
DISSERTATION

LARGE-SCALE COMPUTATIONAL ANALYSIS OF NATIONAL

ANIMAL IDENTIFICATION SYSTEM MOCK DATA, INCLUDING

TRACEBACK AND TRACE FORWARD

Submitted by

Joshua Ladd

Department of Mathematics

In partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2008

UMI Number: 3346481

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3346481

Copyright 2009 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, Ml 48106-1346

COLORADO STATE UNIVERSITY

November 5, 2008

WE HEREBY RECOMMEND THAT THE DISSERTATION PRE

PARED UNDER OUR SUPERVISION BY JOSHUA LADD ENTITLED

"LARGE-SCALE COMPUTATIONAL ANALYSIS OF NATIONAL ANI

MAL IDENTIFICATION SYSTEM MOCK DATA, INCLUDING TRACE-

BACK AND TRACE FORWARD" BE ACCEPTED AS FULFILLING IN

PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY.

Committee on Graduate Work

lw/u»4. y i w ^ —
Dr. David Zachmann

Dr. Oajaes^Thomas /)

:k J. Burns

Jerhard Dangelmayr

ii

ABSTRACT OF DISSERTATION

LARGE-SCALE COMPUTATIONAL ANALYSIS OF NATIONAL

ANIMAL IDENTIFICATION SYSTEM MOCK DATA, INCLUDING

TRACEBACK AND TRACE FORWARD

Cattle production is the single largest segment of U.S. agriculture. An

imal disease, whether a single incident or a full-scale outbreak, can result

in significantly restricted access to both foreign and domestic markets. Re

gaining consumer confidence is difficult. If a disease cannot be traced back

to a common source, then only time can tell whether or not eradication

and containment efforts have been successful. Simply "waiting it out" can

result in long-term economic losses on a National scale especially when dis

eases which are prone to epizootic outbreaks or those with long incubation

periods are involved.

The United States Department of Agriculture (USDA) maintains that

traceability is the key to protecting animal health and marketability. The

National Animal Identification System (NAIS) is a voluntary disease trace-

ability framework released by the USDA. Many of the efforts surrounding

the development of the NAIS have encompased the identification of live

stock production and handling premises as well as individuals or herds of

animals, whereas little effort has been directed toward the ultimate goal of

animal traceback in 48 hours.

iii

In this dissertation, computational science is applied to the problem

of animal disease traceability. In particular, a computational model is

developed for the purpose of conducting large-scale traceability simula

tions. The model consists of two components; the first being a parallel,

Monte Carlo discrete events simulator capable of generating large, NAIS-

compliant, mock datasets representative of the processing requirements of

actual NAIS data. The second component is a large-scale, parallel dis

ease tracing algorithm that is mapped onto an SMP supercomputer where

high-performance is achieved by adopting a hybrid parallel programming

model that mixes a shared memory multi-threading model (OpenMP) with

a distributed memory message passing model (MPI).

The objectives of this dissertation are to characterize the computa

tional requirements of the NAIS, identify computational platforms and pro

gramming paradigms well suited to this effort, and to identify and address

computational performance bottlenecks associated with large-scale tracing

algorithms.

Joshua Ladd
Department of Mathematics
Colorado State University
Fort Collins, Colorado 80523
Fall 2008

i v

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my

PhD advisor and mentor, Dr. Patrick J. Burns, without whom none of this

would have been possible. Your patient advising, expertise, wisdom and

seemingly endless knowledge have slowly and meticulously sculpted a raw

analytical intellect into a confident and independent computational scien

tist. I am forever indebted to you, and I will never forget the immeasurable

impact you had on both my scientific and intellectual development. A good

PhD project is nothing without a great mentor, thank you Pat.

I would like to express my gratitude to my PhD committee members

Dr. Dave Zachmann, Dr. James Thomas, Dr. John Scanga, and Mr.

John Picanso. The time and effort you spent refereeing this research is

greatly appreciated. Your valuable comments have added significantly to

the scientific quality of this work.

I would also like to express my gratitude to Dr. Dan Pryor of the

Supercomputing Research Center for the many early morning conference

calls we had which were always intellectually productive and just a lot of

fun in general. Your expertise is highly valued and lent much insight during

our research meetings.

I would like to express my thanks to the National Energy Research

Scientific Computing Center (NERSC) and the Lawrence Berkeley National

Lab for providing me with the state-of-the-art supercomputing resources

v

necessary to carry out this research. I cannot say enough good things

about NERSC and LBNL in general. This truly is a world-class scientific

computing facility in every respect.

I would like to acknowledge two very important mentors who played

significant roles in my early career; Mr. Brian Jones for introducing me to

the beauty of physics and encouraging me to pursue a career in cosmology,

and Dr. Ken Klopfenstein who "discovered" my mathematical talent and

provided me with an analytical foundation upon which my entire scientific

career has been built.

Finally, I would like to thank my family and, in particular, my parents

who have stood by me and given their unconditional support from day one.

Words cannot express how grateful I am for all of your love and support.

Without it, I surely would not have made it through this ordeal and I am

so happy to share this accomplishment with both of you.

VI

DEDICATION

For my parents

vn

TABLE OF CONTENTS

1 Introduction 1
1.1 Domestic Impact of Animal Disease 1
1.2 Impacts Elsewhere 4
1.3 Mitigating Risk 5
1.4 Leveraging Technology to Enhance Traceability 5
1.5 Overview of Dissertation 6

2 Measured Performance of the Target Architecture 8
2.1 The Bassi System 9
2.2 Measured Performance 11

2.2.1 Processor Performance 12
2.2.2 Memory Performance 13
2.2.3 Shared Memory Performance 16
2.2.4 Distributed Memory Communication Performance . . 18
2.2.5 I/O Performance 20

2.3 Conclusions 21

3 A Fast, Portable, Parallel Random Number Generator 24
3.1 Additive Lagged Fibonacci Generators 26

3.1.1 Period of the ALFG 28
3.1.2 A Canonical Form . 29

3.2 Parallel Implementation 30
3.3 Parallel Initialization Schemes 31

3.3.1 Binary Shift Registers 32
3.3.2 Fibonnaci Register 33
3.3.3 Galois Register 36

3.4 Statistical Tests . . . 38
3.4.1 Birthday Spacings Test 40
3.4.2 Collisions Test 41
3.4.3 Gap Test 42
3.4.4 Runs Test 43

3.5 Results 43
3.5.1 Single-Stream Results 44
3.5.2 Multiple-Stream Results 47
3.5.3 Improving Quality 52

viii

3.6 Applications-Based Test 53
3.7 Conclusions 58

4 Modeling Large Animal Populations for Traceability Simu
lations 60
4.1 Theoretical Framework . . 61

4.1.1 Probability Distribution Functions 61
4.1.2 Animal Transactions and Animal Events 62
4.1.3 Algorithmic Approach 64

4.2 Characteristics of Data Used in This Study 65
4.3 Parallel Implementation 68
4.4 Verification of Output 69
4.5 Datasets Produced 70
4.6 Conclusions 70

5 Measured Performance and Scalability of Dataset Trace-
back Processing 76
5.1 An Algorithmic Approach 78

5.1.1 Definitions 78
5.1.2 A Basic Tracing Algorithm 79
5.1.3 Organizing Efficient Data Structures 80

5.2 Mapping the Algorithm 83
5.2.1 An MPI Approach 84
5.2.2 A Hybrid Approach 89

5.3 Numerical Results 91
5.3.1 Observed Performance 92
5.3.2 Analysis 98

5.4 Conclusions 99

6 Conclusions and Recommendations 101
6.1 Conclusions 101
6.2 Recommendations 104

Bibliography 107

A Statistical Testing Procedures 114
A.l The Kolmogorov-Smirnov Test 114
A.2 The x2 Test 116

B Parallel Performance Results 118
B.l Traceback Timing Results 118
B.2 Shared-Memory Performance 119

ix

LIST OF FIGURES

2.1 IBM POWER5 system structure 12
2.2 Single processor performance 14
2.3 Performance versus stride 15
2.4 Shared-memory performance 17
2.5 Intra-node MPI performance 20
2.6 Inter-node MPI performance 21

3.1 ALFG initialization times for Galois and Fibonacci registers . . 39
3.2 Weak test results for LFG(7,3,31) 45
3.3 Gap and run test results for LFG(7,3,31) 46
3.4 Collision and birthday spacing test results for LFG(7,3,31) . . 46
3.5 Birthday spacing test results for LFG(127,97,31) 47
3.6 Gap and run test results for a parallel LFG(127,97,31) stream 49
3.7 Collision and birthday spacing test results for a parallel LFG(127,97,31)

stream 49
3.8 Gap and run test results for a parallel LFG(6Q7,334,31) stream 50
3.9 Collision and run test results for a parallel LFG(607,334,31)

stream 50
3.10 Parallel streams are more random 51
3.11 Parallel streams are more random 51
3.12 Two-dimensional geometry 54
3.13 Parallel performance for radiative transport code 58
3.14 Observed and expected Monte Carlo convergence characteristics 58

4.1 Mature cow statistics 66
4.2 Mature cow statistics 66
4.3 Events probability matrix for mature cattle 66
4.4 Preweaned calf statistics 67
4.5 Preweaned calf statistics 67
4.6 Events probability matrix for preweaned calves 67
4.7 Feedlot cattle statistics 72
4.8 Feedlot cattle statistics 72
4.9 Feedlot cattle events probability matrix 72
4.10 Simulated distributions for a mature cow population 73
4.11 Simulated birth premises size distributions 73

x

4.12 Simulated distributions for preweaned calves population 74
4.13 Simulated distributions for a feedlot cow population 75
4.14 Simulated birth premises size distributions 75

5.1 A recursive scatter-gather model for disease tracing 80
5.2 Problem partition with communication channels 85
5.3 Task agglomeration and mapping 86
5.4 Parallel traceback timings, 2 million and 100 million animals . . 92
5.5 MPI overhead for the hybrid code 93
5.6 Hybrid code speedup and parallel efficiency 95
5.7 Shared-memory speedup and parallel efficiency 98

XI

LIST OF TABLES

2.1 Relative cost of memory access 23

3.1 Binary matrix perspective of an ALFG initial seed 28
3.2 The canonical rectangle 30
3.3 Discrete PDF for the collisions test 41
3.4 Stringent test results for single-stream ALFGs 45
3.5 Stringent test results for LFG(127,97,31) 48
3.6 Stringent test results for LFG(607,334,31) 48
3.7 Monte Carlo convergence for radiative transport 57

4.1 An events probability matrix 63
4.2 Parallel performance results simulating 2 million animals 69
4.3 Summary of datasets generated for subsequent traceback modeling. 70

5.1 Parallel performance results for 100 million animals 96
5.2 Parallel performance results for 2 million animals 97

B.l Parallel performance results for 10 million animals 118
B.2 Parallel performance results for 20 million animals 118
B.3 Parallel performance results for 50 million animals 119
B.4 Shared-memory parallel performance results for 10 million animals. 120
B.5 Shared-memory parallel performance results for 20 million animals. 120
B.6 Shared-memory parallel performance results for 50 million animals. 121

xii

Chapter 1

INTRODUCTION

1.1 Domestic Impact of Animal Disease

Cattle production is the single largest segment of U.S. agriculture.

With a herd of over 100 million animals [68], and growing, the value of

beef and dairy surpassed $31 billion ($19.4 and $12.3 billion, respectively),

or about 40% of total U.S. agricultural production in 1999 [67]. At the

consumer retail level, beef sales have started to rebound from a steady 20-

year decline that has seen per capita beef consumption cut in half from its

1980 levels. In 1999, consumer sales posted a record $52 billion, with mean

yearly consumption of 69.6 pounds per person [67]. Exports also represent a

sizable portion of U.S. agricultural output. For example, the United States

sold $2.7 billion in beef to trading partners in 1999. Four countries currently

buy 95% of U.S. beef exports. Japan is the principal buyer ($1.4 billion),

followed by Mexico ($454 million), Korea ($331 million), and Canada ($273

million) [67].

Access to foreign and domestic markets can be severly restricted or

prohibited altogether in the event of an animal disease outbreak. Such was

the case in 2003 when the first reported instance of Bovine Spongeform En

cephalopathy (BSE) (also known as mad cow disease) in the United States

was announced. BSE is not common in the U.S. and feeding regulations

1

in this country make it unlikely that an outbreak in the U.S. would be

widespread, however the following case study illustrates how a high pro

file disease can have a serious impact on the confidence of consumers and

trading partners.

BSE is a chronic, degenerative disease affecting the central nervous

system of cattle. BSE was discovered in Britain in 1986 and has remained a

worldwide concern to the present day. BSE spreads among cattle primarily

through feed containing meat and bone meal made from rendered ruminant

products of infected animals [68].

The first diagnosis of BSE in the U.S. occurred on December 23, 2003.

A second case was discovered in 2005 in a twelve-year old cow in Texas.

A third case was discovered in 2006 in a ten-year old cow in Alabama. A

large number of cows associated with the index herd were untraceable in

each investigation. Each BSE case required the investigation of at least

eight different herds and the three investigations took more than 155 days

to complete [68, 67].

The short-term economic impact was devastating. U.S. beef exports

dropped from a record 2.5 billion pounds in 2003 to 461 million pounds in

2004, a fall of over 80%. The outbreak cost the beef industry over $2 billion

in 2004 alone [68, 67].

In the U.S., a large-scale BSE outbreak is unlikely, however animal dis

eases prone to epizootic outbreaks such as foot-and-mouth disease (FMD),

bovine tuberculosis and exotic Newcastle disease (a viral infection of birds)

remain clear and present dangers to U.S. agriculture. Indeed, the financial

impact of recent animal disease investigations highlight this fact [67].

2

Bovine Tuberculosis

• Since 2002, detections in Arizona, California, Michigan, Minnesota,

New Mexico and Texas have required the destruction of more than

25,000 cattle. A new detection in June in New Mexico will add to

this total.

• USDA has spent approximately $130 million dollars on owner idem-

nification and control activities.

• Producers are financially affected by strict movement controls applied

after new detections.

• Since 2004, USDA has tested 787,000 animals in response to TB out

breaks.

Exotic Newcastle Disease (2002)

• Confirmed in California and quickly spread to the neighboring states

of Arizona, Nevada, and Texas.

• Largest animal disease outbreak in the United States in 30 years. It

took 10 months to eradicate the disease at a cost of $180 million.

