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Abstract – An understanding of how to alter crowd 
dynamics would have a significant impact in a number 
of scenarios, e.g., during riots or evacuations.  The 
social force model, where individuals are self-driven 
particles interacting through social and physical 
forces, is one approach that has been used to describe 
crowd dynamics.  This work uses the framework of the 
social force model to study the effects of introducing 
autonomous robots into crowds.  Two simple pedestrian 
flow problems are used as illustrative examples, namely 
flow in varying width hallways and lane formation in 
bidirectional pedestrian flow.  Preliminary results 
indicate that robots capable of inducing an attractive 
social force are effective at improving pedestrian flow 
in both of these scenarios. 
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1 Introduction 
 The study of crowd dynamics, or the large-scale 
motion of people, has an impact on a wide range of 
applications including architecture, pedestrian 
transportation, escape planning, stampedes, event 
organization, and crowd control. Architects and 
transportation designers frequently use crowd dynamics 
in the design of outdoor and indoor environments to 
increase the ease and efficiency of everyday pedestrian 
flow. Furthermore, under more extreme conditions such 
as stampedes and fire escapes, improved procedures and 
building layouts could save lives. Recently in the 
Chicago Stampede, the use of pepper spray to break up a 
fight in a nightclub caused the crowd to surge down a 
stairwell killing or injuring over 70 people [2]. 
Additionally, in a Rhode Island nightclub, a fire, started 
by a pyrotechnic display, rapidly spread and overtook 
the crowd attempting to escape through the clogged 
front exit killing 97 people [3]. Both disasters occurred 
in February of 2003 and demonstrate the immediate 
need for directing large groups of people in emergencies. 

 Previous work to quantify pedestrian flows and crowd 
dynamics has been studied primarily through simulating 
the motion of individuals. For example, Blue [1] used a 
cellular automata model to generate emergent lane 
formation. Though not for groups of people, Reynolds 
[8] used an agent-based model to generate flocking 
behavior using a small set of simple interacting rules for 
each agent. Along a similar line, Helbing, Molnar, and 
Vicsek [6] have used a social force model to 
demonstrate lane formation and the physical jamming at 
bottlenecks during panics and stampedes.  
 We have used the social force model as a foundation 
for our simulations of pedestrian flow and crowds. We 
have augmented the model with the addition of 
dissimilar agents, i.e., autonomous robots. These 
additional agents are used to perform various maneuvers 
and to interact under different rules. Our ultimate goal is 
to increase large-scale organizational patterns such as 
lane formation, and to reduce disorganization such as 
jamming at bottlenecks.  
 
 

2 Social Force Model 
 The social force model was first introduced by 
Helbing and Molnár [5] and has been expanded to 
include physical contact forces (with similarities to 
granular flows) for panic situations [6], [7]. 
 The social force model to describe pedestrian flow has 
its origins in gas-kinetic models [4]. It consists of self-
driven particles, i.e., people, that interact through social 
rules. Each person adapts his or her current velocity to 
match a desired direction and a desired speed; 
furthermore, each crowd member simultaneously tries to 
avoid bumping into other crowd members and any 
environmental boundaries. The social interactions 
produce changes in the velocities and reflect a change in 
motivation rather than physical forces acting on the 
person. These social forces can be influenced by the 
environment, other people, and internal states. 
 



2.1 Basic Social Force Equations 

 For a crowd consisting of N individuals, the force 
acting on the ith person is denoted by if and is given by 
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where S

if denotes the self-driven force that drives an 
individual towards their desired velocity, I

ijf denotes the 
interaction force on individual i due to individual j, 
and W

ikf denotes the wall avoidance force due to the kth 
wall (out of a total of M wall surfaces).  The self-driven 
force is based on a simple error correction term 
consisting of the difference between an individual’s 
desired velocity, denoted by a desired speed si and a 
desired direction iê , and their actual velocity denoted 
by iv .  This difference in velocity is corrected over a 
specified time interval iτ , which is referred to as the 
relaxation time, that corresponds to the finite amount of 
time that is required for people to react and physically 
change their velocity.  Thus the self-driven force is given 
by  
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where im  denotes the mass of the ith individual. 

