.17), using the

identity function, g(zij) = zij . The design matrix X contained an intercept, one sender covariate,

one receiver covariate, and one dyadic covariate whose values were drawn independently from a

standard normal distribution. Unobserved excess nodal variation (simulated values of ai and bj ,

denoted a∗ and b∗) was then simulated from one of seven possible scenarios, which varied in the

magnitude of the nodal variation and the degree of collinearity between the nodal variation and

observed covariates. We control and quantify this latter degree of collinearity using the canonical

correlation (ccor) between Aa∗ +Bb∗ and X .

(G1) No excess variation: a∗ = b∗ = 0,

(G2) Small magnitude, no correlation:

a∗ ∼ Normal(0, 0.25), b∗ ∼ Normal(0, 0.25), ccor(Aa∗ +Bb∗,X) = 0,

(G3) Small magnitude, slight correlation:

a∗ ∼ Normal(0, 0.25), b∗ ∼ Normal(0, 0.25), ccor(Aa∗ +Bb∗,X) = 0.1,

(G4) Small magnitude, strong correlation:

a∗ ∼ Normal(0, 0.25), b∗ ∼ Normal(0, 0.25), ccor(Aa∗ +Bb∗,X) = 0.9,

(G5) Large magnitude, no correlation:

a∗ ∼ Normal(0, 1), b∗ ∼ Normal(0, 1), ccor(Aa∗ +Bb∗,X) = 0,

(G6) Large magnitude, slight correlation:

a∗ ∼ Normal(0, 1), b∗ ∼ Normal(0, 1), ccor(Aa∗ +Bb∗,X) = 0.1,

(G7) Large magnitude, strong correlation:

a∗ ∼ Normal(0, 1), b∗ ∼ Normal(0, 1), ccor(Aa∗ +Bb∗,X) = 0.9.
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In all scenarios, the components of a∗ and b∗ were first generated i.i.d., then the vectors were

projected to have the desired canonical correlation according to the algorithm in Appendix A.2.

Scenarios G2, G3, and G4 were chosen to represent nodal variation smaller than the effect of one

covariate, while scenarios G5, G6, and G7 were chosen to represent variation comparable to the

effect of one covariate. The slight correlation scenarios (G3 and G6) represent situations with

subjectively low correlation between nodal variation and covariates, while the strong correlation

scenarios (G4 and G7) represent situations with subjectively high correlation between nodal varia-

tion and covariates. For each of the seven scenarios, 100 values of X , a∗, and b∗ were generated.

Then for each set of covariates and random effects, 200 values of the random error ϵ were gener-

ated each from a standard normal distribution (σ2
ϵ = 1), resulting in 20,000 simulated data sets for

each scenario.

We compare the posterior means and posterior variances of the unconditional regression pa-

rameters in NoRE and RNR.ig. Figure 2.2 shows these values for the receiver covariate, δr. We

see that the posterior means are equal for both models on all simulated data sets, and the poste-

rior variance in the Restricted Network Regression model (RNR.ig) is less than or equal to the

posterior variance in the model with no random effects (NoRE). Similar results were observed for

the sender covariate. The equality of posterior means and this observed inequality of posterior

variances validate the result of Theorem 2.3.2 empirically, and show that continuous Restricted

Network Regression does not alleviate network confounding according to Definition 2.2.1.

To investigate the ability of Restricted Network Regression to mitigate network confounding

relative to a model with no random effects and models with non-restricted random effects, we

compare bias and coverage of posterior credible intervals for across all models (NoRE through

RNR.hc). For each of the 200 trials with each of the 100 values of X , a∗, and b∗, we recorded the

difference between the posterior means of δ and the value of δ used to generate the data. We also

recorded whether the 90% credible for δ captures δ∗. Finally we calculated the average bias across

the 200 values of y generated for each of the 100 values of X , and the proportion of the 200 trials

for which δ∗ was captured by the credible interval.
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(A)

(B)

Figure 2.2: Comparison of posterior means (A) and variances (B) for a receiver covariate using a network

regression model with no random effects (NoRE) and a Restricted Network Regression model (RNR.ig) with

a continuous response. Each panel is one of scenarios G2 through G7. Each panel shows a heatmap of the

100×200 simulated data sets for each scenario, and the y = x line is drawn on each panel, which represents

an equal value from both models. The area below the line contains smaller values in the Restricted Network

Regression model, and the area above the line contains larger values in the Restricted Network Regression

model.
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(A)

(B)

Figure 2.3: Absolute bias (A) and credible interval coverage (B) for all models when estimating δr with

continuous data. Median bias and coverage values are printed for each model. Each panel is one of scenarios

G2 through G7. Violin plots show the distribution of the estimated absolute bias and coverage values of the

100 simulated values of X , a∗, and b∗. Solid horizontal lines indicate the nominal coverage (90%) and

dashed horizontal lines at 86.5% and 93.5% indicate bounds within which the average coverage of a 90%

credible interval should fall over 200 trials.
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Figure 2.3 shows the distribution of the absolute bias and credible interval coverage for δr using

each model in each scenario, G2 through G7. Bias appears lower for the restricted models (RNR.ig

and RNR.hc) than for other models in scenarios G2, G3, G5, G6, and G7, and approximately

equal in G4. The most noticeable difference between the Restricted Network Regression models

and others is in credible interval coverage, where models RNR.ig and RNR.hc appear properly

calibrated and NoRE, NR.ig, and NR.hc have coverage that is too high. Together, these results

suggest the continuous Restricted Network Regression mitigates network confounding relative to

both non-restricted network regression and network regression with no random effects.

2.4.2 Simulation 2: Binary Network Data

Data for the binary network models were simulated in the same way as for the continuous

network model (Section 2.4.1), using scenarios G1 through G7, but with the indicator function

g(zij) = I(zij > 0) to convert latent continuous responses to binary responses. All models were

fit to each set of simulated data. We similarly assessed the results of these simulations by compar-

ing posterior means and posterior variances of the unconditional regression parameters in models

NoRE and RNR.ig.

Figure 2.4 shows the comparison between posterior means and variances of δr for models

NoRE and RNR.ig with binary data. This comparison is notably different from the comparison for

continuous data in Figure 2.2. First, the posterior means produced by each model are not equal.

Second, the posterior variance of the regression coefficient in the Restricted Network Regression

model is now greater than in the network model with no random effects. This demonstrates em-

pirically that the implications of Theorem 2.3.1 and Theorem 2.3.2 do not apply to models with

non-Gaussian responses due to the inequality of posterior means. However, this inequality of

means also demonstrates that probit Restricted Network Regression also does not alleviate net-

work confounding.

Figure 2.5 shows the absolute bias and coverage estimates for δr in scenarios G2 through G7

using all models. The bias for model NoRE is the highest in general, with all other models having
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(A)

(B)

Figure 2.4: Comparison of posterior means (A) and variances (B) for a receiver covariate using a network

regression model with no random effects (NoRE) and a Restricted Network Regression model (RNR.ig)

with a binary response. Each panel is one of scenarios G2 through G7. Each panel shows a heatmap of the

100×200 simulated data sets for each scenario, and the y = x line is drawn on each panel, which represents

an equal value from both models. The area below the line contains smaller values in the Restricted Network

Regression model, and the area above the line contains larger values in the Restricted Network Regression

model.
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(A)

(B)

Figure 2.5: Absolute bias (A) and credible interval coverage (B) for all models when estimating δr with

binary data. Median absolute bias and coverage values are printed for each model. Each panel is one of

scenarios (G2) - (G7). Violin plots show the distribution of the estimated absolute bias and coverage values

of the 100 simulated values of X , a∗, and b∗. Solid horizontal lines indicate the nominal coverage (90%)

and dashed horizontal lines at 86.5% and 93.5% indicate bounds within which the average coverage of a

90% credible interval should fall over 200 trials.
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approximately equal absolute bias except in scenario G4. In most scenarios, the coverage of model

NoRE is significantly lower than 90%, while the coverage of the Restricted Network Regression

model with both inverse-gamma (RNR.ig) and half-Cauchy (RNR.hc) priors is much closer to

90%. Again, the non-restricted models (NR.ig and NR.hc) have coverage that is higher than 90%

in all scenarios. The Restricted Network Regression model with half-Cauchy random effect priors

(RNR.hc) has coverage within the expected range in all scenarios. A notable exception is scenario

G4, in which the models with inverse-gamma priors on σa and σb (NR.ig and RNR.ig), have higher

bias than their half-Cauchy counterparts. The coverage for model RNR.ig is also noticeably lower

than RNR.hc. Here, the prior selection affects the model’s ability to mitigate network confound-

ing. While model RNR.hc mitigates network confounding relative to NR.hc and RNR.ig mitigates

network confounding relative to NR.ig, RNR.ig does not mitigate network confounding relative to

NR.hc due to higher bias in this scenario.

2.5 Eurovision Voting Network Analysis

The Eurovision Song Contest is an annual competition in which European countries compete

by submitting the best song by an artist from their country. The contest culminates in a final round,

where the remaining 26 competitors perform their songs for a TV audience. All participating

countries then vote for their top ten songs through judges and/or phone-in voting. Points are

awarded according to votes (12 points for first, 10 points for second, then 8 through 1 points for

third through tenth) and the total determines the winner.

The contest is extremely popular, drawing 182 million viewers in 2019 (Eurovision, 2019).

This popularity has meant that the contest has been of interest for study, especially the study

of voting patterns (e.g., Ginsburgh and Noury, 2008; Spierdijk and Vellekoop, 2009). Because

competing countries are a subset of voting countries, vote data can naturally be represented as a

directed graph with the countries as nodes and an edge from country i to country j representing

a top-10 vote by country i for country j. Edges may be labeled with ranked votes if desired.
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Eurovision votes have been analyzed as a network by, for example, Yair (1995), Fenn et al. (2006),

and D’Angelo et al. (2019).

Countries may have other measurable qualities that are related to how well they score in the

contest results. For example, countries with larger populations have more musicians from which

to select a contestant. A country’s wealth may be associated with the reach of its cultural exports,

leading to more votes received from its trading partners. The Eurovision Song Contest is also the

subject of bets predicting its winner. Betting markets reflect the collective knowledge of their par-

ticipants, which in this case includes knowledge of the specific songs entered by each country, and

it is reasonable to think they may be predictive of the outcome. For example, Spann and Skiera

(2009) finds betting odds to be predictive of match results in the German premier soccer league.

Analyzing the relationship between population, wealth, and betting odds, and the Eurovision con-

test voting outcome fits a network regression framework naturally.

We restrict our analysis to the year 2015 and the 27 countries with entries in the final round

of that year (Australia, as a new contestant, was given an automatic berth to the final round). The

response data consist of a vote network represented as a 27 × 27 matrix (Figure 2.6). The re-

ceiver covariate data consist of three dimension 27 vectors of song or country attributes: the log

median odds from 16 popular European betting sites for each song to win the contest, the log

2015 population of each competing country, and the log 2015 GDP per capita of each competing

country. We log-transform the receiver covariates before using them as covariates in a regres-

sion model because they are either right-skewed (GDP, population) or because we believe there

to be a logarithmic relationship between the predictor and the response (betting odds). We also

include a dyadic covariate for country contiguity which was found to be explanatory in D’Angelo

et al. (2019). Country contiguity is an undirected network represented as a symmetric 27 × 27

binary matrix where a 1 indicates that two countries share a border and a 0 indicates otherwise.

Visualizations of these covariates are available in Appendix A.3. Votes were represented as ranks

(1-10 with 10 the highest). This data is freely available and easily compiled by hand (Eurovision,

2015; Eurovisionworld, 2015; Conte et al., 2022; United Nations, 2015; World Bank, 2022). Any
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Figure 2.6: Illustration of vote data from the 2015 Eurovision Song Contest final round as a network.

Edges point from voter to song, with darker lines indicating higher rankings. The contest’s eventual winner,

Sweden, receives a majority of the high-ranked votes.
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pairs i, j where country i did not vote for country j in its top 10 were coded as zero. Our focus

on a single year is due to the fact that both betting odds and column random effects are song-

specific, and therefore year-specific. Therefore additional years in this analysis cannot be treated

like replicates in the style of D’Angelo et al. (2019). We examine the effects of the covariates

on Eurovision voting by performing a network regression analysis without random effects, with

receiver random effects, and with restricted receiver random effects. We investigate the effect of

Restricted Network Regressions on regression parameter estimates and interpretation compared to

either alternative model.

2.5.1 Network Model with No Random Effects

The base model with no network-structured random effects has the form,

y = g(z), (2.38)

zij = δCCx
1
ij + δOddsx

2
j + δPopx

3
j + δGDPx

4
j + εij, (2.39)

εij
i.i.d.
∼ N(0, 1). (2.40)

We used the relative rank likelihood (RRL; Pettitt, 1982; Hoff et al., 2013), implemented with a

function g(·) which maps continuous values zij to the observed ranks yij in the following way: for

any voting country i and two entered songs j and j′, yij > yij′ implies zij > zij′ . This imposes

no relationship between the responses for different voting countries, so we cannot infer row effects

(Hoff et al., 2013).

We analyze and interpret the regression parameter estimates through posterior means and 90%

credible intervals for δ (Figure 2.7). As these are estimates of δ and there are no random effects

in the model, we interpret them as the unconditional effect of the fixed effects on the response.

All fixed covariates–country contiguity, log betting odds, log GDP per capita, and log population–

appear to have an effect on the voting outcomes. Country contiguity has a large positive effect,

agreeing with D’Angelo et al. (2019) that countries are more likely to vote for their neighbors’
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Figure 2.7: Comparison of posterior means and 90% credible intervals for β (Non-Restricted Network

Model) or δ (No Random Effects and Restricted Network Model). As betting odds, population, and GDP are

receiver covariates confounded with the random effects, inference on these regression parameters changes

the most between the three models. The posterior distribution for country contiguity, a dyadic covariate, is

less affected by the choice of model.

songs. Log betting odds have a large negative effect, which shows that betting markets are pre-

dictive of the Eurovision outcome as larger odds are associated with lower predicted probability

of winning. Log GDP per capita has a small positive effect, indicating that wealthier countries

are more likely to receive votes than less wealthy countries. Log population has a small negative

effect. All other things being equal, more populous countries are less likely to receive votes than

less populous countries.
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2.5.2 Non-Restricted Network Model

We fit a network model with a receiver random effect (bj) to account for song heterogeneity

not explained by the betting odds, population, or GDP. This network model has the form,

y = g(z), (2.41)

zij = βCCx
1
ij + βOddsx

2
j + βPopx

3
j + βGDPx

4
j + bj + εij, (2.42)

bj
i.i.d.
∼ N(0, σ2

b ), (2.43)

εij
i.i.d.
∼ N(0, 1). (2.44)

Leaving the random effects non-restricted is appropriate depending on the intended interpretation

of the terms in the model. For example, restricted regression is not recommended in the case

of “Scheffé-style” random effects: random effects whose values are considered as draws from a

population which is of interest, even though the values of the effects themselves are not (Hodges

and Reich, 2010). If we consider the population of countries to be all those eligible to participate

in the contest, or all those who competed in the initial rounds, then the selection of countries in

the final round is only a subset of the population. If the primary interest is studying the population

of all eligible countries rather than the propensity of individual countries to receive votes, the

receiver random effects could be considered “Scheffé-style” and restricted regression may not be

an appropriate choice.

Because the model contains receiver random effects, the regression effects represent the effect

of the covariates on the response conditioned on b. The posterior means and credible intervals

of the regression parameters in this model are noticeably different than in the network model

without random effects (Figure 2.7). In this case, the country contiguity retains its large positive

effect and log betting odds retains its large negative effect. We notice that the width of the 90%

posterior credible intervals for βOdds, βGDP , and βPop are wider than the credible intervals for

δOdds, δGDP , and δPop from the model in (2.39), indicating greater uncertainty about the conditional

effect of these covariates than the unconditional effect. The estimate of βPop is also smaller in
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Table 2.1: Comparison of covariate effect estimates from Restricted Network Regression to other models.

For each covariate and each comparison model, the ratio of posterior means and posterior credible interval

widths are shown. Numbers smaller than 1 indicate smaller posterior means or narrower credible intervals

in the Restricted Network Regression model.

Comparison Model

No Random Effects Non-Restricted Network Model

Covariate Mean Ratio Width Ratio Mean Ratio Width Ratio

Log Betting Odds 1.004 1.045 1.008 0.539

Log Population 0.389 1.247 1.000 0.598

Log GDP per Capita 1.656 1.173 1.004 0.566

Country Contiguity 1.091 1.031 1.032 0.997

magnitude and has a credible interval which includes zero. The changes in credible interval width

and posterior mean illustrate the impact of network confounding.

2.5.3 Restricted Network Model

We fit a network model with a receiver random effect (b) to account for song heterogeneity not

explained by the column covariates, projected to be orthogonal to the fixed effects of betting odds,

population, or GDP. Specifically, we set

y = g(z), (2.45)

z = Xδ + (I − PX)Bb+ ε. (2.46)

Since the association between y and X is of primary interest, we would like estimates of δ instead

of β. If we do not want to infer about the population of countries which did not compete in this

year’s final round, then the random effects in the model constitute the entire population of interest.

Since in this analysis we are using data only from the final round of the 2015 contest, restricted re-

gression would be appropriate. In the Restricted Network Regression model, the regression effects

once again represent the unconditional effect of the covariates on the response as the collinearity

with the random effect has been removed.
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Table 2.1 compares the magnitude of the regression parameter estimates and their credible

interval widths from the Restricted Network Regression model to those in the other models. Com-

pared to the model with no random effects, the receiver effects for log population and log GDP per

capita exhibit noticeably different posterior means and larger posterior credible intervals, while the

effect for log betting odds shows approximately equal posterior mean and only slightly larger cred-

ible interval (Figure 2.7). These results mirror what was observed with the binary data in the earlier

simulation study. Based on that study, we expect the estimates from Restricted Network Regression

to more accurately capture the unconditional effect of the covariates on the response. Compared

to the non-restricted network model, all regression parameters have approximately equal poste-

rior means and the receiver covariate effects have smaller posterior credible intervals. Restricted

Network Regression allows the excess network-structured variation in y to be accounted for via

the random effects bj , while avoiding the network confounding and inflated standard errors in the

non-restricted network model.

2.6 Discussion

In this chapter, we introduced Restricted Network Regression for models with additive network

random effects and established its connection to restricted spatial regression. We characterized the

network confounding of the network regression model with additive random effects and node-level

covariates, which Restricted Network Regression addresses by forcing the column spaces of the

fixed and random effects to be mutually orthogonal. We provided conditions for network regres-

sion models to alleviate and mitigate network confounding and proved that Restricted Network

Regression does not alleviate network confounding with theoretical results and through simula-

tion. However, we showed through simulation that Restricted Network Regression does mitigate

network confounding relative to network regression with no random effects and non-restricted

network regression with continuous and binary response data. Restricted Network Regression

produces less bias and properly calibrated credible intervals for regression parameters relative to

network regression without random effects and non-restricted network regression.
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We also explored through simulation the effect of a half-Cauchy prior on the variance com-

ponents of the network random effects. We found that this prior resulted in comparable bias and

credible interval coverage for the unconditional regression effects to the conjugate inverse-gamma

prior in probit Restricted Network Regression, with better bias and credible interval coverage in

some scenarios.

Finally, we applied Restricted Network Regression to a dataset of Eurovision Song Contest

voting. We interpreted the model estimates of Restricted Network Regression alongside those

from a model without network-structured random effects and those from a non-restricted network

regression model. For the three receiver covariates in the model, the choice of model affected both

their posterior mean point estimates and their credible interval estimates. The change in credible

interval width is noticeable for all three receiver covariates. Uncertainty, as indicated by the width

of posterior credible intervals, increases after adding random effects to the model, but decreases

again after restricting them. The widths of the credible intervals for the receiver covariates with

restricted random effects is larger than without random effects but smaller than with non-restricted

random effects.

Future work in this area includes developing Restricted Network Regression for other forms

of network random effects such as multiplicative effects (Hoff, 2021) or latent space distance

effects (Hoff et al., 2002). It is less clear which covariates may be confounded with such effects,

and whether restricting these random effects can have the same benefits as with additive effects

and non-Gaussian data. Theoretical results for binary or other non-Gaussian data that describe

the posterior distribution are also needed to make stronger conclusions about Restricted Network

Regression on non-Gaussian data. Restricted Network Regression can also be expanded to include

bipartite network data or longitudinal network data (e.g., Marrs et al., 2020).
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Chapter 3

Fast Bayesian Record Linkage for Streaming Data

Contexts

3.1 Introduction

Record linkage is the task of resolving duplicates in two or more overlapping sets of records,

or files, from multiple noisy data sources, often without the benefit of having a unique identifier.

For example, in a longitudinal survey setting it is possible to have multiple responses from the

same person with misspellings or other data errors. This type of error is shown in Table 3.1, where

records 1 and 5 represent responses from the same person that were stored with a misspelling in

the surname. This presents a problem for those that wish to use this data to make inferences.

With the current accessibility and continuity of data, record linkage has become crucial for many

areas of application including healthcare (Fleming et al., 2012; Hof et al., 2017), official statistics

(Winkler, 2006; Kaplan et al., 2023; Wortman, 2019), and fraud detection and national security

(Vatsalan et al., 2017).

Although probabilistic approaches for record linkage have become more common in recent

years, principled approaches that are computationally tractable and scalable for large data sets are

limited (Binette and Steorts, 2022). Moreover, existing approaches are not suited for streaming

data settings, where inference is desired continuously. In the streaming context, data files are

expected to arrive sequentially in time with no predetermined number of files. A limited portion of

the machine learning literature has targeted the area of near real-time record linkage from a data-

driven perspective (Christen et al., 2009; Ioannou et al., 2010; Dey et al., 2011; Altwaijry et al.,

2017; Karapiperis et al., 2018).

In this work, we propose new methodology to perform record linkage with streaming data in

an efficient and statistically principled fashion under a Bayesian framework. A model-based ap-
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Table 3.1: An example of noisy data in need of deduplication. Rows 1 and 5 refer to the same entity but

differ due to an error in ‘Given Name’.

Given Name Surname Age Occupation

maddisom ryan f 3

marleikh hoffman d 4

samara pater5on d 5

lili wheatlry f 7

maddison ryan f 3

proach, such as the one we propose, provides interpretable parameters and a way to encode prior

knowledge about the data generation process. Bayesian inference also provides natural uncertainty

quantification, allowing uncertainty from record linkage to propagate to downstream analysis (Ka-

plan et al., 2023). This work presents the first model-based approach to perform record linkage in

streaming data contexts.

A significant portion of the probabilistic record linkage literature has focused on linking two

data files (Fellegi and Sunter, 1969; Tancredi and Liseo, 2011; Gutman et al., 2013; Sadinle, 2017).