• Poultry producers, both commercial and backyard flock owners, lost

4 million birds during extensive depopulation activities.

Bovine Spongeform Encephalopathy (2003)

• USDA spent $5 million on its epidemiology investigation, depopula

tion, and initial response.

3

• The United States lost 80 percent of its foreign beef trade.

• As part of the effort to regain access to foreign markets, the USDA

spent approximately $189 million on the enhanced BSE surveillance

program.

1.2 Impacts Elsewhere

A comparison with the European livestock industry experience shows

one possible scenario for what is at stake. In the EU, the beef industry

suffered two major losses from their BSE crisis: (1) a 20-30% decline in do

mestic beef sales due to negative long-term effects on consumers' confidence,

and (2) losses in international trade in cattle, beef, and feed.

Since the BSE epidemic began in Great Britain in 1986, Europe's cattle

and meat industries have undergone a significant increase in regulation.

Animal protein feed bans, quarantines, surveillance, increased testing, herd

renewal, and selective cull measures are now in effect in many EU nations.

In Great Britain, where the BSE epidemic has reached 179,000 confirmed

cases in cattle since 1986, these measures appear to be resulting in a steady

decrease in the number of infected cattle from the 1992 peak. One program,

put in action following the 1996 U.K. beef and cattle ban by the EU, is the

so called "Over Thirty Month Slaughter" scheme (OTMS). Under this plan,

which bans the sale of meat from cattle aged over 30 months old, the U.K.

has destroyed over 4.5 million animals, at a cost of $4 billion. Similar EU

programs (which include feed bans, mandatory animal testing and tracing,

and OTMS) could go into effect in Germany, Italy and Spain. Germany,

for instance, expects to destroy about 400,000 cattle under a "purchase for

destruction" program [54].

4

In the United States, after the first BSE oubreak and subsequent eco

nomic devastation, it is now widely believed that the implementation of

a National animal traceability system that leverages current and evolving

information technology is vital to safegaurding the U.S. food supply, pro

tecting human health, and mitigating economic risk [54].

1.3 Mitigating Risk

The United States Department of Agriculture maintains that traceabil

ity is the key to protecting animal health and marketability [67]. In order to

respond quickly and effectively to an animal disease event (whether it is a

single incident or a full-scale outbreak), animal health officials need to know

which animals are involved, where they are located, and what other animals

might have been exposed. The sooner reliable data is available, affected an

imals can be located, appropriate response measures can be established,

and disease spread can be halted.

Retrieving animal locations and movement data within 48-hours is op

timal for efficient, effective disease containment [67]. As evidenced from

case studies, current U.S. animal disease traceablity infrastructure falls well

short of this objective . The U.S. Department of Agriculture (USDA) is fo

cusing on opportunities to bolster disease tracing capabilities by increasing

the quantity and quality of animal identification data and the efficient use

of evolving technology solutions.

1.4 Leveraging Technology to Enhance Traceability

In April 2006 the USDA-APHIS released a voluntary animal identifi

cation and traceability framework collectively known as the National Ani

mal Identification System (NAIS). To date, much of the effort surrounding

5

the development of the NAIS has encompassed the identification of live

stock production and handling premises, the identification of individuals or

heards of animals, and harmonizing government and industry animal iden

tification programs by standardizing data elements of disease programs to

ensure compatability. However, little effort has been directed towards the

accomplishment of the ultimate goal of the program which is an animal

traceback in 48 hours [52]. Typically, epidemiological investigations are

conducted through manual record retrieval and review. While increasing

the quality and quantity of data clearly increases traceability, it can also

present a significant barrier to the investigation as data acquisition efforts

have far outstripped data analysis efforts.

This dissertation will apply computational science to the problem of

animal disease traceback. For a given volume of movement data, it is not

known what the computational processing requirements are for achieving

rapid traceback. In this dissertation, we develop a computational model of

animal disease traceability for the purpose of conducting large-scale trace-

ability simulations. The goal of this approach is to characterize the com

putational requirements of NAIS dataset processing.

1.5 Overview of Dissertation

In Chapter two, a computational architecture is presented. It is ar

gued, via empirical benchmarking, that the platform is a good target to

map a high-performance disease tracing algorithm onto. In Chapter three,

a new, fast, portable parallel random number generator is implemented and

the parallel performance and accuracy is assessed. The results of Chapter

three are employed in the implementation of a parallel Monte Carlo discrete

6

events simulator which is described in Chapter four. Chapter four details a

Monte Carlo process that models large animal populations for the purpose

of conduction large-scale traceability simulations. The mock datasets gen

erated consist of NAIS-compliant data and range in size from 2 million up

to 100 million animals, representative of a "National" dataset. In Chapter

five, a large-scale, parallel disease tracing algorithm is mapped onto the

target architecture. High-performance is achieved by adopting a hybrid

parallel programming model that mixes OpenMP with MPI which facili

tates efficient use of and access to system memory. The datasets created

in Chapter four are processed and computational performance is measured

as problem size is scaled-up to that of the "National" dataset. Finally, in

Chapter six, a summary of the major conclusions of this work are presented

along with recommendations for further work.

7

Chapter 2

MEASURED PERFORMANCE OF THE
TARGET ARCHITECTURE

A major distinction between good sequential algorithm design and

good parallel algorithm design is that the latter is typically much more in

timately dependent upon the target architecture. Since parallel algorithms

are generally designed to optimize communication overhead, platform de

pendent variables, e.g. interprocessor stream rates, induce a topology on

an algorithm's performance space. In particular, an algorithm's scalability

and efficiency are complicated functions of the architecture onto which the

algorithm is mapped, requiring particular knowledge of the system charac

teristics.

Indeed, hardware characteristics that can affect an algorithm's parallel

performance include; processor frequency and memory performance, hetero

geneous memory paths, interprocessor communication latencies and stream

rates, shared memory performance in a multi-core environment, and, at

times, I/O performance. Making optimal use of a large-scale architecture

requires quantitative insights gained through empirical benchmarking and

performance profiling. The measured performance can be used to inform

how best to map an algorithm to a specific target architecture. In the re

mainder of this chapter, the performance space of the target architecture

8

is mapped by measuring processor and memory performance, shared mem

ory performance, distributed memory performance, and I/O performance

as both problem size and the number of processors are scaled-up.

2.1 The Bassi System

The research presented in this dissertation used resources of the Na

tional Energy Research Scientific Computing Center (NERSC), which is

supported by the Office of Science of the U.S. Department of Energy un

der Contract No. DE-AC02-05CH11231. In particular, this research was

awarded multiple allocations at NERSC that provided access to state-of-

the-art supercomputing architectures.

The target architecture is the NERSC Bassi system, an IBM p575

POWER5 distributed memory computer with 512 processors available to

run scientific computing applications. The processors are distributed among

64 compute nodes, each of which contains 8 processors. A compute node

is an 8-way symmetric multiprocessor (SMP). Processors within each node

have a shared memory pool of 32 GBytes. Each POWER5 processor core

has a theoretical peak performance of 7.6 GFlops or 3.89 TFlops theoretical

peak system performance. The compute nodes are interconnected with the

IBM Federation HPS switch, a high-bandwidth switching network which is

connected to a two-link network adapter on each node. Each node runs its

own full instance of the standard AIX operating system. Detailed system

specifications are provided below [57]:

•IBM Cluster

• 8-way single SMP cores per node

9

• 1.9 GHz single-core POWER 5 64-bit processors (DCM: Dual Chip

Module with one active core)

• 7.6 GFlops theoretical peak per processor

• 64 KBytes 2-way associative Instruction cache

• 32 KBytes 4-way associative Data cache

• 2 MBytes on-chip L2 (10-way associative, 3x640 KBytes)

• 36 MBytes L3 cache, with a L3 to L2 peak bandwidth of 243.2 GBytes

per second.

• 200 GBytes/sec cumulative peak theoretical memory bandwidth

• 32 GBytes memory per node

• 48 GBytes/sec theoretical peak I/O Bandwidth

•Production System

• 64 Compute nodes (512 compute processors)

• 64*8*7.6 GFlops = 3.89 TFlops theoretical system peak performance

•I/O Subsystem Configuration

• 6 Virtual Shared Disk servers to support GPFS, each with 2 High

Performance Switch (HPS) links. (See next section)

• Each Virtual Shared Disk server has sixteen 2 Gbps Fibre Channel

links

•High Performance Switch (HPS)

10

• Each node: One 2-link High Performance Switch adapter

• Each node: attaches to the interconnect with 2 links, one to each of

2 separate planes

• LAPI and MPI communication

• Data uses LAPI over HPS

• Peak HPS bandwidth - 2 GBytes per second per link each direction

• MPI latency: less than 5 fis

•Relevant Software

• IBM AIX 5.3

• IBM Parallel Environnent 4.2

• IBM C/C++ Enterprise Edition 7.0

• IBM Fortran Enterprise Edition 9.1

2.2 Measured Performance

In this section, various algorithms are used to call forth performance

characteristics of the architecture as the problem is scaled-up. All results

shown are averaged over 100 trials so as to produce repeatable, average

values of execution rates.

11

PQfW5

13 f.

RlUHU Iklf l IU

V
, 12 -

»

<*.

Fa*

' *
(* toy
colder

.
•

.
'

Mmiy

v

ROOBBBCT R t l f K O '

^ Uric

*
Mrmy

.,
_ . , . , „ . . , :

f * T o y

1

^ L3
*MJB

Figure 2.1: High-level system structure for a dual-core IBM P0WER5 sys
tem is shown on the left [57]. On the right, two POWER5 chips are in
terconnected [43]. On Bassi, only a single processor core is active, eight
single-core POWER5 chips make up a single 8-way SMP node.

2.2.1 Processor Performance

The IBM POWER5 chip used on the Bassi system is a single-core chip

configured on a dual chip module. The dual chip module is depicted in

Figure 2.1. Each chip and hence each processor core has its own cache

hierarchy consisting of an on-chip Ll and L2 cache and an off-chip L3

cache which serves as an L2 victim cache. The objective of this section is

to measure the peak achievable floating point operation performance of a

single processor core. Peak achievable performance is not simply a function

of processor frequency, 1.9 GHz in this case, performance is a complicated

function of factors such as the number of functional units, pipeline depth,

translation lookaside buffer (TLB) size, cache performance, and memory

access patterns.

Dense matrix multiplication is the widely accepted floating point opera

tion benchmarking kernel [21]. This linear algebra operation is a paradigm

12

in the study of performance optimization of numerically intensive codes.

The peak achievable performance of a single processor core will be mea

sured by multiplying two dense, square matrices together with the highly

optimized Fortran 90 intrinsic function, matmul, which has been tuned to

this particular architecture.

Let A, B be two N x N matrices. Denote the i, j t h component of the

product AB by [AB]jj. Then

N

[AB]itj = J2ai,kh,r (2.1)

Each component of the product, AB, requires 2iV — 1 Flops to compute,

thus dense matrix multiplication has cubic complexity.

In Figure 2.2, on the left, the average execution time as a function of

matrix size is depicted (red-squares) along with a least-squares fit of the

data to a cubic polynomial (blue-line). On the right, the average floating

point execution operation rate, measured in MFlops, is plotted as a func

tion of matrix size. The data suggests that an individual processor core is

capable of achieving nearly 36% of its theoretical peak on a non-trivial ap

plication that requires significant low-level optimization in order to achieve

high performance.

Each Flop requires two loads and a single store. Hence taking 2.7

GFlops as peak achievable floating point operation performance, the local

memory path has a peak achievable bandwidth of 65 GBytes/sec.

2.2.2 Memory Performance

System memory and cache performance are measured by computing

the dot product of two large arrays at various strides. Computationally,

this is accomplished by executing Algorithm 1 for various values of S and

13

20 2300

18-

16-

H •

¥ 12 • /

| 10 • _P

| a- /

A • gf*

So iom isS 2000 am
Matrix Dimension

Figure 2.2: Performance results for dense matrix multiplication at various
scales. On the left, the average exectution time versus matrix size is plot
ted (red-squares), a least-squares approximation, plotted as a solid blue
line, fits the data to a cubic polynomial. On the right, average processor
performance, measured in MFlops, is plotted as a function of matrix size.

measuring the execution time. In each experimental trial, N is fixed at 90

million and each array contains N, 8-byte, double-precision words. Longer

strides will increase the cache miss rate which should decrease processor

performance. The POWER5 cache hierarchy, characterized on page 5 and

seen schematically in Figure 2.1, is similar in design to the cache systems

described and analyzed in [69, 24].

Algorithm 1 Computes the dot product with stride S.
l: double A(N), B(N)

2: for (i = l:S: N) do
3: sum <r- sum + A(i) * B(i)
4: end for

In Figure 2.3 the processor performance, measured in MFlops, is plot

ted versus stride. Performance degrades as O^" 1) , as expected, and levels-

off for strides larger than 500 double words. This empirically determines

cache-line size to be 500 doublewords on this machine and the time to

1600 2000
Matrix Dimension

14

transfer a cache line from memory to cache is about 0.157 /xs. Thus spatial

locality is maximized when data and access patterns are structured so that

strides do not exceed 500 double-precision words.

4501 1 -i 1 :—, 1 ,

400 • V

350 •

300 •

150 -

[]
100 •

5°" I
1 rS^-Fna B - . n , . "

0 2000 4000 6000 8000 10000
Stride Length

Figure 2.3: Processor performance, measured in MFlops, is plotted as a
function of stride. The plot was generated by computing the dot product
of two large arrays at various strides.

In this experiment, processor performance is quite different from that

observed for dense matrix multiplication. With unit stride, a single proces

sor core achieves only about 1.5% of its peak theoretical performance. Two

observations explain this disparity. The first is clear, in the dot product

experiment each array contains 90 million 8-byte, double-precision words.

Whereas the largest matrix studied contains only 9 million 8-byte, double-

precision words. In comparison, the memory requirement of the dot product

experiment far exceeds that of the matrix multiply experiment resulting in

many more off-chip memory calls and, as expected, leads to an overall per

formance degradation. When the length of the arrays in the dot product

experiment are decreased, overall performance improves. A second and

more subtle reason for the observed performance disparity lies in the fact

15

that matrix multiplication is accomplished with a Fortran 90 intrinsic and

the dot product is computed with unoptimized code. On this platform,

when the intrinsic matmul is called, a high-performance implementation,

tuned to this particular platform, is invoked resulting in significantly better

floating point performance.

