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ABSTRACT 

The establishment of more reliable criteria for regulatmg the 

discharge of contaminants into waterways requires an improved under­

standing of fluvial transport and dispersion processes. Although the 

volume of research in this general area has been increasing in recent 

years, the dispersion of particulate contaminants which behave like silt 

and fine sand particles has been largely neglected. 

In this investigation, the dispersion process for silt particles, 

in a two-dimensional turbulent shear flow, is formulated in two differen­

tial equations, one for particles suspended in the flow and the other for 

those deposited on the bed. The exchange of particles between the bed 

and the flow is permitted. Using the Aris moment transformations, the 

equations are converted to a more tractable system of equations which 

are solved, mostly by numerical methods with the aid of digital com­

puters, for the zero 'th, first, second and third moments of the longitudi­

nal concentration distribution. Various combinations of boundary and 

other input conditions are i!llposed and their effect on the results is demon­

strated. Included for the sake of comparison is the case of a dispersant 

consisting of fluid particles having the same properties as the dispersion 

medium. 

The results of the numerical solutions and the results of earlier 

dispersion experiments with silt particles and fluorescent dyes, although 

not directly comparable, both exhibit the same general trends. It is shown 

that the tendency of the silt particles toward deposition and temporary 

storage on the bed can profoundly affect the longitudinal dispersion pro­

cess which otherwise resembles the process for fluid particles. The 

extent of the effect is found to depend primarily on the rate at which de­

posited particles are re-entrained in the flow, and secondarily on the fall 

velocity of the particles and flow characteristics in the channel. 

xi 



DISPERSION OF MASS IN OPEN -CHANNEL FLOW 

By: William W. Sayre* 

Chapter I 

INTRODUCTION 

With the growing demands on the world's water 
resources, it becomes increasingly imperative that 
rational criteria be applied to the problem of alloca­
ting available water supplies among all the various 
competing uses. As requirements grow, the allowable 
margin for error decreases. All too frequently the 
information needed for rational decision making is 
lacking. 

One such example has to do with the use of 
streams and rivers as conveyance channels for the 
disposal of industrial, agricultural and domestic 
wastes. Waterways have traditionally performed this 
function. If pollution is not controlled, however, the 
availability of water for other equally important uses 
may be sharply curtailed. In order to control pollu­
tion, the release of potentially harmful contaminants 
into waterways must be regulated so as not to exceed 
the capacity of the stream to maintain the concentra­
tion of contaminants within permissible limits. This 
requires knowledge of the rate at which the stream 
system is capable of transporting and dispersing the 
contaminant in question. In general, transport and 
dispersion rates depend on the physical and chemical 
properties of the contaminant, and the physiographic 
characteristics of and the flow discharge in the stream 
system. However, the relationships between these 
factors and the transport and dispersion processes 
are extremely complex. Because many of them are 
not adequately understood, presently available criteria 
for predicting transport and dispersion rates are often 
unreliable. 

With the introduction since World War II of 
radioactive wastes and the new generation of agricul­
tural pesticides and herbicides, the need for improved 
criteria has become much more acute. This is 
largely because ( 1) the tolerance level for many of 
these contaminants is several orders of magnitude 
lower than that for most other pollutants, (2) many of 
these contaminants are chemically very stable so that 
they retain their toxicity for long periods of time be­
fore yielding to natural decay processes, and (3) many 
of these contaminants are not removed by conventional 
water-treatment practices. 

For a number of years various federal agencies 
and university research groups have been investigating 
dispersion processes in streams. Con.siderable pro­
gress has been achieved in' developing criteria for 

predicting the longitudinal dispersion of substances, 
such as dissolved or colloidally-suspended contami­
nants, which behave like particles of the ambient fluid. 
This class of contaminants is transported at the mean 
stream velocity, and disp_ersed longitudinally by the 
combined action of turbulent diffusion and differential 
convection due to the variation of velocity with respect 
to position in the cross section. Research on the 
transport and longitudinal dispersion of contaminants 
which behave like bed-material sediment particles 
has also yielded useful results. Bed material parti­
cles move in a sequence of discrete steps of random 
length that are separated in time by rest periods of 
random duration. Hence, they are transported at 
rates which are much less, frequently by several 
orders of magnitude, than the rates for dissolved or 
colloidally-suspended materials. Between these ex­
tremes is the class of contaminated particles which, 
like silt and fine sand, are transported mainly in 
suspension. While suspended, they behave very much 
like fluid or collodially-suspended particles except 
that they tend to settle and eventually be deposited on 
the bed. There they behave like bed-material parti­
cles until they are re-entrained in the flow. 

This study is the second phase of a two-part 
investigation, conducted by the Water Resources 
Division of the U.S. Geological Survey, which is con­
cerned with the intermediate class of dispersants. 
In the first phase, Sayre and Chang ( 1966), in a series 
of flume experiments, compared the longitudinal dis­
persion of suspended silt particles with the longitudi­
nal dispersion of fluorescent dyes. The principal 
objective of the second phase is to make the same 
comparison from a theoretical viewpoint. 

This report begins with a review of longitudi­
nal dispersion and other pertinent theories. The dis­
persion process for silt particles is then formulated 
in two differential equations, one for particles sus­
pended in the flow and the other for those deposited on 
the bed. Using the moment transformations of Aris 
{1956), the equations are then converted to a more 
tractable system of equations which are solved, most­
ly by numerical methods with the aid of digital com­
puters, for the zero'th, first, second and third mo­
ments of the longitudinal concentration distributio.n. 
Various combinations of boundary and other input con­
ditions are imposed, and the manner in which they 
affect the results is demonstrated. The results of 

*Research Hydraulic Engineer, Water Resources Di"vision, U.S. Geological Survey, Fort Collins, Colorado 



the numerical solutions are then compared with the 
results of the Sayre-Chang experiments. 

The investigation is restricted to a considera­
tion of dispersion in a uniform, two-dimensional, 
open-channel, turbulent shear flow. The initial con­
dition is restricted to an instantaneous plane source, 
uniformly distributed over the flow cross section. 

z 

In addition, it is assumed that local values of the 
vertical eddy diffusivities for the transfer of mass 
and momentum are equal. Also, the mean fall veloc­
ity of silt particles is assumed to be the same under 
both turbulent and quiescent conditions. Finally, the 
term dispersant, as used in this study, means the 
substance which is being dispersed. 



Chapter II 

THEORIES OF LONGITUDINAL DISPERSION IN OPEN-CHANNEL FLOW 

The processes by which dissolved matter and 
suspended particles are dispersed in open-channel 
flows have been subjected to considerable theoretical 
analysis in recent years. Due to a number of complex 
factors that are almost invariably associated with 
open-channel flow such as turbulence, ve]jocity gradi­
ents in the vertical and horizontal directions, and 
secondary flows, theoretical treatments have been 
only partially successful. No theory, not even for the 
relatively simple case of uniform flow in a straight 
channel of constant cross secti<;m, has been formulated 
which accounts adequately for all of the above factors. 

1. Derivation of the Eulerian Dispersion Equation 

One of the most direct theoretical approaches 
to the dispersion process is based on the principle of 
conservation of mass. Consider the arbitrary control 
volume illustrated below 

/ 
/ 

/ 

I 

I 
I 

I 

of which dv is a volume element, ds is an element 
of surface area, where n is a unit vector normal to 
the surface, and U defir'ies the velocity field. The 
rate of change of ;-eight, W, of dispersant in the con­
trol volume is 

dW 
dt 

s 

Rate of change 
of weight due to 
convection 

s 

+ 
Rate of change 
of weight due to 
diffusion 

3 

where C is the concentration {weight per unit vol­
ume) of dispersant and E is a diffusion coefficient, 
assumed here to be a constant. Noting that 

dW 
dt a J Jac at Cdv = at dv 

v v 

and employing the divergence theorem whereby 

fell. nds = J v. (CIJ.) dv 

s v 
and 

J <VC . !!dS = J <V'Cdv 

s v 

the statement for the conservation of mass of the 
dispersant becomes 

For incompressible flow where V • U 
equation reduces further to 

or in tensor form to 

ac 
at 

0 , this 

{2-1) 

{2-1 a) 

where x. represents distance and i = 1, 2, 3 indi­
cates dir~ction in a rectangular coordinate system. 
Equations 2-1 and 2-1a are standard forms of the 
Eulerian diffusion equation in a convecting flow field. 
They are called Eulerian because attention is focused 
on the changes occurring as the fluid passes through 
a stationary control volume. In laminar flow, where 
E = EM is the coefficient of molecular diffusion, equa­
tion 2-1, together with the appropriate boundary and 
initial conditions, gives an exact description of the 
dispersion process. Significant theoretical work on 
longitudinal dispersion in tubes with laminar flow has 
been reported by Taylor ( 1953, 1954b), Aris ( 1956), 
Ananthakrishnan, Gill and Barduhn ( 1965), and Bailey 
and Gogarty (1962). 

The dispersion process in turbulent flow is 
considerably more complicated. However, by use of 
the Reynolds averaging procedure, equation 2-1 has 



been extended to include the case of dispersion in 
turbulent flow. The instantaneous concentrations and 
velocities are resolved into the sum of a time averaged 
and a fluctuating component 

c = c + c' u. U. + u! , 
1 1 1 

where 

~I 
+ T t + T 

c: Cdt, u. ~ f Uidt 1 

t t 

As shown conceptually in the illustration below, the 
averaging period T is supposed to be sufficiently 
long to permit convergence of the averages of the 
primed quantities to zero, yet ~ot so long as to signi­
ficantly damp the variation of C with t . 

c 

Making the appropriate substitution in equation 2-1, 
and averaging the resulting equation over T gives 

ac 
at 

ac = + u. a 
1 X. 

1 

a 
ax. 

1 

c'u! 
1 

azc 
+ €M ax.ax. 

1 1 

A coefficient of turbulent diffusion, 

may be defined as 

ac 
c'u' 

i €T .. ax. 
1J J 

(2-2) 

(2-3) 

The implications of equation 2-3 are discussed in de­
tail in section II -6 at the end of this chapt~r. As sum­
ing that the processes of molecular and turbulent dif­
fusion are independent and therefore additive, 
Mickelsen ( 1960), it can be concluded that 

(2-4) 

Incorporating equations 2-3 and 2-4, and dropping the 
overbars which are no longer needed to denote a time 

4 

average, equation 2-2 becomes 

.ac + 
at 

u ac = _!_ (€ ac_) 
i ax. ax. ij ax. 

l 1 J 
(2-5) 

which is similar in form to equation 2-1 except that 
€ij, commonly called the diffusion tensor, is now a 
function of position in the flow field. Taking the axes 
of the coordinate system as the principal axes of the 
diffusion tensor, in which case Eij = 0 for i =f:. j , and 
replacing Eij by the scalar Ei for i = j, equation 
2-5 reduces further to 

ac u ac 
-at + i ax. 

1 

a 
ax. 

1 

(2-5a) 

With regard to equation 2-4, the question of whether 
molecular and turbulent diffusion actually are indepen­
dent processes is mainly academic because in ordinary 
open-channel flows ET is several orders of magni­
tude larger than EM . 

Up to this point the derivation has been quite 
general. The assumptions which have been made are 
generally believed to be physically sound and there is 
no particular reason to doubt that equation 2-5a is in­
deed capable of describing dispersion processes in 
open channels quite accurately. Also, the derivation 
applies equally well whether the dispersant is, ( 1) in 
solution form, or ( 2) in the form of suspended parti­
cles provided that the percentage of volume actually 
occupied by the particles is negligible. However, in 
the latter case U. must be considered as the velocity 
at which particlel are convected, and Ei as a diffu­
sion coefficient for the particles. The main obstacles 
to progress in this approach to dispersion tneory have 
been the lack of a reliable theory which relates the 
spatial variation of Ei to flow and boundary conditions, 
and the mathematical difficulties in solving equation 
2-5a for a variable Ei which would remain formidable 
even if the nature of the variation were better known. 

Consider now the dispersion process for a 
neutrally buoyant dispersant under conditions of uni­
form flow in a straight channel of constant cross sec­
tion. Choosing a coordinate system such that the in­
dices i = 1, 2, 3 indicate respectively the direction of 
flow, the direction normal to the channel bed and the 
transverse direction, it is evident that u2 = U3 = 0. 
Furthermore, it is to be expected that although Ei 
may vary with x2 and x 3 , it should not vary with 
x1 . Equation 2-5a may now be rewritten 

ac + u .£.£__ 
at 1 ax1 

(2-6) 

or after switching to the more conventional form of 
Cartesian notation in which x1, x2 and x 3 are re­
placed by x, y and z; u1, u2 and u3 by U, V and W; 
and € 1, E2, and E3 by Ex, Ey and Ez, 



ac + uac 
at ax 

(2-6a) 

Theoretical investigations of dispersion in 
open-channel flow have been devoted mainly to ( 1) es­
tablishing a theoretical basis for predicting Ex• Ey 
and Ez, {2) the analysis of certain limiting cases for 
which solutions to equation 2-6 can be obtained, (3) 
the transformation of equation 2-6 into forms which 
are more amenable to solution, and beginning only 
recently, { 4) the numerical solutions of equation l-6 
by finite difference methods using computers. 

The most promising approaches have been 
based on {1) the semi-empirical Fickian diffusion 
theory, {2) the theory of diffusion by continuous move­
ments, (3) the theory of longitudinal dispersion by dif­
ferential convection due to a velocity gradient, and ( 4) 
dispersion theory as applied to the transport of sus­
pended sediment. Because all of these theories have 
a direct bearing on the work reported in this report, 
a review of the pertinent results and limitations is 
appropriate here. 

2. Fickian Diffusion Theory 

In applying the Fickian diffusion theory to 
dispersion processes in turbulent open-channel flow, 
an exact analogy with the molecular diffusion process 
is assumed. Although the analogy is at best crude, in 
that unrealistic restrictions are imposed on the des­
criptions of the flow, it leads to useful results in some 
cases. Usually the coefficients Ex• E_y and Ez are 
assumed to be constants which we shan call Kx, Ky 
and Kz . Also, the velocity U everywhere in the 
flow field is assum~d to equal the average velocity in 
the cross section, U. With these assumptions, equa­
tion 2- 6a becomes 

ac + u £.g_ 
at ax 

The convection term, 
-ac 
U ax , means that dispersion 

is occurring in a frame of reference which is moving 
at a velocity U in the x direction. 

Equation 2-7 has received considerable atten­
tion, and solutions for a great variety of initial and 
boundary conditions have been published. Among the 
best references are Crank (1956), and Carslaw and 
Jaeger (1959). 

The case of primary interest here is for longi­
tudinal dispersion from an instantaneous plane source 
which is distributed uniformly over the cross section. 
With thi~ initial condition and the restrictions on equa­
tion 2-7, the problem becomes one-dimensional and 
equation 2-7 reduces to 

ac -ac +U-
at ax (2-8) 
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where C (x, t) is the concentration averaged over 
the cross section. The solution of equation 2-8 for 
the indicated condition is 

- 2 
_ (x - Ut) 

4K t 
X 

C~x, t) = f(x;t) 

J Cdx 

1 
e 

2 V -rrKxt 
{2-9) 

-oo 

The function f(x ;t) is the probability density function 
of the normal probability law with mean i = · Ut and 
variance <T~ = 2Kxt. For a rectangular channel of 
width B with a depth of flow, Yn , and where the 
concentration of dispersant is defined as a weight per 
unit volume, the normalizing factor (initial source 
strength) is 

00 

-oo 

w 
By 

n 

where W is the total weight of dispersant. In com­
paring the theory with experimental results it is 
usually more convenient to consider C as a function 
of t with x as a parameter. Then equation 2-9 
becomes 

u 
f(t;x) = . e 
2~ 

X 

(x- Ut) 
4K t 

X 

in which the normalizing factor is now 

00 

J- w 
Cdt = BynU . 

0 

2 

( 2-1 0) 

The function f(t ;x) is the probability density function 
for the distribution of dispersant flux with respect to 
time, t, at a fixed position, x. The mean and vari­
ance of f(t; x) as given by Yotsukura (1963) are 

and 

00 

T "J tt(t; x)dt 

0 

00 .. : "J (t-T)zf(t;x)dt 

0 

X 
+ 

2K 
X (2-11) 

2K x (K J 2 

-X + 8 X • (2-12) 
U 3 u?. 

Experimental evidence, Sayre and Chang(1966) 
Yotsukura, Smoot, and Cahal (1964), Glover {1964), 
Godfrey and Frederick (1963), indicates that the 
Fickian diffusion theory provides at best a rough kine­
matic description of the longitudinal dispersion process 



in open channels. In general, the agreement between 
the Fickian theory and experimental observations is 
poor in the early stages of the process. but tends to 
improve with increasing dispersion time or distance 
from the source. Thus, in some cases, for example, 
dispersion in a uniform channel with straight align­
ment, equations 2-9 and 2-10 are useful as asymptotic 
solutions for large values of t and x, respectively. 

An important property of the Fickian diffusion 
process is that the variance of the concentration dis­
tribution increases linearly with time. This property 
is often used for evaluating the longitudinal dispersion 
coefficient from the variances calculated from a set 
of observed concentration versus distance or concen­
tration versus time curves by means of the relation -
ships 

du 2 

K 
X 

X 2 dt 
(2-13) 

or 

K 
u3 da-: 

X 2 dx 
( 2-14) 

Fischer (1966) has shown that both of these relation­
ships can be derived directly from equation 2-8, and 
moreover that they are independent of the initial dis­
tribution of dispersant. 

Actually, in view of the glaring discrepancies 
between the assumed model and the actual nature of the 
process, it is remarkable that the one-dimensional 
Fickian diffusion theory has any applicability whatso­
ever to longitudinal dispersion in turbulent shear 
flows. From comparing equation 2-6a with equation 
2 -8 and letting 

U = U + u (y. z) • 

it seems that at large dispersion times the group of 
terms 

-u (y. z) aaxc + E tt + _£_ (E ac) + a (E ac) 
X ax"' ay yay az Z az 

interact in such a way that they behave collectively 
like a longitudinal diffusion term 

3. Diffusion by Continuous Movements 

The theory of diffusion by continuous move­
ments, Taylor (1921), like the Fickian theory is 
restricted to giving a kinematic description of disper­
sion, but the description is much more realistic be­
cause it is based on the actual turbulence properties 
of the flow. The theory was originally formulated 
for the case of one-dimensional dispersion in a tur­
bulence field which is spatially homogeneous and 
stationary in time. 

The discussion heretofore has been geared to 
an Eulerian description of motion. Taylor's theory, 

6 

in contrast, is Lagrangian in that it is based on a 
description of the motion of discrete fluid particles. 

Consider the dispersion of a group of fluid 
particles which are initially concentrated at the origin. 
Let t 

x. =J u! (t')dt' 
1 1 

0 

be the displacement from the origin in the i direc­
tion of a particle at time t, where ui ( t) is the in­
stantaneous velocity of the particle in the i direction 
relative to the origin. Then, defining uf(t) as the 
variance of the distribution of particles at time t, 

dut (t) 1 
z-~= 2 

d X~ 
dt 1 

t 

u~ (t)J u~ (t')dt' = J u-~-(t-)u-~-(t-')dt' 
1 1 1 1 

0 0 

Introducing the Lagrangian correlation coefficient, 

u! (t) u! (t') 
1 1 R I (T) = __..;... _ _.;....._ 

u. 'ij"i'2 
1 i 

where 

T = t- t' I 

du~ (t) 
1 

2 dt 

t 

u!
2J R , (T)dT 

1 u. 
1 

0 
and 

cr~(t) 
1 

which after integration by parts becomes 

t 

2u.!
21 (t-T)R ,(T)dT 

1 u. 
1 

(T ~ ( t) 
1 (2-15) 

0 

Equation 2-15 is the main result of Taylor's 
theory. It describes one-dimensional dispersion 
about the origin, or in the case where the entire veloc­
ity field is being convected at a uniform velocity U. , 
it describes the dispersion about a plane which is 

1 

moving at that velocity. In general, uf (t) depends on 
the functional form of Ru! ( T) which, like all 
Lagrangian turbulence prdperties, is difficult to deter­
mine and is therefore usually not known. However, 
useful information can be obtained from equation 2-15 
for the limiting cases of ( 1} very small dispersion 



times where 

Lim R 1 (7) = 1 
7-> 0 ui 

and equation 2-15 reduces to 

and (2} large dispersion times where 

Lim R ,(7) = 0 
7->m ui 

and equation 2-15 reduces to 

a-~ (t) = 2? 
1 1 

where 

00 

L t-2~! t. 1 
1 

0 

00 

=f R I (7)d7 u. 
1 

0 

(2-16} 

(2-17) 

is the Lagrangian integral time scale of turbulence. 
Given the homogeneity and stationarity of the turbu­
lence, the second term on the right of equation 2-17 is 
a constant so that as t becomes very large 

u~(t) = 2 u~ 2 L 
1 1 t. (2-18} 

1 

This is equivalent to the variance given by the Fickian 
theory when the substitution 

K. u~z L 
1 1 t. 

1 
is made. 