Recently, Bayesian approaches for multi-file record linkage have become popular (Sadinle and

Fienberg, 2013; Sadinle, 2014; Steorts et al., 2016; Betancourt et al., 2016; Aleshin-Guendel and

Sadinle, 2023). In particular, Aleshin-Guendel and Sadinle (2023) extend the Bayesian Fellegi-

Sunter model of Sadinle (2017) through the use of a partition prior. However, the existing literature

is limited to non-streaming settings where the number of files is fixed and known in advance, and

record linkage is performed offline in a single procedure. Recent advances have made record link-

age possible for big offline data settings, either by jointly performing blocking and entity resolution

(Marchant et al., 2021) or by quickly computing point estimates and approximating the posterior

distribution (McVeigh et al., 2019). Nonetheless, these approaches are not suited to efficiently

assimilate new data. To address this gap in the literature from a fully model-driven perspective, we

focus on developing a Bayesian model for multi-file record linkage that enables online data scenar-

ios. Our approach uses recursive Bayesian techniques to produce samples from the full posterior

that efficiently update existing draws from the previous posterior. To date, such recursive Bayesian
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updates have not been used for linkage in a streaming setting. Our proposed model is constructed

under the Fellegi-Sunter paradigm, which entails pairwise comparisons of records (Fellegi and

Sunter, 1969; Sadinle and Fienberg, 2013). We explore diffuse and informative prior distributions

and provide two streaming samplers.

The remainder of this chapter proceeds as follows. Section 3.2 defines the Bayesian record

linkage model for streaming data and defines the problem context, notation, assumptions, and

constraints for the model. Section 3.3 introduces two streaming samplers which can be used to

perform updates of parameter estimates upon the arrival of a new file. Section 3.4 evaluates these

methods on both the quality of samples they produce as well as their speed on simulated data sets.

Section 3.5 provides the result of performing streaming record linkage on real-world survey panel

data. Section 3.6 contains discussion of further advantages and disadvantages of each streaming

update method.

3.2 Bayesian Record Linkage Model for Streaming Data

We will begin this section with a description of the streaming data context, definition of nota-

tion, and enumeration of assumptions. We then define the likelihood and prior specification for the

multi-file record linkage model.

3.2.1 Streaming Record Linkage Notation

We consider k files X1, . . . , Xk that are collected temporally, so that file Xm is available at

time Tm, with T1 < T2 < · · · < Tk. See Figure B.1 in Appendix B.1 for a diagram depicting

this context. Each file Xm contains nm ≥ 1 records Xm = {xmi}
nm

i=1, with each nm potentially

distinct. Each record is comprised of pm fields, and it is assumed that there is a common set of

F fields numbered f = 1, . . . , F across the k files which can be numeric, text, or categorical.

Records representing an individual (or entity) can be noisily duplicated across files. Each individ-

ual or entity is recorded at most once in each file, corresponding to an assumption that there are

no duplicates within a file. This setting has a growing complexity— with k files, all records in
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k(k − 1)/2 pairs of files must be compared and linked. The goal of the record linkage problem is

identifying which records in files X1, . . . , Xk refer to the same entities. This context is considered

“streaming” because data is continuously generated with no predetermined stopping point, and our

goal is to update the inference pipeline as new information becomes available.

Our record linkage model for the streaming data context extends the ideas of Fellegi and Sunter

(1969) and Sadinle (2017). Within this paradigm, the comparisons are assumed to come from

one of two distributions, M for coreferent pairs and U for non-coreferent pairs. Two records

are coreferent if they refer to the same entity. The Fellegi and Sunter (1969) framework was

extended to the Bayesian paradigm for two-file record linkage in Sadinle (2017). In this work,

we further extend the model for a general k-file scenario. In contrast to the Aleshin-Guendel and

Sadinle (2023) model which also extends the Sadinle (2017) model for the multi-file case, we

parameterize the record matching as vectors linking to the most recent previous occurrence of an

individual and place an informative prior on these vectors to avoid overlinking between files. This

parameterization is the mechanism by which streaming updates are possible.

We denote comparison between two records, xm1i in file Xm1 and xm2j in file Xm2 , as a

function, γ(xm1i,xm2j), which compares the values in each field, f , dependent on field type. Each

comparison results in discrete levels 0, . . . , Lf with 0 representing exact equality and subsequent

levels representing increased difference. For example, categorical values can be compared in a

binary fashion, numerical fields can be compared by binned absolute difference, and text fields can

be compared by binned Levenshtein distance (Christen, 2012). We define P =
∑F

f=1(Lf + 1), as

the total number of levels of disagreement of all fields. The comparison γ(xm1i,xm2j) takes the

form of a P -vector of binary indicators containing F ones and P−F zeros which indicates the level

of disagreement between xm1i and xm2j in each field. Exactly one 1 must appear in the first L1+1

elements of γ(xm1i,xm2j), one 1 in the next L2 + 1 elements, and so on. The comparison vectors

are collected into matrices Γ
(1), . . . ,Γ(k−1) where Γ

(m−1) contains all comparisons between the

records in file Xm and previous files. The comparison matrix Γ
(m−1) thus has nm ·(n1+· · ·+nm−1)

rows and P columns. Define Γ
(1:m) as {Γ(1), . . . ,Γ(m)} for m ∈ 1, . . . , k − 1.
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Records can be represented as a k-partite graph, with nodes representing records in each file

and a link between two records indicating that they are coreferent. This graph can be segmented

according to the order of files. First, a bipartite graph between X1 and X2; then a tripartite graph

between X1, X2, and X3, where records in X3 link to records in X1 and X2; until finally a k-partite

graph between X1, . . . , Xk where records in Xk link to records in X1, . . . , Xk−1. These graphs can

be represented with k − 1 matching vectors, with one vector per file X2, . . . , Xk. Each vector,

denoted Z(m−1), has length nm with the value in index j, denoted Z
(m−1)
j , corresponding to the

record xmj as follows,

Z
(m−1)
j =







∑t−1
ℓ=1 nℓ + i for t < m, if xti ∈ Xt and xmj are coreferent,

∑m−1
ℓ=1 nℓ + j otherwise.

Let Z(m−1) =
(

Z
(m−1)
j

)nm

j=1
and Z(1:m) =

{
Z(1), . . . ,Z(m)

}
for m ∈ 1, . . . , k − 1. These

vectors identify which records are coreferent and are therefore the main parameters of interest in

the record linkage problem.

We also define parameters m and u, which specify the distributions M and U respec-

tively. Both m and u are P -vectors which can be separated into the sub-vectors m =
[

m1 . . . mF

]

and u =

[

u1 . . . uF

]

, where mf and uf have length Lf + 1. Then

M(m) =
∏F

f=1 Multinomial(1;mf ) and U(u) =
∏F

f=1 Multinomial(1;uf ) are the distributions

for matches and non-matches, respectively.

3.2.2 Preserving the Duplicate-Free File Assumption

Preserving the assumption of duplicate-free files with a large number of files is a challenge

because the combination of several links throughout the parameters Z(1:(k−1)) may imply that two

records in the same file are coreferent. For example if Z
(1)
1 = 1, Z

(2)
1 = 1, and Z

(2)
2 = n1 + 1,

then the records x31 and x32 are implied to be coreferent even though they are not directly linked

to the same record. We address this by placing constraints on the values of these parameters such

that no two records may link directly to the same record in a previous file. Because each record
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Figure 3.1: Examples of both prohibited (left) and allowed (right) links between records in three files. On

the left Z
(1)
1 = 1 and Z

(2)
1 = 1, while on the right Z

(1)
1 = 1 and Z

(2)
1 = n1 + 1. The left configuration

is prohibited because the record x11 receives a link from both x21 and x31. Both configurations define the

same cluster containing these three records.

can send at most one link to a previous record and receive at most one link from a later record, we

guarantee that no two records in the same file are transitively linked. Figure 3.1 depicts a three-file

example of prohibited and allowed values of Z(1) and Z(2). Both values are logically equivalent,

but without this constraint the prohibited configuration could allow for one record in file X4 to link

to record x31 while another links to record x21, becoming coreferent and violating the assumption.

The bipartite matching, Z(1), is constrained in a manner consistent with Sadinle (2017).

Namely, that there can be no two Z
(1)
i = Z

(1)
i′ where i ̸= i′. The tripartite matching must be

similarly restricted to enforce our link validity constraint. Specifically, for some 1 ≤ i ≤ n3 and

1 ≤ j ≤ n1, Z
(2)
i cannot equal j if Z

(1)
k = j for any k ≤ n2. That is, record i cannot be linked

to a record j in X1 which already has a match in X2. To enforce transitivity of the coreference

relationship, comparisons with files Xm,m ≥ 3 will be constrained.

Definition 3.2.1. Link Validity Constraint. Let Ck be the set of all matching vectors Z(1:(k−1))

such that every record xm1i receives at most one link from a record xm2j where m2 > m1. That

is, there is at most one value in any Z(m2−1) with m2 > m1 that equals
∑m1−1

ℓ=1 nℓ + i. Matching

vectors Z(1:(k−1)) are valid if and only if Z(1:(k−1)) ∈ Ck.

This constraint aids in the identifiability of the parameters Z(1:(k−1)). Under these constraints

each logical cluster of at most one record from each file has one unique valid representation,
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namely a chain of links from the latest-appearing record to the earliest-appearing record, linking

records in order of appearance. The chain nature aids in computation— it becomes possible to list

all members of a cluster by starting at one of its members and traversing the chain forwards and

backwards without needing to branch or double back.

3.2.3 Likelihood

In this section and Section 3.2.4, we define the likelihood and priors that contribute to the

streaming record linkage model posterior. The full posterior distribution is presented in Appendix

B.2.1. Consistent with the formulation in Sadinle (2017), the likelihood for the two-file case is

defined as

P (Γ(1)|Z(1),m,u) =

n1∏

i=1

n2∏

j=1

P (γij|Z
(1),m,u) =

n1∏

i=1

n2∏

j=1

F∏

f=1

Lf∏

ℓ=0

[

m
I(Z

(1)
j =i)

fℓ u
I(Z

(1)
j ̸=i)

fℓ

]γfℓ
ij

,

where γij := γ(x1i,x2j), γ
fℓ
ij is the component corresponding to level ℓ of field f , and I(·) is

the indicator function taking a value of 1 if its argument holds and 0 otherwise. For every pair

of records, one from each file, m contributes to the distribution if the records are linked by Z(1)

and u contributes otherwise. We extend this to the k-file case by defining the match set, M :=

M(Z(1:(k−1))) = {(xm1i,xm2j) : xm1i and xm2j are linked}, to contain all pairs of records that are

linked either directly or transitively through a combination of multiple vectors Z(1:(k−1)). Testing

whether (xm1i,xm2j) ∈ M for m1 < m2 is done by the process of link tracing. This is the

process by which we determine the links implied by transitivity in the match vectors. To perform

link tracing, we start at xm2j and follow the values in Z(1:(k−1)) to travel down the chain of links,

starting with Z
(m2−1)
j . If xm1j is ever reached, then (xm1i,xm2j) ∈ M , while if a dead end is

reached first, then (xm1i,xm2j) /∈ M .
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The full data model in the k-file case is then

P (Γ(1:(k−1))|m,u,Z(1:(k−1)))

=
k∏

m1<m2

nm1∏

i=1

nm2∏

j=1

F∏

f=1

Lf∏

ℓ=0

[

m
I((xm1i

,xm2j
)∈M)

fℓ u
I((xm1i

,xm2j
)/∈M)

fℓ

]γfℓ(xm1i
,xm2j

)

. (3.1)

The likelihood of the k-file Bayesian record linkage model encodes the assumption that all com-

parisons, Γ, are conditionally independent given the parameters m, u, and Z(1:(k−1)). The same

m and u probabilities appear in the distribution of comparisons between each pair of files, cor-

responding to an assumption of equal propensity for error in each file. Alternatively separate

probabilities, mt1t2 and ut1t2 , can be specified for the comparisons between files Xt1 and Xt2 , as

in Aleshin-Guendel and Sadinle (2023). However, every new file, Xk, will require 2(k − 1) new

parameters, mt1k and ut1k for all t1 < k, which may affect the model’s performance in a streaming

setting. The support of the data distribution is dependent on the vectors Z(1:(k−1)), specifically, the

matching vectors must satisfy the link validity constraint given in Definition 3.2.1. We explicitly

write this constraint as an indicator function in the likelihood:

L(m,u,Z(1:(k−1))) = I(Z(1:(k−1)) ∈ Ck) · P (Γ(1:(k−1))|m,u,Z(1:(k−1))). (3.2)

We discuss the benefit to prior selection in Section 3.2.4.

3.2.4 Prior Specification

Priors for m and u

The parameters m and u are probabilities of a multinomial distribution, so we specify con-

jugate Dirichlet priors. Specifically, we let mf ∼ Dirichlet(af ) and uf ∼ Dirichlet(bf ), for

f = 1, . . . , F , where af and bf are vectors with the same dimension, Lf + 1, as mf and uf . For

a diffuse prior we can set a = b = 1. Also it can be useful to encode prior knowledge about the

propensity for duplicates to have errors in the prior for m. For example, if we know that an error
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in field f of a duplicated record has probability p of occurring, we can let

af = s ·

[

1− p p/Lf . . . p/Lf

]

, (3.3)

with s determining the strength of the prior knowledge. We empirically investigate the effect of

this informative prior specification on m in simulated data scenarios in Section 3.4.

Priors for Z(k−1)

We construct the prior for streaming matching vectors using the same hierarchy as specified in

Sadinle (2017). For the parameter Z(k−1) after the arrival of the kth file, we let

I

(

Z
(k−1)
j ≤

k−1∑

m=1

nm

)∣
∣
∣
∣
∣
π ∼ Bernoulli(π)

Z(k−1)

∣
∣
∣
∣
∣
∣

{

I

(

Z
(k−1)
j ≤

k−1∑

m=1

nm

)}nk

j=1

∼ Uniform ({all k-partite matchings})

Allowing π ∼ Beta(απ, βπ) results in the marginal streaming prior

P (Z(k−1)|απ, βπ) =
(N − nk·(Z

(k−1)))!

N !
·

B(nk·(Z
(k−1)) + απ, nk − nk·(Z

(k−1)) + βπ)

B(απ, βπ)
, (3.4)

where N =
∑k−1

m=1 nm and nk·(Z
(k−1)) =

∑nk

j=1 I(Z
(k−1)
j ≤ N)

This streaming prior enforces the condition that no two records within the same file can link to

the same record in a previous file. However, the more general link validity constraint in Definition

3.2.1 is not enforced in the prior. Not enforcing the general constraint allows the priors for all Z(m)

to be independent. We define a constrained version of the prior in Equation 3.4 in Section 3.2.4

and demonstrate its inferiority due to over-linking.

Another Prior for Z(k−1) that Enforces Link Validity but Overlinks

Define the set C := C(Z(1:(k−2))) to be the candidate set, the set of records with no links

from later files. Let IC := IC(Z
(1:(k−2))) be the corresponding indices of those records. In other
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words, C is the set of records which may be linked directly to a record in file Xk via Z(k−1) without

violating the link validity constraint in Definition 3.2.1 and IC are the corresponding values allowed

for components of Z(k−1). We can create an alternative prior for Z(k−1) that will directly enforce

the link validity constraint,

I

(

Z
(k−1)
j ≤

k−1∑

m=1

nm

)∣
∣
∣
∣
∣
π ∼ Bernoulli(π)

Z(k−1)

∣
∣
∣
∣
∣
∣

{

I

(

Z
(k−1)
j ≤

k−1∑

m=1

nm

)}nk

j=1

∼ Uniform

({
all k-partite matchings satis-

fying Definition 3.2.1

})

(3.5)

This slight change in line 3.5 results in the (conditional) prior for Z(k−1),

P (Z(k−1)|Z(1:(k−2)), απ, βπ)

=
(|C| − nk·(Z

(k−1)))!

|C|!
·

B(nk·(Z
(k−1)) + απ, nk − nk·(Z

(k−1)) + βπ)

B(απ, βπ)
. (3.6)

This prior results in increased over-linking as the number of files increases.

Theorem 3.2.1. Consider a k-file record linkage problem with an initial state Z(1:(k−1)) and an

alternate state (Z∗(1:(k−2)),Z(k−1)) such that Z∗(1:(k−2)) are identical to Z(1:(k−2)) except for the

addition of one link. That is, there exists an ℓ < k, j ≤ nℓ and i ≤ n1 + · · · + nℓ−1 such that

Z
∗(ℓ−1)
j = i and Z

(ℓ−1)
j = n1 + · · ·+ nℓ−1 + j. Let

R =
P (Z∗(1:(k−2)),Z(k−1))

P (Z(1:(k−2)),Z(k−1))
÷

P (Z∗(1:(k−2)))

P (Z(1:(k−2)))
.

When the prior in Equation 3.6 is specified for Z(2:(k−1)), R ≥ 1 with equality only when there are

no links in Z(k−1). When the prior in Equation 3.4 is specified for Z(2:(k−1)), R = 1.

Proof. See Appendix B.3.1.

The ratio R represents the relative prior probability of an additional link in Z(1:(k−2)) after file

k arrives compared to before file k arrives, with any given state of Z(k−1). Therefore with the
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prior in Equation 3.6, the relative prior probability to add one link in Z(1:(k−2)) is higher after the

arrival of file Xk than before. For this reason, we use the prior in Equation 3.4 and enforce the link

validity constraint in Definition 3.2.1 via the likelihood.

3.3 Streaming Sampling

The key to Bayesian streaming record linkage is an efficient means of updating the posterior

distribution of existing parameters after the arrival of a new file, Xk. In this section, we intro-

duce two sampling approaches we have adapted to address this problem, Prior-Proposal-Recursive-

Bayes (PPRB) and Sequential MCMC (SMCMC).

3.3.1 Prior-Proposal-Recursive Bayes (PPRB)

Prior-Proposal-Recursive Bayes is a recursive Bayesian sampling technique in which existing

posterior samples from a previous stage are used as independent Metropolis proposals to sample

from a later stage posterior distribution, conditioned on new data (Hooten et al., 2021). We consider

a model with parameters θ and data y1 and y2:

y =






y1

y2




 ∼ p(y|θ) = p(y1|θ)p(y2|θ,y1), θ ∼ p(θ)

We assume y1 arrives before y2 and posterior samples θ(1) . . .θ(S) are obtained from p(θ|y1).

After y2 arrives, these samples are resampled as independent Metropolis proposals for the updated

posterior distribution p(θ|y1,y2). The acceptance ratio α for the proposal θ′ and current value θ

simplifies to

α = min

(
p(y2|θ

′,y1)

p(y2|θ,y1)
, 1

)

.

This ratio depends only on the full conditional distribution of the new data, y2, and so can be

calculated quickly. If y2 and y1 are conditionally independent given θ, then the old data y1 does

not need to be stored in order to calculate α or perform PPRB.
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To apply PPRB to the Bayesian record linkage model when a file Xk arrives, we have

y2 = Γ
(k−1), y1 = Γ

(1:(k−2)), and θ =

[

m u Z(1:(k−2))

]

. Since all comparisons are assumed

conditionally independent given the parameters m, u, and Z(1:(k−2)), the past calculated com-

parisons Γ(1:(k−2)) would not be needed to calculate α or perform PPRB. However, the streaming

record linkage model requires additional parameters, Z(k−1), for the distribution of the new data,

Γ
(k−1), so a straight forward application of PPRB is not possible. Hooten et al. (2021) propose

drawing values of the new parameter from its predictive distribution and appending those values

to the existing samples prior to PPRB, which retains the simplified form of the acceptance ratio,

α. In the streaming record linkage problem, the predictive distribution of Z(k−1) reduces to its

prior: p(Z(k−1)|m,u,Z(1:(k−2)),Γ(1:(k−2))) = p(Z(k−1)). However, because the space of possible

values of Z(k−1) is on the order of (
∑k−1

ℓ=1 nℓ)
nk and the proposed prior is diffuse, these values are

rarely good proposals for the updated posterior distribution, leading to low acceptance rates and

slow mixing.

For this reason, we propose PPRB-within-Gibbs, a Gibbs sampler in which one of the steps is

an independent Metropolis proposal from prior stage posterior samples.

Definition 3.3.1. PPRB-within-Gibbs algorithm. Consider a general model with partitioned data

y1 and y2, and parameters θ1, θ2, and θ3:

y1|θ1,θ2 ∼ p(y1|θ1,θ2)

y2|θ1,θ2,θ3 ∼ p(y2|θ1,θ2,θ3)

θ1 ∼ p(θ1), θ2 ∼ p(θ2), θ3 ∼ p(θ3)

The parameters θ1, θ2, and θ3 have independent priors, y1 and y2 are conditionally independent

given the parameters, and the first wave of data, y1, is not dependent on θ3. Let there be existing

posterior samples, {θs
1}

S
s=1 from the distribution p(θ1|y1). Then for the desired number of posterior

samples,

1. Update the parameter θ2 from the full conditional distribution [θ2|θ1,θ3,y1,y2],
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2. (PPRB step) Propose a new value θ∗
1 by drawing from the existing posterior samples {θs

1}
S
s=1

with replacement. Accept or reject the proposal using the Metropolis-Hastings ratio

α = min

(
p(y2|θ

∗
1,θ2,θ3)

p(y2|θ1,θ2,θ3)

p(θ2|θ
∗
1,y1)

p(θ2|θ1,y1)
, 1

)

,

3. Update the parameter θ3 from the full conditional distribution [θ3|θ1,θ2,y1,y2],

recording the values of θ1, θ2, and θ3 at the end of each iteration.

Theorem 3.3.1. The PPRB-within-Gibbs sampler (Definition 3.3.1) produces an ergodic Markov

chain with the model’s posterior distribution as its target distribution if the posterior distribution

satisfies the following positivity condition,

p(θ1|y1,y2) > 0, p(θ2|y1,y2) > 0, p(θ3|y1,y2) > 0 =⇒ p(θ1,θ2,θ3|y1,y2) > 0.

Proof. See Appendix B.3.2.

S is the number of samples drawn from the previous posterior distribution, p(θ1|y1) and gener-

ally cannot be increased. As the pool of samples, {θs
1}

S
s=1, approximates the distribution p(θ1|y1)

for the purpose of proposals, a larger S will lead to better proposals. However, we see in Section

3.4.4 that the pool of samples available to PPRB or PPRB-within-Gibbs will degrade over time af-

ter repeated applications in a streaming setting. A large S can extend the utility of the pool but will

not keep it from degrading. We briefly mention future work that could address this degradation in

Section 3.6.

