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ABSTRACT

MODELING DEFORMATION TWINNING IN BCC TRANSITION METALS

Deformation twinning is one of the important deformation mechanisms in body centered cu-

bic (BCC) transition metals, especially under low temperature and high strain rate conditions.

Plastic deformation via deformation twinning has been studied for decades both experimentally

and computationally however, atomic level insights such as critical nuclei size, their local atomic

structures and energetics which are important parameters in modeling twin nucleation has been

lacking. In this work, deformation twins in BCC transition metals and their atomic level structures

and energetics have been rigorously studied to reveal the full atomic level details of twin nucleation

and propagation. As such, critical thickness of deformation twins in BCC transition metals have

been a topic of debate with many computational and experimental studies accepting a three-layer

twin thickness based on nucleation from a screw dislocation without proof whereas recent in-situ

experiments suggest six-layer thick twin nuclei observed via High resolution transmission elec-

tron microscopy (HRTEM). In this study, we have determined the critical twin nuclei thickness in

these metals using atomistic simulations to examine atomic structure and energetics of deforma-

tion twins under both zero and nonzero finite pure shear stresses. Our study reveals that twins in

group VB BCC transition metals nucleate as two-layer thick nuclei under stress as opposed to the

three-layer thick twin nuclei under zero stress. For group VIB BCC transition metals, for both zero

and nonzero stresses, the critical twin nuclei thickness is two layer near reflection. As the twins

grow and stress is relieved, twins under finite stresses adopt configurations that are much closer

to the zero stress stability predictions. In addition to nucleation, growth of mechanisms of twins

are explored and computational insights into the growth of twins in Tungsten bicrystals explaining

multi-layer growth as opposed to layer-by-layer growth associated with small barriers.
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Free-end string simulations were used to investigate energy barrier associated with homoge-

neous twin nucleation using embedded atom method (EAM) potentials. Since homogeneous twin

nucleation occurs near the ideal strengths of the material described by the potentials, energy bar-

rier calculations were not possible for all BCC transition metals as some available potentials break

down under large stresses. Moreover, density functional theory (DFT) simulations are known to

be more accurate in describing atomic bonding but direct nucleation simulations in bulk crystals is

prohibitively expensive. Hence, existing dislocation nucleation models are thoroughly analyzed to

examine the behavior of these models near ideal strength of the material because spontaneous nu-

cleation of dislocations occurs at high stresses. From there, a robust homogeneous twin nucleation

model that includes elastic interaction among the twinning dislocation loops is developed which is

able to replicate energy barrier data from free-end string simulations for multiple interatomic po-

tentials. This model takes atomistic simulation inputs such as the concurrent twinning generalized

stacking fault (GSF) energy curves and corresponding burgers vector of the twinning dislocations

to compute the energy barriers as a function of applied stress. This model can be useful in mod-

eling homogeneous twin nucleation all BCC transition metals and has the potential advantage of

using DFT simulation inputs for accurate description of atomic bonding within the twin nuclei.

Finally, nucleation stresses for twinning in bulk crystals have been studied to investigate whether

the formation of twinning in experimental studies were initiated by homogeneous nucleation. Up-

per and lower bounds of stress values required for homogeneous twin nucleation has been com-

puted and a semi-empirical model has been developed to predict homogeneous twin nucleation

stresses as a function of temperature and strain rate. This analysis shows that reported critical

resolved shear stress (CRSS) values in experimental studies are not associated with homogeneous

twin nucleation despite some modeling studies claiming otherwise.
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Chapter 1

Introduction

When a solid is subjected to external or internal forces, it undergoes shape change. Depending

on the magnitude of forces and material characteristics, the response of a material to external and

internal forces can be substantially distinct. For example, if the forces are large in magnitude,

the solid may fracture. Smaller values of forces may cause permanent deformation in the solid

without fracture and if the forces are small enough, the deformation may only be elastic. Elas-

tic deformation is a macroscopic manifestation of atomic bonding in the solid. In case of plastic

deformation, when the load is released, the solid does not return to the shape it had prior to the

application of the load. For elastic deformation the body assumes the dimensions it had before

the load was applied. The extent of elastic deformation is generally quite limited i.e., most solids

are capable of being elastically deformed only to strains on the order of several tenths of a per-

cent. Beyond the elastic limit, the material starts to deform permanently i.e., the strain no longer

disappears after the removal of stress. The remaining permanent strain is known as the plastic

strain and additional incremental plastic strains can be accumulated on subsequent loading and

unloading which lead ultimately to material failure. In crystalline materials, plastic deformation is

caused by the motion of one-dimensional crystallographic defects called dislocations. Plastic de-

formation in crystalline materials can occur via several mechanisms such as slip of atomic planes

and deformation twinning. Slip which implies the movement or propagation of dislocations can

occur via glide of mixed dislocations, cross-slip of screw dislocations, and climb of edge dislo-

cations whereas deformation twinning is initiated by the nucleation and growth phenomenon of

twinning partial dislocations. At room temperature and below, plastic deformation can occur by

slip and deformation twinning whereas at high temperatures, plastic deformation is controlled by

diffusional creep. In body centered cubic transition metals, mechanical response is known to be

more temperature and strain rate dependent due to the intrinsic lattice resistance associated screw

dislocations. At sufficiently low temperatures and/or at sufficiently high loading rates, deforma-
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tion twinning is observed as a competing mechanical deformation mechanism along with slip in

many experimental and computational studies. Even though the existing literature acknowledge

the competition in deformation mechanisms at low temperature and high strain rate conditions,

there are unresolved scientific questions regarding atomic level structure of deformation twins as

well as their nucleation and propagation. In this light, This work seeks to answer the following

questions by utilizing atomistic and continuum modeling techniques:

1. What is the atomic level structure of twin boundaries in BCC metals? Specifically, are the

reported stable structures the only stable structures or are their multiple meta stable structures

and, if there are, what are the relative energetics?

2. Is there a critical size of a twin nucleus in BCC metals and, if so, what is it?

3. Is it energetically more favorable to grow deformation twins layer by layer in a BCC metal

or does growth occur by zonal twinning dislocations?

4. Are the bulk stress values obtained from experiments the local stresses required for twin

nucleation?
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Chapter 2

Literature review

2.1 Twinning in crystalline materials

If a crystal is composed of parts/components that are oriented with respect to one another

according to some kind of symmetry rule, the crystal is said to be twinned [1]. The most common

symmetry rule for twinning in crystals is reflection symmetry of twinned components. In this case,

one of the components is the mirror image of the crystal structure of the other component about

a crystallographic plane known as the twinning plane. The plane of contact between the twinned

components is called the composition plane and in case of cubic crystals the composition plane

and the twin plane coincide. In Figure 2.1, a pure reflection twinned BCC crystal is shown with

the twin components as well as the twin plane.

Twinned crystals can be produced during crystal growth from the vapor or liquid phases as well

as via recrystallization of the solid phase and this type of twins are called growth twins. A single

crystal can become twinned via mechanical deformation and this type of twin is called deformation

twin. Another type of twinning can be found as a result of martensitic transformations where highly

organized structures with alternate twin lamella of fixed thickness ratios form regular array. These

types of twins are known as transformation twins. We will study deformation twins in this work

although the discussion on twin boundary structures applies to other types of twins too.

In the crystallographic theory of twinning, the parent lattice is reoriented by atomic displace-

ments which are equivalent to a simple shear of the lattice points or some integral fraction of these

lattice points [3]. The invariant plane of this shear is called K1 otherwise known as the twin plane

whereas the direction of the simple shear is denoted by η1 which is the twinning direction. The

second undistorted plane is called the K2 or conjugate twin plane. The plane containing η1 direc-

tion and the normal vectors to both K1 and K2 is called the plane of shear and it is denoted by S

in Figure 2.2. The vector that intersects both K2 and S planes is the conjugate shear direction η2.
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Figure 2.1: A pure reflection twin in BCC crystal [2].

The final twinning element for a complete crystallographic description of deformation twins is the

magnitude of simple shear γ which reorients the crystal.

To better understand the geometry of deformation twins, let us consider a hemispherical crystal

undergoing a simple shear as shown in Figure 2.3. As the hemispherical crystal undergoes such a

deformation it changes into an ellipsoidal shape. In Figure 2.3, the hemisphere has experienced a

uniform shear γ, where Ox1 is the direction η1 and Ox2 is perpendicular to the twin plane K1. So

upon deformation, each K1 plane has been displaced in the η1 direction by an amount proportional

to its distance from the base of the original hemisphere.

It is important to note that the size and shape of each K1 plane remain unaffected by the defor-

mation process and this is why K1 planes are called first undistorted planes. Now from Figure 2.4,

it can be seen that the line OP of the hemisphere is reoriented to OP′ but its length is unchanged

despite the application of simple shear γ. The second undistorted plane K2 is defined by this line

OP and the axis Ox3 which is normal to the screen. After twinning, this plane gets reoriented to K′
2

which is defined by the intersection between the original hemisphere and the deformed ellipsoid.

As the hemisphere in Figure 2.4 is sheared, the amount of shear can be calculated from this

figure:

γ =
PP′

OP sin θ
= 2 cot θ (2.1)
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Figure 2.2: Five out of the six twinning elements shown schematically. Reproduced from [3]
with permission.

Figure 2.3: The change in shape of a hemispheric crystal because of deformation twinning. Reproduced
from [4] with permission.

Figure 2.4: Diagram showing how the hemispherical crystal becomes deformed to an ellipsoid by deforma-
tion twinning. Reproduced from [4] with permission.
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Figure 2.5: (a) K1 and S planes shown in the conventional BCC unit cell, (b) Atomic movement required
for twinning in BCC crystal with projection vector [11̄0]. Reproduced from [1] with permission.

where θ is the angle between the normal vectors of the planes K1 and K2.

The twinning elements in body centered cubic (BCC) crystal structures are K1 = (112),

η1 = [11̄1̄], K2 = (112̄)), η2 = [111] and γ = 1√
2
. The invariant planes as well as twinning and

conjugate twinning directions are shown in Figure 2.5. The atomic movements described by these

twinning elements corresponds to a shift of a
6
〈111〉 on successive {112} planes where a is the lattice

constant of the BCC metal under consideration. The BCC crystal structure can be formed from

horizontal {112} layers with a stacking sequence . . . ABCDEFABCDEF . . . meaning six {112}

atomic layers can be stacked on top of each other before seventh layer falls vertically on top of

the first [4]. The passage of a single partial dislocation with a
6
〈111〉 Burgers vector produces a

stacking fault of the form . . . ABCDEFEFAB . . . . The passage of a
6
〈111〉 partials on successive

planes would produce the twin sequence . . . ABCDEFEDCB . . .

2.2 Deformation twinning in BCC transition metals

As mentioned briefly in the introduction, the mechanical response of body centered cubic

(BCC) metals is well known to be more temperature and strain rate dependent as compared to

face centered cubic (FCC) metals [5]. This is attributed to the intrinsic lattice resistance associated

with screw dislocations, which regulate their low temperature plastic response [5, 6]. At suffi-
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ciently high temperatures, BCC metals transition from parabolic hardening to three-stage harden-

ing akin to the stages of hardening in FCC metals which is attributed to sufficient thermal energy

to overcome their intrinsic lattice resistance [7–10]. However, at sufficiently low temperatures or

sufficiently high loading rates, mechanical twinning has been observed as a competing mechanical

deformation mechanism in several experimental studies on BCC transition metals.

Mitchell et al. [8] deformed Tantalum single crystals in tension with a view to understanding

three-stage hardening behavior. Orientation, temperature and strain rate dependence of plastic de-

formation was investigated by deforming Tantalum single crystals with nine different orientations,

with a range of temperature from 4.2K to 573K and with seven distinct strain rates respectively.

Deformation twinning of the type 〈111〉{112} was observed at 4.2K in this study for a [213] ori-

ented crystal with an effective strain rate 9.3× 10−4s−1. The orientation and strain rate depen-

dence experiments were also performed at 373K and no twinning phenomenon was observed at

this temperature even in the [213] oriented crystal. Shields et al. [11] also deformed Tantalum

single crystals at 4.2 K with a strain rate 5× 10−4s−1 under both tensile and compressive loading

conditions (see Figure 2.6 for the slip trace analysis in this study). Slip trace analyses of deformed

specimens indicated that tensile specimens deformed almost entirely by slip with the exception of

orientations near [001]. Alternatively, compression specimens almost always twinned except on

specimens oriented near [001] which exhibited some evidence of slip and even then twinning was

the dominant deformation mechanism.

Sherwood et al. [12] also observed twinning in Tantalum single crystals at 77K with a strain

rate of 4.9× 10−4s−1 under tensile loading in the 〈100〉 oriented crystals whereas in compression

for the 〈110〉 orientation repeated discontinuous slip occurred after a strain of 0.03. A more recent

Kolsky bar compression experimental study by Chen et al. [13] confirmed the existence of defor-

mation twins in Tantalum at 77K with strain rates ∼ 103s−1 however, the same study showed no

twinning at 300 K even with strain rates up to ∼ 104s−1. Florando et al. [14] used polycrystalline

Tantalum for uniaxial compression at 77K and observed twinning at strain rate 1s−1. However,

they did not observe any twinning for a much smaller strain rate 10−4s−1 at 77 K.
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Figure 2.6: One of the earliest direct observation of deformation twinning in BCC transition metal, Ta was
made by Shields et al. [11]. Slip and twin trace analyses in Single crystal Ta deformed at 4.2K adopted from
Shields et al. (a) Typical fine slip traces observed in Ta tested in tension (T.A = tensile axis) (b) Evenly
distributed twins observed on Ta tested in compression (C.A = compression axis). The micrographs are
reproduced from [11] with permission.

Sherwood et al. [12] observed deformation twinning in BCC Niobium single crystals with

〈110〉 orientation under compressive loading at 77K with a strain rate of 4.5× 10−4s−1. Niobium

single crystals with orientation axis near [011] also exhibited twinning under compression at 77K

with a strain rate of 6.7× 10−4s−1 in another experimental study by Reid et al. [15]. Groger et

al. [16] tested Niobium single crystals with the center-triangle orientation as well as orientations

near the [011]− [11̄1] edge of the stereographic triangle at 77K under compression with a strain

rate of 3× 10−5s−1 and also observed deformation twins. Furthermore, B. J. Shaw [17] observed

twinning in polycrystalline Niobium under both tensile and compressive loading with strain rate

4.2× 10−4s−1 and at a slightly higher temperature of 104K.

Edington et al. [18] compressed Vanadium single crystals with compression axes near [111] at

a strain rate 8× 10−4s−1 with pre-straining at 293K and 373K. Deformation twins were observed

at 77K regardless of the pre-straining temperature and duration. Tensile tests were conducted on

commercially pure polycrystalline Vanadium by Lindley et al. [19] with temperatures ranging from

20K to 293K. They found that at and above 77 K, the Vanadium polycrystals deformed solely or

predominantly by slip whereas at 20K deformation was associated with twinning. B. J. Shaw [17]

also observed twinning in polycrystalline Molybdenum under both tensile and compressive loading

8



with strain rate 4.2× 10−4s−1 and at temperatures 4.2, 77, 173 and 223K. Moreover, Sherwood et

al. [12] observed deformation twinning in Molybdenum single crystals oriented in the 〈100〉 and

〈110〉 directions under tensile loading at 77K with a strain rate of 7× 10−5s−1. Chiem et al. [20]

investigated the plastic deformation behavior of [111] oriented Tungsten single crystals with a split

Hopkinson bar under dynamic loading applied in simple shear at room temperature. Deformation

by twinning were observed in this study at a strain rate of 1.8× 103s−1. Marcinkowski et al. [21]

tested Chromium polycrystals under compression with a strain rate of 10−3s−1 at temperatures

ranging from 77K to 373K and found that twinning only occurs at 123K. J. Harding [22] deformed

BCC Iron single crystals in tension at two different strain rates: 10−3s−1 and 10+3s−1 as well as at

four different temperatures: 77K, 113K and 195K and observed deformation twinning in all of the

cases regardless of orientation.

Apart from low temperature, twinning is observed at high strain rates or during dynamic load-

ing events. As mentioned earlier, Kolsky bar compression study by Chen et al. [13] has shown

the existence of deformation twins in Tantalum at 77K with strain rates ∼ 103s−1. Livescu et

al. [23] investigated deformation twins in polycrystalline Tantalum under high explosive driven

shock loading which implies very high strain rate and they observed that 〈111〉{112} twinning

play a significant role in the deformation and damage evolution of shock-loaded Tantalum. Shock-

wave deformation of polycrystalline Tantalum to a pressure of 45 GPa and duration of 1.8 micro-

second generated profuse twinning in an experimental study conducted by Murr et al. [24] where

a strain rate of 3× 103s−1 was achieved by using a split Hopkinson pressure bar. Anderson et

al. [25] impact tested polycrystalline Tantalum at room temperature with a hammer (which also

implies high strain rates) and observed deformation twins shown in Figure 2.7. Besides Tantalum,

explosive working of zone-refined Tungsten single crystals produced deformation twins at room

temperature [26]. These general observations have led to the conclusion that deformation twinning

becomes active at high strain rates and low temperatures.

With the development of nanomechanical testing, the influence of size on initiation of mechan-

ical twinning has also been investigated. Wang et al. [27] deformed Tungsten bi-crystal nanowires
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Figure 2.7: (a) Deformation twins in tantalum (zoomed in 100x). Specimen mechanically polished and
etched in 2 parts lactic acid, 1 part HF, and 1 part HNO3 for 40 minutes and then in equal parts in HF and
HNO3 for 5 minutes. (b) same specimen zoomed in 500x. Reproduced from [25] with permission.

using in-situ nanomechanical testing at room temperature under a strain rate of 10−3s−1 and ob-

served that on compressive loading, after a relatively large lattice strain (4.9%) is achieved, a small

twin embryo was nucleated from the intersection between the grain boundary and free surface.

This twin embryo grew and traversed the entire Tungsten bi-crystal sample under continued load-

ing. They also found, in the absence of pre-existing dislocations, that twinning and slip compete at

room temperature and that competition is orientation dependent. Nanoscale sized grains can also

promote the transition from slip to twinning and is evidenced (see Figure 2.8) by nanoindentation

conducted on nanocrystalline Tantalum [28]. In this study, nanocrystalline Ta films with thickness

of ∼ 0.1 micrometer were probed using a depth-sensing nanoindentation mechanism which allows

well-controlled local deformation. The authors investigated the deformed nanocrystals with both

scanning electron microscopy and high-resolution TEM and observed that plastic deformation dur-

ing nanoindentation is controlled by deformation twinning. These observations can be explained

by the idea that twin nucleation requires high stresses, which can be achieved in nanocrystalline

metals through the removal of more classical sources, a.k.a. dislocation starvation [29, 30]. Thus,

the occurrence of deformation twinning can be enhanced through the reduction of material length

scales.
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Figure 2.8: (a) Transmission electron micrograph of the intersecting twins in nanocrystalline Ta. The
twinning directions are marked with two white arrows. (b) High-resolution TEM image of a nanograin,
featuring a deformation twin. Reproduced from [28] with permission.

These reports of twinning dominated deformation are supported by several studies involving

simulations. For example, Zhang et al. [31] studied deformation twins in nanocrystalline BCC Mo

through molecular dynamics (MD) simulations. They found that in 〈110〉 columnar grains, the de-

formation is dominated by twinning and twins were nucleated primarily from the grain boundaries

by successive emission of twinning partials and thickened by jog nucleation in the grain interiors.

Frederiksen et al. [32] also used MD simulations to investigate the plastic deformation of nanocrys-

talline Mo. Their simulations showed that plastic deformation involved both grain boundary pro-

cesses and dislocation migration which in some cases lead to twin boundary formation. Pan et

al. [33] studied tensile behavior of nanocrystalline Ta using MD simulations and found that defor-

mation twinning is one of the deformation mechanisms among others such as dislocation motion,

grain rotation, grain boundary sliding etc. Sainath [34] et al. studied the effect of orientation on

the deformation behavior of BCC Iron with MD simulations on nanowires initially oriented 〈100〉,

〈110〉, 〈111〉, 〈112〉 and 〈102〉. Their MD simulation results showed that the deformation mecha-

nisms vary with crystal orientation. Under tensile loading, the nanowires with initial orientations

of 〈100〉, 〈112〉 and 〈102〉 deformed predominantly by deformation twinning on the 〈111〉{112}

twinning system, whereas 〈110〉 and 〈111〉 oriented nanowires deformed by dislocation slip. Fur-
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thermore, the nanowires with 〈100〉 and 〈110〉 orientations displayed opposite tension-compression

asymmetry in deformation mechanisms. Under compressive loading, the nanowire with 〈100〉 ori-

entation deformed by dislocation slip, while twinning was observed in 〈110〉 orientation. Another

MD simulation study on BCC Mo nanowires by Wang et al. [35] showed that both axial orientation

and wire thickness play important roles in determining the dominant deformation mechanism. The

nanowires with orientation 〈110〉{111} exhibited dislocation glide controlled plastic deformation

occurring on {110} planes whereas for both 〈100〉{110} and 〈100〉{100} orientation twinning was

the dominant mechanism with {112} being the coherent twin boundaries.

2.3 Twin Boundary Structures in BCC transition metals

Even though numerous experimental evidence confirm the role of deformation twinning in plas-

tic deformation of BCC transition metals, almost no information is available in these studies about

the atomic level structures of twins. Based on the twinning elements, deformation twins in BCC

metals are well known to form on the {112} planes with 〈111〉 shear direction. Formation of de-

formation twins in BCC metals can proceed by several different mechanisms including nucleation

from surfaces and boundaries, as should occur in nanoscale materials [27, 28, 31] or the dissocia-

tion of a screw dislocations, which has been argued to be the source in bulk materials [13, 36, 37].

However, these studies involving the nucleation and propagation of deformation twins assumes

that the twin nucleus maintains a pure reflection symmetry despite lack of experimental evidence.

The twinning elements outlined earlier can describe the macroscopic degrees of freedom of the

twin. However, they do not fully describe the local atomic structure. A common interpretation

of the local atomic twin structures in BCC metals is a reflection symmetry about a single {112}

plane. This type of twin structure, shown in Figure 2.9(a), is readily reproduced by the passage of

the a
6
〈111〉 twinning dislocations described above. However, this is not the only postulated twin

boundary structure. Vitek proposed the isosceles twin boundary structure [38], shown in Figure

2.9(b), which can be created from the reflection twin boundary by a translation of one half of the

crystal relative to the other half by an amount of a
12
〈111〉. This twin boundary structure still sat-
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(a) (b)

(c) (d)

Figure 2.9: The two different twin structures are shown in (a) pure reflection and (b) isosceles. The dashed
lines show the approximate location of the boundary between the two twinned structures while the blue
boxes illustrate a detail view shown in (c) and (d) for each twin boundary structure, respectively.
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isfies the macroscopic orientation relationship between the two crystals and has the advantage of

minimizing bond lengths across the twin boundary plane. While experimental work can help pro-

vide clear identification of the local atomic structure, we are only aware of one in-situ experiment

in Tungsten in which the observed deformation band was confirmed to be a twin band with Fast

Fourier Transform pattern analysis with the atomic level structure of the twin boundary assumed

to be a pure reflection twin boundary structure [27].

Despite the potential for the existence of more than one twin boundary structures in BCC met-

als, the isosceles structure is often overlooked in computational studies [39, 40]. However, recent

atomistic work by Shi et al. demonstrated that some empirical potentials produce the isosceles

twin boundary structure and that this should alter both the energetics of nucleation as well as the

shape of the twinning generalized stacking fault (TGSF) energy curve [41]. Additionally, recent

computational work by Ojha et al. computed the TGSF curves for many of the BCC metals using

electronic structure density functional theory (DFT) and concluded that the reflection twin bound-

ary structure was favorable in Mo, W while the isosceles structure is favorable in Ta, Nb, V and

α-Fe [42]. Since DFT reasonably reproduces the bonding in BCC transition metals, it can be as-

sumed to be an accurate description of the structure. However, this study did not actually examine

the actual produced structure from the simulations nor did it conclusively provide insight into the

metastability of the other twin boundary structures, let alone actually quantitatively or qualitatively

demonstrate the preference of the specified structure. This raises the question of the actual local

atomic structure of twin boundaries in BCC metals. Hence, we have attempted to answer this ques-

tion using both empirical potentials as well as electronic density functional theory. In this work, we

fully relax the twin boundary structures to determine which structures, reflection or isosceles, are

stable and if multiple twin boundary structures are metastable and hence their relative stability. We

further use the GSF energy curves to explore if other twin boundary structures are metastable as

well. The GSF curves further provide insight into how the twins may nucleate. These results pro-

vide the first concrete identification of not only the energetics of the twin boundaries, but also their

local atomic structure. While we expect the DFT results to accurately represent twin boundary
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structure, we compare these results with empirical potentials which are frequently used to model

twin nucleation and growth in BCC metals.

2.4 Nucleation and propagation of twins in BCC transition met-

als

The formation of a deformation twin can be envisaged as occurring in two stages: nucleation

of an embryonic twin and its subsequent growth into a macroscopically observable twin. Due to

the presence of the intrinsic stacking faults in FCC metals, twins can nucleate and grow layer-

by-layer by successive emission of Shockley partials [3, 43–45]. In BCC metals, however, there

is no stable stacking fault associated with a twinning partial dislocation (with the Burgers vector

of a
6
〈111〉 [38, 46], which suggests that a twin nucleus is unlikely to consist of a single twinning

dislocation and thus likely consist of two or more twinning dislocations on adjacent {112} planes.

Therefore, the instability of a single layer fault has led to the speculation that twin nuclei in BCC

crystals likely consist of two or more twinning dislocations on adjacent {112} planes and if the

twin is nucleated from a perfect dislocations with a Burgers vector of a
2
〈111〉, especially screw, it

may dissociate into three partial dislocations (the so-called “zonal dislocation”), forming a three-

layer twin nucleus [36, 37, 46].

Twin nucleation and growth have been a topic of debate in the past few decades. Orowan [47]

visualized that a twin embryo could nucleate homogeneously in a region of high stress concentra-

tion even though he did not specify the origin of the stress concentrations. Cottrell and Bilby [48],

Sleeswyk [49], Ogawa [50] and Priestner and Leslie [51] proposed that a twin could nucleate from

a heterogeneity such as a specific dislocation arrangement. The well-known pole mechanism pro-

posed by Cottrell and Bilby [48] envisions that under applied stress an a
2
〈111〉 dislocation could

dissociate according to the reaction:
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a

2
〈111〉 −→ a

3
〈112〉+ a

6
〈111̄〉

Figure 2.10: An illustration of twin nucleation model via pole mechanism in bcc lattice [3,48]. An expand-
ing slip loop stemming from sessile dislocation (pole) cross-slips into a perpendicular plane. Subsequently,
the dislocation continues to revolve around the pole assisted by further cross-slips and hence generates layers
of stacking faults, i.e., the twin embryo. Reproduced from [52] with permission from author.

After dissociation, Cottrell and Bilby proposed that a
6
〈111̄〉 twinning dislocation spirals around

the a
3
〈112〉 pole dislocation and thus could result in a twin. A schematic diagram of the pole

mechanism is shown in Figure 2.10. Sleeswyk [49] proposed a different dissociation reaction of

a
2
〈111〉 screw dislocations:

a

2
〈111〉 −→ a

6
〈111〉+ a

6
〈111〉+ a

6
〈111〉
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Figure 2.11: The dissociation of a screw dislocation with three-fold core in bcc materials into three frac- tion
dislocations under applied stress [36, 37, 51, 53]. Two of the fractional dislocations (the most stressed ones)
cross-glide and become parallel to the third one, thereby forming a three-layer twin nucleus. Reproduced
from [52] with permission from author.

He hypothesized that an a
2
〈111〉 screw dislocation could be considered as equivalent to three

a
6
〈111〉 twinning partials, each residing in one of the three {112̄} planes. These planes intersect

each other symmetrically about the direction of the Burgers vector and under applied stress this

symmetrical configuration is unstable and could result into a three-layer twin [54]. See Figure 2.11

for a schematic of the dislocation dissociation mechanism. Ogawa‚s hypothesis [50] is basically

analogous to that of Sleeswyk, however, he envisaged that the twins originate from the dissociation

of a
2
〈111〉 edge dislocation. Priestner and Leslie [51] proposed a very detailed model for nucle-

ation of three-layer twins from the intersecting slip bands on {110} and {112̄} planes in order

to account for the restricted slip bands observed in association with twins in shock-loaded Fe-Ni

alloy. However, based on their observations of post-deformation debris, the question of whether

the twins originated from slip bands or vice-versa cannot be resolved conclusively. A more recent
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model proposed by Lagerlof [36] refines Sleeswyk‚s hypothesis of dissociation of an a
2
〈111〉 screw

dislocations. This model proposes that a short screw segment of zonal dislocation bows out under

an applied stress similar to a Frank-Read source where each of the three twinning partials glides on

its individual {112̄} plane and the motion of these three partials on three successive {112̄} planes

forms a three-layer micro twin. This model also describes the growth process by imagining that

after one Frank-Read zonal dislocation loop is nucleated, the screw segment cross-slips in a sim-

ilar manner as the model proposed by Pirouz for twinning in Silicon [55] because the formation

of a second Frank-Read zonal dislocation loop would produce high stacking fault energy. After

cross-slip the screw segment may again bow out on a new set of {112̄} planes to form another

three-layer twin.

Ogawa et al. [53] deformed Mo-35 at%Re alloy specimens at rooms temperature and Mo-

18% Re alloy at liquid Nitrogen temperature (77K) and the authors hypothesized from their study

that dissociation of edge dislocations in {112} planes into three twinning dislocations could be the

dislocation nucleation mechanism. Mahajan [54,56] also deformed Mo-35 at% Re alloy specimens

at 77K under tension and claimed that twins very probably nucleated from the dissociation of

a
2
〈111〉 screw dislocations. These experiments rather than observing three-layer thick twin nuclei,

assumed either Ogawa‚s or Sleeswyk‚s hypothesis is accurate and the authors attempted to explain

their experimental findings based on dissociation of perfect dislocations into twinning partials.

So these experimental studies have confirmed the existence of deformation twins but fell short

of confirming that the critical thicknesses of twins are multiple of 3 [54, 57]. However, most

deformation twins in BCC metals typically possess stepwise twin boundaries with the step heights

much larger than the size of a single twinning dislocation [58,59]. Validation of models describing

the critical thickness of twin nuclei in BCC metals via in-situ observations is also very difficult and

this is why the nucleation and growth of twins remain a topic of active research. Hence, atomistic

simulations were employed as an option to explore the nucleation and growth of twins. Marian et

al. [60], from their MD simulations using an Ackland-Finnis-Sinclair [61] type potential for BCC

Iron, observed that depending on the magnitude of stress and temperature, screw dislocations in
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BCC Iron move in three different regimes. First, under low stress, the dislocations moved smoothly

through the formation and migration of atomic-sized kinks. As the stress increased, the dislocation

line became rugged and its motion became jerky by producing a large amount of vacancies and

interstitial clusters. Under further high stress, the dislocation line ruggedness continued to increase

until, at some point, the dislocation ceased its turbulent motion and initiate a three-layer twin. Chu

et al. [62] performed a series of MD simulations to show that when two coplanar, oppositely signed

dislocations gliding on {112} planes were driven toward one another at supersonic speeds, they

did not annihilate but simultaneously nucleated two more twin faults on adjacent planes. This

study also revealed that the subsequent nucleation events, along with the original fault, produced

a three-layer twin. Ogata et al. [63, 64] determined the (21̄1̄) 〈111〉 twinning energy landscape of

BCC Molybdenum by generating a TGSF curve using density functional theory for twin embryos

containing 2 to 7 layers. They found that the 2-layer embryo is metastable but more surprisingly the

3 and 4-layer thick twins were unstable. The critical thickness estimated by the authors is six-layer

thick even though metastable points can be identified from their TGSF curve at shear displacements

corresponding to 2 and 5-layer thick twin. However, our work suggests that the thickness are two

for a reflection twin and three for an isosceles twin [65]. However, these results focus on twin

stability at zero stress, while the energetic pathway for twin nucleation occurs under very high

stresses, even for heterogenous twin nucleation [27, 31, 32, 66, 67]. Since the energetics and the

structure of a nucleating twin in a BCC metal has never been carefully studied, it is unclear how

large the nuclei are and what controls this size. In this light, we have addressed this outstanding

question directly using atomic level modeling and settle the size debate once and for all. However,

in answering the question of fundamental twin thickness, it is critical to be consistent in how one

measures twin thickness in BCC metals and, in fact, all materials. It is natural to try to assign

atoms to twinned and untwinned regions and count the thickness of the twin as the number of

atoms inside these regions. However, the potential for twin boundaries to exist on top of atomic

layers (e.g., reflection) or between atomic layers (isosceles) creates ambiguity of how atomic layers

should be partitioned to twinned and untwinned regions. Examples of this are discussed in detail
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in Chapter 5. The alternative method is to count twin thickness by counting the number of shearing

events that occur between atomic layers, which is the same as counting the number of twinning

dislocations. This approach removes the ambiguity, see Chapter 5, and is the method we will

employ.

Mahajan’s classic experimental studies on Mo-35 at% Re alloy specimens [54, 56, 57] men-

tioned earlier also explored the growth of deformation twins. He suggested that if the twins were

nucleated by dissociation of perfect dislocations, they can thicken by chance encounters with one

another as the twinning faults extend in the {112} planes. He further visualized the coalescence

of multiple twin embryos and thus creating 3n-thick twins. Although this seems to require a high

density of dislocations to produce a macroscopic twin, Mahajan suggested that this slip band con-

version might obviate the need for pole type mechanism of twin thickening, especially if the screw

dislocations are able to multiply by cross slip over short distances under combined effects of ap-

plied and internal stress fields [3]. Lagerlof ‚s work [36] based on Sleeswyk‚s hypothesis proposed

that lateral propagation and thickening can occur by double cross slip of the screw dislocations.

Based on the double cross slip mechanism, Chen et al. [58] argued that after a three-layer twin

embryo is nucleated a subsequent screw dislocation cannot dissociate and glide on the same {112}

plane in the same way as the prior one did, since a second a
6
〈111〉 dislocation on the same {112}

layer would result in a
6
〈111〉 displacement which is the same as the situation caused by a partial

dislocation in the anti-twinning direction and would require prohibitively high stress and energy.