Equation 2-15 was originally derived to des­
cribe dispersion in a homogeneous turbulence field. 
Thus, at first glance it appears not at all applicable 
to dispersion in turbulent shear flows where the statis­
tical properties of the turbulence, in general, vary with 
the distance from the boundary. However, Orlob 
{1958, 1961) showed that planes which are parallel to 
the bed in wide channels with uniform flow, for 
example the water surface, can indeed satisfy the 
criteria for a homogeneous turbulence field. Also, it 
was pointed out by. Batchelor and Townsend ( 1956) for 
steady uniform flows confined by boundaries that, with 
respect to the longitudinal direction, the turbulence 
structure is axially homogeneous and that the instan­
taneous velocity of a fluid particle is necessarily a 
stationary random function of time provided the obser­
vation period is sufficiently long for the particle to 
have wandered all over the cross section. This is to 

- I -
say that Ux = Ux + Ux• where Ux is the discharge 
velocity (Q/ A), is independent of x and becomes a 
stationary random function of time even though u~ is 
a function of position in the cross section also. There­
fore, the theory of diffusion by continuous movements 
does apply to longitudinal dispersion in any uniform 
channel S{) long as the flow is axially homogeneous 
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and the observation period is sufficiently long. A 
very important aspect of this conclusion is that it 
gives theoretical support, if not definite proof, to the 
applicability of the Fickian. diffusion theory to the dis­
persion process in open channels at large dispersion 
times. 

4. Longitudinal Dispersion by Differential Convection 
Due to a Velocity Gradient 

In this class of theories equation 2-6a, the 
basic Eulerian dispersion equation for turbulent flow, 
is converted by assumptions and transformations into 
more workable forms from which a quantitative des­
cription of the most important features of the longitu­
dinal dispersion process can be deduced. A basic 
premise which is borne out by these theories is that 
the rate of spread of dispersant in the longitudinal 
direction due to turbulence is very small in com pari­
son to the rate of spread due to differential convection 
caused by velocity variation in the cross section. 

To facilitate comparisons, the notation and 
dimensionless parameters introduced by Aris ( 1956) 
will be incorporated into equation 2-6a. Following 
Aris, let us define the local velocity as 

U(y, z) = U ( 1 + X (y, z)] ( 2 -19) 

where x (y, z) is a function which describes the vari­
ation of velocity in the cross section, and the local 
eddy diffusivity as 

(2-20) 

where D is the average value of the eddy diffusivity 
in the cross section and r/J (y, z) is a function des­
cribing the distribution of eddy diffusivity. Isotropy 
of turbulence structure is implicitly assumed in equa­
tion 2-20. Using these definitions, equation 2-6a 
becomes 

ac + u ( 1 + ) ac = Dr/J azc + 0 __£._ (·'' ac) + 0 ~(r/J ac) 
at X ax ax 2 ay ""ay az az . 

Introducing the dimensionless parameters 

-
x-Ut 

~ = 

f} y/yn 

r z/y 
n 

T = Dt/y z 
n 

f.l Uy /D 
n 

(2-21) 

(2-22) 

where Yn is the depth of uniform flow in an open 
channel, equation 2-21 becomes 

ac ac 
a7 + 1-'Xaf 



Adapting the method derived by Taylor (1954a) 
for axi-symmetric turbulent pipe flow to two­
dimensional flow in an open channel. Elder ( 1959) 
simplified equation 2-23 to 

ac ac a ac a;- + ~X af = o1} (r/1 arJ ) (2-24) 

by dropping the longitudinal turbulent diffusion term 
and restricting the analysis to vertical turbulent dif­
fusion and longitudinal dispersion by convection. 
Following Taylor. Elder assumed that at large disper­
sion times oC/ o'T = 0. and that C = c 1 (~) + C2(17) 
such that I ac1 /o~l = constant. With these assump­
tions equation 2-24 simplifies further to 

(2-25) 

After defining a convective dispersion coefficient. K • 
in terms of the flux of dispersant across a section af~. 

and substituting this definition into equation 2-25, 
Elder integrated equation 2-25 twice and obtained 

1 1} 1} -J llX r t J llX dndndn. 

0 { 0 

(2-26) 

Following Taylor's ( 1954a) assumption that the con­
vective dispersion and longitudinal turbulent diffusion 
coefficients are additive and that the latter is given by 

D1 !1 
f: dTJ 1 , 

0 

the total longitudinal dispersion coefficient in dimen­
sionless units is 

1 , (2-27) 

and in dimensional units 

(2-27a) 

The assumptions made in going from equation 
2-24 to equation 2-25 are rather drastic; however. 
they seem to be approximately true at large dispersion 
times. Therefore. values of the longitudinal disper­
sion coefficient obtained with the use of equation 2-26 
are considered applicable only in the limiting case of 
large dispersion times. 

Employing the von Karman-Prandtl logarithmic 
velocity distribution function. which applies equally 
well to either smooth or rough boundary conditions. 

u- u 1 
- 0- = "K(ln 11 + 1) (2-28) 

'T 

and the Reynold's analogy (see section II-6) which 
states the equivalence of mass and momentum 
transfer. 

-v'c' -u'v' 
u z y ( 1 - 1}) 

'T n 
(2-29) € 

dC = € 
dU = dU . y - m -

dy dy drl 
Elder. after integrating equation 2-26, and adding the 
component for turbulent diffusion. obtained 

(2-30) 

In equations 2-28 and 2-29 

u = -{TJP = "" gy s 'T o n e 

is the shear velocity. K is the von Karman turbulence 
coefficient. and se. is the slope of the energy gradient. 

Using a parabolic velocity distribution function. 

u-u 1 ( z 
- 0- = K" - 31} + 6 11 - 2) • (2-31) 

'T 

1 and the eddy diffusivity 
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€ 
y 

{2-32} 

in a similar way. Sayre and Chang ( 1966) obtained 

K = [0· 457 + L] U 
x ,(3 6 Yn T • 

{2-33} 

Sayre and Chang also showed that equation 
2-30 agrees quite closely with experimental data 
provided that the conditions of a logarithmic velocity 
distribution in the vertical and no lateral velocity 
gradient are approximately satsifed. Furthermore. 
they found good agreement to occur for 

Dt 
'T = ya 

n 

u 
'T 

u 

which indicates that the dispersion time required for 
the applicability of equation 2-30 is not really very 
large. 

Values of K determined experimentally in 
both the field and th~ laboratory. Glover (1964), 
Yotsukura. Smoot and Cahal (1964). Godfrey and 
Frederick ( 1963}, have often greatly exceeded the 
value given by equation 2-30. This can be satisfacto­
rily explained by the presence of lateral velocity 
gradients. Fischer (1966) formulated equation 2-26 
for an assumed two-dimensional flow model in which 
the velocity varies with lateral position only. Using 
this model with various lateral velocity-distribution 



patterns similar to those found in natural channels, 
he showed that in wide channels the value of Kx 
given by equation 2-30 can easily be exceeded by two 
or more orders of magnitude. 

Aris ( 1956) approached the longitudinal disper­
sion problem with more rigor. He began by establish­
ing the initial and boundary conditions for equation 
2-23 as ( 1) T = 0: The initial spatial distribution of 
dispersant, C( ~. T), -t. 0), is known and is contained in 
a finite length of channel. {2) 1/J act an= 0 at all 
boundaries including the water surface, where n is 
the normal to the boundary. This states that no dif­
fusion across the boundaries is permitted, or in other 
words that the boundaries are reflecting barriers. 

00 

(3) ~ J J J C(L n. r. T}d~ dndt 0 constant, 

A -oo 

where A is the cross-sectional area of the channel. 
This states that the total amount of dispersant in the 
system remains constant. Next, Aris defined the p'th 
moment of the distribution with respect to ~ along the 
filament T), t as 

00 

cP(n.r ,'T)"'-f gPcu:.n.t.T)d!r 

-oo 

(2-34) 

and the p'th moment·of the distribution along the whole 
channel as 

m (T):S C 
p p {2-35) 

Multiplying equation 2-23 by ~p and integrating with 
respect to ~ from -oo to + oo, Aris obtained the 
equation 

+ P~X C 1 p-
{2-36) 

+ p(p- 1) !/JC 2 p-

for which the initial and boundary conditions become: 
( 1) T = 0: The initial distribution of moments over the 

cross section, Cp(T'I. t, 0), is fixed, 
(2) 1/J aCp/ an= 0 at the boundaries, 

constant. 

Averaging equation 2-36 over the cross section, and 
making use of the divergence theorem and condition 
2, Aris obtained 

dm 

~ = P~xcP_ 1 + p(p- 1) !/JC 2 p-
(2-37) 
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where the bars denote averaging over the cross sec­
tion as in equation 2-35. The conditions now become: 

(1) T = 0: mp{O) is fixed, 

(3) m
0

(T) = constant . 

Although equations 2-36 and 2-37 cannot be 
solved for concentration distributions per se, solutions 
for the various moments are potentially capable of 
describing the dispersion process in considerable de­
tail. A particularly attractive feature of the Aris 
moment equations is the considerable simplification 
achieved by the elimination of the variable ~ from 
equation 2-23. 

Aris did not solve the moment equations for 
any cases of turbulent flow in open channels. However, 
he did show that the moments, mp, converge to the 
moments of the normal distribution as T becomes 
large. This lends additional theoretical support to 
the applicability of the Fickian diffusion theory at 
large dispersion times. 

Using Aris' analysis, Fischer ( 1964) showed 
for the case of a rectangular open channel with two­
dimensional flow that 

converges exactly to the functions given by Elder in 
equations 2-26 and 2-27 as T becomes large. This 
apparently vindicates the questionable assumptions 
made by Taylor and Elder. All in all, the Aris 
moment e.quations seem to provide an extremely 
powerful method for the theoretical investigation of 
longitudinal dispersion processes. Strangely, it has 
scarcely been exploited. 

Using a somewhat different set of dimension­
less parameters, Yotsukura and Fiering ( 1964, 1966) 
solved the equation 

{2-38) 

for two particular velocity distributions by numerical 
methods with the aid of a digital computer. The longi­
tudinal concentration distribution curves generated 
in .the solutions resembled experimental curves in 
their approach to a normal distribution with increasing 
dispersion time from a highly skewed distribution at 
short dispersion times. However, because of the par­
ticular nature of the velocity distributions, general 
quantitative conclusions concerning the value of Kx 
and the rate of convergence to the Fickian solution 
cannot readily be drawn from the results. 

For a computation scheme in which the depth 
of flow was divided into 10 increments, the stepwise 
numerical method of Y otsukura and Fiering required 
more than 1.5 hours of IBM 7090 computer time to 
reach T = 1. 



5. Applications of Dispersion Theory in Suspended 
Sediment Transport 

The basic differential equation for the disper­
sion of suspended sediment, when the concentration 
by volume is small, is 

(2-39) 

which is the same as equation 2-5a except that the 
subscript s here indicates reference to sediment 
particles. This equation or close facsimiles thereof 
has been proposed as a theoretical basis for the inves­
tigation of suspended sediment transport by Dobbins 
(1944), Hunt (1954), and McLaughlin (1959), among 
others. Upon introduction of the simplifications per­
mitted by the assumption of uniform flow in the x 
direction together with the additional assumptions that 
aujaz = 0 and acjaz = 0. equation 2-39 reduces to 

ac u ac a 
2
C + ...!. [€ ac ] + v ac . at + s ax = €s ax 1 ay s ay s ay 

X y 
(2-40) 

With the exception of the additional convection term 
v s acjay, where v s is the time-averaged fall veloc­
ity of the sediment particles, equation 2-40 has the 
same form as the corresponding equation for a fluid 
dispersant. Additional assumptions which are usually 
made in regard to equation 2-40 are that all the sedi­
ment particles have the same fall velocity, that V s 
is the same in turbulent and quiescent fluid, and that 
Us= U at a point. With respect to the last assump­
tion, however, it should be noted that the velocity of 
sediment averaged over the depth of flow, 

u s 

(Yn 
_.b UCdy 

[

Yn 
Cdy 

0 

is not the same as U . 

(2-41) 

Although equation 2-40 in its complete form 
has never been solved, certain special cases which 
permit drastic simplifications have been solved. For 
example, for the steady state equilibrium conditions 
where both acjat and acjax equal zero and the 
deposition and entrainment rates are equal, equation 
2-40 reduces to the well-known equation 

€ ac + v c = o 
s ay s 

y (2-42) 

which for many years has served as the basis for 
computing the vertical distribution of suspended sedi­
ment in alluvial channels. For the stated conditions 
and the diffusivity distribution function 

€ = "u y 71( 1 - 71) m T n (2-43) 
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obtained by solving equation 2-29 for the logarithmic 
velocity distribution case, a solution of equation 2-42 
is 

1 

1 Cd71 

0 

sin 1r {j 
wfJ (2-44) 

where f3: V s/K u.,. and I f31 < 1 . Equation 2-44 in a 
slightly different form, was first presented by Rouse 
(1937). Elder (1959) put it in the form of a probability 
density function as given here. 

For the case of a turbulence tank in which 
acjax = o and Esy = constant, Dobbins (1944) 
obtained a formal solution to the equation 

ac 
at 

a2 C ac v­€s ay 2 + say 
y 

(2-45) 

which agreed well with the results of experiments in 
which the transient response to the shift from one 
steady state to another was investigated. From 
Dobbins' solution of equation 2-45, Camp (1944, 1946) 
developed a theory for sedimentation in settling tanks 
with turbulent flow. The rate at which suspended silt 
particles settled to the bed of the channel in the flume 
experiments of Sayre and Chang (1966) agreed reason­
ably well with predictions based on Camp's theory. 

Experience in comparing solutions of equations 
2-42 and 2-45 with other experimental data, Task 
Committee on Preparation of Sedimentation Manual 
(1963), indicates that the broad aspects of the theory 
are basically sound. However, at least two of the 
detailed aspects remain open to question. The first 
of these concerns the relationship between €si and 
€i. Empirically there is fairly general agreement 
that for small sediment particles (d < 0. 1 mm) with 
fall velocities in the Stokes range (V;'d /v ~ 1}, Esi , 
and €i are approximately equal. This agrees essen­
tially with the results of a theoretical treatmenfbased 
on the equation of motionof a particle in a homogene­
ous turbulence field of infinite extent, Tchen ( 194 7}, 
Hinze {1959}. For the limiting case of very short dis­
persion times the result of this analysis is 

€ aLt. + bz 
s. 

1 1 

€. aLt. + {'2-46) 
1 

1 

where 

36pfv 
b 

3pf 
a = 

(2,:: s + pf)di 2ps + Pf 

and Lti is the Lagrangian integral time scale of tur­
bulence, v is the kinematic viscosity of the fluid, d 
is the particle diameter, and Pf and Ps are respec­
tively the mass densities of the fluid and the particles. 
As the dispersion time increases €s. always tends 

• 1 
to approach €i, hence equation 2-46 represents the 
critical case. According to equation 2-46 €s/ €i < 
whenever Ps > Pf. This apparently contradicts the 



experimental results of Singamsetti ( 1966) for the 
radial dispersion of sediment particles in a submerged 
turbulent water jet which indicate that Esd Ei always 
exceeds one and increases continuously with particle 
size up to at least V sd/v = 50. These results in 
turn seem to be contradicted by those of Vanoni ( 1946) 
obtained from an investigation of the vertical distribu­
tion of suspended sediment in open-channel flows. If 
it is assumed that -Ey = Em, where Em is the eddy 
diffusivity for momentum defined in equation 2-29, 
Vanoni's results showed that Esy can be either some­
what larger or somewhat smaller than Ey . However, 
because of the differences between submerged jet tur­
bulence and boundary layer turbulence, neither of 
which constitute a homogeneous turbulence field of 
infinite extent, the above contradictions may well be 
more apparent than real. 

The other detailed aspect of the theory behind 
equation 2-40 that has not been satisfactorily resolved 
is the extent to which the time-averaged fall velocit_y 
of sediment particles in a turbulence field may differ 
from the fall velocity of the same particles in still 
water. Even less is known about this than is known 
about the relative magnitudes of Es· and Ei . How­
ever, the fact that in most cases re~sonable agree­
ment between theory and experiment is obtained by 
assuming that Es· = Ei and that Vs is the same 
under turbulent add quiescent conditions indicates that 
these assumptions are at least valid as first-order 
approxim ationsA 

A very rough approximation of the longitudinal 
dispersion coefficient for suspended sediment, Kc , 
was obtained by Elder ( 1959) from equation 2-26 with 

u-u 
X= ___ s 

u 

where Us is defined by equation 2-41. Assuming a 
parabolic velocity distribution in which case Em is 
a constant, and assuming further that Esy = Ey = Em, 
Elder obtained 

umax yn [ 4] 
KC (13) = 7560 E 64 + 21f3- 308f3 2 

- 210f33 - 35/3 , 
s y 

(2-47) 

where f3 = V s/KU7 • In the derivation of equation 
2-47 it was also assumed that no deposit of sediment 
on the bed occurs and that the dispersing particles 
are distributed vertically according to equation 2-44. 
According to equation 2-47 the ratio Kcs (13)/Kcs (0) 
increases to a weak maximum of 1. 0055 at f3 = 0. 033 
and decreases rapidly to zero near f3 = 0. 5. Equa­
tion 2-47 does not agree well with the experimental 
res.ults of Sayre and Chang (1966) for the longitudinal 
dispersion of silt-size particles where Kc (/3) /Kc ( 0) 
values as large as 2 in the neighborhood ofs f3 = 0. r 
were found. Due to differences in the boundary con­
ditions, however, a fair comparison cannot be made. 

In summary, although dispersion theory has 
not yet been successfully applied to predicting the 
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longitudinal dispersion of suspended sediment parti­
cles, successful applications of simplified versions 
of the dispersion equation in some other areas of sedi­
ment transport suggest that such an application is 
possible. 

6. Reynolds' Analogy for the Equivalence of Mass and 
Momentum Transfer 

The concept of an analogy between the process­
es of mass and momentum transfer in turbulent flow 
arises from the similarity between the roles of the 
turbulent mass transfer term ac'u!/ax. in equation 
2-2, J J 

ac - ac a - a2C 
at+ Uj axl. =- axJ. c'u! + EMax.ax. 

J J J 
(2-2) 

and the turbulent shear stress term p au!u!/ax. in 
the momentum equation for turbulent flow 1 J J 

au. au. 
a 

azu. 
- aP 1 - 1 

u~u! pv--1- + + pU.-= + F.-a. pat -p-
J axj ax. 1 J ax.ax. 1 X. 

J J J 1 

(2-48) 

In fact, with the exception of the body force and pres­
sure gradient terms, F\ and a'Pja~. in equation 
2-48, the form of the two equations is the same. The 
analogy is carried further by introducing the 
Boussinesq turbulent exchange coefficients, Ei for 
mass and Em for momentum, in such a way that 

c'u! 
1 

ac 
- E --iax. 

1 ~au. au.] 
and pu!u! = - pE --

1 + _j_ 
1 J m axj axi 

express respectively the fluxes of mass and mom en­
tum due to turbulence. If we confine our attention to 
the transfer of mass and momentum in the y direc­
tion in a channel with steady, uniform two-dimensional 
flow, the total transfer rates are for mass, 

and for momentum, 

Momentum Flux = p (E + v) au 
m ay 

According to Rohsenow and Choi {1961) and 
Hinze ( 1959), the analogy is complete and Ey = Em 
if ( 1) the mechanisms which control mass transfer 
and momentum transfer are actually identical, (2) 
EM << E and v << Em• {3) the momentum transfer 
is unaffed'ted by the mass transfer. The third condi­
tion is automatically satisfied if the fluid properties 
of the dispersant and the dispersion medium are the 
same. It would also appear to be satisfied for low 
concentrations of suspended particles with fall veloci­
ties in the Stokes range. The second condition is 
also satisfied in the open-channel flows considered 



here. Although eddy diffusion theory suggests that the 
first condition is satisfied, present knowledge of the 
processes of mass and momentum transfer is insuffi­
cient for an analytical proof. The analogy must there­
fore be justified on empirical grounds. 