PPRB-within-Gibbs is applicable to the streaming record linkage model via the relationships

θ1 = Z(1:(k−2)), θ2 = [m,u], θ3 = Z(k−1), y1 = Γ
(1:(k−2)), y2 = Γ

(k−1), which satisfies all

the preconditions of the algorithm. The algorithm steps for the streaming record linkage model as

defined in Section 3.2 are listed in Appendix B.3.2. The acceptance ratio, α, is now the product

of two ratios. The first ratio is of the data distribution of new data, as in original PPRB, evaluated

both at the proposed Z
(1:(k−1))
∗ and the current Z(1:(k−1)). The second ratio is of the full conditional
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density of m and u, but only conditioned on the pre-arrived data and pre-existing parameters. As

such, these values can be pre-calculated for every existing posterior sample from the previous stage

posterior.

This approach retains the appealing speed and low storage requirements of PPRB by utilizing

existing posterior samples, while also avoiding an identified challenge of the original method pro-

posed by Hooten et al. (2021) by drawing from the full conditional distribution of Z(k−1) rather

than its prior. However, as resampling filtering methods, PPRB and PPRB-within-Gibbs can never

sample states of any Z(m) not present in the first pool of posterior samples of that parameter. As

a result, the pool of samples for any Z(m) will converge to a degenerate distribution as k → ∞

(Lunn et al., 2013). We see evidence in Section 3.4.4 and discuss potential ways to address this in

Section 3.6.

3.3.2 Sequential MCMC (SMCMC)

Sequential MCMC is a sampling algorithm based on parallel sequential approximation

(Yang and Dunson, 2013). Starting from an existing ensemble of posterior samples from

P (m,u,Z(1:(k−2))|Γ(1:(k−2))), SMCMC uses two kernels:

1. The Jumping Kernel — a probability distribution J(Z(k−1)|·) which is responsible for ini-

tializing a value of Z(k−1) for each sample, potentially conditioning on old or new data.

2. The Transition Kernel — any MCMC kernel, T , that targets the updated posterior distribu-

tion, P (m,u,Z(1:(k−1))|Γ(1:(k−1))).

These kernels are applied in parallel initialized at each existing sample, first using the jumping

kernel to initialize Z(k−1) and then repeatedly applying the transition kernel T until desired con-

vergence is achieved. Final states of each parallel chain are taken as the new ensemble. SMCMC

is a massively parallel MCMC algorithm that is expected to have fast convergence if the posterior

based on new data and the posterior based on current data are similar in shape. Both jumping

and transition kernels may depend on previously arrived data as well as new data. For Bayesian
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multi-file record linkage, we choose the transition kernel T as a Gibbs-style kernel which updates

all parameters in sequence, and the jumping kernel J to be the full conditional update of Z(k−1).

SMCMC differs from PPRB-within-Gibbs in that it operates on an independent ensemble of

samples. If the initial size of the ensemble is S, SMCMC produces S independent samples from

the updated posterior distribution by nature of the parallel algorithm. Therefore the ensemble can

remain relatively small, and only a small number of posterior draws need to be saved after the

arrival of each file. The ensemble is never filtered, so converging to a degenerate distribution

is not a concern for SMCMC. The transition kernel within SMCMC updates all parameters and

maintains the same speed as MCMC for the updated posterior using the full data. The speed

benefits of SMCMC then come from the ability to use as many as S parallel chains with well-

chosen initial values. By contrast, PPRB-within-Gibbs’s speed benefits come from simplifying the

parameter update step. Unlike PPRB-within-Gibbs, SMCMC requires the full data be stored in

perpetuity because with every new file the transition kernel will update all parameters.

3.3.3 Proposals for Matching Vector Updates

Both streaming samplers, PPRB-within-Gibbs and SMCMC, depend on full conditional up-

dates of matching vectors. Step 3 of PPRB-within-Gibbs and the jumping kernel from SMCMC

are both full conditional updates of the most recent vector Z(k−1), and the transition kernel of

SMCMC must update all matching vectors. The choice of update is crucial for both speed and

convergence of the sampler.

A straight-forward method for performing updates of Z(k−1) is to update each component

Z
(k−1)
j in turn for j = 1, . . . , nk. This method is used by Sadinle (2017) to update the match-

ing vector in the two-file Bayesian record linkage model. The support for each component Z
(k−1)
j

is enumerable as {1, . . . ,
∑k−1

ℓ=1 nℓ,
∑k−1

ℓ=1 nℓ + j}. To draw from the full conditional distribution

of each Z
(k−1)
j , the product of the likelihood and priors is evaluated for each potential value, nor-

malized, and used as probabilities to sample the new value. The full transition kernel using these

component-wise proposals for matching vectors is defined in Definition B.3.1 in Appendix B.3.2.
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Zanella (2020) describes a class of locally balanced pointwise informed proposals distributions

to improve sampling in high-dimensional discrete spaces. For a sample space X with a target

distribution given by π(x), these proposals have the form,

Qg(x, y) =
g
(

π(y)
π(x)

)

K(x, y)

Zg(x)
,

where the proposed move is from a point x to a point y. K(x, y) is a symmetric uninformed local

proposal distribution, g : R+ → R
+ is a function and Zg(x) is the normalizing constant. The goal

of these proposals is to improve the uninformed proposal K by biasing towards points with higher

probability through the multiplicative term g(π(y)/π(x)). The uninformed kernel K is arbitrary,

and Qg is called locally balanced if and only if g(t) = tg(1/t). A consequence of this property

of g along with a symmetric local proposal K is that the Metropolis-Hastings acceptance ratio for

locally balanced proposals simplifies to the ratio of normalizing constants, min(Zg(x)/Zg(y), 1).

To apply locally balanced proposals to the Bayesian multi-file record linkage model, we choose

g(t) = t/(1 + t) and K to be the kernel defined by making a single randomly chosen add, delete,

swap, or double-swap move. The kernel K can optionally be blocked, where first a subset of

records in file Xk and an equally sized subset of records in files X1, . . . , Xk−1 are randomly se-

lected and then, only moves which affect links between these subsets are considered. Blocking

limits the scope of possible moves for each update, which in turn decreases the time required per

update. However, blocking also increases the chance of proposing a move to a lower probability

state which is more likely to be rejected, requiring more updates to sample effectively. We use a

block size in Section 3.4 which is fast while still producing many accepted proposals. The full tran-

sition kernel using these locally balanced proposals for matching vectors is defined in Definition

B.3.2 in Appendix B.3.2.

The component-wise full conditional updates can take larger steps than the locally balanced

proposals because each value in Z(k−1) has the potential to be updated. In contrast, the locally

balanced proposals can at most update two components of Z(k−1) with a double-swap operation.
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The component-wise full conditional updates, however, are more computationally intensive as the

likelihood needs to be calculated at more potential states and there is no option for blocking. We

use locally balanced proposals to update Z(k−1) in PPRB-within-Gibbs. In Section 3.4 both locally

balanced and component-wise proposals are used within SMCMC and their speed and sampling

performance are compared.

3.4 Simulation Study

To assess both the performance of the model and speed of the streaming update, we evaluate

our Bayesian multi-file record linkage model and both streaming samplers on simulated data. We

choose to focus on the four file case, since the arrival of the fourth file is the earliest point at

which two sequential streaming updates can have been used, demonstrating the potential for use in

streaming settings.

3.4.1 Data Simulation

Data were simulated using the GeCo software package (Tran et al., 2013) which creates re-

alistic simulated data about individuals. Each record was given 10 fields: first name, last name,

occupation, and age, plus 6 categorical fields with values drawn uniformly from 12 possible cat-

egories. For each of four levels of overlap (10%, 30%, 50%, and 90%), four files of 200 records

each were created. Duplicate records were allowed in consecutive and non-consecutive datasets. In

each duplicated record in files X2, X3 and X4, a maximum of either 2, 4, or 6 errors were inserted.

Errors were inserted into text fields of first name and last name by simulating typos, common

misspellings, and OCR errors using the GeCo package (Tran et al., 2013). Errors were inserted

into the remaining categorical fields by replacing their value with a category selected randomly

uniform from all possible categories. Each field could have errors, with text fields more likely

than categorical fields. A total of 12 datasets were created, one at each combination of error and

overlap. This simulation is intended to mimic a longitudinal survey in which we have demographic

information and the answers to 6 identifying categorical questions with varying levels of noise and
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overlap. Comparison vectors were created by comparing each field between pairs of records. Text

fields were compared using binned normalized Levenshtein distance with 4 levels: exact equal-

ity, (0, 0.25], (0.25, 0.5], and (0.5, 1]. Categorical fields were compared in a binary fashion. All

computation in this section and in Section 3.5 was performed using the RMACC Summit Super-

computer (Anderson et al., 2017). We utilized the accompanying package bstrl (Taylor et al.,

2022) on R version 3.5.0 on Intel Haswell CPUs with 24 cores and 4.84 GB of memory per CPU.

3.4.2 Link Accuracy

We assess the accuracy of our multi-file record linkage model by evaluating samples from

the posterior distribution obtained using a non-streaming Gibbs sampler. The streaming samplers

should target the same posterior distribution as the Gibbs sampler, thus we present a comparison on

model performance alone. We compare the streaming samplers on runtime in Section 3.4.3. We use

three strengths of prior on the parameter m. For the diffuse prior (Flat), we set a =

[

1 · · · 1

]

.

Then for weakly informed (Weak) and strongly informed (Strong) priors, we use Equation 3.3 to

determine a. We use s = 12 for the weakly informed prior and s = 120 for the strongly informed

prior. In both the weakly and strongly informed priors, p = 1/2 for string fields and p = 1/8

for categorical fields. These values of p reflect a prior probability of error of 1/2 in string fields

and 1/8 in categorical fields, and an average of 2 errors per record. For comparison, we evaluate

the multi-file Bayesian linkage model of Aleshin-Guendel and Sadinle (2023) as implemented

in the multilink package (Multilink), the empirically motivated Bayesian entity resolution

model of Steorts (2015) as implemented in the blink package (Blink), and a semi-supervised

Fellegi-Sunter model with support vector machine used to classify links as implemented in the

RecordLinkage package (SVM) with 1% of the record pairs used as training data. Multilink is

similar to our proposed model in that it is a Bayesian multi-file Fellegi-Sunter extension. However,

it differs from ours in that it is based on a partitioning prior and does not enable streaming data. We

have included both the recommended separate likelihoods, which models comparisons differently

for each pair of files, and a single likelihood version (Single Likelihood), which is more analogous
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to the model presented in Section 3.2.3. Blink and SVM are both deduplication models, and so may

link records within the same file. Where possible, we have chosen default or recommended values

for tuning and hyperparameters in these comparison models. Further details about the comparison

models can be found in Appendix B.4.1.

We compare the accuracy of the resulting links by examining the posterior distribution of the

F1-score, F1 = 2(recall−1+precision−1)−1 (Blair, 1979). Recall is the proportion of true coreferent

record pairs that are correctly identified, and precision is the proportion of identified coreferent

pairs that are true duplicates. Table 3.2 shows these posterior distributions as means and standard

deviations of posterior samples drawn from each model, after discarding burn-in. We also evaluate

the models through the posterior distribution of the number of estimated distinct entities across

all files in Figure 3.2. Because the SVM may result in non-transitive links, we consider only the

accuracy of the link labels for this method rather than number of estimated entities. The model

presented in this chapter performs as well or better than the comparison models using both metrics.

Additional error levels are included in the supplemental material.

Overall the link accuracy of our model is comparable to the comparison models. In all but one

case (90% overlap and 6 errors) our proposed model has the highest F1-score, and in that case our

model’s F1-score is close to the best-performing comparison model. As expected, performance is

generally worse for all models in scenarios with fewer duplicates and more errors in the duplicates.

We would hesitate to generalize these comparison results to other scenarios, particularly because

two comparison models (Blink, SVM) allow for duplicates within files which are not present in

this simulated data. Additionally, the SVM method relies on having training data, which is not

always available and expensive to produce, while the proposed model is fully unsupervised. With

higher amounts of error and low overlap, the strength of the prior on m can be used to compensate

for a lack of clean identifying information. We see in these cases, that the Strong Prior model out-

performs the Weak and Flat Prior models, even though the strong prior is slightly misspecified for

higher error cases. Similar prior information may be provided for the other Bayesian comparison

models (Blink, Multilink), which may also improve their performance in these more difficult cases.
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Table 3.2: Posterior means and standard deviations of F1-score for simulated datasets. Within rows, each

model is listed: the model presented in this chapter (Streaming) and three comparison models. Larger values

represent more accurate links in the posterior distribution. The support vector machine, a non-bayesian

method, is represented only by the F1-score of its resulting point estimate.

Model 10% overlap 30% overlap 50% overlap 90% overlap

Errors: 2

Streaming (Flat Prior) 0.992 (0.0054) 1.000 (0.0009) 0.991 (0.0018) 0.990 (0.0000)

Streaming (Weak Prior) 0.992 (0.0056) 1.000 (0.0009) 0.999 (0.0015) 1.000 (0.0000)

Streaming (Strong Prior) 0.978 (0.0102) 0.999 (0.0022) 0.994 (0.0020) 1.000 (0.0000)

Multilink 0.985 (0.0089) 0.996 (0.0041) 0.985 (0.0019) 0.944 (0.0000)

Multilink (Single Likelihood) 0.991 (0.0047) 0.999 (0.0016) 0.994 (0.0015) 0.992 (0.0000)

Blink 0.578 (0.0165) 0.974 (0.0021) 0.993 (0.0005) 0.996 (0.0004)

SVM (1% training) 0.962 1.000 0.986 0.999

Errors: 4

Streaming (Flat Prior) 0.979 (0.0123) 0.957 (0.0067) 0.974 (0.0036) 0.997 (0.0001)

Streaming (Weak Prior) 0.981 (0.0107) 0.971 (0.0072) 0.986 (0.0034) 0.998 (0.0001)

Streaming (Strong Prior) 0.978 (0.0101) 0.976 (0.0052) 0.986 (0.0036) 0.998 (0.0001)

Multilink 0.161 (0.0038) 0.640 (0.0402) 0.982 (0.0048) 0.978 (0.0015)

Multilink (Single Likelihood) 0.913 (0.0283) 0.960 (0.0092) 0.983 (0.0035) 0.997 (0.0004)

Blink 0.504 (0.0117) 0.887 (0.0065) 0.962 (0.0043) 0.994 (0.0011)

SVM (1% training) 0.933 0.827 0.919 0.947

Errors: 6

Streaming (Flat Prior) 0.227 (0.0073) 0.797 (0.0200) 0.952 (0.0071) 0.993 (0.0016)

Streaming (Weak Prior) 0.808 (0.0592) 0.910 (0.0157) 0.954 (0.0065) 0.977 (0.0011)

Streaming (Strong Prior) 0.896 (0.0180) 0.929 (0.0103) 0.952 (0.0054) 0.983 (0.0012)

Multilink 0.064 (0.0013) 0.482 (0.0118) 0.822 (0.0263) 0.985 (0.0017)

Multilink (Single Likelihood) 0.064 (0.0021) 0.393 (0.0151) 0.913 (0.0147) 0.997 (0.0012)

Blink 0.456 (0.0127) 0.803 (0.0092) 0.910 (0.0058) 0.986 (0.0022)

SVM (1% training) 0.674 0.668 0.707 0.675

Each Bayesian model was run using 3 different random seeds and all exhibited some multimodal-

ity in higher overlap cases where links are more constrained, particularly those with duplicate-free

file constraints (Streaming, Multilink).

3.4.3 Speed

Our streaming samplers from Section 3.3 more efficiently produce samples from the model’s

posterior distribution. We demonstrate this improved efficiency by recording the amount of

time required by each sampler to produce an effective sample size of 1000. For each of the

16 simulated data sets, five samplers were used to sample from the posterior distribution of

m,u,Z(1),Z(2),Z(3)|Γ(1),Γ(2),Γ(3). We compared PPRB-within-Gibbs using locally balanced

55



10% overlap 30% overlap 50% overlap 90% overlap
2
 erro

rs
4
 erro

rs
6
 erro

rs

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

3
0
0

4
0
0

5
0
0

6
0
0

4
0
0

4
4
0

4
8
0

5
2
0

2
6
0

2
7
0

2
8
0

2
9
0

Blink
Multilink (Single Likelihood)

Multilink
Streaming (Strong Prior)
Streaming (Weak Prior)

Streaming (Flat Prior)

Blink
Multilink (Single Likelihood)

Multilink
Streaming (Strong Prior)
Streaming (Weak Prior)

Streaming (Flat Prior)

Blink
Multilink (Single Likelihood)

Multilink
Streaming (Strong Prior)
Streaming (Weak Prior)

Streaming (Flat Prior)

Estimated Entities

Figure 3.2: Posterior distribution of the number of estimated entities for simulated datasets. A vertical line

indicates the true number of distinct entities in each dataset. Compared models are on the y-axis: the model

presented in this chapter (Streaming) and three comparison models.
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Z(3) updates (PPRBwG), SMCMC with locally balanced proposals for both jumping and transi-

tion kernels (SMCMC-LB), SMCMC with component-wise full conditional draws for both jump-

ing and transition kernels (SMCMC-Comp), SMCMC with component-wise full conditional draws

for the jumping kernel and locally balanced proposals for the transition kernel (SMCMC-Mixed),

and a non-streaming Gibbs sampler fit to the full data using the sampler in Definition B.3.1 in

Appendix B.3.2 (Gibbs). All streaming samplers used the BRL package (Sadinle, 2017) to sample

from the bipartite record linkage posterior distribution, m,u,Z(1)|Γ(1). More details about these

simulations are in Appendix B.4.2.

We choose effective sample size to capture both the number of samples produced in a given

time and their quality. To summarize the effective sample size of each run, we calculate the effec-

tive sample size of each component of the continuous parameters m and u, and find the median

across all values. Since SMCMC produces independent samples, the effective sample size of any

parameter is equal to the size of the SMCMC ensemble. The three SMCMC methods are assumed

to be run fully parallel, where the samples produced are not limited by time but by available com-

putational resources. The streaming samplers take an order of magnitude less time to obtain 1000

effective samples than the non-streaming sampler (Figure 3.3). With fewer cores available the time

advantage for SMCMC will not be as stark, however there is still a benefit with as few as 36 cores.

As the number of records in each file, n1, . . . , nk, grows, the time required by each component-

wise Z(k−1) full conditional update will grow quadratically because it iterates through every com-

bination of a record in file Xk and a record in all previous files, nk ·
∑k−1

ℓ=1 nℓ total pairs of records.

This will affect the time of any sampler using component-wise full conditional updates. The time

for locally balanced proposals, if blocked, does not grow with the number of records per file. How-

ever the smaller the block size becomes relative to the file size, the less effective blocked locally

balanced proposals will be at exploring the parameter space. As the number of files, k, grows,

the time required by each component-wise Z(k−1) full conditional update will grow linearly since

the number of records in file k does not increase, only the total number of records in previous

files. The time for locally balanced proposals, if blocked, does not grow with the number of files.
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Figure 3.4: Demonstrations of PPRB-within-Gibbs sample degradation. The data scenarios in which the

difference in distinct values is most visible are shown. TOP: Posterior F1-score for PPRB-within-Gibbs

and non-streaming samplers. On the x-axis are different strengths of prior distribution on the parameter

m. In some datasets, PPRB-within-Gibbs appears to produce different posterior distributions than the non-

streaming sampler. BOTTOM: Number of distinct values of Z(1) produced by PPRB-within-Gibbs and

Gibbs, out of 2000 iterations. Lines connect points with the same prior information for m.

A growing number of files will also increase the time required by SMCMC as more full condi-

tional updates will be required per iteration of the transition kernel. The time required for the

transition kernel will grow at most quadratically with increasing k because a linear series of new

full conditional updates are required which are themselves require at most linearly increasing time

with k. As k increases, the amount of time required for PPRB-within-Gibbs is not affected unless

using component-wise full conditional updates for Z(k−1) or also increasing the locally balanced

proposal block-size.

58



3.4.4 PPRB Degeneracy

As is true of all filtering methods, PPRB and PPRB-within-Gibbs have the undesirable property

that the pool of samples for any Z(m) will converge to a degenerate distribution as k → ∞. We

see an example of this phenomenon in Figure 3.4, particularly for overlaps of 50% or less and 4 or

more errors, where the posterior distribution of F1-score from PPRB-within-Gibbs differs from the

other samplers. For 10% overlap, 4 errors, and a flat prior on m, we even see a very large difference

between PPRB-within-Gibbs and the non-streaming sampler. To investigate further, we compare

the samples produced from PPRB-within-Gibbs to those produced from a non-streaming (Gibbs)

sampler. In 4-file record linkage, PPRB-within-Gibbs produces noticeably fewer unique values

of Z(1) than Gibbs for the same number of posterior samples. This indicates that degradation is

occurring due to the filtering of the initial pool of samples from two sequential PPRB-within-Gibbs

updates. As more files are added and the pool of Z(1) samples is further filtered, this contrast will

become more apparent, eventually leading to a single value of Z(1) being sampled.

3.5 Real Data Application

We now apply streaming record linkage to a sample of records from a longitudinal survey with

a known true identity for each record. The Social Diagnosis Survey (SDS) of quality of life in

Poland (Czapinski and Panek, 2015) is a biennial survey of households that was first conducted

in the year 2000. Individuals may be recorded multiple times in separate years but there is no

duplication of individuals within a year. Four files of data were selected from the full dataset

from the years 2007 through 2013. The four files have varying sizes, with n1 = 151, n2 = 464,

n3 = 688, and n4 = 677, for a total of 1980 records. The files were created by randomly sampling,

without replacement, 910 individuals from all individuals appearing in at least one of the included

years. Of the 910 individuals, 306 appear in just one file, 240 appear in two files, 262 appear in

three files, and 102 appear in all four files.

Linkage was performed using six fields: gender, province, educational attainment, and year,

month, and day of birth. All fields are categorical and were compared using binary comparisons.
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Table 3.3: Posterior means and standard deviations of F1-score and estimated number of entities, and total

sampling time, for the four-file Poland SDS data set using five samplers. There are 910 true entities in

the four files. Sampling time is given in cumulative hours required to produce posterior samples of the

parameters conditioned first on three files, then on four files using each sampling method. The SMCMC

sampling time is estimated assuming 1000 available cores so that each ensemble member can be updated in

parallel.

Sampler F1-Score Estimated Entities Sampling Time

Gibbs 0.985 (9e-04) 915 (1.6) 121.1

PPRBwG 0.992 (0.0010) 915 (2.0) 10.9

SMCMC-Comp 0.992 (0.0012) 916 (1.9) 3.5

SMCMC-LB 0.99 (0.0022) 916 (1.9) 6.9

SMCMC-Mixed 0.992 (0.0010) 916 (1.8) 3.5

We chose hyperparameters to produce flat priors in m, u, and Z(ℓ) for ℓ = 1, 2, 3. We compared

five samplers: a non-streaming Gibbs sampler (Gibbs), sequentially applied PPRB-within-Gibbs

updates with locally balanced proposals (PPRBwG), and sequentially applied SMCMC updates

with component-wise proposals (SMCMC-Comp), locally balanced proposals (SMCMC-LB) or a

mix using component-wise jumping kernel proposals and locally balanced transition kernel pro-

posals (SMCMC-Mixed). More details of the MCMC runs can be found in Appendix B.4.3.

