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ABSTRACT OF DISSERTATION 

NETWORKED RADAR SYSTEMS: WAVEFORMS, SIGNAL PROCESSING 

AND RETRIEVALS FOR VOLUME TARGETS 

Networked radar systems consisting of a dense set of agile short-range high fre

quency radars operating as Distributed Collaborative Adaptive System (DCAS) is an 

emerging innovative concept for atmospheric remote sensing that offer great potential 

to address several challenging problems in atmospheric remote sensing. This research 

addresses some of the unique challenges that must be overcome to successfully de

ploy a networked radar system. This research also provides a novel waveform and 

methodology for a networked radar environment and wideband waveforms for next 

generation precipitation radars. 

The waveform design for a low-cost magnetron based dual polarization weather 

radar operating at X-band is presented. The waveform aims to concurrently ad

dress range-velocity ambiguity, ground clutter, hardware and operational require

ments. Adaptive spectral processing of dual-polarization weather radar signals is 

presented for ground clutter suppression and range velocity ambiguity mitigation 

along with an evaluation of the spectral methodology based on simulations as well as 

data. The waveform and adaptive spectral processing is fully operational in the Inte

grated Project-1 (IP1) X-band radar network deployed by the Engineering Research 

Center (ERC) for Collaborative Adaptive Sensing of the Atmosphere (CASA). The 

IP1 radar network provides real-time data to the various end-users. 
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A transition from traditional high powered transmitters to solid-state transmitter 

is essential to realize a dense network of low cost electronically steered radars. How

ever, solid-state radars have low peak powers and this necessitates the use of pulse 

compression waveforms. In this research a novel frequency diversity wideband wave

form is proposed to mitigate low sensitivity of solid-state radars. In addition, the 

waveform mitigates the range eclipsing problem associated with long pulse compres

sion waveforms. An analysis of the performance of this novel waveform is presented 

for volume targets. 

In this research, two novel techniques using the concept of different look angles, 

inherent in a networked radar environment, is presented. The first technique is a net

worked waveform system where the range-velocity ambiguity problem is formulated 

for a networked radar environment by using the principle that the underlying intrinsic 

properties of the medium such as reflectivity and velocity must remain self consis

tent. A distributed waveform is designed to resolve the ambiguities of observations 

within the coverage region of the networked radar system. The second technique is a 

methodology for the enhancement of spatial resolution of reflectivity resulting from 

volume targets such as precipitation. The enhancement in resolution is obtained 

by jointly processing observations from the individual radar nodes. The resolution 

enhancement system (RES) uses the inherent nature of networked radar systems of 

observing a precipitation event with different look angles. Results and analysis for the 

networked radar algorithms are presented from simulations as well as data collected 

by the IP1 radar network. 

Nitin Bharadwaj 
Department of Electrical and Computer Engineering 
Colorado State University 
Fort Collins, Colorado 80523 
Fall, 2009 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Weather radars have been operational and deployed around world for more than 

three decades. Doppler weather radars provide essential measurements of the atmo

sphere for meteorological, hydrological and climatological applications. Doppler radar 

observations have been of great value in detection and warning of hazards associated 

with severe storms like hail, high winds, flash floods and tornadoes. In addition, they 

have been a valuable tool in aviation safety. The deployment of weather surveillance 

radars world wide (WSR-88D in the US) and the airport Terminal Doppler Weather 

radars (TDWR) are considered as one of the major milestones in weather radar appli

cations. Both WSR-88D and TDWR provide reflectivity and Doppler velocity which 

is obtained based on the amplitude and phase of the scattered electromagnetic wave 

from the precipitating phenomenon. 

In the last three decades extensive research done with polarization diversity weather 

radars such as the Colorado State University CHILL (CSU-CHILL) radar has demon

strated that significant information about the micro-physics of precipitation is con

tained in the polarization state of the back-scattered wave. Dual polarization ob

servations have significantly improved quantitative precipitation estimation (QPE) 

and hydrometeor classification. The dual polarization Doppler weather radars are 

considered an indispensable tool in the measurement and forecasting of atmospheric 

phenomena. 



Although the existing long-range radars operating at S-band and C-band (longer 

wavelength radars) provide measurements of reflectivity and Doppler velocity obser

vations for a very large area, these long range radars have limitations. First, the 

curvature of the Earth inhibits the observation of low-level atmospheric phenomenon 

closer to the surface of the Earth. For example, S-band radars with 1° beam width 

have a cross-range resolution of 1 km at 60 km. Second, the spatial resolution of 

long range radar is poor at farther ranges. Third, the long range radars have lim

ited coverage in some regions due to terrain blockage. More recently, the emphasis 

on weather radars has been to move to attenuating frequencies such as X-band and 

K-band to enable more economical and distributed collaborative short-range radar 

systems, instead of stand alone long-range radar systems. The recent introduction 

of the Distributed Collaborative Adaptive System (DCAS) by the Center for Collab

orative Adaptive Sensing of the Atmosphere (CASA) can be considered as a major 

step in weather radar applications in moving towards deployment of short-range radar 

networks. 

The major emphasis on weather radars is the quantitative estimation of the pre

cipitation content and three dimensional motion fields for both weather surveillance, 

forecasting and hydrological applications. There are several challenges that needs to 

be overcome in order to provide Doppler spectral moments and polarimetric variables 

suitable for the various quantitative applications such as QPE. The Doppler radar 

observables are estimated from the received signal back-scattered from precipitation 

particles and there are many factors that affect the received signal. Some of the main 

factors that affect the observations are waveform design (and signal processing al

gorithms) , sensitivity of the radar system and electromagnetic wave attenuation due 

to propagation through precipitation. Some precipitation systems can cover several 

hundreds of km and the electromagnetic waves have to propagate through the targets 

to get to a target at a farther range. The impact of propagation effects on the radar 
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observables are more severe at higher frequencies such as X-band, Kii-band and Ka-

band. This research focuses on aspects of waveform diversity and design for the next 

generation of dual-polarization Doppler weather radars. 

Waveform diversity and design for weather radars present some interesting chal

lenges that are similar to hard target radars in some aspects and very different in 

other aspects. Fundamentally, weather is a volume target, which is composed of large 

number of precipitation particles, each with its own velocity and scattering prop

erty. Hence the spectral property of the signal is a spectrum of finite width in the 

frequency domain. In addition, the polarization-dependent backscatter properties of 

the precipitation particles is different from that of ground clutter and hard targets 

such as airplanes and all of these can co-exist in the same observation volume. There 

are many challenges that must be considered for designing waveforms and processing 

algorithms to observe volume targets such as precipitation. First, an important as

pect that brings unique challenges to weather radars is the demand for large dynamic 

range within short ranges (not just due to the range power dependence of the radar 

equation). This large dynamic range in received power is because weather targets can 

have light rain and drizzle existing within short distance of volumes with large hail

stones that produce reflectivities that are different by as much as six to eight orders of 

magnitude. Second, unlike hard targets precipitation medium can be everywhere and 

extend over large areas. The very wide extent of precipitation can results in range-

velocity ambiguity in pulse Doppler weather radar and pulsing schemes must take 

this into account. Third, the weather echoes can co-exist with very strong ground 

clutter echo which has to be suppressed before estimates of the radar observables are 

obtained. Each of the above aspects of the weather radar has driven specific aspects 

of the waveform design and they are the focus of this research, with special empha

sis on the modern distributed collaborative adaptive systems of CASA operating at 

X-band. 
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1.2 Problem statement 

This research aims to address some of the unique and specific challenges that arise 

in designing, developing and deploying a short wavelength networked radar system. 

Specifically, the research concentrates on transmit waveforms, signal processing of 

the received signal and retrieval algorithms to provide radar observables from the 

networked radar system to the end-users. The objective of this research is to develop 

waveform system which will enable operation of the radar nodes within the radar 

network, be able to provide networked retrieval algorithms to enhance the radar 

observations and be able to provide both qualitative and quantitative conclusions 

about the waveforms and retrieval algorithms. This research is the first step towards 

developing, and to some extent realizing novel waveforms and retrieval methodologies 

for a modern networked radar system. 

1.3 Research question 

The primary objective of the short wavelength networked radar system is to pro

vide better spatial and temporal observations of meteorological phenomenon that oc

cur in the troposphere. The question under consideration in this research is wdiether 

a network of radars observing a common precipitation event can mitigate ambigui

ties and provide higher resolution observations. Specifically, there are two primary 

questions being investigated. First, investigate whether a networked radar system 

can be used for designing waveforms to mitigate range-velocity ambiguity. Second, 

investigate the feasibility of improving spatial resolution of radar observations in a 

networked radar environment by using observations from a different view angle. 

1.4 Focus of dissertation 

The main tasks of this research are grouped into two categories. The first category 

is individual radar node level waveforms and processing. The second category is 
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networked radar waveform and retrievals. The following items summarize the objects 

of the research in this dissertation. 

Waveforms and signal processing 

i. Study the performance of spectral processing in estimating the Doppler spectral 

moments and polarimetric variables. 

ii. Evaluate spectral filtering methodology for polarimetric variables. 

iii. Characterize the statistical properties of ground clutter echo. 

iv. Design the waveform for a single node to minimize the impact of range-velocity 

ambiguity and ground clutter. 

v. Evaluate the performance of the waveform with the CASA's first generation 

radar network. 

vi. Design and evaluate wideband pulse compression waveform for meteorological 

radar. 

vii. Design and evaluate the performance of frequency diversity pulse compression 

waveform. 

Networked radar retrievals 

i. Develop a networked waveform system to mitigate range-velocity ambiguity. 

ii. Evaluate and characterize the performance of the networked waveform. 

iii. Test and demonstrate the networked waveform with CASA's first generation 

radar network. 

iv. Develop a methodology to improve the resolution by using observations using 

different look angles. 

v. Test resolution enhancement system with simulation and data from CASA's 

first generation radar network. 
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1.5 Overview of dissertation 

Chapter 2 presents a short description about the nature of the received signal in 

a dual-polarization weather radar and the parameters estimated from the received 

signals. The summary of the meaning of the estimated parameters in characterizing 

the precipitation medium is also presented. The distinction between a monolithic and 

distributed radar is introduced. Finally the chapter ends with a very short description 

of the networked radar system deployed in Oklahoma. 

Chapter 3 presents the evaluation of spectral processing for dual-polarization 

weather radars. Also, spectral clutter filtering methodology is described for estimated 

spectral moments and polarimetric variables. The application of spectral processing 

to CSU-CHILL data is also presented in Chapter 3. 

Chapter 4 presents the challenges involved in the designing waveforms for weather 

radars. The performance of the waveforms for X-band radar is presented from simu

lated signals and statistics from operational radar network is reported. 

Chapter 5 describes the first steps needed for the transition from traditional high 

powered transmitters to solid-state transmitter that is essential to realize a network 

of low- cost electronically steered radars. In this chapter frequency diversity wideband 

waveforms are proposed to mitigate low sensitivity of solid-state transmitters. In 

addition, the waveforms mitigate the range eclipsing problem associated with pulse 

compression. An analysis of the performance of pulse compression using mismatched 

compression filters is reported in this chapter. 

Chapter 6 presents a novel waveform that is designed for networked operations. 

A networked retrieval algorithm for the distributed waveform is presented in this 

chapter along with the error that result due to geometry and waveform parameters. 

This chapter ends with a preliminary implementation of the networked waveform in 

CASA's first generation IP1 radar network. 

Chapter 7 presents a networked resolution enhancement system that makes use 

of different viewing angles to improve the resolution of the reflectivity observations. 
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A framework to improve the resolution is developed in this chapter. The analysis 

presented in this chapter is based on simulations and data collected with CASA's 

first generation IP1 radar network. 

Chapter 8 summarizes the findings of this research and ends the chapter with 

some suggestions for future work. 
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CHAPTER 2 

BACKGROUND 

2.1 Doppler weathers radars 

Precipitation is composed of a large number of hydrometeors extending over a 

large range. The antenna beam is filled with scatterers that contribute to the return 

signal. A pulse Doppler radar transmits a pulse train with a pulse repetition time 

(PRT) Ts and pulse width T0. The received voltage corresponds to the back scattered 

signal from particles within a volume determined by pulse width TQ, antenna beam 

widths 9B and 0B- The back scattered signals from all the particles within a single 

resolution volume sum to a resultant voltage sample at the receiver at t = r (or 

r). The sampling of received signal due to a pulse train is divided into range-time 

and and sample-time. The range-time diagram for a periodic pulse train, spaced 

Ts apart is illustrated in Fig. 2.1. For a single transmitted pulse the range-time is 

defined as r = 2r/c, and the received voltage Vr(t) at t = r is due to back scatter 

from particles located within a resolution volume at range-time T. For a periodic 

pulse train with Ar pulses, the received voltage at the same range-time (r) is given 

as Vr(t — r) , Vr(t = T + Ts),...Vr(t = r + (Ar — 1)TS) which form a sequence of 

temporal samples from the same resolution volume (Fig.2.1). Each observation of the 

received signal is one realization of the underlying complex stochastic process. The 

fluctuations of the received voltage in sample-time is determined by the time-varying 

properties of the particles located in the resolution volume. 



Pulse 3 

Pulse 2 / ^('"' t+2U1 ' 

Figure 2.1: Illustrating the (continuous) range-time axis (r) and the (discrete) sample-
time axis (ts). The pulse-repetition time (PRT) is Ts (Bringi and Chandrasekar, 
2001). 
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2.2 Precipitation covariance matr ix and radar observables 

The weather radar equation at single polarization is expressed as a well known 

scalar equation whereas the corresponding equation for dual polarization radar be

comes a matrix equation expressed as (Bringi and Chandrasekar, 2001) 

XyPtGo. 
Airr2 fTlfS BSAi 

Mh with S 
Shh Shv 

(2.1) 

where T is the transmission matrix of the uniform precipitation medium and is in

cluded for completeness to account for the propagation of electromagnetic waves 

through precipitation medium but it does not affect waveform coding. S is the 2 x 2 

back-scattering matrix. Mh and Mv are the transmitter excitation states in horizon

tal and vertical ports of a dual-polarized antenna with an antenna gain Go, transmit 

power Pt and operating at a wavelength A. Thus it can be seen that the received 

signal (vh and vv) is a vector depending on the transmit polarization state. In a 

switched or alternate polarization mode the transmit states are vectors 

(2.2) 

(2.3) 

" Mh ' 
_MV _ 

' 1 " 

0 
and " Mh ' 

Mv 

' 0 ' 

1 

resulting in a sequence of length four vector 

Z — [ Vhh vhv Vvh Vvv J 

corresponding to the two orthogonal transmit states. The subscripts vh (hv) refers 

to transmit horizontal(vertical) polarization and receive vertical(horizontal) polariza

tion. The properties of this signal vector z can be described in terms of the covariance 

matrix C 

\vhh\2 vhhv*h vhhv*hv vhhv*v 

Ezz H vvhvlh \vvh\- vhhvjiv vvhv; 
vhvv*hh vhvv*h \vhv\

2 vhvv* 
vvui v,mv. vvL'hh uvv°vh

 0W--hv V„„V, V„„ 

(2.4) 

where H is the Hermitian operator and * indicates complex conjugate. This 4 x 4 

matrix can be reduced to 3 x 3 invoking reciprocity. This covariance matrix mea

surement corresponds to the covariance matrix of the scatterers in the precipitation 
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medium defined by (Bringi and Chandrasekar, 2001) 

S = •\/2ShvSflil '2\Shv\ y/2ShvSvV 

^vv&hh v2bvvbhv \bvv\ 
(2.5) 

where Shh, ShV, SVh and Svv are the elements of the scattering matrix, n is the num

ber of particles per unit volume and the angle brackets denote ensemble averaging. 

The intrinsic back-scattering properties of the hydrometeors at the two polarization 

states enables the measurement of characteristics such as mean size, shape and spa

tial orientation of the precipitation particles in the radar resolution volume. These 

characteristics are described in terms of the back scattering matrix elements. The 

elements of the back scattering covariance matrix or some combination of them are 

used to compute the polarimetric variables. Several radar observables can now be 

estimated (Bringi and Chandrasekar, 2001). 

2.2.1 Doppler spectral moments 

The observed shape of the Doppler spectrum of co-polar signal can be approxi

mated to be Gaussian (Doviak and Zrnic, 1993; Bringi and Chandrasekar, 2001). Let 

S(v,9) denote the Gaussian spectrum model. The parameter vector 9 = [pvmav] 

describes the spectral moments of the co-polar signal. The spectral model can be 

written as (Bringi and Chandrasekar, 2001) 

at a\ P J 0 - I'm)2) , 2TS 

where pn is the noise power. The corresponding covariance matrix is given by 

A2 J I A 
+pnS(k) (2.7) 

k,l = 1,2,.., N. 

where Ts and A are the pulse repetition time (PRT) and wavelength respectively. S(.) 

is the Kronecker delta function. The zeroth, first, and second spectral moments have 

been used both quantitatively and qualitatively for meteorological applications. 
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2.2.1.1 Reflectivity factor 

The back-scattering cross section per unit volume (rj) is commonly referred to as 

radar reflectivity. It is conventional in radar meteorology to express rjhh = (4Tm\Shh\2) 

(H-channel), in terms of equivalent reflectivity factor (Ze) as 

A4 

T^Vhh (2.8) 
7T3|A,X,| 

where Kw is the dielectric factor of water. The mean received power from a resolution 

volume at range r0 is related to the radar reflectivity at range r0 as 

Pr(r0) = 
cT() \^2PtG2

0] 
. (4TT)3 . 

'IT9B<PB' 

81n2 _ 
Wro) (2.9) 

The equivalent reflectivity factor Zh (H-channel) is related to the mean received power 

using (2.8) and (2.9) as 

Zh 
1 (± f (4vr)3 1 

U2PtGg] 
" 81n2 " 

_TT0B<pB_ 
yr2

0Pr(r0) (2.10) 

which is expressed in mm&m x or dBZ in decibel scale. The reflectivity factor for 

the horizontally polarized signal in dBZ can now be written as 

Zh[dBZ] = Pc0[dBm) + C + 20 log r0 [k rn (2.11) 

where C is the radar constant expressed in dB. r0 is the range in km and P^0 is 

received power of the horizontally polarized signal expressed in dBm. The radar 

constant C is given by 

C= 10 log 
10: ,21 

7r5|A'„ I2 \cTr 
r (^)31 
[x2PtGl\ 

' 81n2 " 

TT6B<PB_ 
X' (2.12) 

and all the parameters in (2.12) are expressed in SI units (for example, CSU-CHILL 

radar system has C ~ 75 dB). The received mean power is estimated as 
N-l 

P» = ^Hv^k>hk(k) (2.13) 
k=0 

Pt = G,. + 101og(A) (2.14) 

where Gr is the digital receiver gain and is obtained from a thorough receiver calibra

tion procedure. The reflectivity in the vertically polarized channel is also estimated 

as described above. 
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2.2.1.2 Mean Doppler velocity 

In addition to the received power Doppler weather radars have the ability to 

measure both transmitted as well as received signal phase. The relative phase shift of 

the received signal from the scatterers in the resolution volume is due to the Doppler 

shift caused by the motion of the particles. This phase shift is used to estimate the 

radial velocity of the particles in the resolution volume. The mean Doppler velocity 

v within the resolution volume is obtained from the lag-1 auto-correlation estimate 

i N~2 

RW = lv E M * + n)v*hh(k) (2.15) 
fc=0 

v = V arctan(Mll) (2.16) 
4vrT, 

2.2.1.3 Doppler spectral width 

The radar resolution volume consists of a large number of hydrometeors with 

widely varying velocities. The received signal has Doppler velocity spread about a 

mean Doppler velocity. This Doppler spectral width is indicative of the turbulence of 

the medium within the resolution volume. Assuming a Gaussian spectral shape for 

meteorological echo the Doppler spectrum width is estimated as 

. A 

2TTTS v 2 

2.2.2 Polarimetric variables 

The back-scattering properties of the hydrometeors vary with the incident polar

ization state due to the shape and orientation of these particles. Polarimetric vari

ables provide addition information about the hydrometeors and also enable improved 

quantitative measurements of precipitation. 
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2.2.2.1 Differential reflectivity (Zdr) 

Differential reflectivity is defined as 

z* = 101og(^F))=10bg(|) (2-18) 

, is a measure of mean particle shape. For example, rain drops are oblate in shape 

and result in positive Zdr. 

2.2.2.2 Complex co-polar correlation (phv) 

The lag 0 complex correlation between the co-polar signals is given by 

J V - l 

Rvvhh = -J2v^kyyhh(k) (2.19) 

The magnitude and phase of co-polar correlation coefficient is given by 

| pHV(0) \= ' J ^ L (2.20) 
VPhVPv 

arg Kvhh = i'to = 4>dP + 6 (2-21) 

where 4>,ip is the differential propagation phase shift and 5 is the differential phase 

shift upon scattering. If we assume Rayleigh scattering then 8^0. 

2.3 Single versus distributed radar environments 

Current weather surveillance radar systems deployed by U.S. agencies called the 

Next Generation Radar (NEXRAD) and the European weather radar network are 

monolithic radars designed for long-range coverage with single-beam antennas. How

ever, these long-range monolithic radars have a variety of shortcomings that limit the 

systems ability to meet the requirements of its varied end-users. The spatial coverage 

limitations are imposed by the curvature of the Earth as shown in Fig.2.2. There 

is no coverage at low altitudes far away from the radars and the data is inadequate 
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for many applications. The NEXRAD system cannot make measurements for ap

proximately eighty percent of the troposphere's volume below 3 km altitude. This 

inability constrains quantitative precipitation estimates near the surface and limits 

the systems ability to detect the complete vertical structure of most tornadic storms. 

The spatial resolution of the measurements at far ranges is insufficient since the radar 

beam broadens as a function of range. The cross-range resolution at far ranges span 

between 1 km to 4 km, therefore these systems are incapable of resolving sub-km 

scale structures in precipitation. The current radar systems operate in " sit-and-spin" 

mode. This scan strategy restricts the maximum elevation angle (currently 20 de

grees for NEXRAD), mainly to provide an acceptable scan update time. Despite the 

tremendous capabilities of monolithic radars with large single-beam antennas insuffi

cient spatial and temporal resolution coupled with limited spatial coverage near the 

surface impedes quantitative precipitation estimation, detection and warning of tor

nadoes and flash floods. A networked radar environment concept has been proposed 

by Chandrasekar and Jayasumana (2001) to mitigate the above mentioned limitations 

of monolithic radars. The basic concept of the networked radar environment is to be 

able to provide good coverage in terms of accuracy and resolution to a large area 

through a network of radars operating as one system. 

The U.S National Science Foundation established an Engineering Research Center 

titled the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA), 

formed by a consortium of four universities (listed alphabetically), Colorado State 

University, University of Massachusetts (lead university), University of Oklahoma, and 

University of Puerto Rico and partnership with industry and government laboratories 

to create the underlying science and engineering basis for the paradigm of networked 

radars applied to hazardous localized weather detection, tracking and predicting. 

Many challenges associated with the operation of a networked radar environment is 

described in Chandrasekar et al. (2004). 
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Figure 2.2: Illustration of the earth's curvature problem encountered in radar opera
tions (NRC, 1995). 

Distributed Collaborative Adaptive Sensing (DCAS) is a new approach advocated 

by CASA to mitigate the coverage limitations that occur in long-range radars due 

to curvature of the Earth. The primary component of DCAS is a networked radar 

system which consists of a dense collection of radars. In order to make DCAS econom

ically viable the radars operate at higher frequencies such as X-band and must utilize 

solid-state transmitter which makes them highly reliable and efficient. The individ

ual radar nodes are spaced appropriately to overcome blockage due to the Earth's 

curvature. Junyent and Chandrasekar (2009) describe the radar network configura

tions and characterizes them based on resolution, coverage area and sensitivity. The 

degradation caused by beam spreading is much smaller for DCAS when compared to 

long-range radar within the coverage region. 