The momentum eddy diffusivity can be related 
to the velocity gradient in the following manner. For 
a channel with two-dimensional uniform flow, equation 
2-48 for the transport of momentum in the x direction 
reduces to 

d- d 2 U 
F - p- u'v' + pv x dy dyz 0 . (2-49) 

The body force is 

where g is the acceleration of gravity and Se is the 
slope of the energy gradient. The boundary conditions 
are 

y = 0: 
- dU 
u'v' = 0 pv-, dy 

u'v' = 0 

T 
0 

where T 0 is the shear stress acting on the bed. 
In~egrating equation 2-49 with respect to y, and using 
the boundary conditions to evaluate the constant of 
integration, we obtain 

T =T(1-L)=-pu'v'+pvdU 
xy o yn dy (2-50) 

Equation 2-50 has been verified experimentally by 
Laufer (1951) and Reichardt (1938) for two-dimensional 
flow in a wind tunnel. Introducing the momentum eddy 
diffusivity 
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and noting that U = ~ , we get for 
T p 

dU 
dy 

as stated in equation 2-29. 

u 2 y (1 - YJ) 
T n 

dU 
dY) 

v << E 
m 

(2-51) 

Using the von Karman-Prandtl velocity distri­
bution function 

u- u 1 -u- = IC (lnYJ + 1) 
T 

as an illustrative example, we obtain 

and 

E m 

dU 
dY) 

u 
T 

ICYJ 

ICY U YJ ( 1 - YJ) . n T (2-52) 

According to equation 2-52, Em is distributed para­
bolically with respect to YJ with a maximum value 
of 0. 25 KYn U7 occurring at YJ = 0. 5 . 

Turning now to the mass eddy diffusivity, 
Al-Saffar ( 1964) and Kalinske and Pien ( 1944) have 
demonstrated that within the limits of experimental 
error, Ey = Em in turbulent open-channel flow. 
Due to the difficulty of determining Ey, however, 
the limits of experimental error are not small. 

In the development which follows it is assumed 
that Reynolds' analogy is valid, and Ey and Em are 
used interchangeably. 



Chapter III 

SOLUTIONS OF ARIS' MOMENT EQUATIONS 

Of the various analytical approaches to longi­
tudinal dispersion in turbulent open-channel flow, the 
most promising and apparently the least explored, 
appears to be the Aris moment equation method. With 
no sacrafice of rigor Aris' method affords a substan­
tial simplification by reducing the number of variables 
in the dispersion equation. 

1. Development of the Working Equations 

For the sake of generality, let us begin with 
equation 2-40, considering a dispersant which settles 
toward the bed. Also let the following analysis be re­
stricted to two-dimensional flow in an open channel in 
which all a/at terms equal zero. Using the set of 
transformations given in equation 2-22, along with 
equations 2-19 and 2-20 and the additional transforma­
tion 

v = V y /D, s s n (3 -1) 

equation 2-40 becomes 

ac ac 
aT + llX af" {3 -2) 

The concentration, C{~, Yl, T), refers now only to that 
component of dispersant which is entrained in the flow. 
The remainder, that which has settled to the bed, is 
stored there. It is assumed here that if; and X are 
properties of the flow and do not depend on the proper­
ties of the dispersant. The initial condition, corres­
ponding to an instantaneous uniformly-distributed 
plane source at the origin is 

T = 0: C(E I 711 0) 0 for ~ 4 0 l (3-3) 
C(E I 711 0) ()) at ~ = 0 

()) J C(~~YI,O)d~ 
-oo 

The boundary conditions, due to the fall-velocity term, 
are more complex than those treated by Aris. For 
the present case they are 

77 = 1: r/Jac + v c 
a77 s 

0 (3-4) 

which states that there can be no transport of disper­
sant across the water surface, and 

77 = o: r/J ac + ( 1-a) v c + yW = o 
a77 s (3 -5) 
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Equation 3-5 is a very general boundary condition 
which permits the bed to behave either as an absorb­
ing or a reflecting barrier and also permits temporary 
storage of the dispersant (e. g. sediment particles) on 
the bed of the channel. In equation 3-5 a is a bed 
absorbency coefficient representing the probability 
that a particle of dispersant coming into contact with 
the bed is deposited, W = W (~, T) represents the 
amount of dispersant stored per unit area of bed sur­
face, and y is an entrainment-rate coefficient, de­
fined in such a way that yf::J..T is the probability that 
a typical particle resting on the bed is entrained in 
the flow during a short time interval of duration f::J..T • 

Following this line of reasoning, yW represents an 
average rate of entrainment. Analogy with the pro­
cess of radioactive decay, Evans {1955), suggests 
that the entrainment process can be represented as a 
Poisson process provided that the bed is covered by 
no more than a single layer of particles so that the 
probability of entrainment is the same for all parti­
cles. Galvin ( 1965) has described the entrainment 
process for the case where the bed is covered by 
more than a single layer. 

If the dispersant is neutrally buoyant ( v s = 0) 
and there is no storage on the bed (W = 0) , equation 
3-2 reduces to the two-dimensional form of the equa­
tion treated by Aris with the simpler boundary condi­
tion if; acjaYI = 0 at Y1 = 0 and Y1 = 1 . 

In conjunction with the boundary condition 
stated in equation 3-5, an equation for the deposition 
distribution function W(~, T) is required. An equa­
tion which satisfies the requirement is 

aw 
a,. 

aw "'ar = a v s C(~. 0 +' T) - yW • (3-6) 

Like equation 3-2, equation 3-6 is a_ statement of the 
conservation of mass. The main difference is that 
the diffusion terms in equation 3-2 are replaced by 
the exchange terms on the right side of equation 3-6. 
The initial condition for equation 3-6 is W{ ~, 0) = 0 . 

Employing the Aris moment transformations 

00 

C =f I!PCd~ p- ... -

-oo 

and 

-oo 

equation 3-2 for the entrained component becomes 

ac a 1 ac ) 
_P= -\"/1-p+v C + PllXC + p{p-1)r/JC {3-7) 
a,. aYI aYI s P p-1 p-2 



with the initial condition 

., = 0: c ( 71' 0) = 1 p 

c (71' 0) = 0 p 

and the boundary conditions 

8C 
TJ = 1: ~ + v c 

871 s p 

71 0: 

:::} {3-8) 

for 

for 

0 {3-9) 

The equation for the moments of the longitudinal de­
position distribution is 

dW 
__£ = av C {0+ -r)- p~W - '{W d-r s p • p- 1 p 

with the initial condition that W (0) = 0 . 
p 

(3-11) 

For the special case of a neutrally buoyant 
dispersant where the boundary condition is 1/J 8Cp/877=0 
at 71 = 0 and 71 = 1, Aris' second moment transforma­
tion 

1 

m =f C dn p- p ., 

0 

permits the further simplification of equation 3-7 to 

A comparable simplification is not achieved in cases 
with the more complex boundary conditions stated in 
equations 3-9 and 3-10. 

Even with the simplifications achieved by the 
Aris moment transformations, equations 3-7 and 3-12 

are not amenable to purely analytical solutions except 
under ve!'y severe restrictions. A few analytical solu­
tions have been obtained for the case of a constant 
eddy diffusivity (1/J = 1), and the limiting case of large 
dispersion times (T-> oo). In general, when 1/J varies 
with 71 , equation 3-7, after separation of variables, 
leads to a set of non-homogeneous ordinary differen­
tial equations with variable coefficients. No standard 
method is available for solving this class of equations. 

2. Analytical Solutions for Simple Cases 

For easy reference, the cases for which 
analytical solutions of Aris' equations are available 
are listed in Table 3-1. Following is a brief descrip­
tion of each of these solutions 

Case 1 - A simple case for which the writer 
has obtained an analytical solution to equations 3-7 
and 3-12 is for a dispersant with vs = 6/3 = 0, e. g. a 
dye, in a flow with a parabolic velocity distribution 

6 ( 2 ~X = -;cz -377 + 671 - 2) (3-13) 

and the corresponding constant eddy diffusivity 

€=D= .!i.yu ->1/J= ~= 1. 
6 n 'T D ( 3 -14) 

Considering first the equation for c0(71, T) (p= 0 in 
equation 3-7), we get 

8C 8 2 C 0 0 

The solution for the appropriate initial and boundary 
conditions, obtained by inspection, is c 0 = 1 . This 
result merely states that 

which is initially uniformly distributed with respect 
to 71, remains uniformly distributed. 

TABLE 3-1. KEY TO ANALYTICAL SOLUTIONS' OF ARIS EQUATIONS 

'{ Range of ., Case 
Variables for Which Velocity 

Solution Obtained Distribution 
a 

C1(7l,T), KE(T) parabolic 0 all 

2 c1 (71 ,oo), KE(oo) logarithmic 0 ., --> ()) 

3 co(l1, -r) parabolic all 0 all 
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The equation for the first moment 

Q) 

c 1t11. T) j ec<e, 11. T)de , 

-co 

which is the mean displacement from e = 0 of the 
dispersant contained in the plane fl at time 7 is 

This equation was solved by the standard method for 
linear non -homogeneous partial differential equations 
using Churchill's ( 1941} solution for the homogeneous 
part, to obtain 

C (fl T) = ~kf14 - fl'+ fla_l_)+ 12~ e -na1TaT cosn1Tf1] 
1 ' K l 4 15 ~1 n4 

11"
4 

(3-15) 

Substitution of equation 3-15 into equation 3-12 gives 

' 
dmz 721 cr.;:- = " 4 (-3f1 2 + 6fl- 1) c 1 (fl, T)dfl + 2 (3-16) 

0 

and ultimately 

!
1 oo -na1TaT 

+ 72 {-3f12+6f1-2)"'e COSn1Tfl L n41T4 
n=1 

0 

For the limiting condition when T -> oo, the integral 
expression goes to zero and 

{3-18) 

which is identical to equation 2-33 obtained earlier 
from Elder's equation. The convective component 
of equation 3-17, i.e., the bracketed part, is plotted 
in Figure 3-3 from which it is seen that Ke converges 
to an asymptotic value at about T = 0. 5. 

Case 2 - For the logarithmic velocity 
distribution 

6 
IJX = "::T (lnfl + 1) 

" 
(3-19) 

with the corresponding parabolically distributed eddy 
diffusivity obtained by using equation 2-51, 

(3-20) 
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and vs 0, Yotsukura (1966) obtained 

(3-21) 

From equations 3-12 and 3-21, as shown by 
Fischer (1964), the asymptotic value of the longitu­
dinal dispersion coefficient is 

1 

1 dm2 J Keo(oo) =- -- = IJXC d 
'S 2 dT 1 fl 

0 

0 0 0 

which leads, as was shown earlier, directly to Elder's 
(1959) equation 2-30. That KE is shown here to be 
composed of a convective part ·and a diffusive part in 
the exact manner postulated by Taylor ( 1954a) in 
equation 2-27 is a tribute to Taylor's remarkable 
intuition. 

Case 3 - The solution obtained by Dobbins 
(1944) of equation 2-45 for the transient vertical con­
centration distribution of suspended sediment in a 
stationary homogeneous turbulence field is by analogy 
also the solution of equation 3-7 for p = 0, a = 1 , 
'I = 0 and the velocity and eddy diffusivity distribu­
tions specified in case 1. Dobbins' solution is 

where 8n, n = 1, 2, 3 ... are the successive real 
positive roots of the transcendental formula 

cot 6 = v (J 
s 

In view of the complexity of the solutions for 
these three simple cases, the prospect of obtaining 



purely analytical solutions to cases which have appli­
cations in natural streams is not encouraging. 

3. Finite Difference Equations 

In contrast to the analytical solutions, the 
prospect of obtaining numerical solutions to the Aris 
equations by means of finite difference techniques 
using a digital computer is much more encouraging. 
The initial conditions do not entail any sharp gradients, 
and the elimination of ~ by the moment transforma­
tion reduces the grid from three dimensions to two 
thereby greatly reducing the number of computations 
and the computer storage requirements. 

The variables employed in the finite difference 
equations are illustrated schematically for a 10 layer 
model in Figure 3-1. The notation used here, where 
practical, is consistent with the notation used in the 
computer programs, which are included in the appen­
dix. The depth of flow is divided into N equal incre­
ments of thickness DY = ll.77. The boundaries be­
tween increments are numbered from I = 1 to 
I = N + 1. The number of time intervals of duration 
DT = ll.'T, counted from the beginning of the dispersion 

~. 1-- II 

10 

9 

8 
1 

6 I 
5 I 
4 I .l 
LJ ______ i-~ = 

3 

I 
2 

I ~ :0 
0 Cp (I,J) 

c. 

um 

I 

process, is indicated by J , starting with J = 1 at 
'T = 0 so that 'T = (J -1) DT. The average value of 
Cp ( 77, T) in the increment between I and I + 1 at 
the end of J - 1 successive time intervals is defined 
as Cp (I, J) . Similarly, the velocity, 6U(I) /K '* 
-and the longitudinal component of the eddy diffusivity, 
EA (I), are defined as the average values of IJX and 
1/J in the increment between I and I + 1 so that 

and 

(I)DY 

.:• U{I);: ~y J llX dn 

(I-1)DY 

(I)DY 

EA{I);: ~y J l/ldn 

(I-1)DY 

(3 -23) 

(3-24) 

In contrast, the vertical component of the eddy dif­
fusivity, which governs the exchange of dispersant 

I 
I 

I 

a. 

DY 

eddy 
diffusivity 

p' th moment 
of C.(I,J) 

values of 
E (I) 

9 

8 ~values of 

1 EA(l) 

6 

5 
4 

3 
I 

2 .J 
I 

I .. 
0 E(l) 

EA(l) 

Figure 3-1. Definition sketch of variables in finite difference 
equations 

*For velocity distributions other than logarithmic, 6 /K 
2 is merely a proportionality constant and K is no 

longer the coefficient iri the Prandtl momentum transfer equation dU/dl1 = U /Kl1 . ..,. 
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between adjacent increments, is defined aa the value 
of r/1 at the boundary between the increments in 
question so that 

E(I)::: r/I(Yl) , where Yl = (I- 1}DY . (3-25) 

With these definitions, the finite difference 
approximations of the terms in equation 3 -7 are 

ac 
____E. 
8T 

C (I,J+ 1)- C (I,J) 
p p • 

DT 
-> 

( 

-::> - 1-l E(I+ 1) fc (I+ 1 J)- C (I J}] 
DY l DY [ p ' p ' 

- ~~ (cp(I, J)- Cp(I-1, J)]+ v 
8 

[cp(I + 1, J) - Cp(I, J)]}, 

6 
PtJXC 1 -::> p a U{I) C 

1
(1, J). p- K p-

and 

p (p- 1) r/1 C 
2 

-::> p(p- 1) EA(I) C 
2 

(I, J) . p- p-

After some rearrangement of terms, the finite dif­
ference equation corresponding to equation 3-7 
becomes for 1 < I < N 

C (I, J+ 1) 
p 

_ DT fi[E(I+ 1) ] [ ] - Cp(I,J)+DYll DY +vs Cp(I+I,J)-Cp(I,J) 

- ~~[cp(I, J)- Cp(I-1, J~} + p 
6~'f U(I) Cp-l (I, J) 

+ p(p-1}DTEA{I)C 
2

{I,J) . 
p-

The initial condition is 

J = 1: cP (1. 1) = 1 

CP(I. t) = o 

for 

for 

(3-26) 

p = 

:} . (3-Z7) 
p> 
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For I= N and I= 1 the boundary conditions given in 
equations 3-9 and 3-10 must be incorporated into the 
difference equation. Therefore, the substitutions 

I= N: 

[ E(I + 1) + v ] [c (I+ 1, J}- C (I, J},-::> - v C (1, J) 
DY s p p ~ s p 

and (3-28) 

I = 1: 

ED(YI) fc (I, J)- C (I -1, J)]-::>- v (1-a)C (I. J)- yW {J) l p p s p p 

(3-29) 

are made in equation. 3-26. The difference equation 
corresponding to equation 3-11, 

W {J + 1) = W (J) + DTav C (1, J)- pDTtJW 
1
(J) 

p p s p p-

- DTyW '(J) , 
p 

(3-30) 

was obtained in a similar manner. The difference 
equation corresponding to equation 3-12 is 

N 
M ( J + 1) - M ( J) 

p p 
DT 

p ~ \ U(I)C 
1
(I, J)DY KL p-

I= 1 
N 

+ p(p - 1)[ E(I)CP -z (I, J)DY . 

I= 1 
(3-31) 

A critical step in the numerical solution of 
partial differential equations by finite difference 
methods is the selection of mesh size. If the numeri­
cal solution is to be stable and to converge satisfac­
torily to the true solution, certain conditions must 
be satisfied with respect to the way in which DT and 
DY approach zero. The subjects of stability criteria 
and rate of convergence are very complex and no 
conditions have ever been derived analytically which 
apply strictly to equation 3-26. According to 
Richtmyer (1957), the explicit difference equation 
corresponding to the one-dimensional Fickian diffu­
sion equation, 

C(I, J + 1) - C(I, J) = K C(I + 1, J) - 2C(I, J) + C(l - 1, J) , 
~t (~x)z 

(3-32) 

is stable if 

~t 1 
(6x)a < 2K 

(3-33) 



and the truncation error converges rapidly to zero if 

~t 

(~x) .a 6K (3-34) 

Equations 3-26 and 3-32 are roughly comparable in 
that they are both explicit difference equations based 
on a diffusion equation, although equation 3-26 differs 
in that it includes additional lower order terms, and 
the diffusion coefficient E(I) is variable. According 
to Richtmyer the presence of lower order terms does 
not appreciably affect stability. If it is assumed that 
the same conditions apply for equation 3-26, then 

DT 
(DY)Z < l 

for stability, and 

DT 1 
(DY) 2 6 

for vanishing truncation error. 

In practice, these criteria were used as a 
guide in making the initial selection of mesh size. If 
the results indicated instability, DT/(DY) 2 was re­
duced. Results which appeared to be satisfactory 
were checked for accuracy by repeating the computa­
tion for a smaller mesh size. The results of these 
trial and error mesh size investigations are s~mma­
rized in Table 3-2. For most of the computer runs 
a mesh size of DT = 0. 0005 and DY = 0. 05 were 
used. If the results appeared at all questionable the 
run was repeated for the reduced mesh size of DT = 

0. 00005 and DY = 0. 02. Good agreement between 
these two mesh sizes was obtained in all cases. 

4. Statistical Parameters for Describing Numerical 
Solutions 

The immediate results of the iterative solu­
tions of equations 3-26 and 3-3 0 are difficult to inter­
pret. To facilitate the description of results the 
computer programs were designed to calculate 
selected statistical parameters from the Cp(I, ·J) and 
w p(J) values. These parameters, whi~h describe 
the principal statistical properties of the longitudinal 
concentration distribution cui'Ves, were calculated by 
means of the following formulas. 

1. Convective component of overall longitudi­
nal dispersion coefficient (only for cases where 
vs = 0) from equation 3-31 

N 

K
2L U(I)C1 (I, J)DY . (3-35) 

I= 1 

2. Area under longitudinal concentration dis­
tribution curve which can also be interpreted as the 
amount of dispersant remaining in suspension 

a) for the I'th increment 

(3-36) 

b) for the entire flow field 

N 

m
0

(T) = [ c
0
(I, J)DY . (3-37) 

I= 1 

TABLE 3-2. RESULTS OF TRIAL AND ERROR MESH-SIZE INVESTIGATIONS 

Velocity and Eddy DT DY DT Comment on Results 
Diffusivity Distri- (DY) 2 

bution Functions 

IJX,.., Eq. 3-13 0.005 o. 10 
1 

stable 
2 

(parabolic) 1 
1/J = 1 

0.0005 0.05 
5 

stable, agreed closely 
with preceding case 

IJX '""'Eq. 3-19 0.005 o. 10 
1 

unstable 2 
{logarithmic) 1 

1/J = 6 T) { 1 - TJ) 
0.001 0.05 

2.5 
unstable 

0. 0005 0.05 
1 

stable 
5 

0.00005 0.02 
1 

stable, agreed closely 8 
with preceding case 

0.002 0.10 
1 

stable, not very good 5 
agreement with two 
preceding cases 
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3. Instantaneous average velocity of all the 
dispersant in suspension 

N 

;:-(T) m:(,.) K~ L Co(I,J)U(I}DY . (3-38} 

I= 1 

4. Mean displacement from s = 0 of entrained 
dispersant 

a) for the I'th increment 

(3-39) 

b) for the entire flow field 

N 
- 1 ~ ( 
ss (T) = mo(T) L c 1 I, J)DY . (3-40) 

I= 1 

5. Va.riance for entrained dispersant 

a) for the I'th increment 

b) for the entire flow field 

. N [ a 

.. ~ (T) = m:(T) L cp. J)DY - ~5 (T)] 
I= 1 

(3-42) 

6. Skew coefficient for entrained dispersant 

a) for the I'th increment 

C
3

(I, J) C
2

(I, J) 

co (I· J) - 3ss(TJ, ,.> co(I, J) + 2 

(3 -43) 

b) for the entire flow field 

(3 -44) 

The formulas used for calculating the paramett rs 
describing the longitudinal distribution of W('T) are: 

1. Area under distribution curve, which can 
also be interpreted as the amount of dispersant in 
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storage on the bed 

(3-45) 

2. Mean displacement from ~ = 0 of deposited 
dispersant 

"fw< ,.) = w 1 (J) /W o(J) · (3-46) 

3. Variance for deposited dispersant 

4. Skew coefficient for deposited dispersant 

(3-48) 

The parameters describing the composite distribution 
of the entrained and deposited dispersant were calcu­
lated in a similar manner. The formulas are: 

1. Total quantity of dispersant 

2. Instantaneous average velocity of all 
dispersant 

(3-49) 

(3-50) 

3. Mean displacement from ~ = 0 of all 
dispersant 

N 

L c 1 (I, J)DY + w1(J) 

- I= 1 
s T (,.) = mo ( 'T) 

T 

4. Variance for all dispersant 

N 

L C2(I, J)DY + W2(J) 
I= 1 

5. Skew coefficient for all dispersant 

(3-51) 

ST(T)= a 1 3/2 fm 1 (T)[£c3(I,J)DY+W3(J) 
[o-T(T)J 0T I=1 

-3fT ( T)(t IC2(I, J)DY + w Pl)] + 2 [fT( T) f~. (3-53) 



5. Additional Background Information for Numerical 
Solutions 

The two computer programs for solving equa­
tion. 3-26 and associated equations are given in the 
appendix. Both programs are written in Fortran II. 
Program I solves equation 3-26 for p = 1 and 
vs = 6{3 = 0, and computes DK3 Kc('T) /Yn U7 as 
given in equation 3-35, as the final result. The final 
version of Program II solves equations 3-26 and 3-30 
for p = 0, 1 • 2. 3, and computes some or all of the 
statistical parameters defined in equations 3-36 
through 3-53 as the final result. In the earlier ver­
sions of Program II, only the dispersant suspended in 
the flow was considered. Program I served as a pilot 
program for the much more extensive Program II. 

