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ABSTRACT 

Most of the available clustering (unsupervised classification) techniques suffer either from a lack of 
adequate mathematical descriptions or from inefficiency in handling a large volume of multivariate data. The 
primary objective of this study was to develop a clustering algorithm with practical applicability to remotely 
sensed natural scene data. · 

The population density distribution of data often leads to an intuitive notion of the cluster, such as 
hill-like groups of data usually seen in one- or two-dimensional histograms. This concept of the cluster is 
consistent with the maximum likelihood decision rule in the statistical decision theory. A hill-sliding tech­
nique was devised to extract such natural clusters from the sample data based on this well-known notion. 

Difficulties commonly encountered in computing and storing discrete multivariate probability densities were 
circumvented by utilizing the idea of lexicographic probability cells. Reduction of the computer memory storage 
requirement by this technique was significant in processing population distributions of LANDSAT multispectral 
scanner data. 

The underlying assumption throughout the clustering process was that each cluster possess a unimodal normal 
distribution. A dimensionless cluster compactness parameter was proposed as a universal measure of cluster 
goodness and was used satisfactorily in test runs. A normalized divergence, defined by the cluster divergence 
divided by the entropy of the entire sample data 1 was utilized as a general separability measure between 
clusters. 

The overall clustering objective function was set forth in terms of cluster covariance matrices, from which 
the cluster compactness measure could be deduced. Status of improvement in data partitioning could be evaluated 
by this objective function. The objective function was optimized with improvement of cluster compactness fol­
lowed by repetitive operations of splitting or abandoning the clusters which do not meet user-supplied con­
straints. A desired level of end products could be reflected through these constraints. 

The secondary objective of the research was to demonstrate the applicability of the clustering program to 
LANDSAT imagery. Cluster analysis of prototype-class imagery data of the Denver metropolitan area showed prom­
ising results. Subcategorical information on known land use/land cover classes was drawn from this analysis. 
The program was successfully applied to Chippewa River Basin areas in estimating the aerial extent of various 
land use/land cover classes with the aid of the LANDSAT Mapping System of Colorado State University. Perform· 
ance of the hill-sliding clustering program was compared with that of the ISOCLAS, a version of the ISODATA 
family program. The hill-sliding program employed less heuristic input parameters and yielded more reasonable 
partitioning of the sample data of the Chippewa River Basin than did the ISOCLAS. 

The hill-sliding clustering technique developed herein has applicability for use in decomposing any 
multivariate normal mixture distribution into a number of unimodal distributions, i.e., those of natural clus­
ters. A subcategorical data structure can be inferred from these natural groups of data. 

viii 



Chapter I 
INTRODUCTION 

1.1 General 

There are many causes and variations to nature's 
countless phenomena. It is a purist's dream to iso­
late a single phenomenon out of all other complexities 
so that unique inference of the subject may be drawn. 
Statisticians try to pool such disarrays and to ab­
stract common properties with the hope of describing a 
portion of nature. The entangled surroundings, how­
ever, always hinder meaningful abstraction and its 
justification. Mathematicians attempt to extend known 
eloquent principles which are seldom applicable to 
real nature. Such attempts often end up just as 
daydreams. Nevertheless, a better grasp of these 
natural phenomena has always been the goal of 
scientists. 

Ironically, nature provides the most abundant 
source of information on the earth's resources in the 
form of electromagnetic energy (radiation) emanating 
from the scenes of its complex constituents. Thus, 
the information is embodied in a great degree of spec­
tral, spatial and temporal variations of the radiance. 
This perplexing information has drawn great interest 
from many scientific disciplines over the last few 
decades, owing to recent development of remote sensing 
technology as well as a growing demand for ever-dimin­
ishing resources (Langrebe, 1976). The question 
exists as to whether the technology produces data·and 
information to satisfy the needs of the user commun­
ity. The effectiveness and the cost-savings associ­
ated with a particular data source, its timeliness, 
and compatibility with other information, are key 
factors in determining its usefulness. 

Much work has been carried out to explore the 
potential uses of remotely sensed data since airborne 
sensing devices were first introduced. Pattern recog­
nition plays a central role in extracting (or proces­
sing) useful information from this inexhaustible 
source. Mathematically, pattern recognition is a 
classification problem. Through classification pro­
cedures, each entity of the data can be identified by 
its intrinsic property based on class categories of 
the data structure, which are gained from either pro­
totype classes or self-organized groups of data (clus­
ters). It has been the experience that costly, time­
consuming elaboration is required to obtain sufficient 
class-categorical information on prototype classes 
through selected training field data unless class 
patterns are very simple. Clustering of natural scene 
patterns has offered a promising alternative approach. 
But it has often suffered from lack of adequate mathe­
matical description, and either too many suboptimal 
solutions or requirements of astronomical enumerations 
in the course of searching for the optimal solution. 

1.2 Study Objective 

The probability density distribution of the data 
often leads to an intuitive notion of the cluster as 
usually seen in one- or two-dimensional histograms. 
No clustering technique presently applicable to remote 
sensing data has been adequately described in terms of 
this well-known notion as far as the investigator 
knows. The opjective of this study was to develop a 
new practical technique for unsupervised classifica­
tion (clustering) of remote sensing data on the basis 
of probability density estimation. The technique was 
pursued as a suitable method to a moderate volume of 

multivariate measurements, such as satellite multi­
spectral scanner (MSS) data. 

1.3 Approach 

The major scheme of the present approach is that 
after the most prospective mode is found in a mixture 
probability distribution, this mode enables separation 
of elements (or entities) of the cluster containing it 
from the whole set of data. Decomposition of a mixed­
class distribution was sought by this scheme. 
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To cope with multidimensional problems, a chain 
of sequentially-arranged nonzero density estimates was 
constructed. Each multivariate probability density 
estimate in such a chain was equivalent to that ob­
tained by the Parzen probability density function 
(p.d.f.) estimator (Fehlauer and Einstein, 1978). It 
was assumed in this research that these p.d.f. esti­
mates constitute a multimodal multivariate normal dis­
tribution which is considered a mixture of two or more 
unimodal multivariate normal distributions. Separa­
tion of elements of each cluster from the others was 
attempted under the hypothesis that a unimodel distri­
bution represents a cluster bounded by probabilistic 
valleys consisting of local minima of the mixture 
p.d.f. 

A strategy for clustering entities of the density 
estimates was devised in the manner of "hill sliding." 
The tem "hill" was considered the portion of a hyper­
surface consisting of the higher-valued p.d.f. than 
those of its surroundings. Clustering in this strat­
egy was implemented by closely incorporating both the 
discrete density estimate and the location (measure­
ment coordinates) of each entity. Through the imple­
mentation procedure, minor hills were disregarded 
after . initial partitioning of all the data on the 
basis of cluster compactness and separability (or 
distinctness) from the others. 

The hill-sliding technique in this paper was 
primarily not iterative. However, better partitioning 
of identities was sought repetitively after dissocia­
tion of parts or entire bodies of ill-defined clusters 
and merging action of those decomposed into other 
clusters. 

1.4 Paper Organization 

The salient characters of available clustering 
techniques were reviewed briefly in Chapter II. A 
clustering function in the parametric form was intro­
duced in Chapter III, and set foth the strategy to 
implement clustering based on multivariate probability 
density estimates. Chapter IV described application 
of the algorithm to LANDSAT multispectral scanner data 
for acquiring timely land-cover/land-use information, 
analysis of the results obtained from Denver metro­
politan data, and comparative study with results by a 
version of ISODATA (Ball and Hall, 1965) program. The 
hill-sliding algorithm developed herein for cluster­
ing, and analysis of the results obtained by the 
algorithm were SUDIDarized in Chapter V. The appen­
dices included a brief overview of the LANDSAT Happing 
System (LMS), which was used throughout the study for 
preprocessing satellite data and end products of 
classification. Key features of the ISODATA algorithm 
were also described in the Appendices. Glossary of 
te~s was provided in the last Appendix. 



Chapter II 
BACKGROUND 

2.1 On Satellite Remote Sensing of Hydrologic 
Variables 

Utilization of remote sensing technology for 
hydrologic problems relies largely on the capability 
to provide updated information for calibration of the 
parameters employed in hydrologic models. Many param­
eters in physical hydrologic models, such as evapo­
transpiration, infiltration, and overland flow resis­
tance, are related to time-varying phenomena of land 
cover on the ground surface (see Simons et al., 1975; 
Li, 1974). It was shown by Ragan and Jackson (1976) 
that LANDSAT imagery could provide better land cover 
information essential to evaluation of the runoff 
curve numbet in the Soil Conservation Service (SCS) 
model. The imagery was used for land use classifica­
tion in the watershed by photointerpreters. The 
results based on the satellite imagery compared well 
with those obtained in published example problems 
using the conventional categories. 

Better values of the parameter are the key of the 
model performance. Many investigators (Blanchard, 
1975; Khorram, 1976) attempted to use LANDSAT multi­
spectral scanner (MSS) data in improving simulation 
resu~ts of hydrologic models. Blanchard identified 
that linear combination of MSS band data were related 
to a parameter in the SCS storm runoff model. LANDSAT 
color composite imagery was used in estimating snow 
water content and evapotranspiration water loss over 
the watershed with the aid of low altitude aerial 
photography and topographic data by Khorram (1976). 
He introduced a concept of multi-stage sampling to 
utilize remote sensing information. He pointed out 
that real-time information could be generated for the 
entire watershed. 

Many approaches reported in this line are 
categorically similar to those mentioned above. 
Land-use/land-cover classes are mapped by a specific 
classification algorithm(s) using remotely sensed data 
(Miller et al., 1977; Park et al., 1978). Then better 
values of parameters employed in hydrologic models are 
estimated by correlating mapped information with the 
parameters. A critical point in this procedure is how 
reasonably remote sensing-derived information reflects 
the real world at the time for the intended purposes. 
Subsequent questions are also raised concerning the 
best approach to retrieve such information. 

Taking into account time-varying phenomena and 
spatial variations of remotely sensed data were other 
difficult tasks involved in this line of research. 
Phenology of vegetation is the most important factor 
in time-varying phenomena of vegetated lands. Mixture 
and ecological tones of vegetation as well as slope 
and aspect of terrains, make it complicated to recog­
nize patterns of naturally vegetated lands in moun­
tainous regions (Maxwell et al., 1977). Oversimplica­
tion of phenological factors or ignorance of slope and 
aspect influence were commonly introduced in most of 
the investigations reported. Hence, many conclusions 
based on such assumptions were often far removed from 
general applicability to real situation~. 

Use of digital remote sensing data may be divided 
into two- categories: classification and regression 
analysis. Regression analysis is carried out by 
comparing known variables with particular signature 
values (original measurements, or values transformed 
into special coordinates from the measured). 
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Information quantities of the variable can be deduced 
from the data using regression relationships within a 
certain confidence limit. For instance, surface water 
turbidity or biomass of particular vegetation types 
may be evaluated by this method. The classification 
approach is widely used in mapping land-use/land­
cover, and in estimating their acreages. The basic 
idea of classification schemes in remote sensing is to 
divide the feature space into non-overlapping regions, 
each of which is to be designated for one of the class 
categories. Different classification schemes differ 
mainly in the criteria employed to establish these 
subspaces. 

There are two basically different approaches in 
classification: supervised and unsupervised. Super­
vised classification is based on known information 
about prototype classes. A classifier as a set of 
discriminant functions is devised to recognize a pre­
determined pattern by means of various adaptive 
schemes through available training samples (ground 
truth data). Literature surveys and historical re­
marks on this approach can be found in many recent 
publications (Cormack, 1971; Duda et al., 1973; Das 
Gupta, 1973; and Tou et al., 1974). In the past, the 
main approaches for classification of remote sensing 
data were based on a variety of supervised techniques. 
Selection of a classification algorithm relies on the 
characteristics of the data structure and the quality 
to be processed. 

It has often been experienced in the space remote 
sensing that the supervised approach requires the 
analyst to select training samples to represent all 
possible variations in spectral response for each 
prototype class (Fleming et al., 1975). Proper selec­
tion of such a training data set proved very difficult 
in many cases due to complex vegetation types and 
rugged terrain over the target areas (Maxwell et al., 
1977; Fleming et al., 1975). Considerable human 
judgment and intervention with time-consuming itera­
tions are unavoidable until satisfactory results are 
produced. 

Many unsupervised classification algorithms 
employ self-clustering techniques to group the multi­
spectral (generally, multivariate) data into a number 
of classes. A subdivision of the feature space is 
achieved by identifying natural groupings (or clus­
ters) of the data. The nature of the classes thus 
found is determined afterwards on the basis of known 
information. In this respect, the procedures of the 
unsupervised classification (clustering) are io the 
reverse order of the supervised. A definite advantage 
of unsupervised approaches is their ability to allevi­
ate the problem of categories with multimodal distri­
bution (Nagy, 1972). A large amount of the literature 
has been accumulated in this area over the past decade 
(Duran et al., 1974; Duda et al., 1972; Anderberg, 
1973; Everitt, 1974). In remote sensing, unsupervised 
techniques are usually applied to those areas where 
ground truth data are not readily available or where 
the information provided is not sufficient for super­
vised classification. This approach often helps a 
user learn existence of unexpected group(s) of classes 
or variations of known group properties such as 
temporal changes of earth resources. 

Most of the algorithms employed in both 
supervised anq unsupervised approaches categorically 
fall in the statistical analysis. Many investigators 



are in favor of statistical treatment of data in 
pursuing inherent characteristics of classes or clus­
ters from noisy original data. Minor spatial and 
temporal variations of signatures may well be 
processed statistically. Apparent noise contained in 
the data had been filtered in preprocessing stages 
(Maxwell et al., 1977). However, correction of path 
radiance distorted through the medium must be made on 
the basis of classical radiative transfer theory, 
which is a deterministic approach (see Rogers et al., 
1973). Both statistical and deterministic approaches 
may have to be employed for analyzing a set of remote­
ly sensed data. This is another difficult aspect to 
cope with in the space platform data. 

2.2 Clustering Techniques 

Many diverse techniques have been devised to 
discover structure within complex bodies of data in 
unsupervised fashion, i.e., cluster analysis (Ball, 
1965, Cormack, 1971; Anderberg, 1973; Duran et al., 
1974; Everitt, 1974). The techniques attempt to group 
data points, usually in a multidimensional space, into 
cluster such that all points within a cluster possess 
intrinsic similarity relatively distinct from the 
others. In cluster analysis, all that is available is 
a collection of data whose category memberships are 
unknown. The operational objective is to discover 
category structure which fits the data. A general 
strategy for this objective is implemented by defining 
a clustering criterion and constructing an algorithm 
which consists of a set of operations. Such opera­
tions can be consistently applied to the clustering 
problem. An efficient algorithm may assemble data 
into clusters which prior misconception or ignorance 
would otherwise preclude. Hence, application of the 
techniques to the data often reveals unexpected char­
acteristics inhibited in the data structure. 

It has been known, however, that clustering 
techniques are tools for discovery rather than ends in 
themselves (Anderberg, 1973; Dubes et al., 1976). No 
universal clustering criterion has been found. Dif­
ferent clustering techniques produce different re­
sults. Slightly varying tactics even under the same 
criterion are often found in great variations of the 
results. Difficulties in attempting to fit the intui­
tive nature of clustering techniques into any meaning­
ful mathematical framework have been described by many 
investigators (Anderberg, 1973; Cormack, 1971; and 
Dubes et al., 1976). 

Most of the early works in cluster analysis were 
in the fields of biology and zoology, where numerical 
taxonomy is a frequent substitute. Initially taxonomy 
was an art rather than a scientific method. Later 
numerical techniques have gradually become widespread 
when digital computers have served as common tools. A 
variety of techniques were developed and applied in 
many fields. For the last three decades cluster 
analysis has been a multidisciplinary technique of 
data analysis (Anderberg, 1973). A comprehensive 
overview was given by Ball (1965). Other recent 
reviews by Cormack (1971), Duran et al. (1974), and 
Everitt (1974) reported brief descriptions of method­
ologies and extensive references. Clustering techni­
ques have been broken down into various categories; 
but they themselves may be classified into two ap­
proaches: ( 1) hierarchical and (2) nonhierarchical. 

2.2.1 Hierarchical clustering techniques 

In the hierarchical technique, the similarity 
measures are often used to construct a similarity 
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matrix representing all pairwise associations among 
the entities (samples). The techniques operate on 
this matrix to construct a tree characterizing 
relationships among the entities. One starts with N 
entities and groups the two most similar (nearest) 
ones into a cluster, thus reducing the number of 
clusters to N-1. By repeating this procedure, all the 
entities form one cluster in the final step. For 
every hierarchical clustering there is a corresponding 
tree, called a dendogram (or tree diagram). It shows 
the diagram of grouping the entities throughout all 
the steps. The method has had the widest use in 
ecological studies (Everitt, 1974). A classic example 
is the grouping of biological samples into species, 
species into genera, genera into families, and so on. 
An excellent source of reference in this area is the 
book by Sakal and Sneath (1963). 

A major drawback of hierarchical clustering is 
the massive storage requirements for the similarity 
matrix, which consists of N(N-1) /2 elements, if the 
number of samples "N" is large. In most remote 
sensing applications, the amount of data is quite 
large. For example, it requires data of about 30,000 
resolution elements to cover the area of one USGS 7 
1/2 minute quadrangle topographic map, in cases of 
processing LANDSAT digital data. Even though one­
tenth random samples of the total data are analyzed to 
produce statistics of clusters, it is necessary to 
compute 4,500,000 elements of the similarity matrix 
for the hierarchical clustering. Application of these 
techniques to remote sensing is nearly prohibitive due 
to the large volumes of data. Extensive discussions 
on other disadvantages as well as general aspects of 
this approach can be found in the literature (Cormack, 
1971; Everitt, 1974; Duran et al., 1974). 

2.2.2 Nonhierarchical clustering techniques 

Nonhierarchical clustering methods may include 
all of the clustering techniques not necessary for the 
calculation and storage of the similarity matrix. 
Hence, the methods are generally suitable to much 
larger problems than the hierarchical methods. A 
variety of techniques have been reported in this 
category. A common scheme in most of nonhierarchical 
clustering techniques is to assign some initial parti­
tion of the data units and then, if necessary, improve 
cluster memberships under given instructions. The 
various algorithms which have been proposed differ as 
to criterion for defining the best partition or the 
way for achieving a better partition. Based on key 
algorithms employed in nonhierarchical clustering, the 
following subclasses may be categorized: 

1) Optimum partitioning techniques, in which 
the entities are grouped into mutually exclusive 
clusters which optimize a clustering criterion. 

2) Density-search techniques, in which the 
entities are grouped into several subgroups by search­
ing for regions having a relatively high probability 
density. 