2.2.3 Shared Memory Performance

Each SMP node consists of eight single-core POWER5 chips which

share 32 GBytes of memory. The objective of this benchmark is to quantify

the cost to access shared memory as the number of processor cores within

a node increase. Algorithm 2 reads an array, A, with stride, S, 100 times.

Reads are processed concurrently by a team of OpenMP threads which share

the array A. After each read, the data or fractions of it, are in cache for

the next read. The cache is flushed after each read in order to equalize the

cost of successive reads. Performance is assessed by measuring the parallel

speedup as the number of threads increases.

Algorithm 2 Multi-threaded reads with stride S.

1: double A{N), 5(100)

!$OMP PARALLEL DO
for (x = 1 : 100) do

flush cache

for (j = 1 : S : N) do
B(i) - A(j)

end for
end for
!$OMP END PARALLEL DO

Results in Figure 2.4 are separated into two categories; small-stride

(left) and large-stride (right). For small strides, the parallel performance is

16

Small Stride Large-Stride

ftweada Threads

Figure 2.4: On the left, small-stride shared memory parallel performance
within a node. On the right, large stride performance (right). Bandwidth
contention degrades shared memory performance as the stride is increased.

observed to increase with stride length. Performance is maximal for strides

in the range of 100 - 500 double words. For large strides, parallel perfor

mance monotonically decreases with increased stride and slowly approaches

a steady-state speedup.

Although Algorithm 2 is embarassingly parallel, the performance in

Figure 2.4 is rarely observed to be optimal. This is common in shared

memory systems since usually the original memory path is shared by mul

tiple processors. Degradation occurs when processors compete for limited

shared memory bandwidth. The experiment suggests, however, that shared

memory performance can be improved by making efficient use of the cache

hierarchy. Since each POWER5 chip has its own cache hierarchy, finding

the optimal stride and structuring access patterns accordingly minimizes

shared memory traffic and can maximize individual processor performance.

This experiment is designed to quantify the single-access cost per proces

sor per stride. Because the cache is flushed after each read, the effects of

17

temporal locality are unaccounted for in these observations. Reusing data

can improve shared memory performance as well by taking full advantage

of the large L3 cache which serves as an L2 victim cache (temporal locality

is a good way to exploit a victim cache) and resides on the processor side

of the fabric controller.

2.2.4 Distributed Memory Communication Performance

On Bassi, distributed memory parallelism is facilitated by the Message

Passing Interface (MPI) API. On this platform, not all MPI communication

goes across the switch. For communications among tasks that reside on the

same node, MPI messages are instead routed through fast shared memory

buffers. The objective of the next benchmark is to measure MPI transfer

rates for inter-nodal and intra-nodal communication. In this context, the

transfer rate is measured by timing how long it takes to send a one-way

message of a given size. Timings account for both latency and stream rate.

Both one-to-all collective messaging (MPI broadcast) and point-to-point

(MPI send/receive) messaging are considered.

Comparing timings and usage of global collectives is much simpler than

surveying the space of possible pairwise communications. The performance

of point-to-point messaging depends closely on the pattern of messages in

a code. In this experiment, the point-to-point transfer rate is measured

by sending a one-way message of a given size to a neighboring MPI task.

In order to test one-to-all messaging, a message of a given size is broad

cast to all active processors. In both experiments, the effect of bandwidth

contention on transfer rates is assessed by increasing the number of ac

tive processors. In the point-to-point experiment send/receive pairs send

messages concurrently.

18

Results for intra-node messaging are depicted in Figure 2.5. On the

left, average transfer rates for send/receive pairs are plotted as a function

of message size. Messages in the range of 1 MByte in length (105 words)

exhibit optimal performance topping out at 6 GBytes/sec when all eight

processors are active. On the right, the average transfer rates for an MPI

broadcast are plotted as a function of message size. Broadcast transfer rates

are comparable to those for point-to-point messaging.

Results for inter-node messaging are depicted in Figure 2.6. On the

left, the average transfer rates between a send/receive pair are plotted as

a function of message size. Bandwidth peaks for large messages approach

ing a steady-state transfer rate of about 1.8 GBytes/sec. On the right,

the average transfer rates for an MPI broadcast are plotted as a function

of message size. When the number of nodes is large, broadcasting across

nodes is significantly more expensive than sending many point-to-point mes

sages simultaneously between nodes. Broadcast bandwidth peaks for large

messages and approaches a steady-state of about 600 MBytes/sec.

Comparing both possible paths that MPI messages take, the data

clearly show that routing small messages through shared memory buffers

is much more efficient than routing them through the HPS switch. For

large messages, point-to-point transfer rates within a node are comparable

to those between nodes. This observation suggests that shared memory

buffers have much lower latency than the HPS switch but have comparable

stream rates. This argument is further bolstered by the observation that

within a node, the broadcast transfer rate is nearly identical to the point-

to-point transfer rate. Thus the main difference between the two data paths

is the latency which is significantly larger for the HPS switch. The main

19

conclusion in all of this is MPI performance is optimal for fine-grained ac

cess within a node due to low latency and coarse-grain access between and

amongst nodes due to high-bandwidth, and is that Broadcast latency scales

well within a node, and scales poorly between nodes.

IMra-l*)deMPI_SENDTransfaf Rates Intra-NodB MPI_BCASTTransfer Rates

Message Size (lag^ Words) Message Size (tog10 Words)

Figure 2.5: On the left, intra-node point-to-point send/receive transfer rate
versus message size are plotted. A peak bandwidth of about 6 GBytes/sec
can be achieved for messages in the range of 105 double-precision words.
On the right, the transfer rate versus message size for intra-node one-to-all
broadcast are plotted. Performance is comparable or superior to that of
point-to-point communication, suggesting that broadcast latency is small
within a node.

2.2.5 I /O Performance

The I/O transfer rate is measured by reading a large file into main

memory and then writting the same file back to disk. In particular, mea

surements are made by reading files consisting of 103, 104, 105, and 106

double-precision words and subsequently writting them back to disk. On

this architecture, the I/O transfer rate is observed to be independent of the

physical location of a processor. The average input transfer rate is 4.87

MBytes/sec and the average output transfer rate is 3.8 MBytes/sec.

20

Node-io-Node MPI SEND Transfer Rates Node-to-Node MPI BCAST Transfer Rates

3 4 5

Message Size (log10 Words)

Figure 2.6: On the left, inter-node point-to-point send/receive transfer rate
versus message size are plotted. Peak bandwidths are approached as mes
sage size increases, as expected for a high bandwidth switch. On the right,
the transfer rate versus message size for inter-node one-to-all broadcast are
plotted. Broadcast performance suffers due to the high latency associated
with barrier synchronization over the HPS switch.

2.3 Conclusions

In conclusion, the NERSC Bassi system is a high performing compu

tational platform with fast, low-latency shared memory SMP nodes which

are interconnected over a high-bandwidth switch network. An individual

POWER5 processor core has an achievable peak speed of 2.7 GFlops, at

taining 36% of its peak theoretical speed.

The POWER5 memory hierarchy consists of a dual-level on-chip cache

system and a single off-chip Level 3 cache that can greatly improve floating

point performance for in-cache data access. The length of a cache line is

empirically determined to be 500 double words and reading a cache line in

from memory to cache takes about 0.157 fis. Spatial locality is optimal for

data access patterns with strides smaller than or equal to 500 double words.

21

Shared memory performance scales poorly for both very large and for

very small strides. Optimal strides for single use data are in the range of

100-500 double words. Performance can be further improved by making

efficient use of the large L3 victim cache by increasing temporal locality.

Distributed memory performance is heterogeneous and depends on the

path the data travels. For point-to-point messages sent over the HPS switch,

a steady-state transfer rate of 1.8 GBytes/sec is approached as both the

number of nodes and problem size is scaled up. Inter-node MPI broad

cast transfer rates scale poorly due to latency associated with synchroniz

ing nodes over the HPS switch. Broadcast transfer rates approach 500

MBytes/sec.

Messages between MPI tasks on the same node do not travel over the

HPS switch but are instead routed through shared memory buffers. This

can result in performance gains of over a factor of three for messages of

size 107 8-byte double words. Messages in this range have an achievable

transfer rate of 6 GBytes/sec. Intra-node latency is small in comparison

to the latency of the HPS switch, but stream rates are comparable. MPI

performance is optimal for fine-grained access within a node, due to low

latency, and coarse-grain access between and amongst nodes because of the

high-bandwidth HPS switch.

The average disk input stream rate is measured to be 4.8 MBytes/sec

and the average disk output (write) stream rate is found to be 3.8 MBytes/sec

Table 2.1 suggests that high performance can be achieved by leveraging

both the fast, low-latency shared memory within a node and the high-

bandwidth HPS interconnect. For a memory intensive application, a hybrid

parallel programming model that mixes shared memory multi-threading

22

Local memory
Intra-node send/receive
Intra-node broadcast
Inter-node send/receive
Inter-node broadcast
Input
Output

Achievable Bandwidth
(GBytes/sec)

65
6
6

1.8
0.5

0.0048
0.0038

Relative
Cost
1 : 1
11:1
11 : 1
36 :1
130:1

13500 : 1
17100 : 1

Table 2.1: Relative cost of memory access.

within a node and message passing between nodes, to the extent possible, is

the most effective strategy to maximize parallel performance. Even though

shared memory contention can lead to some performance degradation.

23

Chapter 3

A FAST, PORTABLE, PARALLEL
RANDOM NUMBER GENERATOR

At large-scale, the performance and accuracy of a Monte Carlo ap

plication can depend in a highly nontrivial way on the parallel random

number generator (RNG) employed. Monte Carlo methods involve the de

liberate use of random numbers in a calculation that has the structure of

a stochastic process. A stochastic process is a sequence of states whose

evolution is determined by random events that, on a computer, are de

termined by pseudo-random numbers [29] (hereinafter, we will omit the

'pseudo', consistent with standard paractice). Monte Carlo calculations

have in the past, and continue to, consume a significant fraction of avail

able high-performance computing cycles [60]. This is due, in part, to the

fact that some important Monte Carlo calculations lend themselves to a

highly efficient and portable parallelization.

On a computer, an RNG is actually a deterministic algorithm that typ

ically produces a periodic sequence of states by means of a linear recursion

that appears random to an application. Effective RNGs of this type have

extremely long periods so that an application is never affected by this peri

odic structure. In addition to possessing long-periods, an effective sequential

RNG must be free of intra-stream correlations that can bias the outcome

24

of a stochastic process. Parallel RNGs must further provide an algorithm

which allocates the state-space of the RNG to different processors.

It is necessary to subject any RNG to a rigorous comprehensive analy

sis and assessment before it is deployed in a large-scale application. Current

large-scale Monte Carlo computations may consume the entire periods of

many older generators in only a few seconds [60]. Tests on important appli

cations at large-scale have revealed defects in RNGs that were not apparent

when run on smaller simulations [18, 22]. A defective RNG can insidiously

compromise the accuracy of a Monte Carlo calculation at large-scale and is

difficult, if not impossible, to diagnose at runtime.

The most effective manner in which to assess the quality of an RNG

is by direct empirical testing of the streams produced. While the quality

of an RNG sequence is extremely important, the unfortunate fact is that

little mathematical theory exists to assess the quality of the current, most

sophisticated generators. Though some theoretical results exist in the lit

erature, most of the theory is limited to defining criteria for achieving a

maximal period since mathematical bounds on correlations are extremely

difficult to prove. The situation is further complicated for parallel RNGs

by the fact that effective parallel RNGs must be free of both intra-stream

correlations within individual streams as well as inter-stream correlations

between and among streams on separate processors.

Empirical testing falls into two broadly defined categories: (i) statis

tical tests, and (ii) application-based tests. Statistical tests compare some

statistic obtained with an RNG sequence to the expected statistic assuming

the sequence were truly random. Applications-based tests employ an RNG

in an actual application with a known solution or convergence rate. If the

25

results of any of the tests are sufficiently far from those expected, then the

RNG is considered suspect. If the outcome of most of the tests are far

from the expected, then the RNG is considered defective. In some cases,

statistical tests can be used to locate isolated defects which may be treated

and cured. This type of tuning can play an important role in long-term

code maintenence.

This chapter presents a novel enhancement and implementation of a

fast, portable parallel random number generator. The implementation is

assessed through rigorous empirical testing. Both types of empirical testing,

statistical and applications-based, are employed. In particular, a subset of

Knuth's so-called stringent tests and Marsaglia's Diehard tests, which have

been particularly effective at exposing defects in parallel RNGs, are used.

The proposed parallelization is implemented in a Monte Carlo photon heat

transfer code which has a known solution and convergence rate. As an

application-based test, the heat transfer code is run at large-scale and the

empirical outcome is compared to what is theoretically expected.

3.1 Additive Lagged Fibonacci Generators

The definitive reference on sequential RNGs is Knuth [31]. Some imple

mentations of sequential algorithms can also be found in Numerical Recipes

[46]. Perhaps the most accessible exposition is that of Anderson [3], who

presents some excellent illustrative graphics. Of particular interest to the

present effort is the family of linear recurssions collectively termed, Additive

Lagged Fibonacci Generators (ALFG). This type of sequential generator has

been extensively tested for randomness [38] and given high marks.

26

To begin, consider the class of additive lagged fibonnacci generators

which are defined by the family of linear recursions

xn = (xn-i + xn-k)mod(M), I > k > 0. (3.1)

In order to compute the (/ + l)th value, the I previous values are required.

Let the I most current values occupy the / x 1 state-vector

/ x° \
Xx

X2

r =

Xl-2

\xi-i/

Then equation (3.1) defines a linear transformation, T

acts on the state-vector in (3.2) as

/

(3.2)

which

/ x° \
xx

X-i

Xl-k
Xl-2

\xi-i/

\ xx

x2

Xl-k

Xl-2

Xl-X

\xi = XQ + xi-kJ

(3-3)

The state vector (3.2) is called the ALFG register and contains the I most

current values which axe required to compute the next value in the sequence.

We say that / is the length of the ALFG register and that k is the tap point.