The input data required for Program I consisted 
of the velocity distribution U(I). as defined in equa­
tion 3-23, and the eddy-diffusivity distribution E(I) • 
In addition to these, Program II required: EA(I), as 
defined in equation 3- 24; the value of the von Karman 
turbulence coefficient, T = K ; the dispersant fall 
velocity term, B = f3 = vsf 6; the bed adsorbency fac­
tor, A = a; and in cases involving the distribution of 
deposited dispersant, the probability of entra:.inment 
during unit time, G = y; and a term which~ propor­
tional to the mean velocity, UA = Kf.l/6 = U/U7 • 

Velocity and eddy-diffusivity distributions for 
two different velocity distribution functions are shown 
in Figure 3-2. For the logarithmic velocity distribu­
tion function, the respective distributions are given 
by equations 3-19 and 3-20; and for the parabolic func­
tion, by equations 3-13 and 3-14. Mainly because of 
its widespread use, the logarithmic velocity distribu-

I.Or---~---r-----r----r----r----, 

abolic 

2 
•• S I'X 

a. Velocity 

tion function was used in nearly all of the computer 
runs. The parabolic velocity distribution function 
was used only in enough cases to establish that the 
numerical results given by Program I were in agree­
ment with the analytical solution given in equation 
3-17. The velocity and eddy diffusivity input informa­
tion for Program II, for the case of the logarithmic 
velocity distribution with DY = 0. 05, is tabulated in 
the appendix. 

All of the cases for which numerical solutions 
were obtained are listed in Table 3-3. Program I 
was used for cases 1 and 2, and Program II for all 
the rest. The computers which were used and a com­
parison of the execution times required for the pro­
grams for different combinations of DY, DT, and 
the range of 'T are listed in Table 3-4. The IBM 
1620 facility is located in the Colorado State Univer­
sity Statistical Laboratory; the IBM 7094 at the 
Western Data Processing Center, University of Cali­
fornia, Los Angeles; and the CDC 6600 at the National 
Center for Atmospheric Research, Boulder, Colorado. 

The tremendous saving in computer time 
effected by employing the Aris moment transforma­
tions is illustrated by comparing the 1. 5 hours on an 
IBM 7090 required for carrying out Yotsukura's and 
Fiering's (1964) numerical solution of equation 2-38 
for DY = 0. 1 to 'T '::! 1, with the 1. 3 minutes on 
the IBM 7094 required for carrying Program II for 
DY = 0. 05 out to 'T = 3. Thus, Program II, although 
it does not compute the actual concentration distribu­
tions, is very well suited for investigating the overall 
effects of various velocity distributions, eddy diffu­
sivity distributlons, boundary conditions and the like, 
on the longitudinal dispersion process. 

0.8 

0.6 

1f 

0.4 

Q2 

0 05 ID 

+. i-

b. Eddy diffusivity 

looarithmic 
velocity 

dittribution 

LS 2.0 

Figure 3-2. Distributions of velocity and eddy diffusivity with respect to depth 
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TABLE 3-3. KEY TO NUMERICAL SOLUTIONS OF ARIS EQUATIONS 

Cue 

Ia 
2 
2a 
2b 

)a 

4 
5 

6a 
1 
8 
9 

10 
II 
12 
ll 
14 

15 
16 
i7 
18 
19 

zo 
Zl 
zz 
2.3 
l4 

25 
l6 
26a 
Z7 
28 
2.9 
30 
ll 
32 

3l 
34 
35 
36 

37 
l8 
39 

40 
41 
4Z 

43 
44 
45 

46 
47 
48 
49 
50 

DK' K ('t) y u c: n ., 

I 
s 

sw 
S,W,T 

t 
s,w 
s 

s,w 
S,W,T 

f 
s.w 
s 

s.w 
S,W,T 

f 
s,w 
s 

S,W,T 
t 

s.w 
S,W,T 

~ 
s,w 
t 
s 

s,w 
S,W,T 
s,w 
s 

S,W,T 

Velocity 
Distribution 

Parabolic: 

I 
Lorarilhmic: 

' Locarithmic: 

aU 

I 
0.42 

t 
0,40 
0,38 

0.42 

0 

0.10 

0,01 

0.03 

l 
4);06 

I 
0.10 

0,30 

0.090 

0,066 

0,058 

1 
S denotes equations 3-36 • 3·44; W equations 3-45 • 3-48; T equations 3·49 • 3·53 
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I 

• 0 
0,5 
0,9 

0 

0 

I 
0 
I 

0 
0.02 
0,2 
2, 000 

0 
0,02 
0.2 
2,000 

0 
0.02 
0,2 
2,000 

0 
0,02 
0,02 
0. 2 
z 

zo 
zoo 
2,000 

0 
0.02 
Z, 000 

0 
0,01 
0.02 

0.10 
0,20 
0.30 

0,10 
0,20 
0.30 

0,50 
1.00 
l. 50 
2,00 
3.00 

all 

all 

I 
all 

I 
7,0 

' 
all 

7,0 

1 
all 

7,0 

' 
all 

1, 0 

all 

7,0 

I 
all 

6.17 

6.91 

I 
7,90 

o.t 

0.05 
0.10 
0.05 
0. 02 

0.05 
0,02 
0.05 

I 

0.05 
0. 02 
0. 05 

0.02 
0. 05 

0- ' 

0·3 
0- 1.35 
0 - ) 

I 

0- 3 
0- 0, 75 
0 ) 

0 - 2. 75 
0- 3 

0 • I 



TABLE 3-4. APPROXIMATE COMPUTATION TIMES FOR NUMERICAL SOLUTIONS 

Parameters DY DT 
Computed 

D,r o. 1 -u Kcb·) 0.005 
yn 'T 

0. 1 0.002 

(Program I) 
0.05 0.0005 

0.05 0.0005 

0.02 0.00005 

S, W, T 0.05 0.0005 

(Program II) 
0.05 0.0005 

0.02 0.00005 

0.02 0.00005 

6. Results from Program 1 

The results of Program I for computing the 
convectivE: component of the longitudinal dispersion 
coefficient are shown on Figure 3-3(a). In all cases, 
the coefficient increases rapidly at small values of 
the dimensionless dispersion time, 'T , and levels off 
to a constant value at about 'T = 0. 5 . 

A more detailed examination showed that in 
the parabolic velocity distribution case, the results 
for A TJ = 0. 1 differ from the results for ATJ = 0. 05 
at most by a small amount in the third significant 
figure. Both numerical solutions agree very closely 

• calculated ffOIII'I .......... 3- 17 

nuiMricol solulion. Att•002 

.Att•o.o5 

•• ., •0.10 

o~--~02~----0~4~--~o.s~--~o.a~--~~D 

• Dt 
T -,;;z 

a. Non -normalized relationship 

ID 

Computer Range 
Computer 

of 'T 
Execution 

Time 

IBM 1620 0-1 20 min. . 
IBM 1620 0-1 32 min. 

IBM 1620 0-0.5 90 tnin. 

IBM 7094 0-1 0. 2 min. 

IBM 7094 0-1 2. 2 min. 

IBM 7094 0-3 1. 3 min. 

CDC 6600 0-3 13 sec. 

IBM 7094 0-0.75 8. 3 min. 

CDC 6600 0-2.75 6 min. 

with the analytical solution given in equation 3-17. 
In the logarithmic velocity distribution .case, the 
agreement between the numerical solutions for the 
three mesh sizes is not as good. The values of 
DK 3 Kc/Yn U7 at 'T = 1 obtained in the numerical 
solution are compared in Table 3-5 with the asymp­
totic values for large dispersion times obtained by 
analytical methods. From these values and the 
curves it is concluded that adequate accuracy is 
obtained with the mesh size of ATJ = 0. 05 , AT 
0. 0005. 

Comparison of the normalized dispersion 
coefficients in Figure 3-3(b) show that there is little 

~ 
f:=---

, ~ 
V/ 

08 

~ ~ 

]I 
! 
T --- L.opittlftllc ....., clillriiMitloft 

-- Paralaollc . . 

Q6 

Q4 

Q2 

0 
0.1 02 Q7 

b. Normalized relationship 

Figure 3-3. Convective component of longitudinal dispersion coefficient as a function of dispersion time 

22 



TABLE 3-5. COMPARISON BETWEEN NUMERICAL AND ANALYTICAL RESULTS 
FOR CONVECTIVE COMPONENT OF LONGITUDINAL DISPERSION 
COEFFICIENT AT LARGE DISPERSION TIMES 

Velocity Distribution 

Parabolic 0.05 

o. 10 

Logarithmic 0.02 

0.05 

o. 10 

difference in the rate at which they approach the 
asymptotic limit. This suggests that the dispersion 
time required for Kx to become approximately con­
stant may not be very sensitiveto the velocity distri­
bution function. 

7. Results from Program II 

The results from Program II for each of the 
computer runs listed in Table 3-3 consisted of any­
where from about 500 to 3, 000 items of information. 
It is obviously impractical to present all of the 
results. No more are presented than is necessary to 
illustrate the most important features of the longitudi­
nal dispersion process as indicated by the solutions. 
The main objective is to show the influence of the 
various parameters and boundary conditions on the 
dispersion process and the presentation of results is 
organized with this end in mind. 

a. Results for f3 = 0 - The condition f3 = 0, 
which indicates a dispersant with zero fall velocity, 
is applicable to the dispersion of solutions which have 
the same fluid properties as the dispersion medium, 
in this case water. The results for this case are pre­
sented first because they can be compared with pre­
viously established theories for large dispersion 
times, and also because they form a benchmark 
against which the results of the more complex cases 
can be compared. 

In all runs with f3 = 0, c 0(17, 'T) and mo('T) 
remained equal to one for all 'T • This indicates 
that there is no net redistribution of dispersant in the 
vertica\ and that the condition of conservation of dis­
persant is satisfied. Also #:is{'T) and fs('T) remained 
equal to zero throughout all runs indicating that mean 
velocity and displacement of the dispersant are the 
same as for the flow. These results, which had of 
course been anticipated, gave some indication that 
the program was satisfactory. 

From Numerical 
Solution 

o. 45711 

0.45706 

0.40294 

0.39890 

0.38846 

From Analytical 
Solution 

16 35 = o. 45714 

II 

0.4041 

II 

II 

In Figure 3-4, the variance cr~ :::: crg('T), is 
shown as a function of 'T for flows with a logarithmic 
velocity distribution but different values of K • The 
general form of the relationship, in which the rate of 
change of the variance increases initially and later 
becomes constant, is consistent with that usually 
observed in experiments and also with the prediction 
of Taylor's theory of diffusion by continuous move­
ments. The check run for K = 0. 42 with 617 :::: 0. 02 
agrees closely with the results of the corresponding 
run with 6.17 = 0. 05. The convention, introduced 
here, of representing the results for runs with 6.17 = 
0. 05 by a solid curve and the results for runs with 
6.17 :::: 0. 02 by small black circles is used throughout 
except when there are 'specific indications to the 
contrary. 

As the overall longitudinal dispersion 
coefficient, K~ , is composed of a convective and a 
diffusive part, so also is the variance, cr~ • Combin­
ing equation 2-27 with the dimensionless counterpart 
of equation 2- 13, 

K = ..!_ do-; 
~ 2 d'T 

and integrating, we get 

{3-54) 

Therefore, the convective component of the variance 
is 

{3-55) 
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700--------------~-------------r------------~ 

T 

Figure 3-4. Variance of longitudinal concentration distribution as 
a function of dispersion time in flows with a logarith­
mic velocity distribution for K = 0. 42, 0. 40 and 0. 38 

The results in Figure 3-4 can be generalized 
for all K by multiplying the convective component of 
the variance by DK 3 /ynU-r as shown in Figure 3-5. 
The corresponding relationship for the parabolic velo­
city distribution case, which is also shown in Figure 
3-5, was obtained from the results of Program I by 
using equation 3-55. If the process is reversed by 
taking the derivative and dividing by two, 

the functions in Figure 3-5 become identical to those 
in Fi.gure 3- 3( a). Therefore, the discussion of the 
results in Figure 3-3 apply here also, and it is demon­
strated furthermore that the results of Programs I and 
II ar"e in agreement. 

The skew coefficient of the longitudinal con­
centration distribution, where S(-r) = Ss(-r) as defined 
in equation 3-44, is shown as a function of T in 
Figure 3-6 for a flow with the logarithmic velocity 
distribution. The results indicate that the concentra­
tion distributions are negatively skewed, and that they 
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tend to become more symmetrical with increasing 
dispersion time. However, the rate of approach to 
symmetry, S(-r) = 0, is much slower than the rate 
at which K~ converges to an asymptotic value. The 
results for the check run with 671 = 0. 02 here also 
agree quite closely with the results for 671 = 0. 05, 
although not as closely as the results for the variance 
in Figure 3-4. Runs were also made for other K 

values. The results of these showed that the distri­
butions tend to become slightly more skewed as K is 
decreased. However, the fact that a reduction of K 

from 0. 42 to 0. 38 caused only about a one percent 
change in tp.e skew coefficient demonstrates that skew­
ness is quite insensitive to changes in K • 

Figure 3-7 shows how the properties of the 
longitudinal concentration distribution along a stream­
line are distributed with respect to depth and how the 
distribution of these properties changes with increas­
ing dispersion time. The displacement of the means, 
'f(71, -r), shown in Figure 3-7(a), tends to spread 
longitudinally with increasing dispersion time until 
-r = 0. 5 when a state of equilibrium is reached. The 
equilibrium distribution agrees almost exactly with 
equation 3-21 which was obtained analytically. 
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Figure 3-5. Convective component of variance of longitudinal 
concentration distribution as a function of disper­
sion time 
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Figure 3-6. Skew coefficient of longitudinal concentration 
distribution as a function of dispersion time. 
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a. Mean displacement 

~0 ~ ~ ~ ~ 

~ [,·~rl-"t"fd] 

b. Variance 

sc,_~,,s&t 

c. Skew coefficient 

Figure 3-7. Distribution of properties of longitudinal concentration 
distribution along a streamline, with respect to depth in 
a flow with a logarithmic velocity distribution 

The distribution of the difference between the 
variance along a streamline, o-~(TJ, 'T), and the overall 
variance, o-~('T), shown in Figure 3 -7(b), also reaches 
a state of equilibrium at about ..,. = 0. 5 . Because the 
overall variance is greater than the variance along 
any streamline, the difference, o-~(1}, 'T) - o-~('T) , is 
always negative. Keeping this in mind, it is seen 
from Figure 3-7(b) that o-~(1}, 'T) decreases going 
from 11 = 0. 12 to 1} = 1 , and a maximum occurs near 
T) = o. 12. 

The distribution of the skew coefficients, 
shown in Figure 3-7(c), unlike the distributions of the 
mean and variance, tends to become more uniform 
with increasing dispersion time. The skew coefficient 
for the distribution of dispersant along each stream­
line S( TJ, 'T) approaches the overall skew coefficient 
which in turn is approaching zero. 

The results shown on Figure 3-7 apply equally 
well for either smooth or rough boundary conditions. 
This is apparent when it is recalled that the velocity 
defect relationship given in equation 2-28 is the same 
for both cases,. Taking these results together, it is 
significant that the time required for stabilization of 
the mean displacement and variance distributions is 
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the same as that required for the longitudinal disper­
sion coefficient to level off to a constant value. 
Evidently a state of equilibrium between the convec­
tive and diffusive transfer rates is attained, which 
permits the overall longitudinal dispersion to behave 
as a one-dimensional process. As suggested earlier, 
when ..,. > 0. 5, the group of terms 

in equation 3-2 interact in such a way that their col­
lective behavior can be represented by the single 
term K~ a 2C/a~ 2 • These results support the intui­
tive arguments of Taylor {1954a) and Elder (1959) 
that equation 2-25 becomes a valid approximation of 
equation 2-24 at large dispersion times. 

Parameters such as the mean displacement, 
variance and skew coefficient do not ordinarily convey 
a picture of the longitudinal concentration distribution. 
This is one drawback of the Aris method. However, 
with the aid of the Pearson Type III distribution func­
tion, which is essentially a three parameter gamma 
distribution, it is possible to construct distribution 
curves which have the same values of ~. a-~ and S as 



given by the numerical solution. The equation for the 
Pearson Type III distribution is 

1 ~~- m I a- 1 
f(E; m, b, a) = lblr(a) ~ • (3-56) 

and the mean, variance and skew coefficient corres­
ponding thereto are 

E m + ba 

.) (3-57) 

The curves shown in Figure 3-4 and 3-6 can be closely 
approximated by the empirical formulas 

- o. 40) ) 

S =- 0.420(r + 0.10)- 112 . 

(3-58) 

Using the knowledge that ~ = 0, equations 3-57 and 
3-58 were solved simultaneously to obtain functional 
relationships between the Pearson parameters a, b 
and m, and the dispersion time r . These relation­
ships were then substituted into equation 3-56 to obtain 
estimates of the longitudinal concentration distribu­
tion, f(t; T) . Concentration distribution curves, 
estimated in this manner, are shown as the solid 
curves in Figure 3-8. For comparison, the dashed 
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curves which represent the Fickian equation 

-~ 
f(E; r) 

1 4KE r 
----e 
2 ..Y1r KE r 

(3 -59) 

are also shown. It is apparent that the estimated con­
centration distributions tend to converge to the normal 
distribution as the dispersion time increases . 

b. Interpretation of results for {3 = 0 in terms 
of diffusion by continuous movements - The results of 
the numerical solutions for {3 = 0, as evidenced by 
the relationship between cr~ and r and the apRarent 
convergence of f(~; r) to the Fickian equation, appear 
to support the view expressed in Section II- 3 that 
longitudinal dispersion in an axially-homogeneous, 
open-channel flow fits within the framework of 
Taylor's (1921) theory of diffusion by continuous move­
ments. Restating the fundamental relationships of 
Taylor's theory using our present notation, we have 

where ui.JT) is the Lagrangian velocity in the ~. 11. T 
system. As before, the overbars denote an ensemble 
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Figure 3-8. Estimated longitudinal concentration distributions at various 
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average for many particles, all released from the 
origin. Introducing again the Lagrangian correlation 
coefficient, 

where 7 1 7 - 71, we obtain 

and finally 
'T 

.-~ (7) " zuL 2 J (7- 7')R0L (7')d7' 

0 
(3-60) 

In a turbulent shear flow it is to be expected 
that the Lagrangian correlation coefficient will vary 
not only with the lag time, 7 1

, but also with the posi­
tion, rJ, from which particles are released. Where 
this is true, Rui.J-r', Y"J) should replace Rui..(7') in 
equation 3-60. In our particular case, where a uni­
formly distributed ensemble of particles is released 
instantaneously, equation 3-60 should be averaged 
over the depth of flow. In effect, this is accomplished 
by replacing Ru]J-r') by the averaged coefficient 

1 

=j R I (7
1

' rJ)drJ 
UL 

0 

The formulation and interpretation of Rui.)-r') in a 
turbulent shear flow will be considered in more detail 
later on. For the present we will only assume that 
such a formulation is possible. 