3) Clumping techniques, in which the classes 
(clumps) can overlap, and a class and its complement 
are treated as a different type of class. 

4) Other techniques which do not fall clearly 
into one of any previous type, or which may be a mixed 
type of two or more techniques. 

2.2.2.1 Optimum partitioning techniques. 
Clustering by partitioning techniques is often carried 



out by four distinct procedures as follows: (a) 
initiation of clusters; (b) allocation of entities to 
initial clusters; (c) evaluation of objective function 
(or criterion); and (d) reallocation of entities to 
other clusters to achieve the optimal value of the 
objective function. In most of these approaches, the 
last two steps are repeated until the results are 
satisfactory. Various methods employ different objec­
tive functions or different strategies in each step. 

Most of the objective functions for optimum 
partitioning are derived from the well-known matrix 
identity: 

T = W + B (2. 1) 

where T is the total scatter matrix of the samples, 
W is the total intragroup (or pooled-within groups) 
scatter matrix, and B is the intergroup (or between 
groups) scatter matrix (Friedman et al., 1967). The 
intragroup scatter is a measure of dispersion of the 
members in the group. For any given data set the 
matrix T is constant, and so the function of either 
B or W is sought as clustering criterion. It can 
be illustrated in the simple case of one variable 
(dimension) that Eq. 2.1 is a scalar equation and a 
good criterion is to minimize tl;le total intragroup 
scatter quantity W. This is equivalent to maximizing 
the intergroup scatter B. For more than one vari­
able, the matrix equation should be transformed into 
scalar relationships, from which a clustering criter­
ion can be deduced. The following are commonly cited 
relationships: 

tr(T) = tr(W) + tr(B) (2.2) 
and 

IT\ 
1 I + w- 1 Bl (2.3) lWT 

where 

tr( ) = trace of the matrix in the bracket 

l I determinant of the matrix 

( )-1 inverse of the matrix in the bracket 

I identity matrix. 

Based on the above two equations, the following 
criteria are derived: 

1) minimization of tr(W) or 
maximization of tr(B) 

2) minimization of IWI or 
maximization of IT I/ IW1 

3) maximization of tr(W- 1 B) 

The first criterion is interpreted as the least 
mean-squared-error (LMSE), sum-of-squared-error, or 
often within-groups-sum-of-squares (WGSS) criterion, 
which has been exploited by many investigators {Duda 
et al., 1973). The value of tr(W) is invariant 
under an orthogonal transform of the feature space, 
and the algorithms based on this are found most ap­
propriate for fairly concentrated clusters (Nagy, 
1968). However, the LMSE partition might change if 
the variables are scaled, since it is not invariant 
under such a transform. It is important to note that 
this criterion function does not take into account 
effects of correlations between variables, which are 
commonly observed, for example, in multispectral 
scanner (MSS) data. Other drawbacks experienced are 
that the optimal value of the criterion function 
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depends on the number 
solutions are frequently 
1973; Everitt, 1974). 

of clusters 
suboptimal 

and that 
(Duda et 

the 
al.' 

The second criterion is similar to the first one 
that minimizes tr(W) but the two need not be the 
same. The determinant of a scatter matrix measures 
the square of the scattering volume, since it is 
proportional to the product of the variances in the 
direction of the principal axes. Hence, this criter­
ion has a good physical interpretation of cluster 
compactness. It has been shown by Koontz and Fukunaga 
(1972) that this as well as the third criterion has 
better performance requirements but has computational 
complexity. This criterion cannot be employed if the 
expected number of clusters is not larger than the 
dimensionality since the determinant of the matrix W 
will be singular. The third criterion shows similar 
performance as the first one (Duda et al., 1973). 

Another key feature in optimum-partitioning 
techniques is the intial partitioning of the data 
units into groups (i.e., initiating clusters). It is 
important since the solutions to the clustering prob­
lems depend upon initial configurations of seeding 
clusters in many cases (Everitt, 1974). A majority of 
techniques begin with some mutually exclusive points 
as cluster centers. Such an arbitrary set of initial 
cluster centers often affects on convergence of the 
iterative solutions as well as computational time. 
Some other techniques attempt to search reasonable 
configuration of initial clusters in the beginning. 

After a set of initial clusters is found, search 
for the optimal solution continues by reallocating 
entities. Many different algorithms have been devised 
to implement this step. Major differences between 
algorithms stem from differences in criterion func­
tions or instructions for achieving improvements. 
Instructions depend on criterion functions. Some 
algorithms employ nearest centroid sorting techniques 
and others employ mathematical programming tech~iques. 
Typical examples in the former case are K-means algor­
ithm by MacQueen (1967) and ISODATA (Iterative Self­
Organizing Data Analysis Technique) by Ball and Hall 
(1965). These two algorithms are iterative proce­
dures. K-means algorithm starts with the first arbi­
trary chosen K samples as initial K cluster centroids 
and then revises cluster centroids as rece.iving new 
data, such that the sum of the squared distances from 
all points to the new cluster centers is minimized. 
Several extended versions of the ISODATA program exist 
at present (Anderberg, 1973). They are all similar in 
principle to the K-means procedure, but work in co­
operation with numbers of empirical parameters such as 
lumping, splitting and chaining parameters. It has 
been understood that the application of ISODATA algor­
ithms to a set of moderately complex data often re­
quires extensive experimentation before meaningful 
conclusions are drawn. Although considerable insight 
into the structure of the data can be gained through 
the information obtained in each iteration, no con­
vergence to the optimal solution is guaranteed in 
these types of approaches (Anderberg, 1973; Tou et al. 
1974). 

Mathematical programming for systematic search of 
improved partitioning to the optimal solution has been 
exploited by Jensen, Vinod and other investigators 
(Duran et al., 1974). The idea of this method is to 
evaluate the objective function for each choice of 
clustering alternatives and then to choose the parti­
tion yielding an optimal solution. In this line, some 
applications of dynamic programming and integer pro­
gramming to cluster analysis were reviewed by Duran, 



et al. A shortcoming in mathematical programming 
techniques is that tedious computation and excessive 
storage of all possible optimal solutions at numerous 
transitional stages are unavoidable when the number of 
data and clusters are large. It seems inadequate to 
use these techniques for a large volume of data. 

2.2.2.2 Density search techniques. The 
clustering techniques based on probability density 
estimation may lead to a well-defined notion of clus­
ter. There is a natural tendency that, when the data 
are distributed in a feature space, there should be 
parts of the space in which data populations are very 
dense, separated by parts of low density. This con­
cept could form the basis of the definition of a na­
tural cluster. Many probabilistic cluster-seeking 
techniques search regions of high density or mode bas­
ed on this presumption. Modes are local maxima of the 
probability density function. Major efforts in this 
technique are made to search for a local optimum of 
the criterion, by rearranging existing partitions, 
keeping the new arrangement only if it gives an im­
proved criterion value. Procedures devised to imple­
ment these techniques are often called mode-seeking 
algorithms. The mode analysis by Wishart (1969) and 
"hill-climbing" technique by Bryan (1971) are typical 
examples of this approach. In mode-seeking algo­
rithms, the number of resultant clusters depends on 
given parameters. Sometimes only one cluster may be 
formed but usually the analysis reaches a point at 
which a maximum number of clusters are isolated. 
These techniques are often considered significant for 
a moderate volume of data, even though they suffer 
from the problem of containing various empirical input 
parameters (Everitt, 1974). In addition, there appear 
to be several solutions for the small set of data 
(say, less than 100) which form a multivariate mixture 
distribution in which clusters are not widely separat­
ed. In multivariate problems the storage requirement 
becomes serious, even for a medium size of data. It 
also requires a considerable amount of computation to 
update all of the multivariate density parameters un­
less assumptions on the underlying distribution are 
simplified (Ball, 1965). 

Another approach in the probabilistic cluster­
seeking techniques is decomposition of mixture distri­
bution. The basic idea behind decomposition techni­
ques is that separable clusters have distinctively 
different distribution characteristics. These techni­
ques attempt to find the estimates of the parameters 
of the density function for each separable cluster as 
well as its mixing proportion (a priori probability). 
A classical work on this subject is that by Stanat 
(1968), in which decomposition of multivariate normal 
and multivariate Bernoulli mixtures was investigated. 
It was shown that the parameters of multivariate den­
sity function for any distinct class can be estimated 
in principle by means of characteristic function 
(Fourier transform) of the mixture distribution. Com­
putational burden, however, is quite severe, especial­
ly for estimation of characteristic function of multi­
variate normal distribution and its storage. Hence, 
application of this approach to remote sensing seems 
almost impractical if variables (dimensions) are more 
than two. Use of maximum likelihood and Bayesia4 ap­
proaches for decomposition problems had been investi­
gated by Day (1969), Hasselblad (1966), Wolfe (1965-
1970), and many others. In many cases, solutions to 
these problems are obtained by iterative approximation 
with slow convergence. Hence, the techniques would 
eventually be time-consuming unless the number of 
parameters to be computed were small. Methods also 
suffer from the problem of suboptimal solutions, since 
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there may be more than one solution to the maximum 
likelihood equations (Everitt, 1974). 

2.2.2.3 Clumping techniques. Most clustering 
techniques yield disjoint groups. In clumping techni­
ques, regions of clusters must have overlaps if they 
are to be of any value. As seen in language, most 
words have more than one meaning; and when complement­
ed with other words, they take on another meaning. 
Clumping partitioning is carried out on the basis of 
the similarity matrix or correlation coefficient 
matrix (Ball, 1965). The techniques require a large 
amount of computation for estimation of all pairwise 
distances and storage for them. Thus, the applicabil­
ity is limited with a small sample size. 

2.2.2.4 Miscellaneous techniques. The 
approaches discussed so far constitute perhaps the 
major framework of cluster analysis. There remain, 
however, numerous other clustering techniques which do 
not fall clearly into any of the previous categories. 
Strategies in some algorithms involve using several 
clustering methods together (or iteratively and se­
quentially) in order to gain a more extensive appre­
ciation of the structure in the data set. Others 
might be devised for particular problems with parti­
cular tactics which appear somewhat different from 
those categorized. Some of these techniques which 
have been applied to remote sensing data will be 
described. 

Spatial clustering techniques generate clusters 
based on the distributions of image data in both 
spatial domain and feature space. Efforts in this 
area have been made by Nagy et al. (1972), Haralick 
and his colleague (1969, 1975), Kettig (1975). The 
central idea is to analyze gradient images or data 
distribution of neighborhood blocks and then assign 
spatially homogeneous patterns to clusters. Boundary 
detection is often incorporated with spatial cluster­
ing procedures. These algorithms aim mainly at remote 
sensing application and show promising results. How­
ever, their present versions tend to yield excessive 
numbers of clusters when applied to the relatively 
heterogeneous areas, such as naturally vegetated 
lands. Their applicability appears very limited. 

Another interesting technique, which has some 
resemblance to the approach of this study, is a method 
of mode separation proposed by Kittler (1976). A 
chain of hypercubic (or hyperspheric) cells is con­
structed by sequentially arranging neighbor cells 
(points having non-zero probability density estimates) 
according to their density values. In this way, the 
multivariate density cells are aligned in the sequen­
tial (i.e., one dimension) probability densities. 
Modes are separated by the local minima of probability 
densities in the chain since the majority of cells 
from each mode tend to be successive elements of the 
sequence. However, finding neighbor cells requires 
computation of all the pairwise distances among the 
cell points, which is not desirable for a large amount 
of data. Hence, the chaining operation seems to 
require laborious computation in cases of remote 
sensing application. Considering that distinct clus­
ters are separable through a set of valleys (not a 
point) consisting of local density minima in the 
multivariate mixture distribution, the concept of 
separation of clusters is not clear in the approach. 
The use of a discriminant classification technique is 
actually suggested to find a separating surface be­
tween the two modes. This inconsistency is another 
drawback of Kettler's method. Thus, this method seems 



to have its significance only in the capability to 
initiate clusters regardless of distribution types. 

Cluster analysis (or pattern recognition) of 
multispectral images has frequently been faced with 
the curse of dimensionality. Traditionally, investi­
gators have used either principal components analysis 
or factor analysis to alleviate the difficulty of too 
many dimensions. Many clustering algorithms, mention­
ed earlier, have worked with the aid of such a dimen­
sional reduction procedure. Recently, new interest 
has centered on the possibility of incorporating 
analyses of both entities and variables simultaneously 
for better understanding of the underlying structure. 
Procedures for simultaneous clustering of entities and 
variables were described by Good (1965) and Hartigan 
(1972). However, principal components and multidimen­
sional scaling do not often give adequate representa­
tions of some sets in lower dimensions, and so may 
lead to graphical misinterpretation (Duda et al., 
1973; Everitt, 1974). Multidimensional scaling may 
yield unwanted suboptimal solutions to clustering 
problems. 

2.3 Sununary 

The space platform imagery and associated 
interpretations at various levels of sophistication 
have been widely accepted as a means of generating the 
spatial input data for hydrologic models (Miller et 
al., 1977). Remote sensing products provide updated 
information and the data bases for planning large- and 
small-scale hydrologic developments. A critical ques­
tion commonly raised in the remote sensing community, 
however, is how consistently the remote-sensing-deriv­
ed information reflects the real world. The difficult 
task is to take into account time-varying phenomena 
and heterogeneous spatial distribution of target ob­
jects. Phenology, ecological tones and mixtures of 
vegetation as well as slope and aspect of the terrain 
make recognition of patterns of land covers compli­
cated. Statistically meaningful abstraction of such 
patterns requires a collection of sufficient amount of 
sample data and consequently, laborious computation. 

A traditional approach for recognition of land 
cover/land-use is that of classification: supervised 
and unsupervised. Supervised classification is based 
on information about prototype classes. Proper selec­
tion of training data proves very difficult when the 
target areas consist of complex land-cover types and 
rugged terrain. Unsupervised classification (cluster­
ing) is suitable to classification of most of the re­
motely sensed data, at least for the first examination 
of the data structure. An efficient clustering algo­
rithm may assemble data into clusters which prior mis­
conception or ignorance would otherwise preclude. 
Unsupervised classification has been divided into two 
broad categories: hierarchical and uonhierarchical. 
Hierarchical clustering techniques work on the simi­
larity matrix which represents all pairwise associa­
tions among the sample data requiring excessive 
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computer storage if the number of data is large. 
These techniques generally are not adequate for the 
classification of a large volume of remote sensing 
data. 

Among various techniques for nonhierarchical 
clustering, optimum partitioning techniques are the 
most frequently cited in the literature. The algo­
rithms along these lines have been described in better 
mathematical terms (e.g., objective function) than 
others have. However, the solutions have frequently 
been found to be suboptimal and dependent upon the 
number of clusters specified in advance. No conver­
gence to the optimal solution is guaranteed in most of 
these types of approaches. Furthermore, the number of 
iterative computations needed to find the solutions at 
a satisfactory level (or rate of convergence) depends 
heavily upon configuration of initial clusters. The 
initial configuration is often critical in leading the 
solution to the global one. It is also pointed out 
that mathematical programming techniques require 
excessive enumeration to check all possible sets of 
optimal solutions at every transitional step unless 
the size of data is small. 

The probabilistic cluster-seeking techniques are 
based on the presumption that there should be parts of 
the feature space in which data populations are very 
dense, separated by parts of low density. Mode­
seeking algorithms and decomposition of mixture dis­
tribution are typical examples along this line. The 
mode-seeking techniques are often considered signifi­
cant for a moderate volume of data, in spite of the 
problem of containing numerous empirical input param­
eters and several optimal solutions. Decomposition of 
multivariate normal mixtures in Fourier domain has 
been theorized, but its computational complexity seems 
to remain unresolved. 

Another prom~s~ng area for remote sensing 
application is the spatial clustering approach. It 
operates by incorporating the distributions of image 
data in both spatial domain and feature space. How­
ever, the present versions of this approach tend to 
yield an excessive number of clusters when applied to 
the nonhomogeneously-vegetated lands. Their applica­
bility is very limited. 

This brief review on the various available 
approaches to the utilization of remote sensing tech­
nology for hydrologic problems reveals the wide dis­
parities in both the basic approaches and their useful 
results. In light of the significant discrepancies 
among the numerous attempts, extensive efforts to 
extract consistent and useful information from remote­
ly sensed data should be made. The growing applica­
tions of clustering methodology to remote sensing 
studies warrant further investigation to devise a 
practical clustering algorithm. The usefulness of 
such an algorithm must be subjected to adequate justi­
fication in the real field data. 



Chapter Ill 
CLUSTERING OF MUL TISPECTRAIL SCANNER DATA 

3.1 General Description 

Multispectral scanners (MSS) loaded in satellite 
or aircraft platforms view the earth 1 s surface and 
record levels of radiance emanating from a resolution 
element of the target area. Heterogeneous character­
istics of natural scenes over the area often result in 
large variations in the observed data. Such varia­
tions are due mainly to mixtures of countless scene 
components which fall within a resolution element and 
which have different spectral responses. Hence, MSS 
data obtained from a satellite or aircraft platform 
can reasonably be assumed to have multimodal normal 
distribution. Each mode in the mixture distribution 
is considered as that of a cluster. Modes in such a 
distribution may reflect status of several class mix­
tures or phenological variations of vegetation covered 
over the area. Thorough analyses of phenology related 
with remote sensing data reveal that no standardized 
framework can be established in the measured or ex­
tracted signature space and no universal character­
istics can be described by any supervised approach. 
It is often necessary to learn general characteristics 
of the data structure by naturally grouping (or clus­
tering) before application to supervised classifica­
tion for analysis. 

The clustering techniques based on probability 
density estimation lead to a well-defined notion of 
cluster. It is often intuitively observed that, when 
the data are distributed in a feature space (which 
consists of the measured and/or transformed data 
coordinates), there are parts of the space where data 
populations are very dense, separated by parts of low 
density. This concept forms the common definition of 
a natural cluster. In this chapter a new ·clustering 
algorithm is formulated on the basis of the probabil­
ity density distribution. To start with, a clustering 
function is proposed in the parametric form; a dis­
cussion of its characteristics near boundaries between 
clusters in the mixture distribution is included. The 
hill-sliding strategy is devised to implement cluster­
ing. An iterative procedure to improve the sets of 
clusters initially obtained is described. 

3.2 Parameterization for Clustering Function 

Clustering is often the first step in analyzing a 
set of data whose characteristics have not yet been 
examined. It is common to begin with the assumption 
of normal distribution if no knowledge about the data 
structure is available. In multivariate mixture dis­
tribution, the normality means multimodal Gaussian 
distribution in multidimensional space. Data sur­
rounding each mode can be interpreted as a cluster. A 
group of data representing a real class may consist of 
one or more unimodal clusters and have multimodel dis­
tribution. Such data are divided into two or more 
subgroups so that the unimodal distribution can be 
applied to each subgroup. 