For computational efficiency the value of the modulus M is usually chosen

to be a power of 2, i.e. M = 2m where for a 32-bit signed integer it makes

sense to choose m = 31. The structure of the ALFG in (3.1) is completely

characterized by the register length, tap point and modulus, thus we adopt

27

the notation LFG(l, k, m) where m is the power of two used for the modulus

M. The initial seed is defined as an initial fill of the ALFG's register with I

words and is denoted f0. The first I words must be filled by an application;

the process in which the initial seed is assigned is termed initialization. In

this work, initialization is done at the bit level by employing FORTRAN

bit-wise intrinsic functions. With this in mind, the initial seed is viewed

as an m x I binary matrix with 2ml — 1 nontrivial bit-wise states. Table

bm-x
bm-2
:

61
bo

*
*

*
*

*

x0

*
*

*
*

*

X\

*
*

• • .

*

*

*
*

*
*
*

xc

*
*

*

*

*
*

*
*

*

xk-i

*

*

*
*

*

*

*
*
*

Xl-2

*
*

*
*
*

Xl-1

MSB

LSB
Word

Table 3.1: Binary matrix perspective of an ALFG initial seed.

3.1 depicts an ALFG register as a binary state matrix. Each word in the

register is an m — bit integer where the most significant bits (MSB) of the

register occupy the top row of the matrix and the least significant bits (LSB)

occupy the bottom row.

3.1.1 Period of the ALFG

For the ALFG with power of two modulus, the maximum possible

period is huge: (2' — l)2m _ 1 [39]. However, notice that the maximum

possible period is considerably smaller than the number of nonzero fills,

2ml — 1. The missing state space can be accounted for by the large number

of disjoint maximum period cycles. A necessary condition for achieving a

maximal period is that the characteristic polynomial associated with the

recurrence, f(x) = xk + xl + 1 be primitive modulo 2, I > 2 [8]. The only

additional requirement to obtain a full period cycle is that not all least

28

significant bits be zero. In terms of residues modulo 2, this is achieved

if one or more words of the initial seed r*0 is odd. A simple computation

shows that the number of initial seeds that give maximal possible period is

(2l — l)2'(m~x). Since each of these initial seeds is in a maximum possible

period cycle, there must be

(2* - l) ^ " - 1) _ (z_i) (m_i) , .

(2 * - 1 J 2 ™ - 1 { }

cycles with maximum possible period. Following [39], if we define an equiv

alence relation among initial seeds so that two seeds are equivalent if they

are in the same cycle, then the generator has E distinct maximal period

cycles.

3.1.2 A Canonical Form

The state space of the ALFG as described above is toroidal [40] with

equation (3.1) providing the algorithm for movement in one torus dimen

sion. Mascagni et al. [39] have provided an elegant algorithm for movement

in the second torus dimension (movement from cycle to cycle) by exploiting

the following result.

Theorem 3.1.1. Suppose I and k are such that xl + xk + 1 is primitive

modulo 2. Then for every m — bit initial seed fa which has at least one odd

element, there exists an integer 0 < p < (2l — l)2m _ 1 such that the register

state, Tpfo has the form shown in Table 3.2. That is, the first word is 0

and all words except for word xc are even. Furthermore, the index of the

single odd word is uniquely determined by I and k.

Theorem 3.1.1 implies the existence of a canonical form for initial seeds

which satisfy the hypothesis. The (m — 1) x (I — 1) subarray in Table 3.2

29

bm-i

bm-2
;

h
bo

0
0

0
0
0

X0

*

*

*
*

0
Xl

*

*

-.

*

0

*

*

*
*

1
xc

*

*

*

0

*

*

*
*

0
Xk-l

*
*

• .

*

0

*

*

*
*

0
Xl-2

*

*

*
*

0
Xl-l

MSB

LSB
Word

Table 3.2: The canonical register state of an initial seed which corresponds
to a maximal period cycle. The state-space of the (m — 1) x (I — 1) canonical
rectangle is in one-to-one correspondence with the set of maximal period cy
cles. The canonical least significant bit position, xc, is uniquely determined
by I and k.

has 2^1)x(m - 1) possible states. Each one of these states corresponds to a

different maximal period cycle. This subarray is appropriately called the

canonical rectangle and allows us to fully enumerate the set of maximal

period cycles. In light of Theorem 3.1.1, the equivalence class previously

defined can be restated more precisely; two initial seeds are equivalent if,

when put into canonical form, they have the same canonical rectangle state.

3.2 Parallel Implementation

Suppose now that one ALFG sequence is initialized on each of nproc

processors in a parallel program. A good parallel initialization must satisfy

the following criteria [9]:

1. Each processor is assigned a sequence which is taken from a different

cycle, easy to accomplish using the canonical form.

2. The initial states of the ith and (i~l)th sequence should look relatively

random so as to eliminate short-range inter-stream correlations.

3. A sequence initialized on processor i should be uncorrelated (over the

long-range) with a sequence initialized on processor j .

30

A good parallel initialization can be achieved if, on each processor,

the canonical rectangle is bitwise filled with a random bit generator. In

particular, the canonical rectangle can be filled as follows:

1. A global initial seed, SG, is selected by the user and broadcast to all

processors.

2. Each processor initializes a binary shift register with the binary num

ber SQ + myid, where myid is the unique task identifier assigned to

each processor.

3. The binary shift register is stepped R times, the output bits placed

sequentially in the canonical rectangle.

Provided an effective binary shift regsiter, this initialization satisfies the

criteria stated above. In practical application an appropriate choice of the

global seed is

SG = (sec + 60 x (min + 60 x (hr + 24 x (day + 30 x (mon + 12 x yr))))).

Successive runs will therefore generate different sequences, as long as the

jobs are launched more than JV/64 seconds apart. This SG is guaranteed to

fit into 31-bits, is constantly changing, and is unlikely to be identical to a

number chosen diliberately by the user.

3.3 Parallel Initialization Schemes

In the proposed parallel initialization, each ALFG stream requires a

random bitwise fill of its canonical rectangle. In this section, an effective

random bitwise initialization is presented. In particular, two binary shift

register schemes are introduced, implemented and their computational effi

ciencies compared.

31

3.3.1 Binary Shift Registers

A binary shift register (BSR), also known as a Tauseworthe generator,

is an important class of random number generators. They are particularly

well suited to the task of generating random binary bit sequences and, as

such, this is their primary usage in modern applications. To understand

the mathematical principles underlying a binary shift register, consider the

following

Definition 3.3.1. An n-bit register f is an (n x 1) state vector whose

components are in GF{2) — {0,1}

f b0 \
h

(3.5)

&n-2

\bn-lj

In the case of n = 32, each state of a 32-bit register naturally coincides

with a 32-bit integer by associating bo with the most significant bit (MSB)

and 63i with the least significant bit (LSB) of the integer. For example,

the standard unit vectors, e;, which have a 1 in the ith component and

are 0 in all other components, correspond to the integers 232, 231,...,22,21,1

respectively.

Definition 3.3.2. A binary shift register is a linear transformation recur

sively applied to an n-bit register which, by successive iteration, produces a

sequence of register states

rk+i = Afk. (3.6)

Where the matrix of the recursion, A, is an element of GF(2)nxn and ad

dition is modulo 2.

32

file:///bn-lj

3.3.2 Fibonnaci Register

To begin the discussion of a Fibonacci register (not to be confused with

an ALFG), we start with a primitive, irreducible, n-degree polynomial, p(x)

with coefficients in the finite field GF(2)

p(x) = 1 + aix + a2x
2 H f- an^xx

n~l + anx
n. (3.7)

For the present effort, primitive polynomial will mean the following

Definition 3.3.3. We say a polynomial p(x) with coefficients in the field

GF(2) is primitive to mean that

<x>=(GF(2)[x}/(p(xW. (3.8)

In words, p(x) is primitive if # is a cyclic generator of the multiplicative

group of nonzero elements of the finite field, GF(2)[x]/(p(x)) which is, it

self, isomorphic to S — {ao + a,\X + a2x
2 H h an_2£n - 2 + an-ix

n~l\ai E

GF(2)} — 0, the set of all non-zero polynomials of degree (n — 1) with coeffi

cients in GF(2). The set S has 2 n - l elements, thus x e (GF(2)[x]/{p{x)))x

has order 2" — 1. By construction, x is a root of p(x) over the field

GF(2)[x]/(p(x)) which implies the following identity

xn = 1 + atx + a2x
2 + ••• + an^2x

n~2 + an-Xxn~l, a» 6 GL{2). (3.9)

This identity defines the multiplication in the finite field GF(2)[x]/(p(x)).

The abstract multiplication can be implemeted in a binary shift register

as a rule for forward stepping. Given the most current n values, which are

stored in an n-bit shift register, rn can be computed for all subsequent times

as

rn = r0 4- air\ + ct2r2 -I h an_2rn_2+ a„_irn_1, a, e GL(2). (3.10)

33

The recursive relationship is linear with the following action

fb0\
h
b2

bn-2

\K-iJ

b2

h

bn-l
\bn /

(3.11)

where bn is computed with (3.10). The n x n matrix, AF, has the form

AF =
0 ' n - l

h
(3.12)

where 0 is an (n — 1) x 1 zero vector, / is the (n — 1) x (n — 1) identity

matrix and h = (ai a2 • • • an_2 an_i) is the l x (n - l) vector of polynomial

coefficients. The indices of the non-zero entries of h are called tap points.

Primality implies that 0 is always a tap point since a® = 1 is a necessary

requirement for an irreducible polynomial. A matrix of the form (3.12)

whose tap points correspond to a primitive polynomial, which is used to

step a shift register forward is called a Fibonacci register. The following is

true of a Fibonacci register:

1. The matrix AF in (3.12) is periodic and has period 2n — 1

2. The sequence of register states

S={Af0,A
2f0,...,A

2n-lf0}

is a group under the binary operation (r\, fj) —* A^+^f0 for fi, fj € S.

3. S is isomorphic to the multiplicative group of nonzero elements of the

finite field GF(2)[x]/{p(x))

S^(GF(2)[x]/(p(xW.

34

file:///K-iJ

4. The sequence of most significant and/or least significant bits of 5 is

a high quality random binary bit sequence.

As a specific example, consider the primitive trinomial

this defines the recursion

p(x) = 1 + x3 +

r5 = r0 + r3

x (3.13)

(3.14)

which has the Fibonacci stepping matrix

/0 1 0 0 0 \
0 0 1 0 0

AF= 0 0 0 1 0
0 0 0 0 1

\ 1 0 0 1 0/

stepping the shift register forward has the following action

(3.15)

/0 1 0 0 0\
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

\l 0 0 1 OJ

fb0\
h
b2

h
w

=

f h \
&2

h
h

\bo + hj

(3.16)

In terms of logical operations, the 5-bit Fibonacci register can be accom

plished by summing the values of the shift register at the tap points, re

ducing this modulo two, left-shifting the register one bit towards the MSB,

and placing the resultant sum in the LSB position. To see how the Fi

bonacci register acts on a 5-bit integer, consider the integer 28 = I l 1.

Then AF28 — • 1 6 1 = 25.

The bottom row of (3.12) is an n-bit binary sequence which can be

interpreted as an n-bit integer whose MSB is to the left of the LSB. The

bottom row of (3.12) will play an important role in the discussion of the

Galois register. Therefore, it is given the following definition

35

Definition 3.3.4. The mask, Mp, of a Fibonacci register corresponding to

the primitive polynomial p(x) is the bottom row of the matrix (3.12).

The mask is 1 at tap points and 0 elsewhere.

For the present effort, a 32-bit binary shift register is used which cor

responds to the primitive polynomial

p(x) = l + x25 + x27 + x29 + xm + x31 + x32. (3.17)

The Fibonacci mask associated with this primitive polynomial, expressed

in hexadecimal, is

MF = 0x80000057. (3.18)

When using Fortran 90 bit-wise intrinsics, the MSB corresponds to element

31 of the binary number Mp and the LSB corresponds to element 0. Thus

using the appropriate Fortran indexing, the tap locations corresponding

to the polynomial (3.17) are 31, 6, 4, ,2, 1, 0. The Fibonacci register is

logically implemented in Algorithm 3. Given an initial fill of the 32-bit

register, each call to Algorithm 3 advances the state of register and returns

the MSB of the previous state. Successive calls to Algorithm 3 results in

a random binary bit sequence which can be used to bit-wise initialize the

canonical rectangle of an ALFG register.

3.3.3 Galois Register

The Galois register is derived from the Fibonacci register by taking

the transpose of the matrix representation for the Fibonacci register,

(°
Vn-1

A
h)

where 0 is 1 x (n — 1) and h is (n — 1) x 1. The Galois mask, MQ, is

the same as the Fibonacci mask, Mp, but plays an important role in the

36

Algorithm 3 Fibonacci register implementation. Successive calls generates
a random binary bit sequence.

1: common integer F
2: integer TAP = (31, 6, 4, 2, 1, 0)

3: bit<-0
4: j *- 1
5: while (j < length(TAP)) do
6: bit *- bit + getbit(F, TAP(j))
7: end while
8: bit <— iand(bit, 1)
9: F «- leftshift(F)

10: if (bit) then
11: F «- bitset(F, 0)
12: end if
13: return bit

/0 0 0 0 l \
1 0 0 0 0
0 1 0 0 0
0 0 1 0 1

\0 0 0 1 Oj

fbo\
6i
&2

63
\&4y

=

(b* \
60
h

62 + 64

v &3 y

=

/ o \
60
h
62

\h)

+ 64

/ 1 \
0
0
1 w

logical implementation of the shift register on a computer. To understand

the action of the transformation on a shift register, consider the 5x5 Galois

step, derived from the primitive trinomial (3.13), applied to an arbitrary

shift register

(3.20)

Again, taking the MSB of the register to be r0 and the LSB to be r3i , the

Galois step is logically implemented in Algorithm 4. The matrix AG has

the same algebraic properties as AF, however, Algorithm 4 can be imple

mented more efficiently than Algorithm 3. To see this, let A; denote the

number of non-zero terms of the primitive polynomial (3.7). The logical

operations necessary to advance the register a single step with Algorithm 3

are: perform a fc-term summation of tap points, perform a logical AND on

the resultant, logically leftshift the register 1-bit towards MSB, and feed the

37

resultant bit into the LSB position. This requires A;+ 3 operations. The Ga

lois register is efficiently implemented by exploiting the Galois mask. The

logical operations necessary to advance the register a single step with Algo

rithm 4 are: obtain the LSB, logically rightshift the register 1-bit towards

the LSB, and logically XOR the register with LSB * MG. This requires

four operations regardless of the number of tap points. Thus, employing a

dense primitive polynomial (which has certain advantages itself) adds no

additional compuational expense.