 The person-to-person interaction force consists of two 
major components, i.e., a social interaction term and a 
physical interaction term.  The social interaction term is 
used to represent an individual’s inherent desire to 
maintain a certain amount of personal space.  It is 
modeled as a repulsive force from other individuals that 
decreases with distance.  The distance between 
individuals i and j is given by 

jijiij rrd −−−= xx        (3) 

where x  is the position of an individual and r  is their 
radius, i.e., people are modeled as circles.  The 
exponential function is used to represent the manner in 
which the social interaction force decreases, with the 
magnitude (strength) of the interaction given by the 
parameter A and the distance over which it is active 
given by the parameter B, so that the entire expression 
for this term is given by A exp(-dij/B).  
  In some cases, such as in panic or high-density 
situations, physical contact between individuals occurs 
and can become a significant factor. The physical 
interactions consist of a body compression term and a 
tangential friction term. The compressional term acts 
along the unit vector, ijn̂ , given by 

( ) jijiij xxxxn −−=ˆ       (4) 

with a magnitude given by the parameter k. The 
frictional component acts along the tangential unit vector 

ijt̂ , which is orthogonal to ijn̂ , and is proportional to 
the difference in tangential velocity given by 

( ) ijji
t
ijv tvv ˆ⋅−=∆   .      (5) 

The magnitude of this sliding frictional term can be set 
using the parameter κ.  Combining the social and 
physical forces together yields: 
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where the function g(x) is zero if x is positive and 
returns -x if x is negative so that there is no contribution 
from the physical forces when people are not in contact.  
 The equation for interactions between a person and a 
wall is analogous to the social interactions between 
people and is given by:  
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where ikd is now the minimum distance separating 
individual i from the kth wall, ikn̂ is the unit vector along 
this minimum distance, and ikt̂  is perpendicular to ikn̂ . 
 

2.2 Introducing a Heterogeneous Mixture 

 The previous section presented an overview of the 
social force model used by Helbing [4-7] to describe the 
behavior of people in crowds.  Our goal is to determine 
if one can modify the dynamics of a crowd in a desired 
manner by introducing autonomous robots to obtain a 
heterogeneous mixture of agents.  The behavior of the 
robots are modeled using the same basic social force 
model given in (1), however, they can attempt to 
influence behavior through a desired velocity that is 
different from the people in the environment.  In 
addition, the interaction parameters AI and BI can be 
altered, and in fact, there will now exist four different 
versions of these parameters corresponding to the four 
scenarios: 

1. Person responding to another person 
2. Person responding to a robot 
3. Robot responding to a person 
4. Robot responding to another robot 

Although there is little experimental data for determining 
the parameter values for scenario 2, the interaction 
parameters for scenarios 3 and 4 can be set over a wide 
range since these represent the programming of the 
robot’s behavior.   

We have also introduced an additional cohesive social 
force interaction term to (6) that is meant to model the 
affect of a robot on a person when the robot is using 
some visual or auditory cues to direct the motion of 
individuals in the crowd toward the robot.  This force 
term is given by [ ]( ) ilil EDdC n̂exp 2−− where C is the 
magnitude of the attraction force, D is the distance 



where the attraction force is greatest, and E represents 
how quickly the force decreases with distance.  The 
robots are programmed to respond with an identical 
cohesive force, i.e., they are attracted towards people. 

 

3 Simulations 
Our initial simulations considered two simple 

pedestrian flow scenarios previously studied by Helbing, 
namely unidirectional pedestrian flow through a hallway 
that contains a widening and bi-directional pedestrian 
lane formation in a corridor.  The parameters used in the 
simulations were similar to those used in [6] and are 
given in Table 1.  For simplicity, all of the interaction 
parameters are identical for each person and each robot.  
In addition, the person/agent parameters are identical, 
except that the radius of people is randomly selected 
from a uniform distribution between 0.25-0.35 m with 
robots all being 0.35 m in radius.   
  

Table 1 Simulation Parameters 
Interaction Person/Agent 

A 2000 N m 80kg 

B 0.08 m s 1.2 or 3 m/s 

C -600 to 0 N τ 0.5 s 

D 0.5 m r 0.25 to 0.35 m  

E 0.05 m2   

k 1.2 x 105 kg/s2   

κ 2.4 x 105 kg/ms   

 
A standard measure of pedestrian flow efficiency is 

used to measure the impact of introducing robots into 
the environment.  Efficiency is defined as the ratio of the 
average speed of the individuals in their desired 
direction to their desired speed in that direction, i.e.,  
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where n is the number of pedestrians within the region of 
interest over which the efficiency is calculated.  (For our 
simulations all individuals have the same desired speed.)  
This measure is typically between 0 and 1, however, 
negative values are possible (if the average velocity is in 
a direction opposite of that desired) as well as values 
greater than 1 (if external forces propel individuals in 
their desired directions). For each simulation run, the 
initial location of pedestrians is randomly determined 
and a sufficient number of trials are executed in order to 
obtain a 95% confidence interval for the mean 
efficiency. 