Under the assumption of unimodal normality in a 
cluster, the probability density function is given by: 
(Duda and Hart, 1973) 
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where 

Pi :: a priori probability of cluster i (wi) 

C. 
1 

-1 C. 
1 

= d-by-d 

= inverse 

covariance matrix of cluster i 

of the covariance matrix C. 
1 

! = pattern (d-component column) vector 

!!i mean vector of patterns of cluster i 

( )T transpose of a matrix 

d = dimension of feature space (integer) 

e = base of natural logarithm. 

This is a multivariate normal distribution function. 
The density function is expressed in a compact form: 

Di(!) 

pi(!) = pi(~) e- -2-

In this expression, 

(3.1') 

(3.2) 

is the proability density at the centroid of cluster 
i and 

(3.3) 

is often called Mahalanobis distance (or squared 
Mahalanobis distance). 

The clustering process is carried out by finding 
all sets of cluster parameters; mean vector ~i , 

covariance matrix Ci and a priori probability Pi 

for all the clusters. For a given set of N measure-
n=N 

ments X = {!n} n=l , the multivariate mixture prob-

ability p(x) may be estimated and then postulated as 
the sum of all the cluster probabilities pi(!): 

P(!) = l 
all i 

p. (x) 
1 -

(3.4) 

It may be computed by 

o ulation in a volume element ~V (
3 

S) 
total population (N • 

This is the probability density of the mixture of all 
probable clusters. Decomposition of the mixture prob­
ability into a set of subgroups having unimodal dis­
tribution is the task of the clustering process. The 
present study concentrated on decomposition of normal 
(Gaussian) mixture density. For this purpose, a clus­
tering function is proposed as 

where .2.n 

p(x) 
G.(x) = !n ~ 

1 - pi\~) 

denotes natural logarithms. 

(3.6) 



The clustering function is always theoretically 
non-negative: 

since 

:L p.(x) ~pi (~) 
all j J -

It is also evident that 

G. (x) = 0 
1 -

(3. 7) 

(3.8) 

(3.9) 

for the data of a single unmixed cluster. Probability 
densities of discrete measurements, however, do not 
often exist in some regions where Gi(!) yields nega-

tive infinite value. 
ability density are 
study. 

The regions of nonexisting prob­
out of consideration in this 

An unfortunate point on this formulation is that 
the clustering function Gi (!) cannot be evaluated 

until the a posteriori probability density function 
pi(!) is estimated. This difficulty may be overcome 

by initializing a reasonable cluster center and by 
grouping data near the center. The clustering func­
tion shows a useful characteristic for discriminant 
analysis when the parametric representation of a clus­
ter is found. Suppose that estimates of a set of 
Gaussian cluster parameters, pi' gi' Ci are made and 

then Gi(!) is evaluated. It is possible to extract 

data belonging to the cluster from the data pool ac­
cording to the following fact. The clustering func­
tion Gi(~) is rewritten as 

L P. (x) 

G.(x) =in all j J-
1- pi(~) 

p. (x) 
= Qn[1 + L ~] 

all j1:i Pi ~ 
(3.10) 

Near a cluster center in the mixture distribution, Eq. 
3.10 yields an immediate approximation given by Eq. 
3.9 since 

pi(~_) » L 
all jt'i 

p. (x) 
J -

(3.11) 

Consider a problem of decomposing the data having 
bimodal distribution into two clusters. It is intui­
tive to separate the region into the two by the bound­
ary where 

pl (!) = p2 (!) 

In such a boundary, Eq. 3.10 leads to 

G1 (~) = G2(~) = R.n 2 

And in each region, say R. (i=1,2) 
1 

since 

G. (x f: R.) 
1. - 1 

p. (x e R.) > p. (x e R.) 
1 - 1 J - 1 

(3. 12) 

(3.13) 

(3.14) 

(3.15) 

where (! £ Ri) denotes that ! is a vector point in 

a subspace Ri. This suggests that a feature space R 

can be divided into two regions: a region belonging 
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to cluster i and the other out of the region, in the 
case of two cluster mixtures as such x E w. (cluster 
i) if 1 

(3.16) 

and otherwise, x ¢ wi. Here wi denotes the state 

of nature (or class) and x £ wi means that ! be­

longs to class w. while t is the opposite of sym­
bol "£". This c\-iterion was utilized in this study 
for the extraction of one-cluster data from the whole 
set of data. The criterion requires only knowledge of 
a set of the parameters for a single cluster each 
time. Elements of a prospective cluster can be ex­
tracted from the set of data without knowing charact­
eristics of the other clusters based on this criter­
ion. This fact is the beauty of the clustering 
function Gi(~). 

Clustecing in multicluster mixture regions 
follows a similar procedure. An extended clustering 
rule in a known k-cluster mixture region would be that 
~ ~ wi if 

(3.17) 

and otherwise, x be rejected from being merged into 
the group (i.e .• - x t w.). It is a direct generaliza­
tion of the criterion 1given in Eq. 3.14 considering 
the boundary surface where 

pi(!) 

p. (x) 
J -

P

0

i+1C!) ~ · ·· = Pi+k-1(!) ( 

for all the others. j 
(3.18) 

Such a boundary surface (point in the univariate 
space and line in the bivariate space) is not observ­
ed in a univariate feature space. The boundary sur­
face of k (more than 2) clusters may exist only in 
two or higher dimensional space. Multicluster bound­
ary surfaces (or lines or points) are hardly detected 
even in computerized clustering procedures since dis­
cretization of the space with a finite interval re­
sults in shifting of its probable exact location. 
Hence, application of this generalization to recogni­
tion of multicluster boundary is questionable. A 
practical rule for clustering in such a mixture region 
may be set up as 

(3.19) 

in which k is a positive integer larger than one. 
The region unclassified by the criterion inequality 
Eq. 3.16 may be merged in the cluster region R. 
when the inequality Eq. 3.19 is satisfactory. 1 

3.3 Hill-Sliding Strategy 

The clustering function proposed in the previous 
section cannot be evaluated unless the set of cluster 
characteristic parameters are estimated. The first 
problem in clustering is to find good initial esti­
mates of the parameters employed in most cases. It 
is intuitively viewed that a cluster has a mode, 
which has the highest probability density in the clus­
ter. The location of a cluster mode depends on the 
characteristics of distribution type or governing law, 
but it is usually observed near the gravitational 
center (centroid) of the cluster. Its actual location 
may deviate from its theoretical position due to the 
randomness of measured data. 



This study extracts cluster data mainly from the 
LANDSAT Computer Compatible Tapes (CCT) containing 
multispectral scanner (HSS) data. Many investigators 
have shown that the LANDSAT HSS data can be reasonably 
treated under the assumption of normality for each 
cluster/class (Maxwell, 1976; Maxwell et al., 1977). 
Most of the centroids within probable clusters are 
located at the approximate center of each group (Fig. 
3.1). Suppose this presumption is acceptable in a 
set of data to be analyzed. Then at least one prob­
able mode which has the highest probability density 
can be picked up in any distribution space. Such a 
mode initiates the first clustering by fusing all 
probability cell points that may be categorized into 
one cluster while a scanning pointer moves down from 
the present highest density position to the next high­
est. This procedure is similar in manner to "hill­
sliding." One who is sliding down from the highest 
point on a hill will eventually arrive at the bottom. 
Geometrical interpretation of the algorithm developed 
here in multidimensional space is not directly com­
parable to the pathway of hill-sliding by an object. 
But the general procedure may be considered as a 
"hill-sliding" aspect. A perspective view of a bi­
variate normal probability density function (p.d.f.) 
is shown in Fig. 3.2. The estimates of p.d.f. deduced 
from discrete measurements do not form smooth topo­
graphic surfaces as shown in this figure. A schematic 
(ideal) progress of the hill-sliding path in the al­
gorithm is visualized in the figure. 
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Fig. 3.1 Bivariate population distribution of 400 
LANDSAT data and the first three most prob­
able candidates for modes of clusters (in 
circles). These typical example data were 
taken from the LANDSAT data over a portion 
of Korean west coast (Park and Hiller, 
1978). The numbers are occurrences of hi­
variate data in each block formed by both 
discrete MSS bands 6 and 7 data. Visually, 
three clusters and their probable mode posi­
tions were distinguished without difficulty. 

Actual paths from the present position to the 
next lower density point will be zigzag motion due to 
randomness of the estimated p. d. f. in the discrete 
space. The pathway is always descending or leveling, 
ending at the bottom of a valley. Such an end point 
seems obvious from the schematic diagram even though 
it depends on the topographic shape. The topograph 
in the present clustering approach is that of multi­
variate probability density. Its shape can be char­
acterized by the probabilistic laws governing the data 
at hand. 

A major problem faced in clustering is that the 
types of data distribution are generally not known in 
advance; thus each cluster may have a different 
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Mode A 
( StartinQ Point) 

Fig. 3.2. Topographic surface of a bimodal bivariate 
normal distribution function and schematic 
presentation of "hill-sliding" pathway. The 
hill-sliding algorithm starts with the high­
est probability density point (MODE) by fus­
ing each highest density point until a 
valley is reached. 

characteristic shape to its distribution. Assumption 
of normal (Gaussian) distribution was employed in this 
study. 

The LANDSAT data reveal high correlations between 
neighbor channels, with characteristics of anisotrop­
i"c distribution (Fig. 3.1). This study attempted to 
group the anisotrophic normally distributed data in 
unsupervised manner. Due to the absence of prior 
knowledge on characteristics of expected clusters, 
each cluster was initiated with the assumption of iso­
tropic normal distribution until its fusing process 
stops at a certain level. The group of data initial­
ly coalesced into a cluster reflects the distribution 
characteristics of the forming cluster in some degree 
since the theoretical shape of its probability contour 
surface maintains near the mode as well as throughout 
the region of a cluster. Distortion of its shape may 
be observed usually in the regions of its tails or 
valleys where distributions are affected by neighbor 
clusters. A simple Euclidean distance measure between 
measurement points can be used in clustering data near 
an apparent core center without introducing much of 
trial errors. The question is where to terminate the 
fusing process to avoid picking up data points prob­
ably originated from different clusters. The values 
of parameters for termination of initial fusion pro­
cess are threshold values of clustering. A set of 
threshold parameters will be employed in this 
approach. 

One of the threshold parameters is derived under 
the assumption of isotropic normal distribution in d­
variate space. A differential volume ~V(r) at 
radius r from a cluster center is defined by 

~V(r) a: rd- 1 ~r (3.20) 

where ~r is a small segment of the radius r and 
symbol a: denotes the proportionality. This differ­
ential volume can be viewed as a hypershell (called 
simply shell hereafter) enclosed by two concentric 
hyperspherical surfaces (Fig. 3.3). A series of con­
centric shells around a mode are drawn with increas-

. 2 b A
2 T b f l ~ng r y ur . he num er o c uster elements, 

A.N(r2), in a shell is proportional to the volume of 
the shell multiplied by average population density in 
the shell: 



(3.21) 

The exponential term in Eq. 3.21 is that of an iso­
tropic normal distribution with standard deviation cr. 
This relation can be rearranged by employing squared 

radius r 2 as 

d-2 2 
r Ar 

o: exp (3.22) 

where the term in the left-hand side is a generalized 
mean population density in a shell at distance r. 

The parameter cr2 is the variance in the population 
distribution. The right-hand side of this relation­
ship is a monotonically decreasing function with in-

creasing r 2 (Fig. 3.4). Plots of Qn(~/rd-2Ar2 ) 
2 vs. r may reveal a family of straight lines having 

the slope of - 1/2cr2 (Fig. 3.4b). A group of data 
can be considered as originating from the same class 
if the estimates of shell population densities fall 
near a straight line. The slope of shell population 
data will remain fairly constant near the center of a 
cluster, but may change significantly when populations 
of other clusters enter into the shell. The squareu 
radius at which the first significant change of the 

slope is detected is the threshold value (rt2) for 

initiation of clustering. Such a change occurs when 
the sequential searching point attempts to cross a 
valley and then to climb a hill consisting of other 
cluster data. 

Example Shell Volumes: 

6 v4- d a: r3 t:. r a: r 2 6 r 2 

t:. v3 a: r2t:. r a: r t:. r2 
-d 

6 v2-d a: r t:.r a: 6r2 

t:."' -d a: t:.r C( t:.r2/r 

Fig. 3.3. A differential volume (hypersperhical shell) 
in three-dimensional space. Example formu­
las are given for one- through four-dimen­
sional shells. Subscript i-d denotes i­
dimension. 

There are several possibilities which may 
introduce slope changes in the case of anistropic dis­
tribution of the data. A plot of two-dimensional 
population distribution will be utilized to visualize 
some of these causes (Fig. 3.5). One of them is the 
case where a cluster is well separated from the others 
even though the isotropic assumption is employed and 
that the threshold value covers nearly the whole re­
gion where most of the cluster data are located (for 
example, cluster A in Fig. 3.5). Another case is when 
the group of one cluster data are closely neighbored 
with the others (for example, cluster Bin Fig. 3.5). 
Considerable overlaps between clusters may exist in 
this case. 
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,z 
(a) (b) 

Fig. 3.4. A curve of Eq. 3.22 and data of a hypotheti­
cal two-cluster mixture. Data of a unimodal 
isotropic distribution yields an exponen­
tial curve shown in (a). Discrete data of a 
two-cluster mixture may produce a plot shown 
in (b), where two straight lines are approx­
imate moving averages of two parts divided 

by rt2 . The first straight line represents 

the population distribution of the first 
2 2 cluster with the parameter cr1 rt will be 

used as a threshold value for the cluster. 

Fig. 3.5. Contours of a mixture probability density 
function (or population distribution) in a 
two-dimensional feature space. The mixture 
p.d.f. consists of three unimodal p.d.f.'s. 
A, B and C points are the modes of the clus­
ters. rtA or rtB may be one of the 

threshold values estimated by the method 
shown in Fig. 3.4(b). They are interpreted 
as the shortest Euclidean distance to a 
valley, which is the natural boundary be­
tween the cluster and its neighbor one. 

Extensive discussion of such possibilities is 
beyond the scope of this study. The purpose of esti­
mating this threshold value is to initialize formation 
of a cluster by fusing data points within the neigh­
borhood closer than this value. Euclidean distance 
is the most favorable distance measure from a probable 
mode position to each measurement point since any 
knowledge about a prospective cluster is not acquired 
at the moment. 



3.4 Implementation of Hill-Sliding Strategy 

3.4.1 Transform of LANDSAT MSS data into a 
probability space 

Estimation of probability densities is required 
for implementation of hill-sliding strategy. Many 
interesting characteristics of the data structure can 
be directly observed when a set of data in the feature 
space is transformed into the probability space. 
Modes of clusters may be found simply by examining a 
probability histogram or searching local maxima of 
the density estimates. It is, however, not easy to 
compute probability densities from multivariate dis­
crete measurements for the whole ranges of data in 
many cases. One of the most common difficulties is 
the requirement of excessive memory storage in a com­
puter if the number of discretized levels is large. 
Another difficult fact is that most computer systems 
handle no more than three dimensional subscripts. 
Such a computer may not be efficiently manageable for 
the estimation and storage of multivariate probability 
densities having more than three variates. 

The LANDSAT multispectral scanner (MSS) data are 
typical examples that often encounter the above dif­
ficulties. The first three channels of the LANDSAT 
data have a 7 bit range (0 through 127) while channel 
4 has a 6 bit range (0 through 63). Hence, required 
memory storage to handle the whole range of probabili­
ty densities often exceeds the capacity of cormnonly 
available computers if more than two channels of data 
are processed. These difficulties may be overcome for 
the LANDSAT data by utilizing their high correlations 
between neighboring spectral variables (channels). 

The inherent nature of the spectral bands 
generally results in high correlations among bands 
(Fig. 3 .I). Variables consisting of highly corre­
lated channel data leave large portions of the multi­
variate space unused. Elimination of such unused 
spaces can reduce the required size of the central 
memory storage necessary to store discrete probability 
density estimates. A way to do this is to put an 
identification number on each point having non-zero 
probability density and to store only non-zero prob­
ability data. The sequential identification number 
for each non-zero probability datum refers to the cor­
responding compartment (cell) in the multivariate 
space~ Multidimensional difficulty in multivariate 
probability estimates can also be overcome in this ap­
proach, since identity numbering applies to any place 
of the space wherever non-zero discrete density esti­
mates exist. 

A procedure to fulfill this idea is to divide the 
whole feature space where data range into several com­
partments (subcells) at first and compute data popu­
lations within each compartment. The next step is to 
eliminate any compartment which is empty (i.e., having 
zero population) and divide nonempty compartments 
into several smaller subcompartments. Repeat this 
procedure until the desired size (d-dimensional hyper-

cube with volume pd) in individual compartments is 
reached. The compartment obtained at the final stage 
is called a "cell" in this study. Each cell is label­
ed by a unique identification number and can be traced 
back to its original position in the feature space by 
the number. The population within a cell is converted 
to probability density in the way of the Parzen p.d.f. 
estimator (Fehlauer and Einstein, 1978). 

Kittler (1976) investigated an approach similar 
to the h1ll-sliding algorithm. He constructed a chain 
of hypercubic (or hyperspheric) cells by sequentially 
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arranging neighbor cells with lower or higher density 
values in accordance with hill-descending or hill­
ascending stage. In this way, the multivariate den­
sity cells were aligned in the sequence of probability 
densities, something like one-dimensional distribu­
tion. Non-zero density cell points only appeared in 
the chain. This chain is similar to the results ob­
tained by manipulation of the subcell algorithm in 
this study. However, finding neighbor cells requires 
computation of all the pairwise distances between the 
cell points, which is not desirable for large amounts 
of data. Hence, the operation of chaining all the 
cells in a desired sequence seems to involve laborious 
computation and excessive computer storage for most 
remote sensing applications. 