Initializing the canonical rectangle with a Galois register is a novel

enhancement which should improve initialization efficiency. In order to

compare the initialization times, both registers are used to initialize the

canonical rectangle for an ALFG of varying register length. Figure 3.1

shows the initialization time, measured in milliseconds, as a function of

ALFG register length. Results are averaged over 100,000 trials and, as

expected, initialization times are significatly smaller when using a Galois

step.

Algorithm 4 Galois register implementation. Successive calls generates a
random binary bit sequence. '

1: common integer G
2: integer MG

3: bit+-getbit(G,0)
4: G <- rightshift(G)
5: G <- G © (bit * MG)
6: return bit

3.4 Statistical Tests

As mentioned previously, empirical tests of RNGs fall into two cate

gories: statistical tests and applications-based tests. Statistical tests are

38

3.5 -

cj
CD
W
F
to

fc
I—

->
a.
o

?5

?

1.h

1 -

0.5

\

1
1

1

\

...
.. 1

1
1

3 — — — T ~ ^ i i i

1 —1

-

1 1

100 200 300 400
Lag Length

500 600 700

Figure 3.1: Initialization timings for Galois (blue) and Fibonacci (red) shift
registers. Timings, measured in milliseconds, are plotted as a function of
ALFG lag length.

further subdivided into two categories: weak tests and strong tests. Weak

tests exercise the minimum qualifications necessary for a sequence to be con

sidered random. They are often easy to implement and easy to pass (even

for low-quality generators.) While weak tests cannot confirm the quality

of a sophisticated RNG, they may quickly rule a generating algorithm out.

Computing the mean, standard deviation and higher order moments of a se

quence of random numbers are considered weak tests. Stringent (or strong)

tests are more difficult to implement and more difficult to pass as they are

designed to detect subtle defects in RNGs. The stringent tests employed

herein are the Birthday Spacings Test [38], Collisions Test, Gap Test, and

39

Runs Test [31]. These specific tests have been particularly effective in ex

posing defects in parallel RNGs [60].

Each test is applied to a sequence x±, x2,...,xn?... of real numbers, which

purports to be independently and uniformly distributed between zero and

one. Some of the tests are designed primarily for integer-valued sequences,

instead of a real-valued sequence. In this case, the integer sequence, Ii,

72,...,/nv) defined by In = floor(d a;n), is a sequence of integers that

purports to be independently and uniformly distributed between 0 and d—1.

The number d is choosen for convenience, e.g. if d = 26, then /„ might

represent 6 specific bits in a 32-bit signed integer.

3.4.1 Birthday Spacings Test

Let the RNG produce m integers Ii,...,Im in the range 0 < h < d.

The integers can be thought of as m birthdays in a year consisting of d

days. The birthday spacings test measures the number of "days" between

successive birthdays. Assuming a uniform distribution of birthdays, the set

of successive days apart produces a statistic that is asymptotically Poisson

with parameter A = m3/4d. Good values for m and d are found to be

m = 210 and d = 224. The Poisson distribution function is discrete and

therefore discontinuous, thus a KS test cannot be immediately applied. In

order to combine a chi-square test with a KS test the following steps are

performed:

1. Produce 500 31-bit integer streams of length m.

2. For each of these streams, extract a sequence of m 24-bit integers from

the original stream by extracting bit fields 0-23 from each integer in

40

the original stream. This produces 500 sequences that satisfy the

hypotheses of the birthday spacings test.

3. Perform a birthday spacings test on all 500 24-bit sequences. Bin the

trials out and compute a single x2 value, V\.

4. Logically shift the bit window one position to the left (towards the

MSB) and repeat steps 1-3, this time on bit fields 1-24. This produces

the second x2 value, V2.

5. Proceed inductively through bit positions 6-29. In this way, seven x2

values, Vx,...,V7, are obtained.

6. Compute the EDF, F7(x), from the observed x2 values.

7. Perform a KS test by computing the statistics, Kf and K^. If the KS

percentile falls within the 95% confidence interval of the appropriate

KS distribution, then the test is passed.

3.4.2 Collisions Test

probability
collisions

.009
0-101

.034
102-108

.201
109-119

.232
120-126

.266
127-134

.204
135-145

.043
146-153

.011
> 154

Table 3.3: Discrete PDF for the collisions test.

Suppose n balls are tossed at random into m urns. If m » n then,

on average, most balls will land in urns that were previously empty. If a

ball falls into an urn which is already occupied, then a collision occurs.

This test counts the number of observed collisions and compares it to the

known distribution which is given in Table 3.3. The observations fall into

one of 8 distinct categories, thus a chi-square test is appropriate. As with

41

the birthday spacings test, the chi-square test must be repeatedly applied

in order to apply a KS test. The test is applied to a sequence of 5n random

numbers by choosing n = 214 and m — 220 and doing the following:

1. Form a sequence of n = 214 20-bit integers by extracting bit fields 0-3

from 5 consecutive integers of the original sequence and concatenating

the binary sequence to form a single integer in the new sequence.

2. Search the new sequence. If an integer is repeated, then a collision is

recorded.

3. Repeat the test 100 times on different sections of the stream, bin the

trials out, and compute a single x2 value, V\.

4. Logically shift the bit window one position to the left and repeat Steps

1-3 on bit fields 1-4 and compute V2.

5. Proceed inductively to obtain ten x2 values, Vi,..., Vio-

6. Compute the EDF, Fw(x), for the observed V '̂s.

7. Perform a KS test and compute the statistics, KiQ and K^0. If both

KS percentiles fall within the 95% confidence interval of the associated

KS distribution, then the test is passed.

3.4.3 Gap Test

This is a test on a sequence of real numbers x\, rr2,..., xn, — This

test is used to examine the length of a gap between occurances of a value

Xj that falls within a specified range [a,0\. The true distribution for the

outcome is discrete; thus a x2 test is applied. As before the gap test is

performed on several different sections of the random number stream by

doing the following:

42

1. Apply the test to one-hundred different sections of the random number

sequence and obtain one-hundred x2 values, V\,..., Vioo-

2. Compute the EDF, Fw0(x) from the observed x2 values.

3. Perform a KS test by computing the statistics, K^Q, / Q 0 . If both

values fall within the 95% confidence interval of the KS distribution,

then the test is passed.

3.4.4 Runs Test

This is also a test on real numbers. The test is very similar to the Gap

test and the exact same statistic is computed.

1. Apply the test to one-hundred different sections of the random number

sequence and obtain V\,..., Vioo-

2. Compute the EDF, Fx^x) from the observed chi-square values.

3. Perform a KS test by computing the KS statistics, K^00, -^IOO- ^ both

values fall with the 95% confidence interval of the KS distribution,

then the test is passed.

3.5 Results

In this section, results of the statistical tests are presented. In order to

assess the effectiveness of the parallel initialization we follow Marsaglia [14]

and interleave parallel streams. Suppose there are nproc parallel streams,

then streams are interleaved in the following manner: If stream % is given

by

Xi,o,Xi,i,...,xitk,... 0<i<nproc (3.21)

43

then the new stream is

%Q,0,Xl,O,--;xN,0,Z0,l,Xl,l, ••••>xnproc,l, ••• (3.22)

If the parallel streams are independent of each other, then the newly formed

stream (3.22) should be random. Any correlation amongst parallel streams

manifests itself as intra-stream correlation in (3.22) [60].

In order to assess the quality of the two initialization schemes, both

registers are used to initialize parallel streams and the resulting streams are

subjected to the suite of statistical tests. The ALFGs studied herein are:

LFG(607,334,31), LFG(127,97,31), LFG(7,3,31). If a stream passes a

test, then the result is labeled (P), else it is labeled (F).

3.5.1 Single-Stream Results

Each ALFG produces a random number sequence consisting of 10 mil

lion numbers. Both the 31-bit integer and real number sequences are col

lected and analyzed. The results of the statistical tests are summarized in

Table 3.4.

LFG(7,3,31) fails all of the stringent tests except for the gap test. It

does, however, pass the weak tests. Figure 3.2 (left image) shows that as

the length of the sequence is increased, the mean value converges to 1/2,

as expected. Figure 3.2 (right image) also shows the defective sequence

embedded in the unit square by plotting successive values of the sequence,

(xn,xn+\). This visual test is easy to apply and may quickly identify a

suspect RNG. When visualized this way, two-dimensional correlations can

manifest themselves as noticeable patterns in the distribution of points.

The image is that of a very uniformly distributed set of points in the plane,

44

however, the stringent tests reveal the presence of higher-dimensional cor

relations. Figures 3.3 and 3.4 show graphical results of the stringent tests

for LFG(7,3,31). All tests except for the gap test produced KS percentiles

far outside their respective 95% confidence intervals.

ALFG
LFG(7,3,31)
LFG(127,97,31)
LFG(607,334,31)

Collisions
F
P
P

Runs
F
P
P

Gap
P
P
P

Birthday
F
F
P

Table 3.4: Stringent test results for single-stream ALFGs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1

Figure 3.2: On the left, a single stream LFG(7,3,31) converging to the
expected mean value of 1/2 as the length of the sequence increases. On the
right, the same stream embedded in the unit square by plotting succesive
values, (xn,xn+i). No visible pattern or structure is apparent.

Weak Test with 1 Streams

4 4.5 5
Power of 10

45

Gap Test with 1 Streams Runs Test with 1 Streams

10 12 14 16 18 20 10 12 14 16 16 20

Figure 3.3: On the left, results of the gap test applied to a single stream
LFG(7,3,31) are plotted. On the right, results of the run test are plotted.
The sequence passes the gap test and fails the run test. The EDFs are
depicted in blue and the expected distributions in red.

Collisions Test with 1 Streams

0.9-

0.8

0.7 •

0.6

0.5-

0.4 •

0.3

0.2-

0.1 •

oL

• /

Chi Square

Empirical Distributor!

•

•

r
i 12 14 16 18 20

1

09

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

n / * ' i

r
-

•

•

Figure 3.4: On the left, results of the collisions test applied to a single
stream LFG{7,3,31) are plotted. On the right, results of the birthday
spacings test are plotted. The sequence fails both tests. The EDFs are
depicted in red and EDFs in red.

LFG(127,97,31) easily passes the weak tests and passes all stringent

tests except for the birthday spacings test. Therefore LFG(127,97,31)

46

is suspect but not necessarily defective. The ALFG is known to fail the

birthday spacings test for small values of I (I < 127) [38]. The figures in

Figure 3.5 show graphical test results of the birthday spacings test applied

to a single stream LFG(127,97,31). On the left, Figure 3.5 shows the EDF

compared to the expected distribution for the collected x2 values. The KS

value computed from these distributions is far outside the 95% confidence

interval. On the right, Figure 3.5 shows the results of the birthday spacings

test performed on individual bit blocks from which the seven \2 values are

computed. LFG(607,334,31) easily passes all tests.

nl—HHHHU Q1—HI^^H

H i Observed

+ Expected

50 60 70 BO wtsumm

Figure 3.5: Birthday spacings test resulting in failure of a single stream
LFG(127,97,31). On the left, a KS test is applied to the observed x2

values that are obtained from the image on the right which shows seven
observed distributions, compared to the expected Poisson distribution, each
one corresponding to a different bit block.

3.5.2 Multiple-Stream Results

For multiple stream testing, only the effective sequential generators,

LFG(607,334,31) and LFG(127,97,31), are considered. Each test is per

formed twice on a sequence consisting of 107 random numbers. Once ini

tializing the streams with a Galois generator and once with a Fibonacci

47

generator. If nproc streams are initialized, then each stream produces a

sequence of ~~ random numbers. The nproc streams are interleaved into

a single sequence and tested. Test results are summarized in Tables 3.5

and 3.6. Parallel streams initialized with a Galois register are statistically

indistinguishable from those initialized with a Fibonacci register. All tests

are passed regardless of the initialization schemem employed.

Streams
5
10
50
100

Collisions
P
P
P
P

Runs
P
P
P
P

Gap
P
P
P
P

Birthday
P
P
P
P

Table 3.5: Stringent test results for LFG{127,97,31) initialized with a Ga
lois register. Test results are identical when initialized with a Fibonacci
register.

Streams
5
10
50
100

Collisions
P
P
P
P

Runs
P
P
P
P

Gap
P
P
P
P

Birthday
P
P
P
P

Table 3.6: Stringent test results for LFG(607,334,31) initialized with a Ga
lois register. Test results are identical when initialized with a Fibonacci
register.

Figures 3.6 and 3.7 show stringent test results for a 50 stream LFG(127,97,31).

Figures 3.8 and 3.9 show test results for a 50 stream LFG(607,334,31). In

these tests, 50 streams are initialized and, after an initial run-off (an issue

addressed in the next section), produce 50 random number sequences each

consisting of 200,000 numbers. The sequences are interleaved and tested;

all tests are passed.

Several different streams were tested, each using different values of the

global seed Sa- This is done to ensure that a pass wasn't simply a patho-

48

Gap Test wfth 50 Streams

a Chi-Square

Runs Test with 50 Streams

M.|nri.' • • * — a w e s s m

jjf \ " Cht-Square |

^ P i i i i i i i i i

Figure 3.6: On the left, gap test results for an LFG(127,97,31) sequences
composed of 50 parallel streams. On the right, the results of the runs test
on the same sequence. The sequence passes both tests.

Collisions Test witti 50

tO 12 14 16 18 20

Figure 3.7: On the left, collisions test results for an LFG(127,97,31) se
quences composed of 50 parallel streams. On the right, the results of the
birthday spacings test on the same sequence. The sequence passes both
tests.

logical occurance. It was consistently observed that when a test was passed

once, it was passed upon every other retest with a different global seed.

49

Therefore, the empirical evidence strongly suggests that both initialization

schemes are effective at initializing high quality parallel streams.

Gap Test with 60 Streams
1

0.9

0.8

0.7

06

05

0.4

0.3

0.2

0.1

Q
0

Wt
2

,
4

,
6 (8

,
10

1

,
12

^ ^ B g M g ^ r t

-

-
-

" Chi-Square |

•

• • i

14 16 16 20

Runs Test with 56 Streams

2 4 6 8 10 12 14 16 18 20

Figure 3.8: On the left, gap test results for an LFG(607,334,31) sequences
composed of 50 parallel streams. On the right, the results of the runs test
on the same sequence. The sequence passes both tests.