Collaborative operations with many radar nodes is seen as a means to achieve 

greater sensitivity, precision, and resolution than is possible with a single long-range 
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radar. The gain of collaborative operations (network gain) is obtained by coordi

nating the scans of multiple radars to observe the same precipitating atmospheric 

phenomenon and jointly processing the observations from multiple beams with dif

ferent view angles of the same scattering region. Adaptive refers to the ability of 

the individual radars in the network to rapidly reconfigure in response to dynamic 

weather conditions. The configurations of the radar waveforms, signal processing 

and scan strategy change in a manner that optimizes the networked radar systems 

ability to respond to competing end-user demands. For example, a DCAS radar 

network might pinpoint specific meteorological regions of interest with high spatial 

resolution for public warning while simultaneously mapping the horizontal wind field 

associated with the parent thunderstorm and providing quantitative precipitation es

timates for input to distributed hydrological models. For example. Wang et al. (2008) 

describes the development of adaptive scan strategy for dual-Doppler observations in 

a networked radar environment to map wind fields. The system accomplishes this 

by continually adjusting the scans of multiple coordinated radars, all in response to 

changing weather. 

2.4 CAS A first generation DCAS system 

The new paradigm of DCAS has been instantiated in CASA's first integrative 

project (IP1) test bed. The IPl test bed is an end-to-end systems used to develop and 

demonstrate enabling technologies. The IPl radar network implementation consists of 

four polarimetric weather radar nodes (designated with the following FCC identifiers: 

KSAO, KRSP, KCYR, and KLWE) shown in Fig. 2.3. The geographic location of 

the four radars is shown in Fig.2.4 and their geolocations listed in Table 2.1. 

The IPl radar, shown in Fig. 2.3, integrates transmitter, receiver and data ac

quisition subsystems in a single assembly mounted directly behind the antenna. The 

transmitter is magnetron based with limited agility on duty cycle and supported wave

forms. The transmitter delivers a peak power of 25 kW at a maximum duty cycle of 
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Table 2.1: IP1 network radar nodes location. 

Location 
Chickasha 
Rush Springs 
Lawton 
Cyril 

FCC Identifier 
KSAO 
KRSP 
KLWE 
KCYR 

Latitude ° 
35.0312 
34.8129 
34.6238 
34.8739 

Longitude ° 
-97.9567 
-97.9313 
-98.2720 
-98.2514 

Altitude m 
353.99 
414.84 
377.45 
445.30 

Figure 2.3: The four polarimetric radars forming the IP1 radar network. 
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Figure 2.4: Map showing the location of each radar node in the IP1 radar network. 

0.1%. The maximum pulse length is 1 fxs, which yields a maximum average power of 

25 W at the maximum Pulse Repetition Frequency (PRF) of 1 kHz.To increase the 

PRF beyond 1 kHz, the transmitter peak power is reduced from its maximum value, 

which allows an increase in duty cycle. The antenna is a center-fed reflector sup

porting dual-polarization, mounted on an agile pedestal. A remotely programmable 

Direct Digital Synthesizer (DDS), together with an Automatic Frequency Control 

(AFC) software loop, allow the system to track the transmitted frequency and to dig

itally control down-conversion frequency. The receiver output is fed into a high-speed, 

reconfigurable, data acquisition and processing system. The data acquisition system 

with 14 bit A/D front end and a data processing core built on a high-performance 

FPGA. A more detailed description of the radar systems deployed in Oklahoma can 

be found in Junyent et al. (2009). 

The four radar nodes are connected to a central data storage and control compute 

facility known as System Operation and Control Center (SOCC). The SOCC hosts a 

number of meteorological application for end users to use. The SOCC also hosts the 

Meteorological Command and Control (MCC). MCC is the software architecture that 
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performs the implementation of scan strategy in the IP1 radar network. In this closed 

loop operations, data is ingested from the individual radars, meteorological features 

are identified in this data, features are reported to end-users. The scan strategy 

of the individual radar nodes in the networked radar system is based on detected 

features and end-user requirements. MCC is interfaces the radar control and adaptive 

scanning algorithms to the incoming real-time data stream. This enables adaptive 

steering without the need for an radar operator. The communication infrastructure 

provides a sustained data rate of 4 MBps between the nodes and SOCC. A more 

detailed description of the MCC and its performance can be found in Zink et al. 

(2008). 

During the last three years the IP1 radar network has been operational in many 

Intensive Operations Periods (IOP). IP1 radar network has collected an extensive 

data set during the last three years. The data products generated by the radars is 

a result of the waveforms and advanced signal processing software implemented on 

the radar nodes. The development and evaluation of the waveform and processing 

algorithms are described in detail in this dissertation. In addition, the data products 

of the IP1 radar are further used in the application of networked waveform system 

and networked resolution enhancement technique developed in this research. 
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CHAPTER 3 

SPECTRAL PROCESSING FOR DUAL POLARIZATION WEATHER 

RADARS 

3.1 Introduction 

Doppler weather radars have traditionally used auto-covariance based estimators 

to obtain the spectral moments and polarimetric variables (Doviak and Zrnic, 1993; 

Bringi and Chandrasekar, 2001). Advance methodologies using spectral processing 

has been studied in the past decade and it have been found that spectral processing 

offers several benefits. Spectral processing must be extensively used to phase coded 

signals for range ambiguity mitigation (Siggia, 1983; Sachidananda and Zrnic, 1999; 

Bharadwaj and Chandrasekar, 2007). Spectral processing for clutter suppression has 

showed improved performance for uniform pulse repetition time and staggered wave

forms (Siggia and Passarelli, 2004; Sachidananda and Zrnic, 2000). Advantages of 

spectral processing algorithms with polarimetric radars has been shown with data 

collected by CSU-CHILL (Seminario et a l , 2001; Moisseev et al.. 2006; Moisseev and 

Chandrasekar, 2007; Chandrasekar and Bharadwaj, 2009). The continuing advances 

in digital computing makes application of spectral processing in weather radars possi

ble. Spectral processing is extensively used in real-time on the first generation CASA 

(Collaborative Adaptive Sensing of the Atmosphere) X-band radar network (Bharad

waj et al., 2007). Although, spectral processing offers many benefits there are certain 

limitations of using spectral processing when compared to time domain processing. 



The impact of spectral processing on the spectral moments and polarimetric vari

ables is described in this chapter. The effect of processing window on the accuracy of 

the estimated parameters is described in Section 3.2. Section 3.3 describes the ground 

clutter filter methodology in spectral domain while the performance of polarimetric 

retrieval using spectral clutter filter is described in Section 3.4. The results of spectral 

processing applied to data collected from CSU-CHILL radar is presented in Section 

3.5 and finally Section 3.6 summarizes the findings about spectral processing. 

3.2 Effect of window function 

Spectral processing to estimate the spectral moments requires the use of standard 

window function to minimize the finite sample window effect. A rectangular window 

is naturally applied due to finite dwell time during the integration cycle. This leads 

to spectral leakage because the first side-lobe of rectangular window is only 13 dB 

below the main-lobe. Therefore, standard window functions are applied to estimate 

the power spectral density using the periodogram estimate. Let v = [vi v<2 v3 ... vN]T 

be the N samples of the received signal from a given resolution volume. It is assumed 

that v is a circular symmetric complex Gaussian random vector A/"(0, S) with a 

multivariate density function given by 

/ ( T > = i^=«p(-vi'E" ,v) <31) 

where £ = Evv^ is the covariance matrix of the complex vector v and H represents 

a Hermitian operator. Let W = diag (dim(io) iw/||w;||2) be the window matrix ap

plied to the received signal v where w is the time domain window function. The 

spectral coefficients are obtained by applying the normalized DFT operator $ (i.e., 

&<&H = I ) . The modified DFT matrix that includes the effect of the window function 

is given by $ m = 3>W'. It is easy to see that ||v||2 = ||<&mi?||2, which implies the 

spectral coefficients provide an unbiased estimated of the signal power. The spec

tral coefficients have a zero mean multivariate circular symmetric complex Gaussian 
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A = 11 cm, av = 4 m/s , SNR=20 dB, PKT=1.0 ms, \phv(0)\ = 0.99 
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- s p e c t r a l - C h e b y s h e v 80 dB 
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Figure 3.1: Comparison of standard deviation of spectral moments and polarimetric 
variables as a function of number of samples, (a). Reflectivity (b) Mean Doppler 
velocity (c). Differential reflectivity and (d). Differential propagation phase shift. 

distribution whose covariance matrix is given by 

$ m £ * H (3.2) 

The power spectral coefficients s = \&mv\2 is a multivariate exponential distribu

tion (Goodman, 1963; Zrnic, 1980; Bringi and Chandrasekar, 2001). It is important 

to observe that the diagonal elements of T are not equal. The analytical analysis 

of such heteroskedastic Gaussian process is beyond the scope of this chapter. How

ever, the impact of window functions on the estimates of Doppler spectral moments 

and polarimetric variables will be presented based on simulations. Received signal 

for dual-polarization radars are simulated based on the methodology presented by 

Chandrasekar et al. (1986). 

Signals of longer length are simulated and a rectangular window is applied to 

simulate the rectangular window effect that naturally occurs due to finite dwell time. 
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A = 11 cm, N = 64, SNR = 20 dB, PKT= 1.0 HE, jp,,„(0)| = 0.99 

(c) 

- pulse—pair 

- spectral-Hamming 

- specrral-Chebyshev 80dB 
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Doppler Spectral Width (m/s; 

2 4 
Doppler Spectral Width (m/s) 

Figure 3.2: Comparison of standard deviation of spectral moments and polarimetric 
variables as a function of Doppler spectral width, (a). Reflectivity (b) Mean Doppler 
velocity (c). Differential reflectivity and (d). Differential propagation phase shift. 
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The simulations are performed for an S-band radar system and the signal-to-noise 

ratio, SNR=20 dB, is selected minimize the impact of noise on the performance of 

spectral processing and co-polar correlation coefficient, phv = 0.99 , is used. Such high 

values of phv are indicative of rain and it directly influences the error statistics of the 

polarimetric variables (Bringi and Chandrasekar, 2001). The impact of the processing 

window on the spectral moments and polarimetric variables are analyzed based on the 

standard deviations or accuracy of the estimates. The Hamming and 80 dB Chebyshev 

processing windows will be considered in this section and its performance will be 

compared with the auto-covariance or pulse-pair estimates of spectral moments and 

polarimetric variables. The spectral moments and polarimetric variables are obtained 

as described in Bringi and Chandrasekar (2001). The standard deviation of of the 

spectral moments and polarimetric variables for av = 4 m/s as a function number 

of samples is shown in Fig.3.1. Figure 3.1(a), (b), (c), and (d) show the standard 

deviation of the estimated reflectivity, mean Doppler velocity, ZDR and differential 

phase shift respectively. It is clearly observed that the standard deviation of estimates 

from spectral processing using a processing window is higher than that obtained from 

pulse-pair. The standard deviation of reflectivity increases by 0.4-0.5 dB depending 

on the processing window. The accuracy of mean Doppler velocity is also degraded 

by 0.3-0.4 m/s. The standard deviation of ZDR and differential phase are increased 

by 0.1-0.2 dB and 0.5-1.5 degrees respectively. The increase in standard deviation is 

directly related to the spectral side-lobe performance of the processing window. 

The standard deviation of the estimated spectral moments and polarimetric vari

ables as a function of spectral width is shown in Fig. 3.2. The increase in standard 

deviation of reflectivity, ZDR and differential phase is much more for narrower spec

tral width (ay < 2m/s) when compared to larger spectral width (ay > 2m/s). There 

is an increase of 0.2-0.3 dB in the standard deviation of ZDR for narrower spectral 

width and an increase of 0.1-0.15 dB for larger spectrum width. The increase in 
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standard deviation in reflectivity is also significant. The accuracy of reflectivity is 

degraded by 0.5-0.6 dB while that of differential phase is degraded by 1-3 degrees. 

The degradation of accuracy is consistent for all the parameters when a process

ing window is used. The use of more aggressive processing window will significantly 

degrade the accuracy of the spectral moments and polarimetric variables. It is im

portant to acknowledge the fact that spectral processing that uses processing window 

does have a drawback of increasing the standard deviation of spectral moments and 

polarimetric variables. 

3.3 Spectral clutter filtering 

Spectral processing offers a better way to effectively mitigate ground clutter con

tamination. Ground clutter echo is the signal back-scattered from stationary ground 

targets. Since ground clutter echoes are from the received signals of stationary targets 

their mean Doppler velocity is zero. This property of clutter has been used to filter 

ground clutter by designing high pass filters that pass weather signals while notching 

clutter signals. Traditionally ground clutter filtering has been performed using infinite 

impulse response (IIR) filters (Groginsky and Glover, 1980). However, such simple 

filtering techniques induce bias in the estimated spectral moments. The rapid growth 

in signal processor technology has tremendously increased the computational power 

of the signal processor. The current signal processor employed in weather radars 

are general purpose compute servers. Hence, it is feasible to incorporate spectral 

processing for clutter filtering. 

The observed shape of the Doppler spectrum of co-polar and clutter signal can 

be approximated to be Gaussian (Doviak and Zrnic, 1993; Bringi and Chandrasekar, 

2001). Therefore, we model the observed signal as having two Gaussian spectral 

components, one for co-polar signal and one for clutter signal. Let S (v, 0) denote 

the Gaussian spectrum model. The parameter vector 6 = [pc ac p v w] describes the 

spectral moments of the clutter and co-polar signals. The subscripts c indicates the 
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spectral moments of clutter signal. The spectral model can be written as (Bringi and 

Chandrasekar, 2001) 

S(v,0) = -g^expl-^U (3.3) 

p j ( v - t Q 2 ) , 2TS 

v/27rtt'2 I 2u;2 j A 

where pn is the noise power. The corresponding covariance matrix is given by 

-,(M,fl) = ft^_*V?(*-0'} + (,4) 

fc,Z == 1,2,..,JV. 

where Ta and A are the pulse repetition time (PRT) and wavelength respectively. 5 is 

the Kronecker delta function. Siggia and Passarelli (2004) suggested a methodology 

to use a Gaussian model to filter the ground clutter signal. The following paragraphs 

describe the methodology used to filter clutter in the spectral domain. The main idea 

of fitting a Gaussian model to the observed signal spectrum is the same as described by 

Siggia and Passarelli (2004) but there are differences in the processing steps involved 

in filtering the clutter signal. 

A window function is applied to the received signal before the periodogram es

timate of the spectrum is obtained. The window function has an impact on the 

accuracy of the estimated moments as described in the the previous section. The first 

step in the filtering process is the estimation of the spectral noise floor. The spectral 

coefficients are sorted and the mean of the lower quantile gives the spectral noise 

floor estimate. The number of spectral coefficients within a quantile is empirically 

obtained and usually about 25% of the total number of spectral coefficients is a good 

enough. It is important to note that the spectral noise floor is overestimated when it 

is estimated from aliased spectrum or when spectral width is very large. The noise 

power obtained from spectral noise floor can be greater than the system thermal noise 



floor. This increase in noise floor is due to the phase noise of the transmitter. Parts 

of the signal power spills overs as noise due to the system phase noise. 

The next step is obtaining the clutter spectral model based on the that clutter 

spectrum is centered at zero Doppler velocity. Clutter spectral width is very narrow 

and increases with scan speed. Clutter spectral width is on the order of 0.1 m/s to 0.3 

m/s. The processing window function used also widen the spectral width of clutter. 

A fixed clutter spectral width is assumed and the effect of the processing window is 

applied to obtain the clutter spectral width. The clutter model power is obtained 

by fitting the a least squares curve to the spectral coefficients around zero Doppler 

region. Typically, three points are sufficient as clutter is very narrow compared to 

the frequency resolution of the spectrum. 

The number of spectral coefficients to notch is obtained by the intersection of the 

clutter spectral model and the spectral noise floor, pn. The number of notch points 

n is given by 

(3.5) 

where |_-J is the floor function to extract the integer part. The clutter signal is notch 

filtered with n spectral coefficients around zero Doppler. 

An initial estimate of the spectral moments is obtained from the notch filtered 

spectrum. A Gaussian model of the weather echo is obtained using the moments. 

The notch filtered region is interpolated with the Gaussian model. The process of 

interpolation is recursively done till the a convergence in the estimated spectral mo

ments is reached. The convergence of the recursive interpolation is set by the change 

in estimated power and velocity. The iterations are stopped when change in power 

is less than 0.1 dB and change in velocity is 0.05% of the Nyquist velocity. The in

terpolation of the notched region minimizes the bias in the power and velocity when 

the weather echo and clutter co-exist. However, the recovery of weather echo is not 
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Figure 3.3: Illustration of spectral clutter filtering using a Gaussian model. 

satisfactory when weather signal with narrow spectral width overlays on the clut

ter signal. This shortcoming is inevitable for any clutter filtering technique. This 

technique is summarized in Fig.3.3 where a simulation is carried out at S-band with 

SNR = 20 dB and at clutter-to-signal ratio, CSR = 45 dB with Ts = 1 ms. The 

dashed line shows the clutter model obtained from the observed spectrum while the 

solid black line shows the weather echo. The diamonds indicates the notch filtered 

region that has been interpolated using a Gaussian model. 

Simulations were carried out for an S-band radar (A = 11 cm) with N — 64 for a 

waveform operating at a pulse repetition time, Ts = 1 ms. The signal-to-noise ratio 

was set at 20 dB and the clutter-to-signal ratio was set to 40 dB. The simulations 

were performed for spectral widths of av = 2 rn/s and av = 4 m/s. The errors in 

the estimated moments obtained from spectral processing using a 80 dB Chebyshev 

processing window were observed by varying the mean Doppler velocity. Figure 3.4 
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shows the bias and standard deviation of estimated reflectivity, mean Doppler velocity 

and spectral width. The bias in reflectivity (Fig. 3.4(a)) is within 1 dB for larger 

spectral width but is much larger than 1 dB for narrow spectral width when the 

weather echo is in the vicinity of zero Doppler velocity. This is understandable as 

most of the weather echo is notched out.The standard deviation of reflectivity is on 

the order of 2 dB. The bias and standard deviation of mean velocity and spectral 

width (Fig. 3.4(b)& (c)) are within acceptable range. 

3.4 Retrieval of polarimetric variables 

Hitherto, we considered the retrieval of Doppler spectral moments in the presence 

of ground clutter. In this section we focus on the retrieval of polarimetric variables 

that are estimated in the simultaneous transmit and receive (STAR) mode or hybrid 

mode (Bringi and Chandrasekar, 2001). In the STAR mode only the co-polar signals 

are available which provide us differential reflectivity (Zdr), differential propagation 

phase {(pdp) and lag-0 co-polar correlation coefficient (ph.v)- Since, signals from two 

channels are used to estimate the polarimetric variables it is very critical that identi

cal processing be performed on both the horizontal (H) and vertical(V) polarization 

channels. There are two processing steps that can decorrelate the H-channel and 

V-channel signals. Firstly, the clutter power and therefore the clutter model, are not 

identical for both the channels. The number points to notch is obtained as 

n — max(nh,7iv) (3.6) 

where n-h and nv are the notch widths obtained as described in Section 3.3. Secondly, 

the spectral noise floor in the H-channel and V-channel are not identical. Since 

the polarimetric variables are obtained from the complex spectral coefficient it is 

important to notch identical points. Although, the mismatch in notch points do not 

affect the complex co-polar correlation it is necessary for ZDR computation. The 

errors in the estimated polarimetric variables are shown in Fig. 3.5. The simulations 
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are performed by randomly varying the polarimetric variables of clutter and uniformly 

varying the mean Doppler velocity of the weather echo. The simulations parameters 

are the same as in Section 3.3. The bias in estimated ZDR is within 0.1 dB for larger 

spectral width but increases beyond 0.1 dB when the spectral width is narrow and 

the weather echo is close to zero Doppler velocity (see Fig. 3.5(a)). The standard 

deviation of ZDR is 0.5-0.6 dB even when the weather signal not close to zero Doppler 

velocity. This increase is due to the processing window applied for minimizing spectral 

leakage. The standard deviation of estimated (j)dp is about 5 degrees for narrow 

spectral width when the echo is not close zero velocity and there is negligible bias 

in <j)dp estimate as shown in Fig. 3.5(b). There is a small drop in phv which is less 

than 0.01 as seen in Fig. 3.5(c). This drop is due to the residual clutter in the notch 

filtered signal. 

3.5 Results 

The spectral clutter filtering methodology was implemented raw time series data 

collected with the CSU-CHILL radar. The CSU-CHILL radar operates at S-band 

(A = 0.11 cm) and operates with two identical transmitter for horizontal polarization 

and vertical polarization. Time series was collected with a waveform operating at a 

pulse repetition time of 1 ms. The data obtained is from a snow storm with blizzard 

conditions on Dec 20, 2006 at 23:58:19 UTC. The raw time series was filtered using a 

spectral processing which used a 80 dB Chebyshev window with Ar = 64. The snow 

storm is spread over a large area in northern Colorado. The coverage volume of the 

radar include very strong ground clutter from the Rocky mountains. Figure 3.6 shows 

the filtered and unfiltered spectral moments. The strong clutter from the mountains 

can be observed from 210-300 degrees in azimuth in addition to some strong ground 

clutter close to the radar (Fig. 3.6(a)). Most of the clutter is suppressed using spectral 

processing as seen in Fig. 3.6(b) except for regions where there is residual clutter in 

the mountains. The Doppler velocity in clutter contaminated area is zero as seen over 
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the mountains (Fig. 3.6(c)). However, the filtered signal is able to retrieve the velocity 

even in the strong clutter areas of the mountains (Fig. 3.6(d)). The spectral width 

over the mountain is very narrow before filtering (Fig. 3.6(e)) but shows increased 

spectral widths after filtering which is more indicative of blizzard conditions. The 

polarimetric variables before and after filters are compared side-by-side in Fig. 3.7. 

The features of ZDR are more prominent in rain when compared to snow. However, 

the clutter contaminated ZDR close to the radar and over parts of the mountain are 

negative before filtering (Fig. 3.7(a)) but are recovered at most points using spectral 

processing (Fig. 3.7(b)). The improvement in differential phase measurements can 

be seen in the region close to the radar (Fig. 3.7(c) &(d)). 

3.6 Summary 

Spectral processing will be ubiquitous in the near future and therefore it is im

portant to understand the performance of the processing algorithms that use spectral 

processing. Based on the results from simulations it its observed that the accuracy 

of both, spectral moments and polarimetric variables, degrade when estimated from 

spectral processing that use processing window. It is recommended to use spectral 

processing based on the processing needs. Spectral processing is extensively used in 

clutter filtering and overlaid echo suppression. The performance of spectral clutter 

filter were presented for polarimetric variables. The results presenting the statistics 

were based on simulations. In addition, the performance of spectral clutter filter

ing for polarimetric variables were demonstrated with raw time series collected by 

CSU-CHILL radar. 
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Figure 3.7: Comparison of of estimated polarimetric variables with pulse-pair and 
spectral processing (a) Differential reflectivity from pulse-pair (b) Differential reflec
tivity from spectral processing (c) Differential phase from pulse-pair(d) Differential 
phase from spectral processing (e) Co-polar correlation coefficient from pulse-pair and 
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CHAPTER 4 

WAVEFORM DESIGN AND PROCESSING FOR THE CASA 

X-BAND RADAR SYSTEMS 

4.1 Introduction 

The Center for Collaborative Adaptive Sensing of the Atmosphere (CASA), an 

engineering research center (ERC) established by the National Science Foundation 

(NSF) deployed its first generation network of four low-power, short-range, X-band, 

dual-polarized Doppler weather radars known as Networked Radar System (NE-

TRAD). The short range CASA radars have range overlay and velocity folding prob

lems with conventional pulse-pair processing. The first testbed of X-band radar 

systems (developed within the ERC) is deployed in central Oklahoma called IP-1 

(Integrated Project 1). The IP1 radar network consists of four polarimetric weather 

radar nodes at Cyril (KCYR), Chickasha (KSAO), Rush Springs (KRSP), and Lawton 

(KLWE). X-band radars with conventional uniform pulsing will have low unambigu

ous velocity, and increasing the PRF will result in multiple trip overlays since storms 

can extend over a large distance. In addition, the radar systems deployed use a 2° 

beam width antenna and are intended to make observation close to the ground. The 

radar observations with such a system will be severely contaminated by ground clut

ter (Junyent et al., 2009). The major challenges associated with the deployment of 

such a networked of short range of radar has been described by Chandrasekar et al. 