Let us now consider the Lagrangian intensity 
of turbulence, uL z. There are two ways in which 
uL z can be estimated. The first method is based on 
the concept. of a fluid particle wandering randomly in 
a known velocity field as shown in the sketch below. 
The instantaneous velocity of the particle is 

u' = ~-&X(Y"J) +I-IX' L 

If we neglect the fluctuating component I-IX 1 as being 

'l =I 

of minor importance, then we have 

so that the velocity of the pa,rticle at any time 7 de­
pends on its position only. If there is equal likelihood 
that the particle will wander anywhere in the flow 
field then the averages 

and 

u' z = 
L 

1 JT z - u' d-r T L 

0 

1 

UL 2 "1 (IJX) 2 d ~ 
0 

( 3-61) 

are equivalent, provided that the averaging time T 
is sufficiently long for the particle to sample the flow 
field. For the logarithmic velocity distribution, 

!~f \lnTJ + I) 
2 d~ 36 

I? 
u' z 

L (3-62) 

0 

For the finite difference approximation of the loga­
rithmic velocity distribution used in the numerical 
solution with ArJ = 0. 05, 
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~~I [uo~ z nY = 
3!-/ 

I= 1 
~ 

L 
(3-62a) 

The second method of estimating uL 2 is 
based on the limiting solution of equation 3-60 for 
7 1 -> 0 from which we obtain 

u'z 
L 

crz 
Lim .=.i_ z 
'T---;> 0 7 

(3-63) 

This is ,illustrated in Figure 3-9{a) for both erE and 
cr~ - 2-r. The latter is actually more appropriate for 
comparison with equation 3-62 because it represents 
the convective component of the variance. This is 
because the direct contribution to uL 2 by turbulence, 
i.e. 1-'X', was neglected in the development leading 
to equation 3-62. The curves in Figure 3-9(a) seem 
to be approaching the values of uL z specified by 

1; I; I 1 J II I I I I I I I 1 I I 11; f I ; 1 1 I I I I I I J 
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Figure 3-9. Behavior of the variance at very small dispersion times, K 0. 42 

equation 3-62 as T decreases, however, they veer 
away at extremely small values of T • A probable 
explanation for this is that the numerical solution 
breaks down in the immediate neighborhood of T = 0 . 

In Figure 3-9(b) cr~ and cr~- 2T are shown as 
functions of T for very small dispersion times. Note 
the straight lines to the right which are the asympto­
tes and the T intercepts of the asymptotes. The sig­
nificance of the intercepts will become clear later. 

Having evaluated uL 2 , the Lagrangian integral 
scale L., can now also be determined. Equation 
3-6 0 for T > 0. 5. when wr.itten for the convective 
component of the variance, reduces to 

a> 

cr!(T)- 2T= 2u 1 2 L T-
":) L T zuLJ (3-64) 

0 

Noting that the term farthest to the right is a constant, 
taking the derivative with respect to T of both sides, 
and solving for L.,, we obtain 

L 
'T 2u 1 2 

L 

~ rcr 2 
- 2T] 

dT [ ~ 

K -1 
~ 
~x)2 

(3-65) 

Equation 3-65, when evaluated with the results of the 
numerical solution for the logarithmic velocity dis­
tribution case with AT} = 0. 05 and T > 0. 5, gives 
L., = 0. 0703. Noting further that equation 3-64 is of 
the form y = ax + b. the x intercept of which is 
- b/ a. the significance of the T intercepts in Figure 
3-9(b) emerges: The intercepts indicate the value of 
the first moment, 
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of the Lagrangian correlation coefficient. 

The form of the Lagrangian correlation 
coefficient was determined, using numerical differen­
tiation methods, from the relationship 

1 

2u 1 ~ 
L 

d 2 2 
cr~ 

---;r.;a 
1 

(#IX) 2 
{3-66) 

Here again, the results of the numerical solution 
were used. The results of this calculation are shown 
in Figure 3-10 on both rectangular and semilog co­
ordinates. The semilog plot shows that Rui.}") is 
exponential in form except in the range 0 < T < 0. 1 
By numerically integrating RuL (T), 

and 

L 
'T 

a> 

=j R I (T)dT 
UL 

0.0706 

0 

00 

~ J . 7 R I (T)dT o. 0782 
7 UL 

0 

were determined. These numerical values agree very 
closely with the one from equati9n 3-65 and both of 
the 7 intercepts in Figure 3 -9(b). 
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Figure 3-10. Average Lagrangian correlation coefficient as a function of dispersion time 

For comparison, the values of (~-tx) 2 , L and 
'T 1 as determined with equations 3-62(a), 3-65 lnd 
3-64 from the numerical solutions with ~T) = 0. 05 of 
the logarithmic and parabolic velocity distribution 
cases, are listed in Table 3-6. 

Let us turn now to a more precise formulation 
of the Lagrangian correlation coefficient in a turbulent 
shear flow. If we continue to assume that the fluctu­
ating component of the velocity ~-tX' is of minor im­
portance in comparison to ~-tX(TJ) in causing longitudi­
nal dispersion, then the instantaneous velocity of a 
fluid particle which at time T is located at position 
T) can be represented as ~-tX( 'T, TJ). If after an arbi­
trary time interval 'T, the vertical displacement of 
the particle from its initial position is T) 1

, then the 
instantaneous velocity of the particle at time 'T + 'T

1 

is' ~-tX('T + 'T 1
, T) + T)'). For an ensemble of particles 

that is initially uniformly distributed over the entire 
depth of flow, the correlation coefficient is 

1 

1 J 1-'X('T, TJ)~-tX('T + 'T', T) + TJ')dT) . 
(~JX) 2 

0 (3-67) 

Because ~-tX( 'T, TJ) is a constant for a given T), an 
equivalent formulation would be 

1 1-T) 

Ru,('T') = 
1 

JIJX(TJ)f ~-tX(TJ + TJ')f (TJ'; 'T 1)dTJ'dT) 
L (~-tx) 2 T1 

0 -T) (3-68) 

where fT)(TJ' ; 'T') is the probability density function 
for the displacement of a particle from T) to T) + T)' 
during the time interval 'T' , and the boundary condi­
tions for fT)( T)' ; . 'T ') are afT)/ 8T) = 0 at T) = 0 and 
T) = 1 • The sketch on the following page will help to 
clarify the meaning of equation 3-68. It is likely that 

TABLE 3-6. LAGRANGIAN TURBULENCE CHARACTERISTICS 
FOR FLOWS WITH LOGARITHMIC AND PARABOLIC 
VELOCITY DISTRIBUTIONS 

Velocity Distributions 

Logarithmic 

Parabolic 
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L 
T 

0.0703 

0.0955 

0.0793 

0.0996 



1J = I 

------:r-
7J' 

--~----~-

for very small T 1
, f11(l1' ; -r') will be very closely 

related to the diffusivitz_ function r/J , i.e., normally 
distributed with mean 11' = 0 and variance <ra = 21/1-r'. 
For intermediate T 1

, f (11'; -r') is unknown, but for 
large 7 1 

I f
11

(11' ; 7 1
) wn1 be uniformly distributed. 

Formulating the convective component of a 
longitudinal dispersion coefficient with Rui}-r'), as 
defined in equation 3-68, we obtain 

0 

1-1'} .,. "J llX(n) J llX(n + n') J fn(n'; T')dT'dn'dn . 

0 0 
(3-69) 

It is interesting to speculate on how equation 3-69 
relates to Elder's (1959) equation 2-26, 

(2-26) 

to which it bears at least a superficial resemblance. 

All things considered, the theory of diffusion 
by continuous movements appears to be less suitable 
than the Eulerian theory for describing the longitudi­
nal dispersion process in a turbulent shear flow. 
However, the comparison between the two theories is 
useful because it demonstrates the generality of 
Taylor's theory, and also because it helps to clarify 
the relationship between the Eulerian and Lagrangian 
descriptions of dispersion in turbulent shear flow. 

c. Results for suspended sediment when 
.Y......:.....Q - When {3 > 0, the dispersant tends to settle 
toward the bed and the mathematical model simulates 
the longitudinal dispersion of sediment particles. The 
main purpose of this section is to demonstrate the 
influence of the fall velocity term, {3 = vs/6 = Vs/KU

7
, 

and the bed absorbency factor, a , in cases where 
no entrainment of sediment from the bed is permitted. 
The range of {3 was ~elected to simulate silt-size 
sediment particles in rough-boundary flow. When 

1 

?Jl 
I 

7J=O 

a = 1 , the bed behaves as a completely absorbing 
boundary. All particles which come into contact with 
the bed remain there and are thenceforth eliminated 
from the dispersion process, provided that attenti6n 
is restricted to the suspended particles. When a= 0, 
the bed behaves as a completely reflecting boundary 
so that no deposition is permitted. All particles 
which come into contact with the bed are immediately 
resuspended in the bottom increment of the flow. 
When 0 < a < 1 , the bed behaves as a partially ab­
sorbing boundary and the value of a represents the 
fraction of particles striking the bed that are retained 
there. The remaining fraction, 1 - a, are reflected. 

All of the results reported in this section are 
for flows with a logarithmic velocity distribution in 
which K = 0. 42. Furthermore, because no entrain­
ment is permitted (y = 0), and attention is restricted 
to the suspended particles, solutions of equation 3-7 
are independent of equation 3-11 so that the results 
are independent of the mean velocity term 
/.l = (6/K){U/U.,.). If entrainment is permitted and/or 
the deposited particles are included in the longitudinal 
distributions, this is no longer true. Such cases are 
taken up in later sections. 

Figure 3 -11 shows vertical distributions of 
suspended sediment averaged over the length of the 
dispersing cloud, for different values of {3 for both 
the absorbing and the reflecting boundary conditions. 
The distributions, which are uniform at .,. = 0, 
approach a state of equilibrium with increasing .,. , 
attaining it at about T = 0. 5. All of the solutions 
shown are for the equilibrium situation. As antici­
pated, the gradients of the distributions become more 
pronounced as the fall velocity term, {3, increases. 
Note that the solution for the reflecting boundary case, 
a = 0, is apparently identical to equation 2-44, which 
is the familiar vertical concentration distribution 
function for the steady state equilibrium condition 
where the deposition and entrainment rates are equal. 
Solutions for 0 < a < 1 fall between those for the 
limiting cases a = 0 and a = 1 . 

When a = 0 the total amount of sediment 
retained in suspension, mo( -r), remains constant. 
In the absorbing boundary case, when a = 1, m 0(-r) 
decreases with dispersion time as shown in Figure 
3-12. The decrease can be represented empirically 
by the exponential function 

(3-70) 
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Figure 3-11. Vertical distributions of suspended sediment when 'T > 0. 5 for particles having different terminal 
fall velocities 
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Figure 3-12. Fraction of sediment retained in suspension when 
a = 1 as a function of dispersion time for particles 
having different terminal fall velocities 
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If m 0(T) is interpreted as the probability that a ran­
domly chosen particle is still in suspension at time T ~ 

then 1 - m 0( T) represents the probability that the 
duration of the period of retention in suspension is 
equal to or less than T • Furthermore 

a -AT 
f(T) = - (1 - m (T)] = Ae aT o (3-71} 

is the probability density function for the duration of 
the retention period~ from which the mean retention 
time 

1 
A (3-72} 

can be obtained. Thus, the coefficient :\. can be in­
terpreted as the tnean rate at which particles settle 
out of sus pension. 

In Figure 3-131 A is shown as a function of {3. 
The results obtained from the numerical solutions with 
a = 1 , shown as the solid black circles, can be rep­
resented by the empirical relationship 

A= 6Jl(O. 9{3 + 1} . ( 3-73) 

The single black triangle represents a solution for the 
case of a partially absorbing boundary, with a = 0. 5. 
Although A decreases with a~ the relative values of 
A for {3 = 0. 1 1 and a = 1, 0. 5 and 0 (A = 0 when 
a = 0} indicate that the relationship is not linear. It 
is noteworthy that the solution of Dobbins' {1944} equa­
tion 3-22, which was derived for the case of a uni­
formly distributed eddy diffusivity~ leads to values of 
A which agree very closely with equation 3-73. The 
implication here is that whereas the rate at which 
sediment settles out of suspension is presumably a 
function of the average vertical eddy diffusivity D, it 
may be insensitive to the diffusivity distribution 
function 1/J. 

Focusing attention now on the overall trans­
port rate of the suspended particles~ Figure 3-14 
shows some _examples of the mean longitudinal dis­
placement~ ~S • of the suspended particles from the 
reference plane (~ = 0) which is moving at the mean 
flow velocity, as a function of dispersion tim~. It is 
helpful to recall here that the displacement ~S ~ is 
measured in units of flow depths. The results in 
Figure 3-14 show that the mean position of the sus­
pended particles advances more rapidly than the flow 
when the particles are absorbed by the bed (a = 1} ~ 
and less rapidly when the particles are reflected by 

3 ~-------------r--------------~------------~------~ 

>. = 6/J(0.9/J + I) 

• from numerical solution, a = I 

• from numerical solution, a = 0.5 

• from equation 3-22 (Dobbins) 

Q2 0.3 

Figure 3-13. Mean rate at which particles settle out of suspension 
as a function of terminal fall velocity 
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Figure 3-14. Mean longitudinal displacement, in a coordinate 
system moving at the mean flow velocity, of the 
suspended sediment as a function of dispersion 
time 

the bed {a = 0). Considering that the vertical concen­
tration gradients are in both cases weighted toward 
the bottom where the velocity is slower, the result 
for a = 1 at first seems surprising. Upon further 
consideration, however, the reason becomes clear. 
The particles which settle out of suspension first tend 
to be those which were initially suspended in the 
slower moving flow near the bed. Conversely, those 
retained in suspension the longest tend to be the ones 
with the longest history of suspension in the upper 
region of the flow where velocities exceed the average. 
The rates of displacement, indicated by the slopes of 
the curves, increase slightly in absolute value at 
small dispersion times, reaching a limiting value at 
about T = 0. 5, when equilibrium vertical distribu­
tions are attained. The limiting rates d'f.s/ d7 , are 
shown as functions of f3 in Figure 3-15. The instan­
taneous average velocity of the suspended particles, 

'"'s 

is shown also for comparison. When a = 0, and all 
the particles remain in suspension, f;s and d'f.s/d-r 
are equal. However, when a = 1 and deposition is 
occurring so that the population of suspended particles 
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is continually decreasing, ;:;s is less than d"'fs/d-r 
because iis does not depend on the previous hi~tory 
of the suspended particles in the manner that dEs/ d-r 
does. The results shown for a = 0. 5 and 0. 9 when 
{3 = 0. 1 give an indication of the behavior of d~s/ d-r 
and iis when the bed is a partially absorbing boundary. 

Figure 3-16 which shows the mean displace­
ment of the suspended particles from the source in a 
flow with mean velocity IJ = 100 helps to place Fig­
ures 3-14 and 3-15 in perspective. The velocity 
IJ = 1 00 corresponds to U /U., = 7 which in turn is 
indicative of flow near a very rough boundary except 
at small Reynolds numbers. 

Some examples of the variance, o-s, of the 
longitudinal distribution of the suspended_ particles as 
a function of dispersion time are shown in Figure 
3-17. The form of the relationships for the suspended 
particles resembles that for f3 = 0 in that the slope 
of the curves increases initially and reaches a limit­
ing value at about T = 0. 5. Here again the results 
for a = 0 and a = 1 show opposite trends. When 
a = 0 the degree of dispersion tends to increase as 
f3 increases, ·reflecting the combined effect of the 
vertical distribution of suspended particles and the 
velocity distribution. However, when a = 1 , the 
particles which are retarded in the slower moving 
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Figure 3-15. Limiting mean rate of longitudinal displacement, relative 
to mean flow velocity, of suspended sediment as a 
function of terminal fall velocity for T ~ 0. 5 
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Figure 3-16. Mean longitudinal displacement, from the source, 
of suspended .sediment as a function of dispersion 
time in a flow with U/U
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Figure 3-17. Variance of longitudinal distribution of suspended 
sediment as a function of dispersion time 

flow near the bed and are contributing the most to the 
variance, tend to settle out of suspension. 

The relative longitudinal dispersion coef­
ficients, KE({3) /KE(O), for the suspended sediment are 
given as functions of f3 for both a = 1 and a = 0 in 
Figure 3-18. These are based on the asymptotic 
slopes of the CTS versus ·T curves. The results for 
a = 0. 5 and 0. 9 when f3 = 0. 1 provide an additional 
indication of how the rate of dispersion varies with 
the bed absorbency factor. For comparison, Elder's 
(1959) equation 2-47, which was derived as a rough 
approximation of the reflecting boundary (a = 0) case 
is also shown on Figure 3.:18. The reason why it 
diverges from the results of the numerical solution 
for a = 0 is not entirely clear. Possibly it is be­
cause Elder assumed the vertical distribution of par­
ticles to be the same throughout the entire length of 
the dispersing cloud. 

In Figure 3-19, the 'T intercepts, 'T 1 , ob­
tained by extrapolating the asymptotic CTS versus 'T 

relationships, are shown as functions of f3 • The 
influence of f3 on T 1 is not very pronounced, particu­
larly when a = 0. 

Some examples of the variation of the skew coef­
ficient with respect to dispersion time are presented 
in Figure 3-20. When a = 1, the results for all values 
of f3 ranging from 0 to 0. 3 fall between the f3 = 0 and 
the /3 = 0. 3, a= 1 curves. Therefore, the skew coef­
ficient is quite insensitive to f3 in the absorbing 
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boundary case. When a = 0, however, the skewness 
decreases significantly with an increase in f3 • 

The results of the numerical solutions also 
included the distributions of "fs( l1, T), CTs( TJ, T) and 
Ss(TJ, T). with respect to TJ. An examination of these 
results, which is not presented here, showed them to 
be qualitatively but not necessarily quantitatively 
similar to the results given in Figure 3-7 for f3 = 0. 

Taking all of the results presented in this 
section together, it would seem that in a qualitative 
sense the longitudinal dispersion process for sus­
pended sediment particles is not greatly different 
from the process for a neutrally-buoyant dispersant 
for which f3 = 0 . To be sure, there are significant 
quantitative differences, but these tend to be differ­
ences in degree rather than fundamental differences. 
In the next section, where the re-entrainment of 
deposited particles is considered, some fundamental 
differences come to light. 

d. Results for suspended sediment when a = 1 
and y > 0 - When y > 0, particles resting on the bed 
of the channel may be entrained in the flow. In this 
section the effect of the re-entrainment of deposited 
particles on the longitudinal distribution of suspended 
sediment is examined. In all cases, the bed is 
treated as a completely absorbing boundary, i.e., 
a = 1 • As in the last section, all of the results are 
for flows with a logarithmic velocity distribution in 
which K = 0. 42. Unlike the last section, the results 
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Figure 3-19. Intercept on o-s vs. T curve 
for suspended sediment as a 
function of terminal fall velocity 
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based on moments greater than p = 0 are no longer 
independent of the mean velocity term, 1J • 

Before launching into a description of the 
results, it would be well to examine more closely 
some of the attributes of the entrainment process. 
Equation 3-6 in a stationary frame of reference and 
with no deposition, reduces to 

dW 
dT = - yW' (3-74} 

which is merely a statement defining the rate of en­
trainment. If the probability of entrainment is, ( 1} 
the same for all particles, and ( 2} independent of the 
length of time that a particular particle has remained 
at rest, the solution of equation 3-74, giving the frac­
tion of the particles remaining in an arbitrary control 
area at time T, is 

W(T) = e-yT . 
W(O} 

(3~75) 

This result may also be interpreted as the probability 
that a given particle will not be entrained during the 
time interval, ( o. T) . The probability that the parti­
cle will be entrained, which is equivalent to the proba­
bility that the time which the particle remains at rest 
is equal to or less than T, is then 

1 - e -yT 

Where fT(T') is the probability density function of the 
random variable T which describes the duration of 
the rest period. Differentiating, we get the exponen­
tial probability density function, 

(3-76) 

This function was used by Hubbell and Sayre ( 1964} 
and Einstein (1937} to express rest-period durations 
in deriving a stochastic model for the longitudinal dis­
persion of bed-material particles. From equation 
3-76 can be obtained the mean rest period duration 
between successive entrainments, 

- f<X> 1 
T= Tf (T)dT = -T y 

(3-77) 

0 

Provided the restriction is observed that coverage of 
the bed not exceed a single layer of particles, the 
validity of equation 3-76 is not affected by the occur­
rence of deposition. If the bed is covered by more 
than a single layer of particles, y will tend to de­
crease as the cover thickness increases, but the 
general form of equation 3-76 should remain valid 
provided that there is vertical mixing. promoted, for 
example, by ripples or dunes. 

More information about the entrainment pro­
cess could be inferred, for example, by representing 
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it as a Poisson process or a renewal counting process. 
However, with one notable exception, sufficient in­
formation for our purposes is now at hand. The defi­
ciency concerns the relationship of y to character­
istics of the sediment, the flow and the bed. There 
are semiempirical relationships, such as that of 
Lane and Kalinske (1939), for predicting the conditions 
necessary for entrainment. However, none of them 
are capable of predicting in a probabilistic sense how 
long a particle will remain on the bed before it is en­
trained. Hopefully, this will be remedied by future 
research. 