3.4.2 Formation of initial clusters 

It was discussed in the previous section that the 
location of the cell having the highest probability 
density would be the most probable position of the 
mode of a prospective cluster for normally distrib­
uted data. Once a probable mode is found, a series 

2 of shells around the mode are defined by r and 

r 2 + 8.r2 in the multidmensional space where r is 
the Euclidean distance from the mode to the inner 
surface of the shell and 8. denotes the differ­
ential increment. The total population 8.N within a 
shell is computed by surmning up the populations of all 
the cells contained in the shell. Generalized mean 
population densities defined by the left hand side of 
Eq. 3.22 are computed. Computation of the mean den­
sities can be carried out by averaging the popula­
tions at two sequential observation points. Say, 

r. 2 < r~+l , where r. 2 is the sequentially arranged 1 1 1 
value in increasing order. Shell populations corre-

2 2 2 
sponding to r. and ri+l are 8.N(ri ) and 

2 1 
AN(r.+l respectively. The the generalized population 
density can be approximated 

r d-2 8.r 2 -
m m 

where 

= 

8.r 2 = 
m 

(3. 24) 

(3. 25) 

Estimates of the generalized mean population 

densities at two or more different r 2 values lead 
m 

to computation of o2 coefficient of the exponent in 
Eq. 3.22, by 

The coefficient value obtained by this equation may be 
interpreted as that valid only in the segment between 
r . and r .. Different segments may yield different m1 IDJ 
values of this coefficient depending on data distribu­
tion. It may not be judged simply that different co­
efficient estimates for two sets of data mean differ­
ences of class-origins. Such a decision would be 
based on statistical inference of the data structure 
due to random components contained within it. One of 



the commonly applicable methods is that of the least 

sum of squared errors in evaluating cr2 of Eq. 3.22. 
The statistically averaged value of the coefficient 
can be obtained by use of the method based on a set of 
data points rather than only two. General trends 
(i.e., slope of the line in Fig. 3.4b) of the coeffi­
cient changes are evaluated if proper sets of data are 
chosen for consecutive intervals (Fig. 3.6). The sig­
nificant turning points indicate that shapes of the 
population distribution changes at the indicated dis­
tance levels and that other groups of data begin to 
influence the computed distribution at the levels. 
The distance at the first significant turning point 
will be used as the threshold parameter for a pros­
pecting cluster. 
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Fig. 3.6. The generalized density (Eq. 3.23) against 
the squared Euclidean distance from a cen­
troid (Eq. 3.24). Each pair of consecutive 
two points in the figure defines the slope 
given by Eq. 3.27, which is the coefficient 
of the exponent in Eq. 3.22. The first 
straight line as an approximate moving 

2 average of the curve up to rt indicates 

that the data within this range have a uni­
modeal normal distribution forming a clus­
ter. This curve was computed from 400 
LANDSAT data over a Korean west coast (Park 
and Miller, 1978). 

Search of the threshold value is carried out 
employing a transformed parameter, slope of the data 

distribution instead of the coefficient cr2 . The 
slope is defined by 

8 ::: 

2 2 
(3.27) 

r . - r . 
rnJ m1 

This is the parameter rearranged from Eq. 3.26. 
Average values of the parameter 8 are expected as 
negative in a cluster (Fig. 3.6). The criterion func-

tion to find the threshold value of r 2 in clustering 
is formulated as 

where 

(3.28) 

8 c = updated critical slope up to the previous 
estimate 
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e = updated average slope of all previous 
estimates 

fe positive empirical constant (about 2) 

se = updated standard deviation of e 

The slope parameter e of a cluster distribution is a 
function of Euclidean distance r. It is estimated as 
a moving average of the slopes for four consecutive 

2 . 2 }i=l+3 increment steps of rm (1.e., for {rmi i=l ) . Its 

next estimate is made for the next four r 2 . data after 
ffi1 

2 i=I+S 
two increment steps forward (i.e., for {rmi J i=I+Z) 

2 in this study. The threshold value rt is set by 

r if one of the following criteria is met: 
mi+l 

or 

e > e new c 

8 > 0 new -

(3. 29) 

(3.30) 

The first criterion given in Eq. (3.29) prevents 
other cluster cells from merging into the cluster 
under formation. The second criterion distinguishes 
the cluster cells from the others which may cause vio­
lation of the'normal distribution laws when they merge 
into the clusters. Values of the slope parameter must 
be less than zero in normally distributed data. Once 
the threshold value is found, a new initial cluster is 
formed by fusing cells closer than the distance cor­
responding to the threshold value. This initial clus­
ter leads to computation of a set of parameters which 
will characterize the early stage of the cluster. 

3.4.3 Refinement of initial clusters 

The first application of hill-sliding algorithm 
to the data in the form of probability densities 
yields an initial cluster in each step discussed in 
the previous section. Initial estimates of cluster 
characteristic parameters can be deduced from this 
early stage of the cluster. Those values enable the 
computation of the clustering function Gi given by 

Eq. 3. 6 for each probability cell. The function can 
be expressed in terms of normal density parameters by 

D. (x) 
G.(x) = 1

- -In ( ) +In p(_x) 1- -2- pi l:!i 

It was shown in the earlier sections that the expected 
value of the clustering function would be smaller than 
Qn2 for any cell data within well-defined (separable) 
clusters. Computed values of Gi(~) however, may not 

be close to the theoretically expected value at the 
final stage if Eq. 3.31 is applied to cell data at the 
forming stage of a cluster. They may range from nega­
tive to large positive values mainly because initial 
estimates of cluster characteristic parameters devi­
ate from reasonable values and/or because the data 
contain random or noisy components. 

One of the parameters uncertain in the initial 
steps of the hill-sliding approach is the a priori 
probability of the cluster. The a priori probability 



of a cluster in the mixture distribution is computed 
by 

P. =population in cluster i 
1 total population (3.32) 

This value changes whenever any data are merged into 
or deleted from a cluster. Other changing parameters 
are mean vector of the cluster centroid, and covari­
ance matrix. All of these parameters (a priori prob­
ability, mean, covariance), as well as random compo­
nents of the data, contribute to fluctuation of Gi 
estimates. 

To allow for a certain level of fluctuations in 
Gi estimates, especially at a forming stage, a flex-

ible criterion value rather than !n2 as in Eq. 3.14 
is employed as 

G = G. + fG * SG (3.33) c 1 

in which 

G critical value of G. (x) 
1 -

G. average value of Gi(x) 
1 

fG empirical constant (about 2.) 

SG = standard deviation of Gi(~) 

The functional form is the same as in Eq. 3.28. 
A cell is tested as being a member of the cluster 
under formation by the criterion: 

G. (x) < G 
1 - - c (3.34) 

It will be rejected if this inequality is not satis­
fied. The criterion value is continuously updated as 
a new member is merged into the cluster in the hill­
sliding algorithm. The empriccal constant fG as 

well as f 6 in Eq. 3.28 is not a sensitive parameter, 

but selection of its value depends upon the detail 
required in cluster divisions in the end result. 

Hill-sliding strategy in this research employed 
the cell having the highest probability density at 
hand as the most probable "mode" cell for a prospec­
tive cluster. It utilizes the natural tendency of the 
same cluster cells being more frequently located near 
the centroid. The next highest probability density 
point (cell position) being examined would be very 
close to the sample point just joining the group in 
the previous steps if the new point is a strong can­
didate for the group. Otherwise, it would be far 
from the cluster region since it was picked up from 
a hill side of another group (Fig. 3.7). The way to 
jump up and down from a hill to other hypothetical 
hills creates distinct distance gaps between the clus­
ter being formed and a cell point originating from 
the other cluster candidates. These distance gaps 
allow gradual updating of cluster characteristic 
parameter values by first merging cells closer to the 
centroid. Gradual updating is important in this ap­
proach since estimated parameters at the earlier clus­
ter-forming stage have larger uncertainty factors than 
those at later or final steps. Testing membership 
candidacy for each point, merging or rejecting, and 
updating of the parameters continue until the last 
point is checked. After all the above-mentioned steps 
are processed, searching for the next cluster is re­
peated in the manner of hill-sliding. Hill-sliding 
strategy stops if no single cell element is left over 
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Fig. 3.7. Bivariate population distribution and 
sequence of testing membership candidacy for 
each population data point in hill-sliding 
algorithm. The highest population point 
(probable mode of the cluster) serves as a 
seeding point of the forming cluster. The 
sequence of testing membership candidacy 
follows the descending order of population 
data. The first several sequences are shown 
by marking arrows and two big distance jumps 
located between two possible cluster candi­
dates are observed. These jumps reduce 
chance that elements to be of the clusters 
are mixed up with others while the charact­
eristic parameters of the forming cluster 
are updated. The data are the same as in 
Fig. 3.1. 

or if the maximum number of clusters set up in the 
program is reached. 

3.5 Improvement of Overall Clusters 

3.5.1 Evaluation of cluster compactness 

Most of the measures on goodness of clustered 
results give relative comparison on the basis of or­
iginal data structure or among clusters themselves. 
The sum of squared errors within clusters and diver­
gence between clusters are typical examples of such 
measures. The former evaluates the deviation of clus­
ter samples from each centroid, while the latter mea­
sures separability between two clusters. In either 
example, the quanti ties of the meaures increase with 
increasing dimensions of the feature space (Tou et 
al., 1974). Thus, difficulties are encountered in 
standardizing criteria of these measures. It is de­
sirable to formulate a cluster measure independent of 
the number of variables and the number of sample data 
employed for clustering. 

A measure is proposed in this thesis to evaluate 
the goodness of an individual cluster as 

where 

= [NJ1/d [l.!.l]l/d 
Li N.-d / N-d 

l. 

L1 • compactness of cluster i 

Ni • population of cluster i 

d • dimension of feature space 

T • total scatter matrix of the data 

(3.35) 



The cluster compactness parameter Li is a dimension­

less quantity. The denominator is constant for a 
given set of data and has the dimension of length­
square. It can be considered a characteristic value 
of the data (say c

1
). The determinant of a scatter 

matrix is proportional to the product of the variances 
in the direction of the principal axes, which are de­
fined by the canonical transform of the scatter ma­
trix. It is the volume of a hyper-ellipsoid defined 
by the unit Mahalanobis distance (i.e., Di(!) = 1 in 

Eq. 3.3) from the cluster centroid. The volume 
measures the average scatterness (or squared Euclidean 
distance) of the pattern vectors within the cluster 
around their mean pattern vector. The length between 
the centroid and a point on the hyper-ellipsoid may be 
interpreted as the mean squared-error in the direction 
of the feature space. For this reason, the hyper­
ellipsoidal volume defined by the determinant of a 
cluster covariance matrix will be called simply the 
"scatterness volume" of the cluster. The value in the 
bracket of Eq. 3.35 is approximately proportional to 
the average volume per cluster element if the number 
of elements defining the covariance matrix is suffi­
ciently larger than that of dimensions. Subtraction 
by d from N or N. in the denominator of each 
bracket is devised for 1 the unbiased estimation of the 
parameter. Note that pattern vectors less than or 
equal to the number of dimensions cannot form any 
hyper-volume and the covariance matrix of those pat­
tern vectors is always singular (Duda et al., 1973). 
However, the value of d may be any non-negative 
value, if desired for the purpose of defining the 
parameter only. 

Analysis of the LANDSAT data in this study 
indicates that clusters having a compactness parameter 
less than 0. 4 are distinctly separable from others 
and that those with a parameter larger than 1 are 
scattered around in a region rather than distributed 
normally. This study employs a critical value of this 
parameter as one of input data. Initially formed 
clusters will be eliminated in the final consideration 
if the cluster compactness values exceed the critical 
value read in. The elements in the eliminated clus­
ters are reevaluated in later steps. Another con­
sideration made regarding cluster compactness is that, 
if the estimates of the compactness exceeds a certain 
value, say Ls , less than the critical value Lc , 

the cluster is refined by examining individual esti­
mates of clustering functions for each constituent 
element. That is: a cluster will be 1) discarded 
or refined if 

Li < Lc (Criterion A) 

or 2) refined if 

L < L. < 1 (Criterion B) 
s 1 c 

(3. 36) 

(3. 37) 

These criteria are coupled with additional conditions 
discussed in the next section to save excessive compu­
tation. Refinement will be described in a later 
section. 

3.5.2 Evaluation of divergence between clusters 

Distinctness of a cluster against the rest of the 
data has been evaluated in terms of various measures, 
such as Mahalanobis distance and divergence (Duran and 
Odell, 1974). Mahalanobis distance was introduced 
for a measure of metric distance between two popula­
tion centroids (Atchley et al., 1975). Its original 
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definition is different from the concept employed 
here, which is a distance measure between a pattern 
vector and a cluster centroid (see Eq. 3.3). The or­
iginal formula uses a pooled covariance matrix of two 
distributions. Application of this formula to all 
possible pairs of classes requires considerable compu­
tational time if the number of classes is large. 

Divergence is another commonly used measure of 
dissimilarity between two distributions (Tau et al., 
1974; Swain et al., 1972). It is defined by the sum 
of expectations of log-likelihood ratios in favor of 
a class against the other: 

D .. 
l.J 

=J 

dx 

(3.38) 

The divergence is inferred as the total average in­
formation for discrimination between two classes. It 
possesses the following properties: 

1. D .. = 0 for i = j (identical distribution) 
l.J 

2. D .. =D .. 

3. 

1J J 1 

D.. > 0 
1J 

for non-identical distributions 

4. D.. is additive for independent variates; 
1J 

5. 

d 
DiJ.(x 1,x2 , ... ,xd)= l D .. (xk) 

k=1 1 J 

Adding new variates never decreases the 
divergence 

D .. (x £ Rd) < D .. (~ £ Rd+l) 
1J - - l.J 

where Rd denotes d-dimensional feature 
space. 

It is noted in theory that the divergence is positive 
infinity (D .. = oo) when the two classes are perfect­
ly separabll.J Higher values of the divergence esti­
mates indicate better separability between the pair. 

The divergence is used in the hill-sliding 
algorithm to analyze the clustering performance and to 
improve computational efficiency by cutting down un­
necessary computations. The major reason for employ­
ing the parameter in this study is that it can be com­
puted by a simpler formula under Gaussian assumption. 
For two Gaussian classes with unequal a priori prob­
abilities, Eq. 3.35 is reduced to 

D .. 
l.J 

= -
2
1 tr[(P.C~ - P.C.) (C.-l 

1 1 J J J 

(3.39) 

where tr denotes the trace of the matrix in the 
bracket. This is an extended formula of the relation­
ship usually seen in the literature (Tau et al., 
1974) in the case of two distributions with different 



mixing proportions. It is noteworthy that the 
Mahalanobis generalized distance is the divergence 
between two Gaussian populations with unequal mean 
vectors but equal a priori probabilities and covari­
ance matrices (Tou et al., 1974). A working equation 
is formulated by normalizing with the sum of two class 
a priori probabilities as 

G .. 
l.J 

2D .. I (P. + P.) 
l.J l. J 

(3.40) 

where G. . is called a normalized divergence. Re­
l.J 

finement of initial clusters is carried out based on 
this information. 

The additive property of divergence for 
independent variables indicates that no universal 
value of a divergence criterion is acceptable for any 
combinations of multivariate measurements. It is de­
sirable to reduce the effects of dimensionality as 
well as the sample size in cluster analysis. For 
this reason the estimates of divergence divided by 
the entropy of the data is used in this study whenever 
any comparison is made regarding divergence. The 
entropy E(x) is a statistical measure of uncertainty 
defined by (Young et al., 1974). 

E(x) == J p(~) in [1/p(~)]d~ (3.41) 

n==N 
where X ::: {~n}n==l represents a set of pattern 

vectors (data). It is interpreted as the expected 
value of an information unit, Qn(l/p(x)], that is, 
the average uncertainty of the information source. As 
indicated by its functional form similar to that of 
divergence, Eq. 3.38, the entropy possesses properties 
similar to those for divergence. It always yields 
nonnegative values for information with discrete prob­
ability and has the maximum value for uniformaly dis­
tributed outcomes. The additive property for indepen­
dent variables is also valid in this relationship 
(Maxwell, 1975). The ratio of the divergence to the 
entropy, G .. /E(x) or D .. /E(x), is comparable in any 

l.J lJ 
combination of variables. This value can determine 
relative separability of a cluster against the other 
regardless of the number of variables employed. High­
er values indicate distinctive separability between 
the pair of clusters while smaller ones mean high re­
semblance of the pairs in their data characteristics. 
The objective of the clustering algorithm is to pro­
duce optimum partitioning of the data so that all the 
clusters lead to the separability values which are as 
high as possible. 

Refinement of existing clusters for better 
partitioning of their elements entails expensive com­
puting costs. Even a systematic search of optimum 
partitioning from every possible combination, like 
dynamic programming techniques, requires excessive 
computation unless numbers of both data and clusters 
are small (Duran and Odell, 1974). It is desirable to 
avoid irrelevant computation in improvement of parti­
tioning. The following criteria are utilized for this 
purpose: a cluster will 

(1) be saved if 

Min (Criterion C) (3. 42) 

even if Criterion A is satisfied, and 
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(2) not be reevaluated for refinement if 

Min Gij/E(x) > Dc (Criterion D) (3.43) 

even if Criterion B is satisfied. Here, D and D c s 
in general. are empirical values which are D > D c s 

3.5.3 Valley refinement 

Valley refining (or valley seeking) routine is 
devised to reevaluate probability cells which are gen­
erally located near boundary regions of clusters as 
well as those left over from discarded previously ill­
defined clusters. These are simply classification 
procedures based on statistics of existing clusters. 
A cell having pattern vector x will be classified as 
x E w. , in which the clustering function G. (x) is 
- 1 l_ -

minimized among all i clusters. The previous mem­
bership of a cell (or data identities) may be changed 
through this reevaluation procedure. As such a mem­
bership change occurs, characteristic parameters of 
clusters are revised by deleting changed cells from 
the old cluster and merging them into the new clus­
ter. The step of revising cluster memberships and 
statistics is carried out repetitively until no single 
element is moved or the maximum iteration is complet­
ed. Convergence has been achieved within 5 or less 
iterations in most cases. Slow convergence indicates 
that some of the clusters are not separable from the 
others or they are not defined well. In such a case, 
cluster statistics are revised by splitting cluster 
cells or deleting some of them in outer regions. Then 
valley refining is attempted interatively. 

The present valley refining procedure should not 
be confused by the name with the valley-seeking tech­
nique described by Koontz and Fukunaga (1972). The 
latter is based on nonparametric density estimates in 
the neighborhood of each data point. A valley is 
sought as a clustering procedure and interpreted as 
the boundary between clusters lying in regions of low 
density. Classification of each point follows the 
rule of minimizing the fixed neighborhood penalty 
measured by the Euclidean distance. 

3.5.4 Improvement in terms of the overall 
objective 

Contrary to most clustering techniques which 
attempt to find the solution of the optimum partition 
directly through inexhaustible enumeration, the algo­
rithm developed here does not aim at the global opti­
mum solution. Remote sensing data of natural scenes 
may contain countless subcategorical information on 
natural land cover/land-use classes. One of the best 
partitioning in an established mathematical frame may 
not satisfy a user (or analyst) who desires the class 
categorical information at a certain level. Tuning 
of the mathematical goal at a user's desired level is 
not easily achievable by a numerical scale. Existence 
of various levels for classification schemes (Anderson 
et al., 1976) inevitably introduces heuristic param­
eters to obtain the desired level of the resultant 
classification or clustering. 