Collisions Test with 50 Streams

60 60 70 80

Figure 3.9: On the right, collisions test results for an LFG(607,334,31)
sequences composed of 50 parallel streams. On the right, the results of the
birthday spacings test on the same sequence. The sequence passes both
tests.

50

1

0.9

0.6

07

0.6

0.5

0.4

0.3

0.2

0.1

n

. . /

/

/

- ^ . . . - . 1 , . L 1

— 1 —

__J

f
.

"

•

J

r

Figure 3.10: On the left, the results of the birthday spacings test on an
LFG(127,97,31) stream composed of a single stream and, on the right, re
sults of the same test for a sequence composed of 5 parallel streams. The
parallel stream passes the birthday spacing test while the single stream fails.

50 BO 70 80

Figure 3.11: Birthday spacings test results on an LFG(127,97,31) stream
composed of 50 parallel streams. The parallel stream passes the test.

An interesting observation is the discovery that parallel streams are

more random than individual sequences. This phenomenon is observed for

all values of I, and k tested, regardless of the initialization scheme employed.

51

Figures 3.10 and 3.11 depict this phenomenon in the case of the birthday

spacings test applied to LFG(127,97,31). Figure 3.10 shows the failure of a

single stream sequence in the left panel. On the right, an LFG(127,97,31)

stream composed of 5 parallel streams passes the test. In Figure 3.11 a

stream composed of 50 parallel streams is an excellent pass. It has been em

pirically observed that combination generators perform better than either

of the component generators and the performance improves as the number

of parallel streams increases. A hueristic argument for this phenomenon

is given in [38] and helps explain this observation. Parallel streams, each

coming from a separate cycle, can be thought of as a type of combination

generator.

3.5.3 Improving Quality

It is also found that the number of transients purged from the generator

is important. It is well known that when using the canonical form, initially,

the LSB behaves in a less than random way and is the same for all streams

on each processor. For all other bit fields, including the next-to-least sig

nificant, there is no such defect. Several possibilities exist for remedying

this situation: i) the use of a separate, independent generator for only the

LSB, ii) shifting off the LSB of the generated random number, so that the

integers returned by the generator are in the range [0,230 — 1] instead of

[0,231 — 1], iii) a huge run-up of the generator in order to purge this defect

(empirical studies have shown that about 20 million random numbers must

be purged from LFG(607,334,31)) or iv) simply neglecting this aspect, a

viable stratagem when generating random, real numbers where the LSB is

not important.

52

In this work, we choose to implement option (i). This strategy is

easy to implement in this situation given that each processor has already

initialized a shift register. One solution is to step the shift register with

either Algorithm 3 or 4 and replace the least significant bit of XN with

the output bit. The added computational expense is negligible and the

enhancement results in immediate gains in accuracy. This particular bit

replacement strategy was implemented and the experiment was repeated.

All tests were passed at the bit-level, including the birthday spacings test

on the low order bits, without any initial run-up.

3.6 Applications-Based Test

The performance and accuracy of the parallel ALFG is further assessed

by employing it in an idealized problem in radiative transport. Figure 3.12

depicts, in cross-section, a two-dimensional, Cartesian, prismatic geometry

with two internal baffles. Baffles are typically used to collimate particulate

transport or to regulate temperature. Only two baffles are modeled in this

geometry. The more general situation, where many baffles are likely to be

used, follows by induction.

The cross-section of the geometry is square, of unit height and width.

The slits made by the infinitely thin baffles are of height 2h, and the baffles

are a width 2w apart. The source surface is on the left, and the target sur

face is on the right. The geometry is vertically and horizontally symmetric -

although this fact could be used to reduce the computations, it will not be,

as the purpose here is to illustrate the characteristics of the parallel ALFG.

The outputs desired from this geometry are the shape or view factors

from the source to the target, Fst, and from the source to the second baffle,

53

Y = H

Left Site,
Source
Surface

1
ft

t

1s"

Baffle

w

Certerine

2nd

Baffle

Right Side,
Tsrgel
Surface

X = 1

Figure 3.12: Two-dimensional geometry for radiative transfer square with
baffles

FSb2- Hottel's crossed-string method is used to compute the view factors,

as all surfaces are diffuse and black. This problem is modeled numerically

using the well known Monte Carlo ray tracing technique [36]. For small

values of w and h, the computation of these view factors by Monte Carlo is

very challenging due to the large number of emissions required to achieve

accuracy in the very small answers. The emissions from the source surfaces

must be distributed directionally and spatially very accurately, as any slight

bias or aliasing will manifest in error. Thus, the problem is ideal to illustrate

both the accuracy and performance (as many emmissions will be required)

of the parallel implementation of the ALFG.

For io = d = (5, applying Hottel's crossed-string method yields:

F^ = 26(V2 - 1) (3.23)

and

FM =)J\ + 26* - y/2(± - 6). (3.24)

54

Applying equations 3.23 and 3.24 with 5 - 0.005 yields Fst = 0.0041421,

and Fst,2 = 0.0029643. A typical assumption is that the average value

of a large number of samples from most distributions is well modeled by

a normal distribution with a specific expected value, /i, and variance, a2

[71]. Both Fat and Fab2 are Bernoulli variables governed by a binomial

distribution. Thus for sufficiently large trials, N, the distribution should

be approximated by a normal distribution. With this in mind the 95%

fractional confidence interval, S, can be derived from the Central Limit

Theorem as [36]:

8 = zy/(l - F)/FN (3.25)

where F is the current fraction, N is the number of photons emitted and z is

the cummulative normal distribution coefficient, which for a 95% confidence

interval is about 1.96 [15]. The fractional confidence interval converges to

0 as N —* oo thus guaranteeing convergence, albeit at a slow 0(iV_1/2)

algebraic rate.

The individual photons do not interact and are thus statistically in

dependent. This leads to a fine-grained parallelism well suited for multi

ple independent processors [36]. Letting N be the total number of pho

tons emitted, Ni = — j ^ be the number of photons emitted by processor

i — 0,..., (nproc — 1) and let Hi be the total number of hits observed by

processor i.

Each task initializes its own independent ALFG stream by following

the steps outlined in this chapter. Then Monte Carlo estimates of Fst and

Fsb2 are computed by emitting JVj photons per processor. After the emis

sion phase, an all-to-all reduction collective, such as MPFALLREDUCE

55

is called to compute and store ^"=0* *"* * 1 Hi in each processor's local

memory. The approximate fraction is finally computed as

TT-*nproc— 1 TT

F ~ / w \ - (3-26)

A floating point, parallel implementaion of LFG(127,27,31) has been

implemented on the NERSC Bassi system. The implementation generates

a global seed, SG, on myid = 0 by calling the datcandJimeQ FORTRAN

intrinsic and assigning

SG = (sec+60x(min+60x(/ir+24x(day+30x(mon+12xj/r))))). (3.27)

as the global seed which is then broadcast to all processors. Each processor

subsequently initializes its binary shift register with the binary number

SG + myid. The register is then stepped R — 126 x 30 times with the output

bits placed sequentially in each processor's canonical rectangle. The ALFG

is not run-up, instead the bit replacement strategy discussed previously is

implemented. The parallel ALFG generates 3 random numbers per photon

emission and computes Fst and Fsvi via Monte Carlo.

In order to quantify the efficiency of this implementation, we define

the commonly used metric, the parallel efficiency, pe. Let t\ be the time to

execute an algorithm on a single processor, tnproc the time to execute the

same algorithm on nproc processors then the parallel efficiency is defined

as:

pe = . (3.28)

Parallel timing results for 128 x 107 photon emmissions are shown in

Figure 3.13 (left). Figure 3.13 (right) depicts the parallel efficency for up to

128 processors. Broadcast and reduction times are are seen to be negligible

56

as the parallel performance is observed to be excellent with nearly perfect

scaling on 128 CPU's.

The convergence characteristics are seen in Figure 3.14 to be excel

lent as well. In this figure each processor emits 1 x 107 photons. Results

are summed and estimates are computed. In this way, convergence can be

viewed as a function of the number of processors. In order to obtain a sta

tistically valid empirical distribution, 1,000 Monte Carlo estimates are com

puted for a fixed number of processors. Given the expected 95% fractional

confidence interval (3.25), the accuracy of the simulation can be assessed

by counting the number of approximations that fall outside this envelope.

For 1,000 trials, one expects to observe, on average, 50 approximations to

fall outside the 95% confidence envelope. As evidenced in Table 3.7, the

approximations of Fst and Fs&2 converge to their true values at exactly the

rate predicted by the Central Limit Theorem.

Num
Tasks

1
2
4
8
16
32
64
128

Fst Mean Error
xMT4

0.1739
0.1129
0.0819
0.0590
0.0407
0.0281
0.0203
0.0145

Fst Hits
Outside Envelope
(Expected = 50)

69
48
53
60
52
44
45
47

Fsb2 Mean Error
xlO-4

0.2150
0.1483
0.1052
0.0753
0.0545
0.0384
0.0255
0.0187

Fsb2 Hits
Outside Envelope
(Expected = 50)

53
39
52
63
56
53
48
50

Table 3.7: Monte Carlo convergence results; in each trial, active processors
emit 1 x 107 photons, 1,000 trials are conducted for a given number of
processors. Of the 1,000 trials, we expect, on average, 50 trials to fall
outside the 95% confidence interval.

57

330

300

250

lm

3 150

100

50

n

Emissions N = 128 x 107 Photons

] ' ' ' ' '

I

L

^~~~"a—; |-B . .

-

-

'

—+—a

Parallel EBcieiscy N = 128 x 107 Photons

0 20 «1 60 80 100 120 140
Number of Processors

Figure 3.13: CPU timing (left) and parallel efficiency (right) for parallel
Monte Carlo photon heat transfer code using 128 x 107 photon emissions.

Convergence Characteristics

[
95% Confidence Envelope

* Monte Carlo Estimate

0 20 40 60 80 100 120 140

Photons Emitted x 107

7.2

7.10

7.16

jr.«

i:
7.06

7.04

7.02

Convergence Characteristics

- 9 5 % Confidence Envelope

Monte Carlo Estimate

ss*

40 60 80 100

Photons Emitted x 107

Figure 3.14: Monte Carlo convergence characteristics and theoretically ex
pected 95% confidence intervals for Fst (left) and Fsb2 (right).

3.7 Conclusions

In conclusion, a high-performing, portable, parallel random number

generator has been implemented and assessed. It has been demonstrated

that multiple, parallel ALFG streams can be effectively initialized using a

binary shift register with either a Fibonacci generator or a Galois generator.

While both initialization strategies are effective, a Galois generator can be

58

implemented much more efficiently resulting in initialization times 1/6 of

those achieved with a Fibonnaci generator. Furthermore, the statistical

characteristics of the parallel RNG streams produced by initializing with a

Galois generator are excellent - equally as good as those produced with a

Fibonacci initialization.

For sufficiently long register length, the sequential ALFG passes all

stringent tests. This result is consistent with past observations. It is also

found that interleaved parallel streams are more random than individual

streams, a phenomenon explained by the fact that combination generators

have been observed to perform better than either of the component gen

erators. Therefore, sequentially sampling across different cycles is a viable

strategy for improving a sequential ALFG.

It is observed that the least significant bit is initially not as random as

other bits. This is due to the fact that initializing the canonical rectangle

results in an initial imbalance in the number of odd numbers in the RNG

sequence. An effecive strategy for dealing with this transient defect is to

replace the least significant bit by stepping the already initialized binary

shift register with either a Fibonacci or Galois step. This effectively and

efficiently (especially if using a Galois step) balances the register's even/odd

output distribution.

Furthermore, the proposed parallel ALFG has been implemented and

executed in a numerically challenging Monte Carlo diffuse radiative transfer

simulation. The simulation was run at large-scale on a high-performing,

massively parallel architecture. The parallel implementation is observed to

scale perfectly and to generate highly accurate results which converge at

exactly the statistical rates predicted by the central limit theorem.

59

Chapter 4

MODELING LARGE ANIMAL
POPULATIONS FOR TRACEABILITY

SIMULATIONS

According to the USDA, the National Animal Identification System

(NAIS) program consists of three components: premises registration, ani

mal identification, and animal tracing. Animal identification provides an

imal health officials with a starting point for animal tracing. As part of

the animal tracing component, producers can choose an Animal Tracking

Database (ATD) to record their animal's movements. In the event of an

animal disease, epidemiologists will have access to these databases to de

termine, via traceback, movements and locations of animals involved in the

investigation.

As an actual NAIS ATD does not exist, it is necessary to produce

an appropriate surrogate or mock dataset for the purpose of conducting

traceback simulations. This chapter outlines a Monte Carlo process that

generates NAIS-compliant mock datasets. In particular, mock datasets are

generated with a Monte Carlo discrete events simulator that uses current

USDA statistics as input.

This chapter begins with a discussion on probability distribution func

tions and events probability matrices, continues with the details of the

60

steps used to produce an output file, and concludes with a summary of the

datasets created.

4.1 Theoretical Framework

4.1.1 Probability Distribution Functions

The output of the simulation is based upon probability distribution

functions (PDFs) that describe the probability of occurances of discrete

events and probability matrices that describe animal transactions which

change the state of animal (e.g. birth, death, transfer into and out of

premises). A discreet PDF can be defined mathematically in the following

way, let H(x — N) be the unit Heaviside function shifted N units to the

right

H(x - N) = \ (4.1)
I I if x > N

and define the interval function H^M(X) = H(x — N) — H(x — M) for

N < M, which is simply 1 for N < x < M and 0 elsewhere. A general

discrete PDF describing k events is defined in terms of the interval function

as
k

F(x) = J2fiHNi^Ni(x) (4.2)
i = l

where No < JVi < N2 < ... < Nk-i < Nk define k discreet bins of width

Wi = Ni — Ni^i. The values of F(x) are constant within each bin. Each bin

describes the fraction, /*, of occurances between the numbers JVj_i and A .̂

For example, if the PDF describes animal premises sizes, then bin 3 specifies

the fraction of premises /3 that exist of sizes between N2 and N3. In general,

bin % describes the fraction of observations /* that occurs between numbers

iVj_! and Ni. The first bin always begins at -/V0 = 0. Some properties and

constraints that must be observed are

61

1. Each PDF has a user selectable number of bins, A;.

2. The spacing of the JVj is arbitary and need not be uniform.

3. fi > 0 for all i.