(2004). It is important to address all the above mentioned issues when designing 

waveforms and associated processing algorithms. 



The main objective of designing waveforms is to provide spectral moments and 

polarimetric variables with desired accuracy and to mitigate the effect of clutter and 

range-velocity ambiguity. Traditionally, operational radars have operated with simple 

uniform PRF waveforms with IIR/FIR clutter filter and pulse-pair processing (Gro-

ginsky and Glover. 1980; Doviak and Zrnic, 1993; Bringi and Chandrasekar, 2001). 

Specific waveforms and processing methodologies have been proposed to mitigate 

range-velocity ambiguities and ground clutter contamination. Phase coding tech

nique to mitigate range overlaid (Siggia, 1983; Sachidananda and Zrnic, 1999) and 

staggered waveforms for velocity unfolding (Zrnic and Mahapatra, 1985; Holleman 

and Beekhuis, 2003; Joe and May, 2003: Cho, 2005b) have been proposed and evalu

ated individually. Similarly clutter filtering has been proposed and tested (Groginsky 

and Glover, 1980; Sachidananda and Zrnic, 2000; Siggia and Passarelli, 2004; Cho, 

2005a) with primary emphasis being only on clutter filtering. However, waveforms 

and processing methodologies that jointly implement phase coding, dual-PRF and 

ground clutter filtering into an operational system using adaptive spectral processing 

has seldom been used operationally. This chapter presents results from CASA's IP1 

radar system that takes on the challenging task of combining phase coding, dual-PRF 

and adaptive spectral processing into an operational system. The advent of modern 

signal processing techniques and computational power enables us to use complex 

waveforms and processing to meet the requirements. 

This chapter presents waveform design and processing methodologies that jointly 

consider clutter suppression, ambiguity mitigation, operational requirements and 

hardware limitations for CASA's IP1 radars. Section 4.2 presents the challenges 

associated with waveform design for X-band. The hardware and operational require

ments for CASA's IP1 radar network are presented in Section 4.3. The performance 

of waveforms at X-band for clutter suppression is described in Section 4.4. Section 

4.5 describes the dual-PRF waveform for ambiguity mitigation and performance of 

dual pulse repetition frequency waveform in the presence of clutter and a novel spatial 
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filter to minimize the errors in unfolding velocities. Section 4.6 presents the results 

from the waveform implemented in the operational IP1 radar network. A description 

of the waveforms, the real-time environment and performance is presented in Section 

4.6. The chapter concludes with a summary in Section 4.7. 

4.2 Waveform design perspective 

The objective of waveform design for Doppler weather radars is to provide a wave

form that minimizes errors and ambiguity in Doppler spectral moment estimates. The 

following sections describe the issues that are considered when designing waveforms 

for Doppler weather radars. 

4.2.1 Range-velocity ambiguity 

Doppler weather radars transmitting pulses with uniform pulse repetition fre

quency (PRF) have a fundamental limitation on maximum unambiguous range (rmax) 

and maximum unambiguous velocity (vmax) given by 

T max ^ max Q V^--U 

In (4.1), A is radar wavelength and c is the velocity of light. The rmaxvmax limit 

reduces by a factor of three when the wavelength is changed from S-band to X-band. 

There is always a trade off between rmax and vmax (range-velocity ambiguity). Pre

cipitation particles can be distributed over a large area and the dynamic range of 

the radar reflectivity can be as high as 80 dB which results in range overlay. Veloc

ity measurements can span ±50 m/s in severe storms resulting in velocity folding. 

Networked radar system deployed by CASA are primarily for "Targeted applications" 

such as tornado detection, flash flood monitoring, and hydrological applications. Such 

applications will have range overlay and velocity folding problems with conventional 

pulse-pair processing. The IP1 testbed with smaller X-band radar systems developed 

within CASA (Junyent et al., 2009) is a facility to demonstrate networked radar op

erations for targeted applications. Figure 4.1 shows the range-velocity limitation of 
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an X-band radar compared to S-band radar. X-band radars have a low unambiguous 

velocity due to their short wavelength, and increasing the pulse repetition frequency 

(PRF) will result in multiple trip overlays since storms can extend over a large dis

tance. It can be observed that range-velocity ambiguity is more severe for X-band 

radars compared to the conventional S-band. For example, a commonly used one 

millisecond PRT at S-band results in an unambiguous velocity of only 7.5 m/s at 

X-band compared to the 25 m/s at S-band. 

Range Velocity Ambiguity 

Pulse Repetition Frequency (kHz) 

Figure 4.1: Comparisons of range-velocity limitations for S-band and X-band radars 

Several range-velocity ambiguity mitigation schemes have been proposed in the 

past. Staggered pulse-repetition-time (PRT) pulsing can be used to increase the un

ambiguous velocity Zrnic and Mahapatra (1985), and Golestani et al. (1995) extends 

this concept for dual-polarized radars. Random phase coding of the transmitted pulse 

was proposed by Siggia (1983) to mitigate range overlay, and a systematic phase code 

and associated processing was suggested in Sachidananda and Zrnic (1999). A sys-
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tematic phase code has been known to give better performance than random phase 

codes but requires a phase controlled amplifier klystron, traveling wave tube (T'WT) 

or solid-state transmitter. All the above methods have been tested with S-band and 

C-band radars. 

4.2.2 Ground Clutter 

The CASA concept advocates radars designed for "targeted applications" at short 

ranges. A dense network of short range radars mitigate the Earth's curvature prob

lem and provide finer resolution with smaller antennas when compared to their S-

band counterparts. However, radar observations at short ranges are contaminated by 

ground clutter. Ground clutter is the radar return from non-meteorological targets 

that bias the reflectivity and velocity estimates. Ground clutter at close range could 

come from side lobes or main lobe of the antenna, depending on the radar altitude 

or the phenomena being observed. Specifically, designing radars for short-range op

eration needs emphasis on clutter mitigation. At close ranges the equivalent radar 

reflectivity due to clutter can easily be in the 40 to 60 dBZ range, whereas the phe

nomena being observed, such as light rain or tornadoes may have echoes in the range 

of 20 to 40 dBZ. Therefore, the waveform must consider clutter mitigation along with 

range-velocity ambiguity. 

4.3 Design Considerations 

Waveforms for the individual radar nodes are based on IP1 operational require

ments siich as scan speeds, volume coverage pattern, and system/hardware limitations 

(imposed by budgetary/market constraints) in addition to their ability to mitigate 

range-velocity ambiguities and suppress ground clutter echoes. The waveform con

sidered for X-band implementation includes phase coding and multi-PRF capabilities 

using spectral processing. The advent of high-speed digital processors and exten

sive computational power with the capability of real time spectral processing makes 
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such waveforms viable for operational use. The number of waveforms for the radar 

is constrained by the hardware and system requirements. The following sections de

scribe the requirements for the IP1 radars that impose constraints on the IP1 radar 

waveform. 

4.3.1 Operation Requirements 

The main goal of CASA is to provide an efficient system for hazardous weather 

detection and prediction using a collaborative network of radars operating in a closed 

loop with end-users. The radars are intended to provide short-range coverage with 

a range of 40 km for each node. In order to efficiently detect different weather 

phenomenon each radar must provide data that satisfies the recommended data spec

ifications. Each low powered radar must provide a sensitivity of at least 10 dBZ at 

30 km (unattenuated) with an accuracy of 1 dB . The radars must also provide a 

Nyquist velocity of at least 25 m/s when operating in the Doppler mode with an 

accuracy of 1 m/s at an SNR of 10 dB. The accuracy of both reflectivity and velocity 

mentioned above will be applicable in the absence of clutter filtering. In addition 

to the basic requirements there are several spatial and temporal aspects in the data 

specifications based on weather detection algorithms. One of the main requirement 

based on detection algorithms is the need for an azimuthal sampling resolution of 1 

degree. The azimuthal sampling resolution directly places a constraint on the dwell 

time and scan speed. 

The system "heartbeat" of CASA's first generation radar network is 40s. This 

means that the entire system updates its state every 40 seconds. In order to operate 

within the "heartbeat" the scan speed of the radar nodes is very high (in excess of 

15 deg/s). The radar operates in a surveillance mode to assess the overall wreather 

pattern and updates the feature repository. The captured features of the weather 

event are used to generate new radar scan strategies. 
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4.3.2 Hardware requirements 

In order to make a network of radars affordable, one of the drivers is to work with 

smaller less expensive radars, which dictates the hardware requirements. The first 

generation CASA radar systems are magnetron based with limited agility on duty 

cycle and supported waveforms. Junyent et al. (2009) gives a complete description 

of the radar system along with its features. The specifications of the radar system is 

listed in Table 4.1. The transmitter can deliver a maximum peak power of 25 kW at 

a duty cycle of 0.1%. Hence only a PRF of 1.5 kHz can be used at the peak power of 

25 kW. The transmitter can be tuned below its maximum peak power allowing one 

to increase the duty cycle, which is used to accommodate the higher PRF bursts. For 

example, a 3.3 dB reduction in peak power will enable the transmitter to pulse at a 

PRF of 3.2 kHz. A direct result of lowering the peak power to accommodate higher 

PRF is the loss in sensitivity. However, the maximum PRF that can be achieved is 

still limited by the duty cycle and any high PRF pulse train that is beyond the rated 

duty cycle has to be compensated an operating with a lower PRF. In addition to 

loss in sensitivity there will be significant frequency drifts in the magnetron due to 

temperature fluctuations if the PRF is very high. There is also a limitation on the 

ability to phase code the transmit pulses because a magnetron based system has a 

random start-up phase. Therefore, random phase coding is the only scheme that can 

be implemented. 

4.4 Ground clutter filtering 

Ground clutter echo is the signal back-scattered from fixed targets such as ter

rain, buildings, trees and non-meteorological targets. The ground clutter echo from 

antenna side-lobes or main-lobe has zero mean Doppler velocity. This property is 

used to filter or eliminate the contamination caused by ground clutter. Ground clut

ter filtering is performed by applying a notch filter centered at zero Doppler velocity. 
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Table 4.1: IP1 radar node design characteristics 

Transmitter 
Type 
Center frequency 
Peak power output 
Average power output 
Pulse width 
Polarization 
Max. Duty Cycle 
Antenna and Pedestal 
Type (diameter) 
3-dB Beam width 
Gain 
Azimuth scan rate 
Elevation scan rate 
Acceleration 
Receiver 
Type 
Dynamic range (BW=1.5 MHz) 
Noise figure 
Sampling rate 
Dynamic range (BW=500 KHz) 
Data transfer rate 
Decimation factor 
Video Bandwidth 

Magnetron 
9410 ± 30 MHz 
8.0 kW (per channel) 
12 W (per channel) 
660 ns 
Dual linear, H and V 
0.16% 

Parabolic reflector (1.2 m) 
1.80° 
38.0 dB 
up to 240°/s 
up to 30°/s 
up to 120°/s2 

Dual-channel digital 
103 dB 
6.5 dB 
100 MSps 
113 dB 
88.3 MBps 
Adjustable 
Adjustable 
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Elliptic filters have been traditionally used for clutter filtering. The advent of high 

speed digital processors enables clutter filtering in spectral domain. Siggia and Pas-

sarelli (2004) suggested an adaptive spectral filtering technique called Gaussian Model 

Adaptive Processing (GMAP) to filter ground clutter. In this chapter an adaptive 

spectral domain filter similar to GMAP is used to suppress ground clutter. The fol

lowing paragraph provides a brief description of the assumption and methodology for 

clutter filtering in the spectral domain. 

The spectral clutter filtering algorithm operates on the two polarization channels 

jointly and does not process the horizontal polarization channel and vertical polariza

tion channel independently. The assumptions made for the processing are as follows: 

i. Both clutter and weather spectral density function are Gaussian (Doviak and 

Zrnic, 1993; Bringi and Chandrasekar, 2001). The clutter contaminated weather 

echo can be modeled with a spectral density given by 

5m(M) = - ^ = c x p { - ^ } + 

-^J=eM ^5-HA., (4.2) 

where fj, = [Soc,ac,So,vm,av,N] with the subscripts "c" indicating clutter 

parameters and Ar
0 is the noise power density. 

ii. Clutter signal has a very narrow Doppler spectrum width ( 0.2-0.3 m/s) and is 

centered on zero Doppler velocity. 

iii. The spectral width of weather is greater than spectral width of clutter. 

iv. The distribution of co-polar correlation for clutter is fairly wide. |p/u.(0)| is very 

low for side-lobe clutter while it can be very high for main-lobe clutter. 

v. The co-polar correlation of precipitation is very high (0.99 or greater). 
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vi. The noise power density NQ is the superposition of system noise floor and noise 

contribution due to phase noise. 

The processing steps involved in spectral clutter filtering are as follows: 

i. A window function is applied to the received signal in both H and V polarization 

channels. The complex spectral coefficients are computed using the DFT and 

the periodogram estimate of the spectral density in both channels is estimated. 

ii. The spectral noise floor in both the polarization channel is obtained from the 

sorted power spectral coefficients. 

iii. The clutter power is computed from the samples around zero Doppler velocity 

iv. The Gaussian clutter model is fit based on the clutter power and an a priori 

clutter spectral width 

v. The Gaussian clutter model along with the spectral noise floor in each polar

ization channel is used to determine the width of the spectral clipper. 

vi. The spectral clipper and noise floor from both polarization channels are used 

to notch the complex spectral coefficients in each polarization channel. 

vii. The polarimetric variables are computed from the filtered complex spectral 

coefficients. 

viii. A Gaussian weather spectral density is recursively fit to the remaining power 

spectral density points and the notched power spectral coefficients are interpo

lated with the fitted model. 

Figure 4.2 illustrates the clutter filtering process for a clutter-to-signal ratio (CSR) 

of 20 clB (CSR is a measure of the clutter suppression ability) with a clutter spectral 

width ac = 0.3 m/s. A Gaussian clutter model is obtained from the received signal, 

and this model is used to notch the clutter spectral coefficients. The notched region 
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Figure 4.2: Clutter filtering with Gaussian spectral density fits 

is recursively interpolated with a Gaussian spectral density fitted to the remaining 

signal to obtain the filtered signal. The ability to suppress clutter and estimate the 

Doppler moments and polarimetric variables are dependent on various factors such 

as system phase noise and desired accuracy. The impact of phase noise and number 

of pulses is studied by simulating weather and clutter signal with varying properties. 

The polarimetric signals are simulated based on procedure described by Chandrasekar 

et al. (1986). In this chapter the measure of clutter contamination used is the clutter-

to-signal ratio (CSR). 

The spectral method to reject clutter is possible in coherent pulsed Doppler radar. 

However, coherent radars often have phase errors from pulse-to-pulse due to phase 

stability of the oscillator and transmitter. This random phase noise modulates the 

received signal with a random phase code which results in distribution of power from 

the coherent received signal into white noise. The amount of signal converted to noise 
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is dependent on the phase noise of the system. The ability of the system to reject 

clutter is related the effective signal-to-noise ratio that can be achieved. The effective 

signal-to-noise ratio that can be achieved is given by (Passarelli and Zrnic, 1989) 

„-se2 

S JN Re 
1 ,-562 ' (4.3) 

where 56 is the phase noise of the system in radians. For example, 59 = 0.25° results 

in SNRe = 47.20 dB. The impact of phase noise on clutter suppression ability is 

10 

9 

A = 3.19 cm; PRF = 2 kHz N = 64: SNR = 10 to 20 dB: av = 2 m/s 
• • • • • • • • i 7 i 

m 7-

o5 6 

o 
5 

V> 4 

3 

2 

1 

59 = 0.00c 

5^ = 0.25c 

59 = 0.50c 

6 

I ? 5 

• " • 4 

'o 

> 3 
_c 
T3 
05 o 

0 10 20 30 40 50 
Clutter-to-signal ratio (dB) 

o 

•59 = 0.00° 

•<J0 = O.25° 

56i = 0.50° 

0 10 20 30 40 50 
Clutter-to-signal ratio (dB) 

Figure 4.3: Standard deviation of power and mean Doppler velocity as a function of 
clutter-to-signal ratio for a weather signal with Ar = 64 samples, av = 2 m/s, and 
SNR = 10 — 20 dB. The weather echo is located at half the Nyquist velocity at 
PRF=2 kHz, 

evaluated by varying CSR and estimating the errors in the Doppler moments and 

polarimetric variables. In order to eliminate the effect of low SNR simulations are 

performed for SNR varying from 10 to 20 dB. The errors are averaged for SNR 

varying from 10 to 20 dB. The standard deviation is estimated for varying CSR with 

phase noise as a parameters. The mean Doppler velocity is selected to be half the 

Nyquist velocity so that clutter suppression ability is only affected by phase noise. 
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The standard deviations of power and mean Doppler velocity as a function of CSR 

are shown in Fig.4.3 for N = 64 and av = 2 m/s at a nominal PRF — 2 kHz 

operating at X-band. It can be observed that a system without any phase noise is 

capable of suppressing clutter up to 50 dB with acceptable accuracy while the clutter 

suppression degrades as phase noise increases from 0.25° to 0.50°. CSR = 43 dB can 

be achieved for a system with 0.25° where the standard deviation of power is less than 

2 dB and standard deviation of mean Doppler velocity is less than 2 m/s. However, 

the clutter suppression ability is lower when the accuracy of polarimetric variables 

are considered. The standard deviation of Zdr and <^p are shown as a function of 

CSR with phase noise as a parameter in Fig. 4.4. Clutter suppression up to 50 dB 

can be achieved in the absence of phase noise but only CSR — 35 dB can be achieved 

for a system with 0.25° where the standard deviation of Zdr is less than 0.6 dB and 

standard deviation of (pdp is less than 5°. It can be observed in Fig.4.3 and Fig. 4.4 

that the clutter suppression ability drops to about 35 dB for Doppler moments and 

about 30 dB for polarimetric variables when the phase noise is increased to 59 = 0.5°. 

The system phase noise plays an important role in clutter suppression ability and 

forms one of the key design parameters for pulsed Doppler weather radars. 

The number of pulses used to estimated the Doppler spectrum and filter out 

clutter has a direct impact on accuracy of the Doppler moments and polarimetric 

variables. The accuracy of Doppler moments and polarimetric variables as a func

tion of number of samples can be obtained by assuming a Gaussian spectral model 

and covariance processing (Bringi and Chandrasekar, 2001). However, the accuracy 

of Doppler moments and polarimetric variables estimated after spectral clutter sup

pression is obtained based on simulations. The accuracy of Doppler moments and 

polarimetric variables is computed for PRF — 1.6 kHz and PRF = 2.4 kHz. The 

clutter-to-signal ratio is set to 25 dB and simulations are performed for varying num

ber of pulses and with phase noise 86 = 0.25°. The standard deviations of power 

and mean Doppler velocity are shown in Fig. 4.5. The standard deviation of power 
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Figure 4.4: Standard deviation of Z^r and <pdv as a function of clutter-to-signal ratio 
for a weather signal with Ar = 64 samples, av — 2 m/s, and SNR = 10 — 20 dB. The 
weather echo is located at half the Nyquist velocity at PRF=2 kHz. 

is generally less than 2 dB while the standard deviation of velocity is within 2 m/s 

when Ar = 40 or more pulses are used. The standard deviations of Z&r and <pdp are 

shown in Fig. 4.6. The standard deviation of Zdr is less than 0.6 dB and standard 

deviation of 0dp is less than 5° when 40 or more samples are used. 

4.5 Dual-PRF waveform 

Staggered PRT and staggered-PRF techniques for extending the unambiguous 

velocity have been known for more than twro decades and are available on several 

operational Doppler weather radars, especially longer wavelength radar systems. The 

long standing problem with staggered PRT waveforms have been effective clutter fil

tering. Sachidananda and Zrnic (2000, 2002) proposed a spectral method for ground 

clutter filtering for staggered PRT and this technique was demonstrated for WSR-

88D using the KOUN radar (Torres et al., 2004). However, this technique is not 

suitable at X-band because the reduction in wavelength from S-band to X-band dra-
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matically reduces the operating Doppler spectrum range (Nyquist bandwidth) of the 

staggered PRT waveform. Moisseev et al. (2008) suggested a time-domain parametric-

method for effective clutter filtering for staggered PRT and this method is suitable 

for implementation at X-band. However, the time-domain parametric method is com

putationally intensive and is currently not a viable option for real-time operations. 

A staggered PRF provides an alternative approach to mitigate the range-velocity 

ambiguity while still enabling effective clutter filtering. 

Staggered PRF consists of a large block and typically the block size is the same 

as the integration cycle or the dwell time. For example, a dual-PRF waveform with 

K = 2 : 3 can be represented by 

Ph. = Pv 1,0,1,0,1,0,...,1,0,1,0,0,1,0,0,1,0,0, ...,1,0,0 (4.4) 

PRFi PRF2 

where ph and pv are indicator function representation of the transmitted waveform as 

described by Bringi and Chandrasekar (2001). The subscripts 'h' and V represent 

the transmit polarization state. The T's indicate the time instant when a pulse is 

transmitted and '0's indicate that no pulse is fired. Any arbitrary waveform can be 

represented using this generalized representation. Consider a waveform with K = 2 : 3 

with two different pulse spacings T\ — 2TU and T2 = 3TU where Tu is a fundamental 

pulse repetition time. The auto-correlation estimates, R\ at lag Ti and Ri at lag 7\ 

are obtained from pulse-pair estimates. The mean velocity estimate and the maximum 

unambiguous velocity are estimated as 

4nTu 
arctan (RiR^) (4.5) 

"•• = ik (4-6) 
Smaller the Tu , larger the unambiguous velocity. However the maximum unambigu

ous velocity is limited by the accuracy of the estimator in (4.5) because the errors 
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Table 4.2: Dual-PRF unfolding for a stagger ratio of 2/3. 

vx -- v2 in the vicinity 

-2va2 + 2val 

- 2 « a 2 

0 

+2va2 

+2va2 - 2vai 

of Vl correction 

—2u<a 
0 
0 
0 

+2v a i 

term V2 correction term 

—2ua9 

- 2 t ' a 2 

0 

+2t'a2 
+2«a2 

in v are inversely proportional to Tu. The best accuracy in the estimate of mean 

Doppler velocity is obtained for a stagger ratio K — 2 : 3 (Zrnic and Mahapatra, 

1985). However, the accuracy of velocity estimated from (4.5) is much higher than 

the accuracy of velocity estimated from R\ and R2. The Doppler velocities from the 

two auto-covariance estimates are obtained as below. 

Vl = | ^ r a r c t a n ( ^ i ) (4-7) 

v2 = -rTfr arctan (R2) (4.8) 
47Ti2 

The velocity folding of V\ and v2 occur at different Doppler velocities. Therefore, a 

comparison of the two velocities can be used to obtain unfolded velocities. The i'i —v2 

velocity difference remains unique within the interval ±va for a stagger ratio n = 2 : 3 

(Nathanson, 1969). The unfolded velocity is obtained as 

Vlu(2u) = l'lu(2a) + " , (4-9) 

where a is the velocity correction term. The velocity correction term is obtained 

based on the v\ — v2 velocity difference and is given in Table 4.2. 