The streaming record linkage models were able to recover the true coreferent records with

high accuracy. Table 3.3 shows the posterior F1-score distribution for each of the 5 samplers,

the posterior distribution of the estimated number of entities resulting from the linkage, and the

time to generate the posterior samples. All samplers performed equally well at recovering the

true coreferent record sets with a posterior mean F1-score between 0.985 and 0.992. Streaming

samplers were significantly faster than the non-streaming Gibbs sampler, with times given for the

cumulative time required to produce both three-file and four-file inference using each sampling

method. This is representative of the streaming data setting where inference is required after each

new file arrives. The streaming samplers show between 11 times and 35 times speedup when

compared to the non-streaming Gibbs sampler, where SMCMC time estimates are based on the

assumption that enough cores are available for each ensemble to be run simultaneously in parallel.

60



3.6 Discussion

In this chapter we have introduced a model for multi-file Bayesian record linkage based on

the Fellegi-Sunter paradigm that is appropriate for streaming data contexts. We have shown this

model to work as well as comparison models on realistic simulated data at varying amounts of

duplication and error. With this work, we have proposed the first model-based streaming record

linkage procedures that update inference on existing parameters and estimate new parameters as

new data arrives. Our model provides interpretable parameters for estimating not only links be-

tween records, but the probability of different levels of error between fields of coreferent records.

These streaming samplers allow for near-identical inference to the model fit using the full data.

Having two distinct streaming options for this model allows for the selection of one based on the

needs of the user, and we have detailed the trade-offs that one might consider. We have demon-

strated that these streaming samplers can provide significant computational gains when compared

to a Gibbs sampler using both simulated and real-world data.

Our simulation study shows a noticeable effect of the strength of the prior on m on the accuracy

of the resulting posterior samples. In Section 3.2.4 we describe a way to use the prior on m to

incorporate prior knowledge about the probability of errors in duplicated fields, and in Section

3.4.2 we suggest how this can be used to compensate for a lack of clean identifying fields in each

record. The priors on Z(1:(k−1)) can also be tuned through the values of απ and βπ, but practitioners

are unlikely to have prior knowledge about the level of overlap between files.

The scalability of this model to files with very large numbers of records could be limited in

two ways. First, the dimension of the model’s parameter space grows directly with the number

of records included. A larger parameter space requires both larger storage for posterior samples

and slower computation of the transition kernel. A very large file also poses difficulties for the

computation of comparisons. With the arrival of a new file, a comparison vector needs to be

computed comparing each record in the new file to each record in previous files. These challenges

with large files could be mitigated by blocking to prohibit links across large time differences or

breaking large files into several smaller files.

61



Future work in streaming record linkage includes relaxing the assumption of no duplicates

within files to develop an entity resolution model that can identify duplicates both within and

between files in a streaming context. Further streaming sampling methods may be explored by

combining techniques of PPRB-within-Gibbs and SMCMC into a streaming sampler with more of

the strengths of both methods: the ease of computation and low data storage demands of PPRB

with the non-degenerate sampling of SMCMC.
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Chapter 4

Generative Filtering for Recursive Bayesian

Inference with Streaming Data

4.1 Introduction

Modern data collection has given rise to the streaming setting, where data arrives continuously

or in frequent batches. In a typical analysis, when a pre-determined amount of data is collected,

estimates of model parameters can be produced in one offline procedure. However, in the streaming

data setting, estimates of model parameters may be desired after each arrival of new data. This

setting poses a computational challenge as the data model becomes more complex with each new

arrival and producing model estimates is increasingly more time-consuming.

In Bayesian statistics, parameters are assumed to be random variables with probability distribu-

tions (priors), and the data are assumed to have come from distributions conditioned on the param-

eter values. The parameters are estimated using the distribution of the parameters conditioned on

the values of the data (posterior). Because these posterior distributions are frequently intractable,

they are typically approximated using samples produced by Markov chain Monte Carlo (MCMC,

Gelfand and Smith, 1990). MCMC can be computationally intensive, especially if a model is com-

plex or has strong dependencies among the parameters. Sampling techniques such as Hamiltonian

Monte Carlo (Duane et al., 1987) or the No-U-Turn Sampler (Hoffman and Gelman, 2014) more

efficiently sample from the posterior distribution. However even with efficient sampling, offline

MCMC begins from scratch each time new data arrives. This frequent restarting in the streaming

setting ignores the previous parameter estimates, which may be helpful to more efficiently produce

inference.

Approximate methods such as Variational Bayes (Blei et al., 2017) or Approximate Bayesian

Computation (Tavaré et al., 1997) provide Bayesian inference by approximating the posterior dis-
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tribution analytically instead of sampling from the exact posterior distribution. These methods

improve efficiency for intractable posterior distributions, and while the posterior means may be

captured by the approximation, the entire shape of the posterior distribution is not. A practitioner

may not be willing to make this trade-off between efficiency and inference. Additionally, these

methods require the selection of a family of approximate posteriors (in the case of Variational

Bayes) or summary statistics of data (in the case of Approximate Bayesian Computation) for ac-

curate approximation of the posterior, which may not be obvious.

Recursive Bayesian updates have been proposed to leverage the streaming setting, in which the

posterior distribution of one analysis is used as the prior for a subsequent analysis (Särkkä, 2013).

In the streaming setting, the posterior after the arrival of data up to time t is used as the prior when

the next data arrives at time t + 1. When models are designed with conjugate prior distributions,

recursive Bayesian updates can be performed analytically. Otherwise, samples approximating the

previous posterior distribution can be used to inform the next analysis. Methods that resample

existing samples from time t in such a way to approximate the posterior distribution at time t + 1

include sequential importance sampling (e.g., Hendry and Richard, 1992; Liu and Chen, 1995), the

Bootstrap filter (Gordon et al., 1993), and Monte Carlo filtering (Kitagawa, 1996). Because these

methods refine existing samples, we refer to them as “filtering” methods. Filtering methods are

desirable for their speed but suffer from eventual degeneracy as samples are filtered. Sequential

Monte Carlo (SMC, Gordon et al., 1993) methods apply importance sampling to a particular class

of state space models which may not be applicable to a given problem. We focus on two MCMC

strategies for recursive Bayesian updates: Sequential MCMC (SMCMC, Yang and Dunson, 2013)

and Prior-Proposal-Recursive Bayes (PPRB, Hooten et al., 2021). SMCMC uses each existing

sample as an initial value for an independent Markov chain targeting the updated posterior. PPRB is

a multistage MCMC method that filters existing samples through independent Metropolis-Hastings

(MH) steps based on new data.

In this chapter, we propose Generative Filtering, a new method for recursive Bayesian inference

in a streaming data setting that retains the speed benefits of filtering while avoiding the associated
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sample degradation. In Section 4.2 we derive theoretical bounds for the approximation error in-

troduced through successive applications of PPRB. In Section 4.3 we define Generative Filtering

and describe Generative Filtering’s relationship to the existing methods of SMCMC and PPRB.

We also provide theoretical upper bounds on the convergence of Generative Filtering to the tar-

get posterior and derive conditions to reduce data storage requirements. In Section 4.4 we apply

Generative Filtering to two numerical examples and evidence the inferential and computational

benefits. In Section 4.5 we apply Generative Filtering to a publicly available species survey to es-

timate the population intensity of sea lion pups in Alaska. We next provide necessary background

information and notation that ground our development of Generative Filtering.

4.1.1 Sequential Markov Chain Monte Carlo

Sequential MCMC (SMCMC) is an algorithm to sample from a sequence of probability distri-

butions, corresponding to posterior distributions at different times in streaming data contexts (Yang

and Dunson, 2013). Consider a model,

y1 ∼ p(y1|θ), y2 ∼ p(y2|θ,ϕ,y1), θ ∼ p(θ), ϕ ∼ p(ϕ|θ), (4.1)

where y1 is available first and y2 is available later. The parameters, θ, encode the distribution

of all data, while the parameters, ϕ, encode only the distribution of y2. SMCMC operates on an

ensemble of samples, {θs}
S
s=1, from the posterior distribution, p(θ|y1). First, a jumping kernel is

applied to each sample θs in parallel to append a value ϕs. Then, in parallel with each pair (θs,ϕs)

as an initial value, a transition kernel is applied mt times. The transition kernel targets the posterior

distribution p(θ,ϕ|y1,y2). After mt iterations, the final value of each of the S parallel chains is

saved and comprise a sample to approximate the posterior distribution p(θ|y1,y2).

4.1.2 Prior-Proposal-Recursive Bayes

Prior-Proposal-Recursive Bayes (PPRB) is a method for performing recursive Bayesian up-

dates using existing samples from the previous posterior distribution (Hooten et al., 2021). Con-
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sider the general model in Eq. (4.1), but simplified so that there is no parameter ϕ and both data

distributions are characterized by θ. In PPRB the posterior samples, {θs}
S
s=1, from p(θ|y1) are

used as independent MH proposals in an MCMC to sample from the target p(θ|y1,y2), where the

MH acceptance ratio for a proposal θ∗ and a current value θ simplifies to

α = min

(
p(y2|θ

∗,y1)

p(y2|θ,y1)
, 1

)

.

One limitation of this method is its inability to account for a changing parameter space in a

Bayesian update, represented in Equation (4.1) by the parameter ϕ. Hooten et al. (2021) pro-

pose first drawing ϕs from the predictive distribution p(ϕ|θs,y1), to produce augmented samples

{(θs,ϕs)}
S
s=1 which are from p(θ,ϕ|y1). Then with these samples as proposals, proceed with

PPRB as usual. In Chapter 3, we note that this sample augmentation approach is problematic

in situations where the predictive distribution p(ϕ|θs,y1) is diffuse, because values drawn from

p(ϕ|θs,y1) are poor proposals for the full conditional distribution p(ϕ|θs,y1,y2), leading to low

acceptance rates of the PPRB independent MH proposals. This problem arises, for example, if the

prior p(ϕ|θ) = p(ϕ) has no dependence on θ. The authors propose PPRB-within-Gibbs as an

adaptation to PPRB.

Definition 4.1.1. PPRB-within-Gibbs. Consider the streaming model defined in Eq. (4.1). Let

there be existing posterior samples, {θs}Ss=1 from the distribution p(θ|y1). Then for the desired

number of posterior samples,

1. (PPRB step) Propose a new value θ∗ by drawing from the existing posterior samples {θs}Ss=1

with replacement. Accept or reject the proposal using the MH ratio

α = min

(
p(y2|y1,θ

∗,ϕ)

p(y2|y1,θ,ϕ)

p(ϕ|θ∗)

p(ϕ|θ)
, 1

)

, (4.2)

2. Update the parameter ϕ from the full conditional distribution p(ϕ|θ,y1,y2).
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The PPRB step acceptance ratio (Eq. 4.2) is now the product of two ratios: the ratio of the

distribution of the new data, and the ratio of the conditional prior of the new parameters, ϕ. If the

prior of ϕ is not dependent on θ, i.e., p(ϕ|θ) = p(ϕ), then this second ratio cancels. Further, if

the data y1 and y2 are conditionally independent, the first ratio does not depend on y1. In Chapter

3 we proposed a three-step variant with a separate update for components within θ with conjugate

full conditional updates. In this Chapter, unless otherwise noted, we refer to the two-step version

in Definition 4.1.1 as PPRB-within-Gibbs.

4.2 Filtering Degradation

Degradation refers to the tendency for MCMC samples resulting from filtering methods to

contain many repeated values due to rejected proposals. As a result, when using existing sam-

ples resampled with replacement as proposals for the next update (as suggested in Hooten et al.,

2021), the number of unique values decreases for continuous distributions. Due to degradation,

the performance of filtering methods suffer for the streaming data setting, where a potentially large

number of Bayesian updates must be performed while resampling the same pool of samples. As

the number of unique values decreases within a set number, S, of posterior samples produced after

each update, the ability of those S samples to approximate the posterior distribution degrades. We

next give an intuitive explanation for the causes of filtering degradation, provide theoretical bounds

for the error introduced, and demonstrate filtering degradation via simulation in Section 4.4, all for

the PPRB algorithm.

Each application of PPRB to perform a streaming update introduces error in the approximation

to the updated posterior. To see this, consider a simple model with parameters θ and data parti-

tioned in time, yt for t = 1, 2, . . .. Samples {θ
(1)
s }Ss=1 are drawn from p(θ|y1). At time t = 2, y2

are available and the posterior p(θ|y1,y2) must be approximated. By resampling {θ
(1)
s }Ss=1 with

replacement as PPRB proposals, the true proposal distribution is the empirical posterior distribu-

tion of these samples, which we call F
(1)
S (·). During the first PPRB update at t = 2, the target
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distribution is thus

p(y2|θ,y1)F
(1)
S (θ) ≈ p(y2|θ,y1)p(θ|y1) ∝ p(θ|y1,y2),

an approximation of the desired posterior at t = 2. S samples, {θ
(2)
s }Ss=1, are drawn from this

approximate posterior, which yields another empirical posterior distribution F
(2)
S (·). During the

second PPRB update at t = 3, resampling θ
(2)
s with replacement as proposals targets

p(y3|θ,y1,y2)F
(2)
S (θ) ≈ p(y3|θ,y1,y2)p(y2|θ,y1)F

(1)
S (θ)

≈ p(y3|θ,y1,y2)p(y2|θ,y1)p(θ|y1) ∝ p(θ|y1,y2,y3),

an approximation of an approximation of the desired posterior at t = 3.

Intuitively, as this process repeats in subsequent updates, an accumulation of approximation

error occurs. Whatever acceptable level of approximation for using PPRB once is surpassed in

using PPRB a second time or beyond.

4.2.1 Bounds on PPRB Approximation Error

We derive upper and lower bounds on the PPRB approximation error in a streaming setting

where PPRB is applied sequentially by resampling the samples produced at a previous stage as

proposals in the next stage. We start by defining notation,

πt = p(θ|y1, . . . ,yt), true posterior at time t, (4.3)

At ∝ p(yt|θ,y1, . . . ,yt−1)F
(t−1)
S (θ), approximate PPRB posterior at time t, (4.4)

F
(t)
S = empirical distribution of S samples drawn from At. (4.5)

The quantity of interest is then ∥At − πt∥, where ∥ · ∥ is a norm on probability distributions. The

following upper and lower bounds exist for this quantity.
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Theorem 4.2.1. Let πt, At, and F
(t)
S be defined as in Eq. (4.3)-(4.5) and let ∥ · ∥ be a norm on

probability measures that has a triangle inequality. Then,

∥At − πt∥ ≤ ∥At−1 − πt−1∥
︸ ︷︷ ︸

(1)

+
∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥

︸ ︷︷ ︸

(2)

+ ∥πt − πt−1∥
︸ ︷︷ ︸

(3)

+
∥
∥
∥At − F

(t−1)
S

∥
∥
∥

︸ ︷︷ ︸

(4)

(4.6)

∥At − πt∥ ≥

∣
∣
∣
∣
∥At−1 − πt−1∥
︸ ︷︷ ︸

(1)

−
∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥

︸ ︷︷ ︸

(2)

∣
∣
∣
∣
− ∥πt − πt−1∥
︸ ︷︷ ︸

(3)

−
∥
∥
∥At − F

(t−1)
S

∥
∥
∥

︸ ︷︷ ︸

(4)

(4.7)

Proof. Appendix C.1

The form of these inequalities has the advantage that all terms on the right hand sides of Eq.

(4.6) and Eq. (4.7) are easily interpreted in the context of streaming Bayesian updates:

(1) ∥At−1 − πt−1∥ is the existing approximation error at time t− 1.

(2)
∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥ is the error introduced by producing a finite number, S, of MCMC samples

from the approximate posterior.

(3) ∥πt − πt−1∥ is the difference in the true posterior after receiving yt.

(4)
∥
∥
∥At − F

(t−1)
S

∥
∥
∥ is the difference in approximate distribution, from the prior F

(t−1)
S to the

posterior At after receiving yt.

Together, Equations (4.6) and (4.7) give upper and lower bounds for the approximation error

at time t, ∥At − πt∥, which are especially useful for large t. As t → ∞, the proportion of all data

(y1, . . . ,yt) contained in yt becomes smaller, so we have the intuition that the Bayesian updates

will be smaller, in the sense that the difference between the prior and posterior goes to zero. Thus,

∥πt − πt−1∥ → 0 and
∥
∥
∥At − F

(t−1)
S

∥
∥
∥→ 0 are reasonable to assume as t → ∞. Then ∥At − πt∥ is

approximately bounded by

∥At − πt∥ ⪅ ∥At−1 − πt−1∥+
∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥ (4.8)

∥At − πt∥ ⪆

∣
∣
∣
∣
∥At−1 − πt−1∥ −

∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥

∣
∣
∣
∣
. (4.9)
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For large t, the inequalities in Equations (4.8) and (4.9) show that the PPRB error at t is approx-

imately bounded by a triangle inequality with ∥At−1 − πt−1∥, the approximation error at t − 1,

and
∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥, the finite sample error at t − 1. If there exists some ϵ > 0 such that

∥
∥
∥F

(t)
S − At

∥
∥
∥ > ϵ for all t, then the approximation error cannot decay to zero as t → ∞. For large

t, if ∥At − πt∥ < ϵ/2 then ∥At+1 − πt+1∥ > ϵ/2. Similar results apply to PPRB-within-Gibbs, see

Appendix C.2.

4.3 Generative Filtering

We introduce Generative Filtering, a novel MCMC sampler for recursive Bayesian updates

which avoids filtering degeneracy and achieves faster convergence than SMCMC. Consider data,

y, partitioned into sequential batches, yt for t = 1, 2, . . ., and data model

y1 ∼ p(y1|θ1),

yt ∼ p(yt|θ1, . . . ,θt,y1, . . . ,yt−1), for t ≥ 2,

θ1 ∼ p(θ1),

θt ∼ p(θt|θ1, . . . ,θt−1), for t ≥ 2.

That is, each batch of data has a distribution which can depend on some set of parameters and

previously arrived batches of data. The parameters, θ, are divided into batches, θt for t = 1, 2, . . .,

such that the batch yt of data depends only on the parameters θ1, . . . ,θt. Each batch of parameters

has a prior that may depend on parameters in previous batches. For convenience, define y1:t :=

(y1 . . . yt) and θ1:t := (θ1 . . . θt). The Generative Filtering algorithm begins at time t, after the

arrival of yt.

Definition 4.3.1. Generative Filtering.

Let there be samples {θ1:(t−1),s}
S
s=1 from the posterior distribution p(θ1:(t−1)|y1:(t−1)). Let Tt

be a transition kernel targeting the updated posterior distribution, p(θ1:t|y1:t). The Generative

Filtering update consists of two steps:
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1. Perform a filtering step to produce S samples, {θ∗
1:t,s}

S
s=1.

2. Using each {θ∗
1:t,s}

S
s=1 as an initial value, apply the transition kernel Tt in parallel mt times

in S parallel chains, saving the final value of each chain.

The resulting samples, {θ1:t,s}
S
s=1 approximate the updated posterior distribution, p(θ1:t|y1:t).

The filtering method in step 1 is a method which resamples the ensemble {θ1:(t−1),s}
S
s=1 to pro-

duce samples approximating the distribution, p(θ1:t|y1:t). When the filtering method consists of

a PPRB-within-Gibbs update, the Generative Filtering algorithm can be seen as an extension of

both PPRB-within-Gibbs and SMCMC. It extends PPRB-within-Gibbs by applying some number

of transition kernel steps in parallel to each resulting sample and extends SMCMC by replacing

the jumping kernel with a PPRB-within-Gibbs update, which is able to update all parameters in

the ensemble instead of just new parameters. Generative Filtering seeks to quickly converge to and

sample from its target distribution through the use of existing posterior samples from an earlier

posterior distribution, while avoiding the problem of filtering methods that degrade to degenerate

distributions.

4.3.1 Convergence Results

We derive bounds for the convergence of Generative Filtering to its target posterior distribu-

tion and find sufficient conditions under which Generative Filtering has a stronger convergence

guarantee than SMCMC in fewer iterations of the transition kernel.

Theorem 4.3.1. Let P S
t (θ1:(t−1), ·) represent the kernel resulting from S applications of a filtering

method at time t, which is a probability density for θ1:t := (θ1:(t−1),θt). Let πt = p(θ1:t|y1:t) be

the target posterior at time t. Assuming the following conditions:

1. (Universal ergodicity) There exist ρt ∈ (0, 1), such that for all t > 0 and x ∈ X ,

||Tt(x, ·)− πt||1 ≤ 2ρt.
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2. (Filtering consistency) For a sequence of λt → 0 and a bounded sequence of positive integers

St, the following holds:

sup
θ1:(t−1)

||πt − P St

t (θ1:(t−1), ·)||1 ≤ 2λt.

Let ϵt = ρmt

t and let Qt = Tmt

t ◦ P St

t be a Generative Filtering update at time t. Then for any

initial distribution π0,

||Qt ◦ · · · ◦Q1 ◦ π0 − πt||1 ≤
t∑

v=1

{
t∏

u=v+1

ϵu(1− λu)

}

ϵvλv ≤
t∑

v=1

{
t∏

u=v

ϵu

}

λv.

Remark. When PPRB-within-Gibbs is used as the filtering method within Generative Filtering, the

Filtering consistency condition contains two key requirements related to PPRB-within-Gibbs and

the posterior distributions, π1, . . . , πt. First, the PPRB-within-Gibbs transition kernel must produce

an irreducible Markov chain. A sufficient condition for irreducibility is the positivity critereon for

PPRB-within-Gibbs from Chapter 3. Second, in order for the sequence of St to be bounded, the

difference between subsequent posteriors must not be too large as t increases, or the PPRB-within-

Gibbs transition kernel must have fast enough convergence to overcome the differences.

Proof. Appendix C.1

Comparison of upper bounds

We next compare the upper bounds for convergence of SMCMC and Generative Filtering,

providing conditions for when Generative Filtering’s upper bound is at least as small as that of

SMCMC.

Theorem 4.3.2. Assume the following conditions hold:

1. (Universal ergodicity) There exists ϵ ∈ (0, 1), such that for all t > 0 and x ∈ X ,

||Tt(x, ·)− πt||1 ≤ 2ρt.
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2. (Stationary convergence) The stationary distribution πt of Tt satisfies

αt =
1

2
||πt − πt−1||1 → 0,

where πt is the marginal posterior of θ1:(t−1) at time t in αt.