4. The sum of all fi must equal 1 or 100%.

4.1.2 Animal Transactions and Animal Events

The mock datasets consists of animal events, wherein an animal may

change its state. Examples of animal events include: birth, tagging, death,

sold, purchase, etc. For a detailed list of the actual 15 animal, NAIS events

modeled see [52]. Herein, animal states are determined probabilistically

using transactions that may result in one or more events, to allow for ani

mal movement. For example, a transaction might be an animal being sold

and consequently purchased - in this example, the animal existing on one

premise is sold (first event) and then it is purchased and moved (possibly)

to another premise (second event). Each such event is written to the output

file as a row of data. In this example, two rows (events) are written to the

output file as a result of a single transaction. Thus the output file created

is an events output file.

In the simulation, animal events are mapped to each animal transac

tion. Event types modeled in this research are from the NAIS specifications

cited in [44]. Of the 15 animal, NAIS events modeled only five are of par

ticular interest for the present problem. The birth event, the in event, the

out event, the transition to feedlot event, and the died on premises event.

Each animal is "born" on a premises with a birth event. Some animals die

on premises and are removed permanently from the simulation population.

62

Of particular interest, however, are the in and out events as well as the

transition to feedlot event which all result in animal movement. Animal

transactions which result in animal movement are important for traceabil-

ity simulations as these events induce an interconnected "social network"

through which a pathogen may travel.

The number of transactions an animal undergoes in a lifetime is deter

mined probabilistically with a transactions PDF which describes the proba

bility that an animal undergoes some number of transactions. Furthermore,

to add fidelity, the events probabilities are modeled as varying with the num

ber of transactions. For example, an animal undergoing many transactions

is more likely to die on premises than an animal undergoing only a few

transactions.

Events are modeled using an events probability matrix. The rows of the

matrix are the number of animal transactions and the colums correspond

to the animal event probabilities. As an example, assume that the total

number of events is 3: purchased, slaughtered, died. Assume further that

the maximum number of events, excluding birth, is 2. Then Table 4.1 gives

the probability of each event for the number of transactions an animal

undergoes. The events probability matrix for this scenario would be:

No. of
Transactions
1
2

purchased
event
0.0
0.20

slaughtered
event
0.90
0.60

died
event
0.10
0.20

Table 4.1: An events probability matrix

fO.Q 0.9 0. l \
^0.2 0.6 0.2J

63

4.1.3 Algorithmic Approach

The simulation generates an animal's event history by probabilistically

determining a birth premises, birth date and the number of transactions the

animal undergoes in its lifetime. For each transaction, one or more animal

events is defined via an events probability matrix. The animal events trace

the history of the animal's movements from birth up to either death or the

present time.

The simulation requires the following user input parameters for each

distinct population type:

1. The total number of animals, na, of a particular type .

2. A PDF, A(x), that characterizes animal age.

3. A PDF, T(x), that characterizes the number of transactions an animal

undergoes.

4. A PDF, P(x), that characterizes premises sizes.

5. An events probability matrix M which characterizes animal events in

terms of the number of transactions.

Collectively, these inputs completely characterize an animal population.

The simulation writes a mock ATD of animal events by implemeting the

following steps for each of the NA animals:

1. A birth event occurs and an animal age is selected from A(x).

2. The animal's birth premise is selected from P(x).

3. The birth event is written to the output file.

64

4. The number of transactions the animal undergoes is selected from

T(x).

5. Events are mapped, via M, to each transaction.

6. Each event is processed and written to the output file.

7. If the event is a death or missing, then processing for that animal

ceases.

4.2 Characteristics of Data Used in This Study

Input data to construct the PDF's is obtained from [64]. Because of

their differences in ages and premises-movement characteristics, 3 types of

animals are simulated: mature cows, preweaned calves, and feedlot cattle.

Age and transaction PDFs, A(x) and T(x) respectively, for mature

cows are depicted in Figure 4.1. Premises placement PDF, P(x), for mature

cows is shown in Figure 4.2, and the event probability matrix, M, for mature

cows can be seen in Figure 4.3. For this population, the fraction of the

mature cow population between 365 and 730 days old is 0.22 or 22% of the

total mature cow population. The fraction of the population undergoing

3 transactions is 0.32 or 32%. The total fraction of premises with mature

cow populations between 0 and 10 animals is 15%. This does not mean,

however, that 15% of the mature cow population reside on premises of this

size. A simple calculation shows that, in fact, only 1.72% of the mature

cow population is resident on premises within this size range.

The PDFs, A(x), T(x), P(x) and events probability matrix M which

characterize the preweaned calf population are depicted in Figures 4.4, 4.5

and 4.6 respectively.

65

Mature Cows Lifespan Distribution Mature Cows Transactions Distributions

365 7X10951«H8B21902555292)32863650«1543804746
Age (days)

Figure 4.1: Mature cow ages PDF (left) and transactions PDF (right).

0.35

0.3

0.25

m

0.15

0.1

0.05

°1 SOI

Mature Cows Premises Size Distribution

•

-

•

•

'

-

1
«3 SOD 1000

Mo. of Animals

Figure 4.2: Mature cow premise placement PDF.

Transactions
1
2
3
4
5

Purchased
0.900
0.800
0.700
0.600
0.500

Slaughtered
0.05
0.150
0.250
0.350
0.450

Died
0.025
0.025
0.025
0.025
0.025

Missing
0.025
0.025
0.025
0.025
0.025

Figure 4.3: Events probability matrix for mature cattle.

66

Calves Lifespan Distribufion Calves Transaction Dsitribution

0.35

0.3

0.25

0.2

0.16

0.1

0.05

30 60 90 120 150 160 210 240 1 2 3
Age (days) No. ofTransactions

Figure 4.4: Preweaned calf ages PDF (left) and transactions PDF (right).

Calves Premises Size Distribution
0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

D1WI100 500 1000
No.Ansmals

Figure 4.5: Preweaned calf premise placement PDF.

Transactions
1
2
3

Tagging
1.00
0.00
0.00

Purchased
0.00
0.90
0.90

Slaughtered
0.00
0.00
0.00

Died
0.09
0.09
0.09

Missing
0.01
0.01
0.01

Figure 4.6: Events probability matrix for preweaned calves.

PDFs and event probability matrix for feedlot cattle are depicted in

Figures 4.7, 4.8 and 4.9. It is noted that all animals, including feedlot ani-

67

mals, are born and placed onto a birth premises. However, feedlot animals

are eventually transitioned to feedlot premises unless they die or are miss

ing. Mature cows and preweaned calves can be purchased, and move among

premises.

4.3 Parallel Implementation

The events simulator is easily parallelized due to the independent na

ture of the underlying Monte Carlo process. Animal event generation can

execute concurrently and independently. The total number of animals to

be simulated is evenly distributed among processors. Each processor reads

the input file containing PDFs and events matrices. The current imple

mentation is simple with respect to parallel I/O; each processor writes the

events it is responsible for to a local output file. A more sophisticated

implementation could write to a single, global output file. A complicated

parallel I/O model is not necessary for the present effort, as local files can

simply be concatenated using the unix " cat" command. However, this can

be accomplished, for example, with MPI-I/O (a common parallel I/O API).

The simulation is parallelized as follows:

1. Each processor reads the input file containing the PDFs and events

matrices.

2. Each processor initializes an ALFG stream (see Chapter 3).

3. Processors concurrently execute the same instructions on disjoint sets

of animals and writes the output to a local, private file.

4. The local files are concatenated into a single, large file with the unix

"cat" command.

68

Parallel execution is independent and, with the exception of the ALFG

initialization, requires no communication. It is therefore expected to scale

linearly. Table 4.2 contains parallel performance and timing results of the

simulation for 2 million animals and verifies the expected performance.

Processors
1
2
4
8
16

Time (sec)
79.45
40.12
20.27
10.16
5.05

Parallel Efficiency
1.0

0.990
0.979
0.977
0.983

Table 4.2: Parallel performance results simulating 2 million animals.

4.4 Verification of Output

The output of the Monte Carlo discrete events simulator is verified by

comparing the statistics of a simulated population with the input PDFs.

Results from runs simulating a population consisting of 2 million animals

generated on 5 processors of the NERSC Bassi system are presented. In

this simulation, 800,000 mature cows, 700,000 preweaned calves and 500,000

feedlot cows are simulated. Figure 4.10 shows the age (left) and number of

transactions (right) PDFs for the simulated mature cow population dataset.

In Figure 4.11, the size of every birth premises is plotted above the premises

ID number. All results are in excellent agreement with the input PDFs for

mature cows.

Figure 4.12 shows the age (left) and number of transctions (right) PDF

for preweaned calves, and Figure 4.13 depicts the same results for feedlot

cows. Figure 4.14 shows the population of every feedlot premises plotted

above the premises ID. The population is recorded only after all feedlot

69

animals have been transitioned into the feedlots. Again, all results are in

excellent agreement with the input PDFs.

4.5 Datasets Produced

For traceback modeling, several datasets of varying size have been gen

erated. The largest of these mock datasets contains the records for 100

million animals resident on over 1.5 million premises consisting of over 200

million records. All datasets are simulated with the same input PDFs. The

datasets are summarized in Table 4.3. The files range in size from 0.50

GBytes for 2 million animals up to 24.0 GBytes for 100 million animals.

No.
Animals
2 million
10 rnillion
20 million
50 million
100 million

No.
Premises

35,433
187,706
354,323
938,532

1,771,616

No.
Events

4,290,418
21,045,631
42,905,964
105,218,330
214,516,041

Filesize
(GBytes)

0.5
2.5
5.0
12.0
24.0

Table 4.3: Summary of datasets generated for subsequent traceback mod
eling.

4.6 Conclusions

In conclusion, a parallel Monte Carlo discrete events simulator capa

ble of generating large, NAIS-compliant mock datasets for the purpose of

conducting traceability simulations has been presented. The algorithm has

been implemented in parallel on the target architecture of Chapter 2. The

output of the simulation has been extensively tested and verified for accu

racy. The parallel implementation employs the parallel ALFG in the Monte

Carlo phase due to the size of datasets generated. Parallel performance of

70

the Monte Carlo phase is observed to be excellent, the simulation is highly

scaleable and capable of generating massive datasets on the target archi

tecture. For the present effort, datasets consisting of 2, 10, 20, 50, and 100

million have been generated.

71

0.35
Feedlot Cattle Lifespan Distribution Feedlot Cattle Transactions Distributions

D.2

0.16

0.1

0.05 LJJ
DO 300 400 500 600 700 BOO

Age (days)

021-

0.15

: t
1 2 3 4 5

No. of Transactions

Figure 4.7: Feedlot cattle ages distribution (left) and transactions PDF
(right).

Feedlot Cattle Premises Size Distribution

Figure 4.8: Feedlot cattle premise size PDF.

Transactions
1
2
3
4
5
6

Purchased
0.950
0.850
0.750
0.650
0.500
0.550

Slaughtered
0.040
0.140
0.240
0.340
0.440
0.540

Died
0.009
0.009
0.009
0.009
0.009
0.009

Missing
0.001
0.001
0.001
0.001
0.001
0.001

Figure 4.9: Feedlot cattle events probability matrix.

72

Mature Cattle Age Distribution X 1{] (Mature Cattle Transactions Distribution

730 1095 1460 182S 2190 2SSS 2920 32BS 3650 4015 4380 4745

Figure 4.10: Age (left) and transaction number PDFs (right) for a simulated
mature cow population. The simulation was run on five processors.

Birth Premises Steady-State Populations

Figure 4.11: Simulated birth premises size distribution.

73

x 1Q* Prevreaned Calves Age Distribution x IQ S Preweaned Calves Transactions Distributions

30 60 SO 120 160 180 210 240 0 1 2 3

Figure 4.12: Simulated ages (left) and transactions (right) distributions for
a population of preweaned calved. Simulation was run on five processors.

74

x 1Q4 Feedfot Catt!e Age Distribution trf Feedlot Cattle Transactions Distribution

300 400 500 600 700 BOO 0 1 2 3 4 5

Figure 4.13: Simulated ages (left) and transactions (right) distributions for
a population of feedlot cows. Simulation was run on five processors.

Feedlot Premises Steady-State Populations

Figure 4.14: Simulated feedlot premises size distribution after all animals
have transitioned.

75

Chapter 5

MEASURED PERFORMANCE AND
SCALABILITY OF DATASET
TRACEBACK PROCESSING

Traceability is defined as the ability to trace (identify and measure) all

the stages that led to a particular point in a process that consists of a chain

of interrelated events. Diesease tracing can be thought of as a two step

process, traceback-hom where did the disease come? and trace forward-to

where has the disease spread? Here, "traceback" will be used generically

for both functions, back and forward. In 2008, the current U.S. food supply

contains some 108 million head of cattle [65]. Achieving rapid and accu

rate traceback on a "National" dataset clearly requires a computer. But

the questions remain; what computer resources are required? What types

of algorithms and programming models should be used? How do system

resources and computational performance scale with population size? In

order to answer these questions, the techniques of computational science

are applied in this chapter.

Due to the size of the "National" dataset produced in Chapter four,

an SMP supercomputer consisting of large, shared memory nodes, each

containing a small number of processor cores, interconnected over a high

76

bandwidth switch is a good candidate architecture onto which a high-

performance tracing algorithm may be mapped. In Chapter 2, it is ar

gued that a hybrid parallel programming model is the best way to make

efficient use of system memory on such a system. One way to implement

a hybrid parallel programming model is to use OpenMP for shared mem

ory multi-threading within a node and MPI to pass messages between and

amongst nodes. This approach has been applied to many scientific appli

cations [16, 25, 26, 28, 27, 35]. Recent scientific work uncovers the com

plexity of the many aspects that affect the overall performance of hybrid

programs [12, 33, 50, 48]. For some problems, hybrid performance can be

inferior to that of a pure MPI implementation, however, substantial perfor

mance gains have been observed for certain problems run on SMP clusters

[12, 13, 17, 23, 33]. Indeed, this has been demonstrated in the architectural

study conducted in Chapter 2.

The goal of this chapter is to devise an efficient and scalable mapping of

a disease tracing algorithm and to exercise it on the mock datasets generated

in Chapter four. Of particular interest is the parallel performance as the

problem size is scaled-up from 2 million animals through intermediate sized

datasets to 100 million animals, a "National" dataset. The objectives in

doing this are to characterize the computational requirements of the NAIS,

determine the feasibility of a 48 hour traceback, provide empirical evidence

to support or deny the claim that high-performance can be achieved with

a hybrid programming model, and to identify and address computational

performance bottlenecks associated with large-scale tracing algorithms.