Figure 4.7 shows a scatter plot of unfolded velocity versus true velocity for av = 

4 m/s with two different dual-PRF waveforms . Waveform-I uses PRFX = 2.4 kHz 

with Ni = 54 and PRF2 = 1.6 kHz with N2 = 40. Waveform-I provides an unam

biguous velocity va = 38.3 m/s. Waveform-II uses PRFX = 3.0 kHz with N1 = 64 

and PRF2 = 2.0 kHz with N2 = 56. Waveform-II provides an unambiguous velocity 

va = 47.8 m/s. Both waveform-I and waveform-II can provide an integration period 
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of 1° at a scan speed of 21 deg/s. It can be observed in Fig. 4.7 that the unfolding 

based on vx — v2 velocity difference provides satisfactory results. However, the pres

ence of ground clutter and clutter filtering will result in higher errors in the unfolded 

velocities. 
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Figure 4.8: Unfolding error rate as a function of mean Doppler velocity for CSR = 25 
dB and phase noise 59 = 0.25°. Waveform-I: PRFX = 2.4 kHz,h\ = 54,PRF2 = 
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The unfolding error rate for waveform-I and waveform-II after ground clutter 

filtering with CSR = 25 dB is shown in Fig. 4.8 as a function of mean Doppler 

velocity. The unfolding error rate in Fig. 4.8 is shown for Doppler spectral width 

of av = 1,2, 3 m/s and it can be observed that the unfolding errors are high at the 

Nyquist folding velocities of PRFX = 2.4 kHz and PRF2 = 1.6 kHz in Waveform-

I, and at Nyquist folding velocities of PRFX = 3.0 kHz and PRF2 = 2.0 kHz.ixi 

Waveform-II. The velocity unfolding errors are larger than 5% at the Nyquist folding 
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velocities. The presence of measurement errors in the estimated velocities at each 

PRF may results in vi — v2 velocity difference that produce outliers in the unfolded 

velocity field. Such outliers have been reported in Holleman and Beekhuis (2003): Joe 

and May (2003) and spatial filtering has been suggested to remove the outliers. In 

this section a phasor median filter (PMF) is utilized to remove outliers in the velocity 

field. The PMF is based on multi-channel median filtering proposed by Astola et al. 

(1990) for non-linear filtering of images. A phasor field is obtained from the unfolded 

velocity estimates as 

V = exp (j—^j , (4.10) 

where v is the measured velocity and V is the phasor representation of the velocity. 

Let W — {Vf, i — 1,2,3,. . . , n2} be the phasors within an n x n processing window 

in the range-azimuth dimension. The absolute distance associated with the sample 

Vi is given by 

n 2 

A = ^ | H - V , | , Vi = l ,2 ,3 , . . . ,n 2 , (4.11) 
3=1 

where Dz is the aggregated vector distances. The output of the PMF is given by 

VPMF = min A , (4.12) 

which is the measurement sample that minimizes the distance to other samples within 

the processing window. To evaluate the performance of PMF a two dimensional wind 

field is simulated (Wood and Brown, 1992) and the observed velocity with waveform-I 

and waveform-II is obtained. A Gaussian distributed noise with standard deviation 

a(v) that corresponds to measurement error in Doppler velocity is added to the radial 

velocities at each PRF. The unfolding of velocities is performed on the observation 

with noise added to it. The velocity unfolding error is computed by comparing the 

unfolded velocities with the true velocities. The velocity unfolding error obtained from 

raw unfolded velocities, velocity filtered with PMF of order n and velocity filtered 
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Figure 4.10: Illustration of dual-PRF waveform implemented in CASA IP1 radars. 

with a simple median filter (MF) of order n is shown in Fig. 4.9. The unfolding 

error in Fig. 4.9 is plotted as a function of a(v) and it can be observed that the raw 

unfolded estimates can have very high errors for a(v) > 2.5 ra/s while the errors are 

small (< 5%) when spatial filters are used. The performance of PMF and MF are 

comparable in the region where a(v) < 4 m/s. However, the performance of PMF is 

better than MF when there are large errors in the Doppler velocity field. 

4.6 Waveform for first generation CASA radars 

Based on the requirements for the first generation CASA radar network a dual-

PRF waveform has been recommended for operations. The waveform consists of two 

PRFs with Ari = 40 pulses at PRF1 = 1.6 kHz and N2 = 54 pulses at PRF2 = 2.4 

kHz. This dual-PRF waveform as shown in Fig.4.10 has been operational on the IP1 

radar network. The waveform is processed with full spectral processing to enable 

spectral clutter filtering and overlay echo suppression. The dual-PRF measurements 

are used to unfold the velocity and the naturally occuring random phase coding with 

magnetron radars is used for range overlay suppression. 
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4.6.1 Real-time environment and da ta 

The data acquisition system is a FPGA system with Ethernet based data interfaces 

to the real-time signal processor. The real-time signal processing is performed on a 

general purpose server running a Linux operating system. The servers currently used 

in CASA's first generation radars use a single Intel Quad core Xeon processor with a 

clock speed of 2.33 GHz and 3 GB of RAM. The calibration and timing information are 

inputs to the signal processor to process staggered waveforms and provide calibrated 

products. A more detailed description of the hardware, data acquisition system, and 

operations is presented in Junyent et al. (2009). 

The signal processor has been constantly operated without failure for several 

years. Extensive data sets have been archived during operations. Figure 4.11 and 

Fig. 4.12 illustrate the Doppler moments and polarimetric variables estimated in 

the KSAO radar obtained with spectral processing and dual-PRF waveform using 

PRFi = 2.4 kHz, Ari = 54, PRF2 = 1.6 kHz, and N2 = 40. A Range Height Indi

cator (RHI) scan performed at an azimuth of 0° from 0 — 30° during a widespread 

shower event on May 04, 2009 at 19:34:18 UTC is shown in Fig. 4.11 and Fig. 4.12. 

Figure 4.11(a), (b) shows the filtered reflectivity and Doppler velocity along with the 

unfiltered products. The suppression of ground clutter closer to the ground can easily 

be observed. However, there is residual clutter in regions where the ground clutter 

signal is very strong. The filtered Z&r and |/9fe(0)| along with the unfiltered data are 

shown in Fig.4.12(a), (b). There is a slight increase in |p/u,(0)| that occurs after filter

ing because noise spectral coefficients are notched which results in slightly improving 

the co-polar correlation coefficient. A scatter plot of Zh versus Z&r from RHI data col

lected with KSAO radar at different azimuths during a wide spread showers on May 

04, 2009 from 19:24 to 19:34 UTC is shown in Fig. 4.13. The scatter plot is shown for 

both unfiltered data and filtered data. The data points selected in the scatter plots 

are based on a reflectivity threshold Zh > 10 dBZ and co-polar correlation coefficient 
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|p/n;(0)| > 0.99. The impact of clutter and filtering can be observed in Fig. 4.13 where 

the strong clutter signals provides very noise Zdr data for reflectivities greater than 

30 dBZ. The outliers in the filtered data can be attributed to the residual clutter. 

4.6.2 Clutter suppression in IP1 

Ground clutter suppression is one of the critical aspects for IP1 radars because 

the antenna beam width is 2° which results severe clutter contamination at lower 

elevation angles. The ground clutter signals can be side-lobe clutter and main lobe 

clutter. Traditionally, clutter maps are used to identify the clutter region and clutter 

filter is applied only as indicated by clutter maps. However, no clutter map is used in 

IP1 radar and the filter is applied in all regions. Figure 4.14 shows the observations 

with and without clutter filtering. The phenomenon shown in Fig.4.14(a) is a hook 

echo observed from the Lawton radar on May 09, 2007 at 00:37:42 UTC. Hook echoes 

are associated with tornadoes in a storms. It can be observed that the spectral clutter 

filtering suppresses the strong ground clutter closer to the hook echo. The circulation 

feature is more clear after spectral filtering as shown in Fig.4.14(b). 

Ground clutter suppression has been traditionally viewed in terms of its impact 

on the spectral moments. However, in a networked radar environment the estimated 

moments are used to adaptively steer the antenna. The adaptive steering of the 

antenna will not have the optimal volume coverage pattern if there are a lot false 

detection due to clutter. Therefore, in addition to providing filtered spectral moments, 

the spectral clutter filter also minimizes the false detection for adaptive scanning 

which is very critical for a networked radar operations. 

To evaluate clutter suppression in the IP1 radar network the clutter suppressed 

is decomposed into two types. That is to say the amount of clutter suppressed when 

there is no meteorological signal and the amount of clutter suppressed when there is 

weather echo present along with clutter. In order to achieve this goal an estimate of 

the SNR is used to classify the CSR measurements. The SNR and CSR were estimated 
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+ î(̂ BWSWfi?':'T™+ + +-• -r—•!««•" '^•^P'^BMPI 

.<>^uij«wii»iniinim<i * ^ ^ ~ * i f ^ ^ ^ 

. ^ a i i ^ M ^ ^ M i p a i p w ^ - • | 
15 20 25 

Range (km) 
m/s 

(b) 

Figure 4.11: RHI plots of dual-PRF data collected with Chickasha radar on May 04, 
2009 at 19:34:18 UTC:(a) The unfiltered and filtered reflectivity;(b) The unfiltered 
and filtered mean Doppler velocity. 
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Figure 4.12: RHI plots of dual-PRF data collected with Chickasha radar on May 
04, 2009 at 19:34:18 UTC:(a) The unfiltered and filtered Zdr;(b) The unfiltered and 
filtered |/9/»„(0)|. 
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Figure 4.13: Scatter plot of Zh versus Zdr from RHI data collected with KSAO radar 
at different azimuths during a wide spread showers on May 04, 2009 from 19:24 to 
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Figure 4.14: PPI plots of dual-PRF data collected with Cyril radar on May 09, 2007 
at 00:37:42 UTC:(a) The unfiltered and filtered reflectivity;(b) The unfiltered and 
filtered velocity. 

65 



Table 4.3: Ground clutter suppression 

Date 

May 06, 2007 
May 07, 2007 
May 09, 2007 
Jun 14, 2007 
Jun 20, 2007 
Mar 31, 2008 
Apr 09, 2008 
May 02, 2008 
May 07, 2008 
Jun 17, 2008 

Radars 

KCYR, KLWE 
KCYR, KLWE 
KCYR, KLWE 
KCYR, KSAO, KRSP, KLWE 
KCYR, KSAO, KRSP, KLWE 
KSAO 
KSAO 
KCYR, KSAO 
KCYR, KSAO, KRSP, KLWE 
KCYR, KRSP 

CSR with 
no weather (dB) 

27.50 
26.25 
26.00 
31.25 
30.50 
33.50 
33.00 
29.50 
30.25 
30.00 

CSR with 
weather (dE 

19.25 
15.25 
17.50 
21.00 
19.50 
21.00 
21.25 
19.50 
19.00 
24.25 

in the spectral domain. Figure 4.15 shows the cumulative distribution function (CDF) 

of CSR. The CDF of CSR when meteorological signal is present is shown in Fig.4.15(a) 

and CSR when no meteorological signal is present is shown in Fig.4.15(b). A SNR 

threshold greater than 3 dB was used to identify meteorological signal. The CDFs 

shown are for ten data sets collected with the IP1 radar nodes during experiments 

conducted in 2007 and 2008. Table 4.3 lists the clutter suppressed for the specified 

date. The clutter suppression is obtained as the 99% value of CSR from the CDF for 

each date. The data set corresponding to each date can be from more than one radar 

as shown in second column of Table 4.3. The clutter suppressed when the received 

signal is purely clutter is much higher than when weather echo is contaminated by 

clutter. The total SNR of the signal is limited by the phase noise of the system, which 

implies that the signal plus clutter power is limited by the phase noise. Therefore, the 

clutter suppression observed with the system is about 33 dB based on the observation 

from IP1 CSR data. 

4.6.3 Overlay echo suppression in IP1 

Among the various possibilities, phase coding of transmitted waveform has been 

deployed with some degree of success, with weather radars. In the phase coding 
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Figure 4.15: Cumulative distribution function of clutter suppressed (a) with weather 
signal (b) without weather echo. The cumulative distribution functions plotted is for 
ten data sets collected with the IP1 radar network. 
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scheme the transmitted pulses are tagged with, a phase code or switching phase (ipk)-

The received signal is phase corrected (cohered) to account for the switching phase. 

Only the selected trip, say the first trip signal is cohered, the second-trip is then 

phase modulated by the phase sequence 4>k — Vk-i — ipk- Let \\{k) and V2(k) be the 

two distinct weather echoes from the first and second-trip respectively. The received 

signal after re-cohering for the first trip echo can be written as 

V(k) = (V1{k)e:ji'k + V2(k)ej^-I)e''^k 

= Vi(fc) + V^(fc)e i fe-1-») (4.13) 

where the sequence cp^ = V'fc-i ~~ V'fc is called the modulation code. The second-trip 

signal V2(k) is phase modulated by the poly-phase sequence e^k. In real operational 

scenarios there can be third and fourth trip signals and these signals are also phase 

modulated by il'k-2 — Wk and ipk-3 — ^Pk respectively but only second-trip signal will 

be considered in this section. The modulation code alters the spectral distribution 

of the overlaid second-trip signal, V2(k). The exact nature of this change in spectral 

distribution depends on the modulation code fa. 

Let vi and v2 be the first and second trip signal vectors respectively. The cohered 

received signal can be written as 

v — Vi + <pv2 (4-14) 

where cp = d\ag[exp(jfa)} matrix. In frequency domain with DFT on both sides of 

(4.14). 

V = Vl + ^V2 (4.15) 

Note that circular convolution of the DFTs can be represented as matrix multiplica

tion. This convolution matrix, <& , is a circulant matrix whose first row is the discrete 

Fourier transform of fa. The spectral distribution of 3> determines the nature of &V2. 

For example, if $ is uniformly distributed (i.e., fa is a random phase sequence) in the 
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Nyquist bandwidth then the second trip echo, v2 is whitened and appears as noise. 

Random phase coding of transmitted pulses was proposed by Siggia (1983). Random 

phase coding occurs naturally with magnetron transmitters. Many of the weather 

radars deployed around of world use magnetron transmitter and random phase cod

ing can be used to suppress range overlaid echoes. Alternatively, $ can selected such 

that the spectral distribution # has only a finite number of non zero spectral coef

ficients resulting in weighted replicas of V2 in the Nyquist bandwidth. <& with finite 

number of non zero spectral lines are obtained from systematic phase sequences or 

systematic phase codes. Systematic phase sequences have been proposed and evalu

ated for range ambiguity mitigation (Sachidananda and Zrnic, 1999; Bharadwaj and 

Chandrasekar, 2007). 

The IP1 radar use magnetron transmitter which forces the use of random phase 

coding that naturally occurs with magnetron. Figure 4.16 shows the observations of 

reflectivity with and without overlaid echo suppression for a precipitating region with 

light rain. The phenomenon shown in Fig.4.16 is observed from the Cyril radar on 

Feb 09, 2007 at 00:37:42 UTC. The presence of overlaid echoes can lead to biases 

in precipitation estimation. The presence of overlaid echo is very clearly observed 

in Fig.4.16 without any spectral processing to remove second trip echoes while the 

filtered reflectivity has both ground clutter as well as overlaid echoes filtered. In 

addition to biasing precipitation estimates overlaid echoes lead to serous problem in 

adaptive scanning systems that rely on precipitation detection such as the MC&C in 

CASA's IP1 radar network. The presence of overlaid echoes will lead to precipitation 

detection where there is no echo. Therefore, it is very important to mitigate and filter 

the overlaid echoes to enable adaptive scanning. The use of random phase coding to 

suppress overlaid echoes has been operation in CASA's IP1 radars. Figure 4.17 shows 

the cumulative distribution function (CDF) of overlaid echo suppressed. The CDFs 

shown are for ten data sets collected with the IP1 radar nodes during experiments 

conducted in 2007 and 2008. Table 4.4 lists the overlaid echo suppressed for the 
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specified date. The amount of suppression is measured as the 99% value of overlaid 

echo suppression from the CDF for each date. The data set corresponding to each 

date can be from more than one radar as shown in second column of Table 4.4. 

KCYR 2009-Feb-10 21:15:08 UTC 

Figure 4.16: Reflectivity of a precipitation cell contaminated with ground clutter and 
overlaid echoes, (a) Unfiltered reflectivity (b) Filtered reflectivity. Data collected 
from Cyril on Feb 10, 2009 at 21:15:08 UTC with a dual-PRF waveform. 

4.6.4 Velocity dealiasing in IP1 

The dual-PRF waveform has been used in the IP1 radar network to dealias radial 

velocities. Figure 4.18 shows the reflectivity observations from a hook echo observed 

from Cyril. The data set was collected on Feb 10, 2009 at 21:15:39 UTC at an elevation 

of 3.0 degrees. The radial velocity at the individual PRFs are shown in Fig. 4.19(a). 

The velocity aliasing effect is clearly observed as radial streaks. The estimated radial 

velocities are dealiased by comparing the difference of the adjacent radial velocity 
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Figure 4.17: Cumulative distribution function of overlaid echo suppressed. The cu
mulative distribution functions plotted is for ten data sets collected with the IP1 
radar network. 

Table 4.4: Overlaid echo suppression 

Date Radars Overlaid echo suppressed (dB) 
May 06, 2007 KCYR, KLWE 
May 07, 2007 KCYR, KLWE 
May 09, 2007 KCYR, KLWE 
Jun 14, 2007 KCYR, KSAO, KRSP, KLWE 
Jun 20, 2007 KCYR, KSAO, KRSP, KLWE 
Mar 31, 2008 KSAO 
Apr 09, 2008 KSAO 
May 02, 2008 KCYR, KSAO 
May 07, 2008 KCYR, KSAO, KRSP, KLWE 
Jun 17, 2008 KCYR, KRSP 

18.00 
22.75 
23.75 
22.25 
25.00 
27.00 
23.50 
27.50 
25.25 
14.25 
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from the same range gate. The measure velocities at the individual PRFs are less 

than 13 m/s and 20 m/s for the long and short PRT bursts. The dealiased velocities 

are shown in Fig. 4.19(b) and it can be observed that velocities greater than 20 m/s 

are retrieved. This can be observed around the zero degree azimuth from 10 km to 

15 km in range. However, dual-PRF dealiasing does have unfolding errors and this 

can be observed in Fig. 4.19(b). Such error have been reported in literature and 

can be corrected for by using spatial filtering as described in Section 4.5. Figure 

2009-Feb-10 21:15:39 UTCZh d B Z 

Figure 4.18: Reflectivity of a precipitation cell forming a hook echo. Data collected 
from Cyril on Feb 10, 2009 at 21:15:39 UTC with a dual-PRF waveform. 

4.20 shows a comparison of the spatially filtered Doppler velocity field and the raw 

unfolded velocity obtained from the dual-PRF waveform. The data shown in Fig.4.20 

is an example obtained from IP1 operations from Cyril radar on Mar 24, 2009 at 

00:50:15 UTC. Figure 4.20(a) shows the attenuation corrected reflectivity obtained 

after spectral filtering. Figure 4.20(b) shows the raw unfolded velocity obtained and 

the speckle noise in the velocity field easily observed. This noise in the velocity field 
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KCYR P009-Feh-10 21:15:39UTCFI =3 (teg 

(a) Folded velocity (b) Unfolded velocity 
351 

m/s 

Figure 4.19: Doppler velocity of a precipitation cell forming a hook echo (a) Folded 
velocity (b) Unfolded velocity. Data collected from Cyril on Feb 10, 2009 at 21:15:39 
UTC with a dual-PRF waveform. 
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occurs as a result of incorrect unfolding and this error in unfolding is because of 

increased variance after spectral filtering. Figure 4.20(c) shows the filtered velocity 

field after nonlinear filtering using PMF. There is a reduction in the speckle noise in 

the velocity field after the application of PMF. The order of PMF chosen in this case 

is n• = 5. It is important to select n depending on the desired level of smoothing of 

the velocity field. 

4.7 Summary 

This chapter described the design, implementation and demonstration of spectral 

processing for staggered waveforms with simulations as well as on CASA's IP1 radars 

operating at X-band. The challenges associated with designing waveforms for an 

X-band radar system were described and mainly included issues relating to range-

velocity ambiguity and ground clutter suppression. In addition to range-velocity 

ambiguity and clutter filtering the waveforms design needs to take into considerations 

operational requirements and hardware limitations. The important factors affecting 

the wraveform design for precipitation radars is the resulting dwell time based on scan 

speeds and the agility of the transmitter to implement complex waveforms. 

Spectral processing is used for ground clutter suppression. The proposed spectral 

filter uses an adaptive notch filter and recursive interpolation to minimize the impact 

of notch filtering. The recursive interpolation is beneficial for estimating the Doppler 

spectral moments. However, no interpolation is required for the complex spectral 

coefficient to estimate the polarimetric variables. It is critical that identical notch 

filters and noise filters be applied in both the horizontal polarization and vertical 

polarization channels. The clutter suppression ability based on the phase noise of the 

system and the number of pulses used. A phase noise of 0.25° will provide adequate 

clutter suppression. The number of pulses is determined by the accuracy requirement 

and the operational scan speeds. A design space with the number of pulses, Doppler 
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KCVR 2009-Mar-24 00:50:15 UTC ^ 

(a) 

KCYR 2009-Mar-24 00:50:15 UTC Raw velocity 

(b) 

KCYB 2009-Mar-24 00:50:15 UTC PMF velocity 

(c) 

Figure 4.20: PPI plots of dual-PRF data collected with Cyril radar on Mar 24, 2009 
at 00:50:15 UTC:(a) The filtered reflectivity;(b) Raw unfolded velocity and (c) PMF 
filtered velocity. 
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spectral moments and polarimetric variables has been presented in this chapter at 

X-band. 

Dual-PRF waveform is suggested to mitigate the ambiguity in measurements. A 

simple unfolding algorithm for dealiasing the velocities is described and its perfor

mance in the presence errors due to ground clutter filtering was described. The 

outliers or high errors in velocity mostly lie in the vicinity of the Nyquist folding 

velocities of the waveform. The outliers due to incorrect unfolding can be minimized 

by applying spatial filters. A phasor median filter (PMF) was presented to reduce the 

unfolding errors and a simulation study showed better performance of PMF compared 

to traditional median filters when errors in Doppler velocity estimates are high. The 

PMF is suggested for filtering outliers from the spatial velocity field prior to applying 

any detection algorithms. 

Waveforms based on ambiguity mitigation and clutter filtering enables the selec

tion of waveforms for operational use. However, both operational requirement and 

hardware requirements ultimately play a major role in the selection of the waveform. 

First, faster scanning operational requirement for the IP1 radars reduces the dwell 

time thereby reducing the number of pulses that can be used for integration. Second, 

cheaper and low-power magnetron transmitter with very limited agility in terms of 

duty cycle that were used in CASA's IP1 radars reduced the possible waveforms for 

implementation. A dual-PRF waveform with Ari = 40 pulses at PRF\ = 1.6 kHz and 

N2 = 54 pulses at PRF^ = 2.4 kHz has been implemented in operational use. The 

random phase coding of magnetron has been used to mitigate range overlaid echoes. 

The operations range of IP1 radars is 40 km and hence, random phase coding was 

not used to extend the operating range but only to suppress range overlaid echoes. 