Thus the authors of this experimental study speculate that a subsequent dislocation will tend to

grow the existing twin nucleus by three layers. The aforementioned study by Ogata et al. [63] on

BCC Mo by density functional theory simulations suggests that once a deformation twin reaches

critical thickness, subsequent growth is easy and proceeds in a layer-by-layer fashion. As men-

tioned earlier most deformation twins in BCC metals typically possess stepwise twin boundaries

(TBs) with the step heights much larger than the size of a single twinning dislocation [58, 59].

Recent in-situ observations in Tantalum and Niobium films [59] show that twin lamella grow from

coherent twin boundaries by repeatedly extruding and subsequently expanding of bulges on the
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twin boundaries and the twin growth was described by a self-thickening mechanism through dislo-

cation reactions at steps on coherent twin boundaries without a continuous supply of dislocations.

These observations suggest that the twinning front in BCC metals may proceed in a completely

different mode of growth, e.g. via stable zonal dislocations, rather than the well-accepted mode of

single-layer twinning dislocation [3, 40, 45]. The above discussion raises the question whether it

is energetically more favorable to grow deformation twins layer by layer in a BCC metal or does

growth occur by zonal twinning dislocations. We have addressed this question using twin boundary

migration GSF curves described in Chapter 3.

2.5 Twinning stress in BCC transition metals

A related concept to the minimum size of a twin nucleus and its structure is the stress required

to nucleate deformation twins in BCC metals since this stress must be achieved to initiate defor-

mation twinning. A major topic for debate has been the existence and importance of a critical

resolved shear stress for deformation twinning. A comprehensive review by Christian and Maha-

jan [3] argues that the significance of a CRSS may be negligible because of considerable variation

in twinning stress depending on the nucleation mechanism. Homogeneous nucleation of twins re-

quires the resolved shear stress on K1 plane resolved along η1 direction to approach the theoretical

strength of the material whereas for heterogeneous nucleation the stress required to nucleate twins

are not as high and will depend on the nature of the defect. Several other factors such as the three

dimensional non-planar geometry of dislocations in BCC metals [68], composition, pressure or

temperature can play a role in twin nucleation and thus affecting the twinning stress. Despite the

debate about the significance of CRSS for twinning in BCC metals, modeling of twinning stresses

has been an ongoing topic of research. As discussed earlier, several mechanisms have been pro-

posed for nucleation of twins in BCC metals such as the pole mechanism by Cottrell and Bilby [48],

the slip dislocation interaction mechanism proposed by Priestner and Leslie [51], the screw dislo-

cation core dissociation mechanism suggested by Sleeswyk [37] and Lagerlof [36] and the edge

dislocation dissociation mechanism by Ogawa [50]. The twinning stress prediction from the pole
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mechanism is given by τ = γus
bp

where γus is the unstable stacking fault energy and bp is the Burgers

vector of the twinning dislocation. Based on this formulation, the twinning stress is estimated to

be around 1050 MPa for alpha-Fe which is at least five times higher than the experimental value

of 206 MPa [22]. Sleeswyk‚s hypothesis yields a twinning stress equation of the form τ = γsf
3bp

where γsf is the energy associated with a stable twin nucleus. Using this expression, the twinning

stress obtained for α-Fe is close to 250 MPa [39]. Ogawa‚s edge dislocation dissociation model

gives τ = kt
µ

2π(1−ν)
where µ is the shear modulus, ν is the Poisson‚s ratio and kt is an empirical

constant. The calculation based on this model predicts a twinning stress of 430 MPa for alpha-Fe.

A few papers [39, 42] on modeling twin nucleation stresses incorrectly points to the expression

τ = πγTBM

bp
derived by Ogata et al. [63, 64] as the theoretical twinning stress model, however, it is

clear from the expression itself that this stress prediction pertains to twin boundary migration aka

twin growth rather than twin nucleation. Meyers et al. proposed a model that takes grain size and

Hall-Petch effects into consideration [69] and the twinning stress predictions they made were only

fit to experimental data from a single paper [22] on Iron single crystals. Ojha et al. proposed a

modified Peierls-Nabarro formalism to predict twinning stresses in BCC transition metals [42] by

incorporating energy barriers from TGSF curves. The twinning stresses obtained from this study

are compared with some experimental data in an attempt to validate this approach of predicting

twinning stress although this comparison is not comprehensive as not all experimental twinning

stress observations are included as evident from Table 2.1. Moreover, in deriving their twinning

stress expression Ojha et al. assumes equilibrium conditions for the twinning dislocations which

cannot be the case during nucleation. One other issue with this work is the stacking fault energy

term used in the analytical model. This term was taken as a difference of the stacking fault energy

due to unstable one layer fault and the metastable 3-layer fault. This approach clearly demonstrates

that the model proposed by Ojha et al. is not applicable to twin nucleation because to nucleate a

twin the energy barrier related to the unstable stacking fault must first be overcome to reach the

metastable thickness of the twin embryo. However, their model may provide some insights into

the twin growth in BCC metals.
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There are numerous experimental studies on deformation twinning in BCC metals where twin-

ning stresses are reported, and these resolved shear stresses are compiled in Table 2.1. The stress

values reported in this table are the lowest stress values found in the referenced experimental papers

which is not the case in [42] where experimental stress values are only reported if the experimental

values have similar orders of magnitude to the stresses predicted by their model. Hence in this

work, we have addressed whether the bulk stress values obtained from experiments are indeed the

local stresses required for twin nucleation.

Table 2.1: Experimental twinning stresses in BCC metals

BCC Metal Reference Temperature (K) Strain rate (s-1) Stress (MPa)

Tantalum

Mitchell et al. [8] 4.2 9.3× 10−4 198

Shields et al. [11] 4.2 5.0× 10−4 345

Sherwood et al. [12] 4.2 9.0× 10−4 181

Chen et al. [58] 77 1.0× 104 520

Florando et al. [14] 77 1 224

Niobium

Sherwood et al. [12] 4.2 9.0× 10−4 137

Reid et al. [15] 77 6.7× 10−4 228

Shaw et al. [17] 104 4.2× 10−4 198

Groger et al. [16] 77 3.0× 10−5 212

Vanadium
Edington et al. [18] 77 8.0× 10−4 221

Lindley et al. [19] 20 1.5× 10−4 456

Molybdenum
Shaw et al. [17] 104 4.2× 10−4 333

Sherwood et al. [12] 77 7.0× 10−5 440

Tungsten Chiem et al. [20] 298 1.8× 103 750

Chromium Marcinkowski et al. [21] 123 1.0× 10−3 648

Iron Harding [22] 195 1.0× 10−3 206
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Chapter 3

Methodology

3.1 Atomistic Modeling

Due to computational cost, interatomic potentials, those that directly relate position to energy

without direct computation of the electronic structure, are the most commonly used methods to

simulate extended defects in BCC metals including deformation twinning [33, 60, 70–72]. Atom-

istic simulations however, are only as effective as the interatomic potentials they use and ceramics

are notoriously difficult to model. It therefore becomes necessary to consider multiple interatomic

potentials, and while there many different formulations, the Embedded Atom Method (EAM) type

interatomic potentials are considered which are widely used and readily available on the NIST

interatomic potential repository [73].

3.1.1 EAM Potentials

This formulation approximates the energy of each atom as the sum of a pair wise interaction

and an embedding term representing the energy cost of placing the atom in the electron cloud [74].

It is given by the expression:

Ei = Fα

(

∑

i 6=j

ρβ (rij)

)

+
1

2

∑

i 6=j

φαβ (rij) (3.1)

where rij is the distance between atoms i and j, φαβ is the is the pair potential between atom i

of type α and atom j of type β, ρβ is the charge contributed at distance rij by an atom of type β,

and Fα the embedding function for an atom of type α in the electron cloud. The pair potential,

charge density function, and embedding function are fit to the material properties of the system.

In this work, as mentioned earlier, we primarily analyze potentials based on the embedded atom

method [74]. Specifically, we examine the potentials for V [75], Nb [76], Ta [77–81], Cr [82, 83],
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Mo [80, 84, 85], W [75, 80, 84], and α-Fe [84]. These potentials are widely used and readily

available on the NIST interatomic potential repository [73].

3.1.2 The Potential Energy Surface

In the EAM potentials, the potential energy function is dependent on the interatomic distances

rij. It is not possible to plot the potential energy function for a system of more than one atom.

However, it is still useful to think of it as a 3N-dimensional potential energy landscape, with

topography analogous to the mountains, craters, valleys and mountain passes familiar to us from

our terrestrial landscape. In particular, much can learned about the predictions of a potential energy

function from the extremal points (maxima, minima and saddle points) of this landscape [86].

Given any point r0 in in configuration space, one can associate with it a unique minimum on the

potential energy surface by performing a steepest descent (SD) minimization. Mathematically, this

corresponds to solving

ṙ = −∇rE (3.2)

starting from the initial guess rij = r0. Physically, this corresponds to an infinitely rapid quench

at zero temperature [87]. Configuration space is divided in this way into dis- joint regions, each

of which corresponds to the set of all points that quench to the same minimum. These regions are

referred to as basins of attraction (or “basins” for short). They are separated by dividing surfaces

and connected by saddle points. This is depicted schematically in Figure 3.1.

The deepest minima on the energy landscape are associated with defect-free crystalline struc-

tures. Minima with somewhat higher energies are associated with crystals containing internal

defects, such as vacancies, interstitials, dislocations, grain boundaries and so on. A rough estimate

for a system containing only one atomic species gives the number of minima as N! exp (νN) where

ν is some positive number [89]. The first term counts the number of ways a given minimum energy

structure can be made with N indistinguishable particles. It accounts for the permutation symmetry

of the atoms. The second term counts the number of distinct structural minima. It is based on the

assumption that nearby minima are related through local rearrangements and therefore the total
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Figure 3.1: A schematic representation of a 3N-dimensional energy landscape. Minima are the darkest
regions, maxima the lightest regions and saddle points are indicated by “s”. The solids lines correspond to
contours of constant energy. The dashed lines are the “dividing surfaces” separating the different minima.
The region enclosed by dashed lines around each minimum is its “basin of attraction”. (Adapted from [88]
with permission.)

number of such minima is exponential in N [87]. Using this relation, Stillinger and Weber [88]

estimated that 1 gram of argon would have of the order of 1010
22

distinct structural minima! The

minima and the basins around them are perhaps the most physically relevant of the features in

E(rij). These show us the energetically stable configurations that the system is likely to adopt and

how these atomic arrangements will respond to small perturbations. The curvature of the energy

function around a minimum determines such things as the elastic moduli of a solid.

Given the primacy of energy minima in understanding materials, it is no surprise that the search

for these minima receives a lot of attention. One key type of Molecular Statics (MS) simulation

refers to this search for minima in the atomic potential energy landscape. Another important im-

plementation of MS uses methods to find saddle points and transition paths (the lowest energy

trajectory connecting two minima). These tell us something about the likely ways that materials

deform and the rates at which deformation take place.
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3.1.3 Energy Minimization

The search for the minima of a nonconvex, multi-dimensional function is one of the great chal-

lenges of computational mathematics. It is interesting that the human eye and brain can look at a

hilly landscape and almost immediately find the point of lowest elevation, in addition to establish-

ing where most of the other local minima lie. To do the same with a high-dimensional mathematical

function on a computer is much more difficult. Although finding any minimum is not too difficult,

finding it quickly is a bit more of a challenge, and finding the global minimum confidently and

quickly is still an open field of research. The entire branch of numerical mathematics known as

“optimization” is essentially dedicated to these goals. It is not our intention to discuss nonlinear

optimization exhaustively. Rather, we list commonly used methods: the steepest descent (SD),

conjugate gradient (CG) and Newton Raphson (NR). The ideas behind these methods serve as the

basis for more advanced optimization approaches. Entire textbooks on optimization exist (see for

example [90, 91]), and the interested reader may find more rigorous detail and advanced topics

there.

The CG and NR methods are also classified as “local” minimization methods in the sense that

they will only find some “nearby” energy minimum; there is no guarantee that this is the global

minimum or even the closest energy minimum to the starting configuration. For atomistic systems,

there are also global optimization techniques such as simulated annealing. Simulated annealing

uses so-called Monte Carlo sampling to randomly change the configuration of atoms in order to

probe new regions of phase space that might be closer to the global minimum. Acceptance of

such a stochastic change is probabilistic, with higher-energy configurations being more likely to

be rejected.

In Molecular Statics, it is usual to refer to the “unrelaxed” and the “relaxed” structure. The

unrelaxed structure is the starting configuration or the initial guess for the equilibrium structure.

Running the algorithm to search for a minimum is the “relaxation” process that takes us to the local

minimum, where we find the relaxed structure.
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3.1.4 Methods for Finding Saddle Points

Defect nucleation, dislocation motion, chemical reactions, diffusion, and fracture are just a few

important materials processes that can be viewed as pathways through the potential energy sur-

face. Specifically, each of these processes take us between two configurations of atoms that are

local minima. The transition path between them can be important for our understanding of how

these processes take place. It also tells us the activation energy of the process and what interme-

diate equilibrium configurations may exist along the transition. Mathematically speaking, local

minima are much simpler entities than saddle points. Both have zero first derivatives, but whereas

minima have positive curvature in all directions, saddle points have at least one direction along

which the curvature of the energy landscape is negative. Most methods for finding saddle points

depend on analyzing the Hessian matrix, which can be expensive for many systems. Saddle point

searches are usually based on methods of eigenvector-following, whereby search directions along

eigenvectors of the Hessian with the lowest eigenvalues are chosen to systematically locate saddle

points. In systems where the Hessian is too expensive to compute, there are methods whereby only

the lowest eigenvalues need to be found, or where numerical approximations are used to estimate

the search directions. Techniques such as that of Wales and coworkers [92–95], the activation-

relaxation technique (ART nouveau) of Barkema and Mousseau [96, 97], and the dimer method

of Henkelman and Jonsson [98] are all methods based on eigenvector following. The transition

path, or more precisely minimum energy path (MEP), for systems where the Hessian matrix is not

readily available can be obtained by the drag method and several variations of the Nudged elastic

band (NEB) [99] methods which only require the first derivatives of the potential energy surface.

Once a saddle point is determined, it is relatively simple to find transition paths through the

saddle point by systematically perturbing the configuration and following steepest descent path-

ways to the neighboring minima. It is really the search for the saddle points themselves that can

be costly and difficult for complex energy landscapes involving many atoms. For some physical

phenomena, we may already know (or be willing to guess) the two local minima at the start and

end of a transition path. In this case, the search for the path and any intervening saddle point is
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simplified and can be carried out without any recourse to the Hessian matrix or its eigenvectors. In

this work, we have used string method simulations devised by E et al. [100] to directly observe twin

nucleation using EAM potentials. Also Free End Nudged Elastic Band (FENEB) method [101] has

been used for finding saddle points in our continuum models of twin nucleation.

3.2 Electronic Structure

Density functional theory (DFT) is a simulation technique part of a broader class of simulation

methods known as ab initio (latin for “from the beginning”) methods. In this work, DFT is used to

calculate the electronic structure of a simulation box containing a specified number of ionic cores

and electrons. This overview of the fundamentals of DFT is by no means exhaustive. Further

reading on electronic structure calculation can be found in any of several textbooks [102–104].

All of the calculations in this work utilize a commercial DFT code suite: the Vienna Ab initio

Simulation Package, or VASP [105, 106]. Brief outlines of the cocnepts used in this work are

presented below.

3.2.1 Schrodinger’s Equation

The time-dependent Schrodinger’s Equation for a single, non-relativistic particle:

i~
∂

∂t
ψ (r, t) = Ĥ{ψ (r, t)} (3.3)

The momentum operator of a particle can be written as p = i~∇. The Hamiltonian operator (Ĥ) is

the sum of total kinetic and potential energy of the particle such that:

Ĥ = T̂ + V̂ =
p2

2m
+ V̂ (r, t) = − ~

2

2m
∇2 + V̂ (r, t) (3.4)

The Schrodinger’s Equation can now be rewritten as:

i~
∂

∂t
ψ = − ~

2

2m
∇2ψ + V̂ψ (3.5)
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If the wave function comes from a stationary state, e.g., atomic orbitals, then the Hamiltonian is

not dependent on time. In this case, ψ (r, t) = A(t)ψ(r) and Eψ = Ĥψ. The wave function is still

a function of time, but only in its amplitude. Hence for a single, non-relativistic particle:

Eψ =
(

T̂ + V̂
)

ψ =

[

− ~
2

2m
∇2 + V̂

]

ψ(r) (3.6)

3.2.2 Density Functional Theory

For many-body electronic structure calculations, the nuclei of the molecules or clusters are

treated as fixed. This is known as the Born-Oppenheimer Approximation. This generates a static

external (from the perspective of the electrons) potential V through which the electrons are moving.

The stationary electronic state is then defined as a wavefunction ψ that satisfies the many-electron,

time-dependent Schrodinger equation.

Ĥψ =
[

T̂ + V̂ + Û
]

ψ =
N
∑

i

[

− ~
2

2m
∇2 +

N
∑

i

V(ri) +
N
∑

i<j

U(ri, rj)

]

ψ (3.7)

Here T̂ is the kinetic energy, V̂ is is the potential energy from the external field of positively

charged nuclei, and Û is the electronâĂŞelectron interaction energy. The Û term is not separable

into single- particle equations since the interaction term is complicated. There are many possible

ways to solve this equation using Slater determinants [107]. The simplest version is the Hartree-

Fock method, which is also known as the self-consistent field (SCF) method. The Fock operator

for the ith electron is given by:

F̂ (i) =
1

2
∇2

i −
∑

α

zα
riα

+

N/2
∑

j=1

(

2Ĵj(i)− K̂j(i)
)

(3.8)

where the first two terms are the non-interaction terms of the Hamiltonian for the given electron,

kinetic energy and static potential energy, respectively. Here zα is the charge of the α th nucleus and

riα is the distance between the electron and that nucleus. The term Ĵj(i) is the Coulomb operator,
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which defines the repulsion of electron i by electron j as:

Ĵj (ψi) = ψi

∫

|ψj|2
1

|rij|
drj (3.9)

The electron exchange energy K̂j(i) is represented by:

K̂j (ψi) = ψj

∫

ψ∗
j ψi

|rij|
drj (3.10)

This represents the asymmetry of the wavefunctions and also addresses the antisymmetry of the

Slater determinant by satisfying the Pauli exclusion principle. The Fock operator is then used on

relevant wavefunctions producing and eigenvalue-like expressions:

F̂ψi = εiψi (3.11)

Eigenfunctions which satisfy this equation are the basis functions for the electron orbitals. The

Hartree-Fock method iteratively solves this formulation through the following steps [108] which

are computationally expensive, and has numerical stability issues.:

1. Input coordinates and charges of atomic nuclei, as well as number of electrons in the system

2. Make an initial guess for the electronic orbital basis functions

3. Construct the Fock Matrix

4. Diagonalize the Fock Matrix to solve for the new basis functions

5. Check for convergence of the basis functions. If not converged, repeat from Step 3

Finding a solution to the many-body Schrodinger’s Equation with the electron-electron in-

teraction is a complicated problem. It would be more convenient if this many-body problem is

converted into a series of single-body problems which sufficiently approximates the many-body

problem without sacrificing the underlying physics. In addition to the computational difficulties, it
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is also impossible to experimentally probe the individual wavefunctions of a system of electrons.

In order to make this approximation, the concept of electron density is introduced. The electron

density of a normalized N-electron wavefunction is:

ρ(x̄) = N
∑

s

∫

. . .

∫

|ψ (x̄1, x̄2, . . . , x̄N , s)|2dx̄2 . . . dx̄N (3.12)

This represents the electron density at position x̄ based on the wavefunctions of all electrons and

both spin up and spin down possibilities, s. The primary advantage of using the electron density is

it is experimentally observable which is extremely useful for comparison with experimental data.

Also the electron density decays i.e., ρ→ 0 as we move away from the point of interest (r → ∞).

Integration of electron density over all of space gives the total number of electron,
∫

ρ (r̄) d3r = N.

Based on the uniform electron gas approximation, the kinetic energy of the system can be

computed by using the Thomas-Fermi model:

T(r̄) =
3h

10me

(

3

8π

)2/3 ∫

ρ (r̄)5/3 d3r (3.13)

Here r̄ is the spatial position vector and ρ is the electron density. Also the potential energy term

consists of two components. An attraction to positively charged nuclei:

V (r̄) =

∫

−ρ (r̄) Ze
2

r̄
d3r (3.14)

and the repulsion between electrons:

U(r̄) =
1

2
e2
∫

ρ(r̄)ρ(r′)

|̄r− r′| d3rd3r′ (3.15)

With this model, the system can be represented in terms of electron density only. Minimizing the

energy given by these expressions theoretically should lead to a solution of the appropriate electron

density. But this model is not a good approximation of a real system, especially for kinetic energy

of the system. Moreover, there is no term which considers the electron exchange (Pauli exclu-
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sion principle). But this model is extremely useful for approximating the kinetic energy from

wavefunctions, ψi. If an analytical relation can be established between the wavefunctions and

electron density, a more accurate approximation can be achieved and this is where the Hohenberg-

Kohn Theorem comes in. This theorem proves that the electron density uniquely describes the

many-electron system, and that also, the energy of the system is a functional of the electron density:

E = E[ρ]. The main takeaways from this theorem are as follows:

• In the ground state, the electron density uniquely determines the external potential of the

nuclei, Vρ = f(ρ).

• In any quantum state, the external potential uniquely determines the many-electron wave-

function ψ = f (Vn).

• In any quantum state, the total energy E is a functional of the many-body wavefunction

E = f (ψ).

The energy operator of a system can be written as:

Ê =

∫

ρ (r̄) Vn (r̄) dr + 〈ψ (ρ)|T̂ + Û|ψ (ρ)〉 (3.16)

This can be rewritten as the Kohn-Sham equations:

E (r̄) =

∫

ρ (r̄) Vn (r̄) dr−
∑

i

[
∫ ∇2

2
χi (r) d

3r +
1

2

∫ ∫

ρ(r̄)− ρ(r′)

|̄r− r′| d3rd3r′ + EXC

]

(3.17)

where EXC represents the electron ecxhange or correlation. This term states that if an electron is at

point r̄, there is a diminished likelihood that another electron will be in the vicinity. For a long time,

there was much debate over how the exchange-correlation term should be calculated. Now one of

the most common approaches, the Local Density Approximation (LDA) calculates the exchange-

correlation term as a function of the electron density. This approach was originally proposed by

Kohn and Sham along with their equations, but was largely overlooked for decades [108]. The
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exchange-correlation energy of a system is approximated to be a sum of the exchange energy EX

and the correlation energy EC as EXC ≈ EX + EC.

This formulation of the Hamiltonian converges on a solution to the eigenvalue problem:

Ĥχi = εiχi (3.18)

DFT attempts to find solutions which satisfy the time-independent Schrodinger equation:

Ĥψ = Eψ (3.19)

This states that if the system is stationary, the Hamiltonian operation (Ĥ) on the many-body elec-

tron wave function (ψ) is proportional to the wave function itself. Furthermore, the proportionality

is, in fact, the energy of the state (E) [109]. Here the Hamiltonian operator can be thought of as

the kinetic energy of each electron wave function (T̂), and the potential energy of each electron,

which itself is comprised of the potential energy in reference to attraction between electrons and

nuclei (V̂), and the potential energy between electrons (Û). Thus the time-dependent Schrodinger

equation can be expressed as:

Ĥψ = T̂ + V̂ + Û =

[

N
∑

i

− ~

2m
∇2

i +
N
∑

i

V (ri) +
N
∑

i

∑

i<j

U(ri, rj)

]

ψ = Eψ (3.20)

Since it is impossible to distinguish which electron is which, a more useful description is the point-

wise electron density n, which can be expressed as:

ρ (r) = 2
∑

i

ψ∗
i (r)ψi (t) (3.21)

Hohenberg and Kohn stated that in the ground state, the energy E can be expressed as a functional

of the electron density: E = E [ρ(r)]. The energy functional can be written as a functional of the
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individual wave functions, and divided into parts that we know, and parts that we don’t know:

E [{ψi}] = Eknown [{ψi}] + EXC [{ψi}] (3.22)

The contributions to the electron energy that we know include: the kinetic energy, the interac-

tions between the electrons and the nuclei, the interactions between electrons, and the interactions

between nuclei. This can be written as:

Eknown [{ψi}] = −~
2

m

∑

i

∫

ψ∗
i ∇2ψid

3r +

∫

V(r)ρ(r)d3r +
e2

2

∫ ∫

ρ(r)ρ(r′)

|r− r′| d3rd3r′ + Eion

(3.23)

The unknown term, EXC [{ψi}], is called the exchange-correlation (XC) functional, which in-

corporates quantum mechanical effects such as correcting the non-physical self-interaction and

Pauli exclusion effects. Kohn and Sham further made the problem more manageable by show-

ing that the electron density can be solved through a set of simultaneous equations, one for each

electron. These are known as the Kohn-Sham equations and they resemble the time-independent

Schodinger’s equation:

[

− ~
2

2m
∇2 +V(r) + VH(r) + VXC(r)

]

ψi(r) = εiψi(r) (3.24)

where the exchange-correlation term is some functional derivative of the exchange-correlation

energy with respect to electron density, as such:

VXC(r) =
δEXC(r)

δρ(r)
(3.25)

The interactions between electrons are by far the most computationally expensive part of DFT

calculations [108]. There have been many proposed ways of calculating this term, however in this

work, we have exclusively used the generalized gradient approximation (GGA) XC functional. But

before discussing the GGA, we will briefly look at the local density approximation (LDA) which
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is one of the simplest methods of calculating the exchange-correlation term. It is also one of the

first methods to be effective in calculating XC functional. The XC term is calculated at each point

as a functional of the electron density at that point [110]. Since the exchange correlation energy

for a homogeneous electron gas is known, the XC term can be approximated by the XC energy of

a homogeneous electron gas evaluated at the local density.

ELDA
XC [ρ(r)] =

∫

ρ(r)ǫHEG
XC (ρ(r)) dr (3.26)

Despite its simplicity, DFT simulations which utilize the LDA XC functionals are prone to overbind-

ing the unit cell, predicting lattice constants somewhat smaller than experimentally observed val-

ues [111].

Efforts to improve upon the LDA method led to a class of higher-order XC functionals known

as generalized gradient approximations (GGA). The GGA class of methods adds one higher order

term to the XC functional. In these methods, the pointwise interaction energy is a function of the

local electron density, as well as the gradient of the electron density at that point.

VLDA
XC [ρ(r)] = VXC [ρ(r),∇ρ(r)] (3.27)

One of the most widely-used GGA methods was developed by Perdew, Burke, and Erzerhof (PBE)

[112] which can often offer better predictions than LDA. The PBE XC is expected to underbind unit

cells, providing lattice constants which are somewhat larger than those experimentally measured

[113].

The simulation of individual electrons is rather costly with computational cost scaling approxi-

mately O(N3) where N is the number of electrons [114,115]. So reducing the number of electrons

needed in the simulation goes a long way toward increasing the speed of a DFT calculation. Fur-

thermore, simulating waves which are confined to relatively small length scales, such as the core

electrons, require increased com- putational efforts. For these reasons, it may be beneficial to only

simulate the valence electrons involved with bonding. However, it would be incorrect to assume
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that the core electrons (those in the inner shells) do not have a measurable effect on the valence

electrons. These core elec- trons shield the positive charges of the atomic nuclei to which they

are attached. These effects are accounted for by defining a fixed electron density near the ionic

center. These "frozen-core" fields are known as pseudopotentials. The potentials are "pseudo"

since they do not represent how an electron interacts with an lone atomic nucleus, but instead how

it interacts with a nucleus surrounded by a specified set of core electrons. There are a few types

of pseudopotentials, but the most commonly used are ultra-soft pseudopotentials (USPP) and pro-

jector augmented-wave pseudopotentials (PAW) [116]. This study exclusively employs the PAW

pseudopotentials for BCC transition metals.

Since the solutions to Schrodinger’s equations are the electron plane-waves in periodic super-

cells, it is useful to solve for these waves in reciprocal space. The reciprocal space vectors, k, must

satisfy Bloch’s theorem:

φK(r) = exp (ik · r) uk(r) (3.28)

Here the function exp (ik · r) is a plane wave, which is periodic over the simulation cell. It is

easier to evaluate this integral in reciprocal space, or k-space, than in 3-dimensional real space.

Just like real space, the reciprocal lattice has associated basis vectors in reciprocal space, known

as reciprocal lattice vectors. They are defined such that:

b1 = 2π
a2 × a3

a1 · (a2 × a3)
, b2 = 2π

a3 × a1
a2 · (a3 × a1)

, b3 = 2π
a1 × a2

a3 · (a1 × a2)
(3.29)

This means that the magnitudes of the reciprocal lattice vectors, |bi|, are inversely related to the

magnitudes of the real-space lattice vectors by: 2π
|ai| . The primitive unit cell in reciprocal space is

known as the Brillouin zone, and contains a great deal of information regarding band theory. The

volume of the Brillouin zone is given by:

VBZ =
(2π)3

Vcell

(3.30)
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Since DFT is solving for the solutions of integrals of plane-wave functions, it is easier to compute

them in k-space. For speed, the k-space integration is performed with quadrature, and the domain

is meshed to provide integration points. While there are many ways to choose these points, one

of the most common, and the one used exclusively in this work, is the Monkhorst-Pack k-space

meshing algorithm [117].

Solving for the electronic ground state is important however our goal is to be able to calculate

forces on the ions, and stresses in the crystal. The forces on a particle at a point R in a quantum-

mechanical system is given by the derivative of the energy at that point:

F = −∇R〈E〉 (3.31)

In our system, 〈E〉 = 〈ψ|Ĥ|ψ〉, and our wavefunctions are normalized. Thus we can use the

Hellman-Feynman Theorem [118] to calculate the derivative of the total energy with respect to a

given parameter (λ) as:
∂E

∂λ
= 〈ψ|∂Ĥ

∂λ
|ψ〉 (3.32)

Since in our DFT simulations, we are dealing with the Kohn-Sham Hamiltonian of the electronic

density:

ĤR = −1

2
∇2

r +Ve−e(r) + Vion−e(r,R) + VXC(r) + Vion−ion(R) (3.33)

we can see that for the force on a given ionic nucleus, there are only contributions from the inter-

ionic Coulombic forces and the interaction between ions and electrons from the pseudo-potential.

To calculate the stress tensor in the simulation cell, the derivative of energy is taken with respect

to cell geometry parameters.

3.2.3 DFT Simulation Parameters

As mentioned earlier, the DFT simulations reported in this work were carried out using VASP,

which is a plane-wave DFT code [106]. To approximate the exchange-correlation energies, we

utilized the generalized gradient approximation parameterized by Perdew, Burke and Ernzerhoff
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[112]. For all the BCC metals, we approximated the core-valence electron interactions with

the PAW pseudopotentials [116] and the valence electrons used were 3d34s2, 4p64d45s1, 5d36s2,

3d54s1, 4d55s1, 5d46s2, 3d64s2 for V, Nb, Ta, Cr, Mo, W, and α-Fe respectively. The plane wave en-

ergy cutoff used is 450 eV and integration in reciprocal space was carried out using the Monkhorst

Pack method [117] of 24× 24× 1 for all the GSF curves and twin boundary structures.

To simulate α-Fe, we used spin polarized DFT in order to accurately model its ferromagentism.

This results in a magnetic moment on the α-Fe atoms of 2.2µB, where µB is the Bohr magneton.

All other materials were simulated without spin polarization.

In order to construct the GSF curves using DFT, we had to determine the equilibrium lattice

constants predicted by DFT. These were computed examining the lattice constant as a function of

both K-point density and the plane-wave energy cutoff. When these were sufficiently converged,

we fixed the lattice constant, plane wave energy cutoff and K-point density.

For applying pure shear stresses on simulation cell of size a [11̄0]× a
2
[111̄]× Na

6
[112] with

N = 6, we used constant k-point density that is equivalent to 7× 13× 5 mesh.

To perform constrained twin stability analysis and to generate TGSF curves for determining the

thickness of metastable twin, we used k-point density equivalent to 7× 13× 1 mesh for simulation

cells of size a [11̄0]× a
2
[111̄]×

(

Na
6
+∆

)

[112] with N = 24 and ∆ = 15Å.

3.2.4 Structural Relaxation

The relaxation of the crystal, ionic coordinates and cell size and shape, is a fundamental tool to

this work. The computation of the structural minimum is accomplished in VASP with the Conju-

gate Gradient (CG) method [119]. This method iteratively seeks to find the minimum of a system

of equations described by: f(x) = 1
2
xTAx− xTb. The minimum of this linear system of equations

is the solution to: Ax = b. The initial direction towards solving is taken to be the residual of

system of equations at the chosen starting point:

d(0) = r(0) = b− Ax(0) (3.34)
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x(i+1)=x(i)+α(i)d(i) (3.35)

The magnitude of search along that vector is based on the residual:

α(i) =
rT(i)r(i)

dT
(i)Ad(i)

(3.36)

After each step, a new residual is computed, the next direction is chosen, and the process is re-

peated:

ri+1 = r(i) − αiAd(i) (3.37)

β(i+1) =
rT(i+1)r(i+1)

rT(i)r(i)
(3.38)

d(i+1) = r(i+1) + β(i+1)d(i) (3.39)

This is repeated until some convergence criterion is met. The strength of CG minimization, over,

for example, Steepest Descent, is that each successive search direction is orthogonal to all previous

search directions. So the solution to a linear system of equations with an nth order basis set should

only take n steps. Of course, this would not be useful to us if it only solved linear systems of

equations. This method can be generalized for a nonlinear system of equations, where the solution

is found to be where the gradient of the function is zero:

∇xf(x) = 2AT (Ax− b) = 0 (3.40)

The initial step (∆x0) is chosen by computing the steepest descent of the initial position (x0):

∆x0 = −∇xf(x0) (3.41)

The step size (α) is chosen along that direction which minimizes the function by:

α0 = min
α

f (x0 + α∆x0) (3.42)
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The position is then updated by that step length in that direction:

x1 = x0 + α0∆x0 (3.43)

This process is then repeated. However, in subsequent iterations, the search direction (sn) is up-

dated to be a conjugate to previous directions as:

sn = ∆xn + βsn−1 (3.44)

For the second iteration, s0 = ∆x0. There are many methods of computing β, one of the most

common being the Fletcher-Reeves method [120]:

βFR
n =

∆xTn∆xn
∆xTn−1∆xn−1

(3.45)

The line search now finds the step size which minimizes the function in the sn direction:

αn = min
α

f(xn + αsn) (3.46)

3.3 Metastable Twin Boundary Structures

In order to determine what metastable twin structures exist in the BCC transition metals, we

utilized both electronic density functional theory, as implemented in Vienna Ab initio Simulation

Package (VASP) [106], as well as classical atomistic simulations, using LAMMPS [121]. For

each of our methods, we used the conjugate gradient method to find the local energy minimum

nearest to a set of initial atomic positions because of its speed and robustness. Our initial atomic

positions included the perfect reflection structure, Figure 2.9(a), and perfect isosceles structure,

Figure 2.9(b), as well as two other structures in which the top half of the structure is translated by

1
4
bp and 3

4
bp (where bp = a

6
〈111〉) to the right of the bottom half of the crystal structure as shown

in Figure 2.9(a). The choice of the latter two points were made because, as noted above, the pure
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reflection and pure isosceles structures have high symmetry which can trap the system in a local

metastable equilibrium point while the use of the other structures breaks this symmetry and has the

potential to find other metastable structures.