Because of the present lack of rational 
criteria for selecting appropriate y values, numeri­
cal solutions were performed with y ranging all the 
way from 0. 01 to 2, 000. This was done with a view 
toward demonstrating the effect of the deposition­
storage-re-entrainment cycle on the longitudinal dis­
persion process. 

Figure 3-21 shows the effect of y on the 
vertical distribution of suspended sediment at T = 3 
for the condition that f3 = 0. 1. The results for other 
combinations of T and f3 are qualitatively similar. 
When the entrainment rate is small (y = 0. 02}, the 
vertical distribution is nearly the same as for the 
case of the completely absorbing bed (a = 1} with 
zero entrainment. As y becomes large, the vertical 
distribution converges to the distribution for the case 
of the completely reflecting bed (a = 0}, which cor­
responds to y approaching infinity. 

The results in Figure 3-22, which show the 
fraction of sediment carried in suspension as a func­
tion of dispersion time for f3 = 0. 1, exhibit a similar 
tendency in that the results for small y approach 
those for a = 1 and the results for large y approach 
those for a = 0. It is noteworthy that the amount of 
sediment carried in suspension does not decrease 
exponentially with time when re-entrainment is 
occurring. Instead m 0('T) tends to approach an 
equilibrium value as a balance between the deposition 
rate, vsCo(O +, T). and the entrainment rate, yW 0(T}, 
is achieved. This can be seen from equation 3-11 
for p = 0 together with the condition required by 
conservation of mass that m 0(T) + W0(T) = 1. 

The remainder of this section is devoted for 
the most part to the presentation of results obtained 
with the entrainment factor y = 0. 0?. in a flow with 
mean velocity 1J = 100, which corresponds to 
U /UT = 7. In general, the results for y = 0. 20 and 
2. 0 qualitatively resemble those for y = 0. 02, where­
as the results for y > 20 tend to resemble more close­
ly those for the refle~ting boundary (a= 0} case. The 
results for y = 0. 02 were selected for presentation 
because they demonstrate more dramatically than the 
others the importance of even a small amount of re­
entrainment in the longitudinal dispersion process for 
suspended particles. The resistance coefficient U/UT 
= 7 was selected because it is representative of the 
flow conditions in the Sayre-Chang experiments. 

Figure 3-23 shOws the mean longitudinal dis­
placement from the source of all the sediment that is 
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Figure 3-21. Vertical distribution of suspended 
sediment at T = 3 with entrain­
ment of deposited particles occur­
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Figure 3-23. Mean longitudinal displacement, from the source, 
of the suspended sediment as a function of disper­
sion time in a flow with y = 0. 02 and U /U
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in suspension at any time T • The curious form of 
the f3 = 0. 3 curve, which seems to show that the 
sediment is moving backwards when T > 2, is evi­
dently due to the deposition far downstream from the 
source of sediment which has been continuously trans­
ported in suspension, and the re-entrainment further 
upstream of sediment which has been deposited and 
temporarily stored on the bed. The reasoning behind 
this statement will become clearer as a picture of the 
total process unfolds in the following pages. That 
such an exchange occurs is demonstrated by the m 0( -r) 
results for f3 = 0. 3. They show that the amount of 
sediment in suspension at T = 3 when y = 0. 02 is 
about five times greater than when y = 0 . Although 
these results are not shown here, they are qualita­
tively similar to the results for f3 = 0. 1 in Figure 
3-22 except that the relative difference when f3 = 0. 3 
is much larger. 

The mean longitudinal displacement results 
for smaller values of f3 diverge at a much slower 
rate from the reference displacement for f3 = 0 

indicated by the dashed line in Figure 3-23. This is 
because the deposition rates, as demonstrated in 
Figure 3-12, are much less, Consequently, the rela­
tive amount of re-entrained sediment in suspension is 
also much less. However, it is anticipated that at 
sufficiently large dispersion times the curves repre­
senting smaller values of f3 would show the same 
trend as the curve for f3 = 0. 3 . 

The variance, o-8. of the longitudinal distri­
bution of suspended sediment is shown as a function 
of T in Figure 3-24. The tremendously increased 
rate of growth of the variance is caused by the re­
entrainment of deposited particles which add a long 
tail of suspended sediment to the longitudinal distri­
bution curve. This almost literally becomes a case 
of the tail wagging the dog. 

The results for f3 = 0. 1 and y > 2 (not shown 
here) indicate that o-8 and "fs vary linearly with -r 
after the relative amounts of sediment in suspension 
and on the bed m 0( -r) and W 0( -r). become constant 
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Figure 3-24. Variance of longitudinal distribution of suspended 
sediment as a function of dispersion time in a 
flow with y = 0. 02 and U/U., = 7 
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(see Figure 3-22), indicating that overall deposition 
and re-entrainment rates are in equilibrium. Not 
until then is there any possibility of representing the 
longitudinal dispersion of suspended particles as a 
one-dimensional Fickian diffusion process with a con­
stant dispersion coefficient and mean velocity. Even 
then K~ ~d lis are liable to be complex functions of 
{3. y and U/U., in addition to YnU.,/DK 3

• It was not 
possible to ascertain the form of these relationships 
from the results because the equilibrium condition was 
not approached in a sufficient number of runs. In only 
one run ({3 = 0. 1. y = 2) were the results sufficiently 
different from those for the corresponding runs with 
a = 0 to be of any use in this regard. The logic for 
anticipating that the process must eventually attain 
the equilibrium stage where it behaves as a one­
dimensional diffusion process is that. so long as ex­
change between the bed and the flow is occurring. the 
bed is in effect just another incremental layer in the 
system in which the velocity with respect to the moving 
coordinate system is -1-' • and where the exchange 
coefficient. y • at the interface has properties that 
differ somewhat from the exchange coefficient. 1/J • in 
the flow. The essential requirements of Taylor's 
theory of diffusion by continuous movements. as out­
lined in Chapter II. Section 3 seem to be satisfied as 
long as the overall vertical distribution of particles 
in the system is. if not uniform. at least invariant 
with respect to time. 

Results showing the skew coefficient of the 
suspended material as a function of T are given in 
Figure 3-25. The general tendency toward large 
negative skewness is indicative of concentration dis­
tribution curves which are heavily weighted at the 
downstream end with a long tail extending in the up­
stream direction. The eventual shift from negative 
to positive skewness in the f3 = 0. 3 curve indicates 
a shift in weight from the downstream to the up­
stream end of the concentration-distribution curve. 
This occurs when the concentration of suspended sedi­
ment toward the trailing end of the tail,_ due to re­
entrainment from the region of heaviest deposition. 
overbalances the rapidly diminishing concentrations 
at the leading end of the curve where deposition 
greatly exceeds entrainment. Given sufficiently long 
dispersion time. it is anticipated that the curves rep­
resenting the smaller values of f3. would behave in 
a similar manner. 

A comparison of the curves in Figures 3-23. 
3-24 and 3-25 with the counterpart curves in Figures 
3-16. 3-17 and 3-20. for a = 1 and no re­
entrainment. shows sharp divergencies. They are 
all consistent with the trend toward a relative gain in 
concentration. due tore-entrainment. in the tail 
toward the upstream end of the concentration distri­
bution curve. The rate at which this process occurs 
evidently increases with the rate of deposition. which 

-4r----------------r----------------r---------------~ 

• tJ..., = 0.02 

o Estimated t
5

((;T) 

0 I 2 3 
T 

Figure 3-25. Skew coefficient of longitudinal distribution of 
suspended sediment as a function of dispersion 
time in a flow with y = 0. 02 and U /U., = 7 
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in turn increases with f3 • The possibility that this 
effect may be expressible in a generalized manner, 
perhaps by incorporating f3 and 'I into the time scale, 
although appealing, is beyond the scope of this study. 

e. Results for deposited sediment and com­
posite distributions - In the two preceding sections, 
attention was focused on the suspended particles. In 
this section, some particular solutions for the deposi­
ted sediment and for the combined distribution of the 
suspended and deposited sediment are examined. As 
in the last section, the results presented here are re­
stricted to a flow with a lo~arithmic velocity distribu­
tion in which K = 0. 42 and U /U., = 7. Also, the bed is 
again treated as a completely absorbing boundary. 

Figures 3-26, 3-27 and 3-28 show some exam­
ples of how the mean displacement, variance and skew 
coefficient for the sediment deposited on the bed vary 
with dispersion time for the condition of no re­
entrainment. Given a sufficiently long time, all of 
the particles must eventually be deposited on the bed 
where they will remain at rest. Therefore, all of the 
parameters describing the distribution of the deposited 
particles should approach constant asymptotic values. 
The results for f3 = 0. 3 verify this. Evidently the 
curves for the other values of f3 require much more 
time to reach their asymptotic limits. 

The fact that the skew coefficients are positive 
indicates that the distributions are weighted in the up­
stream direction. This coincides with the intuitive 
hypothesis that the heaviest deposition should occur 
close to the source and that the amount of material 
deposited should decrease with distance going down­
stream from the source. This line of reasoning sug­
gests that the distribution of deposited particles 
should follow an exponential function. Using the re­
sults for f3 = 0. 3, this hypothesis was tested. It was 
assumed that with increasing 7' the longitudinal dis­
tribution of the deposited particles approaches the 
exponential probability density function 

~ 
f (~) = - e w /.l 

~ - -(~ + /..&7') 
/.l 

(~ ~ - /..&7') • 
(3-78) 

The mean displacement, variance and skew coefficient 
calculated from equation 3-78 are respectively 

00 

<w + ,..T = J <fw(<)d< + ,..T 
- /..&7' 

=foo<< - ~w> • fw(<)d< 

-/..&7' 

00 

~w J (< - ~wl'fw!<Jd< 
-/..&7' 

2 • 
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When evaluated for /.l = 100 and ~ = 2. 29, which 
corresponds to f3 = 0. 3 (see Figure 3-12), these 
equations give the values shown as the asymptotic 
limits for the f3 = 0. 3 curves shown on Figures 3-26, 
3-27 and 3-28. That the curves do indeed approach 
these values strongly supports the hypothesis that the 
deposited particles are distributed according to equa­
tion 3-78. Additional support is given by the fact that 
equation 3-78 satisfies equation 3-6 when 'I = 0 in 
the limiting case when 

Lim C( ~ , 0+ , ., ) 0 
T->oo 

At smaller values of 7' when a significant 
quantity of the sediment is still in ;:;uspension, it is 
reasonable to assume that the distribution of deposited 
particles can be represented approximately by a trun­
cated exponential distribution function. Given suffi­
ciently large 7' , it is expected thaJ; the longitudinal 
distributions for other values of f3 would also con­
verge to equation 3-78. 

It is interesting to note that equation 3-78, 
when expressed for a stationary coordinate. system 
with the origin at the source, has the same form as 
the probability density function used by Hubbell and 
Sayre (1964) and Einstein (1937) for the distribution 
of step lengths in the stochastic model for the longi­
tudinal dispersion of bed-material particles which was 
mentioned in connection with equation 3-76. This 
suggests the possibility that fw(~} for the initial con­
dition of all particles concentrated near the bed, in­
stead of distributed uniformly with respect to flow 
depth as with equation 3-78, might turn out to be 
closely related to the step length distribution function. 
If this is true, and if fw( ~) for this initial condition 
is again an exponential function, it is more than 
likely that the stochastic dispersion model can be ob­
tained as a particular simultaneous solution of equa­
tions 3-2 and 3-6. 

As might be expected, the entrainment factor, 
'I, has considerable effect on the distribution of de­
posited particles. For example, when 'I = 0. 02, the 
numerical results show that the displacement of the 
mean and the variance are slightly larger and the 
skew coefficient is slightly smaller than when 'I = 0. 
As the entrainment rate increases, the differences 
become larger. Finally, when the entrainment rate 
becomes large ('I > 20), and the residence times of 
particles on the bed become short, the values of the 
parameters describing the longitudinal distribution 
of the particles on the bed approach those of the cor­
responding parameters describing the distribution of 
the particles in the bottom increment of the flow for 
the reflecting boundary case. 

Figures 3-29, 3-30 and 3-31 illustrate the 
variation with respect to dispersion time of the mean 
displacement, variance and skew coefficient of the 
composite longitudinal distribution, 
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Figure 3-29. Mean longitudinal displacement, from the source, 
of all the sediment as a function of dispersion 
time in a flow with '( = 0. 02 and U/UT = 7 
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of both the suspended and the deposited sediment when 
'( = 0. 02. Considering the dispersion process as a 
whole, this is perhaps the most logical form in which 
to present the results. From an experimental point 
of view, however, separation into the suspended and 
deposited components is almost mandatory. 

A comparison with the results for the suspen­
ded sediment indicates that the results for the compo­
site distribution are more strongly influenced by the 
tails, which in the composite distribution are compo­
sed mostly of deposited material. As with the suspen­
ded sediment, here also the results indicate that the 
mean displacement and variance will not vary linearly 
with r before an equilibrium balance between m 0{r) 
and W 0(r) is achieved. Therefore, at low re­
entrainment rates in particular, a very long disper­
sion time will be required before the dispersion could 
possibly be described as a one-dimensional process 
characterized by a constant mean velocity and disper­
sion coefficient. The results for the runs with y = 2-

.. and '( = 20 for {3 = 0. 1 do indicate that such a re­
lationship exists as an asymptotic limit. As y be­
comes still larger, the results approach those of the 
case of the completely reflecting boundary. 

f. Estimated longitudinal sediment distribution 
curves - Throughout the discussion in the preceding 
two sections it has been implied that the radical de­
parture from the results for {3 = 0 is due mainly to 
the influence of tails that are composed of deposited 

and/ or re-entrained particles. In order to test this 
hypothesis several estimated longitudinal distributions 
were constructed. The mean displacement, variance 
and skew coefficients for the estimated distributions 
were then calculated and compared with results from 
the numerical solutions. Two examples of the esti­
mated distributions are given in Figures 3-32 and 
3-33. 

The estimated distribution, fs(E ; r), for the 
conditions indicated in Figure 3-32, was obtained by 
resolving the suspended component into a head and a 
tail, so that 

The function fh( ~ ; r) for the h~ad was assumed to be 
normally distributed with m 0 , ~ and <Ta given by 
the results of the corresponding solution for '( = 0. 
That is, the head was assumed to be composed en­
tirely of particles which had not been deposited. It 
was assumed that the tail is composed entirely of re­
entrained particles so that the area under the tail is 
given by 

m =m] -m] ot o o 
'( = 0.02 '( = 0 

Assuming that the truncated exponential form inherited 
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Figure 3-33. Estimated longitudinal composite distribution of all the sediment 
at r = 3 ·in a flow with y = 0.02, U/Ur= 7, and f3 = 0.1 

from the deposited particles would tend to be some­
what flattened due tore-entrainment and subsequent 
transport in suspension, ft(~; r) for the tail was rep­
resented as a uniform distribution extending from the 
source at ~ = - IJ'r = - 300 to ~ = 3 rr = 60. Values 
of Es, rrg and s 8 , calculated from the estimated 
fg(~; r) distributions for 'T = 1, 2 and 3, are plotted 
in Figures 3-23, 3-24 and 3-25. The agreement with 
the curves indicating the numerical solutions is very 
good, particularly for the mean displacement and 
variance. 

The estimated composite distribution, fT( ~; 'T~ 
for both the suspended and deposited sediment at 
r = 3, which is shown in Figure 3-33, was obtained 
in much the same manner. Here the head was a 
assumed to have the same characteristics as in 
Fighre .3-32. However, the tail was represented as 
an exponential distribution like equation 3-78 with 
IJ = 100 and A = o. 655, but adjusted to give an area 
under the curve of 

0 

2 
when truncated at ~ = 60. Values of ~T• rrT and 
ST• calculated for the estimated fT(~; 'T) distribu­
tion, are plotted in Figures 3-29, 3-30 and 3-31. The 
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agreement with the curves showing the numerical 
solutions i& again quite good. 

Long tails and a rapidly increasing variance, 
such as seen in the results presented in this section, 
have also frequently been observed in connection with 
the longitudinal dispersion of dissolved dispersants 
in natural streams with irregular banks. This sug­
gests the existence of an exchange mechanism oper­
ating between dead zones close to the banks and the 
main stream analogous to the one postulated in this 
study for the deposit, storage and re-entrainment of 
sediment particles. Indeed, Hays, Krenkel and 
Schnelle ( 1966) have applied the dead zone concept with 
considerable success. Fischer ( 1966) has achieved 
similar results by taking into consideration the varia­
tion of velocity with respect to lateral position in such 
a channel. 

With the exception of some comparisons with 
experimental data given in the next chaper, this con­
cludes the presentation of results of the numerical 
solutions. Many interesting results have not been 
included. This applies particularly to the distribu­
tions of Es I rrs and Ss with respect to Tl for the 
suspended sediment, and to the results for entrain­
ment factors other than y = 0. 02. However, since 
the computer programs are included in the appendix, 
it will not be difficult for the interested reader to re­
produce these results. 



Chapter IV 

THE SAYRE-CHANG EXPERIMENTS 

Of the open-channel longitudinal dispersion 
experiments which have been reported in the literature, 
those of Sayre and Chang { 1966) are best suited for 
comparison with the results of the numerical solutions 
presented in Chapter III. This is largely because the 
theoretical investigation was planned with this purpose 
in mind. In addition, the Sayre-Chang experiments 
are among the few in which an approximately two­
dimensional flow with a logarithmic velocity distribu­
tion was verified by measurement. Furthermore, 
there is no other known source of data on the longi­
tudinal dispersion of suspended sediment in the silt, 
or coarser, size range. To facilitate the comparison 
between the theoretical and experimental results, an 
abbreviated description of the experiments is given 
here. 

1. Description of Experiments 

All of the experiments were conducted in a 
150-ft long recirculating flume with a 7. 83-ft wide by 
2-ft deep rectangular cross section. Roughness 
elements, consisting of 3/4-inch high by 3-inch long 
wooden cleats, were placed on the bed of the flume in 
order to induce an approximately two-dimensional 
flow with a minimum of lateral velocity variation. 
The arrangement of the roughness elements can be 
seen in Figure 4-2. Velocity distribution data. 

averaged across the middle 6 feet of the flume, are 
shown in Figure 4-1. For comparison, the logarith­
mic velocity distribution function according to equa­
tion 2-28 for K = 0. 42 is also shown. The basic 
hydraulic data together with the kinds of dispersants 
used in the experiments are listed in Table 4-1. 

The dispersant was dumped into the flume 
from an elevated trough which extended across the 
flume a short distance above the water surface in such 
a way that the initial distribution of dispersant approx­
imated an instantaneous plane source, uniformly dis­
tributed over the entire flow cross section. The con­
centration of dispersant was then measured as a 
function of time at each of four downstream sampling 
stations as the slug of dispersing material passed by. 
The dispersion distances, defined as the distances 
from the source to the sampling probes, were 32. 8, 
65. 6, 88. 5, and 115. 0 ft. The source was always 
located at least 30 ft downstream from the flume en­
trance, which was far enough so that a fully developed 
turbulent flow should have existed over most, if not 
all, of the test reach. 

Two sampling and concentration measuring 
systems, one continuous and the other discrete, were 
used in the experiments. Both systems are shown in 
Figure 4-2. In the continuous system, used mainly 
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Figure 4-1. Velocity distribution data from dispersion experiments 
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TABLE 4-1. 

Run Q Yn 
cfs ft 

D-1 2.88 0.493 

D-2 7. 17 o. 798 

D-3 14.9 1. 217 

FS-1 2.88 0.493 

FS-2 7. 17 0.798 

CS-1 2.88 0.493 

FG-1 2. 93 0.486 

FG-3 14.9 1. 217 

CG-1 2.93 0.486 

CG-2 7. 12 0.814 

CG-3 14.9 1. 217 

HYDRAULIC CONDITIONS IN DISPERSION EXPERIMENTS 

u s Temperature Dispersant 
ft /sec 

e oc 

0. 747 o. 001 20 Rhodamine- B dye 

1. 15 20 Rhodamine- B dye 

f. 56 5 Pontacyl brilliant pink dye 

0,747 20 15- 30J,t natural silt 

1. 15 20 15 - 301l natural silt 

0.747 20 53- 62J.£ natural silt 

0.770 7 < 441l glass beads 

1. 56 6 < 44J.£ glass beads 

0.770 5 53 - 62J.£ glass beads 

1. 12 4 53- 62J.£ glass beads 

1. 56 6 53- 62J.£ glass beads 

Figure 4-2. Continuous and discrete sampling 
systems used for determining dye 
and sediment concentrations in 
flume dispersion experiments 
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for the dye dispersion experiments, the sample 
passed through a 1 I 4-inch diameter probe, positioned 
at 11 = o. 5, and on through a length of polyethylene 
tubing to a Model 11 1 Turner Fluorometer which gave 
a continuous read out, proportional to concentration, 
on a strip-chart recorder. Because there was only 
one fluorometer, the dumping and concentration 
measuring operation had to be repeated at each of the 
four dispersion distances. In the discrete system, 
used in the silt dispersion experiments, the samples 
passed through 1 I 4-inch I. D. probes, positioned at 
11 = 0. 25, 0. 50 and 0. 75, and on through mayon tubes 
to an enclosed box where three sets of vials, one for 
each sampling depth, were filled simultaneously in 
rapid sequence. The concentration of dispersant in 
each vial was determined later with the fluorometer. 
The sampling box was equipped with a microswitch, 
wired to an event recorder so that a record of the 
sampling time for each vial was obtained. There were 
four complete sets of discrete sampling equipment, 
so that for a given run, only one dumping was required. 