The dual-PRF waveform provides azimuth integration period of 1° at a scan speed of 

21 deg/s. The clutter suppression ability and overlaid echo suppression based on op

erations of the IP1 radar has been described along with the application of dual-PRF 

unfolding for increasing the unambiguous velocity. A clutter suppression of about 
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30 dB and overlaid echo suppression of about 23 dB has been observed with the IP1 

radars. The PMF filter along with staggered PRF waveforms provides a viable means 

to measure very high velocities at X-band. 
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CHAPTER 5 

WIDEBAND WAVEFORMS FOR POLARIMETRIC RADARS WITH 

SOLID-STATE TRANSMITTERS 

5.1 Introduction 

Weather radar systems using solid-state transmitters are becoming increasingly 

viable. The transition from traditional high powered transmitters to solid-state trans

mitter is also useful to realize a network of low cost electronically steered X-band 

radars. However, solid-state transmitters have low peak powers which degrades the 

sensitivity of the radar if used in a conventional way with narrow transmit pulse. Sen

sitivity requirements with low peak power transmitters necessitates the use of pulse 

compression waveforms. Pulse compression radars transmit long wideband pulses to 

achieve adequate sensitivity and range resolution. Pulse compression has been in use 

with hard target radars for several decades and significant advances have been made in 

the technology and implementation (Cook and Bernfeld, 1993; Skolnik, 1990). Pulse 

compression techniques for non-weather radar systems are well documented in litera

ture (Skolnik, 1990; Peebles, 1998). Their applicability to weather radar, however, is 

relatively rare. Typically weather radar targets are extended volume scatterers and 

range side-lobes are a major source of error for quantitative applications (Muduku-

tore et al., 1998). Mismatch filtering techniques to improve the range side-lobes have 

been studied, keeping in mind the applicability to weather radar. 

Although pulse compression waveforms provide adequate sensitivity they have a 

major drawback in providing coverage at close range. Pulse compression waveforms 



suffer from blind zone that occur because the receiver does not receive any signal 

while the long pulse is being transmitted. The transmission of long pulses is neces

sary to achieve adequate sensitivity but results in blind ranges. Radars using pulse 

compression waveforms overcome blind range problem by staggering short and long 

pulses. The long pulse provides adequate sensitivity at farther ranges and short pulse 

provides coverage in the blind range region. However, alternating between long and 

short pulses reduces maximum unambiguous velocity. A pulse train of short pulse 

followed by a pulse train of long pulses can be used to provide adequate sensitivity 

and provide coverage in the blind range region. However, such a pulsing scheme will 

increase the dwell time resulting in slower scan speed. 

In this paper a class of frequency diversity wideband waveforms are presented to 

mitigate low sensitivity of solid-state transmitters and also mitigate the blind zone 

problem associated with pulse compression. The proposed waveform is designed and 

implemented for a dual-polarization X-band radar operating in Simultaneous Trans

mit & Receive (STAR) mode. Frequency diversity is viable because a solid-state 

transmitters can achieve a much wider bandwidth with acceptable efficiency. The 

proliferation of low cost advanced digital processors, as well as the advances in digi

tal transmitter control technology and low-power solid state transmitter technology 

makes the class of frequency diversity wideband waveforms viable for implementation. 

Some of the major considerations that needs to be taken into account for weather 

radars using solid-state transmitters is described in George et al. (2008). 

This paper is organized as follows: Section 5.2 provides the relation between trans

mit waveform and sensitivity to develop a sensitivity mapped generalized waveform. 

The non-linear frequency modulation (NLFM) pulse compression waveform, its pa

rameterization and associated compression filter design is presented in Section 5.3. 

The side lobe characterization of the NLFM pulse compression waveform is described 

in Section 5.4. The performance of the NLFM pulse compression waveform in the 

retrieval of the spectral moments and polarimetric variables for volume targets is 

79 



described in Section 5.5. A frequency diversity pulse compression waveform which 

mitigates the low sensitivity of solid state transmitter radars and mitigates blind 

range issues of pulse compression waveform is presented in Section 5.6. The paper 

ends with the summary and conclusions presented in Section 5.7. 

5.2 Sensit iv i ty M a p p e d Generalized Waveforms 

The reflectivity is estimated from the received power at the reference plane and 

the equation assumes a common reference plane at the antenna feed horn port. The 

reflectivity is given by 

Ze — C PrefR (5.1) 

In the above equation Pref is the received power at the reference antenna port, R is 

the radar range and C is a constant given below. 

a 
i 

7T5LfC CT PtGl 

8 In 2 
Â  (5.2) 

^6B4>B/ 

In the above equation Kw is the dielectric factor of water, r is the pulse width, Pt is 

the peak transmit power, Go/lwg is the antenna gain including the wraveguide loss, 6B 

and cpB are the 3-db beam-widths, and A is the operating wavelength of the radar. In 

practice Ze is expresses in mm2m~1 (dBZ in decibel scale). The radar equation can 

now be written as 

Ze [dBZ] = Pref [dBm] + C [dB] + 20 log (R [km] (5.3) 

where the radar constant C is given by 

c = l0b*\*iiu' PtG0 

81n2 

TT6B(PB 
A21021 (5.4) 

It is customary to define the minimum detectable reflectivity at a specified range 

when the signal-to-noise ratio is 0 dB (Bringi and Chandrasekar, 2001). Therefore, the 

sensitivity of the radar is studied in terms of the minimum detectable reflectivity. The 
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sensitivity is governed by the radar constant given in (5.4) and the receiver equivalent 

noise bandwidth which dictates the amount of noise power in the received signal. For 

a given antenna the sensitivity is directly proportional to the receiver bandwidth and 

inversely proportional to the product of pulse width and peak power. Conventional 

weather radars operating at S-band such as WSR-88D and CSU-CHILL transmit a 

l//s pulse with peak power in excess of 500 kW. However, solid-state transmitters 

have low peak power and are generally on the order of 100 W or less. Therefore, 

in order to attain adequate sensitivity a much longer pulses must be transmitted. 

One of the drawbacks of improving sensitivity solely by transmitting long pulses is 

degradation of range resolution. The resolution of the measurements along range is a 

function of the transmit pulse width. Pulse compression technique using modulated 

long pulses have been used to improve sensitivity and achieve range resolution similar 

to a short pulse (Skolnik, 1990; Peebles, 1998). 

Pulse compression waveforms enables the use of low peak power transmitter to 

achieve adequate sensitivity but these waveforms have extended blind ranges or blind 

zone. The inherent problem of using a single antenna is that the antenna is not used in 

receive mode while the waveform is being transmitted. Therefore, there is no received 

signal for the duration of the time while the transmission is active. This results in a 

blind range (blind zone or range eclipsing) for the radar where there is no observations 

available. The problem of blind range has been addressed by alternating short and 

long pulses (Skolnik, 1990). Such solutions have be implemented for weather radars 

using pulse compression (Nakagawa et al., 2005). However, alternating between short 

and long pulses typically lead to two drawbacks. First, if the long and short pulses 

are switched on a pulse-to-pulse basis then the maximum unambiguous velocity is 

halved. Second, if a pulse train of short pulses is alternated with a pulse train of long 

pulses then the dwell times is made much larger. 

In this section a sensitivity mapped generalized waveform is proposed that uses 

frequency diversity to mitigate blind range and pulse compression waveform to negate 
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the impact of low peak power of solid-state transmitters. Frequency diversity is vi

able because a solid-state transmitters can achieve a much wider bandwidth with 

acceptable efficiency. In addition, the electronically scanned (phase-phase steering) 

will employ solid-state transmit and receive (T/R) modules making it critical to 

design waveforms for such systems. For a generalized transmit-waveform, the com

plex envelope can be written as a sum of N components. In order to be able to 

avoid contamination of echoes from these individual components from the various 

ranges, the receiver must be able to separate the received signals corresponding to 

each component. This is accomplished by frequency diversity. The transmit pulse 

is a frequency-diversity pulse compression waveform. The complex envelope of the 

generalized waveform is given by 

N 

g(t) = ^9i(t--Ti-i)^Mt~Ti-l) (5-5) 
i=\ 

and 7\ > T2 > T3 > ... > TN (5.6) 

and YlTi- Tmax (5-7) 
i=l 

where g, (t) is the complex envelope of the ith component of the waveform at a fre

quency offset fi and T, is the pulse width of each component with T0 = 0. By design 

guidelines the first component is the longest with the largest blind range and the last 

component is the shortest with minimal blind range.The transmit waveform is sub

sequently obtained by mapping the operational and hardware requirements as given 

below 

g(t) = <p {Zmin(r),Tmax, Pt, Ts) (5.8) 

where Tmax is the maximum transmit pulse length limited by the hardware, Zmin(r) is 

the required sensitivity at range r , Pt is the peak transmit power and Ts is the pulse 

repetition time (PRT). For example, based on the requirement of 10 dBZ sensitivity at 

40 km using a transmitter with Pt — 100 W a frequency diversity waveform consisting 
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Figure 5.1: Minimum detectable reflectivity of a sensitivity mapped frequency di
versity waveform with three components. The peak transmit power Pt — 100 W 
operating at X-band. 

of three components is obtained. The sensitivity from the three component frequency 

diversity is shown in Fig. 5.1 where the pulse widths of the three components are 

T\ = 40 fis, T2 = 20 /is and T3 — I (is. A similar waveforms is described by Carswell 

et al. (2008) 

5.3 Pulse compression waveforms 

A basic pulse compression waveform consists of a coding signal that modulates the 

transmitted pulse. Phase and frequency modulation have been widely used for pulse 

compression applications. For a pulse compression waveform the complex envelope 

of the transmitted wideband pulse is given by 

g (i) = u (t) exp <! J2TT / / (r) dr 
-Til 

(5.9) 

where u (f) and T are the envelope, length of the transmitted pulse respectively and 

g (t) is the complex envelope of the transmitted pulse. The frequency modulation 
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is governed by f (t). The matched filter which maximizes the signal-to-noise ratio 

is obtained as g* (—t) where * indicates complex conjugate. The matched filter is 

completely determined by the complex envelope of the transmit pulse. 

5.3.1 Nonlinear frequency modulation (NLFM) 

The FM characteristic similar to waveform described by Griffiths and Vinagre 

(1994) is proposed for pulse compression. The FM characteristic is decomposed into 

linear and nonlinear component as 

B / 1 - V 
(5.10) 

K<p(t)sgn(t) \t\>T(l-kr) 

where B is the total bandwidth of the chirp; 0 < kT < 1 and 0 < ks < 1 are 

parameters that control non-linearity of the chirp frequency. The nonlinear portion 

of the chirp ip(t) is given by 

¥>(*) G - l 

B(l - kB) 
B 

B(l - kB) 
T(l-kT) 

\t2 0 0] 
0 t 0 
0 0 1 

(5.11) 

where 

T2(1-A;T)2 T ( l - f c r ) l' 
T2 T 1 

2T(1 - kT) 1 0 
(5.12) 

Figure 5.2 shows the frequency characteristics of the nonlinear FM given in (5.10). 

A major disadvantage of pulse compression waveforms are the presence of range side-

lobes. Very low side-lobe level (SLL) are essential for weather radar applications as 

very strong gradients of reflectivity up to 30-40 dB/km can occur in precipitation 

(Bringi and Chandrasekar, 2001). The side-lobe level is often described in terms of 

peak side-lobe level (PSL) and integrated side lobe level (ISL) (Mudukutore et al., 

1998). It is important to have low ISL because weather radars observe volume targets 

that extend over large areas . The range side-lobes can be reduced by the application 
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Figure 5.2: Nonlinear FM characteristics 

of a compression filter that is not matched to the transmit pulse. The application 

of mismatch filters results in a loss of signal-to-noise ratio (SNR) as the compression 

filter is no longer designed to maximize signal-to-noise ratio. 

5.3.2 Compression filters 

The range side-lobes can be reduced by using a mismatch filter. The mismatch 

filters are obtained by using standard window functions and least-squares filters. 

5.3.2.1 Window function filters 

Standard window functions have been used to shape the spectrum of the transmit

ted pulse to attain lower side-lobes. Ideally the square root of the window functions 

must, be applied to the transmit pulse which results in a matched filters with low 

side-lobe levels. However, this would require a linear power amplifier which is not an 

efficient in utilizing power. Thus, window functions are applied on receive to improve 
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side-lobe performance. The application of standard window functions such as Taylor, 

Hamming and Chebyshev weighting are readily available from literature (Cook and 

Bernfeld, 1993; Skolnik, 1990; Peebles, 1998). The loss in SNR is given by 

2 

SNRloss = \ N > (5.13) 
A ' L n = l Wn 

The loss in SNR is typically determined by the window function used. A very aggres

sive window function will have a loss in excess of 5 dB. There is a trade-off between 

side-lobe reduction and loss in SNR. 

5.3.2.2 Optimal ISL filter 

Mismatch filters obtained from least-squares minimization have been known to 

provide good performance for some pulse compression waveforms. Ackroyd and Ghani 

(1973) proposed an inverse filter based on Wiener-Hopf equations and Mudukutore 

et al. (1998) evaluated the applicability of inverse filter using Barker codes for weather 

radars. Baden and Cohen (1990) proposed the optimal ISL filter that minimized the 

ISL in a least squares sense while Cilliers and Smit (2007) provided a generalization 

of the optimal ISL filter by extending the minimization in Lp norm sense. The 

following section describes the derivation of the compression filter using L2 norm 

(least squares). Let G be the transmit convolution matrix obtained from the discrete 

complex envelope of the transmit pulse g and h be the FIR filter coefficients of the 

required compression filter. The output of the compression filter with the transmit 

pulse as the input is given by 

y = GTh (5.14) 

where y is the output of the compression filter. Let Gm be the modified transmit 

convolution matrix obtained by deleting the columns of G that corresponds to the 

main-lobe of the ambiguity function obtained from y. The ISL is considered as the 
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cost function that has to be minimized to obtain the FIR filter coefficients. The ISL 

is given by 

ISL = f(h) = hHG;nGlh (5.15) 

The ISL is minimized by using using method of Lagrange Multipliers with the con

straint on the peak of y as gTh = a where a is an arbitrary constant. The equation 

to be solved is obtained from the Lagrangian given below. 

df(h) dRe(gTh~a) , x 

i^+x sw -° (516) 

The closed form solution for the above equation is given below. 

h = v m mJ , 5.17 
giG^Gir'g" 

The minimum ISL compression FIR filter is normalized to have unity gain at zero 

frequency and is given by 

6=m^n <5'18) 

where 1 is a vector whose elements are 1 and (.,.} represents inner-product. 

5.4 Side lobe characterization for NLFM pulse compression 

The performance of the pulse compression waveforms depends on many factors 

such as BT, kr, kB and compression filter used. For a given value of B and T there 

are many waveforms that can be designed by varying kr and kB. In general the chirp 

bandwidth B is limited by the base-band sampling frequency as dictated by sampling 

theorem and the pulse lengths are selected based on the hardware limitations and 

sensitivity mapping as described in Section 5.2. The envelope u(t) is selected such 

that there are no instantaneous rise time which reduces ringing in the transmitted 

spectrum. A Tukey window is proposed because a single tunable parameter, a r , 

controls the rise time and fall time of the pulse envelope. The tuning parameter is 
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40 us pulse; B =3.6 MHz 

Figure 5.3: Nonlinear FM Pulse compression waveform (a) FM characteristics (b) 
Amplitude of transmit pulse. The Pulse compression waveform has a nonlinear chirp 
of B = 3.6 MHz, T — 40 \is pulse length, and base-band sampling frequency fs = 
5 MHz. 

part of the specification of the transmit waveform. Hence, in practical conditions 

the waveform is governed by three parameters:ar, kf and ks- Figure 5.3 shows a 

waveform with a chirp bandwidth B = 3.6 MHz and T = 40 fis operating at a base 

band sampling frequency fa = 5 MHz. The waveform parameters are aj- — 0.127, 

kT = 0.354 and kB = 0.6. 

5.4.1 Doppler tolerance 

The main drawback of the minimum ISL filter is limited Doppler tolerance while 

the window function filter is known to be Doppler tolerant. To compare the per

formance of the compression filter to Doppler shifts the received signal is shifted in 

frequency based on the mean Doppler velocity of the resolution volume. The in

crease in side-lobe level due to Doppler shift is shown as a function of velocity in 

Fig. 5.4. The peak side-lobe level and integrated side-lobe level are almost invariant 
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40 us pulse; B =3.6 MHz 
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Figure 5.4: Side lobe level as a function of Doppler velocity (a) Peak size-lobe level(b) 
Integrated side-lobe level. The Pulse compression waveform has a nonlinear chirp of 
B — 3.6 MHz, T = 40 [is pulse length, and base-band sampling frequency fs — 
5 MHz. 

with velocity for the window function while both peak side-lobe level and integrated 

side-lobe level increase for the minimum ISL filter as shown in Fig. 5.4(a) and (b). 

But it is important to note that although the side-lobe level increases with velocity 

the performance of minimum ISL filter is much better than the 80 dB Chebyshev 

window filter. The ISL of the minimum ISL filter is better than -45 dB for Doppler 

velocities less than 50 m/s. 

5.4.2 Phase noise tolerance 

The nonlinear FM is implemented as a digital FM signal and up-converted to the 

RF frequency. The phase on the transmitted sub-pulses have random phase errors due 

to the phase noise of the system. The individual elements in the radar system such as 

STALO, mixers, transmitter contribute to the system phase noise. The system phase 

noise has an impact on the performance of the pulse compression waveform. The 
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40 us pulse; B =3.6 MHz PSL dB 
30 

1 2 3 
Phase noise (deg) 

Figure 5.5: Peak side-lobe level as a function of Doppler velocity and system phase 
noise. The Pulse compression waveform has a nonlinear chirp of B = 3.6 MHz, 
T — 40 /is pulse length, and base-band sampling frequency fs = 5 MHz. 

40 us pulse; B =3.6 MHz 

2 3 
Phase noise (deg) 

Figure 5.6: Integrated side-lobe level as a function of Doppler velocity and system 
phase noise. The Pulse compression waveform has a nonlinear chirp of B = 3.6MHz, 
T = 40 fis pulse length, and base-band sampling frequency fs = 5 MHz. 
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PSL and ISL as a function of phase noise is shown in Fig.5.5 and Fig.5.6 respectively. 

It can be observed that both PSL and ISL decrease with increase in phase noise. A 

phase noise of 0.25 deg is required to achieve an ISL better than 50 dB and phase 

noise of 0.5 deg is required to achieve an ISL better than 40 dB. Therefore, phase 

noise is an important factor that must be taken into consideration to ascertain the 

performance of a pulse compression radar. 

5.5 Pulse compression for volume targets 

The impact of phase noise, Doppler velocity and choice of filter was described in 

the previous sections. In this section we describe the resolution and receiver band

width of the proposed pulse compression waveform. In addition, the effect of the side 

lobe levels on the estimated Doppler spectral moments and polarimetric variables for 

volume targets is presented. 

5.5.1 Range resolution 

In a traditional pulsed Doppler weather radar the range resolution is determined by 

the transmitted pulse width. However, the range resolution with a pulse compression 

waveforms is determined by the chirp bandwidth B and compression filter. In a 

matched filtered the range resolution is c/2B where c is the speed of light. The 

range resolution with a pulse compression waveform is obtained by simulating a point 

target and calculating the effective pulse width after the compression (Peebles, 1998). 

Figure 5.7 shows a comparison of the range resolution using a minimum ISL filter 

and Chebyshev-80 dB mismatch filter. The comparison of range resolution is shown 

for pulse compression waveform using B = 3.6 MHz, T = 40 /is and T = 20 fis pulse 

length. The minimum ISL filter provides a range resolution Ar = 60 m for both 

T — 40 lis and T = 20 fis while Chebyshev-80 dB mismatch filter provides a range 

resolution Ar = 118 m and Ar = 96 m for T = 40 fxs and T = 20 fis respectively. The 

minimum ISL filter provides better range resolution than Chebyshev-80 dB mismatch 

filter in addition to providing better range side lobe suppression. 
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Figure 5.7: Comparison of range resolution using Chebyshev-80 dB mismatch filter 
and minimum ISL filter for Pulse compression waveform using B = 3.6 MHz, T = 
40 (is and T — 20 (is pulse length, and base-band sampling frequency / s = 5 MHz. 

5.5.2 Receiver bandwidth 

The spectrum of the transmitted pulse is shown in Fig. 5.8(a) along with the filter 

characteristics of the minimum ISL filter and 80 dB Chebyshev window mismatch 

filter. It can be observed that the minimum ISL filter retains most of the frequency 

components while the 80 dB Chebyshev window filter has a much narrower bandwidth. 

Both the filters reduce the side-lobe level as shown in Fig. 5.8(b). However, the 

minimum ISL filter has a much lower side-lobe level when compared to the window 

function. This is an obvious results since the minimum ISL filter was designed to 

minimize the total energy in the side-lobes. The bandwidth of the receiver is finite 

and this finite bandwidth results in the loss of in received power because some of the 

spectral components of the received signal will be filtered out. It is important to have 

a filter which does not have a large finite bandwidth loss (lr). The finite bandwidth 

loss must be taken into account while estimating a calibrated reflectivity factor(Zfe). 
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Table 5.1: Finite bandwidth filter loss for frequency diversity pulse compression wave
form, B = 3.6 MHz 

Filter 

min ISL 
Hamming 
Hann 
Chebyshev 80 dB 

T -= 20 (IS, Q j = 0.1944 
Filter loss (£r) 

2.49 dB 
3.47 dB 
3.70 dB 
4.65 dB 

T--= 40i/.s, aT = 0.1268 
Filter loss (£r) 

1.83 dB 
3.71 dB 
3.92 dB 
4.88 dB 

Table 5.1 lists the finite bandwidth loss for various compression filters applied 

to the proposed pulse compression waveform. The minimum ISL filter has the least 

finite bandwidth loss lT = 2.49 dB for T = 20 pis pulse and ir = 1.83 dB for T = 

40pis. The mismatch filter using window functions wdiich provide relatively lesser finite 

bandwidth loss do not have very good performance in terms of side lobe suppression. 

The Chebyshev 80 dB mismatch filter provides good side lobe suppression but due 

to its narrower bandwidth it also has a larger finite bandwidth loss tr > 4.5 dB. The 

minimum ISL filter has lower finite bandwidth loss when compared to window based 

mismatch filter in addition to providing better range side lobe suppression. 

5.5.3 Impact on Doppler spectral moments 

A simulation is performed to evaluate the impact of SLL. The simulations of 

weather echoes are based on the methodology presented by Chandrasekar et al. (1986) 

and this methodology is used to simulate the received signal from pulse compression 

waveform as described by Mudukutore et al. (1998). A trapezoidal profile of reflec

tivity is used to simulate the range profile. The height and gradient of reflectivity 

can be controlled to evaluate the impact of reflectivity variation along range. 

Figure 5.9 shows the simulation results for a T = 4,0/is pulse compression waveform 

with N = 64 pulses. The simulations were carried out for a spectral width of av ~ 

2 rn/s using a PRF of 2 kHz. Simulations were repeated 100 times for the same 

reflectivity profile. The dashed gray line in Fig. 5.9(a) is the true profile with a 
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40 us pulse; B =3.6 MHz 
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Figure 5.8: (a) Spectrum of transmit pulse and compression filter characteristics (b) 
Comparison of ambiguity function with 80 dB Chebyshev window filter and minimum 
ISL filter. The Pulse compression waveform has a nonlinear chirp of B — 3.6 MHz, 
T = 40 /is pulse length, and base-band sampling frequency fa = 5 MHz. 
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Figure 5.9: Observation of a trapezoidal reflectivity profile with 20 db/km gradi
ent, (a) Observed mean reflectivity (b) Bias in measured reflectivity (c) Standard 
deviation of reflectivity. The Pulse compression waveform has a nonlinear chirp 
of B = 3.6 MHz, T = 40 fis pulse length, and base-band sampling frequency 
fs — 5 MHz. The phase noise of the system is 0 degrees 

reflectivity gradient of 20 db/km,. The floor of the profiles is well above the noise 

floor. Figure5.9(a) shows the estimated reflectivity for an ideal system with zero 

phase noise. It can be observed that ISL does not bias the reflectivity estimates more 

than 0.5 dB (Fig. 5.9(b)) and the standard deviation are less than 1.5 dB. 