3. (Filtering consistency) For a sequence of λ
(F )
t → 0 and a bounded sequence of positive

integers St, the following holds:

sup
θ1:(t−1)

||πt − P St

t (θ1:(t−1), ·)||1 ≤ 2λ
(F )
t .

4. (Jumping consistency) For a sequence of λ
(J)
t → 0, the following holds:

sup
θ1:(t−1)

||πt(·|θ1:(t−1))− Jt(θ1:(t−1), ·)||1 ≤ 2λ
(J)
t .

Let ϵt = ρmt

t . Define

γ
(F )
t =

t∑

v=1

{
t∏

u=v+1

ϵu(1− λ(F )
u )

}

ϵvλ
(F )
v

and

γ
(J)
t =

t∑

v=1

{
t∏

u=v

ϵu

}

(λ(J)
v + αv)

to be the bounds from Theorem 4.3.1 and Theorem 3.9 of Yang and Dunson (2013), respectively.

If, for all u ≤ t, λ
(F )
u ≤ αu + λ

(J)
u , then γ

(F )
t ≤ γ

(J)
t .

Proof. Appendix C.1

Theorem 4.3.2 gives a sufficient, but somewhat restrictive, condition on the convergence of

relative pieces such that Generative Filtering’s convergence is bounded more tightly than SMCMC.

It reveals an interesting relationship between the use of filtering or the jumping kernel. For a fixed

t ≥ 1, no matter how good the jumping kernel is, e.g., λ
(J)
t = 0, there is a fixed αt > 0 contributing
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to the SMCMC upper bound. When PPRB-within-Gibbs is used as the filtering method, there exists

an St such that λ
(F )
t ≤ αt ≤ αt + λ

(J)
t .

Theorem 4.3.3. With the conditions and definitions of Theorem 4.3.2, assume γ
(F )
t−1 = γ

(J)
t−1 and

define γ := γ
(F )
t−1 = γ

(J)
t−1. If γ < 1 and λ

(F )
t ≤

αt+λ
(J)
t

1−γ
, then γ

(F )
t ≤ γ

(J)
t . If γ ≥ 1 then γ

(F )
t ≤ γ

(J)
t

always.

Proof. Appendix C.1

Theorem 4.3.3 shows a sufficient condition for a claim that is slightly weaker than that in

Theorem 4.3.2, but as a result, the condition is less strict. Theorem 4.3.3 is relevant to the relative

gain in the bound of Generative Filtering over that of SMCMC, when both are starting from the

same position. As a result we only need conditions on time t, not all times u ≤ t. In the γ < 1

case, this condition is less strict than the equivalent condition in Theorem 4.3.2, because of the

denominator 0 < 1 − γ ≤ 1. For larger γ, the bound on the filtering step can be significantly

worse than the bound on the jumping kernel and still result in a lower upper bound for the total

Generative Filtering process. In the γ ≥ 1 case, when starting from the same condition, the upper

bound for Generative Filtering at the next time point will always be lower than that of SMCMC.

4.3.2 Transition kernel and mt, the required iterations

In the above Section 4.3.1, we assume that Generative Filtering and SMCMC use the same

transition kernel for the same number of iterations, mt. Here we will continue to use the same

transition kernel(s), Tt, however, we will investigate under what conditions Generative Filtering

can use fewer transition kernel iterations to achieve the same convergence.

Lemmas 3.2 and 3.1 of Yang and Dunson (2013) together show that if a transition kernel

Tt satisfies sup
x
||Tt(x, ·) − πt||1 ≤ 2ρt, then for a distribution p0 we have ||Tmt

t ◦ p0 − πt||1 ≤

ρmt

t ||p0 − πt||1. We wish to compare the case when p0 = Jt ◦ πt−1 and when p0 = P St

t ◦ πt−1.

Thus, filtering results in a distribution closer to πt than the jumping kernel, the result of Generative

Filtering using the same transition kernel with the same number of steps as SMCMC achieves a

smaller upper bound on its distance from πt than SMCMC.
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Now, consider the case when the transition kernel is applied a different number of times in

Generative Filtering (m
(F )
t ) than in SMCMC (m

(S)
t ). If

m
(F )
t ≥ m

(S)
t −

log
(
||Jt ◦ πt−1 − πt||1/||P

St

t ◦ πt−1 − πt||1
)

log(1/ρt)
, (4.10)

then ρ
m

(F )
t

t ||P St

t ◦ πt−1 − πt||1 ≤ ρ
m

(S)
t

t ||Jt ◦ πt−1 − πt||1. Since ρt < 1, log(1/ρt) > 0 and if

||P St

t ◦ πt−1 − πt||1 < ||Jt ◦ πt−1 − πt||1, then

log
(
||Jt ◦ πt−1 − πt||1/||P

St

t ◦ πt−1 − πt||1
)

log(1/ρt)
> 0.

Generative Filtering can achieve a lower convergence bound than SMCMC with either more tran-

sition kernel steps, or some smaller number of steps determined by Eq. (4.10).

In order for fewer transition kernel steps to be required, we need

log
(
||Jt ◦ πt−1 − πt||1/||P

St

t ◦ πt−1 − πt||1
)

log(1/ρt)
≥ k,

where the integer k ≥ 1 is the number of steps difference, which is true if and only if

||P St

t ◦ πt−1 − πt||1
||Jt ◦ πt−1 − πt||1

≤ ρkt . (4.11)

This reveals a relationship between the gains of PPRB-within-Gibbs over the jumping kernel,

||P St

t ◦ πt−1 − πt||1/||Jt ◦ πt−1 − πt||1, and the mixing of the transition kernel, ρt. If the tran-

sition kernel is weakly mixing, ρt ≈ 1, PPRB-within-Gibbs can result in a larger reduction in the

number of required transition kernel steps over the SMCMC jumping kernel than in the case when

the transition kernel is strongly mixing, ρt ≪ 1.

While Eq. (4.11) provides a sufficient condition for Generative Filtering to require fewer tran-

sition kernel steps for an equivalent convergence bound to SMCMC, a lower number of transition

kernel steps does not necessarily mean Generative Filtering takes less time to complete. This
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is because while SMCMC’s jumping kernel can be applied to each ensemble sample in parallel,

filtering methods such as PPRB-within-Gibbs are inherently sequential. Thus when many cores

are available for computation, the filtering step of Generative Filtering is a potential bottleneck.

The improvement in convergence provided by PPRB-within-Gibbs may or may not overcome the

time saved by parallelizing the jumping kernel in SMCMC. In Section 4.4 and Section 4.5, we

demonstrate both cases.

4.3.3 Streaming Data Storage Considerations

In this section, we provide conditions under which a transition kernel at time t can be ap-

plied without requiring storage of the full data through time t. In general, we want a sufficient

statistic, Ut(yt), to exist for each batch of data, y1,y2, . . ., so that the likelihood can be evaluated

without the full data, and transition kernels can be applied while needing to store only the statis-

tics Ut for t = 1, 2, . . .. The data themselves are always a trivial sufficient statistic, however when

dimUt ≪ dimyt, storage of the sufficient statistics allows for significant reductions in data storage

requirements and potentially faster computation of the transition kernel. We describe conditions

that are sufficient to allow reduced data storage when applying the transition kernel.

Theorem 4.3.4. Assume:

1. The data yt1 and yt2 , for all t1 < t2, are conditionally independent given θ1:t2 .

2. Each distribution p(yt|θ1:t) has a sufficient statistic Ut(yt) where dimUt ≪ dimyt.

Then any transition kernel can be computed while storing only the sufficient statistics, Ut,

instead of the data, yt, for all t.

Proof. Appendix C.1

The sufficient condition of low dimensional sufficient statistics for a data distribution is general

and fairly broad. However, it is difficult to know in practice when such sufficient statistics exist.

We provide a more specific sufficient condition on the data distributions for when data storage

needs can be reduced.
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Theorem 4.3.5. Assume:

1. The data yt1 and yt2 , for all t1 < t2, are conditionally independent given θ1:t2 .

2. Each yt is a sample of nt i.i.d. observations yt,i for i = 1, . . . , nt.

3. Each observation yt,i comes from an exponential family distribution.

Then storage of the full data can be avoided through the use of sufficient statistics.

Proof. Appendix C.1

Note that in both Theorem 4.3.4 and Theorem 4.3.5, there is no requirement that the sufficient

statistics Ut(·) be the same function at each time t, nor that the data distribution of yt be the same

for each time t. These conditions are thus flexible, applying to a wide range of streaming data

settings including time-varying data sources, data collection techniques, or measurement devices.

4.4 Simulation Studies

In this section, we apply Generative Filtering to two sets of simulated data, a Gaussian hidden

Markov model and a streaming record linkage model, and compare to other streaming samplers

for Bayesian updates with respect to speed and sampling accuracy.

4.4.1 Gaussian Hidden Markov Model

We analyze the Gaussian hidden Markov model,

yt,i ∼ N(θt, σ
2), for t = 1, 2, . . . and i = 1, . . . , n

θ1 ∼ N(0, ϕ2)

θt ∼ N(θt−1, ϕ
2), for t > 1,

where n, σ2, and ϕ2 are fixed. This model is a simple representation of a streaming data problem

where a new parameter, θt, is required to parameterize the distribution of data yt. As the data arrive
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sequentially, y1,y2, . . ., updated estimates of the parameters, θ1:t, are desired through the posterior

distribution of p(θ1:t|y1:t).

Data were generated at each combination of n = 1, 5, 10, 50 and σ2 = 0.25, 0.5, 1, 2, 4, with

ϕ2 = 1. For practical reasons of generating the data, we generate data for t = 1, . . . , T with the

endpoint T = 100. The values of n and σ2 create varying levels of signal from the data arriving

at each time, yt. For each of the 20 combinations of n and σ2, 20 sets of data were produced with

differing random seeds by first drawing θ1:T from the prior, then generating y1:T conditioned on

θ1:T .

For each simulated dataset, and for each value of t = 1, . . . , T , we estimated the posterior dis-

tribution of p(θ1:t|y1:t) first using three samplers: non-streaming Gibbs, PPRB-within-Gibbs, and

Generative Filtering. Each component, θℓ, in θ1:t has a conjugate Gaussian full conditional distri-

bution, making a Gibbs sampler a natural choice for a non-streaming MCMC. The Gibbs sampler

produced samples directly from the posterior distribution, p(θ1:t|y1:t), for t = 2, . . . , T . Each

Gibbs update was run for 1100 iterations, discarding the first 100 as burn-in with 10 independent

chains.

The PPRB-within-Gibbs and Generative Filtering updates were sequentially applied in a

streaming fashion using samples from the previous time point as the initial ensemble. The first

streaming updates at time t = 2 used samples drawn independently from the true Gaussian pos-

terior at t = 1, p(θ1|y1), as their initial ensemble. For the update of the new parameter, θt, in

PPRB-within-Gibbs, we used its full conditional Gaussian distribution. Each PPRB-within-Gibbs

sampler was run for 1100 iterations, discarding the first 100 as burn-in. The PPRB-within-Gibbs

updates that served as the filtering step in Generative Filtering used the same configuration. The

transition kernel used in Generative Filtering updates all parameters θ1:t simultaneously using a

Metropolis random walk with multivariate Gaussian proposals. As the true posterior distribution

is known, we choose a proposal distribution based on the adaptive Metropolis proposal of Gelman

et al. (1997) and Haario et al. (2001), i.e., N(0, 2.42Σ/t), where Σ is the true posterior variance.

We use a random walk Metropolis transition kernel to simulate a slowly-converging transition ker-
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Figure 4.1: KS statistic (mean plus or minus standard deviation) for samples of θ1 after repeated application

of non-streaming Gibbs, PPRB-within-Gibbs, and Generative Filtering, for t = 2, . . . , 20. Higher KS statis-

tics indicate more MCMC error in the samples. After repeated applications, PPRB-within-Gibbs produces

worse approximations to the posterior distribution while Generative Filtering does not.

nel, specifically, one which converges more slowly as the number of parameters increases. This

slow convergence can be an issue in many real-world MCMC applications, and would be a scenario

in which a user would wish to improve convergence times. The transition kernel in Generative Fil-

tering was applied mt = 5 times for each update. The full streaming update process from time

t = 2 to t = T was run 10 times on each dataset, using 10 different random seeds.

To explore the phenomenon of filtering degradation in this simulated data, we compare the

samples produced by Gibbs, PPRB-within-Gibbs, and Generative Filtering to the true posterior

distribution of p(θ1:t|y1:t). This model can be written as a Gaussian linear regression model with

a multivariate normal prior on the regression parameters and fixed variance, so the posterior dis-

tribution can be calculated in closed form for data through any time t. We used the max absolute

difference between the true CDF and empirical CDF, i.e., the Kolmogorov-Smirnov test statistic,

of each parameter, θ1, . . . , θt, as a measure of the MCMC error in the samples for that parame-

79



ter. Figure 4.1 shows these measured errors for θ1 at each time up to t = 20. As expected, the

non-streaming Gibbs sampler is able to maintain a constant level of MCMC error at each time

t = 2, . . . , 20 because it is producing new samples from the posterior at each time. However, the

MCMC error of PPRB-within-Gibbs increases with each update as the number of unique values of

θ1 in its samples decreases. Generative Filtering avoids the degradation observed in PPRB-within-

Gibbs, having MCMC error comparable to Gibbs.

To investigate the relative convergence of Generative Filtering and SMCMC, we also compared

the required number of transition kernel steps for SMCMC and Generative Filtering to estimate

the parameters θ1:t using the simulated data. At each time, t, the jumping kernel for SMCMC

and the update for θt in the PPRB-within-Gibbs step of Generative Filtering were chosen to be

the conjugate Gaussian full conditional distribution for θt. The Metropolis random walk transition

kernel was used in both SMCMC and Generative Filtering, and the PPRB-within-Gibbs filtering

step of Generative filtering was as described earlier. At each time t we began both Generative

Filtering and SMCMC using the same initial ensemble of 1000 samples from p(θ1:(t−1)|y1:(t−1))

produced by the non-streaming Gibbs sampler. Thus, we are evaluating the difference in minimum

transition steps to converge for each method while controlling the quality of the initial ensemble.

Each sampler was stopped when the KS-statistics comparing the marginal empirical posterior

distributions of θt and θt−1 in the current ensemble to their respective true posterior distributions

were both below 0.055, the critical value of the KS distribution. The cumulative number of tran-

sition kernel steps required to converge for each sampler up to each time is shown in Figure 4.2.

By t = 20, Generative Filtering has required many fewer transition kernel steps than SMCMC in

all datasets due to its use of PPRB-within-Gibbs instead of the jumping kernel. However, while

the jumping kernel in SMCMC is parallelizable, PPRB-within-Gibbs is inherently sequential. This

presents a tradeoff between the two methods in environments with parallel computation available.

We compare the cumulative runtime required for each method to converge in Appendix C.3. In this

numerical experiment, for SMCMC to be faster than Generative Filtering on average in all settings

would require 45 cores.
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Figure 4.2: Cumulative number (mean plus or minus standard deviation) of transition kernel steps to con-

verge to the posterior distribution.

4.4.2 Streaming Record Linkage

Record linkage is the task of consolidating records which refer to overlapping sets of entities.

Often this task must be performed without the presence of a unique identifier. Noisy duplicated

records present a problem for those who wish to use the data to make inferences. Bayesian record

linkage estimates duplicate entities via a posterior distribution of linkages and provides natural un-

certainty quantification (e.g., Tancredi and Liseo, 2011; Steorts et al., 2016; Sadinle, 2017; Zanella,

2020; Aleshin-Guendel and Sadinle, 2023).

In streaming record linkage, sets of records (files) arrive sequentially in time with no predeter-

mined number and estimates of links are updated after the arrival of each. Recent advancements

in record linkage allow for near real-time data-driven record linkage (e.g., Christen et al., 2009;

Ioannou et al., 2010; Dey et al., 2011; Altwaijry et al., 2017; Karapiperis et al., 2018) and model-

driven Bayesian record linkage in the streaming data setting can be performed using recursive

Bayesian updates with SMCMC or PPRB-within-Gibbs (Chapter 3). In Chapter 3 we note PPRB-

81



within-Gibbs is efficient, but degrades, and SMCMC requires a parallel computing environment

but maintains accuracy. We expand on the simulation study performed in that paper by comparing

to Generative Filtering. We demonstrate that Generative Filtering does not suffer from the same

degradation as PPRB-within-Gibbs on the streaming record linkage problem.

For this study, we use the data files as described in Chapter 3. Data were simulated using the

GeCo software package (Tran et al., 2013) to create realistic demographic information and insert

realistic errors into randomly selected fields. Each record had 10 fields: given name, surname,

age, occupation, and 6 categorical fields with 12 possible levels. Each record had errors inserted

to mimic common typos, misspellings, or OCR errors. Files were generated with records that

contained up to 4, 6, or 8 errors. The files were generated with varying overlap, having 10%,

30%, 50% or 90% of their records coreferent with records with previous files. For each of the 12

combinations of error and overlap, a set of 4 files was generated to arrive sequentially, simulating

streaming data.

We use the streaming record linkage model in Chapter 3, with diffuse, weak, and strong priors

for the parameter governing the distribution of disagreement levels for matched records. We begin

the streaming updates using posterior samples from a two file record linkage using the BRL package

(Sadinle, 2017). Then, we perform sequential PPRB-within-Gibbs updates and sequential Genera-

tive Filtering updates with the third, fourth, and fifth file of each dataset. The Generative Filtering

updates consisted of an ensemble of 200 samples. Each filtering step used PPRB-within-Gibbs for

2000 iterations, discarding the first 1000 and thinning to 200 before applying the transition kernel.

The Generative Filtering transition kernel used locally balanced proposals for link updates, and was

run for 200 iterations. The number of transition kernel iterations was conservatively chosen by ex-

amining traceplots for convergence. The PPRB-within-Gibbs updates use the three step version

originally proposed in Chapter 3 and implemented in the bstrl R package (Taylor et al., 2022).

The PPRB-within-Gibbs sampler was run using locally balanced link updates for 5000 iterations,

discarding the first 1000 as burn-in. For comparison, we also fit the model using a non-streaming
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Figure 4.3: Proportion of unique values within samples of Z(1) produced by Gibbs, PPRB-within-Gibbs,

and Generative Filtering. While the proportion of unique values from the PPRB-within-Gibbs samples

decreases with each successive update, the proportion of unique values from Generative Filtering remains

similar to that of samples produced by Gibbs.

Gibbs sampler. The Gibbs sampler was run using component-wise link updates for 2500 iterations,

discarding the first 500 as burn-in.

We examine the unique values within the produced samples for Z(1), the parameter that en-

codes links from file 2 to file 1. Before comparing, we thinned samples produced by Gibbs and

PPRB-within-Gibbs from 2000 and 4000, respectively, to 200 to match the ensemble size of Gen-

erative Filtering. The number of unique values produced by PPRB-within-Gibbs decreases with

each Bayesian update relative to Gibbs, while the number of unique values produced by Generative

Filtering is comparable to Gibbs (Figure 4.3). This indicates that Generative Filtering is able to

avoid the degradation problems of PPRB-within-Gibbs.
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4.5 Application

We investigate the effectiveness of Generative Filtering on data of Steller sea lion pup counts.

Steller sea lions are an endangered species1 whose population have been reduced by a shrinking

habitat due to climate change and human activity (Hooten et al., 2021). The National Marine

Mammal Laboratory of the National Oceanographic and Atmospheric Administration performs

aerial surveys of the number of pups born each year across several sites in Alaska. The data are

available in the R package agTrend (Johnson, 2017) and contain 713 observations between the

years 1973 and 2016, at 72 sites. Not every site is measured at every year, with sites having

between 1 and 22 observations.

We assume that counts of sea lion pups are produced from latent population intensities for each

site-year combination, which are related through a log-scale autoregressive process. We model

these data using the following hierarchical model,

ys,t ∼ Pois(λs,t)

log(λs,1) ∼ N(µ1, σ
2
1)

log(λs,t) ∼ N(ϕs + log(λs,t−1), σ
2
s)

ϕs ∼ N(0, σ2
ϕ)

σ2
s ∼ Inverse-gamma(α, β),

where s = 1, 2, 3, 4 for each of our four studied sites, and t = 1978, . . . , 2016. The parameters

λs,t represent the latent population intensities, and the parameters ϕs and σ2
s define the relationship

between population intensity parameters over time. The parameters of interest are population

intensities λs,t and population intensity trends ϕs. Negative values of ϕs indicate the population

intensities are decreasing at site s while positive values of ϕs indicate the population intensites are

increasing at site s.

1United States Endangered Species Act of 1973
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These data were analyzed by Hooten et al. (2021) who used PPRB to update a temporal model

of two measured sites (Marmot and Sugarloaf) a single time from year 2013 to 2015. We extend

this analysis in two ways. First, we include two additional sites (Seal Rocks and Atkins) from the

same survey. Second, we perform a series of 16 streaming updates from the year 2000 to 2016.

We assume a first-stage analysis has been performed for all data through year 2000 which will

form the basis for the series of streaming updates performed. Each update incorporates the data

from an additional year. We use the same hyperparameters as in Hooten et al. (2021), specifically,

µ1 = 8.7, σ2
1 = 1.69, σ2

ϕ = 1, α = 1, and β = 20.

We perform the series of updates using four methods: a non-streaming Gibbs sampler for each

year fitting the full model (Gibbs), sequential PPRB-within-Gibbs updates (PPRB-within-Gibbs),

sequential SMCMC updates (SMCMC), and sequential Generative Filtering. The full sampler

details can be found in Appendix C.4. Similarly to the simulation in Section 4.4.1, we perform

transition kernel steps in SMCMC and Generative Filtering until a desired level of convergence to

the posterior is reached. Unlike in Section 4.4.1, however, the true posterior is unknown in this

model. Thus we use the Gibbs samples as a reference, and stop SMCMC and Generative filtering

when the KS statistic comparing the current state of the ensemble to the Gibbs samples is below a

desired threshold. This approach is not feasible in scenarios where streaming is required and we

discuss practical options for choosing mt in Section 4.6.