In all simulation displays, green (lighter) circles 
indicate people traveling to the right, the blue (darker) 
circles indicate people traveling to the left, and the red 
squares indicate robots. The internal arrows indicate the 

desired direction of travel iê  rather than the actual 
velocity or resultant forces. 

 

3.1 Hallway with a Widening 

 Our first set of simulations consisted of pedestrian 
flow through a hallway with a widening without any 
robots (see Fig. 1).   The hallway was 3 m wide and the 
widening was 6 m long and 9 m at the widest point. Each 
robot and pedestrian’s desired speed was set at a 
relatively high 3 m/s. After a pedestrian passes through 
the widening they are removed and replaced by a new 
pedestrian at a random starting location, i.e., at the 
extreme left of the hallway, to maintain a constant 
number of people in the hallway. The mean efficiencies 
(measured in the widened area) for 40, 50, and 60 people 
were 0.82 ± 0.04, 0.73 ±.01, and 0.67 ±0.02, 
respectively.  These results are consistent with those 
obtained by Helbing [6], who also found reduced 
efficiency due to the tendency for pedestrians to take 
advantage of the widened area to increase their personal 
space and then create bottlenecks and clogging when the 
hallway is again restricted. 
 

 
Figure 1: Typical simulation results for pedestrian flow through 
a hallway with a widening.  Part (a) shows a plot of the 
instantaneous efficiency within the widened area of the hallway 
(between the two arrows).  Part (b) shows a snapshot of the 
simulation at 36 s, which has a particularly low efficiency.  Note 
the arching of the flow at the end of the widening which causes 
the inefficient flow.  This run had 50 people. 



3.1.1 Maneuvers and Formations 
 Our initial attempts to reduce the disturbances caused 
by the widening of the hallway consisted of introducing 
additional agents that performed various maneuvers to 
encourage the pedestrian flow to remain contained 
throughout the widening. Two types of maneuvers were 
simulated, namely a set of 2-6 robots moving in a 
triangular pattern within the triangular shape of the 
widening (counter-clockwise on top, clockwise on the 
bottom) and two robots traveling back and forth across 
the widening.  
 The resulting efficiencies for these various scenarios 
are presented in Fig. 2.  There is not a statistically 
significant difference in the mean efficiencies resulting 
from the type of maneuver executed or the number of 
robots used in the maneuver.  The main finding of these 
experiments is that robots can be effective for increasing 
efficiencies at low pedestrian densities; however, their 
efficacy diminishes as the pedestrian density increases.
 Fig. 3 presents an example of a case where the 
triangular maneuver is successful at preventing the 
pedestrian flow from extending into the widened area 
and thus increasing efficiency.  However, as pedestrian 
densities increase, the potential increases for large 
groups of people to create significant physical and social 
repulsion forces that make the robots deviate from their 
desired trajectory.  An extreme example of this is 
illustrated in Fig. 4, where a robot is swept away from its 
intended maneuver.  Clearly, forcing the robots to be 
stationary can prevent this from occurring.  In fact, our 
results show that properly positioned stationary robots 
can produce efficiencies that are comparable to an equal 
number of robots performing the back-and-forth 
maneuvers. 

3.1.2 Cohesive Social Forces 
 Our second set of attempts to reduce the disturbances 
caused by the widening of the hallway involved having 
the robots within the flow of pedestrians rather than 
maneuvering strictly in the widened area. Thus, as with 
the pedestrians, this requires that robots be removed 
from the right side of the hallway and replaced at the 
left.  We assume that these robots are equipped with 
mechanisms that create the mutual social attraction 
forces discussed in section 2.2, e.g., the ability to 
identify people and deliver verbal or visual instructions. 
 Fig. 5 shows the efficiencies resulting from 
introducing robots with a social attractive force into the 
hallway.  This force is effective in improving pedestrian 
flow by reducing the number of individuals spreading 
into the widened area and thus reducing the disturbances 
that occur when the widening is restricted.  An example 
of this is shown in Fig. 6. 

 
Figure 2: Resulting mean efficiencies for two different types of 
maneuvers by different numbers of robots and different 
pedestrian densities.  In general, robot maneuvers tend to 
increase efficiencies at low pedestrian densities but have little or 
no effect at high pedestrian densities. 

 
Figure 3: An example of robots executing a triangular pattern 
maneuver that is successful in increasing pedestrian efficiency.  
Three consecutive snapshots taken 0.25 s apart are shown 
overlapped to illustrate the motion (the darker the figure the 
more recent the snapshot).  This simulation included 50 
pedestrians and resulted in a mean efficiency of 0.76 over this  
1 s interval. 