However, the presence of phase errors will lead to degraded performance in side-

lobe levels. A simulation with the same parameters are described above is performed 

but with a phase noise of 0.5 degree. Figure 5.10 and Fig. 5.11 show the estimated 

reflectivity and error in the estimated reflectivity for two different reflectivity profile. 

The gradient of reflectivity is 20 dB/km for both the cases. 

It can be observed from Fig. 5.10 and Fig. 5.11 that an change of 25 dB in 

range does not bias the reflectivity estimates but a change of 50 dB (Fig. 5.11(a)) 

introduces a bias greater than 3 dB due to side lobes. Therefore, phase noise plays a 
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40 jx s pulse compression waveform 

14 1E 
Range (km) 

Figure 5.10: Observation of a trapezoidal reflectivity profile with 20 db/km gradi
ent, (a) Observed mean reflectivity (b) Bias in measured reflectivity (c) Standard 
deviation of reflectivity. The Pulse compression waveform has a nonlinear chirp 
of B = 3.6 MHz, T — 40 /.is pulse length, and base-band sampling frequency 
fs = 5 MHz. The phase noise of the system is 0.5 degrees 
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Figure 5.11: Observation of a trapezoidal reflectivity profile with 20 db/km gradi
ent, (a) Observed mean reflectivity (b) Bias in measured reflectivity (c) Standard 
deviation of reflectivity. The Pulse compression waveform has a nonlinear chirp 
of B = 3.6 MHz, T = 40 [is pulse length, and base-band sampling frequency 
fs = 5 MHz. The phase noise of the system is 0.5 degrees 
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important role in governing the performance of pulse compression waveform. 

Very high gradients in reflectivity (Zh) within the long pulse can occur at the 

edges of strong convective cells and regions where there is clutter contamination. A 

step function with varying step sizes is simulated to analyze the limitation of the 

pulse compression wraveform with a phase noise of 59 — 0.25° operating at X-band 

and PRF = 2 kHZ. The floor of the step function is set at 30 dBZ so that low 

signal-to-noise ratio is avoided. The step size is increased from 20 dB to 50 dB in 

increments of 10 dB. The mean Doppler velocity is set to two levels; one at 10 m/s in 

the 30 dBZ region and -10 m/s in the stepped reflectivity region. The impact of the 

step size on the observed reflectivity and mean Doppler velocity is shown in Fig. 5.12 

and Fig. 5.13 respectively for T = 40 /J.S. Figure 5.12 shows the input profiles (left 

panel) and the bias in the estimated reflectivity (right panel). The bias in reflectivity 

is within acceptable levels of ±0.5 dB for a step size up to 40 dB but the impact 

of side lobe is clearly seen as a biased reflectivity estimate for a step size of 50 dB. 

Similar results were obtained for T = 20 pis but are not show in this paper. The 

ISL of at least 40 dB is required to handle large gradients in reflectivity and provide 

estimated Doppler moments with acceptable bias. 

5.5.4 Impact on polarimetric variables 

The simulation set up described in Section 5.55.5.3 is also used to analyze the 

impact of range side lobes on the retrieval of polarimetric variables. Two sets of 

polarimetric variables are used; One for the floor of the step function and the other 

for the stepped region. The differential reflectivity (Zdr) is set to 1 dB and 3 dB; 

Differential phase 4>dP is set to —65° and 35°; Co-polar correlation coefficient (phv) 

between the horizontal and vertical polarization channel is set to 0.99 and 0.88. Lower 

values of phv can occur in very strong reflectivity cores usually containing hail/ice. 

The Zdr profiles and the bias in estimated Z(y is shown in Fig.5.14 and the bias is 

within 0.1 dB for reflectivity step sizes up to 40 dB. For step size of 50 dB the presence 
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Figure 5.12: The impact of side lobe level on Zh using a step function profile with 
varying step sizes of reflectivity with phase noise 80 = 0.25°. 
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Figure 5.13: The impact of side lobe level on v using a step function profile with 
varying step sizes of reflectivity with phase noise 59 = 0.25°. 
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Figure 5.14: The impact of side lobe level on Zdr using a step function profile with 
varying step sizes of reflectivity with phase noise 56 = 0.25°. 

of range side lobes results in larger biases in Zdr. The bias in Z&r exceeds 0.25 dB for 

step size greater than 40 dB. The profile and bias in estimated differential propagation 

phase shift ((pdP) is shown in Fig. 5.15. The bias in 4>dp is not very significant even 

at large step size of 50 dB. The most significant impact of the range side lobe can be 

seen in phv. The phv profiles and bias in estimated phv is shown in Fig. 5.16. The bias 

in phv is not very significant for step sizes up to 40 dB. However, there is a dramatic 

reduction in phv in the vicinity of the step function when there is a 50 dB step. phv 

drops to less than 0.8 from 0.99 due to the presence of range side lobe contamination 

from a region of low p/,.„. It is important to note that such drop in pilv will not occur 

if the phV in the range side lobe is same or as high as the range gate of interest. 

The accuracy of the polarimetric variables such as Z,ir and <pdp is directly affected 

by the magnitude of phv Figure 5.17 (a) and Figure 5.17 (b) show the standard 
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Figure 5.15: The impact of side lobe level on 6dp using a step function profile with 
varying step sizes of reflectivity with phase noise 59 = 0.25°. 
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Figure 5.16: The impact of side lobe level on phv using a step function profile with 
varying step sizes of reflectivity with phase noise 56 — 0.25°. 
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Table 5.2: Frequency diversity pulse compression waveform 

Pa rame te r i = 1 i = 2 i = 3 
Frequency / i f2 h 
Pulse width, ^s 40 20 1 
Chirp bandwidth, MHz 3.6 3.6 
Tukey window tuning 0.1268 0.1944 
kT 0.3543 0.3274 
kB 0.6 0.4920 

deviation of Zdr and <pdv observed using the pulse compression waveform with T = 

40 ps and T = 20 ps respectively and estimated using N = 32 pulses at X-band. 

The standard deviations are plotted for varying reflectivity step sizes. For both the 

pulses, the standard deviation of Zdr about 0.3 dB for Zh step size up to 40 dP> in the 

region where phv = 0.99 and very high standard deviation of 1.75 dB corresponding 

to phv — 0.88. The standard deviations of polarimetric variables degrade significantly 

when phv is very low. It is important to observe the increased standard deviation of 

Z^ due to range side lobe contamination when the Zh step size is 50 dB. A behavior 

similar to Zdr is observed in <pdp. However, the error in cpdp is not as significant as the 

error in Zdr. 

5.6 Frequency diversity waveform 

Based on the requirement of 10 dBZ sensitivity at 40 km a frequency diversity 

waveform consisting of three components is obtained using the sensitivity mapped 

generalized waveform. The pulse widths of the three components are T\ = 40 ps, 

T2 = 20 ps and T3 = 1 ps. The pulse compression waveform for each component 

using pulse compression is obtained by minimizing the side-lobe for a B = 3.6 MHz 

chirp operating at a base band sampling frequency of fs = 5MHz. The minimum ISL 

filter is chosen as the compression filter. The use of frequency diversity enables the 

mitigation of blind range. The envelope of the transmit pulse and its time-frequency 

plot are shown in Fig.5.18. The parameters of the frequency diversity waveform is 
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Figure 5.17: The standard deviation of Z(/r and <pdp with the reflectivity step size as a 
parameters (a) for a waveform with T = 40^s and (b) for a waveform with T = 20/j,s. 
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Figure 5.18: Time-frequency plot of the frequency diversity pulse compression wave
form (a) Transmit pulse envelope (b) Time frequency plot. 

shown in Table 5.2. The sub pulse at frequency fx has a blind range of 9.15 km and 

has the highest sensitivity as shown in Fig. 5.1 while sub pulse at frequency /2 has a 

blind range of 3.15 km and has intermediate sensitivity. The short pulse at / 3 does 

not have a blind range and has the least sensitivity. The measurements from the 

three frequencies are combined to provide observations without any blind range and 

adequate sensitivity. 

In order to ascertain the feasibility of the frequency diversity pulse compression 

waveform in a more realistic meteorological phenomenon a simulation based on ob

servations from CSU-CHILL radar is performed. A precipitation event with a well 

defined bright band was observed by CSU-CHILL radar on Jun 07, 2003 at 02:15:01 

UTC. This bright band data set was used to simulate the received signal for a fre

quency diversity pulse compression waveform transmitted using a 100 W solid-state 

power amplifier. A phase noise of 0.5 degree was added to the transmit waveform. 

The simulations were performed with N = 64 pulses at a PRF of 2 kHz. The cal-

106 



CHILL 2003-Jun-07 02:15:01 UTC Z, dBZ 

(b) 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

5 

I 

P," 

-u 

00 W 

10 15 20 25 30 
Frequency Diversity Pulse Compression Zh 

1 i ' 
J . 

T-40|Xs+20^s+1 | is 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 

^^ 

+ 
+ 
+ 
+ 
+ 
+ ^ 

^ • 

' I ' 

+ 
+ 
+ 
+ 
+ ^ 

+ + 
f + 
f + 
f + 
+ + 
+ + 
+ + 
-r^^^^k 

1 ' ' • i i ' 

+ + - + 
+ + - + 
+ + - + 

* ^^l^k 
+ _ ^ ^ ^ ^ ^ ^ | 

+ ^^^^j^^^^^^^H 

35 

+ + ^± 
^^gri^K 

^ ^ ^ ^ ^ ^ ^ ^ ^ & -

10 15 20 25 
Range (km) 

35 

130 

120 

10 

-10 

Figure 5.19: Simulation of frequency diversity pulse compression waveform for an 
X-band radar, (a) Observed reflectivity field from CSU-CHILL radar on Jun 07, 
2003 at 02:15:01 UTC (b) The retrieved reflectivity from a frequency diversity pulse 
compression waveform. 

ibration was done based on the radar constant for each component of the transmit 

waveform. The true bright band observations are shown in Fig. 5.19(a) which was 

obtained from a 500 kW peak-power radar. The reflectivity obtained by combining 

the observations from the three components of the transmit pulse is shown in Fig. 

5.19(b). A comparison of the true reflectivity and that obtained from pulse com

pression agree well. The reflectivity observations with the solid state radar and true 

reflectivity deviate from each other at lower reflectivity regions seen well above the 

melting layer at farther ranges as shown in Fig. 5.19. This difference is primarily 

because CSU-CHILL uses a very high powered Klystron transmitter. 

A performance of the frequency diversity pulse compression radar is evaluated 

based on simulations at X-band. The characteristics of the solid-state radar used 

in the simulations is shown in Table 5.3. Observations from the X-band polarimet-
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Table 5.3: Solid-state radar characteristics used in simulations 

Transmitter 
Type Solid-state 
Center frequency 9400 ± 100 MHz 
Peak power output 100 W (per polarization channel) 
Pulse width maximum 70 (is 
Polarization Dual linear. Horizontal and Vertical 
Max. Duty Cycle 15% 
Antenna and Pedestal 
Type (diameter) Parabolic reflector (2.4 m) 
3-dB Beam width 1° 
Gain 43.0 dB 
Receiver 
Type Dual-channel digital 
Bandwidth 5 MHz (before compression filter) 
Noise figure 4.0 dB 
Sampling rate 5 MHz (baseband) 

ric radars deployed by Center for Collaborative Adaptive Sensing of the Atmosphere 

(CASA) is used as input data to simulate a more realistic distribution of precipita

tion and simulations were performed with iV = 64 pulses at a PRF of 2 kHz. The 

simulations are carried out at three different frequencies whose center frequencies are 

separated by 10 MHz. The parameters of the wideband waveform simulated is given 

in Table 5.2. 

The observations made by the CASA radar at Chickasha on Mar 10, 2009 at 

04:14:19 UTC and the results obtained with the frequency diversity pulse compression 

waveform is shown in Fig. 5.20 and 5.21. The precipitation event shown in Fig. 5.20 

has weaker echoes close to the radar from azimuth of 240° to 330° and very strong 

reflectivities in the ranges covered by the longest pulse T\ = 40 (is (azimuth 330° to 

20°). The results obtained for the frequency diversity pulse compression waveform 

are combined from the three frequencies such that there is no blind range in the 

data and there is spatial continuity along range. This is particularly necessary for 

4>dp because the system differential phase shift at the three different frequencies can 

lead to discontinuity in the range profiles of <pdp. The reflectivity observed with the 
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frequency diversity pulse compression is shown in Fig. 5.20(a) and it can be seen that 

they match very well with the input reflectivity. The reflectivity close to the radar is 

obtained from the short pulse while the weaker echoes farther away from the radar 

are obtained from the long pulses. 

The observation of Zdr from the frequency diversity pulse compression waveform is 

also in good agreement with the input Zdr as shown in Fig. 5.20(b). The observed 4>dp 

and phv from the frequency diversity pulse compression waveform is compared with 

the input (pdp and phv respectively and are shown in 5.21 (a) and (b) respectively. 

The increase in <pdp along range (which indicates attenuation) in areas of significant 

precipitation is in good agreement between the input <bdp distribution and the <pdp 

distribution obtained from the pulse compression wxaveform. The retrieval of 4>dp is 

critical for attenuation correction algorithms. Similar simulation were carried out for 

a second data set based on observations made by the CASA radar at Cyril on Apr 16, 

2009 at 23:14:17 UTC under identical set up. The simulation based on Cyril radars 

also provided results comparable to the Chickasha results. 

A scatter plot of reflectivity observed using frequency diversity pulse compression 

versus input reflectivity for the two simulation cases is shown in Fig. 5.22. 

5.7 Summary 

Waveforms for radar using solid-state transmitters are critically important for elec

tronically scanned radars. The main drawback of the solid-state transmitter is the 

unavailability of high peak power which reduces the sensitivity. However, solid-state 

transmitter are capable of transmitting long pulses which is used to gain sensitivity. 

The transmission of long pulses does provide good sensitivity but at an expense of 

very poor range resolution. Pulse compression waveforms provides means to achieve 

good sensitivity by transmitting long pulse and still make observations with good 

range resolution. However, the transmission of long pulses blinds the radar for the 
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Figure 5.20: PPI plots of frequency diversity pulse compression waveform compared 
with the input data. The simulation is based on observation made with CAS A IP1 
radar at Chickasha on Mar 10, 2009 at 01:14:19 UTC. (a) Reflectivity (b) Zdr. 
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Figure 5.21: PPI plots of frequency diversity pulse compression waveform compared 
with the input data. The simulation is based on observation made with CAS A IP1 
radar at Chickasha on Mar 10, 2009 at 01:14:19 UTC. (a) 4>dp (b) phv. 
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Figure 5.22: Scatter plot of reflectivity from frequency diversity pulse compression 
versus the input reflectivity. The data used for simulations were collected by Chick-
asha radar on Mar 10, 2009 at 01:14:19 UTC and Cyril radar on Apr 16, 2009 at 
23:14:17 UTC. 
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duration of the pulse length resulting in blind ranges. A novel waveform using fre

quency diversity was presented to mitigate the problems of low sensitivity and blind 

ranges associated with pulse compression waveforms. A sensitivity mapped gener

alized waveform was presented that utilized wideband transmit signals along with 

frequency diversity. The use of frequency diversity long pulses is the key feature that 

mitigates blind ranges. 

A nonlinear frequency modulation pulse compression waveforms was proposed for 

the long pulses to achieve good range resolution and side lobe levels. The nonlinear 

frequency modulation pulse compression waveform was parameterized in terms of a 

linear frequency chirp and a non-linear chirp segments. A quadratic time-frequency 

relation governs the non-linear frequency modulation. The pulse compression wave

form is controlled by three parameters; the time and bandwidth control parameters 

and the Tukey envelope window parameter. A minimum ISL filter was designed to 

achieve very good side lobe performance. The minimum ISL filter is based on the 

transmit pulse and is designed such that the ambiguity function has minimal inte

grated side lobes. The side-lobe performance of pulse compression waveforms were 

presented for the minimum ISL filter. The Doppler tolerance and the impact of phase 

errors were quantified for integrated and peak side-lobe level. It is important to have 

phase errors less than 0.5 deg to minimize the range side-lobe problem. The perfor

mance of the minimum ISL filter degrades in the presence of Doppler velocity but the 

side lobe levels are still within acceptable limits for Doppler velocities encountered in 

meteorological phenomenons. 

An analysis of the pulse compression waveform for volume targets was presented. 

The range resolution, receiver, impact on Doppler moments and polarimetric vari

ables were presented. The minimum ISL filter provided better range resolution when 

compared to window based mismatch filters. The receiver bandwidth plays an im

portant role in the amount of noise added and finite bandwidth loss in the receiver. 

The minimum ISL filter suffers less finite bandwidth loss when compared to window 
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based mismatch filters. The impact of strong reflectivity gradients and range side 

lobes were presented for volume targets. The paper presented the impact of range 

side lobes using step function with varying step sizes. The retrieval of Doppler mo

ments and polarimetric variables were not significantly affected by a reflectivity step 

size up to 40 dB. The performance of the non-linear pulse compression waveform and 

the minimum ISL filter were acceptable for reflectivity step size up to 40 dB. 

A frequency diversity pulse compression waveform was simulated based on ac

tual observations from CSU-CHILL radar at S-band and the CAS A IP1 radars at 

X-band. The CSU-CHILL radar observations are made with a very high power trans

mitter and therefore, has very high sensitivity. A comparison based of CSU-CHILL 

radar observations with the simulated X-band observation using frequency diversity 

pulse compression waveform was presented. The frequency diversity pulse compres

sion waveform does provide adequate sensitivity and is suggested for operations. The 

performance of the frequency diversity pulse compression waveform based on obser

vations from CASA's IP1 radars were presented. The errors in Zh, Z&r and <t>dp 

were described for varying reflectivity ranges. The biases and standard deviations 

are within acceptable limits. The frequency diversity pulse compression waveform 

provided acceptable performance in providing adequate sensitivity, minimizing range 

side lobes and mitigating blind range. Based on analysis performed on realistic sim

ulations using CSU-CHILL radar data and CASA IP1 data the frequency diversity 

pulse compression waveform is suggested for polarimetric pulsed Doppler weather 

radars using solid-state transmitters. 
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CHAPTER 6 

NETWORKED WAVEFORM SYSTEM FOR WEATHER RADAR 

NETWORK 

6.1 Introduction 

A fundamental physical limit imposed by transmission from single radar is the 

problem of changing resolution as a function of range. In addition the lowest cover

age altitude increases with range due to earth curvature. As an alternate solution, 

a networked radar environment concept has been proposed (Chandrasekar and Jaya-

sumana (2001), McLaughlin (2002), Fig. 6.1). Single Doppler radar transmitting 

pulses with uniform pulse repetition frequency (PRF) have a fundamental limitation 

on maximum unambiguous range (ra) and maximum unambiguous velocity (va) deter

mined by the pulse repetition time and the wavelength. There is always a conflicting 

trade off between ra and va as their product is fixed for a given wavelength. This 

trade off is more stringent for X-band radars due to the shorter wavelength. The first 

generation CASA (the Center for Collaborative Adaptive Sensing of the Atmosphere, 

an engineering research center established by the National Science Foundation) radars 

are low cost X-band magnetron radars. Hence, there is a hardware limitation to imple

ment time and phase coded waveforms, which are the existing or proposed waveforms 

to mitigate range ambiguity on a single radar Bharadwaj et al. (2007). 

In this chapter a new approach to mitigate ambiguity is presented. The new ap

proach is a network based technique where spatially distributed mono-static radar are 



R a d a r 2 Radar 3 " 

Figure 6.1: Illustration of a networked radar concept (NETRAD). 

used to mitigate ambiguities in the measurements. In this chapter ambiguity prob

lem is formulated for a networked radar environment by using the principle that the 

underlying intrinsic properties of the medium such as reflectivity and velocity must 

remain consistent in a networked environment. The ambiguity is resolved by jointly 

processing the measurements from all the individual radars. The short wavelength 

used in CASA radars limits the maximum unambiguous velocity and the inability of 

low cost transmitter to transmit complex waveforms amplifies the velocity ambiguity 

problem. A distributed waveform is proposed to overcome the ambiguity for targeted 

applications such as tornado detection, high winds, tracking and hydrology. A simu

lation study is carried out to evaluate the performance of the distributed waveform. 

In addition to the simulation study the network based approach is tested with mea

surements from the CASA's IP 1 (Integrative Projects) testbed. The CASA testbed 

consist of a network of four X-band radars deployed as shown in Fig.6.2. The four 

operational radars are deployed at Cyril, Chickasha, Rush Springs and Lawton in 

southern Oklahoma. 

This chapter is organized as follows: A brief description of multiple Doppler mea

surements is presented in Section 6.2 which is essential for understanding of the 

formulation of the networked waveform system. Section 6.3 describes the formulation 

and analysis of the networked waveform system. A simulation study for the net-
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worked waveform is presented in Section 6.4 and results from actual implementation 

of the networked waveform on the CAS A IP1 radar network is presented in Section 

6.5. Finally, Section 6.6 presents the summary of the chapter. 

6.2 Multiple Doppler observations 

A single radars maps the component of wind speed directed in the radial direction 

of the radar. The mean Doppler velocity estimated from the received signal is a 

projection of the vector wind velocity on to the propagation path of the beam. For 

example, wind field perpendicular to the beam will result in zero mean Doppler 

velocity at the radar. The intrinsic wind velocity vector has three components: two 

components in the horizontal direction and one component in the vertical direction. 

The radial velocity of a resolution volume observable at the radar is related to the 

intrinsic wind velocity by the equation given by 

v(a, e) = u sin a cos e + v cos a cos e + w sin e, (6.1) 

where a and e are the azimuth and elevation of the resolution volume; u, v and w 

are the three components of the intrinsic wind velocity vector. Two of more radars 

observations are required to obtain the unknown wind velocity vector. The relation 

between the observed radial velocities of a resolution volume and the intrinsic wind 

velocity components in a networked radar environment with A7" radars is given by 

(6.2) 

w 
where G is given by 

W 

/ sin a,\ cos e\ cos a\ cos e\ sin e\ \ 
sin a2 cos e3 cos a2 cos e2 sin e2 

\ sin a<v cos e,y cos aN cos e,v sin e^l 

(6.3) 
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The wind field can be estimated by solving the above overdetermined set of equations. 

However, the errors in the vertical velocity is very high because a low elevations the 

radar beam and the vertical component are nearly orthogonal. The mass continuity 

equation is used to in conjunction with the above overdetermined system of equations 

to obtain the wind vector. A detailed formulation of the multiple Doppler synthesis 

is described in Armijo (1969). 

6.3 Networked Waveform System 

Waveforms for precipitation radars have been designed from a single radar per

spective for many decades. The primary parameters for a pulsing scheme are the 

number of pulses and the pulse repetition time (PRT) or pulse repetition frequency 

(PRF). The number of pulses used in the integration is mainly for the reduction of 

errors in the estimated moments. The PRT selection is based on the unambiguous 

range-velocity space and the operating range of Doppler spectral width. Both, un

ambiguous range-velocity space and operating range of Doppler spectral width are 

a function of PRT and the radar wavelength. Since the wavelength is fixed for a 

given radar or radar network only the PRT can be changed to alter the design space. 

The most common approach is the use of staggered PRT and multiple PRF pulsing 

schemes. In this section a networked waveform system is described that adds spatial 

diversity of individual radars along with PRT to mitigate the ambiguity problem. 

In a networked waveform measurements of precipitation from a network of weather 

radars are jointly processed to mitigate ambiguity. 