Figure 4.4 (left) shows the posterior means and credible intervals for log(λs,t). In three of four

sites, population intensity estimates declined, then began to rise after 2000. We are also able to

recover estimates of log(λs,t) in years where there is missing data for the sites, though the credible

intervals are wide for these parameters. Figure 4.4 (right) shows the changing posterior mean and

credible intervals for each parameter ϕs, with each Bayesian update. Corresponding to the trends

observed in the estimates of log(λs,t), the posterior means and credible intervals of ϕs become less

negative with each new year of data. The inference for both log(λs,t) and ϕs using Generative

Filtering is nearly identical to non-streaming Gibbs, but with cumulatively 32% less time required

with only one core.
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Figure 4.4: LEFT: Posterior means and credible intervals for log(λs,t) parameters after all updates. Credible

intervals are wider where there was missing data. In three of four sites, population intensity estimates

declined, then began to rise after 2000. RIGHT: Posterior means and credible intervals for φs following

each streaming update. Means shift positive and credible intervals narrow with the arrival of new data. On

both the left and right, means and credible intervals agree between Gibbs and Generative Filtering.
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Figure 4.5: Number of unique values of log(λs,t), for t = 2001, present in samples as a proportion of

the number of samples produced with each sampler. The unique values produced by PPRB-within-Gibbs

decays with each successive update. The Gibbs sampler produces a consistent number of unique values,

approximately 44%, due to the tuning of its component updates. Generative Filtering produces consistently

the highest proportion of unique values among its samples.

We compare the samplers’ ability to obtain these estimates through three metrics: the number

of distinct values present in repeatedly updated parameters (Figure 4.5), the number of transition

kernel steps required by each of SMCMC and Generative Filtering (Figure 4.6, top), and the total

time required to perform all updates for SMCMC, Generative Filtering, and Gibbs with varying

numbers of cores available (Figure 4.6, bottom). First, Generative filtering outperforms PPRB-

within-Gibbs in terms of the proportion of unique values within its produced samples (Figure 4.5).

Generative Filtering also has a higher proportion of unique values than Gibbs, due to the Gibbs

sampler’s component updates tuned to 44% acceptance rate. We also see that Generative Filtering

outperforms SMCMC in both number of transition kernel steps required, and both SMCMC and

Gibbs in runtime (Figure 4.6). In particular, two cases in the runtime comparison are especially

interesting. For one available core, i.e., sequential execution, Generative Filtering is faster even

than Gibbs. This indicates that even when no parallel execution is possible, Generative Filtering

takes advantage of previously produced samples and is faster than refitting the model from scratch.

For 1000 available cores, we simulate the situation where essentially unlimited parallel computing

resources are available and each thread in either SMCMC or Generative Filtering is able to be run in
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Figure 4.6: TOP: Total number of transition kernel steps required for each method to converge to the

posterior distribution. Generative Filtering requires fewer transition kernel steps due to its initial PPRB-

within-Gibbs step. BOTTOM: Cumulative time to converge to the posterior distribution in each update, for
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high performance computing environment, and unlimited parallel resources.
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parallel. In this case, SMCMC overtakes Generative Filtering in speed because its jumping kernel

is able to be parallelized while PPRB-within-Gibbs is not. However, this is an extreme setting.

We also note that both methods outperform Gibbs by wide margins. Together, these timing results

suggest that Generative Filtering is an attractive method for streaming Bayesian updates where

time is a consideration, but few or moderate computational resources are available.

4.6 Discussion

We define Generative Filtering as an efficient way to perform recursive Bayesian updates in a

streaming data context when moderate parallel computing resources are available. We show that

Generative Filtering resolves the problems of the two methods it extends, avoiding the degradation

of filtering methods such as PPRB and PPRB-within-Gibbs and converging faster with fewer re-

sources than SMCMC. We characterize the degradation of PPRB and PPRB-within-Gibbs samples

after repeated application, and provide novel bounds on the error introduced by this degradation.

We additionally provide sufficient conditions for reducing the data storage needs of Generative

Filtering.

We conduct two simulation studies with streaming data models to demonstrate the effectiveness

of Generative Filtering. We find that repeated application of PPRB-within-Gibbs in a streaming

setting leads to a measurable accumulation of MCMC error and show that Generative Filtering

avoids this error to reach the same level of convergence as SMCMC using less time with moderate

computational resources.

We use Generative Filtering to analyze Steller sea lion pup counts discovering trends in count

intensity at four different sites and observing changes in parameter estimates with the arrival of new

data. We find that Generative Filtering required fewer transition kernel steps than SMCMC and

less time with moderate computation resources (32 cores or fewer). We also find that Generative

Filtering requires less time to produce the equivalent of 1000 independent samples than Gibbs

when only one core is available.
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Throughout this chapter, when comparing the time to convergence for streaming samplers, we

have used an objective standard to determine when a given algorithm converged to the posterior

distribution. We compared samples to either the true posterior distribution (if known), or to refer-

ence samples produced by a non-streaming alternative sampler. This worked for our purposes of

demonstrating faster convergence for Generative Filtering than SMCMC. However, this approach

is not relevant in practice and determining the number of transition kernel iterations to perform re-

mains an open question. Yang and Dunson (2013) propose a correlation-based stopping, however,

this approach is not appropriate for many cases, e.g., discrete parameters without a natural mean-

ing or measure of correlation. Future work for samplers of this type will include a more general

stopping criterion.
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Chapter 5

Conclusion

In this dissertation we presented three methods for the analysis of complex data. In Chapter

2 we introduced restricted regression for network data to mitigate network confounding. We find

that for binary data, Restricted Network Regression results in better estimation of the unconditional

regression effects than network regression without random effects. In Chapter 3, we developed a

Bayesian record linkage model for the streaming data setting and present two streaming samplers

for performing Bayes updates with the arrival of each file. Motivated by resolving the trade-

offs between these two streaming samplers, in Chapter 4 we develop Generative Filtering, a new

sampler for performing recursive Bayes updates. We show that Generative Filtering retains the

speed of PPRB while avoiding filtering degradation, and the parallel computation of SMCMC

while converging faster with constrained computational resources. We conclude by discussing

potential future directions of research related to the topics in this dissertation.

5.1 Restricted Network Regression Future Work

In Chapter 2, we define network confounding and introduce Restricted Network Regression to

mitigate network confounding. For a general network model with a random effect,

yij = x⊤
d,ijβd + x⊤

s,iβs + x⊤
r,jβr + ηij + εij,

we specifically introduce network regression for additive node-structured random effects of the

form, ηij = ai + bj . Other kinds of network-structured random effects exist for which network

confounding and solutions can be studied, for example, multiplicative random effects of the form

ηij = u⊤
i vj for vectors ui and vj (Hoff, 2021) or Euclidean latent space random effects of the

form ηij = −∥wi − wj∥2 for vectors wi (Hoff et al., 2002). These random effects both place

each network node in a latent space where two nodes’ relative positions affect the relation between
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them. While confounding with additive random effects has a clear relationship to collinearity

of fixed and random effects, neither multiplicative nor latent space random effects form a linear

space. However, there are network covariates that have the same structure as these random effects.

Common group membership effects (e.g., Hoff et al., 2013) can be written in the form xij = xixj

where xi are binary values indicating whether each individual is in a particular group, which has a

multiplicative structure. Where nodes represent entities with physical locations a covariate may be

the phyiscal distances between entities, which has a Euclidean distance structure. An interesting

area of future work would be to investigate the estimation of such covariates in the presence of

similarly structured random effects.

5.2 Streaming Record Linkage Future Work

Several extensions to the streaming record linkage model in Chapter 3 are possible to further

leverage the temporal nature of the arriving files. First, as the number of files increases, the number

of potential links for any record in the most recent file, Xk becomes larger. This increases the

complexity of estimating the links in Z(k−1). If we have a priori knowledge that entities are unlikely

to be absent from files for long periods of time before reappearing, we can limit this complexity

by blocking, i.e., limiting links to only a subset of other records. We can choose a value ∆t as

the maximum allowed difference in time for directly linked records and modify the link validity

criterion (Definition 3.2.1) to be the following.

Definition 5.2.1. Link Validity Constraint with blocking. Let ∆t ≥ 1. Let Ck be the set of all

matching vectors Z(1:(k−1)) such that every record xm1i receives at most one link from a record

xm2j where m1 < m2 ≤ m1 + ∆t, and receives no links from any record xm2j where m2 >

m1 +∆t. That is, there is at most one value in any Z(m2−1) with m1 < m2 ≤ m1 +∆t that equals

∑m1−1
ℓ=1 nℓ+ i, and there are no values in any Z(m2−1) with m2 > m1+∆t that equal

∑m1−1
ℓ=1 nℓ+ i.

Matching vectors Z(1:(k−1)) are valid if and only if Z(1:(k−1)) ∈ Ck.

If all files are approximately equal in size or are bounded in size, then this modified link validity

constraint limits the number of potential values of Z(k−1) for large k. This does not prevent far-

92



reaching links in general, however. If an entity regularly appears in files at most ∆t apart in time,

then by link tracing, the most recent records can still be linked to the earliest records under this

new constraint.

Second, we can incorporate changing temporal likelihoods to represent drift in semi-identifying

fields over time. Aleshin-Guendel and Sadinle (2023) allows for multiple likelihoods in multifile

record linkage by using parameters mij and uij specifically for comparisons between records

in files Xi and Xj . However, for k files in an offline batch procedure, this approach requires

k(k − 1)/2 separate likelihoods, which increases the complexity of the model and prevents infor-

mation borrowing between pairs of files. With temporally-structured files, we can use a restricted

version of multiple likelihoods based on time difference. Let there be parameters m1,m2, . . .

and u1,u2, . . . , then comparisons between two files Xi and Xj are parameterized by m|i−j| and

u|i−j|. This parameterization lets the distribution of matches and nonmatches vary in time, reflect-

ing a belief that the semi-identifying fields used to compare records may have values that drift over

time. Unlike other multiple likelihood approaches however, with k files only k − 1 likelihoods are

required, and information can be borrowed between comparisons.

5.3 Generative Filtering Future Work

Throughout the simulations and application in Chapter 4, we have used ad-hoc stopping crite-

ria to determine the number of transition kernel steps to use that were dependent on the specific

simulation study setting and would be impossible or impractical in applications. In the case of

the simulation study in Section 4.4.1 we compared the current state of the ensemble to the known

posterior distribution, which would not be possible in all cases in which MCMC would be used. In

the application in section 4.5 we compared the current state of the ensemble to samples produced

from a non-streaming reference Gibbs sampler, which would not be practical as it would defeat

the purpose of using a streaming sampler. Determining the number of transition kernel steps, mt,

is critical for the application of Generative Filtering as too few iterations would result in large

MCMC error and too many iterations defeats the computational benefits of the method. Therefore
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a fruitful area of future work would be in developing an automatic stopping criterion for Gener-

ative Filtering, which could determine the appropriate number of transition kernel steps without

external reference.

Yang and Dunson (2013) propose a correlation-based stopping criterion for SMCMC using the

function

ft(k) = max
ℓ=1...,p

corr(θ
(k)
ℓ , θ

(0)
ℓ ),

where θ
(k)
ℓ is the random variable representing the ℓth component of the parameters, θ, after k

applications of the transition kernel at time t. This function can be estimated as f̂t(k) using the

sample correlation of the S samples in the ensemble at each point k. The value of mt is chosen

online as the first k for which this maximal correlation is below a threshold, f̂t(k) < ϵ. For well-

chosen ϵ, this guarantees the desired convergence. This stopping criterion, however, depends on

the sample correlation being interpretable for each component of the parameters. For continuous

parameters on R, this will generally be the case. However, for discrete-valued parameters, the

sample correlation may not be meaningful. For example, consider the link parameters, Z(k−1),

from Chapter 3, where recall, Z
(k−1)
j = i means record j in file Xk is linked to record i. The use

of the standard sample correlation here is problematic here as due to the exchangeability of the

records within files, values of Z
(k−1)
j = i and i + 1 are no more similar than values of Z

(k−1)
j = i

and i+ 100, while these would contribute very differently to the sample correlation.

A simple approach to resolving this difficulty would be to transform discrete parameters into

a summary statistic for which correlation is meaningful. For the record linkage example, we can

consider a function n(Z(1), . . . ,Z(k−1)) which returns the number of distinct entities represented

by the links and use the correlation of this function. This allows for a straight-forward applica-

tion of the correlation criterion but the summary function does not capture all information in the

parameter and may result in convergence that is worse than expected. It may be possible to adapt

this correlation-based criterion using more flexible measures of correlation. If the discrete param-

eters in a model exist in a metric space, the Fréchet correlation (Fout and Fosdick, 2023) may be

used as a substitute. We may also move away from correlations to diagnostics for multi-chain
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MCMC convergence, e.g., R̂ (Gelman and Rubin, 1992), though it may be more difficult to use

these diagnostics to guarantee rates of convergence in the overall procedure.
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Appendix A

Supplement to Restricted Regression in Networks

A.1 Theoretical Results

A.1.1 Proof of Theorem 2.3.1

We use the laws of total expectation and variance. Starting with the full conditional distribution

of δ,

δ|a, b, σ2
a, σ

2
b , σ

2
ε ,y ∼ N

(
(X⊤X)−1X⊤y, σ2

ε(X
⊤X)−1

)
,

we have

E[δ|y] = E[E[δ|a, b, σ2
a, σ

2
b , σ

2
ε ,y]|y] = (X⊤X)−1X⊤y (A.1)

Var(δ|y) = E[Var(δ|a, b, σ2
a, σ

2
b , σ

2
ε ,y)|y] + Var(E[δ|a, b, σ2

a, σ
2
b , σ

2
ε ,y]|y) (A.2)

= E[σ2
ε(X

⊤X)−1|y] (A.3)

= (X⊤X)−1E[σ2
ε |y]. (A.4)

The above identities depend on having a proper joint posterior distribution

f(δ,a, b, σ2
a, σ

2
b , σ

2
ε |y) and a finite posterior expectation E[σ2

ε |y] < ∞ which are both true

assuming proper priors for σ2
a, σ2

b and σ2
ε with a finite prior mean E[σ2

ε ] < ∞.
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A.1.2 Proof of Theorem 2.3.2

We first simplify the model by combining the random effects as follows:

η∗ :=






η1

η2




 (A.5)

W∗ :=

[

W1 W2

]

(A.6)

F∗ := F∗(r1, r2) =






r1F1 0

0 r2F2




 (A.7)

Then we can rewrite the model as

y = Xδ +W∗η∗ + ϵ (A.8)

p(η∗|τϵ, r1, r2) = p(η1|τϵ, r1)p(η2|τϵ, r2) (A.9)

∝ τ rank(F∗)/2
ϵ r

rank(F1)/2
1 r

rank(F2)/2
2 exp

{

−
τϵ
2
η⊤
∗ F∗η∗

}

. (A.10)

Note that rank(F∗) = rank(F1) + rank(F2), and W∗ has orthonormal columns because W1 and

W2 have orthonormal columns and C(W1)⊥C(W2).

We know that Var(δ) = (X⊤X)−1E[σ2
ϵ |y] where σ2

ϵ = 1/τϵ, so it suffices to show that

E[σ2
ϵ |y] ≤ E[σ2

ϵ,NN |y]. We find the posterior and conditional posterior distributions,

σ2
ϵ,NN |y ∼ inverse-gamma

(

aϵ + (n− p)/2,
1

bϵ
+

1

2
y⊤PX⊥y

)

(A.11)

σ2
ϵ |y, r1, r2 ∼ inverse-gamma






aϵ + a1 + a2 + (n− p)/2,

1
bϵ
+ r1

b1
+ r2

b2
+ 1

2
y⊤(PX⊥ −W∗(I + F∗)

−1W⊤
∗ )y




 (A.12)

Then,

E
[
σ2
ϵ |y, r1, r2

]
=

1
bϵ
+ r1

b1
+ r2

b2
+ 1

2
y⊤(PX⊥ −W∗(I + F∗)

−1W⊤
∗ )y

aϵ + a1 + a2 + (n− p)/2− 1
.
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Using total expectation,

E
[
σ2
ϵ |y
]
=

1
bϵ
+ E[r1|y]

b1
+ E[r2|y]

b2
+ 1

2
y⊤PX⊥y − E

[
1
2
y⊤W∗(I + F∗)

−1W⊤
∗ y|y

]

aϵ + a1 + a2 + (n− p)/2− 1
.

Now define

M(x) :=
1
bϵ
+ E[r1|y]x+ b1E[r2|y]

b2
x+ 1

2
y⊤PX⊥y

aϵ + a1b1x+ a2b1x+ (n− p)/2− 1
,

and similary note that M(0) = E[σ2
ϵ,NN |y] and M(1/b1) ≤ E[σ2

ϵ ]. We want to find conditions

such that M is decreasing in x on [0, 1/b1].

∂M

∂x
=

(aϵ + a1b1x+ a2b1x+ (n− p)/2− 1)(E[r1|y] +
b1E[r2|y]

b2
)

(aϵ + a1b1x+ a2b1x+ (n− p)/2− 1)2

−
( 1
bϵ
+ E[r1|y]x+ b1E[r2|y]

b2
x+ 1

2
y⊤PX⊥y)(a1b1 + a2b1)

(aϵ + a1b1x+ a2b1x+ (n− p)/2− 1)2
(A.13)

=
(aϵ + (n− p)/2− 1)(E[r1|y] +

b1E[r2|y]
b2

)− ( 1
bϵ
+ 1

2
y⊤PX⊥y)(a1b1 + a2b1)

(aϵ + a1b1x+ a2b1x+ (n− p)/2− 1)2
(A.14)

=

{

(E[r1|y] +
b1E[r2|y]

b2
)− E[σ2

ϵ,NN |y](a1b1 + a2b1)
}

(aϵ + (n− p)/2− 1)

(aϵ + a1b1x+ a2b1x+ (n− p)/2− 1)2
. (A.15)

So we have ∂M
∂x

≤ 0 if (E[r1|y] +
b1E[r2|y]

b2
)/(a1b1 + a2b1) ≤ E[σ2

ϵ,NN |y], or equivalently if

E[r1|y]/b1 + E[r2|y]/b2
E[τ1]/b1 + E[τ2]/b2

≤ E[σ2
ϵ,NN |y].

A.1.3 Restricted Network Regression With a Single Random Effect

The need for Theorem 2.3.2 is motivated by the fact that the model form in (2.35)-(2.37) en-

compasses continuous restricted network models that include one additive sender or one additive

receiver random effect, but not both. Taking the sender random effect as an example, we obtain the

Restricted Network Regression model through the relations η = a, W = (I − PX)A, F = In,

and τs = σ−2
a (Table A.1). From the results in Khan and Calder (2022), any restricted regression
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Table A.1: Table showing the mapping between the general form of spatial models studied in Khan and

Calder (2022), (2.35)-(2.37), and additive network models with a single sender random effect.

Spatial Restricted Network Description

η a Random effect

W (I − PX)A Random effect design matrix

F I Random effect precision matrix

τs σ−2
a Random effect precision

model of the form in (2.35)-(2.37) with a continuous response will also not alleviate spatial (or

network) confounding according to Definition 2.2.1.

A.2 Simulation of excess variation at specified canonical corre-

lations

The simulation studies in Section 2.4 depend on the ability to generate a vector of unobserved

variation at a specified magnitude and a specified canonical correlation with a set of covariates.

This is achieved through rescaling the parallel and orthogonal components of an initial vector

through the following R function:

gencancor <- function(X, Y, rho) {

PX <- X %*% MASS::ginv(t(X) %*% X) %*% t(X)

Ypar <- c(PX %*% Y)

Yperp <- Y - Ypar

Ynew <- (rho * sqrt(sum(Yperp^2)) * Ypar +

sqrt(1-rho^2) * sqrt(sum(Ypar^2)) * Yperp)

return(Ynew * sqrt(sum(Y^2)) / sqrt(sum(Ynew^2)))

}

This function works by taking an initial, i.i.d. normal random vector Y and decomposing it into

components parallel to and orthogonal to X . Those components are then scaled and recombined
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Figure A.1: Pairs plot of the 3 receiver covariates in the Eurovision data analysis. There is low correlation

between each pair of covariates. LogMedianOdds and LogGDP appear left skewed, LogPopulation is ap-

proximately normally-distributed.

into a vector Y ′, such that Y ′ has the desired canonical correlation ρ with X . The vector Y ′ is then

rescaled to have the same magnitude as the original Y and returned.

A.3 Eurovision Data

Figures A.1 and A.2 visualize the covariates in the Eurovision data analysis (Section 2.5). Log-

transforming the receiver covariates (Figure A.1) results in no right skew. The receiver covariates

are also not highly correlated with each other, avoiding multicollinearity in the model. As the

Eurovision analysis found that country contiguity had a positive effect on voting, countries with

large numbers of neighbors (e.g., Russia, Hungary) are more likely to receive votes, while countries

with fewer neighbors (e.g., Australia, Cyprus, Israel, and the United Kingdom) are less likely to

receive votes.
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Figure A.2: Eurovision country contiguity covariate illustrated as a network. Countries sharing a border

are connected by an edge. Australia, Cyprus, Israel, and the United Kingdom border no other competing

countries and are not shown.
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Appendix B

Supplement to Fast Bayesian Record Linkage for

Streaming Data Contexts

B.1 Supplemental Figures and Tables

Figure B.1 depicts the streaming record linkage problem up to time Tk.

Table B.1 and Figure B.2 show F1-scores and entity errors for additional error levels from the

simulation in Section 3.4.

B.2 Posterior and Full Conditional Distributions

B.2.1 Posterior Distribution

Here we specify a function that is proportional to the full streaming record linkage posterior

density.

P (m,u,Z(1), . . . ,Z(k−1)|Γ(1), . . . ,Γ(k−1)) (B.1)

∝ P (m)P (u)P (Z(1)) · · ·P (Z(k−1))P (Γ(1), . . . ,Γ(k−1)|m,u,Z(1), . . . ,Z(k−1)) (B.2)

∝

F∏

f=1

Lf∏

ℓ=0

m
afℓ
fℓ u

bfℓ
fℓ

×

k∏

t=2

[
(Nt−1 − nt·(Z

(t−1)))!

Nt−1!
·

B(nt·(Z
(t−1)) + απ, nt − nt·(Z

(t−1)) + βπ)

B(απ, βπ)

]

×
k∏

t1<t2

nt1∏

i=1

nt2∏

j=1

F∏

f=1

Lf∏

ℓ=0

[

m
I((xt1i

,xt2j
)∈M)

fℓ u
I((xt1i

,xt2j
)/∈M)

fℓ

]γfℓ(xt1i
,xt2j

)

, (B.3)
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Figure B.1: A depiction of the streaming record linkage problem up to time Tk. Files 1 through k arrive

sequentially and are duplicate-free. The red arrows illustrate the growing complexity of the linkage problem

on multiple files: with k files, records in k(k − 1)/2 pairs of files must be compared and linked.

Table B.1: Posterior means and standard deviations of F1-score for simulated datasets. Within rows, each

model is listed: the model presented in this chapter (Streaming) and three comparison models. Larger values

represent more accurate links in the posterior distribution. The support vector machine, a non-bayesian

method, is represented only by the F1-score of its resulting point estimate.