The objective of the present algorithm in this 
paper is to find a solution which minimizes 

F 

I 
c 
l 

i==l 
(N.-d)L~ 

l. l_ 
(3 .44) 



subject to 

Gi(xn £. wi) < G. (x £. w.) for all 
J n 1 

1 < I ~ IM c 

0 < L. < L if Min G .. /E(X) 
1 c 1] 

for all i and j 

M < M. < N for all i c 1 -

i' j 

< D s 

and n (3.45) 

(3. 46) 

(3. 47) 

(3. 48) 

where Ic , Im and He are the number of resultant 

clusters, the maximum number of clusters, and the 
minimum number of probability cells in a cluster, 
respectively. Mi is the number of cells in cluster 

i. The minimum number M of cells in a cluster 
c 

should be larger than the number of variates (dimen­
sions) d , so that a covariance matrix might not be 
singular. This is a better statement than that 
N < N. < N where N is the minimum number of iden-c 1 - c 
tities required in a cluster. The reason is that 
Hi < Ni and hence it gives better assurance of a co-

variance being nonsingular. Note that a covariance 
matrix is always singular if N{ ~ d or Hi ~ d 

(Duda et al., 1973). Parts of the constraints: 1) 
Ic ~ 1, 2) Li > 0, and 3) Hi ~ N are self-evident 

and there is no requirement for specification of these 
criteria in the algorithm. However, a user (or anal­
yst) may input any other desired values which do not 
exceed the limits as parameters. It is also worth­
while to note that cluster or class identities less 
than ten times the dimensionality d will usually 
lead to an increase in probability of error if pre­
dictions are made based on their covariance matrices 
(Ball, 1965). 

The constraint Eq. 3.45 is equivalent to the 
decision rule of the maximum likelihood classifica­
tion: 

p.(x £ w.) > p.(x £ w.) 
1 -n 1 - J -n 1 

(3.49) 

for all i, j and n , since the only other variable 
in clustering function Gi(~n) defined by Eq. 3.6 is 

p(~n) , which is common in both sides. Hence, the 

inequality, Eq. 3.45, can be called the "maximum like­
lihood constraint" for each data point. 

The objective function F can be expressed in 
terms of covariance matrices: 

F ::::: 

I c 
2: 

i=1 

I 
c 
l 

i:::1 

(N.-d)L.d 
1 1 

(3.50) 

Here the data characteristic length c1 is constant 

as well as the total number of data N and the total 
scatter matrix T. Hence, minimizing F is equiva­
lent to minimizing the sum of the determinants of 
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individual cluster covariance matrices. Therefore, 
the objective of clustering is to obtain a partition­
ing of the data which minimizes the sum of cluster 
scatterness volumes under the imposed constraints. 
The objective function is generally nonlinear and its 
usual multidimensional form cannot be described in 
easily manageable terms. 

There are substantial differences between the 
present formulation and those which use frequently­
cited clustering criterion function IWI where 

w 
I 

c 
I 

i=1 
c. 

1 
(3.51) 

The simple algebraic sum of all the cluster covariance 
matrices, W, is commonly referred to the total in­
tragroups (or pooled-within clusters) scatter matrix 
(Friedman et al., 1967; Fukunaga et al. , 1970; Duda 
et al., 1973). It has been shown that the determin­
ant of the matrix is invariant to nonsingular linear 
transformations of the data and is able to produce 
well-definable natural cluster boundaries when it is 
used as a clustering criterion (Fukunaga et al., 
1970). No efficient clustering algorithm has been 
proposed on the basis of this matrix, however. One 
of the most discouraging facts in using IWI crite­
rion is that the matrix will be singular unless either 
the number of clusters is greater than the dimension­
ality or the total number of the data is greater than 
the sum of the dimensionality and the number of clus­
ters (Duda et al., 1973). The determinant of the 
scatter matrix alone is of no use as a clustering 
criterion function if the number of clusters is not 
known in advance, since more subdivisions of the data 
space tend to reduce the value of the determinant. 
An essential difference between the present objective 
function F and the determinant of the total intra­
groups scatter matrix, IWI , as a clustering crite­
rion comes from the fact: 

IWI 
I 

c 
I 

i:::l 
c. 

1 

I 
c 
I 

i=l 

The scatter matrix IWI has been used as a measure of 
compactness of the clusters (Duda et al., 1973), but 
this interpretation is somewhat misleading. Following 
two simple cases illustrate inappropriateness of using 
IWI as a clustering objective function or an overall 
cluster compactness measure (Fig. 3.8): 

c1 = C' 1 c2 ::::: (6 ~) C' = 2 (6 ~) 

w c1 + c2 (~ ~) IWI 16, 

W' = C'1 + C'2 (~ ~) \W'\ 25 

The first case is that two-dimensional covariance 
matrices of two clusters are identical except for 
their locations. The second, that the two have the 
same scatterness volumes (determinants) but different 
orientations and locations. Under the assumption that 
two clusters are completely separated in both cases, 
their total intragroups scatter matrices have differ­
ent shapes and determinant values. The first case 
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Fig. 3.8. Illustration of the total intragroups 
scatter matrices for two separable clusters 
in two-dimensional space. Each cluster has 
the same scatterness volume but different 
mean (centroid) from the other in either 
case. The pooled covariance matrices 
W(= c1 + c2) and W'(= c1• + c2•) are dif-

ferent from each other since cluster orien­
tations are not the same in both cases, even 
though IC1I = ICzl = IC1 'I = I Cz'l 

yields smaller determinant values of the resultant 
scatter matrix than the latter does. This indicates 
that minimizing the determinant of the total intra­
group scatter matrix W forces all the clusters to 
be partitioned in the shapes and orientations as sim­
ilar as possible. Any set of separable clusters would 
not make much difference whatever their natural shapes 
or orientations. This is another drawback to using 
IW\ criterion for clustering. The present clustering 
formulation has been devised to circumvent these dif­
ficulties by employing the sum of the determinants of 
individual cluster covariance matrice as the objective 
function. The set of constraints has provided some 
guidelines to overcome various undesirable aspects 
commonly encountered in clustering the heterogeneous 
natural scene data in this formulation. 

The global solution to this optimization problem 
may be found by a systematic but exhaustive enumera­
tion of all partitioning alternatives. Search of the 
solution by such an enumeration is often not permitted 
due to requirement of excessive computation and memory 
storage for a large volume of data. The solution 
sought by the present algorithm is an optimal (usually 
suboptimal) solution of the objective function, which 
satisfies the imposed conditions given by Eq. 3.45 
through 3.48. The condition of Eq. 3.46 is mandatory 
unless the program is modified. The minimum number 
He of probability cells in a cluster should be larger 

than the number of variables (dimensions) d, so that 
a covariance matrix is nonsingular with better assur­
ance. Hence, it is required that M > d. The limi­
tation of cluster compactness value 'has the greatest 
f lexibi li ty among the constraints. Its upper limit 
is totally up to an analyst's choice. However, a 
higher value may allow accepting clusters having ele­
ments scattered around other clusters. Too small 
vaLue of L may not be achievable due to other 
((Jupled consfraints. In other words, a set of un­
r,.asrmilhle constraints may lead ·to no optimum solution 
r,f thf' problem. 

This study does not intend to try all the 
pr,ssihl,. enumf'rations to search for an improvement in 
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partitioning, particularly because of probable 
excessive computation in handling multivariate prob­
ability density function. Instead, most computational 
procedures concentrate on achieving the results which 
satisfy the constraints while the objective function 
is minimized. Any local optimum solution detected 
will terminate the searching process. 

The major procedure for searching the solution in 
the present algorithm is to redefine clusters by dis­
carding and splitting clusters which do not satisfy 
the given constraints or which are considered as ill­
defined clusters. Cluster goodness is based on satis­
faction of criteria A through D described in Section 
3.5.1 and 3.5.2. Splitting and redefining unsatis­
factory clusters are carried out by separating cells 
in outer regions from those near their centroids. An 
intermediate cluster is formed by the cells left over 
by the separation process; it is then tested for clus­
ter goodness. The separation process is performed 
iteratively until a satisfactory cluster is formed or 
no cells are left over to form a cluster. Cells sep­
arated from those near the centroid attempt to form 
another good cluster; if the new cluster(s) fail to 
satisfy given criteria, they will be merged with other 
existing clusters by the classification and valley 
refining procedure. Consequently, optimality of the 
new clusters as a solution to the problem is evalu­
ated. Redefining clusters and optimality tests are 
repeated until an optimum solution is found. It 
should be understood that the solution obtained by 
this procedure may not necessarily be globally opti­
mal. Ultimate satisfaction of the clusters as a 
solution is up to the analyst. 

3.6 Outline of the Clustering Program 

The basic step in detecting a distinguishable 
cluster from a set of data is to find any cohesiveness 
or discontinuity of the patterns distributed in a 
spatial or feature domain. This idea is exploited on 
the basis of the multivariate probability density 
estimation in the feature space. A major assumption 
in this formulation is that the mixture of various 
natural scene data constitutes a multivariate multi­
modal normal distribution. A group of the data sur­
rouding a mode forms a cluster. A mode is a local 
maximum of a density function. Hence, the cell (or 
compartment in the feature space) having the highest 
density estimate is the seeding element for a cluster 
to be formed. Individual clusters are extracted one 
by one from the data set by the hill-sliding algorithm 
outlined in earlier sections until every cell is 
merged into one of the clusters. 

The random nature of measurement data introduces 
a certain degree of uncertainty in computed results, 
causing misplacements of some cluster elements. The 
clusters obtained by the hill-sliding strategy are 
refined by reclassification of each cell which is 
weakly associated with its group or left over from 
discarded clusters which have loose compactness and 
low separability values. Reclassification of each 
cell is based on the maximum likelihood decision rule 
which uses a priori probabilities of individual clus­
ters. The refining process is terminated when an 
optimality of the overall clustering objective func­
tion is found or the maximum iteration (of an input 
value) for refining is completed. The program is also 
devised to reuse the previously obtained results for 
further refining the clustered partitions, if desired 
(Fig. 3.9). 
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Fig. 3.9. A schematic view of the general flow 
structure in the hill-sliding clustering 
program. Solid lines indicate major flow 
directions of the clustering algorithm while 
dash lines show optional flow paths which 
can be repeatedly applicable. 

Performance of a clustering program often relies 
heavily on the size of the sample data being pro­
cessed. Each program has its lower and upper size 
limits which are internally set depending upon the 
algorithms employed and the available computing 
facility. Clustering algorithms based on density 
estimation are expected to produce better results if 
estimated densities reflect better characteristics of 
the assumed distribution. It is commonly accepted 
that more sample data leads to better characterization 
of their distribution and classification categories. 
Especially, the reasonable cluster sample size would 
be more than ten times dimensionality if predictions 
are made on the basis of covariance matrices as in 
the maximum likelihood method under normality assump­
tion (Ball, 1965). Therefore, the minimum sample size 
for reasonable performance of the program developed 
here may be estimated by 10 x d x Ic , where d and 

are numbers of dimensions and expected clusters, I 
c 

respectively. This requirement may appear 
ing factor in the use of a clustering 
multi-dimensional (multivariate) cases. 

as a limit­
program in 

The present clustering program can read up to 
1011 samples of maximum four variates (Table 3 .1). 
It has been experienced that this upper limit of the 
sample size is a severe restriction in cases of four 
or more variate data with more than twenty expected 
clusters for analysis of the LANDSAT imagery. The 
LANDSAT computer compatable tape data over hetero­
geneous land cover areas vary in wide ranges. Prob­
ability density estimates within unit hypercubic cells 
(i.e., without increasing descretization interval) are 
widely scattered over the feature domain. Individual 
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Table 3.1. Limits of various input data parameters in 
the hill-sliding clustering program. 

PA~IETERS LI~IJT 

(~lax. in numbers] 

~LATED PAKA~IETERS 

Samples 1,011 

Variates (Channels or Dimensions] 

Known classes: 
(if used for cluster-class matching table) 

Disk data files 
(presently in LMS data format) 

OUTPUT RELATED OR INTERNAL PARA~IETERS 

Clusters 59 

Nonzero probability cells 899 
(nonzero population cells in counts) 

OTHER LI~IITING SPECIFICATION 

Type of sample data J);TEGER 

cells seldom have more than two pixels (picture 
elements) in population counts (alternative way to 
show probability density estimates). It is recommend­
ed in such a case that the probability densities be 
estimated within two or larger unit hypercubic cells. 

Nature has provided many perplexing constituents 
of class/cluster information. Pooling a huge amount 
of natural scene data may produce only one or a few 
recognizable clouds if observations are made in limit­
ed scales. A huge cloud may not be deducible to what 
a user wants in detail. Selection of a reasonable 
sample size is pretty much heuristic. It should be 
based on statistical and logical grounds within per­
missible ranges of the program. 

A clustering strategy may employ numerous 
techniques to implement its goal. The results obtain­
ed under the same strategy may differ from an algo­
rithm to others depending upon the techniques employ­
ed. The present version of the hill-sliding algorithm 
was written for research and development. Hence, 
various alternative options were provided for analyses 
of the results by different options (Table 3. 2). An 
investigator can trace the ways in which individual 
data points or probability cells move one cluster to 
another. A two-dimensional display of the inter­
mediate results can also be obtained. Too many op­
tions, however, may cause the program to become too 
large, using more computer memory space and time. 

Two major sets of data can be supplied for 
clustering analysis: one in the form of card images 
with labels of known class types; the other in the 
RECOG format, which is the standard input data format 
in the LANDSAT Mapping System (LMS) of Colorado State 
University (Appendix 1). The former produces a clus­
ter-class matching table; while the latter displays 
the clustered results in the usual map-like format by 
the computer line printer. Statistics of resultant 
clusters are also obtained for examination and further 
use in classifying each identity of the sample data 
taken from various areas (Fig. 3.9). The usefulness 
of the results must be justified through real field 
data and user satisfaction. 



Table 3.2 Key optional features in addition to the basic approach. The basic approach (in circle) was 
implemented in this research. However, the optional approach was provided to further analyze the 
particular performance of the program under such a condition or combination of such conditions. 

Refining clusters based on 

2. 

Maximum likelihood in terms of Gaussian 
probability density 

Mahalanobis distance 

Objective function: 

2. 

Sum of cluster scatterness volumes 

Sum of square roots of cluster scatterness 
volumes 

Estimation of merging criterion values: 

Updating 

2. No updating 
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Splitting at each time of iteration among clusters 
which do not meet given compactness criterion 

1 

2. 

3. 

All clusters 

The worst cluster only 

The one having the largest scatterness 
volume 

Time saving by 

1 

2. 

3. 

Limited search for values of threshold dis­
tance square 

Limited checking possible movement of cells 
to other clusters 

Do every case 



Chapter IV 
APPLICATION TO LANDSAT IMAGERY DATA 

4.1 Processing Modules with the LANDSAT Mapping 
System 

The applicability of the hill-sliding algorithm 
to an unsupervised classification of the LANDSAT im­
agery data will be evaluated in this chapter. The 
LANDSAT multispectral scanner (MSS) data over portions 
of the Chippewa River Basin, Wisconsin, and the Denver 
Metropolitan area were analyzed using the algorithm. 
A picture element (pixel) recorded on the LANDSAT 
computer compatible tape (CCT) represents a ground 
area of about 79 meter (E-W) by 79 meter (N-S) 
parallelogram inclined about 12 degrees east of north. 
Each pixel in the LANDSAT CCT contains the four band 
digital MSS data (Table 4.1). The values of MSS data 
are mainly the recorded levels of instantaneously re­
flected solar radiation from the scene within a reso­
lution element, and they range 0 to 127 (7 bits) in 
bands, 4, 5, 6 and 0 to 63 (6 bits) in band 7. 

Table 4.1 Spectral ranges of LANDSAT multispectral 
scanner bands. 

Wavelength 
Band (micrometer) Color Range 

4 .5 - .6 Green 

5 .6 - . 7 Red 

6 .7 - .8 Near Infrared 

7 .8 - 1.1 Infrared 

The data array in the LANDSAT CCT is not arranged 
in the north-south geometric orientation as desired 
for spatially registered overlays of readily available 
map information, due mainly to orbital inclination of 
the satellites. The test data used for the study are 
rectified by the geometric rectification module in 
the preprocessing program of the LANDSAT Mapping Sys­
tem (LMS) package developed at Colorado State Univer­
sity (Appendix 1). This LMS module employs the 
nearest-neighbor resampling technique with a uniform, 
completely filled output grid at a desired scale. 
The data elements resulting from this process can cor­
rectly represent a ground area of known geographic 
position. However, a significant mismatch may occur 
if the desired new map scale for either six or eight 
vertical lines per inch displays results in extensive 
oversampling or undersampling (Fig. 4.1). The optimal 
rectification can be achieved at the 8 x 10 line 
printer display of near 1:24,000 map scale in this 
module. Test data for the Chippewa River basin were 
rectified at a map scale of 1:24,000 for 8 by 10 line 
printer display; those of the Denver metro area were 
for 1 by 1 square block (microfilm) display. Addi­
tional preprocessing with the LMS used in this study 
includes reformation of the data file structure to 
efficiently store and manage the desired portion of 
the whole LANDSAT MSS data. 

The clustering program developed here can produce 
a cluster map in the same format as the LMS classifi­
cation map. It can also provide statistics of result­
ant clusters in the format of input data to the LMS 
supervised classification program. The LMS software 
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Fig. 4. 1. Resampling efficiencies of the geometric 
rectification. The vertical axes show fre­
quencies of usage or disusage of a LANDSAT 
data element when the nearest-neighbor ap­
proach is applied to resampling at various 
map scales. The curve applies to maps re­
sampled in the ratio 8 N-S to 10 E-W for 
display at the scales shown on the 8 line/ 
inch printer (Sung and Miller, 1977). 

embraces several major image-processing phases includ­
ing the preprocessing phase described above (see more 
in Appendix I). Its first phase, preprocessing, and 
last phase, classification were used in this study. 
The LMS classification module is a supervised classi­
fication algorithm based on the Gaussian likelihood 
method. An underlying assumption of the algorithm is 
that all the input classes have the same a priori 
probabilities (in other words, equally-divided mixing 
proportions in a mixture distribution). The best per­
formance of this classifier can be expected when all 
the classes have the distinctive unimodal normal dis­
tributions with equally-divided mixing proportions in 
the available multidimensional feature space (Park and 
Miller, 1978; Maxwell et al., 1977). It is, however, 
seldom probable to have the same mixing proportions 
for all the natural clusters or all known classes in 
the land-use/land cover classification. The hill­
sliding algorithm computes the mixing proportions by 
naturally grouping the data. There would be substan­
tial differences between both results obtained by the 
hill-sliding algorithm and by the LMS classification 
module even if the same cluster statistics were used 
(Fig. 4.2). This argument will be tested and analyzed 
in the following sections. 