For density functional theory simulations, the initial twin boundary structure was created using

a periodic simulation cell that has a geometry specified by:

a[11̄0]× a

2
[111̄]×

(

Na

6
+ ∆

)

[112]

where N is the number of atomic layers used in the simulation and ∆ is a vacuum gap introduced

into the simulation cell to prevent the periodic images along the [112] direction from interacting.

For simulations of the relaxation of the twin boundary structure, N=21 and ∆ = 15. The energy

tolerance for the convergence of the electronic structure was set to 10−7 eV and the tolerance for

structural convergence was set to 10−6 eV to ensure that the twin structures are fully relaxed and

the computed energies have sufficient precision.

For our classical atomistic simulations using empirical potentials, a similar simulation setup

was used. However, in this case the simulation cell size is a[11̄0]× a
2
[111̄]× Na

6
[112] with free

boundary conditions applied along the [112] direction and periodic boundary conditions were ap-

plied in the other two directions. Since computational cost is not a concern for classical atomistic

simulations, the number of atomic layers was set to N=35 and the energy tolerance was set to a

relative error of 10−10.

The twin boundary energy was then computed using the converged energy of our simulation

cell, E, and the energy computed with the same number of atoms in a perfect BCC crystal (but

with the same free surfaces), E0. The twin boundary energy is computed as:

γ =
E− E0

A
(3.47)

where A is the area of the twin boundary plane: a[11̄0]× a
2
[111̄].
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3.4 Twin boundary GSF curve

To provide insight into the potential metastable twin boundary structures and bonding across

the twin plane, we have also computed a twin boundary GSF curve (TBGSF). This idea is borrowed

from Mrovec et al. [122] who used this methodology to determine the low energy symmetry tilt

grain boundaries in Nb and Mo. The TBGSF curve is then similar to any GSF curve but represents

the energy per unit area variation as a function of the relative displacement of the twins in the [111̄]

direction and must be fully periodic for a displacement of a
2
[111̄]. For our TBGSF computations,

x = lbp

Figure 3.2: The construction of the TBGSF curve starts with a pure reflection twin boundary. The structure
is then rigidly shifted by x = λbp to form a faulted twin boundary. The energy per unit area is measured
relative to the pure reflection when x = 0.

we start with the pure reflection twin boundary structure for both DFT and atomistics as described

above. Then, we displace the atoms above the twin boundary (TB), denoted by the dashed line

in Figure 3.2, in the positive [111̄] direction relative to atoms below the TB plane. The structure

is relaxed, using conjugate gradient, in a constrained fashion such that the atoms are only able to
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move in the [112] direction. The TBGSF energy is then computed using Equation (3.47) where

γ is a function of the normalized displacement λ = x
bp

, in the [111̄] direction, E is the energy

of the translated and relaxed structure and E0 is the energy of the relaxed and constrained pure

reflection TB. As noted above, the TBGSF curve has a period of a
2
[111̄], although most of the

TBGSF curves plotted in this work are only up to a
6
[111̄], which represents part of the twinning

GSF (denoted TGSF here) curve commonly reported in the literature [41,42,64]. The TGSF curve

is commonly used to represent both the nucleation and growth of twins in BCC metals but is

expensive to compute and is affected by twin-twin interactions while the TBGSF described here is

not. The method for computing TGSF curves is described below.

3.5 Twinning GSF curve

In addition to the TBGSF, we also computed the twinning GSF (GSF) curves. Here we generate

two types of TGSF curves:

1. Sequential TGSF curves

2. Concurrent TGSF curves

3.5.1 Sequential TGSF curves

For this TGSF curves, the starting point is a pure BCC crystal as schematically illustrated in

Figure 3.3(a). The crystal is then sheared incrementally, by λbp, along a single plane in the [111̄]

direction up to an amount bp (Figure 3.3(c)). The GSF curve is continued by changing the shear

plane to one above the plane most recently sheared, as shown in Figure 3.3(d)-(e). The GSF energy

is computed using Equation (3.47) with the reference E0 being the energy of the pure BCC crystal,

shown schematically in Figure 3.3(a). In each step, the structure is geometrically optimized under

the constraint that motion can only occur in the [112] direction.

Note that for the sequential TGSF curves computed for analyzing TB structures and twin

growth, the incremental shearing was carried out for up to 8bp. To mitigate the effects of free
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Figure 3.3: The creation of the TGSF curve through incremental discontinuous shearing of the BCC crystal
structure. (a) The initial BCC crystal (b) is sheared by λbp incrementally up to (c) bp which forms the
first part of the curve. (d) Next, all the atomic layers above the plane that was initially sheared are sheared
again up to bp, creating a total shear of 2bp. This is repeated again in (e) to create a three layer twin and is
repeated up to n layers.

surfaces for these 8 layer twins, the number of atomic layers was increased to N = 30 in lieu of

N = 24 we have used more frequently for the DFT simulations.

This process will produce a standard pure reflection twin boundary structure. However, the

process of the creation of the TGSF must be altered to correctly capture the formation of the

isosceles TB structure. The main change in the construct shown in Figure 3.3 is that the first

incremental shear does not stop at bp but rather at 1
2
bp, with all other procedures being equal.

This produces an alternative TGSF curve in which a double isosceles TB structure is formed at

the terminus, rather than a double reflection twin boundary structure. It is further worth noting, in

both cases, that the TGSF curve is naturally discontinuous in which the planes of shear continually

change and there is no expectation that the curves are smooth despite many reports that they are,

an important point we will revisit later in Chapter 4.

3.5.2 Concurrent TGSF curves

An important observation by inspecting the snapshots of the string simulations is that twinning

is initiated by concurrent nucleation of twinning dislocation loops instead of sequential displace-

ments on successive {112} planes as conceived by Ogata et al. [64], Shi et al. [41] and Ojha et

al. [42]. This implies that sequential TGSF curves, even though useful in determining twin sta-

bility in BCC transition metals, do not model the lattice resistance accurately. For this reason,
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Figure 3.4: The creation of the concurrent TGSF curve through incremental shearing of the BCC crystal
structure. (a) The initial BCC crystal (b) is sheared by λu incrementally up to predetermined displacements
for creating a three layer isosceles-reflection-isosceles twin structure (c).

we have developed a new TGSF curve that, instead of rigidly displacing individual {112} planes,

allows displacement of multiple {112} planes concurrently (hence the name). For these TGSF

curves, the starting point is also a pure BCC crystal as schematically illustrated in Figure 3.4(a).

In 3.4 a schematic example of concurrent TGSF curve that produces a three layer twin with two

isosceles TBs and a reflection layer sandwiched between them, same as the critical twin nuclei

suggested by Vitek [38]. In this case, the total displacement of the bottom most atomic layer of

the upper half atoms in Figure 3.4 is b
6
=

bperfect
6

, the secod layer displacement b
2
=

bperfect
2

and the

third layer 2b
3
=

2bperfect
3

. These displacements take place in these three atom layers incrementally

as shown in Figure 3.4(c).

3.6 Direct simulation of twin nucleation

In order to observe the nucleation of twins directly, the interatomic interactions were mod-

eled using the embedded atom method (EAM) for Ta using the parameterization of Ravelo et

al [77] (both Ravelo1 and Ravelo2), Ackland-Thetford-Finnis-Sinclair [78], and Zhou [80], for

Mo Ackland-Thetford-Finnis-Sinclair [78] and Zhou [80], for W Zhou [80], and for Fe Ackland-
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Thetford-Finnis-Sinclair [78] and Chamati [123]. The energy barrier between a perfect crystal

and a crystal with a twin was computed using the free-end string [100] method which has been

used to study dislocation nucleation [124] and whose implementation can be found in [125, 126]

using 24-32 images along the path. The simulations are carried out with periodic boundary con-

ditions under pure applied shear stresses on a {112} plane in a box with 12960 atoms of size

15 [11̄0]× 24 [111̄]× 6 [112]. A simulation cell with doubled dimensions in all directions was also

simulated and the activation energy was the same as the aforementioned smaller cell.

3.7 Bond length comparison analysis to determine twin thick-

ness

Sleeswyk’s dislocation dissociation mechanism [37] is widely accepted twin nucleation mecha-

nism which can be interpreted as the nucleation of a three layer pure reflection twin by the passage

of twinning dislocations bp = bt =
a
6
〈111̄〉 on successive {112} planes in BCC crystals. Upon

reviewing the existing literature, however, it is noticeable that many studies that support this nu-

cleation mechanism do not provide clear evidence of the presence of three layer twins by any form

of rigorous analysis. For example, Marian et al. [60] claim that under 2 GPa shear stress at 300K,

the twin nucleus observed is three atom layers thick even though the snapshots of MD simula-

tion they provide, include 6-8 atom layers. A more recent computational study by Chu et al. [62]

demonstrate that when two oppositely signed, coplanar dislocations glide towards one another at

supersonic speeds, they can nucleate twins. They suggest that twins nucleate with two atom layers

and then two such twin nuclei collapse to create a three atom layer thick micro twin. However,

similar to Marian et al. this study also assumes the micro twin consists of three atom layers with-

out quantitatively determining twin thickness. A closer look at their simulation snapshots reveals

that shear exists in 4 atomic layers in the twin nuclei whereas this number goes up to 6 for the

micro twin. So, the inconsistency in the number of sheared atom layers and the above-mentioned

authors’ propensity to accept the Sleeswyk mechanism without quantitative analysis give rise to

debate on the critical twin nucleus size in BCC transition metals.

47



Another source of ambiguity in measuring twin thickness comes from the nature of the twin

boundaries for reflection and isosceles twins. For a reflection twin, the reflection symmetry occurs

about an atomic plane as shown in Figure 3.5(a) which is called the twin plane. On the other hand,

in case of an isosceles twin boundary, the twin plane is not an actual atomic layer but is a hypo-

thetical plane that lies between two atomic planes as shown in Figure 3.5(b). This difference in

Figure 3.5: (a) Pure reflection TB (b) Pure isosceles TB.

TB type as well as the chosen method for including or excluding atomic layers in the twin struc-

ture can lead different reported twin thicknesses. For example, the twinned BCC crystal with a

pure reflection twin structure shown in Figure 3.6 can be considered a three layer thick twin if the

TB plane is taken to be half of the composition plane for both TBs as shown in Figure 3.6(a) or

even a two layer thick twin if those planes are excluded. However, if the planes are completely

included (as in Figure 3.6(b)), then the twin is four layers thick. From this discussion, it is obvious

that determining twin thickness by counting the atom layers involved results in some ambiguity

regarding the twin thickness. Similar inconsistencies can arise in counting twin thickness for twins

with isosceles TBs. In this case, one can exclude the atom layers outside of the isosceles TBs and

that can lead to counting just two atom layers for the isosceles twin shown in Figure 3.7(a). How-

ever, if the atom layers that constitute the isosceles triangles at the TBs are all included, then the

same twin can be interpreted as a four layer twin (as in Figure 3.7(b)). Hence, similar to reflection

twins, counting atom layers for determining twin thickness for isosceles twins leads to ambiguities.
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Figure 3.6: A pure reflection TB (a) can be considered a three layer thick twin if half of composition plane
is included or (b) a four layer thick twin if full composition plane is included.

Another option would be to rely on symmetry to determine thickness, however, in bulk crystal it

is very difficult to determine atom layers that maintain a particular symmetry with respect atom

layers nearby because it is rare that the distribution of atomic displacements is uniform across the

entire defect. These sources of ambiguities related to counting atom layers lead us to seek a robust

method that not only identify thickness unambiguously but also determine the TB type. We have

Figure 3.7: A pure isosceles TB (a) can be considered a two layer thick twin if the atom layers bounded by
the TB plane are considered or (b) a four layer thick twin if full isosceles triangles are considered.

found that one such robust method of counting twin thicknesses is to count the number of layer that

are sheared during the formation of a twin which is essentially the ideas adopted by Vitek [38] and
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Sleeswyk [37]. This is a natural counting method because each sheared layer occurs by the passage

of a partial dislocation that forms the twin and thus the twin thickness is defined by the number

of partial dislocations required to form it. It is also the method implicitly used in atomic level

calculations using GSF curves which follow a shearing process. However, the main advantage is

that it the thickness accounting is less ambiguous, but the drawback is that it requires an analytical

method to count the layers. While other methods such as slip vector analysis (SVA) [127] and

dislocation analysis (DXA) [128] can be used to quantify relative slip between planes, we found

their application to high stresses to have insufficient sensitivity to distinguish between the number

of sheared layers which necessitated the development of bond length comparison analysis. To de-

Figure 3.8: (a) Three layer pure reflection twin created by the passage of three b
3 partial dislocations on

three successive {112} planes. (b) Three layer pure isosceles twin created by the passage of b
6 , b

3 and b
6

partial dislocations on three successive {112} planes. Dislocation pairs are colored red for b
6 dislocations

and b
3 is denoted with blue to distinguish between the type of partial dislocations.

termine the twin layer thickness and associated shear amount, we develop a measurement of the

change in bond lengths across a {112} slip plane in the 〈111̄〉 direction, which we term the bond

length comparison (BLC) analysis. This measurement is termed as the BLC parameter, δ, which is

a dimensionless number and measures the difference of the bond lengths between adjacent {112}

atomic layers relative to the perfect Burgers vector (b =
√
3a
2

). Under zero applied stress, the BLC

parameter, δ has a value of 0.155 for the perfect BCC crystal structure, 0.0 for a pure isosceles twin
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boundary, and -0.155 for a perfect reflection twin boundary. These calculations are shown in Fig-

ure 3.9. In the Bond Length Comparison (BLC) analysis, relative shear between adjacent atomic

Figure 3.9: (a) Three layer pure reflection twin created by the passage of three b
3 partial dislocations on

three successive {112} planes. (b) Three layer pure isosceles twin created by the passage of b
6 , b

3 and b
6

partial dislocations on three successive {112} planes. Dislocation pairs are colored red for b
6 dislocations

and b
3 is denoted with blue to distinguish between the type of partial dislocations.

layers is computed by introducing a parameter δ. To compute the BLC parameter, imaginary BLC

layers are first drawn to keep track of relative shears between atomic layers as shown in Figure

3.10. Next, the length of the bonds that intersect these BLC layers (AB and AC) are computed for

adjacent atomic layers. Then we compute δ such that δ = AC−AB
BC

where BC is the repeat lattice

vector of the crystal. Figure 3.10 shows examples of BLC parameter values in the twin structures

shown in Figures 3.6 and 3.7.

As mentioned earlier, under zero applied stress, the BLC parameter, δ has a value of 0.155 for

the perfect BCC crystal structure, 0.0 for a pure isosceles twin boundary, and −0.155 for a perfect

reflection twin boundary. The derivation of these values are shown next. We can now compute the δ

values for a twinned crystal and compare each of them with the reference values above to determine
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Figure 3.10: (a) A Few examples of BLC parameter δ calculation in (a) a three layer thick pure reflection
twin, and (b) a three layer thick pure isosceles twin.

how many BLC layers have relative shear associated with them. This then allows us to count twin

thickness by counting the number sheared layers with δ values that differ at least 10% from that of a

pure BCC layer. Notably, this method of determining twin thickness avoids the ambiguities caused

by counting atom layers, discussed earlier. Additionally, the δ values can also tell us whether the

relative shear is associated with a reflection fault or an isosceles fault. In Figure 3.10(a), sample

calculations of δ are shown for BLC layers 1, 4, 6, and 8. This is a three layer pure reflection

twin because BLC layers 4, 5, and 6 all have δ = −0.155; i.e., this crystal has 3 pure reflection

faults. This is the critical twin nucleus structure proposed by Sleeswyk [37] which is created by

the passage of a
6
[111̄] twinning dislocations on consecutive (112) atomic layers. In Figure 3.10(b)

sample calculations of δ are shown for BLC layers 2, 4, 5, and 9. This is three layer pure isosceles

twin because BLC layers 4, and 6 all have δ = 0 and layer 5 has have δ = −0.155. This means that

the crystal has two BLC layers with isosceles fault and one reflection layer. This twin boundaries

are created by the passage of a
12
[111̄] dislocations. Sandwiched between the isosceles TBs, there
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Figure 3.11: (a) A crystal structure with three-layer thick pure isosceles twin (b) and the BLC parameter
δ plotted in the horizontal axis against the BLC layer numbers, labeled on the left, on the vertical axis.
The δ value changes from +0.155 to 0 for layer #4 and #6 indicating pure isosceles TBs and the δ value
for layer #5 is −0.155 representing a pure twinned layer. (c) A crystal structure with two-layer thick pure
reflection twin and (d) the BLC parameter δ plotted on the horizontal axis against the BLC layer number on
the vertical axis. The δ value changes from +0.155 to −0.155 for layer #4 and #5 indicating a two layer
double reflection boundary.

is a pure reflection atomic layer created by the passage of an a
6
[111̄] twinning dislocation. Vitek

concluded that this three layer twin with two isosceles TBs is the smallest metastable twin nucleus

in BCC crystals under zero stress from his study on stacking faults on {211} planes in BCC metals

with central force potentials [38] and was confirmed in DFT by our work for group VB metals and

iron [65]. The determination of twin thickness is facilitated by computing δ for several BLC layers,

and then plotting δ vs. BLC layer number as shown in Figure 3.11. The BLC parameters can now

be used to determine the type and number of shearing events required to form their structure. To

demonstrate this, let us consider the twin structures in Figure 3.11(a) and (c). The twin structure in

Figure 3.11(a) consists of two pure isosceles TBs, created by the passage of a
12
[111̄] dislocations.

Sandwiched between the isosceles TBs, there is a pure reflection atom layer created by the passage

of an a
6
[111̄] twinning dislocation. Vitek concluded that this three layer twin with two isosceles TBs

is the smallest metastable twin nucleus in BCC crystals under zero stress in his study on stacking
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faults on {211} planes in BCC metals with central force potentials [38] and was confirmed in DFT

by this study for group VB BCC transition metals and iron [65]. To perform the BLC analysis

on this crystal structure, imaginary BLC layers are drawn to keep track of relative shears between

atom layers. BLC analysis results shown in Figure 3.11(b) demonstrate that BLC layers #4 and #6

have δ = 0 whereas the δ value for layer #5 is −0.155. So, the twinned crystal in Figure 3.11(a)

can be considered to possess a three-layer thick pure isosceles twin nucleus using BLC analysis.

The twinned crystal in Figure 3.11(c) is created by the passage of two a
6
[111̄] twinning dis-

locations on two consecutive (112) atomic layers in the BCC crystal under zero stress. These

displacements cause the value of the BLC parameter, δ to change from +0.155 to −0.155 for lay-

ers #4 and #5. This can be seen in Figure 3.11(d) where all the layers have values of 0.155 except

for layers #4 and #5. The δ values for these two layers correspond to a local pure refelction struc-

ture allowing us to measure the twin thickness, which is 2. Thus, the BLC analysis demonstrated

in Figure 3.11(d) conclusively points to a two-layer thick pure reflection twin. It is worth noting

that this twin structure is the smallest metastable structure in the twinning GSF curve by Ogata et

al. in BCC Mo [63, 64] and our work [65].

3.7.1 Derivation of reference BLC parameters

3.7.1.1 BLC parameter in perfect BCC crystal

Figure 3.12: Bond length calculations in pure BCC crystal.
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In Figure 3.12, we show a pure BCC crystal (left) and zoom in on the atoms A, B, C and D

shown in the right figure. Again from the crystallographic description of BCC crystal we know the

following:

BC = FE = SR = PQ = GH = IJ = b =

√
3a

2

BF = CE = GJ = HI = PS = QR =
a√
2

AM = DN = PF = FG = QE = EH = CR = IC = BS = BJ =
a√
6

AG = FM = NE = DQ =

√
3a

6

Now we can compute BM and CM, which are sides of right triangles AMB and AMC. Since we

already know the length of AM, we can then use BM and CM to compute the length of our bond

lengths AB and AC.

BM =
√
BF2 + FM2 =

√

√

√

√

[

a√
2

]2

+

[√
3a

6

]2

=

√
21a

6

CM =
√
CE2 + EM2 =

√

[

a√
2

]2

+

[

a√
3

]2

=

√
30a

6

AB =
√
AM2 + BM2 =

√

√

√

√

[

a√
6

]2

+

[√
21a

6

]2

=

√
3a

2
= b
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AC =
√
AM2 + CM2 =

√

√

√

√

[

a√
6

]2

+

[√
30a

6

]2

= a =
2b√
3

Now that we know all three bond lengths AB, AC, and BC, we proceed to compute the BLC

parameter:

δBCC =
AC− AB

BC
=

(

2√
3
− 1
)

b

b
≈ 0.155

3.7.1.2 BLC parameter for pure reflection layer

Figure 3.13: Bond length calculations for pure reflection layer.

In Figure 3.13, we show a BCC crystal (left) with pure reflection twin boundary layer and

zoom in on the atoms A, B, C and D shown in the right figure. Again from the crystallographic

description of BCC crystal we know the following:

BC = FE = SR = PQ = GH = IJ = b =

√
3a

2

BF = CE = GJ = HI = PS = QR =
a√
2
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Since the atom A is now directly on top of the atom D to maintain reflection symmetry,

AN = DN = PF = FG = QE = EH = CR = IC = BS = BJ =
a√
6

Also the atom A is displaced by
√
3a
6

from its pure BCC position so

AG = FN = PD =

√
3a

3

Now we can compute BN and CN which are sides of right triangles ANB and ANC. Since we

already know the length of AN, we can then use BN and CN to compute the length of our bond

lengths AB and AC.

BN =
√
BF2 + FN2 =

√

√

√

√

[

a√
2

]2

+

[√
3a

3

]2

=

√
30a

6

CN =
√
CE2 + EN2 =

√

√

√

√

[

a√
2

]2

+

[√
3a

6

]2

=

√
21a

6

AB =
√
AN2 + BN2 =

√

√

√

√

[

a√
6

]2

+

[√
30a

6

]2

= a =
2b√
3

AC =
√
AN2 + CN2 =

√

√

√

√

[

a√
6

]2

+

[√
21a

6

]2

=

√
3a

2
= b
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Now that we know all three bond lengths AB, AC and BC, we proceed to compute the BLC

parameter:

δreflection =
AC− AB

BC
=

(

1− 2√
3

)

b

b
≈ −0.155

3.7.1.3 BLC parameter for pure isosceles layer

Figure 3.14: Bond length calculations for a pure isosceles layer.

In Figure 3.14, we show a BCC crystal (left) with pure isosceles twin boundary layer and

zoom in on the atoms A, B, C and D shown in the right figure. Again from the crystallographic

description of BCC crystal we know the following:

BC = FE = SR = PQ = GH = IJ = b =

√
3a

2

BF = CE = GJ = HI = PS = QR =
a√
2

AM = DN = PF = FG = QE = EH = CR = IC = BS = BJ =
a√
6
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Also the atom A is displaced by
√
3a
12

from its pure BCC position so

AG = FM =

√
3a

4

Now we can compute BM and CM which are sides of right triangles AMB and AMC. Since we

already know the length of AM, we can then use BM and CM to compute the length of our bond

lengths AB and AC.

BM =
√
BF2 + FM2 =

√

√

√

√

[

a√
2

]2

+

[√
3a

4

]2

=

√
11a

4

CM =
√
CE2 + EM2 =

√

√

√

√

[

a√
2

]2

+

[√
3a

4

]2

=

√
11a

4

AB =
√
AM2 + BM2 =

√

√

√

√

[

a√
6

]2

+

[√
11a

4

]2

=

√
123a

12
=

√
41b

6

AC =
√
AM2 + CM2 =

√

√

√

√

[

a√
6

]2

+

[√
11a

4

]2

=

√
123a

12
=

√
41b

6

Now that we know all three bond lengths AB, AC and BC, we proceed to compute the BLC

parameter

δisosceles =
AC− AB

BC
=

(√
41
6

−
√
41
6

)

b

b
= 0
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3.8 Constrained twin stability analysis

The purpose of the constrained twin stability analysis is to determine the metastable twin struc-

tures that should exist under an applied stress. The goal is to create a crystal under an applied shear

stress and allow some flexibility to the atoms so that they can relax to a lower energy configuration

without allowing complete relaxation, which would transform them back to an unstressed BCC

crystal. Thus, we created the constrained twin stability curves which allow us to do just that. To

Figure 3.15: A schematic of the steps required to generate the constrained twin stability curves. (a) A pure
BCC structure under zero stress with 6 atoms, (b) the BCC structure is strained to reach specific values of
pure shear stress, (c) an extended sheared crystal with 24 atoms (not drawn to scale), (d) a vacuum gap
of ∆ = 15Å added to the extended crystal to prevent interactions between periodic images in the [112]
direction and, (e) the upper half atoms (blue block) are displaced by incremental displacement u. At each
displacement u, the 12 bottom atoms (maroon block) are held completely fixed, the uppermost atoms in the
yellow block are only allowed to relax in the [112] direction and the atoms in the middle block (lime) are
allowed to fully relax.

generate constrained twin stability curves, the starting point is a pure BCC crystal with a simula-

tion cell of geometry a [11̄0]× a
2
[111̄]× Na

6
[112] with N = 6 with periodic boundary conditions in

all three directions and a is the lattice constant zero shear stress. We then applied a specified state
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of pure shear stress to the crystal, extracted the strain, and applied the same strain to a simulation

cell with 24 atoms and vacuum gap of ∆ = 15Å perpendicular to the composition plane so as to

ensure no interaction takes place between periodic images in the [112] direction. These steps are

schematically shown in Figures 3.15(a) - (d). We then rigidly displace the 11 uppermost atomic

layers (denoted by the yellow block in Figure 3.15(e) incrementally in the [11|bar1] direction by a

fraction the magnitude of the Burgers vector, λ, of a perfect dislocation in the [111̄] direction. At

each increment, we only allow atomic relaxations in the [112] direction for these 11 atom layers

(blue block in Figure 3.15(e)). The bottom 12 atomic layers (maroon block in Figure 3.15(e)) are

completely fixed and only the remaining 1 atomic layer (lime block in Figure 3.15(e)) is allowed

to fully relax.

This allows us to obtain different constrained equilibrium structures that represent twinning

faults under nonzero pure shear stress at each incremental displacement. For this purpose, we have

used the conjugate gradient method to find the constrained local energy minimum nearest to the set

of atomic positions at each incremental displacement. The energy tolerance was set to a relative

error of 10−10 for twin stability analysis with EAM potentials whereas the energy tolerance for the

convergence of the electronic structure was set to 10−7eV for twin stability analysis in DFT. The

stacking fault energy is computed as:

γ =
E(u)− E0

A
(3.48)

where E(u) is the converged energy of the simulation cell at each incremental displacement, E0

is the converged energy of the strained BCC crystal without displacement and A is the area of the

composition plane a [11̄0]× a
2
[111̄]. This process can then be repeated by increasing the number

of planes that are allowed to completely relax and in this work that is a maximum of 6 atomic

layers.

61



Figure 3.16: (a) a twinned crystal with the twin boundary shown by the dashed line and (b) the twin
boundary has migrated by 3 layers and moved upwards.

3.9 Twin Boundary Migration GSF Curve

In order to generate twin boundary migration GSF curves, we start with a twinned BCC crystal

as shown in Figure 2.9(a). Then we begin to incrementally translate the upper half crystal in the

[1̄1̄1̄] direction as opposed to the translation in the [111] direction for the twin boundary GSF curves

mentioned earlier. However, the translation in the [1̄1̄1̄] direction has to be performed in such a

manner that the migration of the twin boundary can be simulated accurately. For this reason, if

we want to simulate twin boundary migration by 2 layers at a time rather than a layer-by-layer

manner, we have to translate the atomic layer most adjacent to the twin boundary by 1bp and all

the atomic layers above this one by 2bp. Similarly, if we want to simulate twin boundary migration

by 3 layers, we have to translate the atomic layer most adjacent to the twin boundary by 1bp, the

atomic layers above this one by 2bp and all the other layers above by 3bp. These TBMGSF curves

were generated by DFT simulations in VASP with the same parameters used for TBGSF and TGSF

curves. Figure 5.37(a) shows a twinned crystal and (b) shows that the twin boundary has migrated

by 3 layers via the translation in the [111] direction described above.
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Chapter 4

Modeling twin boundary structures in BCC

transition metals

4.1 Atomic structures of twin boundaries in BCC transition

metals

The twinning elements outlined in the literature review (Chapter 2) can describe the macro-

scopic degrees of freedom of the twin. However, they do not fully describe the local atomic struc-

ture. A common interpretation of the local atomic twin structures in BCC metals is a reflection

symmetry about a single {112} plane. This type of twin structure, shown in Figure 2.9(a), is read-

ily reproduced by the passage of the a
6
〈111〉 twinning dislocations described above. However, this

is not the only postulated twin boundary structure. Vitek proposed the isosceles twin boundary

structure [38], shown in Figure 2.9(b), which can be created from the reflection twin boundary by

a translation of one half of the crystal relative to the other half by an amount of a
12
〈111〉. This twin

boundary structure still satisfies the macroscopic orientation relationship between the two crystals

and has the advantage of minimizing bond lengths across the twin boundary plane. While experi-

mental work can help provide clear identification of the local atomic structure, we are only aware

of one in-situ experiment in Tungsten in which the observed deformation band was confirmed to

be a twin band with Fast Fourier Transform pattern analysis with the atomic level structure of the

twin boundary assumed to be a pure reflection twin boundary structure [27].

Despite the potential for the existence of more than one twin boundary structures in BCC met-

als, the isosceles structure is often overlooked in computational studies [39, 40]. However, recent

atomistic work by Shi et al. demonstrated that some empirical potentials produce the isosceles

twin boundary structure and that this should alter both the energetics of nucleation as well as the

shape of the twinning generalized stacking fault (TGSF) energy curve [41]. Additionally, recent

63



Figure 4.1: TGSF curves obtained for the BCC transition metals obtained by shearing n consecutive {112}
layers by a displacement of a

6〈111〉. Adopted from [42].

computational work by Ojha et al. computed the TGSF curves (Figure 4.1) for many of the BCC

metals using electronic structure density functional theory (DFT) and concluded that the reflection

twin boundary structure was favorable in Mo, W while the isosceles structure is favorable in Ta,

Nb, V and α-Fe [42].

Since DFT reasonably reproduces the bonding in BCC transition metals, it can be assumed

to be an accurate description of the structure. However, this study did not actually examine the

actual produced structure from the simulations nor did it conclusively provide insight into the

metastability of the other twin boundary structures, let alone actually quantitatively or qualitatively

demonstrate the preference of the specified structure.

This raises the question of the actual local atomic structure of twin boundaries in BCC metals.

Here, we have investigated this problem using both EAM potentials as well as electronic density

functional theory. In this light, we fully relax the twin boundary structures (see section 3.3 in

Chapter 3) to determine which structures, reflection or isosceles, are stable and if multiple twin

boundary structures are metastable and hence their relative stability. We further use the twinning

GSF energy curves to explore if other twin boundary structures are metastable as well. The TGSF

curves further provide insight into how the twins may nucleate. These results provide the first

concrete identification of not only the energetics of the twin boundaries, but also their local atomic

structure. While we expect the DFT results to accurately represent twin boundary structure, we
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compare these results with empirical potentials which are frequently used to model twin nucleation

and growth in BCC metals.

4.2 Modeling twin boundary structures

To investigate the stablity and energetics of atomic level twin boundary structure, both empiri-

cal potentials as well as electronic density functional theory simulations have been utilized. Hence

the findings of our modeling efforts are initially discussed separatey for simulations using EAM

potentials and DFT. Next, an analytical model is developed which is capable of explaining the

physics behind the TBGSF curves shapes in BCC transition metals.

4.2.1 Interatomic Potentials

We will begin our investigation of the structure of twins in BCC metals with a survey of pre-

dictions using interatomic potentials. As noted, we believe the interatomic potentials to be less

accurate in terms of modeling bonding in the BCC metals, but their wide use and wide range of

parameterizations makes their investigation an important starting point to study the atomic struc-

ture of twins. However, it is worth noting that we don’t know if certain EAM potentials correctly

represent the twin structure of the metal they were fitted to, so we choose to present the results

in a different fashion. We discuss potentials based on what they predict starting with a singular

example followed with a list of potentials that predict the same overall behavior.

Our first example EAM potential is the Ravelo 2 potential that was fit to model Ta [77]. The

TBGSF curve produced by this potential is shown in Figure 4.2(a). The first thing to notice is

that the TBGSF curve shows a minimum only at λ = 1
2
, which implies, but does not prove, that

the isosceles structure not only is the preferred twin structure energetically, but it suggests the

pure reflection structure is not even metastable. This suggests that relaxation of the pure reflection

twin should dissolve directly into the isosceles. In addition, we see that the TBGSF curve is fully

periodic in a period of 3bp since 3bp = a
2
< 111 > is the perfect Burgers vector. For simplicity,
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Figure 4.2: The (a) The TBGSF curve and (b) the TGSF curve for Ta modeled using the Ravelo 2 EAM
potential.

future plots from interatomic potentials are simplified by excluding the range between 1 and 3bp

since this range in not relevant for predicting the twin boundary structures.

As expected, we were only able to identify one stable twin structure for this potential which

is a distorted form of the isosceles structure as shown in Figure 4.3. This structure was found

using full structural minimization of the atomic position using points from the TBGSF curve at

λ = 0, 1
4
, 1
2

and 3
4
. This relaxed isosceles twin structure is not the perfect structure as is generally

reported. Instead, we note that the two atomic planes closest to the twin boundary plane, which

lies in between these two atomic planes, roughly rigidly shift relative to the other atoms as shown

in Figure 4.3 by an amount η. For the Ravelo 2 EAM potential, this shift amounts to η = 0.177bp,

which is small but not negligible.