Model 10% overlap 30% overlap 50% overlap 90% overlap

Errors: 1

Streaming (Flat Prior) 0.999 (0.0026) 0.988 (0.0003) 0.999 (0.0010) 0.998 (0.0000)

Streaming (Weak Prior) 0.998 (0.0038) 1.000 (0.0001) 0.999 (0.0012) 1.000 (0.0000)

Streaming (Strong Prior) 0.988 (0.0067) 0.995 (0.0016) 0.992 (0.0011) 1.000 (0.0000)

Multilink 0.987 (0.0088) 0.995 (0.0021) 0.982 (0.0010) 0.915 (0.0000)

Multilink (Single Likelihood) 0.999 (0.0035) 0.995 (0.0004) 0.991 (0.0011) 0.946 (0.0000)

Blink 0.869 (0.0136) 0.988 (0.0007) 0.999 (0.0007) 1.000 (0.0000)

SVM (1% training) 1.000 0.998 0.997 1.000

Errors: 3

Streaming (Flat Prior) 0.955 (0.0195) 0.990 (0.0058) 0.987 (0.0021) 0.995 (0.0001)

Streaming (Weak Prior) 0.970 (0.0193) 0.990 (0.0057) 0.996 (0.0021) 1.000 (0.0001)

Streaming (Strong Prior) 0.978 (0.0159) 0.983 (0.0055) 0.996 (0.0022) 1.000 (0.0001)

Multilink 0.095 (0.0055) 0.981 (0.0059) 0.983 (0.0027) 0.954 (0.0000)

Multilink (Single Likelihood) 0.940 (0.0210) 0.991 (0.0052) 0.985 (0.0023) 1.000 (0.0000)

Blink 0.543 (0.0176) 0.944 (0.0031) 0.988 (0.0023) 0.999 (0.0002)

SVM (1% training) 0.933 0.958 0.984 0.974

Errors: 8

Streaming (Flat Prior) 0.231 (0.0077) 0.414 (0.0093) 0.822 (0.0163) 0.950 (0.0031)

Streaming (Weak Prior) 0.240 (0.0085) 0.415 (0.0103) 0.843 (0.0157) 0.911 (0.0026)

Streaming (Strong Prior) 0.710 (0.0277) 0.817 (0.0128) 0.898 (0.0075) 0.908 (0.0030)

Multilink 0.204 (0.0084) 0.372 (0.0084) 0.647 (0.0097) 0.977 (0.0032)

Multilink (Single Likelihood) 0.136 (0.0057) 0.369 (0.0070) 0.647 (0.0097) 0.972 (0.0022)

Blink 0.340 (0.0216) 0.663 (0.0104) 0.836 (0.0140) 0.918 (0.0080)

SVM (1% training) 0.586 0.482 0.556 0.542
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Figure B.2: Posterior distribution of the number of estimated entities for simulated datasets. A vertical line

indicates the true number of distinct entities in each dataset. Distributions to the right or left of the vertical

line indicate underlinking or overlinking, respectively, in the posterior. Compared models are on the y-axis:

the model presented in this chapter (Streaming) and three comparison models.
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where

Nt−1 = n1 + · · ·+ nt−1

nt·(Z
(t−1)) =

nt∑

j=1

I(Z
(t−1)
j ≤ Nt−1)

M := M(Z(1), . . . ,Z(k−1)) = {(xt1i,xt2j) : xt1i and xt2j are linked}.

B.2.2 Full conditional for m and u

We provide the full conditional distribution for m starting from the posterior in Equation B.3.

P (m|u,Z(1), . . . ,Z(k−1),Γ(1), . . . ,Γ(k−1)) (B.4)

∝ P (m,u,Z(1), . . . ,Z(k−1)|Γ(1), . . . ,Γ(k−1)) (B.5)

∝
F∏

f=1

Lf∏

ℓ=0

m
afℓ+

∑k
t1<t2

∑nt1
i=1

∑nt2
j=1 I((xt1i

,xt2j
)∈M)·γfℓ(xt1i

,xt2j
)

fℓ . (B.6)

We recognize the inside products in Equation B.6 as the kernel of a Dirichlet distribution,

and so each vector mf for f = 1, . . . , F has a conjugate Dirichlet full conditional distribution.

Similarly, we can derive

P (u|m,Z(1), . . . ,Z(k−1),Γ(1), . . . ,Γ(k−1))

∝

F∏

f=1

Lf∏

ℓ=0

u
bfℓ+

∑k
t1<t2

∑nt1
i=1

∑nt2
j=1 I((xt1i

,xt2j
)/∈M)·γfℓ(xt1i

,xt2j
)

fℓ , (B.7)

and so each vector uf for f = 1, . . . , F also has a conjugate Dirichlet full conditional distribution.
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B.2.3 Full conditional for Z(t−1)

Let T be a file number, 2 ≤ T ≤ k. We derive the full conditional distribution for Z(T−1), the

matching vector introduced with file XT , starting from the posterior in Equation B.3.

P (Z(T−1)|m,u,Z(1), . . . ,Z(T−2),Z(T ), . . . ,Z(k−1),Γ(1), . . . ,Γ(k−1)) (B.8)

∝ P (m,u,Z(1), . . . ,Z(k−1)|Γ(1), . . . ,Γ(k−1)) (B.9)

∝

[
(NT−1 − nT ·(Z

(T−1)))!

NT−1!
·

B(nT ·(Z
(T−1)) + απ, nT − nT ·(Z

(T−1)) + βπ)

B(απ, βπ)

]

×
k∏

t2=T

t2−1∏

t1=1

nt1∏

i=1

nt2∏

j=1

F∏

f=1

Lf∏

ℓ=0

[

m
I((xt1i

,xt2j
)∈M)

fℓ u
I((xt1i

,xt2j
)/∈M)

fℓ

]γfℓ(xt1i
,xt2j

)

, (B.10)

where

Nt−1 = n1 + · · ·+ nt−1

nt·(Z
(t−1)) =

nt∑

j=1

I(Z
(t−1)
j ≤ Nt−1)

M := M(Z(1), . . . ,Z(k−1))

= {(xt1i,xt2j) : xt1i and xt2j are linked}.

Pairs of records, xt1i and xt2j , where t1, t2 < T do not depend on Z(T−1) to be linked because

of the constraints outlined in Section 3.2.2.

B.3 Supplemental Definitions and Theorems

B.3.1 Matching Vector Prior Theorem

Theorem B.3.1. Consider a k-file record linkage problem with an initial state (Z(1), . . . ,Z(k−1))

and an alternate state (Z∗(1), . . . ,Z∗(k−2),Z(k−1)) such that Z∗(1), . . . ,Z∗(k−2) are identical to

Z(1), . . . ,Z(k−2) except for the addition of one link, that is there exists an ℓ < k, j ≤ nℓ and

i ≤ n1 + · · ·+ nℓ−1 such that Z
∗(ℓ−1)
j = i and Z

(ℓ−1)
j = n1 + · · ·+ nℓ−1 + j.
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Let

R =
P (Z∗(1), . . . ,Z∗(k−2),Z(k−1))

P (Z(1), . . . ,Z(k−2),Z(k−1))
÷

P (Z∗(1), . . . ,Z∗(k−2))

P (Z(1), . . . ,Z(k−2))
.

When the prior in Equation 3.6 is specified for Z(2), . . . ,Z(k−1), R ≥ 1 with equality only when

there are no links in Z(k−1). When the prior in Equation 3.4 is specified for Z(2), . . . ,Z(k−1),

R = 1.

Proof. First, simplifying R gives

R =
P (Z(k−1)|Z∗(1), . . . ,Z∗(k−2))

P (Z(k−1)|Z(1), . . . ,Z(k−2))
.

In the case of the prior in Equation 3.4,

P (Z(k−1)|Z∗(1), . . . ,Z∗(k−2)) = P (Z(k−1)|Z(1), . . . ,Z(k−2)) = P (Z(k−1)),

so R = 1.

In the case of the prior in Equation 3.6,

R =
(|C(Z∗(1), . . . ,Z∗(k−2))| − nk·(Z

(k−1)))!

(|C(Z(1), . . . ,Z(k−2)))| − nk·(Z(k−1)))!
·
|C(Z(1), . . . ,Z(k−2))|!

|C(Z∗(1), . . . ,Z∗(k−2))|!

=
|C(Z(1), . . . ,Z(k−2))|

|C(Z(1), . . . ,Z(k−2))| − nk·(Z(k−1))
,

since the extra link removes exactly one candidate. So R ≥ 1 with equality only when

nk·(Z
(k−1)) = 0, or there are no links in Z(k−1).

B.3.2 Sampler Definitions and Theorems

Definition B.3.1. Component-wise sampler. Define the component-wise sampler for sampling

from the streaming record linkage model as follows:

1. For f = 1, . . . , F

a. Update the vector mf from its conjugate full conditional Dirichlet distribution.

118



b. Update the vector uf from its conjugate full conditional Dirichlet distribution.

2. For each vector Z(ℓ), ℓ = 1, . . . , k − 1

a. For each index j = 1, . . . , nℓ+1, update the component Z
(ℓ)
j from its full conditional

distribution over all possible values, 1, . . . , (n1 + · · ·+ nℓ), (n1 + · · ·+ nℓ + j).

3. Repeat steps 1 and 2 for s = 1, . . . , S times.

Definition B.3.2. Locally balanced sampler. Define the locally balanced sampler for sampling

from the streaming record linkage model as follows:

1. For f = 1, . . . , F

a. Update the vector mf from its conjugate full conditional Dirichlet distribution.

b. Update the vector uf from its conjugate full conditional Dirichlet distribution.

2. For each vector Z(ℓ), ℓ = 1, . . . , k − 1

a. Propose a new value of Z(ℓ) using locally balanced proposals (Zanella, 2020). Each

potential proposal takes a step through either the addition of a link, the removal of

a link, swapping one end of a link, or exchanging ends of two links (double-swap).

Proposal probabilities are weighted with barker weights, g(t) = t/(1 + t).

b. Accept or reject the proposal using the standard Metropolis-Hastings acceptance ratio

for asymmetric proposals.

3. Repeat steps 1 and 2 for s = 1, . . . , S times.

Theorem B.3.2. The component-wise sampler (Definition B.3.1) produces an ergodic Markov

chain with the streaming record linkage model posterior distribution as its target distribution.

Proof. The sampler in Definition B.3.1 is a Gibbs algorithm which samples directly from the full

conditional distributions of the parameters in sequence. Therefore if we prove that the resulting

Markov chain is irreducible, then it is ergodic and samples from the posterior distribution. From an
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initial state with non-zero probability, (m,u,Z(1), . . . ,Z(k−1)), a new state with non-zero proba-

bility, (m∗,u∗,Z
(1)
∗ , . . . ,Z

(k−1)
∗ ), may always be reached through a sequence of non-zero proba-

bility steps. For the matching vectors, first remove all existing links from (Z(1), . . . ,Z(k−1)) one

component at a time until the completely unlinked state is reached. In the next iteration, add all

links in (Z
(1)
∗ , . . . ,Z

(k−1)
∗ ) one component at a time. All components of m and u are strictly posi-

tive, so states have zero posterior probability if and only if the state is invalid (Definition 3.2.1) and

the indicator in the likelihood equals zero. As states are invalid due to conflicting links, removing

links can never turn a valid state to invalid. Since (Z
(1)
∗ , . . . ,Z

(k−1)
∗ ) is valid and has nonzero

posterior probability, constructing it one link at a time will never result in an invalid state.

Theorem B.3.3. The locally balanced sampler (Definition B.3.2) produces an ergodic Markov

chain with the streaming record linkage model posterior distribution as its target distribution.

Proof. The sampler in Definition B.3.2 is a Metropolis-Hastings within Gibbs algorithm. There-

fore it is sufficient to show that the resulting chain is irreducible. Similarly to the proof

of Theorem B.3.2, we show there is a non-zero probability path between a starting state,

(m,u,Z(1), . . . ,Z(k−1)), and an ending state, (m∗,u∗,Z
(1)
∗ , . . . ,Z

(k−1)
∗ ), via the completely un-

linked state. In each iteration, the locally balanced proposals may remove a single link or add a

single link to each vector Z(1), . . . ,Z(k−1). As in the proof of Theorem B.3.2, each of these steps

are to states with positive probability. Since the locally balanced proposals are weighted by the

target density, they can be proposed with positive probability.

Theorem B.3.4. The PPRB-within-Gibbs sampler (Definition 3.3.1) produces an ergodic Markov

chain with the model’s posterior distribution as its target distribution if the target distribution

satisfies the positivity condition,

p(θ1|y1,y2) > 0, p(θ2|y1,y2) > 0, p(θ3|y1,y2) > 0 =⇒ p(θ1,θ2,θ3|y1,y2) > 0.

Proof. First, we show that the Metropolis-Hastings acceptance ratio, α, in step 2 is appropriate for

the target distribution. Since the proposals come from the distribution, p(θ∗
1|y1), the acceptance
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ratio would be

α =
p(θ∗

1|θ2,θ3,y1,y2)

p(θ1|θ2,θ3,y1,y2)

p(θ1|y1)

p(θ∗
1|y1)

=
p(θ∗

1,θ2,θ3|y1,y2)

p(θ1,θ2,θ3|y1,y2)

p(θ1|y1)

p(θ∗
1|y1)

=
p(y1|θ

∗
1,θ2)p(y2|θ

∗
1,θ2,θ3)p(θ

∗
1)p(θ2)p(θ3)

p(y1|θ1,θ2)p(y2|θ1,θ2,θ3)p(θ1)p(θ2)p(θ3)

p(θ1|y1)

p(θ∗
1|y1)

=
p(y2|θ

∗
1,θ2,θ3)

p(y2|θ1,θ2,θ3)

p(θ∗
1,θ2|y1)

p(θ1,θ2|y1)

p(θ1|y1)

p(θ∗
1|y1)

=
p(y2|θ

∗
1,θ2,θ3)

p(y2|θ1,θ2,θ3)

p(θ2|θ
∗
1,y1)

p(θ2|θ1,y1)
.

Second, we have that p(θ1|y1) = 0 =⇒ p(θ1|θ2,θ3,y1,y2) = 0 since the latter distri-

bution is conditioned on a superset of random variables as the former. Therefore the distribu-

tion p(θ1|y1) works as an independent Metropolis-Hastings proposal distribution for the target

p(θ1|θ2,θ3,y1,y2).

Finally, the positivity condition implies that a Gibbs sampler is irreducible, and so the algorithm

produces an ergodic Markov chain. (Robert and Casella, 2013)

PPRB-within-Gibbs sampler for StreamingRL model

We perform the three steps of each iteration as

1. For f = 1, . . . , F

a. Update the vector mf from its conjugate full conditional Dirichlet distribution (see

Appendix B.2.2).

b. Update the vector uf from its conjugate full conditional Dirichlet distribution (see

Appendix B.2.2).

2. (PPRB step) Propose a new value (Z
(1)
∗ , . . . ,Z

(k−2)
∗ ) by drawing from the existing posterior

samples (with replacement). Accept or reject the proposal using the Metropolis-Hastings
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ratio,

α = min






p(Γ(k−1)|Z
(1)
∗ ,...,Z

(k−2)
∗ ,m,u,Z(k−1))

p(Γ(k−1)|Z(1),...,Z(k−2),m,u,Z(k−1))

×p(m,u|Z
(1)
∗ ,...,Z

(k−2)
∗ ,Γ(1),...,Γ(k−2))

p(m,u|Z(1),...,Z(k−2),Γ(1),...,Γ(k−2))

, 1






3. Update the value of Z(k−1) using a Metropolis-Hastings proposal targeting its full condi-

tional distribution. We examine two such possible proposals in Section 3.3.3.

B.4 Simulation and Sampling Details

This appendix contains details for MCMC runs and simulation studies whose results are pre-

sented in the main body of the chapter.

B.4.1 Link Accuracy Comparison

Proposed Model: Streaming Record Linkage

The sampler was run for 2500 iterations, discarding the first 500. We set απ = βπ = 1 as an

uninformative prior for Z(1), Z(2), and Z(3). Flat Dirichlet priors were chosen for u, and three

choices of prior strength were used for m (Flat, Weak, Strong). Component-wise proposals were

used for Z(1), Z(2), and Z(3) to avoid needing excessive burn-in. We found that a Gibbs sampler

with locally balanced proposals required too many iterations to converge to the target posterior

distribution to be computationally feasible.

Multilink (Aleshin-Guendel and Sadinle, 2023)

We use flat Dirichlet priors for the m and u parameters, α = 1 for the Dirichlet-multinomial

overlap table prior on the partitions and a uniform prior on the number of clusters. For each of the

simulated datasets, we produce 1000 posterior samples after a 500 iteration burn-in from an initial

state of no linked pairs.

Blink (Steorts, 2015)

For string fields, we choose a steepness parameter c = 1 and the generalized Levenshtein

distance of the R function adist. For categorical fields, we choose beta parameters a = 5 and

b = 20 to encode prior knowledge of between 1 and 4 errors per record, or a distortion probability
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of between 0.1 and 0.4. For each simulated dataset, we produce 1000 posterior samples after a

5000 iteration burn-in.

Support Vector Machine

Training pairs were chosen as evenly as possible between coreferent and non-coreferent pairs,

which sometimes resulted in all coreferent pairs being included in the training set.

B.4.2 Speed Comparison

The Gibbs sampler was run using component-wise full conditional updates for Z(1), Z(2) and

Z(3) for 2500 iterations, discarding the first 500 for burn-in. Each PPRB update was run for

5000 iterations, discarding the first 1000 for burn-in. The SMCMC updates used ensembles of

size 200 and were computed with 12 parallel processes. SMCMC-Comp used 5 jumping kernel

iterations and 50 transition kernel iterations, SMCMC-LB used 50 jumping kernel iterations and

and 200 transition kernel iterations, and SMCMC-Mixed used 5 jumping kernel iterations and 200

transition kernel iterations. All locally balanced proposals used a block size of 75 records.

B.4.3 Social Diagnosis Survey Analysis

The Gibbs sampler was run for 2500 iterations, discarding the first 500 for burn-in. Each PPRB

update was run for 5000 iterations, discarding the first 1000 for burn-in. The SMCMC updates

used ensembles of size 200 and were computed with 12 parallel processes. SMCMC-Comp used

5 jumping kernel iterations and 50 transition kernel iterations, SMCMC-LB used 500 jumping

kernel iterations and and 200 transition kernel iterations, and SMCMC-Mixed used 5 jumping

kernel iterations and 200 transition kernel iterations. All locally balanced proposals used a block

size of 150 records.

123



Appendix C

Supplement to Generative Filtering for Recursive

Bayesian Inference with Streaming Data

C.1 Theorems and Proofs

C.1.1 PPRB-within-Gibbs

Theorem C.1.1. The PPRB-within-Gibbs sampler (Definition 4.1.1) produces an ergodic Markov

chain with the model’s posterior distribution as its target distribution if the posterior distribution

satisfies the following positivity condition,

p(θ|y1,y2) > 0, p(ϕ|y1,y2) > 0 =⇒ p(θ,ϕ|y1,y2) > 0.

Proof. First, we show that the acceptance ratio, α, in step 1 is appropriate for the target full con-

ditional distribution. Since the proposals, θ∗ are produced from the distribution p(θ∗|y1) and the

target distribution is the full conditional, p(θ|ϕ,y1,y2), the MH acceptance ratio would be

α =
p(θ∗|ϕ,y1,y2)

p(θ|ϕ,y1,y2)
·
p(θ|y1)

p(θ∗|y1)

=
p(θ∗,ϕ|y1,y2)

p(θ,ϕ|y1,y2)
·
p(θ|y1)

p(θ∗|y1)

=
p(y2|ϕ,θ

∗,y1)p(y1|θ
∗)p(ϕ|θ∗)p(θ∗)

p(y2|ϕ,θ,y1)p(y1|θ)p(ϕ|θ)p(θ)
·
p(θ|y1)

p(θ∗|y1)

=
p(y2|ϕ,θ

∗,y1)p(ϕ|θ
∗) · p(θ∗|y1)

p(y2|ϕ,θ,y1)p(ϕ|θ) · p(θ|y1)
·
p(θ|y1)

p(θ∗|y1)

=
p(y2|y1,θ

∗,ϕ)

p(y2|y1,θ,ϕ)
·
p(ϕ|θ∗)

p(ϕ|θ)
.
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Second, the distribution p(θ|y1) works as independent MH proposals for the distribution

p(θ|y1,y2,ϕ) because p(θ|y1,y2,ϕ) ∝ p(θ|y1)p(y2|θ,ϕ,y1)p(ϕ|θ), so p(θ|y1) = 0 implies

p(θ|y1,y2,ϕ) = 0.

Finally, the positivity condition implies that a Gibbs sampler is irreducible (Robert and Casella,

2013), so the PPRB-within-Gibbs algorithm produces an ergodic Markov chain.