6.3.1 Formulation and solution 

The networked waveform can be represented with 

S(t)= [Sl(t) s2(t) s3{t) ••• sN(t)] (6.4) 
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where Sj(t) is a vector representing the transmitted signal or pulsing scheme at the 

j t h radar node and Sj(t) is given by 

Sj(t) = 
sj2(t) 

(6.5) 

where sjk(t) for k = 1,2, ••• , M,- is the pulsing scheme at the j t h radar node with 

multiple PRF waveform with Mj PRFs. The pulsing scheme Sjk{t) will operate at a 

pulse repetition time Tjk whose maximum unambiguous velocity is given by 

A 
vjk 

m jk 
(6.6) 

In general, Mj can be different in each radar node but in this research Mj = M is 

identical in each radar node. Therefore, a networked waveform provides a total of 

NM samples of the same atmospheric phenomenon but observed with N view points. 

The dimension of networked waveform system D is given by 

D "£MJ = NM. (6.7) 

The precipitation medium within the coverage of the networked radar system is mea

sured with the distributed waveform S. The intrinsic properties of the precipitation 

medium should remain self consistent within measurements made with S. 

The mean Doppler velocity estimated using the networked waveform S is related 

to the intrinsic wind field by a geometric transformation matrix. The mean Doppler 

velocity observed with S is given by 

v„ 
V2 

@w + e, (6.8) 

where 

vk 

\VM) 

(hk\ 
hk 

\VNkJ 

,W = and 0 = 
G 

(6.9) 
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The observed velocities Vjk may have aliased velocities whose folding or Nyquist 

velocity is Vjk. The folding of velocities occurs differently for each Tjk but the obser

vations are of a the same resolution volume. Therefore, self consistency of the vector 

velocity field can be invoked in a networked environment to estimate the true wind 

field. The velocity ambiguities are resolved by directly estimating the wind fields. 

The solution is obtained by solving the optimization problem given by 

w — arg min \\®w — t>m||2 (6.10) 

The estimated wind velocity vector can be used to obtain the unfolded radial velocities 

at each node as given below. 

vun = ®w (6.11) 

The wind velocity vector w is used in multi-Doppler analysis for studying the kinemat

ics within storms while vun is used for detection of shear features that are associated 

with tornadoes. 

6.3.2 Analysis 

Before a a networked waveform is designed additional constraints on the operating 

PRTs is set based on both operational and hardware requirements. A maximum 

operating PRT Tm is first set so that the precipitation volume is adequately sampled 

to accommodate larger Doppler spectral widths. The minimum PRT Tmin is set by 

the maximum duty cycle of the transmitter. Therefore, the PRT Tjk in the kth burst 

at the j t h radar is limited to 

Tm > Tjk > Tmm for all j = 1,2, • • • , N and k = 1, 2, • • • , M. (6.12) 

To simplify the design process a differential step in PRF A / is used to obtain Tjk for 

the N radars. A / can be in the range of 100 Hz to 500 Hz and Tm = 625 /is which 
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corresponds to a PRF of 1.6 kHz is chosen. The PRT at the N radar nodes is given 

by 

Tm 
T]k = l + [(fc-l)JV + i - l ] A / T m

 ( 6 ' 1 3 ) 

A simulation at X-band is performed to illustrate the design and performance 

of the networked waveform. The simulation is performed for a radar network with 

iV — 3 radars and M = 2 burst at each radars. Essentially, each radar operates in 

a dual-PRF waveforms but it is important to note that unlike the traditional dual-

PRF waveform there is no requirement on the ratio of the two PRFs. The geometry 

of the radar network is chosen to be identical to CASA's IP1 radar network. A 

random location within the coverage region of the three radars is selected and a wind 

field with a uniform distribution of u U (—50,50) and v U (—50, 50) is simulated. The 

observed radial velocities are computed based on the intrinsic wind velocity vector and 

a Gaussian Measurement error with standard deviation <r(V) is added to the observed 

radial velocity. The unfolding error in wind velocity is estimated by comparing the 

intrinsic wind velocity with the velocity estimated from the networked waveform. 

The unfolding error as a function of measurement error is shown in Fig. 6.3 for 

varying A / . The unfolding error in Fig. 6.3 is shown for A / = 100, 200, 300, and 400 

Hz. The errors are plotted for two networked radar configurations;one with AT = 3 

radar nodes and the other with N = 4 radar nodes. The unfolding errors for Ar = 3 

radars and Ar = 4 radars are shown in Fig. 6.3(a) and Fig. 6.3(b) respectively. It can 

be observed in Fig. 6.3 that the unfolding errors reduce when A / is increased from 

100 Hz to 400 Hz. The trend of lower velocity unfolding error with increasing A / is 

consistent for N = 3 and Ar = 4 radars. It is worth noting that there is not much 

gain for A / > 200Hz which indicates that the improvement in the measurements 

due to PRF separation within the networked waveforms becomes asymptotic with 

A/ . There is a reduction in the velocity unfolding error when the number of radars 

is increased from N = 3 to N = 4. The velocity unfolding error is under 2.5% for 
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Figure 6.3: Velocity unfolding error plotted as a function of standard deviation in 
velocity: (a) For N=3 radars;(b) For N=4 radars 
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a(V) < 2.0 m/s for N — 3 radars while velocity unfolding error is under 2.5% for 

P(Y) < 2-5 m/s for N = 4 radars indicating that more errors can be tolerated when 

the dimension of the networked waveform D is increased. The dimension D can be 

increased by adding more radars in the network or by adding more number of bursts 

M at each radar. It is an easier solution to increase the number of bursts at each 

radar than to add more radars within the network. 

6.4 Simulation Study 

The velocity unfolding error is governed by the wind velocity vector and the dis

tributed waveform design. The Doppler velocities measured at the nodes are directly 

a function of the wind speed and the wind direction at the specific resolution vol

ume. Figure 6.4 shows the velocity unfolding error as a function of wind speed and 

wind direction for a specific resolution volume in the middle of the three nodes of the 

IP1 network. A significantly high variance of 1 m/s was used for the velocity error 

distribution. The region with very high velocity unfolding error in Fig.6.4 occurs in 

conditions when the radial velocities at the nodes are closer to the Nyquist velocities 

of the waveform. However, the region with high errors are much smaller than the 

region where the error is 5% or less and the overall velocity unfolding error is 3.5%. 

This limitation can be reduced by performing spatial filtering on the estimated wind 

field. Also, the the region with higher errors is reduced when a narrower error distri

bution is used. Figure 6.4 is the velocity unfolding error for a given resolution volume 

withing the IP1 network. An average error is obtained for the resolution volume for 

varying wind speeds and wind directions. The average unfolding error is a function of 

the location of the resolution volume within the radar network. Figure 6.5(a) shows 

the the average unfolding error for a networked waveform using three radar nodes. It 

can be observed in Fig.6.5 that the errors along the baseline of the radars is high. In 

order to eliminate the high errors in the baseline region a networked waveform with 

four radar nodes is implemented. It can be observed in Fig. 6.5(b) that the base 
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Figure 6.4: Velocity unfolding error as a function of wind speed and wind direction 
for the resolution volume located 20 km from Cyril radar at an azimuth of 60 deg. 

error between Cyril and Rush Springs is eliminated. Therefore, in a large and dense 

network of radar the higher error in the baseline can be eliminated using a networked 

waveform system. 

A simulation is performed to analyze the ability of the networked waveform system 

to measure very high Doppler velocities. A Rankine model (Wood and Brown, 1992) 

is used to model the horizontal wind fields within a tornado and is used to simulate the 

velocity distributions that are measured in the networked environment. The Doppler 

velocity measured at the radar node is given by 

rr. rr 
Vd — -cos(6r, — 

r 
To 

C-i 
-sin(9p vt (6.14) 

where vr is the peak radial velocity and vt is the peak tangential velocity at the center 

of vortex of radius rc. rp and rv are the radar range of the resolution volume and 

vortex center respectively. 9,p and 9V are the azimuth angles of the resolution volume 
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Figure 6.5: Velocity unfolding error within the IP1 coverage area, (a) Mean unfolding 
error with a networked waveform using three radar nodes, (b) Mean unfolding error 
with networked waveform using four radar nodes. 
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and vortex center respectively; and r is the distance of the resolution volume from 

the center of vortex. For the simulations presented in this chapter £ = 1 for r < rc 

and £ = — 1 for r > rc. 

A range profile of Doppler velocity is simulated based on (6.14) with a variance 

of 1 m/s in a networked radar environment with measurements made with U. It can 

be observed in Fig.6.6(a) that unbiased velocities as high as 60 m/s can be measured 

with acceptable standard deviations as shown in Fig.6.6(b). The standard deviation 

of NETRAD retrieval is less than 1.5 m/s. Figure 6.6(c) shows the unfolding error 

with NETRAD retrieval at Cyril. The unfolding error is less than 5% while being 

able to measure velocities as high as 60 m/s. It is important to note that U for 

the results shown in Fig.6.6 is designed for low cost hardware and in general U can 

be designed to measure velocities as high as ±100 m/s. Figure 6.7 shows Doppler 

velocity measurements of a tornado circulation simulated in the IP1 region . Figure 

6.7(a) and (b) are measurements with the node waveform at Cyril and Fig. 6.7(c) 

shows the true Doppler velocity at Cyril. The networked waveform retrieval is shown 

in Fig. 6.7(d) and it can be observed that the networked retrieval is able to measure 

high velocities around ±60 m/s. 

6.5 Results 

The networked waveform system was implemented in the IP1 radar network which 

consist of low cost X-band radars (Junyent et al. (2005)). A data set with the three 

nodes at Cyril, Chickasha and Rush Springs was collected on Mar 31, 2008 at 17:50:32 

UTC. Figure 6.8 shows the networked retrieval for Cyril radar. The maximum un

ambiguous velocity at Cyril is 14.6 m/s. The Doppler velocity and reflectivity are 

plotted versus azimuth in Fig.6.8. Velocity folding can easily observed in the mea

sured velocity while the NETRAD retrieval provides unfolded velocities. Figure 6.9 

shows a PPI of networked retrieval for Cyril radar. The measured Doppler velocities 

are shown in Fig.6.9(a)and Fig.6.9(b). Velocity folding can easily be observed in the 
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Figure 6.6: Networked waveform simulation with the IP1 radar network at 1 degree 
elevation angle, (a) True and mean Doppler velocity with networked retrieval (b) 
Standard deviation of NETRAD velocity at Cyril (c) Unfolding error in NETRAD 
velocity at Cvril. 
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Figure 6.7: Networked waveform simulation with the IP1 radar network at 1 degree 
elevation angle, (a) Measured velocity at Cyril at PRF=1.6 kHz (b) Measured velocity 
at Cyril at PRF=1.84 kHz (c) True Doppler velocity of the simulated circulation and 
(d) (b) Networked retrieval for Cyril. 

129 
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Figure 6.8: Networked waveform the IP1 radar network at 1 degree elevation angle, 
(a) Doppler velocity with networked retrieval (b) Reflectivity. 
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Figure 6.9: Networked waveform data collected on Mar 31, 2008 at 17:50:32 UTC with 
the IP1 radar network at 1 degree elevation angle, (a) Measured velocity at Cyril 
at PRF=1.6 kHz (b) Measured velocity at Cyril at PRF=1.84 kHz (c) Measured 
reflectivity and (d) (b) Networked retrieval for Cyril. 
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measured velocities. The measured reflectivity is shown in Fig.6.9(c) and Fig.6.9(d) 

shows the NETRAD retrieval of velocity for Cyril. It can be observed for regions 

with adequate signal-to-noise ratio NETRAD retrieval provides dealiased velocities. 

Although the Doppler velocities are not very high the application of the networked 

waveform system is demonstrated with data collected from an operational weather 

radar network. 

6.6 Summary 

A networked waveform system for resolving ambiguities for Doppler weather radar 

systems was presented. The networked waveform system offers many advantages. 

Firstly, it decouples the range ambiguity and velocity ambiguity from each other, 

whereas range and velocity ambiguities are coupled together in a single node wave

form. Secondly, the networked waveform can be designed to measure very high veloc

ities without the need for complex waveforms and advanced processing at each node. 

This minimizes the computational load on each node. A simple methodology was pre

sented to simplify the designing of networked waveform system and an analysis of the 

errors in unfolding Doppler velocity was presented. The networked waveform system 

was parameterized in terms of the difference between the PRFs transmitted at each 

node. The velocity unfolding error reduced when the difference between the PRFs 

was increased but the improvement in performance was asymptotic with the PRF dif

ference. Velocity unfolding errors of less than 5% was achieved based on simulations. 

The simulations were performed based on the network geometry of CASA IP1 radar 

network. Simulation of a circulation feature was used to ascertain the performance 

of the networked waveform in a realistic weather phenomenon. Based on the results 

obtained from simulation and it can be concluded that networked waveform system 

can provide high unambiguous velocities. The networked waveform system was imple

mented with the IP1 radar network and preliminary results show that the networked 
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approach is a viable solution. However, further evaluation based on data from the 

IP1 networked is necessary for operational use of networked waveform system. 
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CHAPTER 7 

RESOLUTION ENHANCEMENT SYSTEM FOR NETWORKED 

RADAR SYSTEMS 

7.1 Introduction 

The spatial resolution of observations made with a pulsed Doppler weather radars 

has a direct impact on the detection, quantitative estimation and modeling of precip

itating phenomenon. The spatial resolution of a pulse Doppler radar is determined 

by the size of the beam at a given range from the radar. The size of the beam along 

range is determined by the transmitted pulse width and the cross-range beam size is 

determined by the antenna beam width. The intrinsic property of the radar beam is 

that beam gets wider at farther ranges and thereby reduces the cross-beam resolution 

of precipitation measurements at far ranges. Improved spatial resolution enables us to 

observe finer structures in atmospheric phenomenon which improves detection and in 

general improves the understanding of atmospheric dynamics. Making observations 

at a wide range of spatial scales is not only important for improved detection and pre

cipitation estimation but also very important for modeling applications. The study of 

precipitation variability in hydrological applications have suggested that small-scale 

spatial variability of the precipitation field has significant effect on runoff volume, 

which is provided as input to a rainfall-runoff model (Winchell et al., 1998). 

The resolution along range can be improved by transmitting shorter pulses. A typ

ical lfis pulse will provide a range resolution of 150 m. Pulse compression waveforms 



(Mudukutore et al., 1998) can be used to improve range resolution. Other techniques 

using deconvolution methods have been suggested to improve range resolution (Galati 

et al., 1996; Yu et al., 2006) and a technique using interferometry has been proposed 

(Zhang et al., 2005). The resolution obtained along range in current pulsed Doppler 

weather radar is on the order of 100 m and is within acceptable limits. However, 

the cross-range resolution is a function of antenna size and its impractical to have a 

physically very large aperture antenna. Therefore, the spatial resolution of a pulsed 

Doppler weather radar is limited by the antenna beam width. In this paper a novel 

methodology to improve the spatial resolution is presented. 

A networked radar environment concept was proposed by Chandrasekar and Jaya-

sumana (2001): McLaughlin (2002) to mitigate the many of the limitations of single 

radar using a large antenna. Chandrasekar and Lim (2008) used the concept of differ

ent view angles in a networked radar environment to perform attenuation correction. 

In this paper we use the concept of different view angles in a networked radar environ

ment to enhance the spatial resolution of reflectivity. The novel methodology called 

the resolution enhancement system (RES) uses an algebraic approach to retrieve the 

reflectivity distribution with a constraint that all the radar nodes within the common 

coverage area observe a common reflectivity distribution. 

The paper is organized as follows: Section 7.2 gives a short description of the 

received signal back-scattered from precipitation medium. Section 7.3 describes the 

relation between spatial resolution of the measurements and the radar system param

eters. The evaluation of the methodology based on simulation study is presented in 

Section 7.4 while results from the application of the methodology on the data col

lected with Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) 

Integrated Project I (IP1) radar network is presented in Section 7.5. 
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7.2 Received signal from volume targets 

A pulse Doppler radar transmits a pulse train with a pulse repetition time (PRT) 

Ts. The received voltage from a resolution volume at range r corresponds to the back-

scattered signal from particles within a volume extending radially from r to r + Ar 

, as illustrated in Fig.7.1. The back-scattered signals from all the particles within a 

single resolution volume sum to a resultant voltage sample at the receiver at time t 

(range, r) and is given by 

vr(t) = J2 aifcCnt; t)e-^0T"g(t - n) (7.1) 
k 

where ak is the scattering amplitude of the kth particle in the resolution volume. 

g(t) is the complex envelope of the transmit pulse operating at a frequency /o and 

rk = 2rk/c where c is the speed of light. A more detailed description of the properties 

of the received voltage can be found in Bringi and Chandrasekar (2001). The mean 

power received from the resolution volume is given by 

Pr(t) = {\vr(t)\
2) = J2(Mrk-t)\

2)\g{t-Tk)\
2 (7.2) 

k 

w?\-\—^- )w'-n)l {7'3) 
where (.) indicates ensemble averaging and the time-dependence of ak(Tk:t) is not 

considered because it is reasonable to assume that ak(Tk;t) is stationary over the 

integration cycle. Gk is the antenna gain in the direction of the kth particle. The 

mean radar cross-section per unit volume, r](r,0,(f>), is defined by 

r](r,e,(p)AV = J2(^\Sk\2) (7.4) 
k 

where AV is the elemental volume. The mean received power from range r0 can be 

expressed as an integrals of weighted r/(r, 6, cp) over the resolution volume of the beam 

•̂(*) = #^/^^(r,M)|*(*-r)|W (7.5) 
(47T)3 

V 
ro -Ar /2 n2 

A ^ I n- r - G J M (r>MMf _T)|2rfrdn (7_6) 
(4TT)3 

fi Jro+Ar/2 ' 

136 



Where G(9, <p) is the two-way antenna power pattern and fi is the elemental solid 

angle subtended by the resolution volume. The antenna power pattern is expressed 

Resolution Volume 
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Figure 7.1: Received voltage due to scattering from particles located within a shell 
extending from (r, r + Ar). 

in terms of peak power pattern Go and normalized power pattern f(9, <p) as G(9, <f) = 

Gof(9,<p). Then the mean received signal is given by 

Pr(t) = 
\2P,Gl t^Q 

ro-Ar/2 f2 f2(0,4>) 
ro + Ar/2 

7.3 Resolution of measured reflectivity 

T)(r,9,<l>)\g(t-T)\2drdn (7.7) 

The resolution of measured reflectivity is a function of the antenna beam-width, 

scan speed and the transmitted pulse width. The resolution along range is a function 

of the transmit pulse length and the cross-range or azimuthal resolution is a function 

of the beam width and the range to the resolution volumes shown in Fig. 7.2. The 

range resolution is related to the pulse width T0 as 

(7.8) 

If we assume the reflectivity is uniform along range within Ar and the complex 

envelope of the transmit pulse is rectangular then we can rewrite (7.7) as 

cT0 

Ar = 
2 

Pr(ro) 
X2PtGl 
(47r)3r§ 

fA{6,(b)i]{r0,e,<p)d6d4 (7.9) 
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Doppler weather radar have good range resolution due to the short transmit, pulse 

width. Typically range resolution is from 50-200 m. However, the azimuthal resolu

tion degrades as the range increases and is given by 

ARCX = r9B (7.10) 

where 9B (or cps) is the antenna beam-width. We can further decompose the antenna 

r 0 
B 

Figure 7.2: Illustration of resolution volume size as a function of pulse width, range 
and beam width. 

pattern into two orthogonal components. One components defines the pattern in 

elevation and the other defines the pattern in azimuth. The antenna pattern can now 

be expressed as f{&,4>) — g(9)g((p). Doppler weather radars traditionally scan in the 

azimuth domain and if we lump the reflectivity integrated over the elevation angle 4>Q 

as r](r0,9, (p0) then (7.9) can be written as 

PAro) 
cT0 

2 

\~PtGQ 
g2(9)r]{r0,9,(i>0)d9 r.n .(47T)3rgJ 

In addition to the range dependent beam broadening in (7.10) antenna motion during 

the integration cycle also effectively broadens the beam. The effective antenna pattern 

is given by 

r 2 
./e = 9 * W 92(0-OHZ)<% r.12) 
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where 

g{0) = exp{-Hn{2)^ M3) 

and 

1 | 0 | < A 
0 otherwise 

(7.14) 

In (7.12) g{9) is the intrinsic antenna pattern in azimuth and w is the rectangular 

window function extending A in azimuth. The length of w depends on the dwell time 

of the integration cycle. The effective antenna pattern is given by 

A, 
fe(0) = 

IT 

2ln2 
erf 

^/8Zn2 
-erf 

VSM2m A, 
(7.15) 

The effective antenna pattern forms a range-variant kernel relating the reflectivity and 

Range-variant kernel, fe 
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Figure 7.3: Range-variant discrete Gaussian kernel 

the mean received power. The range-variant kernel is shown in Fig.7.3 as a function of 

cross-range distance with the range to the resolution volume as a parameters. It can 

be seen that the kernel gets broader with range implying that measured reflectivity is 
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a smeared version of the intrinsic reflectivity and the smearing effect gets worse with 

range. In other words the cross-range resolution of reflectivity in azimuth is governed 

by the range-variant kernel given by (7.15). 

7.4 The CASA example 

In this section a examples are presented to evaluate the performance of the resolu

tion enhancement system. The simulations are performed in a networked environment 

with four radar nodes. The radars are located to match the positions of the four radar 

in the Integrated Projects-I (IP1) testbed deployed by CASA in Oklahoma. A com

posite reflectivity is obtained based on the networked retrieval technique. In addition 

composite reflectivities based on range weighted averaging and maximum reflectivity 

is also estimated. The range weighted averaging of reflectivity from multiple radars 

uses the fact that the resolution and signal-to-noise ratio degrades with range. Re

flectivity from individual radars are relatively weighted such that measurements from 

the closest radar is assigned the highest weight while measurement from the farthest 

radar is assigned the least weight. The weight for the ith radar to obtain a range 

weighted mosaic is given below. 

R~p 

Wi = -rr1 (7.16) 

In the above equations Rj is the range of the resolution volume from the individual 

radar nodes and p is an integer selected to adjust the dependence on range. The 

range weighted mosaic is obtained as given below. 

JV 

Zrmean(x, y) = ] T Wj{x, y)Zj(x, ]j) ( 7 . 1 7 ) 

j = l 

A simulation with with 2° beam width was performed with a two dimensional 

flat-topped reflectivity field with a specified reflectivity gradient as shown in Fig. 

7.4. The simulated reflectivity distribution is positioned in the coverage region of the 

networked radar system. The measured reflectivity at each node is obtained based 
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Figure 7.4: A two dimensional flat topped reflectivity distribution with 25 dB/km 
gradient. 
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on the effective antenna pattern of the radar and measurement error of 1 dB added. 

The RES solution was obtained for a 6 x 6 km tile. 

Figure 7.5 shows the application of the resolution enhancement system for a sim

ulated data set with 20 dB/km reflectivity gradient. The simulation were performed 

for a three node configuration with nodes at Cyril, Chickasha and Rush Springs. The 

observed reflectivity is shown in Fig. 7.5(a), (b) and (c) while the true reflectivity is 

shown in Fig. 7.5(d). The smearing effect of the antenna pattern is obvious when the 

observations are compared with the true reflectivity. The range weighted reflectivity 

mosaic and networked retrieval is shown in Fig. 7.5(e) and Fig. 7.5(f) respectively. 

The resolution enhancement system provides a reflectivity that matches the true re

flectivity and the smearing effect that lowers the peak reflectivity is mitigated with 

the resolution enhancement system. The range weighted mosaic performs well at the 

storm edges to minimize smearing but is not able to retrieve the peak reflectivity in 

the core of the precipitation cell. 