The complete TGSF curves for both the pure reflection and isosceles for Ravelo 2 are shown

in Figure 4.2(b). The TGSF curve for pure reflection matches well with the TBGSF curve as the

cusped sections correspond to the TBGSF curve between λ = 0 and λ = 1. This demonstrates that

the cusps that exist on the TGSF curve, both for the pure reflection and pure isosceles, are a direct

result of the pure reflection not being an equilibrium structure, i.e. dγ
dλ

6= 0. If the TGSF curve

is to be absent of cusps, then the pure reflection structure must be an equilibrium structure (i.e.

dγ
dλ

= 0); but it is not necessary for it to be a metastable equilibrium structure (i.e. d2γ
dλ2 > 0). This
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(a) (b)

h

Figure 4.3: (a) The isosceles twin structure is distorted by a small shift of the two atom layers that are
closest to the twin boundary plane. (b) The distorted structure can be described by a shift of η in the
direction shown.

is an important note to make because many reports, including reports that use this potential, show

a smooth TGSF curve [41]. While we cannot claim to understand how those results were obtained

with certainty, we can speculate that it is due to under-sampling the GSF curve. Here we use 40

points for each bp shift with the EAM potential, which highlights the cusps observed in the curve.

This behavior, the prediction of a single stable distorted isosceles structure, is shared by nu-

merous EAM potentials including Ackland-Thetford Finnis-Sinclair (ATFS) [78], Zhong [79] and

Zhou [80] for Ta, Howells [82] and Stukowski [83] for Chromium, Olsson [75] for Vanadium and

Finnis-Sinclair (FS) [84] for α-Fe. For each of these potentials, only a single distorted isosceles

structure is predicted with varying magnitudes of η, which are listed in Table 4.2. Similarly, the

TBGSF curves and TGSF curves of these EAM potentials are similar to those described above for

the Ravelo 2 EAM potential (see Table 4.1).

The next typical twin boundary behavior is exemplified by the Ackland-Thetford-Finnis-Sinclair

potential for Molybdenum [78]. The TBGSF curve computed for this potential is shown in Figure

4.4(a). In this case, the TBGSF curve does not show a minimum at λ = 1
2

as is observed for the
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Figure 4.4: The (a) TBGSF curve and (b) TGSF curve for Mo modeled using the ATFS potential. (c) The
local twin structure associated with the predicted minima in the TBGSF curve along with the initial pure
reflection structure.

Ravelo 2 EAM potential which corresponds to an isosceles structure nor does it predict a minimum

at λ = 0 corresponding to the pure reflection twin boundary. Instead, it produces two local minima

at λ = 0.075 and λ = 0.925, which are symmetric about λ = 1
2
. In fact, the two structures are re-

lated by symmetry (assuming no atomic relaxations). If we compare this structure to the isosceles

structure, they are similar except that the sides of the triangle that make up the twin boundary,

Figure 4.4(c), are scalene, which we name this structure.

After full atomic structural relaxation, however, this structure is not maintained. Instead of

maintaining the scalene triangle structures shown in Figure 4.4(c) predicted by the TBGSF curve,
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the atomic layer below the TBGSF plane also shifts, resulting in a distorted form of the pure re-

flection, as shown in Figure 4.5. The TBGSF curve cannot predict this structure since its formation

requires two shifts of a value ±δ = 0.052bp on two successive atomic planes. This same structure

is reproduced from the full structural minimization of four points on the TBGSF curve, the same

used above, and thus we can assume that neither the pure reflection nor the isosceles are stable

structures while this distorted reflection is indeed both an equilibrium and stable structure. It is

worth further pointing out that this structure includes a single atomic layer that no longer belongs

to the structure of either of the twin elements. This is distinct from the pure reflection where

the twin boundary plane belongs to both twin elements while in the isosceles structure, the twin

boundary plane is not an atomic layer at all as it contains no atoms. Atomic planes that form a twin

plane but do not belong to either twin element are common atomic features predicted by atomic

level methods for HCP structures [129].

Figure 4.5: (a) The initial and final structure associated with a pure reflection and distorted (or δ shifted)
pure reflection twin boundary structure. (b) The local twin boundary structure associated with the initial
pure reflection (shaded atoms) structure and the relaxed distorted pure reflection structure where the δ shift
can be seen.

69



The TGSF curves for Mo with the Finnis-Sinclair potential are shown in Figure 4.4(b) and are

also affected by the lack of stability of the pure reflection and isosceles structure. Both of these

curves have local maxima at λ values that represent isosceles twin boundary structure as predicted

by the TBGSF curve shown in Figure 4.4(a). The position of these local maxima in these two

curves differ from each other since atomic movement after λ = 0.5 is also different. Furthermore,

both these curves also exhibit cusps where the twin boundary structure is pure reflection which

is not an equilibrium structure (maximum or minimum). These cusps in the TGSF curves also

do not appear at same λ values because the pure reflection twin boundary structure is produced

at different values of λ of each curve. The actual local minimum on these curves correspond to

the scalene structures described above. The actual curve that BCC Mo would follow is neither of

these, but rather quite close to the pure reflection TGSF curve. The real twinning pathway requires

the passing of very small zonal dislocations on the twin boundary to create the distorted reflection

and an energetic local minimum.

This general behavior is also exhibited by other interatomic potentials. This includes the

Smirnova [85] and Zhou [80] potential for Mo, ATFS [78], Zhou [80] and Olsson [75] potential

for W and ADP potential for Cr [82]. However, the locations of the minimums that the potentials

predict in the TBGSF curve and the structural shift they predict in the distorted reflection struc-

ture vary from potential to potential with the aforementioned ATFS potential for Mo predicting

the smallest deviation from pure reflection symmetry. The TBGSF curve produced from the ATFS

potential for W exhibits minima at 0.125bp and 0.875bp while the distorted reflection structure

obtained from full structural relaxation demonstrate a structural shift of δ = 0.08bp. The largest

structural shift for the distorted reflection structure is predicted by the Zhou potential for W with a

value of δ = 0.158bp. The values of the structural changes as well as the twin energies are listed

in Table 4.2.

There is one other interatomic potential that we found that predicts both the distorted isosceles

and distorted reflection structures as being metastable: the EAM potential of Guellil for Ta [81].

The TBGSF for the Guellil potential is shown in Figure 4.6 which exhibits an interesting change
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Figure 4.6: The TBGSF curve up to 3bp for Ta modeled with Guellil potential.

from other TBGSF curves: it shows a definitive change in slope near λ = 0 and λ = 1. It is unclear

if this change in slope is indicative of a stable distorted reflection as well as an isosceles structure

or if it is coincidence. The resulting distortion of the reflection and the isosceles structures are

stronger than those given above and have values of δ = 0.197bp and η = 0.418bp. Also, this

potential predicts a lower energy for the isosceles structure, which is indicated by the TBGSF

curve.

The final interatomic potential investigated is the Fellinger potential for Niobium [76] whose

TBGSF curve is shown in Figure 4.7(a). The TBGSF curve appears similar to those described in

the case of the distorted reflection structure as discussed for ATFS Mo. However, upon complete

relaxation we see that multiple structures emerge. The relaxation of the pure reflection, λ = 0

, creates a distorted reflection with δ = 0.160bp, as expected. However, relaxation from λ = 1
4

relaxes to a new structure, a scalene triangle structure that we initially assumed the ATFS Mo

would form. In this case, the structure can be described with an upper shift of λ = 0.300 as

anticipated from the TBGSF curve. Relaxation from the λ = 3
4

point forms the complimentary
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Figure 4.7: The (a) TBGSF curve and (b) TGSF curve for Nb modeled using the Fellinger potential.

scalene structure of λ = 0.700 as expected with the same twin boundary energy. Finally, what is

perhaps the most intriguing result is that the λ = 1
2

starting structure forms the distorted isosceles

structure with an η shift of 0.365bp even though the TBGSF curve implies isosceles is an unstable

equilibrium point. As mentioned earlier, the TBGSF curve only deals with atomic movements

above the twin boundary and in this case, even though an isosceles structure is maintained, the

atomic layer below the twin boundary also shifts. This structure is illustrated in Figure 4.3. The

two degenerate scalene structures end up being the most energetically favorable, followed by the

distorted reflection and finally the distorted isosceles structure.

The impact the low energy scalene structures have on the TGSF curves are substantial, for

both the isosceles and reflection curves. Neither of the TGSF curves (shown in Figures 4.4(b) and

4.7(b)) are the low energy pathways because both artificially constrain one of the boundaries to be

either the isosceles or pure reflection boundary, neither of which is favorable to form compared to

the scalene structure. We can create a TGSF that correctly produces the scalene structure which

has the lowest energy pathway, but is complicated to describe and does not add to the conclusions

of this work so we omit that digression.
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Table 4.1: TBGSF curve predictions from EAM potentials

BCC Metal EAM Potential
TBGSF curve

Predicted structure location of minima (λ)

Ta

Ravelo2

Pure isosceles 0.500

Ravelo1

Zhong

ATFS

Guellil

Zhou

V Olsson

Fe FS

Nb Fellinger

Scalene

0.300 and 0.700

Mo

FS 0.075 and 0.925

Smirnova 0.150 and 0.850

Zhou 0.225 and 0.775

W

FS 0.100 and 0.900

Zhou 0.250 and 0.750

Olsson 0.250 and 0.750

Cr Howells 0.400 and 0.600

While interatomic potentials predict a range of metastable twin structures, we can make some

important conclusions form these results. First, we note that none of the interatomic potentials

predict a stable pure reflection twin boundary. The closest structure is the distorted reflection as

modeled by the ATFS potential for Mo. Second, there are three types of potentially stable twin

structures: the distorted reflection, distorted isosceles and the scalene structure. Third, the lack of

an equilibrium pure reflection twin structure results in TGSF curves that have cusps, i.e., they lack

continuity of their first derivatives. However, what is not clear is what the actual twin structure of

73



the BCC transition metals should be and if there are multiple metastable structures as predicted by

some EAM potentials.
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Table 4.2: Equilibrium structures from EAM potentials

Distorted

Reflection

Distorted

Isosceles
Scalene1 Scalene2

Ta-

Ravelo2

γ(Jm−2) — 0.541 — —

δ / η shift — 0.177bp — —

Ta-

Ravelo1

γ(Jm−2) — 0.547 — —

δ / η shift — 0.112bp — —

Ta-

Zhong

γ(Jm−2) — 0.536 — —

δ / η shift — 0.266bp — —

Ta-

ATFS

γ(Jm−2) — 0.616 — —

δ / η shift — 0.262bp — —

Ta-

Guellil

γ(Jm−2) 0.844 0.648 — —

δ / η shift 0.197bp 0.418bp — —

Ta-

Zhou

γ(Jm−2) — 0.534 — —

δ / η shift — 0.367bp — —

V-

Olsson

γ(Jm−2) — 0.398 — —

δ / η shift — 0.138bp — —

Fe-

FS

γ(Jm−2) — 0.397 — —

δ / η shift — 0.204bp — —

Nb-

Fellinger

γ(Jm−2) 0.495 0.501 0.479 0.479

δ / η shift 0.160bp 0.365bp 0.300bp 0.700bp

Mo-

FS

γ(Jm−2) 0.774 — — —

δ / η shift 0.052bp — — —

Mo-

Smirnova

γ(Jm−2) 1.058 — — —

δ / η shift 0.111bp — — —
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Mo-

Zhou

γ(Jm−2) 0.981 — — —

δ / η shift 0.153bp — — —

W-

FS

γ(Jm−2) 0.776 — — —

δ / η shift 0.080bp — — —

W-

Zhou

γ(Jm−2) 1.162 — — —

δ / η shift 0.158bp — — —

W-

Olsson

γ(Jm−2) 1.047 — — —

δ / η shift 0.137bp — — —

Cr-

Howells

γ(Jm−2) 0.773 — — —

δ / η shift 0.142bp — — —

4.2.2 Density Function Theory

As noted previously, DFT is expected to better represent the bonding in BCC transition met-

als. Thus, we expect that the twin boundary structures predicted by DFT are more accurate and

presentative of the actual structures. In addition, the results of the DFT simulations fall into two

categories: those in the group VB and those in group VIB. α-Fe happens to behave like the group

VB metals.

The TBGSF curves for Ta, Nb, V, and α-Fe are shown in Figure 4.8(a)-(d) which resembles

the TBGSF curves for the interatomic potentials that predict an equilibrium isosceles structure.

To examine the equilibrium structures, we relaxed four points on the TBGSF curves, the same

as was done in the previous subsection. For λ = 0, the structure after relaxation is a distorted

reflection structure (as illustrated in Figure 4.5), with δ = 0.154bp for Ta, 0.125bp for Nb, 0.172bp

for V and 0.115bp for α-Fe. While for λ = 1
4
, 1
2

and 3
4
, the structure obtained after full relaxation

approximately resembles the distorted isosceles structure with η = 0.090bp for Ta, −0.110bp for

Nb, −0.010bp for V and −0.057bp for α-Fe. The structures obtained from structural relaxation

is very similar to the distorted isosceles structures shown in Figure 4.3 with η shift of the atom

layers nearest to the twin boundary plane. However, these fully relaxed structures fall short of
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Figure 4.8: The TBGSF curves for (a) Ta, (b) Nb, (c) V and (d) Fe using DFT.

dissolving into the exact isosceles because the apex of the isosceles triangle deviates from the

pure isosceles by a very small amount: −0.015bp for Ta, +0.009bp for Nb, −0.009bp for V and

−0.012bp for α-Fe. These small deviations result from very small relaxations in each atomic layers

in the simulation cell considered and are about five to ten times smaller than the η shift and can be

regarded as inconsequential in describing the structure.

The twin boundary energies, as reported in Table 4.3, show that while the distorted reflection

structure is metastable, the distorted isosceles obtained from fully relaxing has lower energy. These

results are true for Ta, V, Nb and α-Fe. The notable difference between α-Fe and the group VB

metals is α-Fe has a high twin boundary energy and a shallower (lower magnitude) TBGSF curve.

In addition, the difference in energy between the two twin structures is much lower in α-Fe, over a

10− 15% difference for the group VB metals compared to 6% difference in α-Fe.

The TGSF curves for Ta are shown in Figure 4.9 which has cusps at the same positions observed

for the Ravelo 2 interatomic potential. In fact, Figure 4.9 compares quite well to Figure 4.2(b)
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Figure 4.9: The TGSF curve for Ta computed using DFT.

except that we see a stronger variation in the peaks and valleys for lower values of λ in the twinning

curve. This suggests that the twin-twin interactions are stronger in DFT than they are predicted by

EAM potentials. These results are consistent with previous reports of the TGSF curves predicted

by DFT [42]. The slight differences between the equilibrium isosceles structure and those created

during the TGSF curve do not create additional cusps in the TGSF curve, but it does prevent the

TGSF curve and the fully relaxed twin boundary energies from agreeing in numerical value.

Figure 4.10: The TBGSF curves for (a) Mo, (b) W, and (c) Cr using DFT.
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The TBGSF curves for the group VIB metals are shown in Figure 4.10(a)-(c) for Mo, W and Cr

respectively. These curves show a slight shift of the minimum away from the pure reflection struc-

ture similar to the ATFS potential for Mo and the isosceles configuration is an unstable equilibrium

structure. The minimum occurs at λ = 0.1 for all the metals, but has a large uncertainty due to the

limited number of points. Thus, we can see that all the group VIB metals behave similarly, but we

cannot assume their minima are at exactly the same λ shift value.

To determine the metastable twin boundary structures, we relaxed the atomic structures for the

previously defined λ shifts to determine the equilibrium structures. For λ = 0, the equilibrium

structure is a distorted reflection twin boundary with the δ values given in Table 4.3 consistent

with the ATFS potential for Mo. For the other values of λ, the structure that forms is one of the

two scalene structures similar to that observed for the Fellinger potential for Nb. For λ = 1
4
, the

fully relaxed structure dissolves into a structure that closely approximates the scalene structure for

λ = 0.1. For λ = 1
2

and 3
4
, the fully relaxed structures dissolve into a structure that closely approx-

imates the scalene structure for λ = 0.9. These fully relaxed structures fall short of dissolving into

the exact scalene structures because the apex of the relaxed scalene triangle deviates from the apex

of the exact scalene by a very small amount. Further deviation from the λ = 0.1 and 0.9 struc-

tures are observed in the atom layers further away from the twin boundary. In this case, similar

to TBGSF curve produced using EAM potentials shown in Figure 4.4(a), the isosceles structure is

not a metastable twin boundary structure. The structural parameters are listed in Table 4.3 as well

as the energies for each of these structures.

The TGSF curve for Mo computed using DFT is shown in Figure 4.11(a). Here, we can see

that the pure reflection curve is indeed lower than the isosceles as suggested by the TBGSF curves

shown above. The DFT TGSF curves again show more fluctuations that those observed using

interatomic potentials as noted for the VB metals as well. Our TGSF curve for Mo also does not

match twinning energy pathway previously reported by Ogata et al. [63, 64] where λ = 3 is an

unstable equilibrium point. This means a three layer twin is unstable but this is not the case for the

TGSF curve for Mo shown in Figure 4.11(a). The choice of exchange correlation can be a reason
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Figure 4.11: (a) The TGSF curve for Mo and (b) a zoomed in image of (a) showing the very small cusps
that emerge due to the instability associated with the pure reflection twin boundary.

behind the discrepancy as Ogata et al. used PW91 [130] instead of the PBE exchange correlation

function. However, the differences are more likely related to the choice of pseudopotential as the

PAW was used here and Ogata et al. used the ultrasoft pseudopotential [131]. One feature of the

TGSF curve that is more difficult to see, perhaps partially obscured by the twin-twin interactions,

are the cusps in the TGSF curves. These cusps are smaller in the DFT simulations as compared to

those observed for the EAM potentials, but they are indeed there. An enlarged image is shown in

Figure 4.11(b) shows that there is a bump or rise in the energy at integer δ values. This is consistent

with the TBGSF curve shown in Figure 4.10(a).

The results of the DFT simulations are a bit more consistent in their predictions when com-

pared to the EAM potentials (see Table 4.3). Notably, each group of metals exhibit the same stable

and metastable twin structures and even the magnitudes of the structural distortions are similar. All

of the BCC metals exhibit a metastable distorted reflection twin boundary structure, but this struc-

ture is only favorable in the group VIB metals. In the group VIB metals, the distorted reflection

structure is as energetically favorable as the scalene structure and the two scalene structures have

slightly different energies due to very small variations in atomic positions. We also find that α-Fe

behaves the same as the group VB metals, preferring a distorted isosceles structure with η shifts.
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Table 4.3: Equilibrium structures from DFT

Distorted

Reflection

Distorted

Isosceles
Scalene1 Scalene2

Ta
γ(Jm−2) 0.549 0.492 — —

δ / η shift 0.154bp −0.090bp — —

Nb
γ(Jm−2) 0.524 0.453 — —

δ / η shift 0.125bp −0.110bp — —

V
γ(Jm−2) 0.554 0.491 — —

δ / η shift 0.172bp −0.010bp — —

Fe
γ(Jm−2) 0.909 0.861 — —

δ / η shift 0.115bp −0.057bp — —

Mo
γ(Jm−2) 1.108 — 1.108 1.110

δ / η shift 0.033bp — `−0.062bp 0.016bp

W
γ(Jm−2) 1.392 — 1.392 1.406

δ / η shift 0.039bp — −0.054bp −0.014bp

Cr
γ(Jm−2) 1.263 — 1.254 1.254

δ / η shift 0.032bp — −0.042bp −0.064bp

4.2.3 Analytical model of the TBGSF curve

In the previous sections, the interatomic potentials and DFT simulations have demonstrated

different behaviors in the TBGSF curves. Specifically, we find that some predict a low energy at

λ = 1
2

while other predict a local maximum at this point and local minima at two other λ values.

Of course, this is a direct result of the bonding in the materials (for DFT) and the parameterization

and parameters used (for interatomic potentials). However, we have found it useful to develop an

empirical model for this behavior to provide a bit more insight into this.

To model the TBGSF curve analytically, we consider two continuum blocks of material whose

energy variation is determined solely by bonding of the atoms on either side of the cut plane
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shown in Figure 4.12(a). Initially, we postulate that this excess energy can be written as a simple

expression i.e., as a function of these bond lengths. The bond length between two atoms across the

cut plane as a function of λ can be written as:

L = −a
√
2

2
î +

(

a
√
3

6
+ λ

)

ĵ +
a√
6
k̂ (4.1)

where the unit vectors align with the coordinate system give in Figure 4.12; for y along the [111̄]

and z is along the [112]. If we then postulate that the energy of the bonds across the cut plane scale

indirectly with the length of the form:

Ebond = α|L|−n (4.2)

where α is a proportionality constant and n is an exponent. When n = 2, the energy scales inversely

with the square of the distance. This results in an energy per unit area due to the bonds across the

cut plane as:

Γ(λ) = A−1
∑

|L(λ)|−n (4.3)

where A is the area per unit atom on the cut plane and the (infinite) summation is for all atoms

across the cut-plane. The twin boundary stacking fault energy then is defined as:

γ(λ) = Γ(λ)− Γ(0) (4.4)

The results of this approximation are shown in Figure 4.12 for n = 2 (red curve). This curve

shows two important features. The first is that the lowest energy structure is corresponds to the

isosceles configuration. The second is that the pure reflection is not an equilibrium structure, stable

or unstable, which suggests cusps in any twinning GSF curve. While the value of the exponent, n

can alter the shape of the curve, reasonable values of n predict similar shapes of the stacking fault

energy curve and thus we can take these results as a general prediction of this idea. Thus we can
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conclude with some generality that the isosceles energy minimum is at least partially a result of

the minimizing unfavorable bond lengths.

Figure 4.12: The TBGSF curves predicted from the analytical model of bonding across the cut plane. The
energy has arbitrary units since the prefactor α is not specified and we simply have scaled the two curves to
visually match.

However, this does not explain how we might create the GSF curves shown for the other cases

in which the isosceles becomes an unstable equilibrium point and shift the minimum closer to the

pure reflection point. To make the pure reflection more stable, we can penalize the bond energy

term similar to empirical potentials like Stillinger-Weber [132] to favor the bond angles found in

the pure reflection twin boundary. One such bond energy term is:

Ebond = α

∣

∣

∣

∣

1

9
− cos2 θ

∣

∣

∣

∣

m

|L|−n (4.5)

where θ is the angle the bond atom makes with the y-axis across the cut-plane and cosine of the

ideal angle for the pure reflection twin boundary is 1
3
. The results for n = 2, m = 1.15 are shown
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in Figure 4.12 (blue curve). For m = 1.15 the minimum now lies between λ = 0 and λ = 1
2
, just

as occurs in many of our simulations. With sufficiently strong energy penalty, it is possible to even

force the minimum to be at λ = 0, despite this never being observed in any simulation conducted

here. Furthermore, with larger values of m, the curve quickly transforms back to the case when the

bond bending penalty term is excluded (m = 2 looks very similar to m = 0).

What this demonstrates is that a simple model that roughly approximates the energy of the

bonds across the TB interface is able to reproduce the features of our TBGSF curves. They show

that in the absence of (relatively) strong directional bonds, the isosceles structure is preferred while

more directional bonding will cause the scalene structures to emerge as low energy points on the

TBGSF curve with stronger directionality pushing the low energy structures closer and closer to

the pure reflection structure.

4.3 Conclusions

In this chapter, we have analyzed the structure of twin boundaries in BCC transition metals

using atomistic simulations which has led to some key observations and provide insights into twin

nucleation phenomenon. Full structural relaxation with EAM potentials results in three equilib-

rium twin boundary structures: distorted isosceles structures described by small η shifts, distorted

reflection structures described δ shifts and scalene structures. While structural relaxation with DFT

also exhibits the same three equilibrium twin boundary structures, the observations are more con-

sistent amongst the different groups. To verify the consistency of the DFT results we have also

performed sensitivity analysis by performing similar simulations with N = 25 atoms as well as

different boundary conditions by changing the degrees of freedom of the simulation cell. The twin

energies from these set of simulations differ from the values listed in Table 4.2 by less than 5%.

Also the deviations of the relaxed structures from the reference structures are also less than 5%

of bp. All of these simulations show that distorted isosceles is the stable equilibrium structure in

group VB metals and α-Fe whereas scalene twin boundary structures are the stable equilibrium

structures in Group VIB metals.
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The TBGSF curves are a good starting point for analysis of the twin boundary structures be-

cause the minimum energy structures predicted by this set of curves correspond to the lower energy

twinning pathways in TGSF curves and suggest the lowest energy structures. One essential take-

away is the fact that the TGSF curves shown in this work exhibit cusps for shifts that correspond

to the reflection twin boundary structures since this structure is not an equilibrium structure (stable

or unstable). The TGSF curves for potentials that predict the lowest energy structure to be a dis-

torted isosceles typically have very large cusps due to the large energy difference between the pure

isosceles and pure reflection curves. On the other hand, the TGSF curves for those potentials that

predict a stable distorted reflection or scalene typically have smaller cusps due to the small energy

differences between the pure reflection and these equilibrium structures but cusps do not exist at

the isosceles structure. The existence of these cusps can further be rationalized using analytical

models of the TBGSF curve. The cusps in the TGSF curves are sometimes not seen in litera-

ture [41, 42] for both EAM and DFT simulations, presumably due to a low number of sampled

points on the GSF curve. However, all of our calculations done here in detail demonstrate their

universal existence for both EAM and DFT simulations alike.

It is worth noting that despite its usefulness, the TBGSF curves alone are not sufficient in pre-

dicting the stable twin boundary structures as we have shown that δ shifts associated with reflec-

tion structures involve simultaneous relaxations in atom layers above and below the twin boundary

atoms as is the case for isosceles structures with η shifts. Thus, full relaxations of the twin bound-

ary structures are needed, and should be done at different points along the TBGSF curve to test for

the existence of multiple equilibrium structures.

These observations not only have direct implications on our understanding of twin bound-

ary structure, but also impact our understanding of how the twins should nucleate and propagate.

Notably, the general model of the nucleation of a deformation twin includes multiple lamella of

twinning partials with Burgers vector bp, i.e. nbp, and our TGSF curves show this minimum is

n = 2 two for the group VIB metals. However, as the isosceles structure is more favorable in the

group VB and α-Fe, then the twin nucleus must contain approximately 2× 1
2
bp + nbp partial dis-
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locations with the minimum stable number being n=0. Both of these descriptions are approximate

as the real equilibrium structures are distorted from these and would involve the passage of very

small zonal dislocations to achieve the actual equilibrium structures. The inclusion of these dislo-

cations in a TGSF curve would create true local minima, although at the expense of making such

curves very complicated.
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Chapter 5

Modeling twin nucleation and growth

Twins in crystalline materials are ubiquitous, occurring in structural, electronic, and geologic

materials alike. Their existence can have a profound impact on properties, including dramatic

changes in strength of metallic alloys [133–136] or a degradation of electronic properties [137–

140]. They can form either during the crystal growth process, i.e., growth twins, during annealing,

or they can nucleate inside the crystal, i.e., deformation twins, in response to an applied load [44].

Despite the importance of deformation twinning in the generation of new twins inside already

formed crystals and its potential to supplant dislocations as a carrier of plastic deformation, exactly

how the twins form is not well understood. This is because twin nuclei are usually thought to be

extended defects, with their thickness extending over multiple crystal planes, and they nucleate so

fast and at such small length scales that it is difficult to capture the nucleation event with the most

advanced characterization tools [27, 67].

In face centered cubic metals (FCC), deformation twining (DT) is well known to proceed by

the sequential nucleation of Shockley partials on successive planes, forming a twin lamella [3,43].

However, this process is the exception, since twins in body centered cubic (BCC) and hexagonal

closed packed (HCP) are generally thought to nucleate on multiple atomic planes concurrently

[54, 58, 141–144], as well as other crystalline materials [141, 145]. The twinning element in the

BCC crystal is the 〈111〉{112}, and is generally thought to occur mechanically by the passage

of a
6
〈111〉 twinning dislocations (where a is the lattice constant) which, with successive passage,

results in a mirror symmetry across the {112} plane [4]. These {112} twins can have roughly

two different atomic level structures, the reflection twin structure and the isosceles twin structures

[38, 41, 65]. These two twin structures both obey the global mirror symmetry but differ from each

other by a local atomic translation of a
12
〈111〉. It has been shown from density functional theory

(DFT) simulations that the group VB transition metals stabilize the isosceles structure while the

group VIB transition metals will form a distorted form of the reflection structure. The potential

87



for the two different twin structures is important because it plays a role in twin thickness and the

nucleation of these defects [65].

The questions of how the twins nucleate and how many atomic layers is involved have been

a debate for decades [3, 54, 58, 60, 64, 67] and the latter remains a significant open question. The

most common nucleation methods are the pole mechanism of Bilby and Cottrell [48] (see Figure

2.10 for a schematic), and the heterogenous nucleation from other defects [47], e.g. dislocations

[36, 37, 48, 50] (see Figure 2.11 for a schematic), grain boundaries [146–148], or free surfaces

[149, 150].

The difficulty with twin sources and their identification is that twin nucleation is a sparse and

fast event and directly observing it is difficult. Atomistic simulations have demonstrated that twins

can indeed nucleate from free surfaces and grain boundaries in nanoscale BCC metals [39-41]

[31–33] and from dislocations with sufficiently high strain rates [60,62]. The direct observation of

deformation twinning has also been recently reported using the HRTEM in nanocrystals [27, 67],

confirming the nucleation at free surfaces and grain boundaries both, under very high stresses.

The critical size of a twin nucleus, specifically the number of atomic layers involved, has

been studied but without a definitive answer. The pole model by Bilby and Cottrell suggests

the growth is layer-by-layer, but this idea has generally been rejected by the community because

simulations have demonstrated that a single layer {112} fault is unstable [38]. The most widely

recognized twin nucleus thickness, which is three layers, comes from the model of Sleeswyk [37],

who hypothesized that the twin nuclei thickness would be three so that the net Burgers vector of

twin nucleus would match that of a perfect dislocation: b = a
2
〈111〉. This notion has been quite

pervasive and revisited by others [3, 54, 58], including atomic level simulations [60, 62] that have

claimed to match that result. However, a careful revisiting of those simulations suggests that the

number of layers involved indeed is not three. Furthermore, it is important to note that the three

layer model is based on an idea of zonal dislocations [36] with burgers vectors of a
6
〈111〉, which

do not match the correct method of formation of the isosceles boundaries that should form in the

group VB metals [41,65]. The most definitive experimental results are those on tungsten nanowires
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[27, 67] where the twin thickness could be measured. The authors found that after nucleation of

the twins, the minimum thickness they could find was a 6-layer thick twin and concluded this was

the minimum size. However, the experiments are very limited in time resolution, specifically a

0.5 second resolution, which is certainly not fast enough to actually see a twin nucleate, and the

reported size could be after thickening. Furthermore, if thickening is involved, the sizes observed

could be dependent on the magnitude of the stress and the size of the crystal, and thus not a

reflection of some limit of the actual material behavior.

DFT stability modeling results have provided some mixed conclusions as well. Ogata et al.

examined twins in Molybdenum and found the minimum twin thickness for stability was five

layers [63, 64]. However, more recent and thorough work by us suggests that the thickness are

two for a reflection twin and three for an isosceles twin [65]. However, these results focus on twin

stability at zero stress, while the energetic pathway for twin nucleation occurs under very high

stresses, even for heterogenous nucleation [11,40,47-49] [32, 43, 66, 67]. Since the energetics and

the structure of a nucleating twin in a BCC metal has never been carefully studied, it is unclear how

large the nuclei are and what controls this size. In this work, we have addressed this outstanding

question directly using atomic level modeling and settle the size debate once and for all.

However, in answering the question of fundamental twin thickness, it is critical to be consistent

in how one measures twin thickness in BCC metals and, in fact, all materials. It is natural to try to

assign atoms to twinned and untwinned regions and count the thickness of the twin as the number

of atoms inside these regions. However, the potential for twin boundaries to exist on top of atomic

layers (e.g., reflection) or between atomic layers (isosceles) creates ambiguity of how atomic layers

should be partitioned to twinned and untwinned regions. Examples of this are discussed in detail

in Chapter 3. The alternative method is to count twin thickness by counting the number of shearing

events that occur between atomic layers, which is the same as counting the number of twinning

dislocations. This approach removes the ambiguity, see Chapter 3, and is the method we will

employ in the following.
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5.1 Critical twin nuclei thicknesses in BCC transition metals

5.1.1 Empirical potential predictions of twin nucleation

5.1.1.1 Tantalum

Figure 5.1: (a) The energy barrier for twin nucleation plotted as a function of the applied stress from the
free-end string simulations [100] for the model Ta system described by Ravelo2 potential [77]. (b) An
example of a minimum energy path of twin nucleation for the smallest stress in (a), which is 5.49 GPa, (c)
the twin nucleus at the activated state for an applied stress of 5.49 GPa. The atoms are colored by using
common neighbor analysis (CNA) [151] which allows for convenient for locating a twin nucleus in a bulk
crystal with nearly 13000 atoms but can be misleading in determining twin thickness, and (d) BLC analysis
of the atomic positions of the twin nucleus (blue dots) indicating the presence of a three layer isosceles twin
if the BLC parameter δ values are compared to those of an ideal three layer pure isosceles (black dots).

To understand the nucleation process in full atomic level detail, we utilized classical atomistic

simulations to compute the energetics of the nucleation process as a function of the applied stress

in BCC Ta modeled by Ravelo 2 potential [77]. The activation energy barrier for homogeneous

twin nucleation in Ta plotted as a function of stress is shown in Figure 5.1(a) which is extracted

from individual string simulations as described in Chapter 3. An example minimum energy path

(MEP) from these simulations is shown in Figure 5.1(b) where the activation energy is the peak
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of this curve. The atomic positions of the twin nucleus, taken at the activated state for the lowest

applied stress, is shown in Figure 5.1(c). The atomic level structure appears, from visual inspection,

to correspond to a three layer isosceles structure similar to that shown in Figure 3.11(a). This

is confirmed by the BLC analysis of this twin structure, which is shown in Figure 8(d). The

blue dots in Figure 5.1(d) correspond to the actual twin nucleus structure (at the saddle point

of the MEP shown in Figure 5.1(b)) while the black dots correspond to the perfect three layer

isosceles and the differences arise due to both the effects of the applied stress and local atomic

rearrangements. However, this undoubtedly confirms that the twin structure is a three layer thick

twin with two isosceles TBs and a reflection layer in between them, in agreement with twin stability

predictions at zero stress [38]. This twin structure at the activated state essentially remains even

Figure 5.2: BLC analysis of the saddle point atomic configurations of Ta modeled using the Ravelo2 poten-
tial for 4 different stress levels, taken from the curve in Figure 5.1(a). As the stress increases, the magnitude
of the BLC values decrease, nearly vanishing at the highest stress. However, the structure of the twin seems
to remain despite the decrease in magnitude.

as the applied stress is increased, as shown in Figure 5.2. The structure, as measured by the BLC

analysis, retains its shape, but the magnitude of the BLC parameter decreases and flattens out as

the stress approaches the ideal strength of the Ta potential considered here. This indicates that

the magnitude of the slip in the twin structure decreases towards the ideal strength, similar to

the nucleation of dislocations [152, 153] suggesting that twin nucleation is not that different from
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dislocation nucleation even though the defect extends over multiple atomic planes. These results

indicate that the twin nucleus are roughly the same as those predicted from stability analysis [65]

on twinning GSF curves at zero stress. However, it is well known that interatomic potentials,

especially EAM-based potentials, can be prone to errors associated with their fitting and thus

the results above may not be reliable even if they are insightful. This is particularly true in the

case of twin nucleation because interatomic models are frequently fit near equilibrium, while the

application here is far from equilibrium i.e., under high stresses. Even if we consider more modern

machine learning potentials, it would still be unclear if they represent predictions of much more

accurate methods like density functional theory unless we carefully fit this region to features that

we knew what controlled the twin stability, which at this point we do not know. On the other hand,

DFT potentially can provide very accurate results but is very expensive cannot be used to simulate

the roughly 13,000 atoms required for our nucleation simulations. Thus, to extend our results to

DFT accuracy, we must better understand the atomistic results by replicating the twin structures

with less expensive approaches and then apply them using DFT.