In the silt dispersion experiments, the contin­
uous system was set up at one of the four sampling 
locations so that a direct comparison of the perf or­
mance of the two systems could be made. In both 
systems there was a certain amount of lag and distor­
tion due to dispersion in the sampling tubes, and in 
the continuous system to the response characteristics 
of the fluorometer. Response functions for both 
systems were determined, under simulated experi­
mental conditions, and used to correct the times and 
the variances of the observed concentration versus 
time curves. In their report, Sayre and Chang ( 1966) 
gave a complete description of the analysis, procedure 
and experiments involved in making these corrections. 
They concluded that the lag and distortion, although 
significant, did not have a major effect on the experi­
mental results. 

When used for determining silt concentrations, 
the fluorometer was converted to a nephelometer, by 
installing the appropriate combination of light sources 
and filters. A nephelometer is an instrument which 
measures concentrations of dilute suspensions from 
the amount of scattered light. Some examples of 
longitudinal dispersion data obtained in this manner 
with the discrete sampling system are shown in 
Figure 4-3. 

Fall-velocity distribution curves for the parti­
cles used in the silt-dispersion experiments are 
shown in Figure 4-4. In computing· the values of 
13 = VsiKU7 listed in Table 4-1, median fall veloc­
ities, corrected for temperature by Stokes law, were 
used. 

2. Comparison of Numerical Solutions With Experi­
mental Results 

Unfortunately, the results of the numerical 
solutions cart be compared to the experimental results 
only in a manner which is somewhat indirect. This 
is because solutions of the Aris moment equations are 
for instantaneous spatial distributions of dispersant, 
whereas the experimental results are based on 
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observations of concentrations obtained at a point 
which are varying in the time domain. The dichotomy 
seems to be unavoidable because on the one hand the 
Aris moment transformations in the time domain are 
not readily applicable, and on the other hand it is not 
as a rule feasible to experimentally determine the 
instantaneous distribution of dispersant in the space 
domain. Even though the properties of the longitudi­
nal dispersion process as viewed in the two domains 
are like two sides of the same coin, results based on 
the moments of the distribution curves are not in 
general transferable from one domain to the other 
except through the use of approximations. The ap­
proximations most commonly employed are based on 
Taylor's hypothesis, 

which is equivalent to stating that no appreciable 
deformation of the slug of dispersing material occurs 
during the time required for the slug to pass the 
sampling probe. From this relationship, approxima­
tions such as 

= x/U 

} t = x/u ( 4-1) 

O".a = cr.a /U.a 
t X 

are obtained. Provided that the rate of convection is 
large in comparison to the rate of spread, i.e., that 

dcr 
u >> --....! 

dt I 

the error involved in these applications of Taylor's 
hypothesis is small. Where this is not the case, for 
example, when there is a combination of deposition 
andre-entrainment, considerable error may be 
involved. 

As the longitudinal dispersion progresses to 
the stage where it behaves as a one -dimensional pro­
cess, it has been shown by Fischer {1966} that the 
relationships 

and 

- dx U=­
dt 

( 4-2) 

(4-3) 

become identically true, Equations 4-2 and 4-3 
provide a solid, if somewhat limited, basis for com­
paring results obtained in the space and time domains. 

a. Dispersion of fluorescent dye - The results 
of the numerical solution for the case where 13 = 0 
are best compared to the results of the dye dispersion 
experiments through the use of equation 3-56, the 
Pearson Type III distribution function. In order to 
construct a concentration versus time curve in this 
manner from the results of the numerical solution, t, 
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in the parameter ~ = (x- Ut) /yn• is varied to corres­
pond to each point on the curve whereas x is held 
constant. Also, the parameters m, b and a which 
are functions of T, and therefore of t, must be re­
computed for each point on the curve. In this manner, 
and changing back to dimensional units according to 
equations 2-22, we obtain 

f(t; x, TJ) u 
f( ~ ; m , b , a) . 

yn 
(4-4) 

Because the experimental data were obtained at the 
sampling depth r} = 0. 50, the parameters m, b and 
a were computed from the relationships 

(4-5) 

together with equations 3-57 instead of from equations 
3-58. Equations 4-5 are empirical approximations of 
the results of the numerical solution for r} = 0. 50. 

Equation 4-4 together with its parameters_was 
solved with an IBM 1620 computer for values of U, 
Yn• x and K corresponding to those in the experi­
ments. The computer program, in Fortran II, is 
given in the appendix. The results are shown in Fig­
ures 4-5, 4-6 and 4-7, where they are compared with 
the results of the experiments. The experimental 
concentration distribution curves were normalized 
according to the relationship 

f( t ; X 1 TJ) C(t. X. r}) 

00 f C(t, X, TJ)dt 

0 

to obtain the relative concentrations. The agreement 
between the two sets of curves is quite good. This is 
underlined by the fact that experimental curves when 
repeated, tend to differ as much between themselves 
as from the curves obtained from the numerical 
solutions. 

It should be noted that in the figures the time 
scales for the experimental curves were shifted re­
spectively 3. 1, 1. 9 and 3. 4 seconds for Runs D-1, 
D-2 and D-3. These shifts represented the average 
amounts by which the mean times indicated by the 
numerical solutions exceeded those indicated by the 
experiments. The probable explanation is that in the 
experiments the initial distribution of dye tended to be 
weighted somewhat toward the water surface, so that 
the dye tended to move slightly faster than the mean 
flow· velocity at the beginning of the dispersion pro­
cess. It is also possible that the time-lag corrections 
indicated by the system response experiments, which 
were respectively 6. 4, 6. 4 and 5. 1 seconds for Runs 
D-1, D-2 and D-3, were somewhat excessive. 
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In Figure 4-8, the mean times, variances and 
skew coefficients computed from the approximate 
theoretical curves in Figures 4-5, 4-6 and 4-7 are 
compared with those computed from the experimental 
data. Except for a displaeement which does not seem 
to vary appreciably with x, there is good agreement 
in the t and CTt relationships. In the skew coeffi­
cient relationship there is both scatter and displace­
ment. The scatter is no doubt mostly traceable to 
the tails of the experimental curves, to which the 
skew coefficients are extremely sensitive, where con­
centration measur~ments are the least accurate. The 
displacement in all of the relationships is consistent 
in direction, if not in magnitude, with the hypothesis 
that the initial distribution of dye tended to be weighted 
toward the water surface. If this is correct, then the 
dye would not have been subjected to the full disper­
sive capacity of the flow during the earliest stage of 
the process. 

The dashed lines drawn on the variance rela­
tionship represent the Taylor's hypothesis approxima­
tion 

The displacement of the dashed lines from the solid 
ones give some idea of the amount of error introduced 
by this approximation. 

b. Dispersion of suspended silt - A compari­
son of the experimental and theoretical mean rates at 
which particles settle out of suspension is shown in 
Figure 4-9. The f3 values for the data points are 
based on median terminal fall velocities which were 
determined in still water. The hydrometer method 
was used for the glass beads, the pipette methQ~ 
fine natural silt, and the visual accumulation tube 
method for the coarse natural silt. The A values 
for the data points are based on experimental obser­
vations of the rate of decrease in the amount of sedi­
ment remaining in suspension under conditions of 
open-channel turbulent flow. The curve represents 
the results of the numerical solution. The agreement 
between the data points and the curve is reasonably 
good except for the point farthest to the right which 
represents Run CS-1. Comparisons such as that in 
Figure 4-9 could be useful for determining whether 
the time-averaged settling velocity of sediment parti­
cles in open-channel turbulent flow is actually equal 
to the terminal fall velocity under quiescent conditions. 

In the remaining portion of this section, the 
comparison between results of the numerical solution 
and the silt dispersion experiments is restricted to 
the experiments with particles in the 53-62~-t size 
range. This is because the experimental results ob­
tained in runs with the finer particles, where 
f3 < 0. 031, except for the tendency of the particles to 
settle and deposit, differed from the results of the 
dye dispersion experiments by an amount which was 
within the limits of experimental error. This is evi­
dently because not enough sediment was ever deposited 
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for re-entrainment to become an important factor. 
Only in Run FG-1 was more than about 20 percent of 
the particles deposited. The results of the numerical 
solutions for conditions corresponding to those in the 
fine silt experiments also do not deviate from the 
results for the case with {3 = 0 by more than a few 
percent. 

With the particles in the 53-62~ size range, 
however, significant differences begin to appear. 
Three sets of experimental relative concentr::-tion ver· 
sus time curves are shown in Figures 4 -10, 4-11 and 
4-12. The differences can be seen, particularly in 
Runs CG-2 and CG-3, by comparing these curves with 
the dye dispersion curves for the corresponding flow 
conditions in Figures 4-5, 4-6 and 4-7. Especially 
evident is the growth of the tails of the silt dispersion 
curves with increasing dispersion distance, which sug­
gests that re-entrainment is playing a significant role. 

When deposition and re -entrainment are 
occurring, the basis for converting the results of the 
numerical solution to their counterparts in the time 
domain is much less secure. With the dye dispersion 
results, the problem was largely circumvented by 
introducing the Pearson Type III distribution function 
in an auxiliary capacity. The same procedure does 
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not offer much promise in this case. Even if a gener­
al relationship of the parameters m, b and a of the 
Pearson function to dispersion time were found, it is 
unlikely that the first three moments of the longitudi­
nal distribution as functions of dispersion time could 
in themselves provide a sufficiently reliable basis for 
constructing concentration versus time curves. There­
fore, approximations based on Taylor's hypothesis 
seem to be the only available basis for comparing 
the numerical solution and experimental results. 
Bearing in mind the shortcomings of Taylor's hypothe­
sis, the comparisons presented in the following para­
graphs, although meaningful in a qualitative sense, 
may have limited quantitative significance. 

In Figure 4-13, recovery ratios are compared. 
The recovery ratio is defined as the ratio of the 
amount of dispersant passing a particular sampling 
location to the amount of dispersant initially carried 
in suspension. For the experimental results, at the 
sampling level T/, 

(X) 

f C(x, Tl, t)dt 
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W/Q 
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where W is here the total weight of dispersant, and 
the numerators represent the area under a concentra­
tion versus time curve. For the entire vertical, 

1 

A(x) _ 1 J A - A A(x, 17)d17 • 
0 0 

0 

For the results of the numerical solution, it was 
assumed that 

under the approximate transformation 

X ::: 
6 

" 
'T (4-6) 

which comes from making the substitution t = x/U 
in the definition of T • Considering the scatter of the 
experimental data and the insensitivity of the recovery 
ratio to entrainment rate indicated by the results of 
the numerical solution, not much can be concluded 
from the comparison other than to observe that both 
the experimental and theoretical results follow the 
same general trend. 

Comparisons for the mean travel time, t , are 
given in Figure 4-14. The results of the numerical 
solution were transferred to the time domain by means 
of the approximate relationships, equation 4-6 and 

: : : ~~ } from 
o '1 = 075 experiment 
• Continuous system 

I 

t = (4-7) 

which are again based on Taylor's hypothesis and the 
conversion factors defined in Equation 2-22. The 
tendency of the experimental data to lie above the 
y = 0 line suggests that re-entrainment is occurring. 

By far the most interesting comparison is the 
one for the variance, cr;, shown in Figure 4-15. 
Here the approximate relationship 

ly )z z n z 
CTt ::: U CT~ ( 4-8) 

together with equation 4-6 was used to transfer the 
results of the numerical solution to the time domain. 
For Runs CG-2 and CG-3 values of the entrainment 
factor y which led to reasonably good agreement 
with the experimental data were determined by trial 
and error. The dashed curves above and below rep­
resent the maximum and minimum values of variance 
obtained in the numerical solution for the indicated 
entrainment factor. These occurred in the bottom 
and top increments respectively, i.e., for 11 = 0 and 
17 = 1. As seen in Figures4-13 and 4-14, curves for 
these same values of y are not inconsistent with the 
experimentally-determined recovery ratios and mean 
travel times. The combined theoretical and experi­
mental results for Runs CG-2. and CG-3 confirm 
beyond any reasonable doubt the occurrence of the 
deposition-re-entrainment phenomenon in these runs. 

----} from numerical 
solution 

I 
Run CG-1 Run CG-2 Run CG-3 

1.: 

# . " 
~ 

y {4-'\ 
8 

./'1,9 ~ 

~ 

/ 
v 

/ 
/ 
~ 

v v 
) 20 40 60 80 100 12 0 0 20 40 60 80 100 120 

Dispersion distance, x , feet 

Figure 4-14. Comparison of experimental and approximate theoretical mean 
travel times, Runs CG-1, CG-2 and CG-3 

58 



: : : ~:~~ } from 
o ., = 0.75 experiment 
• Continuous system 

500 I I 
Run CG-1 Run CG-2 

400 
N ., 
~ 
c: 

I 0 
u 
CD ., 

300 
c: 

~o/ N 

b A 
200 I .; & l!.; u 

c: 
0 a 
-~ 

> A/ r;f 
100 

~~ 
A 

~ v __,... 

A I 
I 

I 
I 

~/ 

6 ~ ~; ~ a,. 

_....,. ~ 

I 
I 

I A 

I 
I 
I 

,' ' 
·'~/ 'hJ / o· I 

I '' I 
1 -\ I 

I v I 
I 1_ 

~/ 
/ -:;~ y.-t 

} 
from numerical 
solution 

I 
Run CG-3 

e 
0 

/ 

~ -~ 

a 

~ 
I 

I 
I 

I 

I 

a .;r / 
; 

I 

/ , / 

~ 
v .~' 

,/sO 

~~--r;.--.-:: 

0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 

Dispersion distance, x, in feet 

Figure 4-15. Comparison of experimental and approximate theoretical variances, 
Runs CG-1, CG 2 and CG-3 

The rate of re-entrainment in Run CG-1 must have 
been very small. The tendency of the entrainment 
rate to increase going from Run CG-1 to CG-3 is cer­
tainly consistent with the increase in UT and conse­
quent reduction in the thickness of the viscous sub­
layer which decreases from about eight to about five 
times the average particle diameter. Because of the 
error involved in Taylor's hypothesis, however, it is 
likely that the estimated values of y are too large, 
perhaps by several fold. 
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The comparison between the experimental and 
numerical solution results for the dispersion of par­
ticles in the 53-62~ size range has been limited in 
scope and qualitative in nature. However, it does 
suggest that the equations for suspended sediment 
transport, and deposition and re-entrainment, equa­
tions 3-2 and 3-6, with appropriate boundary condi­
tions, are indeed capable of describing the longitudi­
nal dispersion of silt particles in open -channel turbu­
lent shear flow. 



Chapter V 

SUMMARY AND CONCLUSIONS 

The Eulerian equation for dispersion in a two­
dimensional, open-channel, turbulent shear flow, with 
a known velocity and eddy-diffusivity distribution, has 
been transformed by the method of Aris ( 1956) into a 
set of differential equations for the moments of the 
longitudinal distribution of dispersing material. Solu­
tions of these equations for the zero'th, first, second 
and third moments have been obtained, mostly by 
numerical methods with the aid of a digital computer, 
for various combinations of boundary and parametric 
conditions. For a few simple cases, formal analyti­
cal solutions were obtained also. From the moments, 
certain statistical parameters, including the area 
under the distribution curve, mean displacement, 
variance, and skew coefficient, were obtained as func­
tions of dispersion time and position in the vertical. 
These parameters were in turn used to describe the 
longitudinal dispersion process. 

For all cases, the initial condition consisted 
of an instantaneous plane source, uniformly distribu­
ted over the flow cross section. In addition, local 
values of the eddy diffusivity were in all cases deter­
mined by assuming that the mechanisms of mass and 
momentum transfer in the vertical direction are the 
same. 

For the case of a dissolved dispersant, e. g .• 
a dye having the same fluid properties as the disper­
sion medium, the effect of velocity distribution on 
longitudinal dispersion was investigated. For a dis­
persant consisting of a group of silt-size sediment 
particles, in a flow with a logarithmic velocity distri­
bution, the effects of the settling velocity of the parti­
cles and of various boundary conditions at the bed 
were investigated. Finally, for situations where suf­
ficient basis for comparison exists, the results of 
these investigations have been compared with pre­
viously established theories and available experimen­
tal evidence. 

The investigations gave rise to two groups of 
conclusions, one pertaining to the behavior of dis­
solved dispersants, and the other to the dispersion of 
sediment particles. 

For dissolved dispersants: 

1. As hypothesized by Taylor ( 1954a) and 
Elder ( 1959), longitudinal dispersion is caused by the 
combined action of turbulent diffusion and differential 
convection due to the velocity gradient. Turbulent 
diffusion acts as a catalytic agent by spreading the 
dispersant vertically so that it is continuously ex­
posed to the effect of the velocity gradient which then 
becomes the predominant mechaniJSm in promoting 
longitudinal dispersion. 
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2. The longitudinal dispersion process can be 
separated into an initial mixing period and an equi­
librium period. During the initial mixing period, the 
distribution of local mean dis placement and variance 
with respect to depth changes with time. After a 
dimensionless dispersion time of 

0. 5 • 

these distributions become stable, supporting the 
intuitive hypothesis of Taylor ( 1954a) and Elder ( 1959) 
that a balance between the longitudinal convective and 
vertical diffusive transfer rates is attained. 

3. In the equilibrium period, the longitudinal 
dispersion process becomes essentially one dimen­
sional, in some respects resembling classical Fickian 
diffusion. The rate of growth of the variance is con­
stant, indicating the existence of a constant overall 
longitudinal dispersion coefficient. The rate of ap­
proach from negative skewness to symmetry is quite 
slow, however, indicating that the longitudinal concen­
tration distribution converges to the form of the nor­
mal probability density function only at asympotically 
large dispersion times. 

4. For a logarithmic velocity distribution the 
value of the longitudinal dispersion coefficient in the 
equilibrium period is 

which agrees with the value predicted by Elder ( 1959) 
for large dispersion times. For a parabolic velocity 
distribution function that was also investigated, the 
value of the numerical coefficient in the equation for 
Kx was different. In other respects, however, only 
relatively minor differences were found. 

5. The longitudinal dispersion process can be 
interpreted in terms of Taylor's (1921) theory of dif­
fusion by continuous movements. Considering a flow 
with a logarithmic velocity distribution and neglecting 
the direct contribution of turbulent diffusion to longi­
tudinal dispersion, the Lagrangian intensity of turbu­
lence is 

and the Lagrangian integral time scale of turbulence 
in dimensionless time units is L = 0. 07. 

'T 



For silt-size sediment particles: 

6. Provided that there is no re-entrainment of 
deposited particles, the longitudinal dispersion of sus­
pended particles in most respects closely resembles 
the longitudinal dispersion of a dissolved substance. 
There are, however, significant differences due to 
the tendency of the particles to settle and the conse­
quent development of a vertical concentration gradient. 
The degree of difference increases systematically 
with the settling velocity parameter, f3 = V s/KU., . 

7. When the bed behaves as a reflecting bar­
rier, the rate of dispersion is somewhat greater, and 
the mean velocity of propagation and the skewness 
are somewhat less for the particles than for a dis­
solved dispersant. 

8. When the bed behaves as an absorbing 
barrier, the amount of sediment retained in suspen­
sion decreases exponentially with dispersion time. 
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For the particles retained in suspension, the mean 
velocity of propagation is somewhat greater, and the 
rate of dispersion and the skewness are less than for 
a dissolved dispersant. The longitudinal distribution 
of the particles which are deposited on the bed con­
verges to an exponential distribution with increasing 
dispersion time. 

9. When re-entrainment of deposited particles 
occurs, radical changes may appear in the longitudi­
nal dispersion process, whether for the suspended 
component, the deposited component, or the composite 
of both. Paramount among these is a change in the 
rate of dispersion which under some conditions is 
greatly increased. In addition, the duration of the 
initial mixing period is apt to be greatly extended be­
cause the equilibrium period cannot be attained before 
the deposition andre-entrainment rates are balanced. 
Given the velocity distribution, the controlling para­
meters are the entrainment coefficient, '{ ; the fall 
velocity parameter, f3; and the mean flow velocity, #J. 