The program developed herein can be used for 
analyzing the sample data whose class categories are 
known. Such data are to be read as punched card im­
ages in the same format as in output data of the LMS 
"PRINT/PUNCH" program (Fig. 4.3). The results are 
given in a table of matching cluster-cla~ses. 

4.2 Cluster Analysis of Denver Metropolitan Area 

A cluster is defined as a group of data bounded 
by a chain of probabilistic valley in the multidimen­
sional feature space. The cluster may be a natural 
land cover/land-use class or a class subgroup. It may 
represent a hardly separable mixture of two or more 
natural classes. The task is to separate each dis­
tinguishable cluster, rather than to decompose those 
unseparable mixed classes. An identifiable cluster is 
defined here as a group of data within the region 
bounded by the probabilistic valleys, which consti­
tutes a series of local minima in probability density 
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"'Git~Y'l\P" Displays l, 1, ... or all of 
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original or map overlay format by 
eith<'r lineprinter or microfilm 

Option:~! ~lodule to int<.>rleave 
multiteaporal !.A."OSAT im:lges or 
overlaying multiple ancillar data 
planes by L\IS Phase 2 

Clustering module b)· 1\ill~sliding; 
algonthm 

"CLUSTER ~t\P" displays the selected 
cluster identi fic:ot ion svmbol of 
each i.mag<.> pixel (or identity) in 
the classification lineprlnter Mp 
fonn.,~t. 

Supervised dusification module !Jy 
Lo'LS Phase ~ 

"rhssification )l.:ip" dispalys th<' 
s.decte.! identlficHion oi e:lch image 

---.... pixel and/or probability that is the 
mater1al designated options include 
1 inepri nter and JOicrofi lm graymaps and 
lineprinter color s;mhol maps. 

Additional files to be add<.>d in existing Rd file. 

LA.'lOSAT computer co111pati.ble tape (CCTJ as supplied by EROS (lata 
Center, 

lntermediate result file reusable for further iteration or display. 

L.'!S formatcd (RECOG) Upe or Jisk file - :1~ st;~ndard format Upe 
used throughout thee l)IS image procc:;sing activity (d•J or 4•j if 

Aj file u combined by the L\lS Phase Z). 

File of signature llliltrices for clusters or classes (d' !. d). 

Fig. 4.2. Option-1 flow chart of input/output files 
and maJor computer processing modules to 
produce cluster/classification maps. 

estimates. A cluster may cause some conflict when it 
is compared with the conunonly-adopted USGS land-use/ 
land cover classification scheme (Table 4.2). Clus­
ters of measurement data are formed on the basis of 
the cohesiveness or structural similarity in their 
measured quantities, while land-use/land cover classes 
are mainly for user purpose. Therefore, the latter 
may have m~ny structural subcategories, some of which 
may be quite similar to those of other classes. The 
degree of confusion strongly depends upon the resolu­
tion the data possess. For instance, some parts of 
urban residential areas would reveal the data spectrum 
similar to those of grasslands. There is little dif­
ference between lakes and reservoirs in the values of 
the LANDSAT MSS data. One of the beneficial points in 
clustering data is that the result may reveal pre­
viously unknown subclasses which may be meaningful 
in interpreting various aspects of the data structure. 

The data used for testing the clustering program 
were selected from 4,100 geometrically rectified 
ground truth samples of LANDSAT imagery over Denver 
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PARTS OF LMS PHASE 3 

Optional Module to get training field 

datil file ~ fro• RECOG file <::;) 
"Extra~t" ~reates point file f'Pi\ of the 

training field data identified 't1 the user 

fro• Rl:lCOG file. ~ . 

"PRINT/PUNCH" creates training field data 

File ~ of any variables in point file 

~ (d' _::.d). 

CLUSTERING r«:lOULE BY lilLL-SLIO!NG AlGORinlM 

Rd RECOG Foruted tape (or disk) file 

!..MS point file 

LMS Print/Punch output file (d' !. d) 

Signature .atrb file 

Intennediate result file 

Fig. 4.3- Option-2 flow chart of input/output files 
and major computer processing modules to 
produce cluster-class matching tables. The 
input data file contains prototype class 
information for each identity (so called 
"training field data") and is read as simple 
card images which are in the format of the 
output from PRINT/PUNCH Program of the LMS. 

Metropolitan area on August 15, 1973. These sample 
data were compiled and used as a part of the data 
base for a series of extensive landscape/land-use in­
ventory modeling efforts (Miller et al., 1977; Tom 
et al., 1977). The base data were resampled from the 
LANDSAT computer compatible tape data to yield 1. 11 
acres per square cell and overlay 1:24,000-scale 
topographic maps by the LMS preprocessing routine. 
They covered a square of 24 by 24 miles in cellurized 
576 rows (or lines) by 576 columns. The ground truth 
samples were extracted from the base data by a self­
verifying, uniform-grid-sampling procedure. The set 
of training data represented a one-ninth by one-ninth 
(1/81) sampled image of known land use by reference 
to the 1972/1973 USGS land use. This systematic point 
sampling process yielded the ground truth data of 
land-use types proportional to frequencies of their 
actual occurrences in the field (Table 4.2). 

One of the major drawbacks in uniform-grid 
sampling is that numbers of some class samples approx­
imately proportional to their population in the area 
might turn out too few to produce statistically sound 
characterization. When prediction is made based on 
covariance matrice, samples of at least ten times di­
mensionality are required to reduce chances of error 
(Ball, 1965). Examination of the Denver data {Table 
4. 2) i11111ediately reveals that some of the prototype 
classes do not satisfy this requirement especially for 
two or higher multivariate analysis. Those samples 
may fail to form clusters even if they have very dis­
tinguishable characteristics from others. 

Another difficulty in analyzing this set of data 
is due to limitation imposed in the clustering pro­
gram. Suppose that all four LANDSAT MSS data are 
analyzed and more than twenty clusters are expected 



Table 4.2 Hierarchical land-use/land cover classifica­
tion scheme and number of samples selected 
from the LANDSAT imagery of Denver Metro­
politan area. The various levels of USGS 
Circular 671 System (Anderson et al., 1972) 
with minor changes as Professional Paper 
964 (Anderson et al., 1976) are shown. The 
numbers of sample picture elements (pixels) 
were extracted proportionally to frequen­
cies of land-use types acquired by manual 
air photo interpretation and automated 
LANDSAT image analysis (Tom et al., 1977). 

Digit~! 

Codes 

11 
12 

121 
B 
14 
lS 

lSI 
16 
l7 
18 
1"1 

191 
192 

21 
211 
212 
213 

22 
23 
24 

31 
32* 
33 
34* 

41 
411 

42 
421 
422 

43* 

51 
52 
53 
54* 
55 

61 

71* 
72* 
73 
74 

741 
75 

a .. 
81* 

9* 
IJl* 

f- l RST -ORDER LAND-USE{ L\.:\0-COVER 
Second-Order Land-Use/ L~nd-Cover Sample 

Third-Order Land-Use/Land-Cover (pixel) 

URBAN AND SUI L T -UP I.A.'\10 
Residential 1245 
Commercial and Services 1~2 

Recreational 160 
!ndustria.l lSI 
fxtr~ctive 57 

Trans port.atlon, Communi cat ions t and Utilities 76 
Utilities ll 

Institutional 344 

Strlp and Clustered Development 
Mixed Urban 
Open and Other Urban 28~ 

Solid-Waste Dump 4 

Cemetery 25 

A.GRICUL TURAL LA 'liD 
Cropland and Pasture 

Nonirrigated Cropland 589 
Irrigated Cropland 7 
Pasture 4 30 

Orchards, Groves, and other Horticultural Areas 
Feeding Operations 
Other Ag:ricul tural Land 

RA."lGELANO 
Grass 305 
Savannas 
Chapparal (taken as b:rushlanJ) 39 
Desert Shrub 

FOREST LA.NO 
Deciduous 

Dec iduou>/: nt<'rmi t tent Crown 11 
Evergreen (Coniferous and Other 

Coniferous/Sal id Crown SO 
Coniferous/Intet1llittent Crown 2 

wA.TER 

Mixed Fat-est Land 

Str~ams and Waterways 
takes 
Re-serviur:: 
Bays and Estuaries 
Other W3te:r 

~OSFORESTED :~ETLAI>D 

Vegetated 
Bare 

BA.RRE)I !.AND 

TU~DRA 

Salt Flats 
Beaches 
Sand Other Than Beaches 
Bare Exposed Rock 

Hill slopes 
Other Barren Land 

TunJra 

PER.'L-\.'IU.rT SNOW . .\.'10 ICEFlELDS 
Permanent Snow and Icefield> 

TOTAL 

4 

60 
18 

24 

61 

~100 

• Land-use/land-cover trpe not found in the Denver ~letropol itan Area 

in the results. Then at least 800 (10xl .. x20) samples 
are necessary for reliable results. However, some 
cluster sizes are significantly larger than others_ 
Thus, much more than such a minimum number of required 
samples are needed for better performance of the clus­
tering process. The present clustering program devel­
oped for this paper can read up to 1011 samples of 
maximum four variates (Table 3.1). These limits are 
due mainly to the computer central memory capacity 
(250K) available at Colorado State University. Exclu­
sion of any external memory devices, as well as inclu­
sion of many optional result-checking routines, made 
this restriction more severe. The present version has 
been written purely for development of the algorithm 
and needs fast turnaround for testing intermediate re­
sults in various steps. Input limitation can be im­
proved by employing external memory devices and delet­
ing optional routines in a future version. 
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These upper limits of input data parameters force 
one to use only a portion of the collected ground 
truth data (Table 4. 2). The following are criteria 
for selection of samples from the data pool to evalu­
ate the effectiveness of the clustering program: 

1) use all the samples in classes which have 
less samples than 10 x d. 

2) select samples roughly proportional to the 
class sample populations if they are more 
than 10 x d. 

Performance of the program was tested for chosen data 
in terms of 

1) ability to decompose two apparently separ­
able class mixture distribution, and 

2) ability to decompose all-class mixture 
distribution. 

A test of the first case was attempted using all 
the samples of rangeland-grass (305 pixels) and 
forest-evergreen with solid crown (55 pixels). Two 
populations were well separated in MSS bands 5 and 7 
(Fig. 4.4). Only four of 183 cells of the originally 
discretized unit have elements originated from both 
classes. Most of the evergreen class data were dis­
tributed in the region having lower values of both 
bands while those of the grass were in that of higher 
values, particularly in band 5. 

Clustering these two class samples was carried 
out following the first two sets of input parameters: 

Clusterins Paraaeter ~ Run 2 Run 1 

Number of sa~~~ples 355 (2 classes) 355 (2 classes) 975 (24 classes) 

Used bands s, 7 5. 7 5, 7 

Probability cell siz" 
in eacb. band 

fa (Eq. 3.28) 2. 7 2. 7 2. 7 

fG {Eq. 3.33} 2.0 2.0 2.0 

Lc (Eq. 3.36} 0.99 1.6 L6 

L 5 t~!\r~~;~~) 
fix,.d in \ L c \ Lc \ Lc 

D 
s 

(Eq. 3.42) 3.0 3.0 3.0 

D ct~;q ~r~~;;~ fixed in 10 D 
s 

10 D 
s 

10 0 s 

M/No. of bands (Eq. 3.48) 2.5 2.5 2.5 

Coodl.ti.on to sto11 rehninll 

FoliFnew -I (F in Eq. 3.44) S. 0.001 S. 0.001 ( 0.001 

Numb"r of changes in cluster < 0. S'l'. < 0.5% < 0. 5% 
element 

Maximum iteration 

In the result of Run 1, eleven clusters were 
formed (Fig. 4.5, Table 4.3). Three of them had pix­
els assigned in both classes. Total commission error, 
which was computed by the sum of erroneously assigned 
pixels divided by the total number of pixels, was 2.5 
percent. This error rate was strikingly small. 
Hence, it indicated that the two classes were well 
separated. The characteristic length of the whole 
data was 1.6 while most indivi~ual cluster compactness 
values were less than one except for the ninth cluster 
(Table 4.4). The sum of determinants of cluster 
covariance matrices were far smaller than the deter­
minant of the overall data covariance (or total scat­
ter) matrix. This meant that most of the unoccupied 
spaces went out of considerat!on as the clusters were 
formed. 

The second RUN differed in cell size from the 
first. The cell size was two by two discretized units 
of two band data (Fig. 4.6). Six clusters were formed 
from 100 probability cells (Fig. 4.7, Table 4.5). The 
error rates and characteristic lengths were nearly the 
same in both cases. The determinant of the total 
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Fig. 4.4. Mixture population distribution of rangeland-grass and forest-evergreen class samples in the LANDSAT 
MSS bands 5 and 7 for Run 1. The numbers are the sum of populations of two classes in the cell which 
has corresponding values in bands 5 and 7. The numbers in circles are populations from the forest­
evergreen class only and "-" sign indicates that the portions are from the forest-evergreen class 
among the sum in the cell. 
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Fig. 4.5. Display of the resultant clusters in Run 1. The numbers are cluster labels. The numbering was made 
sequentially when· it was formed. 

Table 4.3 (a) Class-cluster matching matrix in Run 1. 
The numbers are those of picture ele­
ments in each cluster. The clusters are 
listed in ascending order1~f the mean 
values of MSS band 4 data \!J. Commis­
sion errors (2) were computed by (con­
fused number~um) * 100. 

Land Use/ Land Cover Cluster NumbereD 
Swa Class 

11 8 4 10 7 I 6 2 3 5 9 

Range land- grass 0 0 31 0 30 55 31 33 58 28 l9 305 

Forest-evergreen 9 13 0 19 3 0 1 0 0 5 0 so 

SWII 9 13 31 19 33 "ss 32 33 58 B 39 355 

Collll!lission Error(]) 0 0 0 9.1 0 3.1 0 0 15.2 0 2.5 
(percent) 
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Table 4.3 (b) Summary table in Run 1. 

Land UCslea/
5

L
5

and Cover !-----=C"-Iu:__s.c:.t,cr_~-;(D::::.l :;-;-;--I 
4, 7 ,1,6 

Rangeland-grass 

Forest-evergreen 

Collllllission Error0 
(percent) 

11,8,10 2,3,5,9 

305 

41 

2.9 

Sum 

305 

so 

2. s 



Table 4.4. Some characteristic values pertinent to 
clusters in Run 1. The determinant of 
cluster covariance matrix is the scatter­
ness volume of the cluster. Smaller values 
of cluster compactness indicate 11ore com­
pact clusters. 

T OYerall 
9 I SUII Data 

Detel'llinant of 
Covariance, lei I 10 2.2 1.2 12 3.1 .30 10 .94 3.6 4S 183 271 900 

Cluste'" , 1.6~ Co•pactnes~ Li 76 . 28 .12 . 53 . 20 . 04 7 • 36 • 11 • 16 . 75 1. 4 • 

(D Refer to Table 4. 3 
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Fig. 4.6. Mixture population distribution of range­
land-grass and forest-evergreen class sam­
ples in the LANDSAT MSS band 5 and 7 with 
discretization interval 2. The numbers are 
the sum of populations of two classes in the 
cell which has corresponding values in bands 
5 and 7. The numbers in circles are popula­
tions from the forest-evergreen class only 
and 11

-" sign indicates that the portions are 
from the forest-evergreen class among the 
sum in the cell. 
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Fig. 4.7. Display of the resultant clusters in Run 2. 
The numbers are cluster levels. The number­
ing was made sequentially when it was 
formed. 
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Table 4.5 (a) Class-cluster matching 
The numbers are those 
ments in each cluster. 
4. 4 for the notes of 

Land Use/Land Cover Cluster Nwlber (D 
Class s 1 2 3 4 

Rance land- arass 3 186 49 30 18 

Forest-everareen 44 1 s 0 0 

Sua 47 187 S4 30 IS 

eo-ission Error Q) 6.4 .5 9.3 0 0 
(percent) 

Table 4.5 (b) Summary table in Run 2. 

Land Use/Land Cover Clustl!r~ 

1,2,3 SUII Class 
4,6 s 

Ranaeland-grass 302 3 305 

Forest -evercreen 6 44 so 

! SUII 308 47 355 

ro-ission Error Q) 
(percent) 1.9 6.4 2.5 

table in Run 2. 
of picture ele­

Refer to Table 
Q) and@ . 

s.. 
6 

19 305 

0 50 

19 l5S 

0 2.5 

scatter matrix was about 920, which was two percent 
larter than it was in RUN 1 (Table 4.6). The results 
of both runs compared fairly well except for computer 
central processing times, in which RUN 2 used only 
one-third of the time of RUN 1 (Table 4.7). These two 
simple cases indicated that the size of discretization 
interval has a significant effect on computation time 
when discrete probability density estimates are used. 
It is unnecessary to use too small discretization in­
tervals unless the mixture distribution character­
istics are significantly changed by increasing the 

Table 4.6 Some characteristic values pertinent to 
clusters in Run 2. Refer to Table 4.4. for 
further explanation. 

Cluster Nu.ber 
SUII 

Overall 
i s 1 2 3 4 6 

Data 

Deterainant of 
Covariance, ICil 220 24 11 7 .s 3.8 u 276 920 

Charactorist ic 
Lcna:th. L. 

I 
1.4 .22 .28 .32 .30 .S4 . 1.6 



Table 4. 7. Summary of performance of the clustering 
program in three runs . Run 1 and Run 2 
were for two classes (rangeland-grass and 
forest-evergreen), 355 samples and differ­
ent discretization intervals. Both re­
sults were fairly comparable except for 
computer central processing time. Run 3 
was for 975 samples of 24 classes. The 
estimate of commission error in Run 3 was 
not quite clear since class-cluster match­
ings were not clearly determinable. 

Description RUN 1 RUN 2 RUN 3 

Probability cell 183 100 472 

Determinant of total 900 920 5100 
scatter !!latrix 
(scatterness vo!U1118) 

Characteristic length 1.6 1.6 2. 3 

Cluster 11 36 

Sum of determinants 
of duster covariances 272 276 1438 

Objective function 14.8 11.9 24.0 

Co111111ission error 2.5 2.5 73.2 

Approximate computer 
CP time (second) for lst 38 13 151 
4 iteration 

interval. The results in these two test runs can be 
sununarized as: 1) the clustering program decomposed 
two class samples satisfactorily; 2) numbers of sub­
groups in each class depended upon the discretization 
interval of data for probability density estimation; 
and 3) computer processing time varied with the dis­
cretization level. 