Figure 5.3: (a) The constrained twin stability curves for BCC Ta, described by the Ravelo2 EAM potential
[77], under 5.49 GPa pure shear stress. (b) The BLC parameter, δ, plotted for both the saddle structure
(black dots) and one of the constrained equilibrium structures exhibiting a similar 3 layer distorted isosceles
twin (red dots).
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Table 5.1: BLC analysis results for constrained equilibrium structures found in the twin stability curves under 5.49 GPa pure shear stress for BCC
Ta, described by Ravelo2 EAM potential [77] shown in Figure 5.3(a). Faulted layers are counted if the bond length difference, δ deviates from the
bond length differences in strained BCC crystals by more than 10% of the magnitude of the repeat lattice vector.

Number of
relaxed atom

layers, n

Linear elastic
loading interval

Single layer
(Ntwin = 1)
fault interval

Two layer
(Ntwin = 2)
twin interval

Three layer
(Ntwin = 3)
twin interval

Dislocation nucleation
interval

1 0 ≤ λ ≤ 0.133 λ = 0.15 0.167 ≤ λ ≤ 0.567 — 0.583 ≤ λ ≤ 1.0
2 0 ≤ λ ≤ 0.150 0.167 ≤ λ ≤ 0.2 0.217 ≤ λ ≤ 0.433 0.45 ≤ λ ≤ 0.5 0.517 ≤ λ ≤ 1.0
3 0 ≤ λ ≤ 0.150 λ = 0.167 0.183 ≤ λ ≤ 0.383 0.4 ≤ λ ≤ 0.4833 0.5 ≤ λ ≤ 1.0
4 0 ≤ λ ≤ 0.150 — 0.167 ≤ λ ≤ 0.283 0.3 ≤ λ ≤ 0.5 0.517 ≤ λ ≤ 1.0
5 0 ≤ λ ≤ 0.133 — 0.15 ≤ λ ≤ 0.267 0.283 ≤ λ ≤ 0.5 0.517 ≤ λ ≤ 1.0
6 0 ≤ λ ≤ 0.133 — 0.15 ≤ λ ≤ 0.183 0.2 ≤ λ ≤ 0.5 0.517 ≤ λ ≤ 1.0
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Figure 5.4: Twin thickness vs. normalized displacement for the constrained twin stability curves in Figure
5.3(a).

To examine the stability of the twin structures using EAM interatomic potentials, we con-

structed the constrained GSF curves described in Chapter 3 for Ravelo2 Ta under 5.49 GPa, Figure

5.3(a). With initial shearing (0 ≤ λ ≤ 0.15), these curves show a linear elastic loading as ex-

pected. With sufficient shear (0.15 ≤ λ ≤ 0.5), however, the atoms are able to rearrange and form

constrained equilibrium structures with twins, which, when analyzed by the BLC analysis, show

structures very similar to those seen in our nucleation simulations shown in Figure 5.1. One such

constrained equilibrium structure is analyzed with the BLC analysis in Figure 5.3(b) which is com-

pared to the saddle structure we found in our energy barrier path simulations. These twin structures

typically exist after the linear (elastic) portion of the curve, but before dislocation nucleation is ob-

served. Dislocation nucleation beyond λ ≥ 0.5 is observed because large shear in the twinning

direction is equivalent to shearing in the anti-twinning sense. While the structures are not identical

due to differences in local atomic constraints, we are able to see that the structures are indeed the

same. The advantage of this approach is that it can be used to produce potential twin structures uti-

lizing DFT simulations since the constrained twin stability analysis only requires 24 atoms, which

is tenable using direct DFT simulations as opposed to prohibitively expensive direct nucleation
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simulations. As mentioned earlier, with initial shearing, these curves show a linear elastic loading

and with sufficient shear, however, the atoms are able to rearrange and form constrained equilib-

rium twin structures, which, when analyzed by the BLC analysis, show structures very similar to

those seen in our nucleation simulations. These twin structures typically exist after the linear (elas-

tic) portion of the curve, but before the large drop-off where dislocation nucleation is observed. In

table ??, BLC analysis results are summarized for all 6 curves in Figure 5.3(a). Under large applied

stresses, e.g. the red circles shown in Figures 5.17, we see the curves do change slightly but the

favored structures essentially don’t change i.e., under large applied stresses Ta prefers an isosceles

structure similar to zero stress TBGSF curve (blue curve).

A graphical representation of the twin thickness observed at different displacement values as a

function of number of relaxed atom layers is shown in Figure 5.4.

Figure 5.5: (a) Energy barrier for twin nucleation vs. applied pure shear stress using Ta-ATFS potential(b)
Determination of twin thickness in the saddle structures found in the free-end string simulations using the
BLC analysis for 3 stresses.

Free-end string simulations were also performed to observe direct nucleation of twins with

the ATFS [78] potential. The saddle point structures of the MEPs for this EAM potential has the

same trend as those found for the Ravelo2 [77] potential. Specifically, the twin structure found

for the ATFS potential, a three layer thick twin with two isosceles TBs and a reflection layer in

between them, similar to those found in Ravelo 2 potential study. Also the magnitude of the
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BLC parameter decreases and flattens out as the stress approaches the ideal strength of the Ta-

ATFS potential considered here. This indicates that the magnitude of the slip in the twin structure

decreases towards the ideal strength, similar to the nucleation of dislocations. Figure 5.5 shows

that the 3 layer thick twins are nucleated.

Figure 5.6: (a) Energy barrier for twin nucleation vs. applied pure shear stress in Ta-Zhou EAM potential(b)
Determination of twin thickness in the saddle structures found in the free-end string simulations using the
BLC analysis for 3 stresses.

Similar analysis of free-end string twin nucleation simulations were performed using Zhou [80]

EAM potential and at low stresses, the twin nuclei has similar atomic structures as Ravelo 2 and

ATFS potentials. However, unlike those two potentials, near ideal strength, the twin nuclei are

two layer thick twins with near isosceles structures in both layers. This is shown in Figure 5.6.

In conclusion, comprehensive survey of twin nucleation via direct atomistic simulations reveal

three layer thick twins with isosceles TB layers and a reflection layer in between. This is, to our

knowledge, the first ever unambiguous analysis of critical twin nucelus thickness. Additionally,

with the constrained twin stability analysis producing similar twin structures, we have been able

to develop a computationally efficient method to explore possible metastable twin structures with

DFT calculations which will be discussed in the next section of this chapter.
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5.1.1.2 Molybdenum

Figure 5.7: (a) The energy barrier for twin nucleation plotted as a function of the applied stress from
the free-end string simulations [100] for the model Mo system described by ATFS potential [78]. (b) An
example of a minimum energy path of twin nucleation for the smallest stress in (a), which is 12.51 GPa, (c)
the twin nucleus at the activated state for an applied stress of 12.51 GPa. The atoms are colored by using
common neighbor analysis (CNA) [151] which allows for convenient for locating a twin nucleus in a bulk
crystal with nearly 13000 atoms but can be misleading in determining twin thickness, and (d) BLC analysis
of the atomic positions of the twin nucleus (blue dots) indicating the presence of a single layer reflection
twin if the BLC parameter δ values are compared to those of an ideal one layer pure reflection (black dots).

The activation energy barrier for homogeneous twin nucleation in Mo-ATFS potential plotted

as a function of stress is shown in Figure 5.7(a) which is extracted from individual string simula-

tions as described in Chapter 3. An example minimum energy path (MEP) from these simulations

is shown in Figure 5.7(b) where the activation energy is the peak of this curve. The atomic po-

sitions of the twin nucleus, taken at the activated state for the lowest applied stress, is shown in

Figure 5.7(c). The BLC analysis of this twin structure, which is shown in Figure 5.1(d) point to

a single layer reflection twin structure (shown with the blue dots in Figure 5.7(d)) and this can be

confirmed by by comparing to the BLC analysis on a single layer pure reflection structure (shown
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with black dots in Figure 5.7(d)) under 12.51 GPa. Our work in Chapter 4 has identified the zero

stress equilibrium structure to be distorted reflection structure [65], but here we can see that the

nucleus is actually a single layer reflection structure.

Figure 5.8: BLC analysis of the saddle point atomic configurations of Mo modeled using the ATFS potential
for 6 different stress levels, taken from the curve in Figure 5.7(a). As the stress increases, the magnitude of
the BLC values decrease, nearly vanishing at the highest stress. However, the structure of the twin seems to
remain despite the decrease in magnitude.

Under further applied stress, the single layer structure remains but collapses near the ideal

strength, similar to Ta EAM potentials discussed earlier, and the full results are shown in Figure

5.8. These results, contrary to the Ta case, indicate that the nucleus structure is not the same

structure as that predicted using zero stress GSF curves.

Similar to the analysis with Ta-Ravelo2, constrained twin stability analysis has also been per-

formed here with the goal of estabilishing a computationally efficient method to probe probable

metastable twin structures in Mo modeled by the ATFS potential. To examine the stability of the

twin structures using interatomic potentials, we constructed the constrained GSF curves for ATFS

Mo under 12.51 GPa, Figure 5.9(a). With initial shearing, these curves show a linear elastic loading

and with sufficient shear, however, the atoms are able to rearrange and form constrained equilib-

rium twin structures, which, when analyzed by the BLC analysis, show structures very similar to

those seen in our nucleation simulations. These twin structures typically exist after the linear (elas-
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Figure 5.9: (a) The constrained twin stability curves for BCC Mo, described by the ATFS EAM potential
[78], under 12.51 GPa pure shear stress. (b) The BLC parameter, δ, plotted for both the saddle structure
(black dots) and one of the constrained equilibrium structure exhibiting a 1 layer distorted reflection twin
(blue dots).

tic) portion of the curve, but before the large drop-off where dislocation nucleation is observed. In

Table 5.2, BLC analysis results are summarized for all 6 curves in Figure 5.9(a). A graphical rep-

resentation of the twin thickness observed at different displacement values as a function of number

of relaxed atom layers is shown in Figure 5.10.

Table 5.2: BLC analysis results for constrained equilibrium structures found in the twin stability curves
under 12.51 GPa pure shear stress for BCC Mo, described by ATFS EAM potential [78] shown in Figure
5.9(a). Faulted layers are counted if the bond length difference, δ deviates from the bond length differences
in strained BCC crystals by more than 10% of the magnitude of the repeat lattice vector.

Number of
relaxed atom

layers, n

Linear elastic
interval

Single layer
(Ntwin = 1)

interval

Two layer
(Ntwin = 1)

interval

Dislocation nucleation
interval

1 0 ≤ λ ≤ 0.1 0.117 ≤ λ ≤ 0.4 0.417 ≤ λ ≤ 0.45 0.467 ≤ λ ≤ 1.0

2 0 ≤ λ ≤ 0.083 0.1 ≤ λ ≤ 0.35 0.367 ≤ λ ≤ 0.417 0.433 ≤ λ ≤ 1.0

3 0 ≤ λ ≤ 0.083 0.1 ≤ λ ≤ 0.35 0.333 ≤ λ ≤ 0.4 0.417 ≤ λ ≤ 1.0

4 0 ≤ λ ≤ 0.067 0.083 ≤ λ ≤ 0.3 0.317 ≤ λ ≤ 0.417 0.433 ≤ λ ≤ 1.0

5 0 ≤ λ ≤ 0.067 0.083 ≤ λ ≤ 0.267 0.283 ≤ λ ≤ 0.417 0.433 ≤ λ ≤ 1.0

6 0 ≤ λ ≤ 0.067 0.083 ≤ λ ≤ 0.233 0.25 ≤ λ ≤ 0.417 0.433 ≤ λ ≤ 1.0

Free-end string simulations were also performed to observe direct nucleation of twins with the

Zhou [80] potential for BCC Mo. The saddle point structures of the MEPs for this EAM potential

has the same trend as those found for the ATFS [78] potential. Specifically, the twin structure
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Figure 5.10: Twin thickness vs. normalized displacement for the constrained twin stability curves in Figure
5.9(a).

found for the Zhou potential, a single layer near reflection twin, is similar to those found in Mo-

ATFS potential. Also the magnitude of the BLC parameter decreases and flattens out as the stress

approaches the ideal strength of the Mo-Zhou potential considered here. This indicates that the

magnitude of the slip in the twin structure decreases towards the ideal strength. Figure 5.11 shows

that the single layer near reflection twins are nucleated.

So, in Molybdenum, the free-end string simulations with both ATFS and Zhou potentials point

to single layer near reflection twins. Constrained twin stability curves from the ATFS potential

also enables us to extend our analysis to more reliable DFT simulations which will be discussed in

the next section.
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Figure 5.11: (a) Energy barrier for twin nucleation vs. applied pure shear stress for Mo-Zhou EAM po-
tential(b) Determination of twin thickness in the saddle structures found in the free-end string simulations
using the BLC analysis for 3 stresses.
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5.1.1.3 Tungsten

Figure 5.12: (a) Energy barrier for twin nucleation vs. applied pure shear stress in W-Zhou EAM poten-
tial(b) Determination of twin thickness in the saddle structures found in the free-end string simulations using
the BLC analysis for 3 stresses.

Free-end string simulations were also performed for BCC Tungsten using the Zhou [80] EAM

potential. Saddle structure analysis using the bond length comparison (BLC) method in these

simulations also indicate a single layer near reflection twin structure, similar to the Mo-ATFS and

Mo-Zhou. See Figure 5.12 for energy barriers as a function of applied pure shear stress and analysis

of saddle structures using the BLC analysis showing 1 layer twinning faults at three different

stresses. The trend of twin structure collapse is also evident as the magnitude of the pure shear

stress approaches the ideal strength of the material modeled by the potential.
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5.1.1.4 Iron

Figure 5.13: (a) Energy barrier for twin nucleation vs. applied pure shear stress for string simulations with
ATFS Fe potential. (b) Determination of twin thickness in the saddle structures found in the free-end string
simulations using the BLC analysis for 3 stresses.

Another set of direct twin nucleation simulation using the free-end string has been performed

for Fe-ATFS potential. In this case, the twin nuclei are similar to those found in Ta-ATFS and

Ta-Ravelo2 potentials as in the three layer twins with near isosceles TBs and near reflection layer

sandwiched between them. This is illustrated in Figure 5.13.

In addition to the ATFS potential, we also performed similar direct nucleation study with the

Chamati [123] potential for BCC Fe. The saddle point structures for this potential has the similar

trend as the Fe-ATFS, Ta-ATFS and Ta-Ravelo2 potentials. Three layer thick twins with two

isosceles layers and one reflection layer is shown with the BLC analysis for 3 stress levels are

shown in Figure 5.14.

5.1.1.5 Summary of findings from EAM potentials

Our EAM potential survey using free-end string simulations has indicated two main types

of twin nuclei in BCC transition metals studied. For Ta-ATFS, Ta-Ravelo2, Fe-ATFS, and Fe-

Chamati EAM potentials, the saddle structures of the MEPs closely approximate the predicted

zero stress metastable structure that consists of two isosceles TBs and a reflection layer in between
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Figure 5.14: (a) Energy barrier for twin nucleation vs. applied pure shear stress for string simulations with
Fe-Chamati potential. (b) Determination of twin thickness in the saddle structures found in the free-end
string simulations using the BLC analysis for 3 stresses.

them. However the saddle point structures in Mo-ATFS, Mo-Zhou and W-Zhou EAM potentials

are single layer near reflection faults which are different from the metastable two layer reflection

twins under zero stress in group VIB BCC transition metals. Hence we will explore the critical twin

nuclei thickness problem with DFT simulations starting with constrained twin stability analysis and

twinning GSF curves.
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5.1.2 DFT predictions of critical twin thickness in BCC transition metals

5.1.2.1 Tantalum

Figure 5.15: (a) The pure shear stress-strain curves in BCC Ta as computed by our DFT simulations. (b)
The constrained twin stability curves for BCC Ta with DFT simulations under 6.42 GPa pure shear stress.
(c) The smallest and most prevalent observed twin structure identified by our constrained GSF curves as
identified by BLC analysis.

In the case of twin nucleation predictions from density functional theory, we start by investigat-

ing Ta. To understand the twinning under stresses close to nucleation, we first computed the pure

shear stress-strain curves for BCC Ta using DFT simulations in the twinning sense. We expect that

the twins will homogeneously nucleate near the peak of these stress-strain curves and thus we per-

form our constrained twin stability analysis near the peak of the stress strain curves, highlighted by

the open circles in Figure 5.15(a) to detect probable metastable twin structures and then analyzed

the structures using the BLC analysis outlined in Chapter 3.

The constrained GSF curves are shown in Figure 5.15(b) for Ta, at the stress indicated in

Figures 5.15(a). Similar to the EAM constrained twin stability curves shown in Figures 5.3(a),

with initial shearing, these curves show a linear elastic loading and with sufficient shear, the atoms

are able to rearrange and form constrained equilibrium twin structures. These twin structures

typically exist after the linear (elastic) portion of the curve, but before the large drop-off where

dislocation nucleation is observed. In Table 5.3, BLC analysis results are summarized for all 6

curves in Figure 5.15(b). A graphical representation of the twin thickness observed at different

displacement values as a function of number of relaxed atom layers is shown in Figure 5.16.
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Table 5.3: BLC analysis results for constrained equilibrium structures found in the twin stability curves
with DFT simulations under 6.42 GPa pure shear stress for BCC Ta shown in Figure 5.15(b) in the main
text. Faulted layers are counted if the bond length difference, δ deviates from the bond length differences in
strained BCC crystals by more than 10%.

Number of
relaxed atom

layers, n

Linear elastic
interval

Single layer
(Ntwin = 2)

interval

Two layer
(Ntwin = 3)

interval

Dislocation nucleation
interval

1 0 ≤ λ ≤ 0.133 0.167 ≤ λ ≤ 0.6 — 0.633 ≤ λ ≤ 1.0

2 0 ≤ λ ≤ 0.167 0.2 ≤ λ ≤ 0.567 — 0.6 ≤ λ ≤ 1.0

3 0 ≤ λ ≤ 0.267 0.3 ≤ λ ≤ 0.567 — 0.6 ≤ λ ≤ 1.0

4 0 ≤ λ ≤ 0.267 0.3 ≤ λ ≤ 0.567 — 0.6 ≤ λ ≤ 1.0

5 0 ≤ λ ≤ 0.267 0.3 ≤ λ ≤ 0.533 λ = 0.567 0.6 ≤ λ ≤ 1.0

6 0 ≤ λ ≤ 0.027 0.3 ≤ λ ≤ 0.533 λ = 0.567 0.6 ≤ λ ≤ 1.0

This is a surprising result in regard to the structure predicted in our constrained twin stability

curves especially compared to the EAM potentials. The most prevalent twin structures in DFT con-

strained twin stability curves contain one BLC parameter that is reflection and one that is isosceles.

Only one structure with the least constraints just before dislocation nucleation a three layer twin

similar to the Ta EAM potentials is observed. This is the first ever observation that both struc-

tures might exist in the same deformation twin. However, this raises the question of which is the

more favorable twin structure in Ta and if this two layer thick twin structure with both an isosceles

layer and a reflection is truly metastable. We will now investigate the metastability of twin struc-

tures with GSF curves. To better answer the question of which structure is more stable, we first

computed twin boundary GSF (TBGSF) curves under stress. The description of how these curves

are generated in Chapter 3. We computed the TBGSF curves in Ta shown in Figure 5.17. The

starting point (λ = 0) is the perfect reflection structure at zero stress and λ = 1
6

corresponds to an

isosceles structure and λ = 1
3

corresponds again to a reflection twin. Thus, Ta prefers to form an

isosceles structure at zero stress. However, it is still curious to note that in Ta the isosceles struc-

ture is favored, but the nucleus, as determined above using the constrained twin stability analysis,

would appear to be two layer reflection-isosceles combination. We can presume that the two layer

isosceles structure is unstable, as it is near zero stress, and that a two-layer isosceles-reflection is
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Figure 5.16: Twin thickness vs normalized displacement for the constrained twin stability curves in Figure
5.15(b)

thinner and thus requires less elastic energy than a three layer pure isosceles structure found in

EAM potentials.

To confirm this idea, we then computed the sequentially twinning GSF curves (introduced in

Chapter 3) for Ta under large applied stresses. The curves demonstrate that in Ta the double-

isosceles structure is always unstable while the isosceles-reflection structure is unstable at zero

stress but becomes stable under an applied stress of 6.42GPa, Figure 5.18. Figure 5.18 shows the

sequential GSF curve in Ta for the formation of a isosceles-reflection two layer structure under

both zero stress and an applied stress. These curves are able to completely explain our observed

results in Ta. Under zero stress, Figure 5.18, a single layer isosceles (at the cusp), a two layer

isosceles, and a two layer reflection-isosceles are all unstable. Stability is only achieved when a

three layer isosceles structure forms as shown in [65]. However, under significant applied stress, we

see a change in that the two layer isosceles structure becomes a local maximum and the isosceles-

reflection exhibits a local minimum at λ = 0.433, indicating metastability. In fact, this stabilization

occurs with modest amounts of stress, as low as 4.23 GPa (see Figure 5.19), while our analysis

shown here is for much larger stresses, 6.42 GPa.
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Figure 5.17: The TBGSF curves for BCC Ta. Minimums near λ = 1
6 indicates a preference for an isosceles

twin boundary

Figure 5.18: The sequential twinning GSF curves for BCC Ta using DFT simulations demonstrating that
in Ta the double-isosceles structure is always unstable while the isosceles-reflection structure is unstable at
zero stress but becomes stable under an applied stress 0f 6.42GPa.
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Figure 5.19: The sequential twinning GSF curves for BCC Ta using DFT simulations under three large pure
shear stresses.
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5.1.2.2 Molybdenum

Figure 5.20: (a) The pure shear stress-strain curves in BCC Ta as computed by our DFT simulations. (b)
The constrained twin stability curves for BCC Ta with DFT simulations under 6.42 GPa pure shear stress.
(c) The smallest and most prevalent observed twin structure identified by our constrained GSF curves as
identified by BLC analysis.

The next case of twin nucleation predictions from density functional theory is BCC Mo. We

start by computing the pure shear stress-strain curves for BCC Ta using DFT simulations in the

twinning sense. As before, we expect that the twins will homogeneously nucleate near the peak

of these stress-strain curves and thus we perform our constrained twin stability analysis near the

peak of the stress strain curves, highlighted by the open circles in Figure 5.20(a) to detect probable

metastable twin structures and then analyzed the structures using the BLC analysis outlined in

Chapter 3.
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Table 5.4: BLC analysis results for constrained equilibrium structures found in the twin stability curves
with DFT simulations under 14.07 GPa pure shear stress for BCC Mo shown in Figure 5.20(b). Faulted
layers are counted if the bond length difference, δ deviates from the bond length differences in strained BCC
crystals by more than 10%.

Number of
relaxed atom

layers, n

Linear elastic
interval

Single layer
(Ntwin = 1)

interval

Two layer
(Ntwin = 2)

interval

Dislocation nucleation
interval

1 0 ≤ λ ≤ 0.167 0.2 ≤ λ ≤ 0.267 0.3 ≤ λ ≤ 0.5 0.533 ≤ λ ≤ 1.0

2 0 ≤ λ ≤ 0.2 0.233 ≤ λ ≤ 0.367 0.4 ≤ λ ≤ 0.5 0.533 ≤ λ ≤ 1.0

3 0 ≤ λ ≤ 0.233 0.267 ≤ λ ≤ 0.333 0.367 ≤ λ ≤ 0.5 0.533 ≤ λ ≤ 1.0

4 0 ≤ λ ≤ 0.233 0.267 ≤ λ ≤ 0.3 0.333 ≤ λ ≤ 0.5 0.533 ≤ λ ≤ 1.0

5 0 ≤ λ ≤ 0.267 — 0.3 ≤ λ ≤ 0.5 0.533 ≤ λ ≤ 1.0

6 0 ≤ λ ≤ 0.267 0.3 ≤ λ ≤ 0.333 0.367 ≤ λ ≤ 0.567 0.6 ≤ λ ≤ 1.0

Figure 5.21: Twin thickness vs normalized displacement for the constrained twin stability curves in Figure
5.20(b)

The constrained GSF curves are shown in Figure 5.20(b) for Mo, at the stress indicated in

Figures 5.20(a). Similar to the EAM constrained twin stability curves shown in Figures 5.9(a),

with initial shearing, these curves show a linear elastic loading and with sufficient shear, the atoms

are able to rearrange and form constrained equilibrium twin structures. These twin structures

typically exist after the linear (elastic) portion of the curve, but before the large drop-off where

dislocation nucleation is observed. In Table 5.4, BLC analysis results are summarized for all 6
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curves in Figure 5.20(b). A graphical representation of the twin thickness observed at different

displacement values as a function of number of relaxed atom layers is shown in Figure 5.21.

Figure 5.22: The sequential twinning GSF curves for BCC Mo using DFT simulations under 14.07GPa.

The case of Molybdenum is much more straightforward, as shown in Figure 5.22. The isosceles

structures are always unstable, even though we have seen a few instances of this twin boundary

structure in our constrained stability analysis, as the formation of the reflection structures always

pass through an isosceles structure. This indicates the one-layer isosceles structure observed are

minor artifacts of the applied constraints. Furthermore, a single layer reflection is unstable, as

labeled on the curves. The only metastable structure that emerges is the double reflection structure

which is the most prevalent structure in the constrained stability analysis (Table 5.4). Since this

structure appears metastable and has the lowest thickness, it is clear this is the nucleus in BCC Mo.

Additionally, the two layer isosceles-reflection twin, similar to the metastable twin obtained for Ta

in Figure 5.18, is unstable.

The discussions above on BCC Ta and Mo have established a set of consistent and robust steps

to build a method of determining critical twin nuclei size and structure. Not only this method
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is easily adoptable to other BCC transition metals such as Nb, V, Cr, W and Fe, nucleation of

extended defects in any crystalline material can be thoroughly examined. To recap, the steps are:

• Generate constrained twin stability curves (CTSC) with varying degrees of freedom to iden-

tify possible metastable structures.

• Generate sequential twinning GSF curves for the thinnest and/or most prevalent twin struc-

tures obtained from CTS curves.

• Verify that the metastable structure and the thinnest and/or most prevalent twin structures

obtained from CTS curves are the same (within reasonable tolerance) using the BLC analy-

sis.
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5.1.2.3 Niobium

Figure 5.23: (a) Stress-strain curve in BCC Nb with DFT. 1.69 GPa stress is selected (highlighted by red
circle) to probe twin nucleation. (b) Constrained twin stability curves (CTSC) with n = 6 atom layers
allowed to relax at each incremental displacement u = λb. (c) Sequential twinning GSF curve under 1.69
GPa; the metastable point is highlighted. (d) BLC analysis to show that the metastable point in the TGSF
curve is a two layer isosceles-reflection twin whereas the structure at the red circle of (b) also closely
approximate the metastable structure.

Unsprisingly, Niobium which is a group VB BCC transition metal has the same critical twin

nuclei as BCC Ta which also belongs to group VB. To demonstrate this, we have performed our

analysis for three different stress levels. For 1.69 GPa, we first generated the CTS curve by allow-

ing 6 atom layers to relax freely. In this curve (Figure 5.23(b)), the only twin structures found are

two layer isosceles-reflection twin. This structure was reproduced at the metastable point denoted

by the highlighted blue circle in Figure 5.23(c). The BLC analysis (Figure 5.23(d)) confirms that

the highlighted points in curves in Figures 5.23(b) and (c).
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Figure 5.24: (a) Stress-strain curve in BCC Nb with DFT. 3.37 GPa stress is selected (highlighted by red
circle) to probe twin nucleation. (b) Constrained twin stability curves (CTSC) with n = 6 atom layers
allowed to relax at each incremental displacement u = λb. (c) Sequential twinning GSF curve under 3.37
GPa; the metastable point is highlighted. (d) BLC analysis to show that the metastable point in the TGSF
curve is a two layer isosceles-reflection twin whereas the structure at the red circle of (b) also closely
approximate the metastable structure.

Two layer isosceles-reflection twins are also found to be the thinnest metastable twin structures

for 3.37 GPa pure shear stress. In the CTS curves Figure 5.24(b), more twinned structures are

obtained compared to 1.69 GPa CTS curve (Figure ??)(b). Here we analyze the structure at λ = 0.4

in Figure 5.24 with BLC analysis and compare the results with the structure corresponding to the

metastable point in the TGSF curve Figure 5.24(c). BLC analysis results shown in Figure 5.24(d)

conclusively points to similar two layer isosceles-reflection twin nuclei structures in BCC Ta.

Two layer isosceles-reflection twins similarly have been found to be the thinnest metastable

twin structures for 6.02 GPa (near ideal strength) pure shear stress. To come to this conclusion, we

analyze the structure at λ = 0.3 in Figure 5.25 with BLC analysis and compare the results with the

structure corresponding to the metastable point in the TGSF curve Figure 5.25(c). BLC analysis
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Figure 5.25: (a) Stress-strain curve in BCC Nb with DFT. 6.02 GPa stress is selected (highlighted by red
circle) to probe twin nucleation. (b) Constrained twin stability curves (CTSC) with n = 6 atom layers
allowed to relax at each incremental displacement u = λb. (c) Sequential twinning GSF curve under 6.02
GPa; the metastable point is highlighted. (d) BLC analysis to show that the metastable point in the TGSF
curve is a two layer isosceles-reflection twin whereas the structure at the red circle of (b) also closely
approximate the metastable structure.

results shown in Figure 5.25(d) conclusively points to similar two layer isosceles-reflection twin

nuclei structures in BCC Ta.
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5.1.2.4 Vanadium

Figure 5.26: (a) Stress-strain curve in BCC V with DFT. 1.64 GPa stress is selected (highlighted by red
circle) to probe twin nucleation. (b) Constrained twin stability curves (CTSC) with n = 6 atom layers
allowed to relax at each incremental displacement u = λb. (c) Sequential twinning GSF curve under 1.64
GPa; the metastable point is highlighted. (d) BLC analysis to show that the metastable point in the TGSF
curve is a two layer isosceles-reflection twin whereas the structure at the red circle of (b) also closely
approximate the metastable structure.

Vanadium, also a group VB BCC transition metal, also exhibits the same critical twin nuclei as

BCC Ta and Nb. This is demonstrated by our analysis for three different stress levels. For 1.64 GPa,

we first generated the CTS curve by allowing 6 atom layers to relax freely. In this curve (Figure

5.26(b)), the only twin structures found are two layer isosceles-reflection twin. This structure was

reproduced at the metastable point denoted by the highlighted blue circle in Figure 5.26(c). The

BLC analysis (Figure 5.26(d)) confirms that the highlighted points in curves in Figures 5.26(b) and

(c).
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Figure 5.27: (a) Stress-strain curve in BCC V with DFT. 4.95 GPa stress is selected (highlighted by red
circle) to probe twin nucleation. (b) Constrained twin stability curves (CTSC) with n = 6 atom layers
allowed to relax at each incremental displacement u = λb. (c) Sequential twinning GSF curve under 4.95
GPa; the metastable point is highlighted. (d) BLC analysis to show that the metastable point in the TGSF
curve is a two layer isosceles-reflection twin whereas the structure at the red circle of (b) also closely
approximate the metastable structure.

Two layer isosceles-reflection twins are also found to be the thinnest metastable twin structures

for 4.95 GPa pure shear stress. To come to this conclusion, we analyze the structure at λ = 0.433

in Figure 5.27 with BLC analysis and compare the results with the structure corresponding to the

metastable point in the TGSF curve Figure 5.27(c). BLC analysis results shown in Figure 5.27(d)

conclusively points to similar two layer isosceles-reflection twin nuclei structures in BCC Ta and

Nb.

Two layer isosceles-reflection twins similarly have been found to be the thinnest metastable

twin structures for 5.96 GPa (near ideal strength) pure shear stress. To come to this conclusion, we

analyze the structure at λ = 0.433 in Figure 5.28 with BLC analysis and compare the results with

the structure corresponding to the metastable point in the TGSF curve Figure 5.28(c). BLC analysis
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Figure 5.28: (a) Stress-strain curve in BCC V with DFT. 5.96 GPa stress is selected (highlighted by red
circle) to probe twin nucleation. (b) Constrained twin stability curves (CTSC) with n = 6 atom layers
allowed to relax at each incremental displacement u = λb. (c) Sequential twinning GSF curve under 6.02
GPa; the metastable point is highlighted. (d) BLC analysis to show that the metastable point in the TGSF
curve is a two layer isosceles-reflection twin whereas the structure at the red circle of (b) also closely
approximate the metastable structure.

results shown in Figure 5.28(d) conclusively points to similar two layer isosceles-reflection twin

nuclei structures in BCC Ta and Nb.
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5.1.2.5 Tungsten

Figure 5.29: (a) Stress-strain curve in BCC W with DFT. 9.76 GPa stress is selected (highlighted by red
circle) to probe twin nucleation. (b) Constrained twin stability curves (CTSC) with n = 6 atom layers
allowed to relax at each incremental displacement u = λb. (c) Sequential twinning GSF curve under 9.76
GPa; the metastable point is highlighted. (d) BLC analysis to show that the metastable point in the TGSF
curve is a two layer reflection twin whereas the structure at the red circle of (b) also closely approximate the
metastable structure.