Chapter VI 

SUGGESTIONS FOR FURTHER RESEARCH 

1. Numerical solutions of the moment equations 
should be performed for simulated three-dimensional 
flows in which the velocity and eddy diffusivity vary 
with lateral as well as with vertical position. The 
possibility of using this method for investigating dis­
persion in flows with secondary circulation patterns 
and in channels of various cross -sectional shapes 
should be explored. 

2. The effect of the initial distribution of 
dispersant should be investigated by obtaining solu­
tions corresponding to different initial source config­
urations. Solutions for point sources would be of par­
ticular interest. With these, solutions corresponding 
to other source configurations can be constructed by 
superposition. 

3. Practical experimental techniques for 
obtaining instantaneous longitudinal concentration dis­
tributions should be developed. The simplest way may 
be to develop a device for obtaining a group of instan­
taneous grab samples simultaneously. Fifteen or 
more samples, distributed along the length of the 
channel, would be required to adequately define a con­
centration distribution curve. Ideally, the device 
should be capable of collecting samples at any point in 
the cross section, and should be suitable for particu­
late as well as for dissolved dispersants. 

4. A great deal of research, both experimental 
and analytical, remains to be done on the entrainment 
of sediment. In addition to the rate of entrainment, 
the duration of the rest periods between the deposition 
and re-entrainment of a given particle needs to be 
determined. This involves considerations such as the 
geometrical configuration of sediment deposits and 
mixing processes occurring within the bed, which go 
considerably beyond the mechanics of lift and drag 
forces. In other words, to evaluate the probability 
that a particle will be entrained within a given period 
of tim~. not only the conditional probability that it 
will be entrained given that it is exposed to an impulse 
of a specified intensity, but also the probability of 
exposure must be known. 
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5. The phenomenon of local mass transfer in 
open-channel turbulent shear flows and its relation­
ship to momentum transfer should be investigated 
further with a view toward defining the limitations of 
Reynolds' analogy. For dispersants consisting of 
particles above the Stokes range, the need for this 
kind of information is especially great. 

6. Further investigations of the effect of open­
channel, shear-flow turbulence on the mean fall veloc­
ity of sediment particles should also be undertaken. 
An approach which appears promising would be to 
compare deposition rates which are determined ex­
perimentally, with those predicted by the zero'th 
moment equation. 

7. A computer program should be written for 
the numerical solution of the Eulerian dispersion 
equation for suspended sediment ( equatio~n 3 -2) to­
gether with the conservation of mass equation for the 
bed (equation 3-6). Recognizing that a single run 
might require hours of computer time, even on a 
third generation model, considerable selectivity 
should be exercised in choosing boundary conditions 
and other input data. Results for a few well-selected 
cases could serve as benchmarks for interpreting 
results obtained from the moment equations, which 
in contrast require a nominal computation time. 

8. The feasibility of generalizing the 
relationships for the parameters describing the 
longitudinal distribution of dispersing sediment when 
re -entrainment is occurring should be investigated. 
A possible approach would be to incorporate the 
fall velocity term {3, and the entrainment rate coef­
ficient y , into the time scale by dimensional 
analysis. 

9. By introducing the fourth central moment, 
in addition to the first three, it may be possible, 
through the use -of Pearson's criteria, to find longi­
tudinal distribution functions which correspond more 
closely to the numerical solutions of the Aris equa­
tions than does the Pearson Type III function. 
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COMPUTER PROGRAMS AND SUPPLEMENTARY INFORMATION 

SELECTED VARIABLE NAMES USED IN PROGRAM I 

Variable Name 

DT 

DY 

Kt 

K2 

K3 

E(I) 

U(I) 

C(I. J) 

DL 

Term Represented 

AT 

1/Af) 

No. of AT steps in program 

No. of AT steps between print outs 

equation 3-25 

equation 3-23 

KZCt (I. J) 

D~ ---u KC(T) 
yn 'T 

PROGRAM I 

* 7074210 SAYRE, WILLIAM W• 
** 7074210 

DIMENSION EC51)tU(50)tC(50t2) 
10 FORMATCF8e5tF5.2tl3t1Xt2I5) 

READ 10tDTtDYt~1tK2tK3 
20 _FORMATCF8.5) 

K4=K1+1 
K5=Kl-l 
READ 20tCECiltl•ltK4J 
READ 20tCU(IJtl=ltKlJ 
Dl=DT/DY**2 
D2=6•*DT 
DO 30 I=ltKl 

30 C(ltll=O.O 
L=.1 
DO 100 J=lt1C2 
CC1t2J=CClt1J+Dl*EC2J*CCC2tlJ-CC1t1J) +D2*UC1J 
DO 40 I=2tK5 

40 CCit2J=CCit1J+D1*<ECI+1)*CC<I+lt1J-CCitllJ-ECIJ*CCCit1J-CCI~ltl)JJ 
1 + D2*Ull) 

I=Kl 
CCit2J= CCitl) -Dl*ECIJ*CCCitlJ-Cll-ltlJJ+D2*UCIJ 
IF (J-L-K3J 80t50t110 

50 DL=OeO 
DO 60 I=l•Kl 

60 OL=DL+CCitlJ*U(IJ*DY 
70 FOR~AT C1H tl5t3XtF9e5J 

Jl=J-1 
PRINT70tJltDL 
L=J 

80 DO 90 I=ltKl 
90 CCltlJ=CCit2) 

100 CONTINUE 
110 CALL EXIT 

END 
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PROGRAM II 

•FORTRAN 
PROGRAM SAYRE 
DIMENSION Ef51J,U(50J,EAC50J,COC50t21,.C1C50,2J,C2C50t21tEC1C501, 

1 VARC50J,D2f50J,D3(50J,04t50J,05150J,C3C50,2J,SC50J,06C50), 
2 W0121tM112J,W2121tW312t 

XTJM1=TIMEFIXJ 
10 FORMATIF8.5.F5.2,13,1X,2t5J 

READ (5,10) DT,OY,Kl,K2,K3 
20 FORMAT 13F6.3,F8.5,F7.3) 
25 FORMAT C1H0,5H T •tf6.3t5H, 8 •,F6.3,5H, A •tf6.3,5H, G •tf8.5~ 

1 6H, UA •,F7.3//J 
K4•Kl+l 
K5•Kl-1 

30 FORMATIF8.5,3X,F8.5,3X,F8.5J 
READ 15,301 IECIJ,UCIJ,EACIJ,J•1,Kll 

35 FORMATlF8.5l 
READ (5,351 ElK4) 
Dl•DT/DY 

36 READ 15,20) T,8,A,G,UA 
IF IT-9.999) 37,165,170 

37 WRITE (6,25) TtBtAtG,UA 
D7= Dl•6.•8•11.-At 
D8 = DT•A•6.•1 
09 = 6.•Dl•UA/T 
Gl = 01•G 
G2 • DT•G 
DO 40 1=1tKl 
DZCIJ=EII+lJ/DY+6.•8 
D3CIJ•E(IJ/DY 
D4CIJ•6.•DT•UCIJ/T••2 
D5CIJ=2.•DT•EACIJ 
D6CIJ=6.•UC1JIT••2 
COCitll•l.O 
Clll9l)•O.O 
C2CI,li=O.O 

40 C3Citli=O.O 
WOClJ = 0.0 
Wlfll = 0.0 
W211l = 0.0 
W3(1) = 0.0 
l•l 
DO 160 .J=ltiC2 
1=1 
COCit21=COil,lJ+Ol•CD2CIJ•CCOCI+l,lJ-COIItliJJ+D7•COCit1J 

1 + Gl•WOC1J 
DO 50 I=Z,K5 

50 COCI,2J•COIItli+01•CDZCIJ•CCOCI+l,lJ-COCI,lJJ-03CIJ•CCOCit11-
1 COti-1,1JJJ 

I•K1 
CO(J,2J=COCJ,lJ-Ol•CD3CI)•CCOCI,lJ-COCI-ltliJ+6.•8•COCitliJ 
W0(2J • WOClJ + 08•COCltlJ - G2•WOI1J 
1=1 
C1CI,2J•Cllltli+Dl•ID2CIJ•CClCI+l,lJ-ClCitliJJ+04CJJ•COCI,lJ 

1 +o7~ClCI.lJ + G1•W1ClJ 
DO 80 I•Z,K5 

80 Clllt21=ClCI,11+Dl•IDZIIJ•CC1CI+l,1J-C1CI,liJ-D3CIJ•ICllltll­
l ClCI-t,11JJ+D4CJJ•COCitll 
I•Kl 
ClCI,2J•C1CI,lJ-Dl•CD3(J)•CCllltl)-ClCI-l~lii+6.•B•C1Citlll 

1 +DifCIJ•CDCl,ll 
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Wl(2) = WlC1J + D8•C1t1,1J - D9•W0(1J - G2•W1(1J 
1=1 
C2CI,2l=C2CI,1J+D1•CD2CIJ•CC2CI+1,1l-C2ti,1JJJ+2.•04(1J•C1(J,1J 

1 +05(1J•CO(I,1J + D7•C2(1,1J + Gl•W2(1) 
DO 100 1=2,K5 

100 C2(1,2J=C2CI,1J+D1•(02CIJ•CC211+1,1J-C2CI,1JJ-03CIJ•(C2Cit1J-
1 C2CI-1,1JJ)+2.•04CIJ•C1(1,1J+05CIJ•COCitll 

I=Kl 
C2(1,2l=C2Cl,1l-Dl•CD3Cil•CC2CI,11-C2tl-ltliJ+6.•B•C2CI,lJ) 

l +2.•04(IJ•ClCI,lJ+05CIJ•COCI,lJ 
W2C2) = W2C1J + D8•C2(1,1J - 2.•D9•Wl(1J - G2•W2(1J 
I=l 
C3CI,2J=C3(J,1J+01•CD2CIJ•CC3CI+1,1J-C3CI,1)JJ+3.•D4CIJ•C2CI,1J 

1 +3.•05CIJ•Cl(I,1J + D7•C3CI,lJ + Gl•W3ClJ 
DO 105 1=2,K5 

105 C3CI,2J=C3li,lJ+Dl•CD2CIJ•CC3CI+l,lJ-C3CI,lJJ-03CIJ•IC3CI,1J­
l C3CI-1,1)))+3.•D4CIJ•C2CI,lJ+3.•D5CIJ•C1CitlJ 

I=K1 
C3CI,ZJ=C3CI,ll-01•CD3Cil•CC3CI,1J-C3CI-ltll)+6.•B•C3(1,1JJ 

1 +3.•04(IJ•C2CI,lJ+3.•05CIJ•ClCI,lJ 
W3(2) = W3Cl) + D8•C3(1,1J - 3.•09•W2(1J- G2•W3Cl) 
IF (J-L-K3) 150,110,170 

110 SCO=O.O 
SUCO=O.O 
SCl=O.O 
SC2=0.0 
SC3=0.0 
00 120 1=1,Xl 
SCO=SCO+COCI,1J•OY 
SUCO=SUC0+06CIJ•COCJ,l)•OY 
EClCIJ=C1CI,ll/COCI,lJ 
SCl=SCl+C1CI,lJ•OY 
VARCII=C2lltli/COCI,lJ-EClCIJ••2 
SC2=SC2+C2CI,lJ•DY 
SfiJ=CCC3CJ,l)-3.•ECl(J)•C2CI,1JJ/COCI,ll+2.•EClCIJ••3J/ 

1 VARCtl••l.5 
120 SC3=SC3+C3(1,1J•OY 

US=SUCO/SCO 
ESCl=SC1/SCO 
AVAR=SC2/SCD-ESC1••2 
SK=CCSC3-3.•ESC1•SC2)/SC0+2.•ESC1••3J/AVAR••1.5 
IF (WQ(1J) 125,126,125 

125 EW = W1(1)/W0(1) 
VARW = W211)/WOill - Ew••2 
SKW = ((W3(1J-3.•EW•W2(1)J/W0(1)+2.•EW••3)/VARW••1.5 
COT= SCO + WOI1J 
UST = SCO•US - WOI1J•6.•UA/T 
ClT = (SCl + W1Cl)J/COT 
C2T = CSC2 + W2ClJJ/COT 
VART = C2T- C1T••2 
C3T = ISC3 + W3(1JJ/COT 
SKT = CC3T- 3.•ClT•C2T + 2.•ClT••3)/ VART••1.5 

126 J1=J-1 
130 FORMATI1H ,J5,3X,I3,3X,F8.5,3X,F9.4,3X 1 F10.4,3X,F9.4J 

1=1 
WRITE 16,130) JltltCOCit1l,EClCJJ,VARCII,SCIJ 
1=3 
WRITE (6,130) J1,I,COCI,lltEC1CIJ,VARIIJ,S(J) 
1=5 
WRITE 16,130) J1,t,COCI,lJ,EC111J,VAR{It,SCIJ 
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1=6 
WRITE (6,130) J1,I,C0(1,1J,EC1CIJ,VAR(I),$(1) 
1=10 
WRITE (6,130) J1tltC0(1,11,EC1(1J,VAR(IJ,S(I) 
1=11 
WRITE (6,130) J1,1,COCI,l),EC1fi),VARCIJ,SCI) 
1=15 
WRITE (6,130) Jl,I,COCI,lJ,EC1CIJ,VARCIJ,SCI) 
1=16 
WRITE (6,130) J1,I,C0(1,1J,EC1(J),VAR(I),$(11 
1=18 
WRITE (6,130) J1,1,COCI,1J,EC1(1),VAR(IJ,S(I) 
1=20 
WRITE (6,1301 J1,I,C0(1,1J,EC1(1),VAR(I),$(1) 

140 FORMAT flHO,I5,3X,F8.4,3X,F8.5,3X,F9.4,3X,F10.4,3X,F9.5/) 
WRITE (6,140) Jl,US,SCO,ESC1,AVAR,SK 

144 FORMAT(1H ,I~t2X,f9.4,3X,F8.5,3X 1 F9.4,3X,F10.2,3X,F9.5///) 
145 FORMAT(1H ,I~t14X,F8.5,3X,F9.4,3X 1 Fl0.2 1 3X,F9.5//) 

IF (WQ(l)) 146,147,146 
146 WRITE (6,145) J1,W0(1),EW,VARW,SKW 

WRITE (6,144) J1,UST,COT,C1T,VART,SKT 
147 L=J 
150 W0(1) = W0(2) 

Wl(1) = W1(2) 
W2(1) = W2(2) 
W3(1) = W3(2) 
00 160 1=1,Kl 
COCI,1J=COCI,2) 
C1CI,l)=C1(1,2) 
C2fi,1J=C2(1,2) 

160 C3CI,lJ=C3(1,2) 
GO TO 36 

165 XTIM2=TIMEF(X) 
XTIM3=CXTIM2-XTIM1J/1000. 

99999 FORMATI•OTIME FOR CALCULATION WAS•F8.l,•SECONDS•J 
WRITE(6 1 99999JXTIM3 

170 CALL EXIT 
END 
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SELECTED VARIABLE NAMES USED IN PROGRAM II 

Variable Name 

DT 

DY 

Ki 

K2 

K3 

E(l) 

U(l) 

EA(I) 

T 

B 

A 

G 

UA 

CO(I, J) 

Ci(l, J) 

C2(1, J) 

C3(1, J) 

WO(J) 

Wi(J) 

W2(J) 

W3(J) 

sco 

suco 

EC1(1) 

SCi 

VAR(I) 

SC2 

Term Represented 

No. of AT steps in program 

No. of AT steps between print outs 
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equation 3-25 

equation 3-23 

equation 3-24 

Ki 

K 

a 

'I 

U/U 
T 

c
0

(n. T) 

C1(l1. T) 

C
2
(n, T) 

C
3
(n, T) 

W
0

(T) 

W 
1
(T) 

W
2

(T) 

W 
3

(T) 

m
0

(T) 

~ L c 0(I, J)U(I)A 71 

I= 1 

Ki 

[ C 1 (1, J)Al1 

I= 1 

Ki 



Variable Name Term Represented 

S(I) ss('T) 
Kt 

SC3 L C3(I, J)61J 
I= 1 

us ;; ('T) 
s 

ESC1 i"s< 'T) 

AVAR a-~('T) 

SK ss('T) 

EW ~w('T) 

VARW (T~ ('T) 

SKW sw('T) 

UST ji'T(T) 

COT mo( T) + w o< T) 

CiT i" T( T) 

VART a-~('T) 

SKT ST(T) 
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VELOCITIES AND EDDY DIFFUSIVITIES FOR 
PROGRAMS I AND II: LOGARITHMIC VELOCITY 

DISTRIBUTION, DY = 0. 05 

I E(I) U(I) EA(I) 

o.ooooo -2.99573 0. 14500 
2 o. 28500 -1.60943 0.41500 
3 0.54000 -1.08618 0.65500 
4 0.76500 -0.74638 0.86500 
5 0.96000 -0.49371 1.04500 
6 1. 12500 -0.29236 1. 19500 
7 1. 26000 -0.12491 1.31500 
8 1. 36500 0.01843 1.40500 
9 1.44000 0. 14375 1. 46500 

10 1.48500 0.25509 1. 49500 
11 1. 50000 0.35526 1. 49500 
12 1. 48500 0.44629 1. 46500 
13 1.44000 0.52973 1. 40500 
14 1.36500 0.60672 1. 31500 
15 1. 26000 0.67821 1. 19500 
16 1. 12500 0.74493 1.04500 
17 0.96000 0.80748 0.86500 
18 0.76500 0.86633 0.65500 
19 0.54000 0.92191 0.41500 
20 0.28500 0.97457 0. 14500 
21 0.00000 

SUM 0.00000 20.00000 
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PROGRAM FOR CALCULATING f(t;x, l1) FOR l1 = 0. 50 
FROM PEARSON TYPE III DISTRIBUTION WHEN K = O. 42 , {3 = 0 

* 7074210 SAYRE• WILLIAM w. 
DIMENSION Glfl01)tX(4) 

10 FORMAT f9F8e4) 
READ 10tfG1CIJtl=1t101J 

20 FORMAT C4F6e3tl3tF4e1tl3) 
30 READ 20tUtYNtTCtUTtNFtDTtK1 

IF CNF - 99) 40tl40t140 
40 READ 50t(X(~)tJ•ltK1) 
50 FORMAT C4F6e1) 

DO 130 J=1tK1 
PUNCH 60t NFtX(J) 

60 FORMAT (4HFL0Wtl3t6Ht X = tF6e1//) 
T = X(J)/(U+10e*TC*UT) 
KT = T 
T = KT 
C2 = OeO 
N = 0 

10 T = T + DT 
X1 = (X(J)-U*T)/YN 
T1 = TC*UT*T/(6e*VNJ 
G = 22e8*T1 + le60 
B = -(((4e85*T1-0e54)/Gl**Oe5J/TC**2 
A = Oe349 - B*G 
X2 = (Xl-A)/8 
IF fX2J 70,70,80 

80 G2 = G-1. 
K2 = G2 
G3 = OeO 
Cl = C2 
DO 90 K=1•K2 
G3 = G3 + LOGFCG2) 

90 G2 = G2 - 1. 
I = 100e*G2+le 
G4 = G3 + 2e3026*fG1fiJ-10e) 
Z = -LOGFCABSFC8)) - G4 + CG-1eJ*LOGFfX2) - X2 
C2 = fU/YN)*EXPFCZ) 

100 FORMAT C3XtF6elt2XtF8e6) 
PUNCH 100tTtC2 
N = N + 1 
IF CC2-.00001) 110t70t70 

110 IF CC2-Cl) 130t70t70 
120 FORMAT Cl3tF6el///L 
130 PUNCH 120tNtXCJ) 

GO TO 30 
140 STOP 

END 
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SELECTED VARIABLE NAMES USED IN PROGRAM 
FOR CALCULATING f(t; x, 11) FROM PEARSON 

TYPE III DISTRIBUTION FUNCTION 

Variable Name 

u 

YN 

TC 

UT 

NF 

DT 

K1 

X(J) 

T,KT 

N 

Xi 

T1 

G 

B 

A 

X2 

z 

C2 

Term Represented 

u 

K 

u 
'T 

Identification No. for run 

~t 

No. of curves to be computed 
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X 

No. of points on curve 

'T 

a 

b 

m 

(~- m) /b 

f(~; m, b, a) = f(~; 'T, 11) 

f(t; x, 11) 



Key Words: Diffusion, dispersion, open-channel hydraulics, sediment transport, 
shear flow, turbulence. 

Abstract: The dispersion process for settling particles in a two-dimensional tur­
bulent shear flow is formulated in two differential equations, one for particles sus­
pended in the flow and the other for those deposited on the bed. Exchange of 
particles between the bed and the flow is permitted. Using the Aris moment trans­
formations, the equations are converted to a more tractable system of equations 
which are solved by numerical methods with the aid of a digital computer, for the 
zero'th, first, second and third moments of the longitudinal concentration distribu­
tions. Various combinations of boundary and other input conditions are imposed 
and their effects on the dispersion process are demonstrated. The results of the 
numerical solutions together with the results of earlier dispersion experiments 
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