Theorem C.1.2. (Theorem 4.2.1 restated) Let πt, At, and F
(t)
S be defined as in Eq. (4.3)-(4.5) and

let ∥ · ∥ be a norm on probability measures that has a triangle inequality. Then,

∥At − πt∥ ≤ ∥At−1 − πt−1∥
︸ ︷︷ ︸

(1)

+
∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥

︸ ︷︷ ︸

(2)

+ ∥πt − πt−1∥
︸ ︷︷ ︸

(3)

+
∥
∥
∥At − F

(t−1)
S

∥
∥
∥

︸ ︷︷ ︸

(4)

∥At − πt∥ ≥

∣
∣
∣
∣
∥At−1 − πt−1∥
︸ ︷︷ ︸

(1)

−
∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥

︸ ︷︷ ︸

(2)

∣
∣
∣
∣
− ∥πt − πt−1∥
︸ ︷︷ ︸

(3)

−
∥
∥
∥At − F

(t−1)
S

∥
∥
∥

︸ ︷︷ ︸

(4)

Proof. We derive the upper bound by the triangle inequality as

∥At − πt∥ ≤
∥
∥
∥At − F

(t−1)
S

∥
∥
∥+

∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥+ ∥At−1 − πt−1∥+ ∥πt − πt−1∥ (C.1)

= ∥At−1 − πt−1∥+
∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥+ ∥πt − πt−1∥+

∥
∥
∥At − F

(t−1)
S

∥
∥
∥ . (C.2)
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We use reverse triangle inequalities to derive the lower bound:

∥At − πt∥ ≥

∣
∣
∣
∣
∥At − At−1∥ − ∥At−1 − πt∥

∣
∣
∣
∣

(C.3)

= max







∥At − At−1∥ − ∥At−1 − πt∥ ,

∥At−1 − πt∥ − ∥At − At−1∥







(C.4)

≥ max







∥At − At−1∥ − (∥At−1 − πt−1∥+ ∥πt−1 − πt∥) ,

∥At−1 − πt∥ −
(∥
∥
∥At − F

(t−1)
S

∥
∥
∥+

∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥

)







(C.5)

≥ max







∣
∣
∣
∣

∥
∥
∥At − F

(t−1)
S

∥
∥
∥−

∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥

∣
∣
∣
∣
− ∥At−1 − πt−1∥ − ∥πt−1 − πt∥ ,

∣
∣
∣
∣
∥At−1 − πt−1∥ − ∥πt−1 − πt∥

∣
∣
∣
∣
−
∥
∥
∥At − F

(t−1)
S

∥
∥
∥−

∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥







(C.6)

= max







∥
∥
∥At − F

(t−1)
S

∥
∥
∥−

∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥− ∥At−1 − πt−1∥ − ∥πt−1 − πt∥ ,

∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥−

∥
∥
∥At − F

(t−1)
S

∥
∥
∥− ∥At−1 − πt−1∥ − ∥πt−1 − πt∥ ,

∥At−1 − πt−1∥ − ∥πt−1 − πt∥ −
∥
∥
∥At − F

(t−1)
S

∥
∥
∥−

∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥ ,

∥πt−1 − πt∥ − ∥At−1 − πt−1∥ −
∥
∥
∥At − F

(t−1)
S

∥
∥
∥−

∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥







(C.7)

≥ max







∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥− ∥At−1 − πt−1∥ − ∥πt−1 − πt∥ −

∥
∥
∥At − F

(t−1)
S

∥
∥
∥ ,

∥At−1 − πt−1∥ −
∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥− ∥πt−1 − πt∥ −

∥
∥
∥At − F

(t−1)
S

∥
∥
∥







(C.8)

=

∣
∣
∣
∣
∥At−1 − πt−1∥ −

∥
∥
∥F

(t−1)
S − At−1

∥
∥
∥

∣
∣
∣
∣
− ∥πt−1 − πt∥ −

∥
∥
∥At − F

(t−1)
S

∥
∥
∥ (C.9)

Line (C.4) is true by expanding |x| = max{x,−x}. Line (C.5) follows by using a triangle in-

equality on the negative terms. Line (C.6) follows by using a reverse triangle inequality on the

positive terms. Line (C.7) comes from expanding the abolute value as before. Line (C.8) is true

because maxA ≥ maxB if B ⊂ A. Finally, line (C.9) recombines the maximum into an absolute

value.

C.1.2 Generative Filtering

Lemma C.1.1. Let P S
t (θ1:(t−1), ·) represent the kernel resulting from S applications of PPRB-

within-Gibbs at time t, which is a probability density for θ1:t := (θ1:(t−1),θt). Then for any
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probability density p(·) for θ1:(t−1), the following holds:

||πt − P S
t ◦ p||1 ≤ sup

θ1:(t−1)

||πt − P S
t (θ1:(t−1), ·)||1.

Proof.

||πt − P S
t ◦ p||1 =

∫ ∣
∣
∣
∣
πt(θ1:t)−

∫

p(θ′
1:(t−1))P

S
t (θ

′
1:(t−1),θ1:t)dθ

′
1:(t−1)

∣
∣
∣
∣
dθ1:t (C.10)

=

∫ ∣
∣
∣
∣

∫
(
p(θ′

1:(t−1))πt(θ1:t)− p(θ′
1:(t−1))P

S
t (θ

′
1:(t−1),θ1:t)

)
dθ′

1:(t−1)

∣
∣
∣
∣
dθ1:t (C.11)

≤

∫ ∫
∣
∣p(θ′

1:(t−1))πt(θ1:t)− p(θ′
1:(t−1))P

S
t (θ

′
1:(t−1),θ1:t)

∣
∣ dθ′

1:(t−1)dθ1:t (C.12)

=

∫ ∫

p(θ′
1:(t−1))

∣
∣πt(θ1:t)− P S

t (θ
′
1:(t−1),θ1:t)

∣
∣ dθ′

1:(t−1)dθ1:t (C.13)

≤

∫ ∫

p(θ′
1:(t−1)) sup

θ′

1:(t−1)

∣
∣πt(θ1:t)− P S

t (θ
′
1:(t−1),θ1:t)

∣
∣ dθ′

1:(t−1)dθ1:t (C.14)

=

∫

sup
θ′

1:(t−1)

∣
∣πt(θ1:t)− P S

t (θ
′
1:(t−1),θ1:t)

∣
∣ dθ1:t (C.15)

= sup
θ′

1:(t−1)

||πt − P S
t (θ

′
1:(t−1), ·)||1 (C.16)

Theorem C.1.3. (Theorem 4.3.1 restated) Let P S
t (θ1:(t−1), ·) represent the kernel resulting from S

applications of a filtering method at time t, which is a probability density for θ1:t := (θ1:(t−1),θt).

Let πt = p(θ1:t|y1:t) be the target posterior at time t. Assuming the following conditions:

1. (Universal ergodicity) There exist ρt ∈ (0, 1), such that for all t > 0 and x ∈ X ,

||Tt(x, ·)− πt||1 ≤ 2ρt.
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2. (Filtering consistency) For a sequence of λt → 0 and a bounded sequence of positive integers

St, the following holds:

sup
θ1:(t−1)

||πt − P St

t (θ1:(t−1), ·)||1 ≤ 2λt.

Let ϵt = ρmt

t and let Qt = Tmt

t ◦ P St

t be a Generative Filtering update at time t. Then for any

initial distribution π0,

||Qt ◦ · · · ◦Q1 ◦ π0 − πt||1 ≤
t∑

v=1

{
t∏

u=v+1

ϵu(1− λu)

}

ϵvλv ≤
t∑

v=1

{
t∏

u=v

ϵu

}

λv.

Proof. The proof follows closely the proof of Theorem 3.9 in Yang and Dunson (2013).

We will construct two time inhomogeneous Markov chains {Xt,r : r = 1, . . . ,mt, t ≥ 0}

and {X ′
t,r : r = 1, . . . ,mt, t ≥ 0}. The chains proceed in the double index first in r then t, i.e.,

(t, r) = (0, 1), . . . , (0,m0), (1, 1), . . . , (1,m1), . . .. The two chains are constructed as follows:

1. X0,1 ∼ π0, X
′
0,1 ∼ π0.

2. For t ≥ 1

a. For r = 1. Let Xt−1,mt−1 = x, X ′
t−1,mt−1

= x′. Draw Xt,1 = x∗ ∼

P St

t (x, ·). With probability min
{

1, πt(x∗)

P
St
t ◦πt−1(x∗)

}

, set X ′
t,1 = x∗; with probability

1−min
{

1, πt(x∗)

P
St
t ◦πt−1(x∗)

}

, draw

X ′
t,1 ∼

πt(·)−min
{
πt(·), P

St

t ◦ πt−1(·)
}

α̃t

, (C.17)

where α̃t =
1
2
||πt − P St

t ◦ πt−1||1.

b. For 1 < r ≤ mt. Let Xt,r−1 = x and X ′
t,r−1 = x′.

i. If x = x′, choose Xt,r = X ′
t,r ∼ Tt(x, ·);
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ii. else, first choose X ′
t,r = y ∼ Tt(x

′, ·), then with probability min
{

1, Tt(x,y)
πt(y)

}

, set

Xt,s = y, with probability 1−min
{

1, Tt(x,y)
πt(y)

}

, draw

Xt,r ∼
Tt(x, ·)−min{Tt(x, ·), πt(·)}

δt(x)
, (C.18)

where δt(x) =
1
2
||Tt(x, ·)− πt||1.

First, for t ≥ 1 and 1 < r ≤ mt, both chains have the same transition kernel, Tt, which targets

πt. This is apparent for {X ′}t,s, while for {X}t,s, we can see that its transition kernel is a mixture

of πt and the distribution given by (C.18) which equals Tt. For t ≥ 1 and r = 1, the distribution of

X ′
t,1 is πt because its distribution is a mixture of P St

t ◦ πt−1 and the distribution given by (C.17),

which equals πt. Therefore for any (t, r), the marginal distribution of X ′
t,r is πt.

For any (t, r), the marginal distribution of Xt,r is T r
t ◦ P St

t ◦Qt−1 ◦ · · · ◦Q1 ◦ π0. Therefore,

||Qt ◦ · · · ◦Q1 ◦ π0 − πt||1 ≤ P (Xt,mt
̸= X ′

t,mt
). (C.19)

Conditional on Xt−1,mt−1 = X ′
t−1,mt−1

, the distribution of Xt−1,mt−1 is πt−1. So P (Xt,1 ̸=

X ′
t,1|Xt−1,mt−1 = X ′

t−1,mt−1
) = α̃t, which by Lemma C.1.1, α̃t ≤ λt.

129



Then,

P (Xt,mt
̸= X ′

t,mt
) = P (Xt−1,mt−1 ̸= X ′

t−1,mt−1
, Xt,mt

̸= X ′
t,mt

) (C.20)

+ P (Xt−1,mt−1 = X ′
t−1,mt−1

, Xt,mt
̸= X ′

t,mt
) (C.21)

= [P (Xt,mt
̸= X ′

t,mt
|Xt−1,mt−1 ̸= X ′

t−1,mt−1
)

· P (Xt−1,mt−1 ̸= X ′
t−1,mt−1

)] (C.22)

+ [P (Xt,mt
̸= X ′

t,mt
|Xt−1,mt−1 = X ′

t−1,mt−1
)

· (1− P (Xt−1,mt−1 ̸= X ′
t−1,mt−1

))] (C.23)

≤ ρmt

t · P (Xt−1,mt−1 ̸= X ′
t−1,mt−1

) (C.24)

+ α̃tρ
mt

t · (1− P (Xt−1,mt−1 ̸= X ′
t−1,mt−1

)) (C.25)

≤ ρmt

t · P (Xt−1,mt−1 ̸= X ′
t−1,mt−1

) (C.26)

+ λtρ
mt

t · (1− P (Xt−1,mt−1 ̸= X ′
t−1,mt−1

)) (C.27)

= λtρ
mt

t + (1− λt)ρ
mt

t · P (Xt−1,mt−1 ̸= X ′
t−1,mt−1

) (C.28)

Line (C.24) follows from line (C.22) and line (C.25) follows from line (C.23) because ρt is the

probability of Xt,r and X ′
t,r remaining unequal given that the chains are unequal at step r − 1, and

P (Xt,1 ̸= X ′
t,1|Xt−1,mt−1 = X ′

t−1,mt−1
) = α̃t and P (Xt,1 ̸= X ′

t,1|Xt−1,mt−1 ̸= X ′
t−1,mt−1

) ≤ 1.

Line (C.28) follows from Lemma C.1.1.

There is now a recursive relation ship between t and t − 1. We can repeat this for all t >= 1,

and using P (X0,m0 ̸= X ′
0,m0

) ≤ 1 and ϵt = ρmt

t , we arrive at the result.

Theorem C.1.4. (Theorem 4.3.2 restated) Assume the following conditions hold:

1. (Universal ergodicity) There exists ϵ ∈ (0, 1), such that for all t > 0 and x ∈ X ,

||Tt(x, ·)− πt||1 ≤ 2ρt.
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2. (Stationary convergence) The stationary distribution πt of Tt satisfies

αt =
1

2
||πt − πt−1||1 → 0,

where πt is the marginal posterior of θ1:(t−1) at time t in αt.

3. (Filtering consistency) For a sequence of λ
(F )
t → 0 and a bounded sequence of positive

integers St, the following holds:

sup
θ1:(t−1)

||πt − P St

t (θ1:(t−1), ·)||1 ≤ 2λ
(F )
t .

4. (Jumping consistency) For a sequence of λ
(J)
t → 0, the following holds:

sup
θ1:(t−1)

||πt(·|θ1:(t−1))− Jt(θ1:(t−1), ·)||1 ≤ 2λ
(J)
t .

Let ϵt = ρmt

t . Define

γ
(F )
t =

t∑

v=1

{
t∏

u=v+1

ϵu(1− λ(F )
u )

}

ϵvλ
(F )
v

and

γ
(J)
t =

t∑

v=1

{
t∏

u=v

ϵu

}

(λ(J)
v + αv)

to be the bounds from Theorem 4.3.1 and Theorem 3.9 of Yang and Dunson (2013), respectively.

If, for all u ≤ t, λ
(F )
u ≤ αu + λ

(J)
u , then γ

(F )
t ≤ γ

(J)
t .

Proof. Define

γ
(F )
t =

t∑

v=1

{
t∏

u=v+1

ϵu(1− λ(F )
u )

}

ϵvλ
(F )
s

and

γ
(J)
t =

t∑

v=1

{
t∏

u=v

ϵu

}

(λ(J)
v + αv).
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Assume that for all u ≤ t, λ
(F )
u ≤ αu + λ

(J)
u . Then we have,

γ
(F )
t =

t∑

v=1

{
t∏

u=v+1

ϵu(1− λ(F )
u )

}

ϵvλ
(F )
v

≤
t∑

v=1

{
t∏

u=v+1

ϵu

}

ϵvλ
(F )
v

=
t∑

v=1

{
t∏

u=v

ϵu

}

λ(F )
v

≤

t∑

v=1

{
t∏

u=v

ϵu

}

(λ(J)
v + αv)

= γ
(J)
t .

Then γ
(F )
t ≤ γ

(J)
t .

Theorem C.1.5. (Theorem 4.3.3 restated) With the conditions and definitions of Theorem 4.3.2,

assume γ
(F )
t−1 = γ

(J)
t−1 and define γ := γ

(F )
t−1 = γ

(J)
t−1. If γ < 1 and λ

(F )
t ≤

αt+λ
(J)
t

1−γ
, then γ

(F )
t ≤ γ

(J)
t .

If γ ≥ 1 then γ
(F )
t ≤ γ

(J)
t always.

Proof. We have the following recursive relationships for γ
(F )
t and γ

(J)
t ,

γ
(J)
t = ϵtγ

(J)
t−1 + ϵt(αt + λ

(J)
t ) (C.29)

γ
(F )
t = ϵt(1− λ(F ))γ

(F )
t−1 + ϵtλ

(F )
t (C.30)
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Then for γ < 1,

γ
(F )
t = ϵt(1− λ(F ))γ

(F )
t−1 + ϵtλ

(F )
t (C.31)

= ϵt(1− λ(F ))γ + ϵtλ
(F )
t (C.32)

= ϵtλ
(F )(1− γ) + ϵtγ (C.33)

≤ ϵt
αt + λ

(J)
t

1− γ
(1− γ) + ϵtγ (C.34)

= ϵt(αt + λ
(J)
t ) + ϵtγ (C.35)

= γ
(J)
t . (C.36)

For γ ≥ 1,

γ
(F )
t = ϵt(1− λ(F ))γ + ϵtλ

(F )
t (C.37)

= ϵtλ
(F )(1− γ) + ϵtγ (C.38)

≤ ϵtγ (C.39)

≤ ϵtγ + ϵt(αt + λ
(J)
t ) (C.40)

= γ
(J)
t (C.41)

Theorem C.1.6. (Theorem 4.3.4 restated) Assume:

1. The data yt1 and yt2 , for all t1 < t2, are conditionally independent given θ1:t2 .

2. Each distribution p(yt|θ1:t) has a sufficient statistic Ut(yt) where dimUt ≪ dimyt.

Then any transition kernel can be computed while storing only the sufficient statistics, Ut,

instead of the data, yt, for all t.

Proof. Each data distribution can be factored by the Fisher-Neyman factorization theorem as

p(yt|θ1:t) = ht(yt)gt(Ut(yt);θ1:t). (C.42)
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Then the posterior at time T can be evaluated, up to a constant, using only these functions:

p(θ1:T |y1, . . . ,yT ) ∝ p(θ1:T )
T∏

t=1

p(yt|θ1:t) (C.43)

∝ p(θ1:T )
T∏

t=1

gt(Ut(yt);θ1:t), (C.44)

which only requires the sufficient statistics be stored after the arrival of each batch of data.

Theorem C.1.7. (Theorem 4.3.5 restated) Assume:

1. The data yt1 and yt2 , for all t1 < t2, are conditionally independent given θ1:t2 .

2. Each yt is a sample of nt i.i.d. observations yt,i for i = 1, . . . , nt.

3. Each observation yt,i comes from an exponential family distribution.

Then storage of the full data can be avoided through the use of sufficient statistics.

Proof. We have

p(yt,i|θ1:t) = h(yt,i)g(θ1:t) exp {η
′(θ1:t) · T (yt,i)} , (C.45)

where h and g are scalar-valued functions, and η and T are (possibly) vector-valued functions of

the same dimension. Then

U(yt) :=
nt∑

i=1

T (yt,i) (C.46)

is a sufficient statistic for the distribution p(yt|θ1:t) =
∏nt

i=1 p(yt,i|θ1:t). Further, dimU(yt) ≈

dimθ1:t, with dimU(yt) ≤ dimθ1:t unless the distribution is curved.

Then by Theorem 4.3.4, any transition kernel can be computed while only storing the sufficient

statistics, Ut.

C.2 PPRB-within-Gibbs approximation error

Section 4.2.1 deals only with the case when PPRB is used with a parameter space for θ which

is not expanding. In this section, we extend these results to the case in which the parameter space

expands with new data.
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Lemma C.2.1. Let f1(x) and f2(x) be densities on the same measure space. Let fx(y) := f(y|x)

be a the probability distribution of y conditioned on x, and define the joint distributions fi(x, y) =

f(y|x)fi(x). Then inf
x
∥fx(y)∥p · ∥f1(x) − f2(x)∥p ≤ ∥f1(x, y) − f2(x, y)∥p ≤ sup

x
∥fx(y)∥p ·

∥f1(x)− f2(x)∥p.

Proof.

∥f1(x, y)− f2(x, y)∥p =

(∫ ∫

|f(y|x)f1(x)− f(y|x)f2(x)|
p dydx

) 1
p

(C.47)

=

(∫ ∫

fx(y)
p |f1(x)− f2(x)|

p dydx

) 1
p

(C.48)

=

(∫

∥fx(y)∥
p
p |f1(x)− f2(x)|

p dx

) 1
p

(C.49)

≤

(∫

sup
x
∥fx(y)∥

p
p |f1(x)− f2(x)|

p dx

) 1
p

(C.50)

= sup
x
∥fx(y)∥p · ∥f1(x)− f2(x)∥p. (C.51)

Similarly,

∥f1(x, y)− f2(x, y)∥p =

(∫

∥fx(y)∥
p
p |f1(x)− f2(x)|

p dx

) 1
p

(C.52)

≥

(∫

inf
x
∥fx(y)∥

p
p |f1(x)− f2(x)|

p dx

) 1
p

(C.53)

= inf
x
∥fx(y)∥p · ∥f1(x)− f2(x)∥p. (C.54)

Corollary C.2.1. Let f1(x) and f2(x) be densities on the same measure space. Let fx(y) := f(y|x)

be a the probability distribution of y conditioned on x, and define the joint distributions fi(x, y) =

f(y|x)fi(x). Let p = 1. Then ∥f1(x, y)− f2(x, y)∥1 = ∥f1(x)− f2(x)∥1.

Corollary C.2.1 shows that it is sufficient to consider only the accumulating L1 error of PPRB

when interested in the accumulating L1 error of PPRB-within-Gibbs. PPRB-within-Gibbs at a time
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t targets a distribution proportional to

p(ϕ|θ,y1, . . . ,yt)p(yt|θ,y1, . . . ,yt−1)F
(t−1)
S (θ) ∝ p(ϕ|θ,y1, . . . ,yt)At,

while the true posterior at time t is proportional to

p(ϕ|θ,y1, . . . ,yt)p(θ|y1, . . . ,yt) = p(ϕ|θ,y1, . . . ,yt)Tt.

Therefore the PPRB-within-Gibbs target distribution and the true posterior at time t have the form

in Lemma C.2.1 and Corollary C.2.1 applies.

C.3 SMCMC and Parallelization Trade-Offs

The sequential nature of the PPRB-within-Gibbs filtering step of Generative Filtering presents

a trade-off versus SMCMC. As seen in Figure 4.2 in Section 4.4.1, the filtering step initializes the

Generative Filtering ensemble more effectivly than the jumping kernel of SMCMC, resulting in

fewer required transition kernel steps to converge to the target distribution. However, the jumping

kernel of SMCMC is parallelizable while PPRB-within-Gibbs is not. In Figure C.1 we compare

the cumulative runtime required for each method to converge using 8 cores, typical of a personal

workstation or laptop. When the jumping kernel and transition kernel are parallelized over 8 cores,

in most scenarios, Generative Filtering takes less time to converge than SMCMC. As the number

of available cores increases, this trade-off will begin to favor SMCMC in more scenarios. We see

an example of this in Section 4.5.

C.4 Pups Sampling Details

The Gibbs sampler uses conjugate full conditional updates for ϕs and σ2
s , and Metropolis-

within-Gibbs proposals for log(λs,t), as described in Hooten et al. (2021). We reproduce these full

conditional distributions here for convenience. When data have arrived y1, . . . , yT for a time T .
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Figure C.1: Cumulative time to reach convergence on 8 cores. Time is shown as mean plus or minus

standard deviation across all simulations. This figure illustrates the tradeoff between Generative Filtering

and SMCMC. The PPRB step, while creating a better initial value, is not parallelizable. In scenarios where

posterior distributions are not strongly affected by new data (e.g., nt = 50, σ2 = 0.25), SMCMC can

converge more quickly in time because its jumping kernel is parallelizable.
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Then each parameter has full conditional distributions,

ϕs|· ∼ N(a−1b, a−1),

σ2
s |· ∼ IG(α̃, β̃),

p(log(λs,t)|·) ∝







p(ys,1|λs,1)p(log(λs,2)|ϕs, σ
2
s , log(λs,1))p(log(λs,1)) for t = 1,







p(ys,t|λs,t)p(log(λs,t+1)|ϕs, σ
2
s , log(λs,t))

× p(log(λs,t)|ϕs, σ
2
s , log(λs,t−1))







for 1 < t < T ,

p(ys,T |λs,T )p(log(λs,T )|ϕs, σ
2
s , log(λs,T−1)) for t = T ,

where

a =
T − 1

σ2
s

+
1

σ2
ϕ

,

b =
1

σ2
s

(
T∑

t=2

(log(λs,t)− log(λs,t−1))

)

=
log(λs,T )− log(λs,1)

σ2
s

,

α̃ =
T − 1

2
+ α,

β̃ =

(∑T
t=2(log(λs,t)− ϕs − log(λs,t−1))

2

2
+

1

β

)−1

.

To update log(λs,t), we draw a proposal log(λ∗
s,t) ∼ N(log(λs,t), σ

2
tune,s,t), with proposal variance

σ2
tune,s,t chosen for each s, t such that the proposals will have an acceptance rate of approximately

0.44.

This Gibbs-style transition kernel is used as the transition kernel for Generative Filtering and

SMCMC. The random walk Metropolis proposal for log(λs,T ) is used to update this parameter in

the PPRB-within-Gibbs sampler.
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