Tungsten, a group VIB BCC transition metal like Molybdenum, also exhibits the same critical

twin nuclei as BCC Mo. This is demonstrated by our analysis for three different stress levels. For

9.76 GPa, we first generated the CTS curve by allowing 6 atom layers to relax freely. In this curve

(Figure 5.29(b)), the only twin structures found are two layer reflection twin. This structure was

reproduced at the metastable point denoted by the highlighted blue circle in Figure 5.29(c). The

BLC analysis (Figure 5.29(d)) confirms that the highlighted points in curves in Figures 5.29(b) and

(c).

Two layer reflection twins are also found to be the thinnest metastable twin structures for 12.43

GPa pure shear stress. To come to this conclusion, we analyze the structure at λ = 0.433 in Figure
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Figure 5.30: (a) Stress-strain curve in BCC W with DFT. 12.43 GPa stress is selected (highlighted by
red circle) to probe twin nucleation. (b) Constrained twin stability curves (CTSC) with n = 6 atom layers
allowed to relax at each incremental displacement u = λb. (c) Sequential twinning GSF curve under 12.43
GPa; the metastable point is highlighted. (d) BLC analysis to show that the metastable point in the TGSF
curve is a two layer reflection twin whereas the structure at the red circle of (b) also closely approximate the
metastable structure.

5.30 with BLC analysis and compare the results with the structure corresponding to the metastable

point in the TGSF curve Figure 5.30(c). BLC analysis results shown in Figure 5.30(d) conclusively

points to similar two layer reflection twin nuclei structures in BCC Mo.

Two layer reflection twins similarly have been found to be the thinnest metastable twin struc-

tures for 17.38 GPa (near ideal strength) pure shear stress. To come to this conclusion, we analyze

the structure at λ = 0.433 in Figure 5.31 with BLC analysis and compare the results with the struc-

ture corresponding to the metastable point in the TGSF curve Figure 5.31(c). BLC analysis results

shown in Figure 5.31(d) conclusively points to similar two layer reflection twin nuclei structures

in BCC Mo.
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Figure 5.31: (a) Stress-strain curve in BCC W with DFT. 17.38 GPa stress is selected (highlighted by
red circle) to probe twin nucleation. (b) Constrained twin stability curves (CTSC) with n = 6 atom layers
allowed to relax at each incremental displacement u = λb. (c) Sequential twinning GSF curve under 17.38
GPa; the metastable point is highlighted. (d) BLC analysis to show that the metastable point in the TGSF
curve is a two layer reflection twin whereas the structure at the red circle of (b) also closely approximate the
metastable structure.
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5.1.2.6 Chromium

Figure 5.32: (a) Stress-strain curve in BCC Cr with DFT. 9.15 GPa stress is selected (highlighted by red
circle) to probe twin nucleation. (b) Constrained twin stability curves (CTSC) with n = 6 atom layers
allowed to relax at each incremental displacement u = λb. (c) Sequential twinning GSF curve under 9.15
GPa; the metastable point is highlighted. (d) BLC analysis to show that the metastable point in the TGSF
curve is a two layer reflection twin whereas the structure at the red circle of (b) also closely approximate the
metastable structure.

Chromium, also a group VIB BCC transition metal like Mo and W, also exhibits the same

critical twin nuclei as BCC Mo and W. This is demonstrated by our analysis for three different

stress levels. For 9.15 GPa, we first generated the CTS curve by allowing 6 atom layers to relax

freely. In this curve (Figure 5.32(b)), the only twin structures found are two layer reflection twin.

This structure was reproduced at the metastable point denoted by the highlighted blue circle in

Figure 5.32(c). The BLC analysis (Figure 5.32(d)) confirms that the highlighted points in curves

in Figures 5.32(b) and (c).

Two layer reflection twins are also found to be the thinnest metastable twin structures for 12.94

GPa pure shear stress. To come to this conclusion, we analyze the structure at λ = 0.533 in Figure
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Figure 5.33: (a) Stress-strain curve in BCC Cr with DFT. 12.94 GPa stress is selected (highlighted by
red circle) to probe twin nucleation. (b) Constrained twin stability curves (CTSC) with n = 6 atom layers
allowed to relax at each incremental displacement u = λb. (c) Sequential twinning GSF curve under 12.94
GPa; the metastable point is highlighted. (d) BLC analysis to show that the metastable point in the TGSF
curve is a two layer reflection twin whereas the structure at the red circle of (b) also closely approximate the
metastable structure.

5.33 with BLC analysis and compare the results with the structure corresponding to the metastable

point in the TGSF curve Figure 5.33(c). BLC analysis results shown in Figure 5.33(d) conclusively

points to similar two layer reflection twin nuclei structures in BCC Mo and W.

Two layer reflection twins similarly have been found to be the thinnest metastable twin struc-

tures for 16.37 GPa (near ideal strength) pure shear stress. To come to this conclusion, we analyze

the structure at λ = 0.533 in Figure 5.34 with BLC analysis and compare the results with the struc-

ture corresponding to the metastable point in the TGSF curve Figure 5.34(c). BLC analysis results

shown in Figure 5.34(d) conclusively points to similar two layer reflection twin nuclei structures

in BCC Mo and W.
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Figure 5.34: (a) Stress-strain curve in BCC Cr with DFT. 16.37 GPa stress is selected (highlighted by
red circle) to probe twin nucleation. (b) Constrained twin stability curves (CTSC) with n = 6 atom layers
allowed to relax at each incremental displacement u = λb. (c) Sequential twinning GSF curve under 16.37
GPa; the metastable point is highlighted. (d) BLC analysis to show that the metastable point in the TGSF
curve is a two layer reflection twin whereas the structure at the red circle of (b) also closely approximate the
metastable structure.
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5.1.2.7 Iron

Figure 5.35: (a) Stress-strain curve in BCC Fe with DFT. 6.77 GPa stress is selected (highlighted by red
circle) to probe twin nucleation. (b) Constrained twin stability curves (CTSC) with n = 6 atom layers
allowed to relax at each incremental displacement u = λb. (c) Sequential twinning GSF curve under 6.77
GPa; the metastable point is highlighted. (d) BLC analysis to show that the metastable point in the TGSF
curve is a two layer reflection twin whereas the structure at the red circle of (b) also closely approximate the
metastable structure.

Iron, the final BCC transition metal we analyzed for critical twin nucleus using DFT simula-

tions, exhibits a three layer thick twin to be the thinnest metastable twin unlike Ta, Nb, V, Mo, W,

and Cr. This twin is somewhat similar to the three layer twins found with EAM potentials however

one of the TB layer is more scalene i.e., the BLC parameter −0.155 ≤ δ ≤ 0.0, than isosceles.

This is shown in Figure 5.35 where a stress value of 6.77 GPa is selected near ideal strength. The

constrained twin stability curve (Figure 5.35(b)), generated by allowing 6 atom layer relaxation,

shows three layer twin with one isosceles layer and two near reflection layers to be metastable

around λ = 0.5. Other twin structures found from the CTS curve also exhibit similar three layer
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twin structures. Based on this twin structure, the sequential TGSF curve in Figure 5.35(c) is cre-

ated and the structure in this curve also matches the three layer twins in the CTS curve. This is

shown with the BLC analysis results in Figure 5.35. Of all 7 BCC transition metal analyzed here,

Iron exhibits the thickest metastable twin structure.
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5.1.3 Conclusion

Figure 5.36: Graphical description of twin formation in (a) group VB and (b) group VIB BCC transition
metals. First, two layer thick twin embryos nucleate under the appropriate applied stresses as twinning
dislocations. Isosceles type twinning dislocations for group VB are shown as red dislocation pairs and are
denoted as ±1

6b while reflection type twinning dislocations for both groups are shown as blue dislocation
pairs and are denoted as ±1

3b. Then these nascent twins grow laterally on {112} planes while causing stress
levels to drop. Finally, at smaller stresses twin embryos grow vertically to become three layers twins. The
magnitude of the Burgers vector can deviate by small amounts depending on the stress applied.

Our analysis on group VB and VIB metals means that under applied stresses required to nucle-

ate twins, the twins would nucleate as a two-layer structure with an isosceles-reflection structure

in Ta, Nb, and V whereas they would nucleate as two layer reflection structures in Mo, W and Cr.

As the twins grow, the stress would drop and the reflection structure in group VB BCC transitiom

metals would become less stable and the twin should very quickly evolve to a three layer isosceles

structure and maintain that structure under growth stresses, which are a few hundred MPa. This

idea is shown in Figure 5.36. In the case of group VIB BCC transition metals, the twin would nu-

cleate as a two layer near reflection structure and would grow simply by thickening this structure

even as the stress drops.
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In this section, we have demonstrated that deformation twins in BCC crystals nucleate in a man-

ner that is consistent with dislocations. They have an energy barrier that is very sensitive to stress

and decays towards the ideal strength. Thus, it stands to reason that these defects nucleate by ther-

mal activation in the same manner and compete with dislocations from a nucleation perspective,

which is consistent with the observations of twinning and slip in tungsten nanocrystals [27, 67].

Furthermore, we have demonstrated that these nuclei can be more than one atomic layer thick,

clearly demonstrating that it is possible to nucleate extended defects in a manner consistent with

dislocation nucleation.

We have also shown that the thickness of the twins that nucleate depends on the method of

describing the atomic interactions. Predictions using specific EAM potentials show a three layer

twin thickness with isosceles boundaries in Ta using Ravelo2, ATFS and Zhou potentials, in Fe

using ATFS and Chamati potentials and a single reflection layer using the ATFS and Zhou potential

for Mo as well as Zhou potential for W. However, our DFT simulations show a two layer isosceles-

reflection structure in Ta, Nb and V whereas a two layer reflection structure in Mo, W and Cr are

the minimum stable thicknesses. For α-Fe, the twin nuclei is three layer thick with one isosceles

TBs and two near reflection layers. Since DFT is more accurate description of the interatomic

forces, we can conclude the DFT results are most likely to represent actual twin nuclei.

It is also critical to consider the effects of the applied stress on the atomic interactions. In both

DFT and EAM models, the twin structure and thickness predicted by stability analysis using GSF

curves under zero stress could be different from those predicted from at high stresses, though not

always. Thus, we cannot ignore the effects of stress on the energetic landscape in describing the

nucleation of twins in BCC metals, and likely other types of extended defects in other materials.

This observation is critical in our understanding of how defects nucleate and grow under stress.

Our results indicate that twins in BCC metals likely nucleate as two layer thick extended de-

fects except for α-Fe. As they grow and stress is relieved, they will adopt configurations that are

much closer to the zero stress stability predictions. Thus, twins in Ta, and presumably Nb and

V, nucleate as an isosceles-reflection structures but will quickly thicken to a three layer double
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isosceles structure and likely continue to thicken with this structure. Twins in Mo, W and Cr, will

nucleate as two layer reflection structures and will thicken quickly while preserving the reflection

structure of the boundaries.

The approaches here are easily adaptable to other materials where twins and other extended

defects nucleate and compete with dislocations as carriers of plastic deformation. This includes,

most notably, HCP metals [44], intermetallics like NiTi [154, 155] and Ag3Sn [156] and geologic

materials like quartz, feldspars, and wollastonite [145]. Our results indicate that the effects of

the applied stress cannot be ignored and may affect, fundamentally, the thickness of nucleating

extended defects.

5.2 Growth of twins in BCC transition metals

Mahajan’s classic experimental studies on Mo-35 at% Re alloy specimens [54, 56, 57] men-

tioned earlier also explored the growth of deformation twins. He suggested that if the twins were

nucleated by dissociation of perfect dislocations, they can thicken by chance encounters with one

another as the twinning faults extend in the {112} planes. He further visualized the coalescence

of multiple twin embryos and thus creating 3n-thick twins. Although this seems to require a high

density of dislocations to produce a macroscopic twin, Mahajan suggested that this slip band con-

version might obviate the need for pole type mechanism of twin thickening, especially if the screw

dislocations are able to multiply by cross slip over short distances under combined effects of ap-

plied and internal stress fields [3]. Lagerlof’s work [36] based on Sleeswyk’s hypothesis proposed

that lateral propagation and thickening can occur by double cross slip of the screw dislocations.

Based on the double cross slip mechanism, Chen et al. [58] argued that after a three-layer twin

embryo is nucleated a subsequent screw dislocation cannot dissociate and glide on the same {112}

plane in the same way as the prior one did, since a second a
6
〈111〉 dislocation on the same {112}

layer would result in a
6
〈111〉 displacement which is the same as the situation caused by a partial

dislocation in the anti-twinning direction and would require prohibitively high stress and energy.

Thus the authors of this experimental study speculate that a subsequent dislocation will tend to
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grow the existing twin nucleus by three layers. The aforementioned study by Ogata et al. [63] on

BCC Mo by density functional theory simulations suggests that once a deformation twin reaches

critical thickness, subsequent growth is easy and proceeds in a layer-by-layer fashion. As men-

tioned earlier most deformation twins in BCC metals typically possess stepwise twin boundaries

(TBs) with the step heights much larger than the size of a single twinning dislocation [58, 59].

Recent in-situ observations in Tantalum and Niobium films [59] show that twin lamella grow from

coherent twin boundaries by repeatedly extruding and subsequently expanding of bulges on the

twin boundaries and the twin growth was described by a self-thickening mechanism through dislo-

cation reactions at steps on coherent twin boundaries without a continuous supply of dislocations.

These observations suggest that the twinning front in BCC metals may proceed in a completely

different mode of growth, e.g. via stable zonal dislocations, rather than the well-accepted mode of

single-layer twinning dislocation [3, 40, 45].

The alternative to a layer-by-layer growth is the possibility that multiple twinning dislocations

could be nucleated simultaneously. This would correspond to the nucleation of a zonal dislocation

with a Burgers vector that is integer multiple of bp. Growth of deformation twins will depend on the

magnitude of the migration energy barrier. To this end, twin boundary migration GSF (TBMGSF)

curves will be computed starting with a single twin boundary as shown in Figure 2.9(a) in order to

compute energy barriers for the simultaneous propagation of a single, double, triple, and quadruple

twinning dislocations.

5.2.1 Twin growth in BCC Tungsten

In order to generate twin boundary migration GSF curves, we start with a twinned BCC crystal

as shown in Figure 2.9(a). Then we begin to incrementally translate the upper half crystal in the

[1̄1̄1̄] direction as opposed to the translation in the [111] direction for the twin boundary GSF curves

mentioned earlier. However, the translation in the [1̄1̄1̄] direction has to be performed in such a

manner that the migration of the twin boundary can be simulated accurately. For this reason, if

we want to simulate twin boundary migration by 2 layers at a time rather than a layer-by-layer
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Figure 5.37: (a) a twinned crystal with the twin boundary shown by the dashed line and (b) the twin
boundary has migrated by 3 layers and moved upwards.

manner, we have to translate the atomic layer most adjacent to the twin boundary by 1bp and all

the atomic layers above this one by 2bp. Similarly, if we want to simulate twin boundary migration

by 3 layers, we have to translate the atomic layer most adjacent to the twin boundary by 1bp, the

atomic layers above this one by 2bp and all the other layers above by 3bp. These TBMGSF curves

were generated by DFT simulations in VASP with the same parameters used for TBGSF and TGSF

curves. Figure 5.37(a) shows a twinned crystal and (b) shows that the twin boundary has migrated

by 3 layers via the translation in the [111] direction described above.

The TBMGSF curves for BCC Tungsten is shown in Figure 5.38 which demonstrate that twin

growth by the simultaneous nucleation of more than one twinning partials is very energetically

unfavorable, indicating that the dynamics of twinning growth should occur via the nucleation of

individual twinning partials in batches of roughly three that coalesce, or bunch up, on the TB.

However, a very recent in-situ experimental observation by our collaborators show that defor-

mation twins in BCC Tungsten grow vertically in a manner that does not appear to be layer-by-layer

but instead through the propagation of several layers at once. Figure 5.39 shows the growth of a

deformation twin in a Tungsten nanowire. Upon further loading, the twin thickened with a growth

increment of 0.41 nanometer, corresponding to three layers of {112} planes as shown in (Fig. 5.39

132



Figure 5.38: TBMGSF curves for simultaneous nucleation in BCC Tungsten of more than one twinning
partials.

(a-e)). This observation suggests that in BCC metals, the twinning front may consist of three twin-

ning dislocations on adjacent {112} planes, with a net Burgers vector of a
2
[111] at the twinning

front. The three-layers twin front propagated along the TB (indicated by the red arrows in Fig.

5.39(b-d)), resulting in vertical thickening of the twin (Fig. 5.39(e)). The measurements of the

twin thickness during the growth support this observation that the twin thickening events appear to

occur in groups of three twinning dislocations.

To explain this observation of growth in BCC Tungsten we point to an important feature in the

TGSF curve shown in Figure 5.40 for BCC Tungsten where the resistance to twin thickening is not

constant and it varies layer to layer during the twin growth. To further understand this behavior,

frequency analysis of the growth resistance of twinning is performed using the discrete Fourier

transform. This Fourier analysis of the data from the TGSF curve will reveal frequency for twin

propagation.

To perform the frequency analysis, we computed the TGSF curve for BCC Tungsten which

is shown in Figure 5.40. As our study of twin boundary structure has revealed that the isosceles
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Figure 5.39: TEM images of deformation twins in BCC Tungsten
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Figure 5.40: The TGSF curve generated for BCC W with DFT simulations, peak-trough data from 2bp to
16bp are shown in the inset.

structure is unstable in Group 6 BCC metals, the TGSF curve is only computed for pure reflection

twinning pathway. Since the data must be uniformly spaced for the discrete Fourier transform,

only peak-trough data (from 3bp to 16bp) of the twinning GSF curve is used for the analysis. The

mean value of the peak-trough data was subtracted from the entire data set for discrete Fourier

transform analysis in order to standardize the data. The frequency analysis was performed using a

Fast Fourier Transform algorithm [102].

The Fourier analysis shows two primary frequencies in the TGSF curve for BCC Tungsten as

shown in Figure 5.41. The main frequency occurs at 1 cycles/bp, which is associated with the

nature of twin propagation since the GSF curve naturally repeats with the slip of every twinning

dislocation as the twin is built layer-by-layer. More importantly, the Fourier analysis also presents

a secondary peak during the twin growth, which occurs at 0.276 cycles/bp. This subharmonic

corresponds to a frequency of ∼ 3.6bp, which means that the resistance to twin thickening varies

with a frequency of around 3.6bp. If the GSF curve only has a primary amplitude, it can be

expected that the resistance to twin thickening would be uniform in a layer-by-layer manner, which

is typically assumed. However, the existence of secondary frequency indicates that if the applied
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Figure 5.41: Fourier analysis of the peak-trough data from TGSF curve of BCC W.

stress/strain exceed one of the large peaks for twin growth, it could have an enough driving force for

the twin migrate in a manner of multiple bp (around 3-4 based on the secondary frequency). This

provides a rationale as to how twins in BCC metals grow in a three-layer manner. It should be noted

that the DFT simulations and corresponding frequency analysis assumed the uniform nucleation

and propagation of each twinning dislocation, and no interaction between them was considered in

the simulation. In the three-layers thickening of W nanowire, interactions should exist between the

three a
6
〈111〉 dislocations composing a super-dislocation at the twin front. However, this interaction

energy increases monotonically as the number of partial dislocations increases.
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Chapter 6

Modeling energetics of twin nucleation

As reported in Chapter 5, we have performed free-end string simulations to model twin nucle-

ation in BCC transition metals using EAM potentials. The saddle structures of the minimum energy

paths (MEP) of these simulations can point to metastable twin nuclei structures which we have an-

alyzed in Chapter 5. Additionally, these simulations also output energy barrier for twin nucleation

as a function of applied stress. However, homogeneous twin nucleation is expected to occur near

ideal strength and some available potentials available in NIST repository [73] breaks down un-

der such large stresses. Moreover, DFT simulations are known to be more accurate in describing

atomic bonding but direct nucleation simulations in bulk crystals is prohibitively expensive. So

for the purpose of modeling twin nucleation energetics, we have developed continuum model of

homogeneous twin nucleation assuming nucleation of circular twinning partial dislocation loops.

The model is adapted from dislocation nucleation models proposed by Aubry et al. [152] and Jen-

nings et al. [126] to represent the physics behind nucleation of twinning partials dislocations. The

dislocation nucleation models in [126,152] only describe single dislocation loop nucleation in FCC

metals where single layer faults are metastable whereas for our case, as discussed in Chapter 5,

multi-layer twins nucleate and so an elastic interaction term has to be incorporated. Before dis-

cussing our efforts for the twin nucleation model, we have first analyzed the exisiting continuum

model of dislocation behavior under large stresses prior to partially implementing these models to

explore twin nucleation energetics.

6.1 Modeling partial dislocation nucleation

Dislocations, line defect in crystals, are central to our understanding of plastic deformation and

mechanical strength of crystalline materials. While bulk plasticity is well described by continuum

plasticity, it is well established that the rules of plasticity change as crystal dimensions are reduced

in the micro range and the strength of materials becomes size dependent [157,158]. This idea was
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first examined by the works of Brenner [159, 160] on metallic whiskers and has been examined

more thoroughly by the microcompression and tension tests on Focus Ion Beam (FIB) milled

micropillars [29, 161, 162].

This interest in size affected flow created significant interest in how pristine (defect free mate-

rials) would respond to mechanical loading and when a transition between size affected flow and

dislocation nucleation would occur [163, 164]. This has led to the investigation of the strength

of metallic nanowires [27, 165–170], nanoparticles [171–173] and other nanostructured materi-

als [163, 174, 175] . The strengths of many of these materials, especially the nanowires, have

shown to approach the theoretical strength of the materials [170,176,177]. Finally, dislocation nu-

cleation also occurs during nanoindentation and can be attributed, sometimes, to the pop-in events

noted in load-displacement curves [178–180].

Molecular dynamics simulations have been instrumental in understanding the mechanisms of

dislocation emission and evolution in nanostructures [45,181] which have, in conjunction with the

aforementioned experiments, provided significant insight into plastic flow at small scales. How-

ever, the difference in strain rates between molecular dynamics and experiments is often many

orders of magnitude, which raises concern as to the exact nature of the predictions of this method.

This, in turn, has created interest in exploring dislocation emission as a classical nucleation pro-

cess. From this viewpoint, dislocation nucleation occurs when there is sufficient energy and time,

aided by applied stress, for the dislocation to overcome the free energy barrier preventing its spon-

taneous nucleation. The nucleation rate, following transition state theory, is:

ν = Nν0 exp

(

− ∆G∗(σ,T)

kBT

)

(6.1)

where N is the number of nucleation sites, ν0 is a frequency prefactor, ∆G∗ is the activation

Gibbs free energy and kB is the Boltzmann constant [141, 174]. The nucleation rate, according to

Equation (6.1), is strongly dependent on the activation free energy for dislocation nucleation and

thus an understanding of dislocation nucleation is tied to the stress and temperature dependence

of this activation energy. Zhu et al. [182] used the free end nudged-elastic band method (a chain-
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of-states method) to examine the internal energy barrier for dislocation nucleation in a copper

nanowire as a function of stress. The authors found, as expected, that the activation energy was a

strong function of stress and they fit their atomistic results to an empirical equation:

∆E∗(σ) = E0

[

1− σ

σ0

]α

(6.2)

where E0 and α are fitting parameters, σ the applied stress and σ0 the athermal strength. This form

comes from general empirical models for activation energies used in the literature [183]. However,

this expression was only fit to activation internal energies (or enthalpies) at zero Kelvin. To account

for finite temperature, Zhu et al. used the thermodynamic compensation law (Meyer-Neldel rule)

so that the activation free energy can be written as:

∆A∗(σ,T) = E0

[

1− σ

σ0

]α(

1− T

Tm

)

(6.3)

Where Tm is a characteristic temperature at which the energy barrier vanishes for all stresses. Zhu

et al. then extended nucleation equation (Equation (6.1)) to predict the most probable nucleation

stress as:
∆G∗(σ,T)

kBT
= ln

kBTNν0
Yǫ̇Ω(σ,T)

(6.4)

where Y is the Young’s modulus of the material, ǫ̇ is the applied strain rate and Ω is the activation

volume defined as Ω = −d∆G∗

dσ
.

Ryu et al. [184] re-examined the same copper nanowire nucleation problem to specifically ad-

dress the temperature dependence and the thermodynamic compensation law using umbrella sam-

pling to directly calculate the activation free energies. The authors demonstrated that the activation

Gibbs free energy and Helmholtz free energy are equal, ∆G∗ ≈ ∆A∗ and similarly ∆H∗ ≈ ∆E∗.

Their work also points out that the thermodynamic compensation law does not always work and

that the characteristic temperatures Tm depends on whether the stress or strain is the controlled
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thermodynamic variable and is not related to the melting temperature (or surface disordering tem-

perature) as is often assumed.

The computation of energies barriers in atomistics, nevertheless, is still a powerful method

to gain insight into the nucleation process even if the temperature dependence is still not fully

understood. Several investigators have used similar approaches to study dislocation nucleation in

gold nanowires [125], from surface steps in FCC metals [185–187], and from pores in aluminum

[188]. In addition, these energy barrier calculations have been used in conjunction with continuum

models of dislocation nucleation to gain a better understanding of the nucleation phenomenon or

to develop better continuum models of dislocation nucleation [126, 152].

Despite the interest in calculating energy barriers directly from chain-of-state atomistic calcu-

lations or similar methods, these approaches are often expensive and difficult to use. Thus, it a

desirable to determine if such information can be obtained from direct atomistic simulations. In an

attempt to solve this problem, recently Chachamovitz et al. [189] introduced a method to extract

the activation free energies from direct MD simulations by examining statistical distribution of

nucleation strengths as a function of temperature during constant stress rate simulations. The key

point the authors make is that if we assume the nucleation rate follows Equation (6.1), then the

cumulative distribution function of failure is:

F(σ,T) = 1− exp

[

− Nν0
σ̇

∫ σ

0

exp(−β∆G∗(η))dη

]

(6.5)

Where σ̇ is the applied stress rate and β = 1
kBT

. This theoretical cumulative distribution function

can then be fit to cumulative distribution functions determined from direct MD simulations as long

as a functional form of ∆G∗ is assumed. The authors further argue that the activation volume

can be directly related to the standard deviation of the nucleation strengths, which simplifies the

parameterization of ∆G∗. For convenience, they assume a functional form of

∆G∗(σ,T) = G0

[

1− σ

σ0

]α(

1− T

Tm

)

(6.6)
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With G0, α and Tm (as well as ν0) determined from numerical fitting of the cumulative distribution

functions.

Chachamovitz et al. [189] used this method to examine nucleation in their molybdenum nanopar-

ticles and found that the exponent, α, was approximately 1.68. They noted that this exponent was

close to the value of 1.5 that has been argued to characterize plastic flow associated with disloca-

tion glide in bulk crystals near the yield point [190–192]. This lead to a hypothesis that perhaps a

exponent of around 1.5 is a universal exponent for dislocation nucleation near the point of sponta-

neous nucleation, i.e. the athermal limit. One key point to make by assuming such an exponent is

that this implies the activation volume goes to zero in the athermal limit, as would be true for any

exponent greater than 1.

The postulate of a universal exponent is intriguing and a worthy point of investigation. It is

further worth pointing out that the only other exponent determined was 4.1 by Zhu et al. which

Chachamovitz et al. suggested was a result of the predictions accounting for data too far from the

athermal limit. Hence, the objective of this paper is to explore the nature of the activation energy

as a function of stress. Notably, we will attempt to determine if the exponent α is indeed universal,

i.e. does it have specific value for nucleation, and generally should the activation volume approach

zero as the stress approaches the athermal limit. To this end, we analyze atomistic data published

in the open literature to determine if there is a universal trend. In addition, we will also investigate

the energy barriers as a function stress using continuum models to understand how dislocation

nucleation behaves in the athermal limit of spontaneous nucleation.

6.1.1 Analysis of MD simulation results and the exponent α

Here, our goal is to determine if atomistic simulations support a universal stress exponent. To

this end, we examined existing atomistic simulation data for the activation free energy as a function

of stress. We fit the activation free energy data from Zhu et al. [163], Aubry et al. [152], Jennings

et al. [126] and Weinberger et al. [125] to Equation (6.2) in order to extract the exponent. To

determine α, we used a non-linear fitting procedure to minimize the mean square error between
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Figure 6.1: (a) The energy barrier vs. stress for Cu under pure shear (Aubry et al.) and compression (Zhu
et al.) (b) The energy barrier vs. stress for Au, Ag, Al and Ni (Jennings et al.).

the atomistic energy barrier data and the power law model. An example of this fit is shown in

Figure 6.1(a) for a Cu nanowire under pure shear (Aubry et al.) and in Figure 6.1(b) for a Cu

nanowire under uniaxial compression (Zhu et al.). For the pure shear data of Jennings et al., σ0

was included as a free variable in the fitting as no such value was reported by the authors. For the

rest of the data, σ0 was fixed based on previous reported values. In some cases, such as the data of

Zhu et al., α is sensitive to the inclusion of σ0 due to the lack of data near the ideal strength limit.

This sensitivity suggests that α may not be an ideal parameter for characterizing the energy barrier

beyond an empirical fit.

Table 6.1 lists the fitting parameters for the surveyed atomistic data. The exponent, α, for the

nanowires exhibits a wide range of values under uniaxial loading from 1.4 to 5.8 while under pure

shear the α values range from 0.8 to 1.9. Clearly, this data does not support a hypothesis that α

may have a universal value over the stress range that we have considered. Furthermore, we see

that in some cases, especially in pure shear, some of the exponents are are close to 1 and in one

case, Ag, is less than one. The case of silver is intriguing because the exponent actually implies a

divergent activation volume as the stress approaches the athermal limit, a point that will become

important later. The lack of a universal exponent in our data, however, does not completely rule out

the hyopthesis of Chachamovitz et al. as their suggestion should be limited to the athermal limit.
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Table 6.1: The best fit parameters for Equation (6.2) for the atomistic data surveyed in the literature.

Metal Reference Loading Condition σ0 (GPa) α
Cu Zhu et al. compression 5.2 4.1
Cu Aubry et al. pure shear 3.0 1.8
Au

Jennings et al. pure shear

1.4 1.3
Ag 1.5 0.8
Al 3.3 1.9
Ni 4.8 1.1

Au Weinberger et al.

〈100〉 compression rectangular cross-section 1.7 2.6
〈100〉 compression circular cross-section 1.8 1.4
〈100〉 tension rectangular cross-section 4.5 4.8
〈100〉 tension circular cross-section 4.6 2.1

〈110〉 compression rectangular cross-section 18.4 5.8
〈110〉 compression circular cross-section 21.8 4.6

〈110〉 tension circular cross-section 3.4 1.5

However, in many of the atomistic results, it would appear that the activation energies approach

the athermal limit with a constant slope, or an exponent of 1, rather than a slope of zero which is

necessary for alpha to be greater than 1.

6.1.2 Continuum Models

Since the power law fitting of the atomistic data does not indicate any universal behavior of the

exponent value but is perhaps limited in scope, we proceed to the analysis of continuum models

for dislocation nucleation. The continuum models have the advantage of greatly reducing the com-

plexity of the problem to just a few variables, which makes the solutions expedient and potentially

quite general. Furthermore, these models will be much easier to examine numerically in the limit

as the stress approaches its athermal limit. However, it is important to note that continuum models

can also introduce artifacts associated with continuum approximations and this must be kept in

mind when analyzing and generalizing the results of such models.

To start, we first examine a continuum model for the nucleation of a circular dislocation under

pure shear. While we know that dislocations will not nucleate as a perfect circular loop, this

assumption makes the model slightly simpler without compromising too much of the physics. Our

approach follows the method of Aubry et al. [152], which is an adaptation of the model in Anderson
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et al. [141], which includes the energy of the nucleating dislocation line with a constant Burgers

vector. The model we will analyze here only differs from that of Aubry et al. in the assumed form

of the line energy which is taken from [126]

∆G(τ,R) =
µb2

4

2− ν

1− ν
R ln

R

rc
− τbπR2 (6.7)

where ∆G represents the change in Gibbs free energy due to the formation of the dislocation loop,

µ is the shear modulus, ν is the Poisson’s ratio, R is the dislocation loop radius, rc is the dislocation

core radius, τ is the applied shear stress, and b is the Burgers vector of the nucleating dislocation.

The activation Gibbs free energy, ∆G∗(τ), is typically taken as the saddle of the ∆G(R, τ) function

and can be found by solving R as a function of τ by finding the maximum of ∆G∗ with respect

to R. This saddle can be found by solving ∂∆G
∂R

(R, τ) = 0, which establishes the critical radius R∗

for the applied stress τ . Solving for R∗ gives an implicit equation:

R∗

rc
= A

[

ln
R∗

rc
+ 1

]

(6.8)

where A = µb(2−ν)
8πrcτ(1−ν)

. An analytical solution for Equation (6.19) is possible in the form of:

R∗

rc
= −AW

(

− 1

Ae

)

(6.9)

where W(x) is the Lambert’s W-function or the product log function. Lambert‚s W-function

is a complex set of functions with an infinite number of branches with only two of them being

real valued. If x is real, then for −1
e
≤ x < 0 there are two possible real values of W(x), as

illustrated in Figure 6.2. The branch satisfying −1 ≤ W(x) is denoted as W0(x) and is referred

to as the principal branch while the branch satisfying W(x) ≤ −1 is denoted as W−1(x) in the

literature [194].
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Figure 6.2: The real valued Lambert W-function with branches W0 and W−1 [193].

From ∂∆G
∂R

(R, τ) = 0, we can define τ ∗ as:

τ ∗ =
µb(2− ν)

8πR∗(1− ν)

[

ln
R∗

rc
+ 1

]

(6.10)

substituting this τ ∗ into Equation (6.17) allows us to express the saddle ∆G∗ as a function of R∗

as:

∆G∗ =
µb2(2− ν)

8(1− ν)
R∗
[

ln
R∗

rc
− 1

]

(6.11)

When ∆G∗ = 0, then we have spontaneous nucleation which corresponds to the ideal strength τ0.