7.4.1 Multiscale analysis 

Spatial variability is intrinsic to the estimated reflectivity distribution in radar 

meteorology. Spatial variability is dependent on both the scale and support of the 

estimated reflectivity distribution. Multiscale statistical methods have been exten

sively used to analyze spatial data. In this section we will consider Fourier spectrum 

to study the spatial variability and scaling. 

The power spectrum of a twro dimensional distribution has been used for studying 

spatial variability over a wide range of scales. The Fourier spectrum can be obtained 

with a periodogram estimate using 2D FFT as 

(7.18) 
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Figure 7.5: Resolution enhancement system applied to simulated data for a three 
radar node case. Observed reflectivity from (a) KCYR (b) KSAO (c) KRSR (d) 
True reflectivity distribution (e) Range weighted mosaic (f) Resolution enhancement 
system. 
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where 

k = K ' M and (7.19) 

To compute the isotropic power spectrum (F(k), k — ||fc||2) the 2D power spectrum 

is angularly averaged about k = 0. Empirical observations suggests scale invariance 

of reflectivity seen as power law relation of spatial spectrum with wave-number. The 

power law relation between spatial spectrum and wave-number is given as 

F(k) ~ h'13 (7.21) 

The spatial spectrum roll-off factor (5 is a measure of the variability or smoothness of 

the reflectivity distribution. Higher values of 0 indicate smoother reflectivity distri

bution while lower ,8 indicates more variability in the reflectivity distribution. 

7.4.2 Simulations : Multiscale analysis 

The performance of RES can be studied by analyzing the isotropic spectrum of 

the retrieved reflectivity distribution. A simulated reflectivity field is used to compare 

the scales of observed and retrieved reflectivity distribution. A 12 x 12 km area within 

the coverage of the radar network is simulated. An geometry of the simulated radar 

network is identical to the first generation radar network deployed by CASA. The 

RES solution is obtained for a 6 x 6 km. area at a grid resolution of 100 x 100 m and 

the final solution is a tiling of the individual tiles. This sections presents results for 

two simulated cases. The simulations are performed for radar nodes with a beam 

width of 1.8° and maximum operating range of 40 km. Case I is a precipitation event 

observed by four radar nodes and Case II is a storm cell observed by only three radar 

nodes. 

The observed reflectivity for Case I is shown in Fig. 7.6 while the range weighted 

reflectivity mosaic and RES retrieved reflectivity distribution for Case I is shown in 
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Fig. 7.7. The smearing of the observed reflectivity is obviously visible in Fig. 7.6 

and the worst cross-range resolution is observed in KSAO because the storm cell is 

more than 35 km away from the radar as seen in Fig. 7.7(a). The true reflectivity 

distribution is compared with the range weighted mosaic and RES retrieval in Fig. 

7.7(b). It can be observed that the reflectivity mosaic has degraded resolution when 

compared with RES reflectivity. The difference in resolution is clear when some of 

the very small features are compared between the true reflectivity, mosaic and RES 

reflectivity. The small features are much more spatially smeared in the range weighted 

mosaic when compared to the RES reflectivity. 

The observed reflectivity for Case I is shown in Fig. 7.8 while range weighted 

reflectivity mosaic and RES retrieved reflectivity distribution for Case II is shown 

in Fig. 7.9. The storm cell in Case II is only observed by three radars and KRSP 

observations have the worst resolution because the storm is more than 35 km away 

from KRSP as shown in Fig. 7.9(a). Again, the true reflectivity distribution is 

compared with the range weighted mosaic and RES retrieval in Fig. 7.9. It can be 

observed that the reflectivity mosaic has degraded resolution when compared with 

RES reflectivity. About four high reflectivity regions are clearly visible in the true 

reflectivity distribution and a similar high reflectivity regions are visible in the RES 

reflectivity whereas these the distinction between the high reflectivity regions is not 

clear for the reflectivity mosaic. 

It is important to observe in both Case I and Case II that mosaic and RES is 

not able to perfectly recover the high resolution reflectivity distribution. This is very 

obvious because the true reflectivity is available in simulated cases. However, in order 

to compare the performance of range weighted mosaic with RES multiscale analysis 

of the retrieved reflectivity can be performed. The isotropic power spectrum of the 

range weighted reflectivity mosaic and RES retrieved reflectivity is compared to the 

isotropic power spectrum of true reflectivity is shown in Fig. 7.10. The higher spatial 

variability of the reflectivity in Case I when compared to Case II is easily observed 
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Figure 7.6: Case I : Observation of simulated data for a networked radar system :(a) 
KCYR (b) KSAO (c) KRSP, and (d) KLWE. 

by cross comparing true reflectivities Fig. 7.7(d) and Fig. 7.9(d). This higher spatial 

variability is also evident from the isotropic power spectrum shown in Fig. 7.10. The 

power at smaller scales (< 500 m) in Case I is much higher than Case II. 

Figure 7.10 clearly shows that true, mosaic and RES reflectivity have comparable 

powers at scales larger than 1 km. However, the powers at scales smaller than 1 km 

are attenuated for mosaic and RES with respect to the true reflectivity. Therefore, the 

variability in reflectivity at smaller scales is not clearly observed in the reflectivity 

mosaic and RES. Although mosaic and RES do not observe the variability at all 

scales, the power at smaller scales for RES is closer to the true reflectivity for both 

Case I and Case II as shown in Fig. 7.10 (a) and Fig. 7.10 (b) respectively. Hence, it 

can be concluded by comparing powers at smaller scales that RES can capture small 

scale variability relatively better than range weighted mosaic. 
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Figure 7.7: Case I : Simulated data for a networked radar system :(a) Location of the 
storm within the IP1 radar network (b) True reflectivity distribution (c) Reflectivity 
mosaic, and (d) RES retrieval. 
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Figure 7.8: Case II : Observation of simulated data for a networked radar system :(a) 
KCYR (b) KSAO (c) KRSP, and (d) KLWE. 
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Figure 7.9: Case I I : Simulated data for a networked radar system :(a) Location of the 
storm within the IP1 radar network (b) True reflectivity distribution (c) Reflectivity 
mosaic, and (d) RES retrieval. 
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Figure 7.10: Isotropic power spectrum of reflectivity distribution: (a) Case I; (b) Case 
II. 
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7.5 Implementation with CASA radar network data 

In this section the resolution enhancement system is applied to data collected from 

IP1 testbed. The IP1 testbed is a networked radar system with four radars operating 

at X-band. Measurements at X-band suffer the effect of attenuation due to propa

gation in precipitation. The IP1 radars perform attenuation correction (Liu et al., 

2006) on a real-time basis and a attenuation corrected reflectivity product is provided 

operationally (Junyent et al., 2009). The data used to apply RES is attenuation cor

rected reflectivity distribution. The four radars are separated by approximately 25 

km and make measurements up to 40 km. The radars transmit a short pulse resulting 

in a range resolution of 60 m. A 1.2 m antenna with a 1.8° beam-width has a mean 

cross range resolution of 837 m in the coverage region of a single radar. However, 

mean resolution in a networked radar environment is less than the mean range reso

lution of an individual radar. The resolution in a networked environment is obtained 

by selecting the minimum resolution among the radars within the common coverage. 

The resolution in the CASA's IP1 radar network is shown in Fig. 7.11. A mean 

resolution of 736 m can be obtained by selecting the best resolution from the four IP1 

radars. The reflectivity obtained corresponds to a 1° integration cycle which provides 

oversampled data in azimuth with oversampling factor ~ 2. In this paper we are not 

considering the retrieval of the three dimensional reflectivity distribution and hence 

only scans at lower elevation angle (< 2°) are used. The RES is solved for a grid 

resolution of 100 m using a 6 x 6 km2 area tile. The origin is arbitrarily chosen to 

coincide with the Cyril radar and each radar GPS locations is translated to this new 

origin. A constrained linear least-squares solution is obtained to provide the RES 

reflectivity distribution. 

7.5.1 Case I: Small precipitation cell 

A small precipitating cell within the coverage of all the four radars was observed 

on Jim 06, 2008 at 20:36:08 UTC. The reflectivity distribution observed at 1° eleva-
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Figure 7.11: Composite networked resolution for CASA's IP1 radar network. 
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Figure 7.12: Location of the precipitation event in the radar network for data collected 
with IP1 radar network on Jun 06, 2008 at 20:36:08 UTC. 

tion at the four nodes are used as inputs to the RES algorithm. The location of the 

precipitation cell relative to the radar locations is shown in Fig.7.12 and the obser

vations made by the individual radars is shown in Fig.7.13. The smearing effect of 

the antenna pattern is clearly seen as the smearing effect is along the azimuth for 

each radar. The retrieval of reflectivity distribution from range weighted mosaic and 

reflectivity obtained from RES is shown in Fig.7.14(a) and (b) respectively. 

7.5.2 Case II: Thunder storm cell 

Figure 7.15 shows the relative location of the thunder storm within the IP1 radar 

network and the observations of reflectivity of a intense thunder storm in the IP1 radar 

network. The Thunder storm is observed by all the four nodes in the network as shown 

in Fig. 7.16. The data was collected at 1° elevation angle on Jun 16, 2008 at 11:30:30 
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(a) KCYR 
06-Jun-2008 20:36:08 UTC 

(b) KSAO dBZ 

Figure 7.13: Data collected with IP1 radar network on Jun 06, 2008 at 20:36:08 UTC: 
(a) KCYR (b) KSAO (c) KRSP, and (d) KLWE. 
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Figure 7.14: Reflectivity retrieval from the IP1 radar network with data collected on 
2008-Jun-06 at 20:36:08 UTC (a) Range weighted reflectivity mosaic and (b) RES 
reflectivity retrieval. 
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IP1 16-Jun-2008 11:30:30 UTC dBZ 

Figure 7.15: Location of the precipitation event in the radar network for data collected 
with IP1 radar network on Jun 16, 2008 at 11:30:30 UTC. 

UTC. The comparison of reflectivity mosaic and resolution enhancement system is 

seen in Fig.7.17(a) and (b). Similar to the simulation results the peak reflectivity at 

the cores is much pronounced with the retrieval from resolution enhancement system. 

Also, there is more variability of features observed with the resolution enhancement 

system as compared to reflectivity mosaic. 

7.5.3 Case III: Hook echo 

A hook echo associated with a tornado was observed by the IP1 radar network 

on Feb 10, 2009 at 21:13 UTC. The position of the hook echo within the network is 

shown in Fig.7.18 and its clearly out of range for Rush Springs and Lawton. The hook 

echo was observed by only two radars located at Cyril and Chickasha as shown in 

Fig.7.19(a) and (b). The networked resolution enhancement system is applied to this 
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Figure 7.16: Data collected with IP1 radar network on Jun 16, 2008 at 11:30:30 UTC: 
(a) KCYR (b) KSAO (c) KRSP, and (d) KLWE. 
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Figure 7.17: Reflectivity retrieval from the IP1 radar network with data collected on 
2008-Jun-16 at 11:30:30 UTC (a) Range weighted reflectivity mosaic and (b) RES 
reflectivity retrieval. 
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IP1 10-Feb-2009 21:13:11 UTC dBZ 

Figure 7.18: Location of the precipitation event in the radar network for data collected 
with IP1 radar network on Feb 10, 2008 at 21:13:11 UTC. 

data set. The reflectivity mosaic and networked retrieval is shown in Fig. 7.20(b) and 

(c) respectively. The formation of the hook echo is much more clearly visible in the 

networked retrieval. Also, as observed with previous data sets the peak reflectivity 

observed in the the storm is much more prominent in the networked retrieval. 

7.5.4 Results: multiscale analysis 

Scale analysis is performed on the range weighted reflectivity mosaic and RES 

retrieval by computing the isotropic power spectrum. The isotropic power spectrum 

of the reflectivity mosaic and RES retrieval for Case I, Case II, and Case III is shown 

in Fig. 7.21. As in the results for simulated data sets the power at scales larger 

than 1 km there is no significant different between mosaic and RES reflectivity. The 

power spectrum for mosaic and RES start to differ from each other for scales lesser 
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Figure 7.19: Data collected with IP1 radar network on Feb 10, 2008 at 21:13:11 UTC: 
(a) KCYR (b) KSAO (c) KRSP, and (d) KLWE. 
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Figure 7.20: Reflectivity retrieval from the IP1 radar network with data collected on 
Feb 10, 2008 at 21:13:11 UTC (a) Range weighted reflectivity mosaic and (b) RES 
reflectivity retrieval. 
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than 1 km. Reflectivity from RES has consistently higher powers at lower scales than 

range weighted mosaic. The power difference between mosaic and RES becomes more 

significant for scales smaller than 500 m. 

2008-JUN-06 MOSAIC 
2008-JUN-06 RES 

-16 MOSAIC 
-16 RES 
-10 MOSAIC 
-10 RES 

Wavenumber (m 

Figure 7.21: Comparison of radially average power spectral density of the RES re
trieved reflectivity and range weighted mosaic. 

7.6 Summary 

The resolution of Doppler weather radars is primarily dependent on the transmit 

pulse length and antenna beam width. The resolution has two independent compo

nents namely, range resolution and cross-range resolution. Range resolution corre

sponds to the pulse length while cross-range resolution is a function of beam width 

and the range to the resolution volume. A brief description of the dependence of the 

received signal from volume targets on the radar system parameters given. The spa

tial resolution of the observed reflectivity is governed by the antenna beam width and 

the integration period. An effective antenna pattern based on a Gaussian antenna 

pattern and a given azimuth integration period was presented. The effective antenna 

162 



pattern provides the range variant smoothing kernel that determines the smearing of 

reflectivity observations along azimuth. The smearing or degradation of resolution 

was formulated as a linear problem relating the observed reflectivity and the intrinsic 

reflectivity distribution through the range variant smoothing kernel. 

A novel methodology called the Resolution Enhancement System (RES) was pre

sented to solve the ill-posed problem of improving the resolution. A networked radar 

approach is used in RES to undo the effect of range variant smoothing kernel. A 

simulation study was performed to ascertain the RES retrieval technique. A com

parison of range weighted mosaic with RES was also performed based on simulated 

reflectivity distributions. A comparison of the true reflectivity distribution and RES 

reflectivity suggested a good performance of RES when compared to reflectivity mo

saic. In addition to the direct comparison of reflectivities a multiscale analysis was 

performed using the isotropic power spectrum. A comparison of the power spectrum 

of the true reflectivity, reflectivity mosaic and RES reflectivity revealed that RES 

is better than reflectivity mosaic in capturing small scale features in the reflectivity 

distribution. However, RES is not able to provide the identical resolution as the true 

reflectivity distribution but still provides better resolution than a simple mosaic. 

Finally, the novel methodology was applied to data collected by CASA's IP1 radar 

network. Attenuation corrected reflectivity was used as inputs from each of the four 

radar. The RES reflectivity retrievals from IP1 radar network were compared with 

the range weighted reflectivity mosaic by performing a multiscale analysis using the 

isotropic power spectrum. Similar to the results obtained with simulated data it is 

observed that RES is better than reflectivity mosaic in capturing small scale features. 

Application of RES based on simulated reflectivity distributions and data collected 

with CASA's IP1 radar shows that RES in a networked radar environment provides 

a viable methodology to enhance spatial resolution. 
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CHAPTER 8 

SUMMARY AND CONCLUSIONS 

8.1 Summary and Conclusions 

Networked radar systems consisting of a dense set of agile short-range high fre

quency radars operating as Distributed Collaborative Adaptive System (DCAS) is 

an emerging innovative concept for atmospheric remote sensing that offer great po

tential to address several challenging problems in atmospheric remote sensing. This 

research has addressed the key aspects of waveforms and retrieval algorithms taking 

into account some of the unique challenges that must be overcome to successfully 

deploy a networked radar system. This research also provided a comprehensive set 

of waveforms that form the basis for modern weather radars to operate with both 

networked systems and solid state transmitters. 

A short description of CASA's first generation radar network wras presented. The 

first generation processing algorithms on the radars deployed in Oklahoma heavily 

relies on spectral processing. The performance of spectral processing were presented 

based on simulations. The accuracy of the spectral moments and polarimetric vari

ables obtained from spectral processing is slightly degraded when compared to tradi

tional pulse-pair processing. This degradation is primarily due to the estimation of the 

spectral coefficients by applying a window function. However, spectral processing of

fers several benefits in its ability to filter ground clutter signal and overlaid echoes. An 

adaptive spectral processing technique for clutter suppression was presented for po

larimetric variables. It is important to apply the adaptive spectral processing jointly 



to the horizontal and vertical polarization channels. While the interpolation of the 

notch filtered region is recommended for the estimation of spectral moments, it is not 

recommended to perform any interpolation of the complex spectral coefficients. The 

adaptive spectral clutter filter was tested with data obtained from CSU-CHILL radar 

under very severe ground clutter conditions. The adaptive spectral filter suppressed 

very strong ground clutter signal from the Rocky mountains. 

The quality of spectral moments and polarimetric variables depend on the ability 

of the waveform and associated processing to mitigate the effects of clutter, overlaid 

echo and velocity folding. A dual-PRF waveform was suggested as a candidate wave

form for the first generation CASA radars. Based on the operational requirements 

and hardware limitations of the IP1 radars a dual-PRF waveform operating at 1.6 

kHz and 2.4 KHz was selected for operational use. Adaptive spectral processing was 

utilized to concurrently mitigate the impact of ground clutter, range overlaid echoes 

and velocity ambiguity. A phasor median filter was proposed to spatially filter the 

outliers that occur due to velocity unfolding. The performance of the phasor me

dian filter is better than regular median filter when the errors in the data are larger. 

The application of phasor median filter is recommended for filtering the outliers and 

smoothing the velocity field. The performance of the dual-PRF waveform were pre

sented based on simulations as well as data collected by the IP1 radars during the 

experiments conducted in the year 2007 and 2008. Based on the data from the IP1 

radars it can be concluded that the dual-PRF waveform provides acceptable ground 

clutter suppression and overlaid echo suppression for the systems deployed. 

The transition from low cost magnetron based radars to solid-state radar requires 

specialized waveforms to achieve the desired sensitivity and coverage. A Frequency 

diversity pulse compression waveforms was proposed for the next generation radar 

operating with a solid-state transmitter. Performance analysis of the waveform pro

vides valuable design space for developing the solid-state radars. A nonlinear FM 
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pulse compression was described with two frequency modulation components; one lin

ear FM component and the other nonlinear component. A quadratic curve describes 

the nonlinear component and the quadratic curve was parameterized a bandwidth-

fraction term (fcjg) and a time-fraction term (kT) to control the performance of the 

pulse compression waveform. A Tukey window function is recommended shape the 

rise and fall time of the transmit pulse to avoid spectral ringing. The pulse compres

sion waveform was designed to minimize the side lobe levels by tuning the pulse shape, 

bandwidth-fraction, and, time-fraction of the nonlinear FM. A compression filter de

signed to minimized the ISL is recommended as the receive filter at base band. The 

compression filter is an FIR filter obtained by minimum least square solution of the 

cost function minimizing ISL. The minimum ISL filter has good Doppler tolerance. 

The impact of phase noise on the performance of the pulse compression w*aveform 

was presented and a phase noise of at least 0.5° is required to minimize the impact of 

range side lobes. The performance of the pulse compression waveform in retrieving 

the Doppler moments and polarimetric variables was presented from realistic simula

tions based on actual observation from CASA IP1 radar and CSU-CHILL radar. The 

frequency diversity waveform provides complete coverage without any blind ranges. 

Results based on simulations indicate that the frequency diversity waveforms pro

vide a good solution for solid-state radar in improving sensitivity and mitigating the 

problem of blind range associated with long transmit pulses. 

A networked waveform system was developed to overcome the fundamental lim

itation of a single pulsed Doppler radar in resolving range and velocity ambiguities. 

The networked radar system uses the principle that the underlying intrinsic proper

ties of the precipitation medium remain consistent in a networked environment. The 

ambiguity in range and velocity is resolved by jointly processing the measurements 

from all the radars in the network. The networked waveform system offers many 

advantages. Firstly, it decouples the range ambiguity and velocity ambiguity from 

each other, whereas range and velocity ambiguities are coupled together in a single 
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node waveform. Secondly, the networked waveform can be designed to measure very 

high velocities without the need for complex waveforms and advanced processing at 

each node. This minimizes the computational load on each node. Thirdly, it can be 

used with low cost transmitter that has limited ability to support complex waveforms 

as opposed to a significantly expensive single radar system with complex waveforms. 

Fourthly, the networked waveform system can be designed to meet a specific require

ment over the coverage region without being restricted by limitation of an individual 

radar node in the network. This approach shows good performance in measuring 

radial velocities as high as 100 m/s. 

The cross-beam resolution of radar measurements degrades with increasing range 

resulting in poor resolution at far ranges from the radars. However, the resolution 

of radar measurements along range remain constant as they are determined only 

by the transmit waveform. The radar observations are smeared in the cross range 

directions resulting in degraded resolution. The smearing in the cross range direction 

has different impact when a continuum of volume targets are considered as opposed to 

isolated point targets. The primary concerns with hard targets are detection, target 

localization and tracking. Radar target localization and detection for hard targets 

using wide beams has been developed. However, precipitation systems are volume 

targets extending over a large area and the techniques used for point targets are not 

applicable here. The networked radar resolution enhancement system (RES) uses 

measurements from a network of radar nodes to retrieve reflectivity field with better 

resolution than what is possible with the individual radar nodes. RES uses the higher 

range resolution of radars in a networked environment to build an innovative system 

to enhance the resolution of the observations. The resolution enhancement system 

has many advantages, (i) The retrieved reflectivity has enhanced resolution compared 

to the individual radar observations, (ii) This technique enables the use of lower cost 

radars with relatively smaller apertures in a network and still retrieves reflectivity 

at an acceptable resolution, (iii) The retrieved reflectivity over the network coverage 
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region has nearly uniform resolution as opposed to reflectivity measurements with 

varying resolution that is obtained from single radar, (iv) The resolution enhancement 

can be implemented on demand in a small selected region, thereby making it suitable 

for targeted applications, (v) The networked radar resolution enhancement technique 

is designed so that it can be implemented with parallel processing. This parallel 

processing feature reduces the time required for processing large areas of coverage and 

makes the system suitable for real-time applications. The performance of RES was 

demonstrated both with simulated data (where we know the original resolution) as 

well as field observations, from an IP1 X-band radar network with four nodes deployed 

in SW Oklahoma. The results of RES were analyzed by performing a multiscale 

analysis. The multiscale analysis was performed using the isotropic spatial power 

spectrum of the RES retrieval. A comparison of the spatial power spectrum were 

made between reflectivity mosaic and RES retrieval. RES retrieval were able to 

capture features at smaller scales than reflectivity mosaic. 
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8.2 Future Work 

Key aspects of waveforms and retrieval algorithms for a networked radar system 

was developed and demonstrated in this research. The following are suggestions for 

future work in this area of research: 

i. Colorado State University is developing a Wideband Experimental X-band 

radar (WiBEX) that uses a solid-state transmitter. An end-to-end evaluation 

of the pulse compression waveforms from data collected with WiBEX should be 

performed to evauate the side-lobe performance of the NLFM waveform. 

ii. The frequency diversity pulse compression waveform should be evaluated by 

comparing the observations of WiBEX and CSU-CHILL. 

iii. Evaluation of the networked waveform should be performed with more data 

collected in severe storms from IP1 radar network. 

iv. A feasability study and testing of the networked waveform for real-time pro

cessing should be performed to enable operational networked waveform system. 

v. Analysis of the resolution enhancement system with more data sets have to be 

performed to make it robust. The robustness of the resolution enhancement 

system must be test with data collected from the IP1 radar network. 

vi. A study to evaluate real-time operations of the resolution enhacement sytem 

should be performed. 
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