 
Figure 4: An example of robots executing a back-and-forth 
pattern maneuver illustrating the risk of robots being swept 
away from their desired trajectories due to being overwhelmed 
by the physical and social repulsion forces.  Three consecutive 
snapshots taken 0.5 s apart are shown overlapped to illustrate 
the motion (the darker the figure the more recent the snapshot). 
This simulation included 50 pedestrians. 



 
Figure 5: Resulting mean efficiencies as a function of the 
magnitude of the social attraction force and different pedestrian 
densities.  In general, efficiency is increased by the introduction 
of an appropriate social attraction force 
 
 

 
Figure 6: An example of increased efficiency due to the 
introduction of robots with a social attraction force.  These 
forces prevent the flow of pedestrians from expanding into the 
widened area of the hallway.  The magnitude of the attractive 
force was given by C = -400 N.  This simulation run included 50 
people, five robots, and resulted in a mean efficiency of 0.78. 
 
 

3.2 Lane Formation 

 Our second set of simulations was centered on the lane 
formation phenomenon that occurs as an emergent 
property of the many interactions within bidirectional 
pedestrian flows. These lanes vary dynamically in 
number, size, and longevity.  An example of lane 
formation is presented in Fig. 7, which shows the results 
of a simulation for a 7 m wide and 30 m long hallway 
that contained 140 pedestrians with half moving in each 
direction at a desired speed of 1.2 m/s.   (Previous work 
[5] has shown that at this width the average expected 
number of lanes is three.) While directly measuring the 
presence of lanes is somewhat ill defined, it has been 
shown that efficiency is highly correlated to well-formed 
lanes (see Fig. 7) so that we use efficiency as our 
measure of lane formation.  The mean efficiency, 
calculated over the entire population, was 0.60 ± 0.02. 

 
Figure 7: Typical simulation results for lane formation in 
bidirectional pedestrian flow through a hallway.  Part (a) shows 
a plot of the instantaneous efficiency.  Part (b) shows a snapshot 
of the simulation at 38 s, which has a particularly high efficiency 
of 0.80.  Note the four very well formed lanes.  Part (c) shows a 
snapshot of the simulation at 47 s, which has a particularly low 
efficiency of 0.44. Note the clumping of pedestrians traveling in 
opposing directions.  The average efficiency for the two runs 
was 0.67 and 0.57. 

3.2.1 Maneuvers and Formations 
 Our first attempts to encourage lane formation 
involved introducing robots moving in rectangular and 
figure eight patterns to encourage two and three lanes 
respectively; however, we found that any crossing of the 
pedestrian flows produced significant disturbances to 
any lanes, resulting in much lower efficiencies than 
compared to efficiencies without additional agents.  

Our next attempt to encourage lane formation was to 
introduce stationary patterns that shift the pedestrians 
into two or three lanes.  Two such patterns are illustrated 
in Fig. 8, i.e., the 1 x 5 pattern consisting of a single 
diagonal set of five robots to induce two lanes and the 
funnel pattern used to induce three lanes.  The 1 x 5 
pattern was one of the best patterns tested and resulted 



in a statistically significant improvement over the 
nominal efficiency (0.69±0.03 compared to 0.60±0.02).  
The funnel pattern, which was the only pattern tested 
that attempted to induce three lanes, did not result in any 
improvement in efficiency over the nominal case. 

3.2.2 Cohesive Social Forces 
Our final set of attempts to induce lane formation 

involved the introduction of robots capable of creating 
the social attraction forces discussed in section 2.2.  
Eight such robots where included in the hallway with 
four traveling in each direction.  As the robots reached 
the end of the hallway, they were restarted at the same 
initial location at the opposite end of the hallway.  The 
introduction of these robots was successful at increasing 
the amount of lane formation as measured by the 
efficiency.  In particular, the efficiency obtained by 
using an attraction force magnitude of –800 N was 0.67 
± 0.03.  An example from one simulation run is 
presented in Fig. 9. 
 

4 Conclusions 
The results presented here are very preliminary and do 
not address many of possible variations in parameters 
and strategies for influencing crowd dynamics.  
However, several conclusions can be drawn even from 
the initial results presented here.  First, the dynamics of 
crowd behavior are highly complex and are not well 
understood.  The introduction of autonomous robots into 
such an environment can alter the dynamics to produce 
some desired behaviors.  In particular, we have shown 
that robots that can implement an attractive social force 
can be effective at improving pedestrian flow in different 
scenarios.   However, great care must be taken when 
introducing robots into such environments because it is 
not uncommon for apparently reasonable robot 
behaviors to have unexpected deleterious effects.   
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