From Equation (6.22), this will occur when
[

ln R∗

rc
− 1

]

= 0, which results in R∗ = erc. Substi-

tuting R∗ = erc in Equation (6.21), the athermal strength, or ideal strength, τ0 can be determined

as:

τ0 =
µb(2− ν)

8π(1− ν)

2

erc
(6.12)
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Using Equation (6.20) and the definition of τ0 we can determine the relationship between R∗ and

τ as:

R∗ = −erc
2

1

y
W

(−2y

e2

)

(6.13)

where y = τ
τ0

. Now, substituting the expression for R∗ from Equation (6.24) in Equation (6.22) we

have:

∆G∗(τ) =
µb2(2− ν)e

8(1− ν)

[

− rc
2y

W

(−2y

e2

)][

ln

(

− e

2y
W

(−2y

e2

))

− 1

]

(6.14)

As discussed above and illustrated in Figure 6.2, the real valued branches of the Lambert-W

function are: W0 and W−1. We consider the W−1 branch as it has been found to be the solution to

other dislocation problems [193] and provides positive values of the change in Gibbs free energy

here. We note that W−1

(

−2y
e2

)

is infinitely differentiable at y = 1 and thus Equation (6.25) has a

power series expansion. This means that α must be a non-negative integer. To determine the value

of α as τ → τ0, we expand ∆G∗ about τ = τ0 as:

∆G∗(τ) = G0

[(

1− τ

τ0

)

+ 2

(

1− τ

τ0

)2

+
8

3

(

1− τ

τ0

)3

+
10

3

(

1− τ

τ0

)4

+O
(

1− τ

τ0

)5]

(6.15)

where G0 =
µb2(2−ν)erc

8(1−ν)
. The power series expansion clearly demonstrates that α → 1 as τ → τ0.

Detailed derivation of this power series expansion is shown below.

Consider a circular dislocation loop under pure shear as shown in Figure 6.3. The energy of this

dislocation loop can be modeled based on the ideas of Aubry et al. [152], which is an adaptation of

the model in Anderson et al. [141]. This model includes the energy of the nucleating dislocation

line with a constant Burgers vector and the work done by the shear stress on the dislocation loop

and can be written as:

∆G(τ,R) = 2πRT− πR2τb (6.16)
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Figure 6.3: A dislocation loop under pure shear loading

where T is the line energy, R is the radius of the dislocation loop, τ is the applied shear stress, and

b is the Burgers vector. If we take the line energy form of [126], then the change in Gibbs free

energy associated with the formation of a dislocation loop ∆G is:

∆G(τ,R) =
µb2

4

2− ν

1− ν
R ln

R

rc
− τbπR2 (6.17)

where µ is the shear modulus, ν is the Poisson’s ratio and rc is the dislocation core radius. The

activation Gibbs free energy, ∆G∗(τ), should be the saddle of ∆G(R, τ) and can be found by

solving R as a function of τ by determining the maximum of ∆G(R, τ) with respect to R. To find

the activation Gibbs free energy, ∆G∗, we differentiate both sides of Equation (6.17) as:

∂∆G

∂R
(R, τ) =

µb2(2− ν)

4(1− ν)

[

ln
R

rc
+ 1

]

− 2τbπR (6.18)
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Setting ∂∆G
∂R

(R, τ)
∣

∣

R=R∗
= 0 and solving for R∗ yields an implicit equation of the form:

R∗

rc
= A

[

ln
R∗

rc
+ 1

]

(6.19)

where A = µb(2−ν)
8πrcτ(1−ν)

. An analytical solution to the implicit Equation (6.19) is:

R∗

rc
= −AW

(

− 1

Ae

)

(6.20)

where W(x) is the Lambert’s W-function or the product log function. Lambert‚s W-function is a

complex set of functions with an infinite number of branches but only two of them are real valued.

If x is real, then for −1/e ≤ x < 0 there are two possible real values of W(x), as illustrated in

Figure 6.2. The branch satisfying −1 ≤ W(x) is denoted as W0(x) and is referred to as the

principal branch while the branch satisfying W(x) ≤ −1 is denoted as W−1(x) in the literature

[194].

By rearranging Equation (6.18), we can also define the applied shear stress as a function of R∗

as:

τ =
µb(2− ν)

8πR∗(1− ν)

[

ln
R∗

rc
+ 1

]

(6.21)

and substituting this τ into Equation (6.17) allows us to express the saddle point ∆G∗ as a function

of R∗ as:

∆G∗ =
µb2(2− ν)

8(1− ν)
R∗
[

ln
R∗

rc
− 1

]

(6.22)

When ∆G∗ = 0, then we have spontaneous nucleation which corresponds to the ideal strength τ0.

From Equation (6.22), this will occur when
[

ln R∗

rc
− 1

]

= 0, which results in R∗ = erc. Substi-

tuting R∗ = erc in Equation (6.21), the athermal strength, or ideal strength, τ0 can be determined

as:

τ0 =
µb(2− ν)

8π(1− ν)

2

erc
(6.23)
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Using Equation (6.20) and the definition of τ0 we can determine the relationship between R∗ and

τ as:

R∗ = −erc
2

1

y
W

(−2y

e2

)

(6.24)

where y = τ/τ0. Now, substituting the expression for R∗ from Equation (6.24) in Equation (6.22)

we have:

∆G∗(τ) = −µb
2(2− ν)erc
16(1− ν)

[

1

y
W

(−2y

e2

)][

ln

(

− e

2y
W

(−2y

e2

))

− 1

]

(6.25)

As discussed above and illustrated in Figure 6.2, the real valued branches of the Lambert-W func-

tion are: W0 and W−1. We consider the W−1 branch as it has been found to be the solution to

other dislocation problems [193] and provides positive values of the change in Gibbs free energy

here. We note that W−1

(

−2y
e2

)

is infinitely differentiable at y = 1 and thus Equation (6.25) has

a power series expansion with non-negative integer exponents. The first term in Equation (6.25),

µb2(2−ν)erc
16(1−ν)

, is only dependent on material constants. The second and third terms inside brackets in

Equation (6.25) both have the term
[

1
y
W−1

(

−2y
e2

)]

which can be expanded as:

1

y
W−1

(−2y

e2

)

= W−1

(

− 2

e2

)

− (y − 1)
(

W−1

(

− 2
e2

))2

W−1

(

− 2
e2

)

+ 1
+

(y − 1)2
(

W−1

(

− 2
e2

))3 (
2W−1

(

− 2
e2

)

+ 3
)

2
(

W−1

(

− 2
e2

)

+ 1
)3 −

(y − 1)3
(

W−1

(

− 2
e2

))4
(

19W−1

(

− 2
e2

)

+ 6
(

W−1

(

− 2
e2

))2
+ 16

)

6
(

W−1

(

− 2
e2

)

+ 1
)5 + ...

Substituting W−1

(

− 2
e2

)

= −2 in the above equation results in:

1

y
W−1

(−2y

e2

)

= −2 + 4(y − 1)− 4(y − 1)2 +
16

3
(y − 1)3 − 4(y − 1)4 + ...
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Substituting this result in Equation (6.25) gives:

∆G∗(τ) =
µb2(2− ν)erc
16(1− ν)

(

2− 4(y − 1) + 4(y − 1)2 − 16

3
(y − 1)3 + 4(y − 1)4 − ...

)

(

ln

[

−e
2

(

−2 + 4(y − 1)− 4(y − 1)2 +
16

3
(y − 1)3 − 4(y − 1)4 + ...

)]

− 1

)

Multiplying the second and third term of the above equation results in a power series expansion of

∆G∗(τ) as:

∆G∗(τ) = G0

[(

1− τ

τ0

)

+ 2

(

1− τ

τ0

)2

+
8

3

(

1− τ

τ0

)3

+
10

3

(

1− τ

τ0

)4

+O
(

1− τ

τ0

)5]

which is identical to Equation 6.15 exhibiting ∆G∗ ∝
(

1− τ
τ0

)1

as τ → τ0.

For stress values less than τ0, an empirical fit of ∆G = G0

(

1− τ
τ0

)α

would give rise to an

α > 0. The activation volume can be analytically derived, since b = constant, as:

Ω = πR2b =
e2r2c
4

τ 20
τ 2

W
2
−1

(

− 2τ

e2τ0

)

πb =
1

4
e2r2cπbW

2
−1

(

− 2τ

e2τ0

)

In the limit τ → τ0, Ω approaches a constant:

Ω(τ = τ0) = e2r2cπb (6.26)

This result contradicts the postulate of a exponent of 1.5, but also assumes that the activation free

energy is referenced to a loop of zero radius. This reference is problematic because a dislocation

of zero radius is a local maximum as the energy initially decreases with loop growth and reaches

a real local minimum of finite radius before it increases again to the saddle. This is important

because the universal exponent of 1.5, a result of catastrophe theory [195], is derived by assuming

the saddle collides with a local minimum which is not analyzed in the above derivation.

However, this simple model does predict a local minimum and the system can be analyzed as

the saddle (or maximum) approaches this local minimum. The negative one branch of the Lambert
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function corresponds the saddle (maximum) and thus the other branch, the zero branch solution

we discarded earlier, corresponds to the minimum. Thus, we can define the actual activation Gibbs

free energy barrier as:

∆G† = ∆G∗
−1 −∆G∗

0 (6.27)

where ∆G∗
−1 and ∆G∗

0 can be found by using the W−1 and W0 branches of the Lambert-W

function in Equation (6.20) to solve for R∗ and substituting R∗ into Equation (6.22). In order for

∆G∗
−1 and ∆G∗

0 to collapse and give rise to ∆G† = 0, Equation (6.20) needs to be expanded about

W

(

− 1
e

)

, the point where W−1 and W0 converge as shown in Figure 6.2. This requires the

term A = µb(2−ν)
8πrcτ(1−ν)

we defined for Equation (6.20) to be unity. Since our objective is to analyze

the energy barrier near τ → τ0 we have to redefine τ0 =
µb(2−ν)
8πrc(1−ν)

such that A = τ0
τ

. With this

definition of τ0 we can rewrite Equation (6.20) as:

R∗ = −rc
y
W

(

− y

e

)

where y = τ
τ0

. Now ∆G∗
−1 and ∆G∗

0 are:

∆G∗
−1 = K

(−1

y

)

W−1

(−y

e

)[

ln

((−1

y

)

W−1

(−y

e

))

− 1

]

∆G∗
0 = K

(−1

y

)

W0

(−y

e

)[

ln

((−1

y

)

W0

(−y

e

))

− 1

]

where K = µb2rc(2−ν)
8(1−ν)

.

A series expansion of W0 can be done at the branch point by defining p =
√

2(1− y) where

y = τ
τ0

resulting in:

W0(z) = −1 + p− p2

3
+

11p3

72
+ . . .
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For the W−1 branch, a similar series expansion is defined for p = −
√

2(1− y) [196]. Substituting

the series expansion in the equations for ∆G∗
−1 and ∆G∗

0 and taking their differences in Equation

(6.27) we obtain for y → 1:

∆G† = K

[

8
√
2

3
(1−y)3/2

(

1−(1−y)+(1−y)2−....
)

+
11
√
2

54
(1−y)5/2

(

1−(1−y)+(1−y)2−....
)]

(6.28)

The leading term on the right hand side of the above equation has an exponent of 3
2

in accordance

with the results from [190–192]. Derivation of this power series expansion is shown below.

The actual activation Gibbs free energy barrier of the above problem is more accurately mod-

eled as the difference between a local minimum and a saddle, which in this case is described by

Equation 6.27 with ∆G∗
−1 and ∆G∗

0 can be found by using the W−1 and W0 branches of the

Lambert-W function respectively in Equation (6.25). For ∆G∗
−1 and ∆G∗

0 to collapse, we have to

redefine Equation (6.20) and substitute this redefined R∗ into Equation (6.22). Also in order for

∆G† = 0, Equation (6.20) needs to be expanded about the branch point −1
e

where W−1 and W0

converge as shown in Figure 6.2. In other words the expansion has to be done for W
(

− 1
e

)

which

requires the term A = µb(2−ν)
8πrcτ(1−ν)

we defined for Equation (6.20) to be unity. Since our objective is

to analyze the energy barrier near τ → τ0 i.e., τ
τ0

→ 1, we also have to redefine τ0 =
µb(2−ν)
8πrc(1−ν)

such

that A = τ0/τ . With this definition of τ0 we can rewrite Equation (6.20) as:

R∗ = −rc
y
W

(

− y

e

)

where y = τ
τ0

. Substituting this result in Equation (6.22) we have:

∆G∗(τ) =
µb2(2− ν)rc
8(1− ν)

[

− 1

y
W

(−y

e

)][

ln

(

− 1

y
W

(−y

e

))

− 1

]

(6.29)
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Now using the appropriate branches of W, we have:

∆G∗
−1 = K

(−1

y

)

W−1

(−y

e

)[

ln

((−1

y

)

W−1

(−y

e

))

− 1

]

(6.30)

and

∆G∗
0 = K

(−1

y

)

W0

(−y

e

)[

ln

((−1

y

)

W0

(−y

e

))

− 1

]

(6.31)

where K = µb2rc(2−ν)
8(1−ν)

. To perform series expansion of the term inside the brackets in above equa-

tions we recall that the Lambert-W function is defined as

WeW = z

Taking logarithm on both sides and changing sides we have

lnW = ln z −W

This is a useful result which enables us to reduce the term
[

ln
[

− 1
y
W
(

−y
e

)

]

− 1
]

into two simple

terms:

ln

[

−1

y
W

(

−y
e

)

]

− 1 = ln

(

−1

y

)

+ ln
(

W

(

−y
e

))

− 1

= ln

(

−1

y

)

+ ln
(

−y
e

)

−W

(

−y
e

)

− 1

= ln

(

1

e

)

−W

(

−y
e

)

− 1

= −2−W

(

−y
e

)

Substituting
[

ln
[

− 1
y
W
(

−y
e

)

]

− 1
]

= −2−W
(

−y
e

)

in Equation (6.30) we have

∆G∗
−1 = K

(−1

y

)

W−1

(−y

e

)

(

−2−W−1

(

−y
e

))

(6.32)
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Also substituting
[

ln
[

− 1
y
W
(

−y
e

)

]

− 1
]

= −2−W
(

−y
e

)

in Equation (6.31) we have

∆G∗
0 = K

(−1

y

)

W0

(−y

e

)

(

−2−W0

(

−y
e

))

(6.33)

A series expansion of W0 can be done at the branch point −1
e

, by defining p =
√

2(1− y) [196]

where y = τ/τ0 resulting in:

W0(z) = −1 + p− p2

3
+

11p3

72
+ . . . (6.34)

Now multiplying both sides of Equation (6.33) by y
K

and performing the above series expansion

we have

y∆G∗
0

K
= −1−

√

2(1− y) +
2

3
(1− y)− 11× 23/2

72
(1− y)3/2 + ...

+
√

2(1− y) + 2(1− y)− 2
√
2

3
(1− y)3/2 +

11× 22

72
(1− y)2 + . . .

−2

3
(1− y)− 2

√
2

3
(1− y)3/2 +

4

9
(1− y)2 − 11× 25/2

72
(1− y)5/2 + . . .

+
11× 23/2

72
(1− y)3/2 +

11× 22

72
(1− y)2 − 11× 25/2

72
(1− y)5/2+

(

11× 23/2

72

)2

(1− y)3 + . . . (6.35)
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Also multiplying both sides of Equation (6.32) by y
K

and performing the same series expansion we

have

y∆G∗
0

K
= −1−

√

2(1− y) +
2

3
(1− y) +

11× 23/2

72
(1− y)3/2 + ...

−
√

2(1− y) + 2(1− y) +
2
√
2

3
(1− y)3/2 +

11× 22

72
(1− y)2 + . . .

−2

3
(1− y) +

2
√
2

3
(1− y)3/2 +

4

9
(1− y)2 +

11× 25/2

72
(1− y)5/2 + . . .

−11× 23/2

72
(1− y)3/2 +

11× 22

72
(1− y)2 +

11× 25/2

72
(1− y)5/2+

(

11× 23/2

72

)2

(1− y)3 + . . . (6.36)

Now subtracting Equation (6.35) from Equation (6.36)

y

K

(

∆G∗
−1 −∆G∗

0

)

=
25/2 × 11

72
(1− y)3/2 +

4
√
2

3
(1− y)3/2 +

4
√
2

3
(1− y)3/2+

4× 11× 23/2

72× 3
(1− y)5/2 − 25/2 × 11

72
(1− y)3/2 +

4× 11× 23/2

72× 3
(1− y)5/2 + . . .

Rearranging the above equation and substituting from Equation (6.27) we obtain

∆G† = K

[

8
√
2

3

(1− y)3/2

y
+

8× 11× 23/2

72× 3

(1− y)5/2

y
+ . . .

]

(6.37)

Now we see that there is a 1
y

term in the above equation. We can perform Taylor expansion of this

term near y = 1 as
1

y
= 1 + (1− y) + (1− y)2 + (1− y)3 + ....

Substituting this expansion for 1
y

in Equation (6.37) we arrive at our final expression for ∆G†:

∆G† = K

[

8
√
2

3
(1− y)3/2

(

1− (1− y) + (1− y)2 − ....

)

+

11
√
2

54
(1− y)5/2

(

1− (1− y) + (1− y)2 − ....

)]
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which is the same as Equation 6.28 exhibiting ∆G† ∝
(

1− τ
τ0

)3/2

as τ → τ0.

This result, even though it auspiciously matches the energy barrier scaling prediction from the

catastrophe theory, is fortuitous. This is because the conditions under which the universal exponent

was derived are not met in this problem. First, the derivation of the universal exponent of 3
2

assumes

smoothness of the free energy barrier near the collapse. However, in this example the free energy

is not smooth, it has a branch point at the athermal limit which negates any universal exponent

behavior. Thus, we should not expect agreement of the exponents.

Another reason, which is perhaps more important, is that standard catastrophe theory assumes

the driving force is assumed to be linear in the reaction coordinate [195]. However, this is not

appropriate for dislocation nucleation. The generalized driving force is the stress τ , which in

nucleation, scales with the area and thus for a circular loop, R2.

To extend the ideas of developed previously in catastrophe theory specifically to dislocation

nucleation we consider a general form for the activation Gibbs free energy for nucleation, ∆G∗ as:

∆G(τ,R) = f(R)− 1

2
τR2 (6.38)

with the assumption, for a simple model, that the Burgers vector b is a constant. The function

f(R) represents the line energy of the dislocation nucleus which presumably is quadratic inR near

R = 0 and linear in R for large R. We will further assume that the function f(R) is smooth. We

have dropped some of the constants (such as a factor of 2π) for simplicity.

The minimum of the function is assumed to occur at R = 0 and the saddle can be found by

taking ∂∆G
∂R

(R, τ) = 0 which results in:

τ =
1

R∗ f
′(R∗)
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and provides a relationship between the stress and radius at the saddle point. This can be substituted

back into the Gibbs free energy equation to obtain:

∆G∗ = f(R∗)− 1

2
R∗f ′(R∗) (6.39)

However, again we need to write this equation in terms of τ and the athermal strength τ0, notably

in terms of
(

1− τ
τ0

)

.

The athermal strength can be defined as stress at which R∗ → 0. This can be obtained by

examining the functional form of f(R) for small R which, based on our previous assumptions, is:

f(R∗) = a2R
∗2 + a3R

∗3 + a4R
∗4 . . . (6.40)

Thus, the athermal strength is:

τ0 = lim
R∗→0

1

R∗f
′(R∗)

= 2a2 = f ′′(0)

This allows us to write an expression for
(

1− τ
τ0

)

as:

1− τ

τ0
= 1− f ′(R∗)

Rf ′′(R∗)

= −3

2

a3
a2
R∗ − 2

a4
a2
R∗2 − . . .

Which, for sufficiently small R∗, is:

R∗ = −2

3

a2
a3

(

1− τ

τ0

)

(6.41)
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Now, substituting Equation (6.41) into Equation (6.39) we have:

∆G∗(R∗) =
1

2
a3

[

2

3

a2
a3

(

1− τ

τ0

)]3

− a4

[

2

3

a2
a3

(

1− τ

τ0

)]4

+ . . .

So, for small R∗

∆G∗ ∝
(

1− τ

τ0

)3

If an f(R) is chosen such that a3 = 0, e.g. f(R) is an even function about R = 0, then the R∗ scales

with
(

1− τ
τ0

)1/2

which results in

∆G∗ ∝
(

1− τ

τ0

)2

We verify these two scaling relations, first, by choosing an f(R) such that it is consistent with our

assumed power series expansion given in Equation (6.40) at R∗ = 0:

f(R) = R tanh

(

R

rc

)

+ R2 exp

(−R

rc

)

=

(

1 +
1

rc

)

R2 − R3

rc
+

(3rc − 2)R4

6r3c
+ . . .

To verify this, the saddle point (d∆G
dR

= 0), is computed relative to the minimum and examined as

τ → τ0 which results in a numerical result of:

∆G∗ ∝
(

1− τ

τ0

)3

The exponential term is included above because it ensures that the equation has a cubic term,

resulting in an exponent of three. If we eliminate this term, f(R∗) = R∗ tanh(R∗/rc) is even and
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hence lacks all odd exponents. Numerical analysis demonstrate that the free energy scales as:

∆G∗ ∝
(

1− τ

τ0

)2

(6.42)

in agreement with the results of the power series expansion.

Thus, it is clear that scaling of the activation free energy with the applied stress varies with

the choice of line tension term and the continuity of that term at the bifurcation point as we have

seen exponents of 2, 3 and, in one special case, 1.5. While this behavior does not contradict the

atomistic data presented above (the lack of a universal exponent), this result may still be an artifact

of the simple nature of model. The athermal strength, τ0, is set artificially by a cutoff radius

or regularization parameter, rc, instead of the more common notion that τ → τ0 as the Burgers

vector, b → 0. This is precluded in the simple model since the Burgers vector is held constant.

Thus, our analyzed behavior near τ = τ0 may be an artifact of fixing the Burgers vector and an

improved model where b is a variable is needed to better understand how ∆G∗ should behave near

the athermal limit.

To examine the shortcomings of the first continuum model, we also analyze an augmented

model where the variable Burgers vector, bf , is allowed to vary between 0 and b0, again following

the ideas of Aubry et al. but with a line tension term of R tanh(R/rc) which is the same f(R) we

have used in our generalized simple model that produces α = 2. The change in free energy in this

model due to the nucleation of a circular dislocation loop is:

∆G(τ,R, bf) =
µb2

f

4

2− ν

1− ν
R tanh

R

rc
− τbfπR

2 + πR2[γ(u0 + bf)− γ(u0)] (6.43)

where γ is the GSF energy and the displacement, u0, along the Burgers vector direction can be

determined by equating the derivative of the GSF energy and the applied stress: dγ
du

∣

∣

u0
− τ = 0

[126]. For the purpose of examining general nucleation, we choose to first analyze the nucleation of

a perfect dislocation. In this case, the GSF curve can be readily modeled with a sinusoidal function

as: γ(u) = γ0
2

[

1− cos
(

2πu
b0

)]

. We were unable to find an analytical solution for the activation
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free energy, so a numerical approach is used. In order to numerically solve for the saddle point

∆G∗, the material constants were non-dimensionalized in the above equation (Equation (6.43))

as follows: µ = 4π2, ν = 0.0, b0 = 1.0, rc = 1.0, γ0 = 1
2π

. τ0 can be determined by finding the

maximum stress the crystal can withstand, defined by the GSF curve, prior to rigid sliding of the

crystal. This is the maximum of dγ
du

, which can be solved analytically as: τ0 = π γ0
b0

. The value of τ

can be related to the GSF curve as noted above, as: τ = dγ
du

∣

∣

u0
.

Figure 6.4: (a) The activation free energy barrier vs. stress behavior for homogeneous dislocation nucleation
for the model with variable Burgers vector, i.e. model 2. Activation energies are calculated from Equation
(6.43). (b) The activation volume vs. stress behavior for dislocation nucleation for the augmented model
proposed in Equation (6.43).

Now, to find the activation Gibbs free energy ∆G∗ which is the saddle point of ∆G(bf ,R, τ) we

differentiate Equation (6.43) with respect to both R and bf . Then, we set ∂∆G
∂bf

= 0 and ∂∆G
∂R

= 0.

The two equations ∂∆G
∂R

= 0 and ∂∆G
∂b

= 0 were numerically solved using the Newton-Raphson

method.

To explore how the line tension argument affects this new exponent, α, we carried out a similar

numerical analysis of the augmented model with an alternative line energy term which is the same
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f(R) we have used in our generalized simple model that produces α = 3 as:

∆G(τ,R, bf) =
µb2

f

4

2− ν

1− ν

(

R tanh(R/rc) + R2 exp(−R/rc)

)

−τbfπR
2 + πR2[γ(u0 + bf)− γ(u0)]

A similar analysis of this model also gives rise to α = 0.5 for this version of the augmented model.

Finally, we have also analyzed the case in which the dislocation energy term is linear in R, i.e.
µb2f
4

2−ν
1−ν

R, which also results in an α = 0.5. Thus we infer that α = 1
2

is relatively invariant to the

choice of the line tension term as long as ∆G is continuous when the saddle meets the minimum.

We further point out that the results are not dependent on the choices of rc or γ0 in this model, the

exponents remain the same.

At this point, we return to the augmented model proposed by Jennings et al. in [126]:

∆G(τ,R, bf) =
µb2

f

4

2− ν

1− ν
R ln

R

rc
− τbfπR

2 + πR2[γ(u0 + bf)− γ(u0)] (6.44)

The simple version of this model, which does not include the generalized stacking fault energy

penalty term, introduces an artificial minimum. This required the introduction of ∆G†, which was

the difference between the saddle (maximum) and the artificial minimum, which was discontinuous

at the athermal limit and resulted in an exponent of 1.5. As we will demonstrate later, the function

∆G as represented by Equation (6.44) does not have a local minimum. Instead there is only a

saddle point and a local maximum at (R, bf) = (0, 0) for all τ ≤ τ0. The local minimum artificially

introduced by the logarithm term is no longer a minimum but creates a path in which there is no

free energy barrier for dislocation nucleation as the Burgers vector can grow unbounded.

To illustrate this behavior, consider a numerical implementation of Equation (6.44). For this ex-

ample, we consider the numerical case where τ = 0.684τ0, µ = 4π2, ν = 0.0, b0 = 1.0, rc = 1.0.

The GSF term is described by γ(u) = γ0
2

[

1− cos
(

2πu
b0

)]

as before with γ0 = 1
2π

. A contour plot

of ∆G as a function of R and b is shown Figure 6.5 which shows that for small R, as the Burgers

vector is increased ∆G continuously decreases (Figure 6.5(b)). While this is certainly mathemat-
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ically possible, it is often ignored as a artifact in the dislocation model. Never-the-less, it makes

the (R, bf) = (0, 0) a maximum and not a minimum due to the ability to decrease the free energy

by increasing R.

Figure 6.5: (a) A contour plot of the free energy surface, ∆G(R, bf) modeled as Equation (6.44) for
τ
τ0

= 0.683 over the range R ∈ [0, 50] and b ∈ [0, 1]. (b) the free energy surface over the range R ∈ [0, 1]
and b ∈ [0, 1]

Despite the obvious mathematical issues with this model, it is still insightful to examine how

the saddle approaches the (R, bf) = (0, 0) maximum as this has been regularly used in modeling

dislocation nucleation. The solution strategy is the exact same as that used for the other models

with varying Burgers vectors. The two key peices of information obtained from the analysis are

shown in Figure 6.6 , the behavior of the activation volume and a plot of the effective exponent. Just

as occurred in the other cases, the activation volume diverges when the stress reaches the athermal

limit. Figure 6.6(b) shows that as the stress reaches the athermal limit, the exponent approaches a

value of approximately 0.4, distinctly different from that of the other models with variable Burgers

vectors in which the exponent was 0.5. The difference in exponents between the models appears to

be a result of the (R, bf) = (0, 0) point being a maximum in this case, as opposed to a minimum in

the case of the other models. To illustrate more clearly the differences in the free energy models,

consider a contour plot of the free energy using the model of Equation (6.43) as shwon in Figure

6.7 . This figure shows in this case there is a clear saddle and that the point (R, bf) = (0, 0) is

162



indeed the local minimum. A zoomed in region near the origin, Figure 6.7(b), confirms that the

function is a minimum at the origin.

Figure 6.6: (a) The activation volume vs. stress behavior for dislocation nucleation modeled by Equation
(6.44). (b) A log-log plot of d log∆G∗

d log((1− τ
τ0

)) as a function of (1− τ
τ0
) for the augmented model of Equation

(6.44). The exponent α approaches a value of 0.4 as τ → τ0.

Figure 6.7: (a) A contour plot of the free energy surface, ∆G(R, bf) modeled as Equation (6.43) for
τ
τ0

= 0.683 over the range R ∈ [0, 50] and b ∈ [0, 1]. (b) the free energy surface over the range R ∈ [0, 1]
and b ∈ [0, 1]

To ensure the generality of our results, we have also computed the exponents for different GSF

terms. For example, models of the dislocation nucleation process originally used a GSF term of the

form γ(u) = γ0
2

[

1− cos
(

2πu
b0

)]

where bf represents the Burgers vector of a perfect dislocation.
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Alternatively, we can also analyze the model with a GSF term that represents the nucleation of a

partial dislocation, as Aubry et al. did [152]. To achieve this in our numerical implementation in

which a continuous GSF is needed, we fit the GSF curve for copper given in [152] using a 5th order

polynomial with the first two coefficients set to zero. This GSF model was implemented into our

free energy calculations and while the numerical values of the free energies changed the extracted

exponents did not.

For bulk plastic deformation [190,191], dislocation nucleation [189] and transitions from elas-

tic to inelastic deformation [192,195,197–199], it has been proposed that ∆G ∝ (1− τ/τ0)
α with

a universal α = 3
2
. In this work, we examined all previous atomistic data in which the energy bar-

riers were explicitly computed from atomistic chain-of-states methods, and found the exponents

varied between 0.8 and 5.8, indicating that there is little support for a universal exponent from

such atomistic simulations. However, the analysis was performed on all available data and not

necessarily just limited to the athermal limit and as such, we cannot refute a universal exponent for

dislocation nucleation from available atomistic data.

To provide additional insight into the behavior of the activation free energy as a function of

stress, we analyzed several continuum models of dislocation nucleation. For stress sufficiently far

from the athermal limit, it is clear that an empirical model of the form ∆G = G0(1− τ/τ0)
α can

be used and will predict a value of α > 1, but this value is not a constant and will depend on the

range of stresses used in the empirical fit. As for applied stress τ → τ0 the numerical value of the

exponent will depend on the assumed form of the line energy as well as how the driving force scales

with dislocation loop radius. For a defect-free crystal, where a dislocation has to be nucleated first

to induce failure, the applied stress scales with R∗2 since the stress is applied over the dislocation

loop being nucleated. These considerations suggest that the equation (Equation (6.2)) introduced

by Zhu et al. [163] is best described as an empirical relationship.

In the first class of continuum models we analyzed, the Burgers vector was held constant which

allowed us to derive an analytic expressions for the activation free energy and activation volume

as a function of stress by setting an artificial athermal strength. In all of the cases analyzed, the
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exponent was greater than one and the activation free energy and activation volume decreased to

zero at the athermal limit. The value of the exponent depended on the form of the line energy. For

the line energy that scaled as R log(R/rc), the exponent was 3
2
, a result of the lack of continuity

when the saddle collides with the minimum. When the line energy is continuous, the exponent was

found to be three if the line energy term has third order power in its expansion and a value of two if

the first term in the expansion is fourth order. Presumably, other exponents would be found if the

expansion of the free energy was missing the forth order term in the expansion of the free energy.

In the second class of models, we allow the Burgers vector to change and include a energy

penalty associated with the generalized stacking fault energy as a function of the Burgers vector.

In this case, if the line energy creates a minimum at R = 0 and the function is smooth, the

activation volume is found to diverge. The divergence of the activation volume is a result of the

critical radius diverging while the Burgers vector goes to zero. The extracted activation energy

exponent α is 1
2
. However, if the line energy includes the standard logarithm term, we find that the

behavior is similar but that the exponent becomes roughly 0.4.

These exponents appear to violate catastrophe theory as well as our previous results regarding

the general nature of exponents in dislocation nucleation. However, we should also note that the

exponents derived in this way assume, as noted before, that the free energy is smooth when the

saddle approaches the minimum. In the cases when the exponent is less than one, the radius

diverges invalidating the assumptions made regarding smoothness. It is further clear that it is the

introduction of the GSF term that causes the radius to diverge while allowing the Burgers vector

to go to zero. The GSF term acts to cause the activation free energy to rapidly decrease to zero,

which in turn causes the activation volume to diverge.

This raises a question regarding the divergence of the activation volume; can this be physical

or is it a numerical artifact? We know that exponents that are larger than one as derived in our

first class of models in which the Burgers vector is held constant, are indeed artifacts of the model.

This is because the athermal strength in each case is directly related to rc, a regularization constant

used to create a smooth quadratic local minimum. However, in the cases where the Burgers vector
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was allowed to change and R → ∞, the result appears to be a physically meaningful result. As τ

approaches the ideal strength, bf → 0 and thus the crystal is able to rigidly shear, which can readily

occur over the whole crystal at once and thus physically represents R → ∞. Thus, it is possible to

accept the results obtained here on physical grounds, not just mathematical ones.

This then raises the question of what is the correct exponent in the athermal limit, the value

of 1
2

or the value of roughly 0.4. While we cannot say for sure, we can speculate that the value

of 1
2

appears more appropriate. As noted previously, all the models that have a minimum at (R =

0, bf = 0) also have an exponent of 1
2
. The only exception is the model with the R log(R/rc)

line energy term which, as stated before, has some numerical artifacts as a result of the logarithm

term. Given that the logarithm may not be representative of the energy for R values less than rc

physically, the free energy near the athermal limit may not be particularly accurate for dislocation

nucleation. Thus, we speculate that the exponent of 1
2

is the most likely correct exponent for

dislocation nucleation.

While the detailed continuum models provide some insight into how the activation energy

and activation volume behave very close to the athermal limit, these results may not, at first, ap-

pear particularly relevant to actually modeling dislocation nucleation. However, these results, in

conjunction with the atomistic modeling results, do offer some important insights into empirical

modeling of the activation energy equations. To better understand this, consider the empirical ac-

tivation energy equation proposed by Zhu et al [182]. The assumed form of the activation energy

predicts an activation volume of: Ω = E0α
τ0

(1− τ/τ0)
α−1(1− T/Tm). This particular form almost

entirely precludes the possibility of having a constant activation volume at τ → τ0. If we examine

the results of our continuum model the activation volume goes to a constant before sharply diverg-

ing. Similar conclusions can be drawn by visual examination of the activation energy plots from

direct atomistics, as shown earlier: the activation volume appears to approach a constant. This

suggest that empirically fitting the activation volume to an equation that enforces the activation

volume to go to zero in the athermal limit can cause numerical issues in the modeling dislocation

nucleation, especially when the activation volume is determined and integrated to the activation
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energy. If this is the case, it would appear choosing and empirical form for the activation energy

that can accommodate a non-zero activation volume at the athermal limit is beneficial. Such a form

has been proposed by Weinberger et al. [125], although this is not the only form that one could

suggest.