Another test (Run 3) was performed with 975 
samples chosen from all the classes of Denver Metro­
politan area for two MSS bands 5 and 7 (Table 4.8). 
Populations of the sample data were widely scattered 
in the region where the band 5 data ranged from 8 to 
75 and the band 7's were from 0 to 48 (Fig. 4.8). 

The clustering program yielded 36 clusters based 
on 472 discrete probability density estimates (Table 
4.8, Fig. 4.9). Not many clusters could be claimed as 
distinctively (say, having more than 50 percent com­
mission accuracy) representing a class or a subgroup 
of a class in the result of this test run. Elements 
of some clusters came from various classes rather than 
any single (representative) class. This fact indicat­
ed that most of the established classes were not well 
separated from each other, at least in these two MSS 
bands. Samples of urban, agricultural and rangeland 
classes were spread in many clusters. Forest and 
water classes are well distinguished from the other. 
No cluster was found that distinguishably represented 
classes of utilities, solid-waste dump, irrigated 
cropland, grass, deciduous forestland, evergreen/ 
intermittent crown, stream or rock. It was interest­
ing that the number of grass samples was not small 
compared with others. Most of this class pixels, 
however, were confused with other classes, especially 
the pasture class. This suggested that any attempt to 
classify other pixels based on information derived 
from these training samples might lead to unpredict­
able results. Hajor causes of such a conflict seemed 
t0 come from samples of complex urban classes. It may 
bP. sununarized through this result that many urban-type 
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classes were not adequately definable in these 
spectral band signatures, specifically for the resolu­
tion level (about one acre) of the LANDSAT. This 
summary could be convincing by the low coDJDission 
accuracies in the result (Table 4. 8). The overall 
commission accuracy for all the classes was 26.8 per­
cent. The second- and first-order class-cluster 
matching matrix showed 29 and 49.4 percent commission 
accuracies, respectively. 

Performance of a clustering program might be 
evaluated by visual examination of displayed clusters 
in a one- or two-dimensional feature space (Figs. 4.5, 
4.7, 4.9). The hill-sliding program demonstrated the 
ability to decompose the relatively complex multivari­
ate normal mixture distribution in these test runs. 

4.3 Mapping Land Cover/Land-Use of a Chippewa River 
Basin Area 

Predicting land cover/land-use activities is a 
major effort in the utilization of LANDSAT imagery 
since the first LANDSAT (formerly Earth Resources 
Technology Satellite) series was launched into a near 
polar orbit on July 23, 1972. Technology to further 
predict agricultural crop harvests or to inventory 
natural resources has been greatly advanced in recent 
years. However, a basic question remains unresolved; 
how much of man's intervention is required for imple­
menting such a task. Cluster analysis is a way to 
lessen man's burden in this task. An experiment was 
carried out for this study using LANDSAT imagery data 
over the Chippewa River Basin (Simons and Chen, 1978). 

The present cluster program can generate 
statistics of clusters, especially for the maximum 
likelihood classification. Unsupervised classifica­
tion maps can be produced for any size area based 
on these statistics, for example, using the LANDSAT 
Mapping System (LMS) of Colorado State University 
(Fig. 4.2). The LANDSAT I imagery from May 11, 1976, 
was analyzed to estimate areal extent of land cover/ 
land-use classes over the lower Chippewa River Basin 
area. The LANDSAT computer compatible tape data of 
eight rectangular regions along the river from Lake 
Pepin to Eau Claire, Wisconsin, were preprocessed by 
the LMS with geometric rectification at the scale of 
1:24,000 for computer line printer displays. Cluster­
ing was performed by the hill-sliding algorithm de­
veloped herein using 902 uniform grid samples among 
the total 178,519 pixels (picture elements). All 
four MSS band data were used for this cluster analy­
sis. Statistics of 25 clusters obtained by this 
analysis were applied to the LANDSAT data of the whole 
area to produce cluster maps by the LMS classification 
module. 

A portion of the cluster maps produced by both 
the clustering program and the LMS classification 
module compared to evaluate differences of basic 
underlying assumptions on the a priori probabilities 
of clusters proportional to individual cluster popula­
tions, while the results by the maximum likelihood 
classifier of the LMS were based on equal a priori 
probabilities for all classes. Substantial dif­
ferences are expected due to those of mixing propor­
tions. The results showed a difference of five points 
among 130 points in total (3.8 percent) over the area 
(Fig. 4.10, Table 4.9). This amount of difference is 
strikingly small when it is compared with many other 
uncertainty factors in measurement and distribution 
estimation. The use of the maximum likelihood method 
with equal mixing proportions in all the cluster/ 
classes might be justified by this finding. 



fable 4.8. Class-cluster matching matrix for 975 samples chosen from all the classes. The numbers are those 
of picture elements (pixels) in each class-cluster matching box. The class(es) having the largest 
number of pixels in each cluster (in circle) may be claimed as representative class(es). 
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the LANDSAT MSS bands 5 and 7 data. The numbers are frequencies of occurrence in each two-dimen­
sional cell. 472 discrete population points (cells) are shown here. 
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Fig. 4.9. Display of the resultant clusters in Run 3. The numbers are cluster labels. The numbering was made 
sequentially when it was formed. 
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Fig. 4.10. Comparison of both cluster maps produced 
by (a) the hill-sliding algorithm and (b) 
the LMS classification, respectively. 
Five pixels (in circles) among 130 pixels 
in total are different between both clus­
ter maps. The difference is due to that 
of assumptions regarding a priori prob­
ability (mixing proportion) in the mixed 
class/cluster distribution. Note that the 
cluster map by the LMS classification 
module was based on the cluster statistics 
obtained by the hill-sliding algorithm. 
The map data points are the one-twelfth 
by one-twelfth (1/144) sampled image pix­
els of Durand Quadrangle, Wisconsin. 
Interpretation of symbols are given in 
Table 4.10. 
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Table 4.9. Contingency table of cluster-classifica­
tion displayed in Fig. 4.10. Classifica­
tion was performed by the LMS maximum 
likelihood classifier using the cluster 
statistics obtained by the hill-sliding 
clustering program. Existence of off­
diagonal numbers indicates that both meth­
ods employ different assumptions. The 
difference is due to that of assumptions 
regarding a priori probability (mixing 
proportion) in the mixture distribution of 
class/cluster. The numbers are those of 
picture elements in that category. 
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A line printer cluster map at a scale of 1:24,000 
was reproduced for a small portion (4.18 square 
kilometers, 1.6 square miles) of the river basin 
(Figs. 4.11 and 4.12). The site, located north of 
Duran City, Wisconsin, includes a part of Chippewa 
River (northwest corner), north side of the city resi­
dential area, agricultural lands and naturally vege­
tated flood plain areas. Limited ground information 
was available for this study. One source was the Maps 
of Vegetation, Land, and Water Surface Conditions on 
the Upper Navigable Portion of the Mississippi River, 
1973, prepared by the IAFHE Remote Sensing Laboratory 
University of Minnesota (Plate 1). All the land 
cover/land-use classes shown in the maps of the area 
were £orbs, buttonbush, river (water), pond (water), 
sand, mud, agricultural land and developed area 
(urban). The other available information was black 
and white aerial photographs from May 4, 1978, pro­
vided by the Corps of Engineers at a scale of 
1:24,000 (Plate 1). A broad category of land-use/ 
land cover patterns was made based on these photos. 
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ll! 
Fig. 4.11. Unsupervised classification map of land 

cover types near north of Durand, 
Wisconsin. The line printer map at the 
scale of 1:24,000 was produced by the LMS 
classification module based on the cluster 
statistics obtained by the hill-sliding 
clustering program using four MSS band 
data of LANDSAT imagery on May 11, 1976. 
Each symbol represents a cluster/class. 
Blanks were left over as unclassified if 
the pixels have lower probabilities to be 
associated with any cluster than a thres­
hold value (5 percent in this case). 

The cluster map shown here reveals several 
subgroups in land cover/land-use classes when com­
pared with existing ground truth information. Each 
agricultural field (farm) might have different prac­
tice shown as spectrally different clusters. The 
water of the Chippewa River consists of two subgroups: 
deep water and shallow or near-bank water. Spectral 
characteristics of shallow or near-bank water depend 
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Fig. 4.12. 
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Unsupervised classification map of land 
cover types having a unified symbol for 
all the subgroups of each class based on 
the result shown in Figure 4.11. Descrip­
tions of symbols were given in Table 4.10. 

upon the proportion of contribution by the river 
bottom or included lands in a picture element (pixel). 
Such a mixed picture element may have weak association 
with its parent classes/clusters and have lower prob­
ability of being classified as any existing clusters. 
The classification may display such a pixel as blank 
(Fig. 4.11). 

A user may not need detailed subgroup maps in 
final products. Unified symbols for all the probable 
subgroups of individual land cover/land-use classes 
help in clearly visualizing spatial distributions of 
broad categorical classes (Fig. 4.12). This experi­
mental map was produced by incorporating existing 
ground information. Identifying origin of subgroups 
is another difficult job in practice. Such a job is 
almost impossible without ground truth data. An as­
sociation (or similarity) measure between clusters as 
used in hierarchical clustering techniques may indi­
cate their mutual relationships but may not lead to 
user-oriented parent classes from lower level classes 
such as the second or third order land-use/land cover 
classification scheme (Table 4.2). 

Another notable fact in this cluster map is that 
urban lands picked up almost every cluster in the 
area. A picture element of the LANDSAT has about one 
acre resolution and hence can pick up almost any coa­
bination of their complex constituents in residential 
or industrial areas. Such heterogeneous areas are 
often categorized as disturbed lands. It seems inade­
quate to distinguish individual pixels in such a dis­
turbed land based on the resolution and precision 
of the LANDSAT multispectral scanner data. 



Table 4.10. Aerial extents of land-cover type clusters 
displayed in Figs. 4.11 and 4.12. The 
interpretation was made based on black and 
white aerial photographs and some existing 
land-use/land cover classification maps 
for a portion of the study site. 

Class 

Water 

llater 

CtauCD 
S)'llbol 

• 
' 

Disturbed Land• • 
or Nixed. CluJ 

Dinurbed Lands • 
or Nixed Class 

A&ricul tural 

Aaricul tural 

A&ricultural 

Buttonbush 

Buttonbush 

forb 

A&ricul tural 

Disturbed Lands • 
or Mixed Class 

Distrubed Lands • 
or Mixed Class 

Forb 

Sand 

Disturbed Lands • 
or Miud Class 

Disturbed Lands • 
or Mixed Class 

Disturbed Lands • 
or ~xed Class 

M 

Disturbed Lands • 
or Nixed Class 

Aaricul tural 

A&ricultuTal 

Aericul tuTal 

A&ricultural 

TOTAL POl NTS 

• 

D 

Percent 

19 2 . 11 

12 1.33 

1.00 

.1>1 

23 2 . S6 

. 78 

29 3 . 22 

46 S . ll 

26 2.89 

7S a.:Sl 

22 2.44 

68 7.56 

12 1.33 

17 1.89 

162 18 . 00 

3 . 44 

117 13.00 

52 s. 78 

12 l.:U 

35 3 . 89 

21 2 . 33 

30 3 . 33 

lS 1.1>7 

31 3 . 44 

lS 1.67 

1100 

~ 
SyW>ols shown Fia. 4 . S 
Sy.bols shown Fi& . 4 . 4 

2 
1 point (pi~;el or pi~tun ele.ent) • 1.141 acres (~,641> • ) 

4.4 Comparison with the Results by an ISODATA Family 
Program 

The ISODATA (Iterative Self-Organizing Data 
Analysis Technique) method was developed at Stanford 
Research Institute over a period of several years 
(Anderberg, 1973). It bas been widely used for un­
supervised classification of remote sensing data and 
ra11ified into various v~rsions since it was first 
introduced by Ball and Hall (1965). The method 
searches iterative improvement of data partitioning 
following instructions given in terms of a set of 
heuristic parameters. Splitting and lumping param­
eters play •ajor roles in the iterative process. 
Clusters having the maxi•um standard deviation greater 
than a threshold value are forced to split into two 
groups. Clusters will be co.bined if Euclidean dis­
tances between two cluster centroids are closer than 
the given lw.ping para~ter. Each identity will be 
Merged into the nearest cluster seeding point or 
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Plate 1. Black and white aerial photograph of the 
test site at a scale of 1:24,000 with over­
lay showing land-cover/land-use classes. 

existing cluster centroid in each iteration process. 
Other i11portant parameters in the ISODATA family are 
the maximum number of clusters and the minimum number 
of data elements in a cluster. Most ISODATA family 
programs use Euclidean or city block distance which 
requires less computational steps. A version, called 
ISOCLAS (Senkus, 1976), has been installed as a com· 
puter library routine at Colorado State University. 
This version uses the city block distance measure, 
which is the sum of absolute differences between each 
band data, to assign each data point to a cluster. 
The use of this distance measure in the ISOCLAS is the 
aajor difference from that of the maximum likelihood 
decision rule in the hill-sliding algorithm. 

Perfonnance of the hill-sliding program was 
compared with that of the ISOCLAS using the LANDSAT 
MSS band 5 and 7 data of the test area described in 
the previous section. The hill-sliding program pro­
duced 26 clusters after 3 initial and 3 additional 
iterations for refining clusters while the ISOCLAS 
seemed to repeat splitting and combining operations 
after 18th iteration with 10 clusters (Table 4.11). 
The results by the ISOCLAS failed to separate the sand 
and buttombush classes from some of the agricultural 
lands contrary to the hill-sliding program (Fig. 
4.1~). More additional mandatory parameter input may 
be required to extract these rare classes in the area. 
Further manipulation with varying parameter values was 
not attempted in this study because of the basic 
difference between two algorithms. The comparison of 
the results were provided to deiDOnstrate the perfor­
mances of both aetbods (Fig. 4.13). Spatial patterns 
of the d011inant and distinct classes as water and 
forbs were fairly comparable in both aaps. 



Table 4.11. Comparison of performances of the hill­
sliding and ISOCLAS programs. 900 
LANDSAT pixels over a Chippewa River 
Basin area were used for clustering MSS 
bands 5 and 7 data. 

Hill-sliding ISOCLAS 

Iteration 3 + 3 CD 20@ 

Number of clusters 26 10 

CP time (second) 60 + 10 18 

Note: (D Two consecutive runs with 6 iterations of 
refining clusters in total. @ After 18-th 
iteration splitting and combining seemed to 
repeat without improvement. 

Definite judgment on both methods was not made due to 
insufficient ground truth data. 
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(b) HILL-SLIDING CLUSTER MAP 

Fig. 4.13. Comparison of the cluster maps by both (a) ISOCLAS and (b) hill-sliding programs using MSS bands 5 
and 7. The symbols in the ISOCLAS cluster map were matched with those in the hill-sliding program. 
The sand ("2" in (b)) and buttonbush (''=" in (b)) classes were not separated from agricultural 
classes (''-" and "+") in the map (a). 
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Chapter V 
SUMMARY AND CONClUSIONS 

5.1 Summary 

The primary objective of this study was to 
develop a practical technique for unsupervised clas­
sification of remote sensing data based on probability 
density estimates. The hill-sliding algorithm was 
developed for clustering normally distributed data in­
corporating with the maximum likelihood decision rule. 
The hill-sliding program has three major parts in im­
plementing the clustering objective: 1) computation 
of lexicographic population distributions to effec­
tively deal with discrete multivariate probability 
density estimates for wide ranges of data values; 2) 
extraction of initial clusters by the hill-sliding 
strategy; and 3) refinement of clusters by improving 
cluster compactness as well as optimizing the overall 
clustering objective function. 

A "subcell model" program has been devised to 
alleviate multidimensional (multivariate or multi­
indexing) problems in computation of the multivariate 
population densities. The storage requirement for 
density estimates is minimized by eliminating unused 
parts of the multidimensional feature space. 

Initial clusters are extracted one by one 
according to the hill-sliding tactics. Separation of 
initial cluster elements from a set of data is the 
major framework of the clustering program. Further 
separation of cluster elements and their minor (say, 
cluster tail) refining process are carried out based 
on the newly proposed clustering function, which can 
be deduced from the maximum likelihood decision rule. 
Goodness of a cluster is measured by a dimensionless 
cluster compactness parameter. 

The overall clustering objective function 
proposed is optimized with improvement of cluster 
compactness followed by repeated operations of split­
Ling or abandoning the clusters which do not meet 
given constraints. A search for the globally optimal 
value of the objective function had not been devised 
in the present study. The result obtained by the 
clustering program can be reused for further improve­
ment of the objective function criterion by applying a 
new sat of constraints to the existing partition. The 
ultimate satisfaction of the results is up to the user 
or analyst. 

are: 
Some other features of the hill-sliding algorithm 

1 ) 

2) 

3) 

4) 

The expected number of clusters does not 
need to be specified. 

It is suitable for an intermediate size of 
samples (say, about ten times the number of 
variates times number of expected clusters). 

Hahalanobis distance classification option 
is provided, especially for a smaller set of 
data. 

Input parameters are statistically rational­
ized values, which are not sensitive to the 
data structure. 

Analysis of prototype class data over the Denver 
Metropolitan area showed promising results. Subcate­
gorical information on known classes could be drawn 
through the analysis. The analysis also revealed that 
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many urban disturbed class data of the LANDSAT 
multispectral scanners might not be suitable for 
classification of individual picture elements (pixels) 
by the hill-sliding algorithm or this type of cluster 
analysis. 

The algorithm has been successfully applied to 
the Chippewa River Basin area to estimate aerial ex­
tents of land cover/land-use classes, i.e., by the 
unsupervised classification. Spatial distributions of 
vegetated and exposed land-type classes were confirmed 
satisfactorily based on very limited available ground 
information. However, pixel-by-pixel confirmation of 
urban land-use classes seemed not to have much mean­
ing. Nevertheless, locating disturbed urban lands 
could be made by identifying the highly heterogeneous 
spatial distributions of various classes/clusters in 
confined areas. 

Performance of the clustering program was 
compared with that of the ISOCLAS, a version of the 
ISODATA family program, for unsupervised classifica­
tion of the LANDSAT data. The hill-sliding program 
yielded more detailed subcategorical clusters than 
those obtained by ISOCLAS in the simple runs, i.e., 
without much elaboration for adjusting heuristic input 
parameters. The dominant or well-separable classes 
were consistent with similar spatial distribution 
patterns in cluster maps produced by both programs. 
Relatively less populated classes appeared distinc­
tively in the results by the hill-sliding program 
while those were mixed up with other classes in the 
ISOCLAS results. 

The hill-sliding program used more computer 
central processing (CP) time than the ISOCLAS did. A 
main reason for this difference was that the former 
generated natural clusters more than twice those by 
the ISOCLAS. Each cluster is formed by itself based 
on its unimodal distribution characteristics without 
much interference by input parameters in the hill­
sliding program. On the contrary, the ISOCLAS gener­
ates a cluster based on a set of mandatory given 
criterion parameters of distance measures, which force 
natural clusters either to be split or to be combined. 
Because of this difference, precise figures of CP 
times necessary to generate comparable results by both 
programs were not evaluated for this comparison. 

5.2 Conclusions 

The hill-sliding program developed herein has 
proved to effectively decompose multivariate mixture 
distributions of remote sensing data into a number of 
unimodal distributions, i.e., those of natural clus­
ters. Inference of subcategorical structure on land­
use cover classes can be drawn based on these natural 
groups of data. 

Difficulties commonly encountered in computing 
and storing discrete multivariate probability densi­
ties were circumvented by utilizing the idea of lexi­
cographic probability cells. Reduction of the com­
puter memory storage requirement by this technique was 
significant in processing population distributions of 
LANDSAT multispectral scanner data. 

The proposed dimensionless cluster compactness 
parameter has shown its universality as a measure of 
cluster goodness in various test runs. A merit of 



this parameter is that it is less dependent on a 
varying number of dimensions or on wide ranges of data 
spread. Another advantage is the direct linkage to 
the overall clustering objective function. 

A rationalized divergence measure between a pair of 
clusters was utilized successfully in the clustering 
program. This new measure is defined by the diverg­
ence (or general divergence which accounts for clus­
ters mixing proportions) divided by the entropy of the 
entire sample data. The test runs demonstrated it has 
great promise as a general separability measure among 
clusters. 

A new clustering function has been set forth in 
terms of individual cluster covariance matrices, from 
which a measure of cluster compactness can be deduced. 
Status of improvement in data partitioning can be 
evaluated solely by this function. An attempt to 
achieve the optimum partitioning was devised incor­
porating a set of user supplied constraints, which 
reflect the desired level of end products. 

One of the drawbacks in this clustering program 
is that initial larger clusters (i.e., having larger 
determinant of cluster covariance matrix and/or larger 
a priori probability estimate) tend to grow faster 
than smaller ones. This is due to the maximum likeli­
hood constraints, in which larger clusters yield 
larger values in density estimation of individual data 
point. It is often found that a smaller or compact 
cluster is located in the middle of a larger or loose 
cluster cloud. This situation may be natural and also. 
acceptable. But a user may not find such a large 
cluster desirable. Further refining operations may 
break it down into two or more smaller clusters. 

Another disadvantage of the present hill-sliding 
algorithm is that so-called "flat distributions" lead 
to production of an initial set of too many unneces­
sarily small clusters and consequently result in 
longer computational processing until the optimum 
partitioning is reached. The "flat distribution" is 
the term that describes where no hill-like population 
density estimate appears in the feature space. This 
occurs when too few data are used in comparison with 
dimensionality and discretized level. 

5.3 Suggestions for Future Study 

While the hill-sliding clustering program was 
developed, several areas of promise for further in­
vestigation emerged as follows. 
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Use of the optimum discretization interval 
can avoid having flat distributions in sig­
nificant parts of the data distribution 
space so that better performance of the 
hill-sliding program can be achieved. It is 
highly desirable to devise a way to estimate 
such an i~terval. 

Higher order statistics such as skewness 
(third central moment) and kurtosis (fourth 
central moment), should be utilized for 
rationale of splitting a cluster into two or 
more. 

Optimum critical values of cluster charac­
teristic length and divergence should be 
found on rationale basis for their use as 
criterion parameters for splitting or dis­
carding clusters. 

Devising systematic search for the global 
optimum solution to a clustering problem is 
highly desirable for use of the proposed 
objective function. 

Use of predetermined initial cluster 
centroids (or seeding points) might be 
worthwhile, especially when the number of 
samples is not large enough for a confident 
result. Inclusion of such an option is de­
sired in the present program. 

Further scrutiny for efficient use of com­
puter central memory and processing is re­
commended. Computer processing cost can be 
reduced by cutting down comparison or com­
putation of insigificant parameters. 

Option for flexible sampling strategy would 
be helpful to investigators. 

Construction of better tabular form to 
display the results would make it easier for 
an analyst to evaluate cluster-class match­
ing matrix. 

There exist tradeoffs, however, between benefits 
and risks as a consequence of adding any new feature 
in the existing program. Such consequences should be 
taken into account. 
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APPENDIX I 

LANDSAT MAPPING SYSTEM (LMS) 

The LANDSAT Mapping System (LMS) package has been 
developed at Colorado State University for specific 
use with both LANDSAT imagery inputs and composite 
mapping (Reference 1). The package is a total rewrit­
ing of the REGOCnition Mapping System or RECOG, which 
was designated principally for instructional purposes 
(References 2 through 4). This new software is com­
patible with the REGOC. Advantages cited for the LMS 
include flexibility in operation, exportability to 
other computers and high volume production. 

The LMS software consists of four major image­
processing phases. The first is the preprocessing 
phase, which_prepares the standard data file RECOG to 
be used throughout all the phases, by inputting 
LANDSAT computer-compatible tapes (Fig. AI). The 
preprocessing phase contains modules of 1) conversion 
of the LANDSAT data into those in the RECOG format, 2) 
geometric rectification of the same data in a given 
scale for the line printer map, and 3) spatial 
filtering. 

The second phase interleaves images from various 
dates and/or adds ancillary data to form a multivari­
ate file of a specific map area (Fig. A2). The third 
phase is the computation of optimized statistical sig­
natures of the materials to be mapped by classifica­
tion (Fig. A3). The program in this module performs 
feature extraction, optimization of signature defini­
tion of prototype classes, and computation of stat­
istical signatures. The fourth and final phase clas­
sifies each identity (or picture element) in desired 
mapping areas based on given class statistics by the 
maximum likelihood decision rule and then displays the 
classification maps via some visual media, such as 
microfilm or a line printer symbol map (Fig. A4). 

Up to 4 tapes, representing 
25 mile E·W segments of a 
given LANDSAT image, may be 
input simultaneously. 

"Converts" the LANDSAT fo:rmat 
Upe (s) into the internal, 
single RECOG tape. Only the 
part ion of the image needed 
to overplay the selected JUP 
is converted and pooled 
together. 

"Rotate" resuples the orig· 
inal image cells to represent 
any size rectangular or square 
cell as selected by the user, 
adjusts for original image 
distortions, scale image 
to map scale (e.g., 1:24,000). 

"f i 1 ter" the iuge. 

"Graymp" 1, 2, 3 •.• or all of 
the individual spectral bands 
in the original or map overlay 
format. Display options include 
lineprinter and 111icrofil111 
graymaps. 

(,'\ "LANDSAT" c011puter c011patible tape (CCT) as supplied by Eros Data 
\.::J Center. 

"R£COG" for111atted tape (or disk) file - as standard tape fol'llat 
used throughout the image prCKessing activity, (N • 1 to 4). 

Figure A1. Phase 1 preprocesses the LANDSAT imagery. 
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Phase 2. Auxiliary progr&IIS. 

Up to 10 RECOG formatted tapes 
of a varying number of spectral 
bands are input. 

"Trims" each RECOG formatted 
tape (or file) to a selected 
nUDiber of lines and columns 
designated by the user, 
usually those needed to cover 
map selected. Lines and 
columns are renumbered, 
beginning at 1,1. 

"C011bines" RECOG formatted 
data fro. the 1 to 10 separate 
input tapes (files) into 1 
COIIpOS it e RECOG tape (file) 
representing a aultidate, 
•ultispectral image. 

"Displays" 1, 2, 3 ... or all 
of the individual spectral 
bands in cOIIIbined iuge. 
Display options include line­
printer and aicrofil• 
graymaps. 

"Anci Uary" creates RECOG fonatted 
data fr0111 cellularized 1118p data planes 
input in card or magnetic tape format. 
Map cells must be the sue size or s011e 
integer multiple of the cells on the 
RECOG formatted data with which the 
ancillary data will be cOilbined. 

Figure A2. Phase 2 interleaves images from various 
data files. 

0 

"htrar:u" the truninl field Gau 
id~ntifud by the use-r (nc.t•nj.le:s-. 
:i.rncular a.re-u, a.nd poinu] fro"" 
the ·RECO:::: i••le fon.at. 

''Tr.an .. farm'" the tui"~"'ll: fill'ld d~t• 
h~51'.&Ua,af !lptJtifie-4 $~ttU 
band.i. u&•t •l•v•U.cm overl•ys to 
ldjun spectral bands for tertun 
1h.1dowi.n.i .. •tc. 

"Cl•.ns" ou.t. tral.n1.n1 field d•u 
point'S 1o:i.t~ 10'111 prttbabiHty of bun& 
t'!\t uleo-cte4 •nerlal or hilh 
probai.H li tr of Dei.n1 JON" oth•r 
-..t.tl.al, •tc:. 

''Cr01.1p1o" trahinl seu to-... t~•r 
wM_(:h wen Of1.lin.ally •U•~ted in 
extract to represent sep&r&t• 
aauri.•L• but an r\O'IA deurain.ed­
to be natistic:aUy sillilar. 

''SU:tien 1
' 1ener•t1s statistic~ 

flll<b USinl U-JtiiiUII-Hhllhood­
lppro~ch (st8p111W clllcr1•1nU-t 
•n•ty~ois}. other dec.nion Nles 
~:an t~• t"Ub!Uitutecl h•r•. 

''Overlays'' an.y variable CJ:t 
result in pou~t h. l• into 1. 

-RECOG fon.u for displa:r &nd. 
up overlay. 

"SL&raatur•s" coaput .. r st;:~;t is ... 
tl~al upres.nuth'e of eat.h 
uurhl speociflc br ttt• user 
for u1e in. uppint the 
-teriall on: any data tat•n 
fro. t11• ,.., ol"i&inal iiiAI•· 

"P"rints" Ol' ''p.lnc.heto" -on •n~ 
var.iabl•('l-} ln the point file­
fo-r f~,~orth•r •nalys-h in 
UdiUOI\.:..1 -p:roa:raa• wrUUfl 
.,, th.e UISU. 

'"Poillt'' by point tape (or d..t1U fll• .• An l.nurn.al tape. dilk, and/or card 
flh foraat Nhlch coa.cains ~ th• nuac-ted trai:ninJ fh1d tLa.u and. 
•laULAI l.tl carrecc up DVerJ•y pct.litl.oa. 

Figure A3. Phase 3 computes statistical signatures of 
materials to be mapped. 
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APPENDIX II 

ISOCLAS 

The ISOCLAS is a modified version of the ISODATA 
(Iterative Self-Organizing Data Analysis Technique) 
which was originally developed by Ball and Hall at 
Stanford Research Institute (Reference 1). Most later 
modifications in the ISOCLAS were made by Kan and his 
colleague (References 2 through 4) for use by NASA/ 
Manned Spacecraft Center, Houston, Texas. The new 
version is called ISOCLS (Iterative Self-Organizing 
Clustering Program) at Manned Space Center, while it 
is called ISOCLAS at the Remote Sensing Research Pro­
gram, University of California, Berkeley, California 
(Reference 1). 

The ISODATA family programs can be categorized a~ 
the nearest centroid sorting method. As the distance 
measured for sorting, the ISOCLAS employs the so­
called city block distance: 

d 

!. = I IX· - ~-·I 
l. j=l J l.J 

where ~ij is the j -th component of the estimated 

centroid of cluster i and other notations follow 
those of the main text. The method consists of the 
following steps (Fig. AS); 

READ INITIAL 
CLUSTER CEHTROIDS 

OR C(JtPUTE THE MEAN 
VECTOR OF THE DATA 

AS FIRST SEEDING POINT 

ASSIGN EACH DATA POINT 
TO THE NEAREST 

CLUSTER CENTROID 
AND UPDATE 

CLUSTER STAT ISTJCS 

Figure AS. A general flow chart of the ISODATA family 
program. 

1. Choose for key control parameters, such as 
FEATURE(S): Coordinate(&) in a data vector to 

be analyzed. 
ISTOP: Maximum number of iterations 

(default= 10). 
LNCAT: Number of initial cluster (default 

= 1; initial cluster centroid must 
be supplied if LNCAT > 1). 
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2. 

3. 

4. 

STDMAX: Maximum standard deviation in a 
coordinate allowed before split­
ting a cluster (default = 3.0). 
Distance to separate clusters upon 
splitting (default = aaximum of 
coordinate standard deviations in 
cluster). 

SEP: 

DLMIN: Minimum distance between clusters 
before combining (default ·= 3 .2). 
Minimum number of members allowed 
in any cluster (default = 30). 
Maximum number of clusters (de­
fault= 50; MAXCLS ~50). 

NMIN: 

MAXCLS: 

Assign each data unit to. the cluster whose cen­
troid is the nearest to the data point and update 
cluster statistics. 

Discard any cluster whose members are less than 
NMIK. 

Perfonn either a splitting of a combining itera­
tion according to the rules: 

a. Split any cluster i if 
[o .. ]. > STDHAX for j=1, ... , d. 

JJ l. 
and 
Ic < MAXCLS 

where [ojj] i is the standard deviation of 

j-th component data of cluster i and Ic 

is the number of clusters. Then update 
cluster statistics. 

b. Combine any two clusters i and i 1 if 

[ d 1 2] 1/2 I [ 0 ] [ 1 ( ~ . . - ~ . I • ) < DLMIN 
j=l jj i ojj i I l.J 1 J 

and then update cluster statistics. 

5. Repeat steps 2, 3, and 4 until either the process 
converges or iterations reach !STOP, or go the 
next step. 

6. Execute final steps, such as chaining option and 
generation of punch file(s). 

REFERENCES 

1. Senkus, W. K., 1976. ISOCLAS - User's Guide, 
version 1.1, Remote Sensing Research Program, 
Univ. of California, Berkeley, California, 30 p. 

2. 

3. 

4. 

Kan, E. P. F., and W. A. Holley, 1972a. More on 
Clustering Techniques with Final Recoaaendation 
on ISODATA, Lockhead Electronics Co., Inc., HASD, 
Houston, Texas, Tech. Rep. 640-TR-112 (May). 

Kan, E. P. F., and W. A. Holley, 1972b. ISOCLS 
(ISODATA) Clustering: A Well Defined Problem, 
Lockhead Electronics Co., Inc., HASD, Houston, 
Texas, LEC/BASD No. 640-TR-152 (December). 

Kan, E. P. F., 1973. The JSC Clustering Program 
ISOCLS and Its Applications, Lockhead Electronics 
Co., Inc., HASD, Houston, Texas, LEC-0483 (July). 



APPENDIX Ill 

GLOSSARY OF TERMS 

a posteriori probability: Probability determined from 
measurements of the corresponding relative fre­
quencies. 

a priori probability: Probability of being a status 
(or cluster/dass) given in advance. Term "mix­
ing proportion" is often used as substitute in 
the mixture distribution. 

algorithm: A statement of the steps to be followed in 
the solution of a problem. 

band: A selection of wavelengths. 

cell: An array of digitized elements in the feature 
space, hypercubic in shape. 

centroid: The point whose coordinates are the mean 
values of the coordinates of the points in the 
set. 

cluster compactness: A measure indicating that 
elements in a cluster are located closely to­
gether around the centroid (mean vector). 

CCT (Computer Compatible Tape): A magnetic tape, 
containing data representing the image observed 
by the satellite. The data are arranged in a 
format which is directly readable by a computer. 

commission accuracy: The proportion of the elements 
which originally came from the same class/ 
cluster. 

commission error: The proportion of the elements which 
originally came from other classes/clusters. 

convergence: The act or condition of tending to one 
point or focus. 

display: The graphic presentation of the output data 
of a device or system. 

divergence: A measure of distance (or separability) 
between two class (or cluster) populations, de­
fined by the sum of expectations of log- hkeli­
hood-ratios based on each distribution. 

feature space: The space spanned by axes representing 
the measurement and/or transformed data. 

Gaussian: A statistical term that refers to a normal 
distribution of values. 

ground truth data: Term coined for data/information 
obtained on surface/subsurface features to aid in 
interpretation of remotely sensed data. 

hypercube: A generalization of the concept of cube in 
three-dimensional Euclidean space to cube in 
d-dimensional space. 

hypershell: A generalization of the concept of con­
centric shell in three-dimensional Euclidean 
space to shell in d-dimensional space. 

hypervolume: A generalization of the concept of 
volume in three-dimensional Euclidean space to 
volume in d-dimensional Euclidean space. 

imagery: The products of image-forming instruments 
(analogous to photography). 
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isotropic: Pertaining to a state in which a quantity 
or spatial derivatives thereof are independent of 
direction. 

LANDSAT: Satellite(s) designed to make repetitive 
multispectral images of the earth's surface and 
relay data from remote automatic sensor stations 
at fixed locations on the ground, formerly known 
as the Earth Resources Technology Satellite 
(ERTS). 

lexicographic probability cells: A chain of sequen­
tially-arranged (or labeled) hypercubic compart­
ment units with nonzero discrete multivariate 
probability density estimates. 

mode: The most frequent value of a set of numbers or 
local maximum of the probability (or population) 
distribution. 

module: A one-package assembly of functionally 
associated parts, usually a plug-in unit, so 
arranged as to function as a system or subsystem, 
or black box. 

multispectral scanner; A remote sensing device which 
operates on the same principle as the infrared 
scanner except that is capable of recording data 
in the ultraviolet and visible portions of the 
spectrum as well as the infrared. 

orientation: Direction or arrangement with respect 
to other detail. 

parameter: A constant or variable in a mathematical 
expression, which distinguishes various specific 
cases and which may be assigned more or less 
arbitrary values for purposes of the problem at 
hand. 

pattern: (1) In a photo image, the regularity and 
characteristic placement of tones or textures. 
(2) The relations between any parameters of a 
response. 

pattern vector: Multidimensional quantity of measure­
ments on various characteristics of a pattern. 
In the text, d-component column vector. 

pixel: Discrete picture element. 

rectification: The process of projecting a tilted or 
oblique photograph onto a horizontal reference 
plane. 

remote sensing: The measurement or acquisition of 
information of some property of an object or 
phenomenon, by a recording device that is not in 
physical or intimate contact with the object or 
phenomenon under study. 

resolution: The ability of an entire remote sensor 
system, including lens, antenna, display, expo­
sure, processing, and other factors, to render 
a sharply defined image. 

scatter matrix; Covariance matrix of the data. 

scatterness volume: Term used in the text as a 
substitute of the determinant of a cluster/class 
covariance matrix. 



signature: Any characteristic 
characteristics by which a 
recognized. 

or series of 
material may be 

spectral band: An interval in the electromagnetic 
spectrum defined by two wavelengths, frequencies, 
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or wave numbers. 

topographic surface: The configuration of a surface 
including its relief and the position of its 
natural and man-made features. 
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