6.2 Continuum model of twin nucleation in BCC transition met-

als

As discussed earlier, any defect nucleation phenomenon is controlled by the energy barrier

associated with nucleation of the defect [200]. Free-end string simulations are employed in this

study not only to observe twin nucleation in bulk BCC crystals described by EAM potentials but

also these simulations provide us with energy barrier for twin nucleation as a function of applied

pure shear stress. However, string simulations with available EAM potentials for BCC Nb, V,

and Cr were not performed because numerical issues perhaps caused by fitting of parameters with

equilibrium properties. To calculate the energy barrier for twin nucleation in all BCC transition

metals it is imperative that analytical models are developed for twin nucleation based on contin-

uum theory so that energy barriers can be computed for BCC metals that are modeled by imperfect

EAM potentials. More importantly, since our DFT computations indicate that two layer twins are

the critical twin nuclei in BCC transition metals as opposed to one and three layer twins predicted

by EAM potentials, we can compute the energy barrier for twin nucleation using DFT inputs by

developing a robust analytic model. The idea is that the model will describe the activation Gibbs

free energy in terms of dislocation loop size and Burgers vector at specified applied stresses as

discussed in Chapter 5. To determine the activation energy of the dislocation nucleation process,

the saddle point between the nanocrystal without a dislocation (the pristine crystal) and dislocated

crystal needs to be found. The number of mechanically stable layers with the lowest energy barrier

then determines the critical size of twin nucleus. The analytical model is developed for homoge-

neous nucleation because we can compare the predicted energy barriers with the energy barriers

from our string simulations.
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Figure 6.8: Three twinning dislocation loops (denoted by numbers 1, 2 and 3) nucleated in bulk BCC
crystal. The loops have equal Radii, R and they are separated by distance zij. The displacement (Burgers
vector) associcated with each loop is determined from twin structures found or produced in string or DFT
simulations.

Hirth and Lothe [141] introduced a simple model of the activation Gibbs free energy of disloca-

tion nucleation in terms of the increase in energy associated with the line length of the dislocation,

the stacking fault energy, and the work done in the nucleation of the dislocation. Following this,

simple model for homogeneous nucleation of a circular dislocation loop, the increase in Gibbs free

energy under pure shear can be written as:

∆G(τ,R) =
µb2

4

2− ν

1− ν
R ln

R

rc
+ πR2γsf − τbπR2 (6.45)

Here it is assumed that the dislocation loop is circular with a radius R (see Figure 6.8), rc is the

inner cutoff radius, γsf is the stacking fault energy and the material is linear elastic with shear

modulus µ and ν is the Poisson’s ratio. Since our goal is to use this model for twin nucleation,

the Burgers vector b in Equation 6.45 is equal to the magnitude of the twinning partial dislocation.
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Figure 6.9: (a) a single layer fault produced from rigidly translating a pure BCC crystal by an amount
a
6〈111〉, (b) TGSF curve for Ta and (c) TGSF curve for W with relative displacement, λ = u

bp
where u is

any arbitrary amount of displacement and bp = a
6〈111〉 is the twinning partial, in the horizontal axis and the

stacking fault energy γ in the vertical axis.

The activation Gibbs free energy ∆G∗ is typically taken as the saddle of the ∆G(τ,R) and can be

found by solving d∆G
dR

= 0. However, if more than one dislocation loops are nucleated which is the

case for deformation twinning, these dislocations will interact with each other. To incorporate the

interactions between nucleated dislocations, we must include the elastic interaction terms between

the twinning partials in Equation 6.45:

∆G(τ,R) =
∑

i

µb2
i

4

2− ν

1− ν
R ln

R

rc
+
∑

i

πR2γsf,i −
∑

i

τbiπR
2 +

∑

i

µbibjRk

1− ν

(

K(k)− E (k)
)

(6.46)

where k2 = 4R2

z2+4R2 with z being the distance between dislocation loops. Furthermore, K and E are

the complete elliptic integrals of the first and second kind [141], respectively. This model is more

complex than Equation 6.45 hence no analytical solution is possible. The energy barrier can be

found by using the Nelder-Mead simplex algorithm as described in Lagarias et al. [201].
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Energy barrier calculations from the model described by Equation 6.46 predicts that the lowest

energy barrier is associated with a single dislocation loop in BCC metals. However, the twinning

GSF curves shown in Figures 6.9 (b) and (c) clearly show that a one layer fault (aka single dislo-

cation loop) is unstable in both Ta and W. Moreover, the twinning GSF curve (Figure 6.9 (b)) for

BCC Ta shows that a two layer thick twin with isosceles boundary structure is also unstable. Hence

energy barriers were computed by finding the saddle point for the model represented by Equation

6.46 as a function of applied shear stress for three, four, five and six twinning dislocation loops

in BCC Ta assuming two isosceles TBs. From Figure 6.10, we see that the energy barrier as well

as the nucleation strength predicted by the model increases with the number of twinning disloca-

tion loops. Hence the smallest size of stable twin nucleus is three layers thick with isosceles twin

boundary structure which implies a total displacement of 2bp = 2bt =
2b
3

. This is also supported

by the TGSF curve (Figure 6.9 (b)) where the first metastable point also represents a three layers

thick twin nucleus with isosceles twin boundary.

Figure 6.10: Energy barrier vs stress in BCC Ta for varying number of twinning dislocation loops calculated
by finding saddle points for Equation 6.46.
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The analytical model developed for homogeneous nucleation of twinning dislocation loops in

Equation 6.46 can be improved by incorporating a variable magnitude of the Burgers vector that

goes from 0 to b. The concept of variable Burgers vector originates from the Peierls-Nabarro

model of dislocation [202, 203] and recently Aubry et al. [152] showed that by incorporating a

variable Burgers vector in Equation 6.45, the energy barrier computation closely approximates the

energy barrier of homogeneous dislocation nucleation predicted by explicit atomistic calculations.

Aubry et al. also showed that a stress dependent stacking fault energy term improves the model

in Equation 6.45 for homogeneous nucleation of single dislocation loops. Hence the augmented

model in Equation 6.46 can be further enhanced by including a stress dependent stacking fault

energy term. The energy barrier calculations shown in Figure 6.10 is carried out for BCC Ta only

and so the model in Equation 6.46 along with the improvements discussed can also be applied for

the other BCC metals in consideration.

Another important observation by inspecting the snapshots of the string simulations is that

twinning is initiated by concurrent nucleation of twinning dislocation loops. If this indeed is the

case, sequential TGSF curves, even though useful in determining twin stability in BCC transition

metals, do not model the lattice resistance accurately. For this reason, the analytic model developed

here will employ concurrent TGSF curves described in Chapter 3. The robust model we propose

can be written as:

∆G(τ, R, b) =
∑

i

µb2i
4

2− ν

1− ν
R ln

R

rc
+ πR2

[

γ

(

u0 +
∑

i

bi

)

− γ(u0)

]

−
∑

i

τbiπR
2

+
∑

i

µbibjR
2

4 (1− ν)

[

(2− ν)I1 − z2I2
]

(6.47)

where I1 = 2 k√
R2

(

2−k2

k2
K(k)− 2

k2
E(k)

)

, I2 = k3√
R3/2

(

−1
k2
K(k) + 2−k2

2k2(1−k2)
E(k)

)

and γ is the

concurrent TGSF term. This model is capable of closely fitting the Energy barrier vs stress data

obtained from the sting simulations in Ta-Ravelo2 as shown in Figure 6.11.
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Figure 6.11: Energy barrier vs stress in BCC Ta modeled by Ravelo2 potential. The energy barrier predic-
tions from the continuum model is very close to the string simulations.
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The model in Equation 6.47 also models the energy barriers for twin nucleation as a function

of applied stress for BCC Fe described by the Fe-ATFS potential. This is shown in Figure 6.12.

Figure 6.12: Energy barrier vs stress in BCC Ta modeled by Ravelo2 potential. The energy barrier predic-
tions from the continuum model is very close to the string simulations.

In conclusion, our continuum model (Equation 6.47) is capable of matching energy barrier vs

stress data from string simulations. This model incorporates variable burgers vector, concurrent

TGSF curve data from DFT simulations and elastic interaction between dislocation loops which

makes it first of its kind to describe homogeneous twin nucleation in bulk BCC crystals.
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Chapter 7

Modeling twinning stress in BCC transition metals

As discussed in Chapter 2 (Literature review), the existence and importance of a critical re-

solved shear stress for deformation twinning has been a topic of interest starting with Christian

and Mahajan [3] arguing that the significance of a critical resolved shear stress (CRSS) may be

negligible because of considerable variation in twinning stress depending on the nucleation mech-

anism. Homogeneous nucleation of twins requires the resolved shear stress on the composition

plane resolved along the twinning direction to approach the theoretical strength of the material

whereas for heterogeneous nucleation the stress required to nucleate twins are expected to be not

as high and will depend on the nature of the defect/stress concentration that acts as the nucleation

site. Also mentioned in Chapter 2, other factors such as the three dimensional non-planar geometry

of dislocations in BCC metals [68], composition, pressure or temperature can play a role in twin

nucleation and thus affecting the twinning stress.

Also outlined in Chapter 2, several mechanisms have been proposed for nucleation of twins

in BCC metals such as the pole mechanism by Cottrell and Bilby [48], the slip dislocation inter-

action mechanism proposed by Priestner and Leslie [51], the screw dislocation core dissociation

mechanism suggested by Sleeswyk [37] and Lagerlof [36] and the edge dislocation dissociation

mechanism by Ogawa [50]. The twinning stress prediction from the pole mechanism is estimated

to be around 1050 MPa for α-Fe which is at least five times higher than the experimental value of

206 MPa [22]. Sleeswyk’s hypothesis yields a twinning stress close to 2.5 GPa for α-Fe. Ogawa’s

edge dislocation dissociation model a twinning stress of 430 MPa for α-Fe which is in the same or-

der of magnitude for the experimental report however calculation of this stress involves empirical

fitting of parameters which only applies to the particular experimental set up rather than generaliz-

able parameters. A few papers [39, 42] on modeling twin nucleation stresses incorrectly points to

the expression τ = πγTBM

bp
derived by Ogata et al. [63, 64] as the theoretical twinning stress model,

however, it is clear from the expression itself that this stress prediction pertains to twin boundary
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migration aka twin growth rather than twin nucleation. Meyers et al. proposed a model that takes

grain size and Hall-Petch effects into consideration [69] and the twinning stress predictions they

made were only fit to experimental data from a single paper [22] on Iron single crystals which is

not a robust method for modeling. The modified Peierls-Nabarro formalism introduced by Ojha

et al. to predict twinning stresses in BCC transition metals [42] attempts to incorporatie energy

barriers from twinning GSF curves. However, in deriving their twinning stress expression Ojha et

al. assumes equilibrium conditions for the twinning dislocations which cannot be the case during

nucleation. Another issue with this work is the stacking fault energy term used in the analytical

model as discussed in Chapter 2. Discrepancies in reported CRSS values in experimental litera-

ture and the predictions from nucleation models raises the question whether the bulk stress values

obtained from experiments are the local stresses required for twin nucleation.

To address this, the upper and lower limits of twinning stress for twin nucleation are computed

first and compared with the experimental values in Table 2.1. The upper and lower bounds for

twinning stress can be useful in providing valuable insights into the validity of the modeling work

done by Ojha et al. [39, 42] where they compute twinning stresses and compared these stresses to

experimental values. Then, a semi-empirical expression ia derived for predicting most probable

dislocation nucleation strength in defect-free crystals [204]. The implicit solution to this semi-

empirical expression can give us homogeneous nucleation stresses as a function of temperature

and strain rate given energy barrier for homogeneous nucleation is computed and fed into the

semi-empirical relation.

7.1 Upper and lower limits of twin nucleation stress

7.1.1 Upper bound

The concept of theoretical strength of materials was first introduced by J. Frenkel in 1926 [205].

Frenkel modeled the theoretical strength of a material by considering rigid slip of upper half of a

crystal relative to the lower half. In this model, the maximum stress required for plastic defor-

mation by slip was roughly µ
10

where µ is the shear modulus. This prediction is many orders
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of magnitude greater than the critical shear stress needed cause plastic flow in a typical metallic

materials. This significant discrepancy led to the idea of dislocations almost simultaneously in

1934 by Taylor [206], Orowan [207] and Polanyi [202]. Continuum elasticity theory has been

employed to describe dislocation properties and dislocation interactions at distances much larger

compared to atomistic scales. However, continuum elasticity breaks down at the dislocation core

and an atomistic description is required for the material specific, discrete atomic core structure of

the dislocation. Peierls proposed a hybrid model [203] in which some of the details of the discrete

dislocation core are incorporated in an essentially continuum framework. The analytic solution

of this model, by Peierls and Nabarro [208], gave the first meaningful estimate of the lattice re-

sistance to dislocation motion. The Peierls-Nabarro analytical solution is based on a sinusoidal

approximation of the nonlinear stress term in terms of the displacement field similar to Frenkel’s.

Christian and Vitek [209] suggested that the nonlinear stress relation could be obtained from an

effective interplanar potential, called the generalized stacking fault (GSF) energy, which can be

calculated directly from interatomic force laws. The GSF energy provides a direct link between

the PN continuum model of a dislocation and details of interatomic forces in the dislocation core.

The PN model initially assumes a continuous dislocation energy functional which includes an elas-

tic energy term as well as the energy cost for the misfit across the slip interface. However, in this

formulation the dislocation energy functional is invariant with respect to arbitrary translation of

the misfit density and the dislocation is a continuous object. As a consequence, the only effect of

the lattice is that the misfit energy and the stress are periodic functions of the misfit with the lattice

repeat period of Burgers vector. To regain the lattice discreteness, Peierls and Nabarro constructed

a different form of the nonlinear potential where the misfit is not sampled continuously across the

slip plane, but only at the positions of the atomic rows immediately adjacent to the slip plane. This

discrete form of the misfit energy varies periodically as a function of translation and the amplitude

of these periodic variations is identified as the Peierls energy and its maximum derivative with

respect to translation as the Peierls stress [210]. The PN model was developed in order to analyze

dislocation core structures as well as lattice resistance to dislocation motion for slip. However, the
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concept of maximum derivative of misfit energy can also be applied to compute maximum stress

required to nucleate twins homogeneously by taking the maximum derivative of the twinning GSF

curves:

τmax = max

(

dγTGSF

du

)

(7.1)

where γTGSF represents the array of stacking fault energies that generate the twinning GSF curves

in BCC transition metals and u is the displacement in the [111̄] direction.

Table 7.1: Maximum stresses computed from sequential TGSF curves and σ − ǫ curves.

BCC Transition Metal
σmax computed

from DFT TGSF curves
σmax from
σ − ǫ curve

Ta 7.81 GPa 6.48 GPa
Nb 8.08 GPa 6.49 GPa
Mo 15.25 GPa 14.87 GPa
W 18.40 GPa 17.41 GPa

Here we have computed the σmax from DFT sequential twinning GSF curves (under zero stress)

for BCC Ta, Nb, Mo, and W. These values are listed in Table 7.1. Additionally, σ − ǫ curves have

been generated (shown in Chapter 6) and the maximum stresses of those curves have also been

tabulated in Table 7.1. The maximum stress values for both cases differ by less than 1 GPa in

Mo and W whereas in Ta and Nb the difference is larger. The discrepancy arises from the stress-

dependence of the twinning GSF curbes [211] and this is evident in the twinning GSF curves

under zero and nonzero stresses in this work (shown in Chapter 5). Despite the discrepancies in

maximum strengths, Table 7.1 establishes an upper bound for homogeneous twin nucleation in

BCC transition metals.

7.1.2 Lower bound

To estimate the lower limit of twinning stress, let us consider a pure BCC crystal schematically

shown in Figure 6.8 where a twin embryo is nucleated by the application of shear stress τ . As

mentioned earlier, Hirth and Lothe [141] introduced a simple model of the activation Gibbs free
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energy of dislocation nucleation in terms of the increase in energy associated with the line length

of the dislocation, the stacking fault energy, and the work done in the nucleation of the dislocation.

For the lowest stress calculation, we can make the model described in Equation 6.45 even simpler

by ignoring the line tension term and so this model will have the form:

∆G(τ,R) =
∑

i

πR2γsf,i −
∑

i

τbiπR
2 (7.2)

In equilibrium, ∆G = 0 and hence we obtain τmin = γtwin∑
i bi

. To compute minimum stress for homo-

geneous twin nucleation stress values, we take the γ values in sequential TGSF curves correspond-

ing to metastable points with thinnest twin structure. In BCC Ta and Nb, the metastable points in

the isosceles sequential TGSF curves for thinnest metastable twin correspond to three layer twins

with two isosceles TBs and a reflection layer sandwiched between them. For Mo and W, we take

the metastable points associated with two layer pure reflection twins. Table 7.2 lists the minimum

stresses obtained from computed from the TGSF curves.

Table 7.2: Minimum stress for twin nucleation in BCC transition metals

BCC Transition Metal
σmin computed

from DFT TGSF curves
Ta 2.53 GPa
Nb 2.62 GPa
Mo 5.33 GPa
W 6.77 GPa

Specifically, stacking fault energy , γ corresponding to the metastable points in TGSF curve is

divided by
∑

i bi = b1 + b2 + b3 =
a
12
〈111〉+ a

6
〈111〉+ a

12
〈111〉 for group VB metals. For group

VIB metals
∑

i bi = b1 + b2 + b3 =
a
6
〈111〉+ a

6
〈111〉. The minimum twin nucleation stresses are

compiled in Table 7.3 for comparison with predicted values by Ojha et al. [42] as well as the

experimental values. From these values, we can see that the stress values predicted by the model

proposed by Ojha et al. do not represent homogeneous nucleation stresses. Also, from Equation

7.2, we can see that the minimum stress calculation does not depend on the shape or size of the
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dislocation loop and so the minimum stress values computed here also applies for heterogeneous

twin nucleation. As mentioned earlier, Ojha et al. ignored the total stacking fault energy associated

with twinning faults and instead, they chose to take the difference in energy between a one-layer

unstable fault and a three layers stable fault for their stress calculation. This assumption, as pointed

out earlier in this chapter, models twin growth instead of describing nucleation. And so this is the

reason why Ojha et al. [42] obtained stress values that are a few orders of magnitude smaller than

the minimum nucleation stresses obtained from our simple model in Equation 7.2. So this analysis

refutes the modeling predictions by Ojha et al. that the bulk stress values reported in experiments

are indeed the twin nucleation stresses.

Table 7.3: Minimum stress for twin nucleation compared against Ojha et al. prediction

BCC Metal τmin for nucleation τpred by Ojha et al. τexperimental (MPa)

Ta 2.526 GPa 252 MPa

198
345
181
520
224

Nb 2.620 GPa 254 MPa

137
228
198
212

Mo 5.331 GPa 448 MPa
333
440

W 6.772 GPa 720 MPa 750

7.2 Twin stress prediction as a function of temperature and

strain rate

In addition to the calculation of upper and lower limits which provides insights into the range of

stress level required for homogeneous twin nucleation in BCC metals, a model to predict nucleation

strengths as a function of temperature and strain rate is developed in this section. This model has

been used to predict dislocation nucleation strengths FCC nanowires [6,126] and nanocrystals [80].
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Here we have modified the derivation for twin nucleation in bulk crystals. The motivation is: in

Table 2.1, we see that some variation in reported CRSS values exist with varying temperature and

strain rate. The model is capable to predicting variations in nucleation stresses despite homoge-

neous twin nucleation in the experimental studies being highly unlikey. For this purpose, the first

assumption in deriving the aforementioned semi-empirical expression is that crystal is defect free,

so nucleation strength we will predict from this model will be applicable for homogeneous nucle-

ation. We also have to assume that the rate of nucleation of under constant strain rate or stress rate

loading conditions is equivalent to that under equilibrium conditions i.e., ν = Nν0 exp
(

−∆G∗

kBT

)

where N is the number of nucleation site, ν0 is the frequency prefactor, ∆G∗ is the energy barrier

for nucleation of twinning partial dislocation, kB is the Boltzmann constant and T is the tempera-

ture [212].

Now consider an ensemble of defect-free bulk single crystals all being subjected to the same

strain rate conditions and define f as the fraction of bulk single crystals that have not nucleated a

dislocation. Over any given time, if the dislocation nucleation rate is ν, then νf bulk single crystals

nucleated a dislocation and the rate of change of surviving bulk single crystals can be described as:

df

dt
= −νf (7.3)

This can be rewritten as:
df

dσ
ǫ̇E = −νf (7.4)

where ǫ̇E = dσ
dt

, ǫ̇ is the strain rate and E = dσ
dǫ

the elastic modulus. Taking the derivative with

respect to stress:
d2f

dσ2
σ̇ = −ν df

dσ
− f

dν

dσ
(7.5)

The most probable nucleation rate can be defined as:

d2f

dσ2

∣

∣

∣

∣

σcrit

= 0 (7.6)
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Combining Equations 7.5 and 7.6 yields the following expression:

df

dσ

∣

∣

∣

∣

σcrit

= − f

ν

dν

dσ

∣

∣

∣

∣

σcrit

(7.7)

This can be combined with Equation 7.4 to remove all the f terms.

dν

dσ

∣

∣

∣

∣

σcrit

= − ν2

σ̇

∣

∣

∣

∣

σcrit

(7.8)

Taking the derivative of nucleation rate with respect to stress yields:

dν

dσ
= −Nν0

kBT
Ωexp

(

−∆G∗

kBT

)

(7.9)

where Ω = −∂∆G∗(σ)
∂σ

is the activation volume for nucleation. Combining Equations 7.9 and 7.8

and assuming a constant strain rate result in the following implicit equation for the critical nucle-

ation strength:
∆G∗

kBT
= ln

(

NkBTν0
Eǫ̇Ω

)

(7.10)

We can now compute the nucleation strength as a function of temperature and strain rate by im-

plicitly solving Equation 7.10. To solve for nucleation stress, we need to know the energy barrier

∆G∗ (τ) and the activation volume, Ω = −∂∆G∗

∂τ
. For this purpose, energy barriers computed as a

function of applied pure shear stress discussed in Chapter 6 (free-end string simulations) are used

as input to this model for the activation energy, ∆G∗ (τ), on the zero-T potential energy surface

using the Ravelo potential [77] for BCC Ta (see Figure 5.1(a)). As a first order approximation of

temperature dependence on the activation free energy, we take ∆G∗ (σ) = G0

(

1− T
Tm

)

where Tm

is a surface disordering temperature and we have chosen a value of 3293.15K (the melting temper-

ature of Tantalum) for this temperature. We have taken N = 12976 which is the number of atoms

in our free-end string simulations, ν0 =
kBT
h

(where h is the Planck constant) and µ = 59.6404

GPa. The stress values obtained are listed in Table ?? along with the experimentally obtained bulk

CRSS values for BCC Ta.
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Table 7.4: Experimental CRSS values for BCC Ta, Mo, W, and Fe in literature compared with our prediction of homogeneous nucleation strength
using nucleation energy barriers computed using Ravelo 2 [77] for Ta, ATFS [78] potentials for Mo and Fe as well as Zhou potential [80] for W.

BCC Metal Reference Temperature (K) Strain rate (s−1) CRSS (MPa)
Nucleation stress (GPa)

from Eqn. }

Ta

Mitchell et al. 4.2 9.3× 10−4 198 5.80
Shields et al. 4.2 5.0× 10−4 345 5.80

Sherwood et al. 4.2 9.0× 10−4 181 5.80
Chen et al. 77 1.0× 104 520 5.79

Florando et al. 77 1 224 5.79
Mo Shaw et al. 104 4.2× 10−4 333 13.72

Sherwood et al. 77 7.0× 10−5 440 13.73
W Chiem et al. 298 1.8× 103 750 13.52

Iron Harding 195 1.0× 10−3 206 4.96
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As evident from Tables 7.4, the stress obtained by implicitly solving Equation 7.10 are much

larger than the bulk stress values from existing literature. This is because Equation 7.10 predicts

nucleation stresses based on the assumption that the twinning partial dislocations are being nucle-

ated homogeneously i.e., in defect free crystals. So the CRSS values in the experimental literature

do not represent twin nucleation stresses. Since the stress prediction model by Ojha et al. [42]

is based on twin migration energies and their predicted stresses match a few of the experimental

CRSSS values. So it seems that the CRSS values in the literature represents twin migration instead

of nucleation. Hence we can conclude that twin nucleation in experimental studies can involve

either one or both of the following mechanisms:

1. The BCC transition metal test specimens in the experimental studies [7,11,12,14,17,20,22,

58] contain impurities which can act as local stress concentrations, raising the local stress

near ideal strength and facilitating homogeneous twin nucleation as suggested by Orowan

[47].

2. Heterogeneous twin nucleation may occur from existing dislocations, free surfaces, or stack-

ing faults in single crystal test specimens for references [7, 11, 12, 20, 22, 58]. Also for

experimental studies that use polycrystalline samples [14, 17], grain boundaries can also

be heterogeneous nucleation sites as demonstrated in the in-situ experiments by Wang et

al. [67]. Additionally, Shaw et al. [17] observed twins emanating in BCC Mo specimens

from an advancing crack. Heterogeneous nucleation, from the above mentioned sites, can

significantly reduce the energy barrier for twin nucleation thus reducing the stress required

to initiate twinning.
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Chapter 8

Concluding Remarks

Deformation mechanisms in metallic elements under extreme conditions has been a topic of

active research interest for several decades. Extreme loading conditions such as low temperature

and/or high strain rate conditions, both of which imply high stress, can lead to plastic deforma-

tion via deformation twinning in BCC transition metals. The first evidence of plastic deforma-

tion via deformation twinning was reported by Barrett et al. [213] by impact loading Ta at liquid

Nitrogen temperature in 1958. Shortly after that, Anderson et al. were able to twin high pu-

rity Ta at room temperature by hammering (high strain rate). Since then, several experimental

studies on bulk BCC transition metals demonstrated deformation twinning all the way through

1975 [8, 12, 17–19, 21, 22, 26]. Then since the 2000s, the development of nanomechanical testing

and impact loading techniques has also lead to experimental studies demonstrating plastic defor-

mation by deformation twinning [23, 24, 27, 28, 58, 67]. Despite numerous experimental evidence

of twinning which is a nucleation and growth phenomenon, atomic level insights such as critical

nuclei size, their local atomic structures and energetics which are important parameters in mod-

eling twin nucleation has been lacking. In this study, using atomistic and continuum modeling

techniques, scientific questions on atomic level mechanisms of twin nucleation and propagation

have been answered by rigorous implementation of the scientific method.

The first topic of interest is the local twin boundary structures and their enegetics. Crystal-

lographic description of twinning in BCC crystals imply pure reflection twin boundary structure

however, isosceles triangle type twin boundaries have also been proposed in computational litera-

ture [38, 39, 41, 42]. In this study, conclusive evidences of metastability of isosceles twin bound-

aries in group VB BCC transition metals and α-Fe have been established using twin boundary GSF

curves and full structural relaxation. These modeling techniques have also shown that a distorted

reflection twin boundary structure is the lowest energy TB structure in group VIB BCC transition

metals.
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Next, nucleation of deformation twins in BCC transition metals has been investigated. As

mentioned earlier, in the 1960-1970s experimental evidences of deformation twinning mediated

plasticity in BCC transition metals were reported. Around that time, the pole mechanism [48]

(which was proven to be aphysical later) and dislocation core dissociation mechanisms [37, 53]

were formulated to explain the nucleation of twins. The dislocation dissociation mechanism, which

points to a three layer thick critical twin nucleus size, has been widely recognized as the nucleation

mechanism without experimental or computational proof since then. In this study, three layer thick

pure reflection critical twin nucleus proposed by the dissociation mechanism has been refuted. Two

layer thick isosceles-reflection twin in group VB metals, two layer thick double reflection in group

VIB metals, and three layer thick isosceles-reflection-reflection structure in α-Fe have been shown

to be the critical twin nuclei size using a combination of atomisitic modeling techniques.

The third topic of interest is the growth phenomenon of deformation twins in BCC transition

metals. Until the early 2000s, it was hypothesized that twins would first nucleate by the dislocation

dissociate mechanism by three layer and then they would coalesce with one another by chance

encounters resulting in 3n-layer microtwins [54]. This hypothesis has never been confirmed by

experimental evidence. Decades later, with the development of computational techniques, small

twin boundary migration energy barriers seen in twinning GSF curves led to the idea of layer-

by-layer growth once a metastable critical twin is formed. However, recent in-situ experiments

in TUngsten bicrystals by our collaborators has indicated that growth by multiple twinned layers

can also be possible. However the twin boundary migration GSF curves generated in this study

for BCC W have shown that the lowest migration barrier is indeed associated with layer-by-layer

growth. Furthermore, frequency analysis of lattice resistance represented by twinning GSF curves

has also helped explain the multi-layer growth observed by the in-situ experiment.

The final topic of interest is related to nucleation stresses for deformation twinning. Many ex-

perimental studies that demonstrated twinning also reported critical resolved shear stress (CRSS)

values when plastic deformation took place. A modeling study by Ojha et al. [42] claimed that

these CRSS values are associated with twin nucleation. However, the modeling techniques used
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by these authors use twin migration energies from twinning GSF curves to predict stress val-

ues that are in the same order of magnitude of a few experimental studies they picked while

excluding others. To refute this claim, upper and lower bounds of nucleation stresses for twin-

ning have been computed in this study. Additionally, a semi-empirical model is developed for

computing nucleation stresses as a function of temperature and strain rate. Combination of these

modeling techniques show that the BCC transition metal test specimens in the experimental stud-

ies [7, 11, 12, 14, 17, 20, 22, 58] contain impurities which can act as local stress concentrations,

raising the local stress near ideal strength and facilitating homogeneous twin nucleation as sug-

gested by Orowan [47]. Also heterogeneous twin nucleation may occur from existing dislocations,

free surfaces, or stacking faults in single crystal test specimens for references [7,11,12,20,22,58].

Also for experimental studies that use polycrystalline samples [14, 17], grain boundaries can also

be heterogeneous nucleation sites as demonstrated in the in-situ experiments by Wang et al. [67].

Additionally, Shaw et al. [17] observed twins emanating in BCC Mo specimens from an advanc-

ing crack. Heterogeneous nucleation, from the above mentioned sites, can significantly reduce the

energy barrier for twin nucleation thus reducing the stress required to initiate twinning.
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Chapter 9

Future Work

While this work has sought to provide a thorough study of twin nucleation and growth in BCC

transition metals, there is still a significant amount of work that could still be conducted in this

field. Several potential avenues of research will be summarized in this chapter.

Extend continuum modeling with DFT data

The critical twin nuclei thickness discussed in Chapter 5 points to disparate twin thickness

predictions from atomistic and DFT simulations. Specifically, free-end string simulations using

EAM potentials give three layer twin nuclei as saddle structures for Ta modeled by Ravelo 2 [77],

ATFS [78], and Zhou [80] potentials as well as Fe modeled by ATFS and Chamati [123]. Also

from the string simulations, one layer reflection twins are found to be the saddle structures for Mo

modeled by ATFS potetial and W modeled by Zhou potential. DFT predictions, on the other hand,

are more consistent predicting two layer thick twin nuclei for BCC Ta, Nb, V, Mo, W and Cr with

the exception of α-Fe for which the critical twin nucleus is three layer thick.

In Chapter 6, it has been shown that the continuum model in Equation 6.47 is capable of repro-

ducing the energy barrier data from sting simulations using Ta-Ravelo2 and Fe-ATFS potentials.

The GSF and elastic energy terms of the model for these two EAM potentials are based on the

three layer thick twin nuclei observed in the string simulations. Since the thickness predictions are

different for the two modeling techniques, it can be worth modeling energy barrier as a function of

applied shear stress using DFT inputs. To do this, twinning GSF curves generated by DFT simu-

lations can be fed into this model to compute energy barriers as a function of applied shear stress.

Since DFT simulations are more reliable in modeling atomic bonding, the energy barrier predic-

tions with DFT TGSF curves can then be considered more accurate estimates of homogeneous

twin nucleation in BCC transitiom metals.
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Modeling heterogeneous twin nucleation

The nucleation stresses computed from our semi-empirical model in Eqn. 7.10 are close to

the ideal strengths of the BCC transition metals indicating that if twins nucleate under such large

stresses in the experimental studies, then local stress concentrations from impurities present in

the test specimens can increase the local stress closer to the ideal strength. However one might

speculate that hetergeneous nucleation in the few experiments with polycrystalline test specimens

may also occur from grain boundaries [14, 17, 67] or, in the case of Mo specimens in the work by

Shaw et al. [17], existing cracks. Heterogeneous nucleation potentially can significantly reduce the

energy barrier for twin nucleation thus reducing the stress required to initiate twinning to get close

to the CRSS values in the experimental literature.

To this end, our continuum model in Equation 6.47 can be modified to study heterogeneous

nucleation of twins from a surface or otherwise named half space nucleation by Jennings et al.

[126]. The authors point out that in order to model heterogeneous nucleation of dislocations from

a nanowire surface, two additional pieces of physics need to be included in the nucleation model:

1. the image effects from the proximity of a dislocation to the free surface

2. the creation of a surface ledge following dislocation nucleation

The simplest case chosen was the simple case of nucleation of a semicircular dislocation from

a half-space such that its Burgers vector is parallel to the surface plane. The image effects can

be included in the model in the form of a reduction in dislocation line energy. The dislocation

line energy, as currently written, describes the energy required to nucleate a dislocation in bulk.

However, near a free surface, a dislocation’s line energy is expected to decrease relative to the bulk

as a result of the zero-traction condition on the free surface [214]. As generating the full solution

for the image field of an arbitrarily nucleating dislocation is cumbersome, Beltz and Freund have

analytically solved the dislocation line energy for a particular case, namely a dislocation nucleating

at the surface of an isotropic elastic half-space, and have found a correction factor m inside the

natural log term in the expression for dislocation line energy, as shown in Eqn. 9.1. Jennings et al.
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Figure 9.1: Schematic diagram of heterogeneous dislocation nucleation. Reproduced from [126] with
permission.

found that the nucleation strengths obtained by using Eqn. 7.10 with the energy barrier predictions

from this heterogeneous nucleation model with the line tension energy term in Eqn. 9.1 were a

factor of 15-35% less than those for homogeneous nucleation.

Eline =

∫ α

−α

µb2

4π (1− ν)

(

1− ν(cos(θ))2
)

R ln

(

m
R

rc

)

dψ (9.1)
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