In the remainder of this chapter, a tracing algorithm is outlined, a

hybrid OpenMP/MPI implementation is mapped onto the target architec-

77

ture, large-scale tracebaek simulations are conducted and the parallel per

formance is measured as the problem is scaled-up in size from 2, 10, 20,

50 and 100 million animals. Finally, performance data are presented and

analyses follow.

5.1 An Algorithmic Approach

Tracing algorithms typically require nested loops. Such algorithms

represent an important class of computationally intensive scientific applica

tions and pertinent algorithms have been well studied (see [21] for a good

overview). These algorithms usually impose various data dependencies that

result in the need for frequent data exchange among processors when par

allelized.

5.1.1 Definitions

We begin by first making some simplifying assumptions and defining

relevant quantities. The term coresident is used frequently throughout the

rest of the chapter and has a precise meaning. In particular, two animals

are coresident if they reside on the same premises at the same time. We

distinguish between three basic states of animal health; Infected - it has

been confirmed that this animal has an infectious disease. Exposed - an an

imal is exposed if it has been coresident with either an exposed or infected

animal. Unexposed - the animal is neither exposed nor infected. Expo

sures are categorized by coresidency level, this quantity characterizes how

many degrees removed an exposed animal is from the infected animal. A

coresidency level of 1 implies a direct exposure to the infected animal which

has coresidency level 0. In general, an animal with coresidency level i is

separated from the infected animal by i degrees and "transmits" i + 1 level

78

exposures to its unexposed coresidents. The smaller an animal's coresidency

level, presumeably, the higher the risk that it may itself be infected.

The movement of animals over time induces a "social network" through

which a pathogen may travel via direct or indirect contact on a common

premises. The well known small world phenomenon (also known as six-

degrees-of-separation) makes the following highly likely; most, if not all,

animals are exposed at some level, and animals that are exposed have been

coresident with several different exposed animals at different times in their

lives. The recorded exposure time is the earliest over all such exposure times

and the recorded coresidency level corresponds to the minimum level over

all exposures.

5.1.2 A Basic Tracing Algorithm

Tracing is accomplished in parallel at each level and involves recur

sive scatter-gathers of animal coresidency levels as depicted in Figure 5.1.

Suppose T(C) is a retrival function that returns the coresidents of C, then

tracing can be solved by recursion,

Ci+1+-T(Q). (5.1)

The initial state is a list containing a single infected animal, C0. After

one iteration, C\ <— T(Co); the new list contains N\ primary coresidents

removed one-degree from the infected animal. After two iterations, Ci <—

T(C\)\ the list contains N2 secondary coresidents. The process continues,

in principle, until the null set is returned. In practice, however, if we have

not yet reached the null set, then we stop after fourteen iterations.

79

Figure 5.1: A recursive scatter-gather algorithm for disease tracing. Cj
is scattered into Ni retrieval tasks. Coresidents are gathered, concatenated
and scattered again. Scatter-gather pairs enforce barrier synchronization at
the beginning and end of each iteration. In principle, the algorithm proceeds
until the null set is returned, in practice we trace through fourteen levels.

5.1.3 Organizing Efficient Data Structures

In this section, the retrieval function is described. Efficient search and

retrieval requires precomputing data structures consisting of indexed point

ers [1, 63]. In our simulation, events are sequential in time for each animal.

It is simple to transform a time sequential dataset into an animal sequential

dataset, so without loss of generality, assume the data are sequential with

respect to animal identification number, / , where / = l,...,na and na is

the number of animals tracked in the data file. Each event written to the

file is a line of data consisting of a unique animal identification number, / ,

80

Algorithm 5 The full traceability algorithm with all four computational
stages: the data is read into memory, data structures are precomputed, the
infected animal is traced through L levels, and the results are written to
disk. The vast majority of program execution time is spent on the traceback
phase which is enclosed within the nested loop.

1: •program main

2: common A, A*, R, R*, P, X, Ein, E^t

3: read (A, P, Eim E^, C0)

4: R^-sort(P)

5: build R* A*

6

7:

8

9

10

11

12

13

for (i = 0 : (L - 1)) do
N{ «- length(Ci)

for (j = 1: Nt) do

Ci+1*-T(C!)

end for
end for

write X

end program

a premises identification number, p, where p = 1,..., np and np is the total

number of premises, and a time of entry into or exit out of p.

After the data file is read into memory, the data are organized into

the following data structures; let A1 be an array of animal i.d.'s which is,

by construction, already sorted by index in ascending order. If animal 1

undergoes k events in its lifetime, then ^41:fc = 1. Let P% be an array of

premises i.d.'s. Let E\n and E^ be arrays containing arrival and departure

times respectively of the ith record, where i — 1, ...,nr and nr > na is the

total number of data records. Let X be an na x 2 array that contains the

coresidency level and exposure time for every animal. Initially, for every

animal, the coresidency level is set to " — 1" and the exposure time is set to

oo.

81

Traceback is performed by keying on the premises animals have occu

pied. Fast retrival of premises i.d. is accomplished by initially sorting the

array, P, in ascending order and storing the sorted indices in an array, R\

where PR* is monotonically increasing with i. Animal records can then be

gathered quickly using the precomputed pointer A], where j — 1,..., na+1.

Aj points to the first event address of animal j in array A. Similarly,

premises records are available for quick retrieval using the pointer P%, where

k — 1,..., np + 1. P£ points to the first record address of premises k.

Algorithm 5 details the the four distinct computational phases; input,

precompute data structures, trace, and output. Algorithm 6 details the

retrieval function and its use of the data structures for efficient search and

retrieval. Important points to note about this implementation:

1. The algorithm consists of four nested loops.

2. Exhaustive searching is avoided entirely in exchange for a single sort;

this reaps large dividends by reducing search and retrival complexity

from quadratic to linear complexity.

3. The single sort can be accomplished in 0(nr * log(nr)) time. Here,

we use a heap sort due to its predictable performance.

4. The time it takes to sort the data and precompute the pointers is negli

gible compared to the time it takes to sequentially perform traceback.

5. The array, Rl, is a permutation of the integers [1 : nr] governed by

the input PDFs in Chapter four. For all practical purposes it behaves

as a random sequence of integers.

82

6. While "virtual" premises and event addresses, A* and P*, exhibit spa

tial locality and can be accessed with unit stride, the actual addresses

they point to, in general, are distributed throughout memory.

Algorithm 6 The retrieval function T(ri) efficiently retrieves coresidents
by accessing precomputed data structures.

1: function T(n)

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

common A, A*, R, R*, P, X, Ein, E^t

count <— 0

for (i = A*n : (^n + 1) - 1)) do

for (j = R% : (R*{pi+1) - 1)) do

read Eg, E&

if {coresident) then
count *— count + 1

update XA

end if
end for

end for
return coresidents

5.2 Mapping the Algorithm

As noted by Foster [20], a "good" parallel algorithm has four fundamen

tal requirements: concurrency, scalability, locality, and modularity. A good

parallel program strikes a balance between the often conflicting goals of

maximizing concurrency, while simultaneously minimizing non-local mem

ory access.

There are two basic parallel computing paradigms: shared memory

and distributed memory. In the shared memory model, processors share a

global address space. A shared memory program is a collection of threads of

83

control which can be created dynamically mid-execution. Threads commu

nicate implicitly by writing and reading shared variables and coordinate by

synchronizing on shared variables. In the distributed memory model, the

total physical memory is distributed over a collection of processors. Each

processor executes the same algorithm under a separate address spaces and

thus global variables declared in an distributed memory program are pri

vate to each processor. Processors must explicitly communicate with each

other through message passing in order to access remote data.

SMP clusters can be thought of as an hierarchical two-level parallel

architecture since they combine features of shared and distributed memory

machines. On the target architecture, it is possible to mix OpenMP with

MPI, and a convincing case is made to do so in Chapter 2. In the following,

we first develop a pure MPI parallelization of the tracing algorithm and

subsequently extend it to a hybrid OpenMP/MPI model. Our program

design approach follows the parallel software engineering methodolgy of

Foster [20].

5.2.1 An MPI Approach

MPI is the de facto message-passing standard [42] widely used for high-

performance parallel applications and has been implemented on numerous

computer systems. In this section, a pure MPI implementation of Algorithm

5 is designed.

Partition Due to the recursive dependence, Q+i <— T(Cj), it is not possi

ble to partition Figure 5.1 horizontally across levels i. The natural partition

is depicted in Figure 5.2 where TV, < na retrieval tasks are created at each

84

Figure 5.2: Communication channels for a single iteration, Ci+i <— T(Ci).
Three distinct communication phases are defined. Phase I scatters Ci into
Ni retrieval tasks. In Phase II, retrieval tasks retrieve coresidents concur
rently by asynchronously requesting data from data tasks. In phase III,
retrieval tasks merge their lists to the master which synchronizes X and
prepares to scatter the new list at the start of the next iteration. Scatter-
gathers are barrier synchronization events.

iteration, a master task coordinates and schedules their execution, and sep

arate data tasks service retrieval requests.

Partitioning in this manner has several attractive features. It creates

a very large number of fine-grained retrieval tasks, several orders of magni

tude larger than the number of available processors, all of which can execute

concurrently. This partition exposes the maximum opportunity for concur

rent execution and allows for the most flexibility in design. Retrieval tasks

are of comparable size; each is responsible for applying T to a single suspect

85

coresident. Retrieval tasks scale ideally; the number of retrieval tasks in

crease with population size, but the amount of computation each performs

remains constant. This partition is not optimal, however, as data tasks do

not scale well with problem size. Data tasks grow in size and not in number

as population size scales-up.

Figure 5.3: Tasks are agglomerated and mapped onto two MPI tasks. Tasko
owns the master task and is thus the root for collective communication.
Both tasks also function as workers. Each MPI tasks also contains a repli
cated copy of the data structures required for efficient search and retrieval.
Communication paths that intersect the red dividing line require MPI col
lective communication for data synchronization.

Communication Figure 5.2 provides a detailed depiction of the required

communication channels and dependencies. Three distinct communication

phases are identified. Phase I scatters Cj into Ni retrieval tasks. In Phase

86

II, tasks concurrently retrieve coresidents via asynchronous data requests

serviced by data tasks. In phase III, retrieval tasks merge their lists to

the master which synchronizes X, and prepares to scatter the new list at

the start of the next iteration. Scatter-gathers are barrier synchronization

events.

Communication among retrieval tasks and data tasks is asynchronous,

unstructured and voluminous. Retrieval tasks can execute concurrently,

however speedups will not scale if data tasks must sequentially process re

quests from retrieval tasks. This is likely the case in a message passing

model which requires two-sided communication. In this case, data tasks

must continuously probe for incoming requests and are only able to process

a single request at a time. In a shared memory model, this problem is allevi

ated by one-sided communication however, as seen in Chapter 2, bandwidth

contention may degrade performance. Too many retrievals and not enough

data tasks to effectively service them is the primary concern for this com

munication model.

Agglomeration Asynchronous communication is reduced by agglomer

ating retrieval tasks and a replicated copy of the data tasks into a single

MPI task. The memory requirements of each MPI task scales as 0(na).

The head MPI task (myid = 0) plays the role of the master task and

scatters Q into chunks of size Ni/nproc to all MPI tasks (itself included).

The retrieval tasks allocated to an individual MPI task are processed se

quentially. However, the collection of MPI tasks can process their retrieval

tasks concurrently and independently of one-another. When all retrievals

have completed, the master MPI task gathers the resultant coresidents, con-

87

catenates the coresidents into C i+1, synchronizes the state X, and finally

scatters Ci+i signaling the start of the next iteration.

Data replication is a common technique intended to improve locality

with minimal software engineering cost [19, 20]. The principle disadvantage

is, of course, that the memory requirements do not scale. However agglom

erating this way has some attractive features. In particular, it maximizes

concurrency and minimizes communication by increasing locality. Also, by

replicating the data, the number of retrievals that can be processed concur

rently is increased.

Mapping Each MPI task is mapped onto one of nproc physical proces

sors. Conceptually, this mapping is equivalent to partitioning the domain

in the vertical direction as shown in Figure 5.3, and assigning each piece to

a processor. Arrows crossing the solid, red partition-line requires an MPI

collective communication. In this example, Tasko contains the master task

and therefore this task is the root for scatter/gather operations. The nec

essary modifications to Algorithm 5 are made in Algorithm 7. Note the

placement of the MPI initialize and finalize directives in the algorithm. A

single processor reads the data and precomputes the data structures, and

only after these phases are the MPI tasks forked. Once the tracing phase is

complete, the MPI tasks are dissolved and only the master task writes the

output to disk.

Analysis This mapping is clearly problematic. MPI tasks grow in size far

too fast. The memory requirments of this implementation scale as 0(nproc*

na). This mapping is neither scalable with problem size nor processor count.

The total aggregate memory available on the target architecture is about 2

88

TBytes, however, it is not globally addressable. The sequential algorithm

(Algorithm 5) is bound by the amount of memory available on a single node,

32 GBytes. The MPI mapping is bound by 1/8 of the available memory on

a node, 4 GBytes. This effectively reduces the range of problems accessible

to the MPI mapping to below that of the sequential algorithm. Despite the

fact that the mapping maximizes locality and concurrency, it is an inefficient

use of memory resources.

Algorithm 7 A pure MPI implementation of Algorithm 5.
1: program mpi main
2: common A, A*, R, R*, P, X, Ein, E^t

3: read (A, P, Ein, E^, C0)
4: R*-sort(P)

5: build R* A*

6: MPI-Init(nproc, myid)

7: for (i = 0 : (L - 1)) do
8: Ni <- length(Ci)

9: MPIScatter(Ci)
10: for (j = 1 : (Ni/nproc)) do

11: Ci+1 - T(Cj)

12: end for
13: MPIMather(Ci+i)
14: end for
15: MPI-FinalizeQ

16: write X

17: end program

5.2.2 A Hybrid Approach

In the pure MPI implementation, concurrency and locality have been

maximized at the expense of scalability. This inefficient use of memory

can be ameliorated by extending the pure MPI implementation to a hybrid

89

Algorithm 8 A hybrid OpenMP/MPI implementation of Algorithm 5.
1

2

3:

4:

5

6

7:

8

9

10
11
12

13

14
15
16:

17:

18

19

20

21

program ompi mam
common A, A*, R, R*, P, X, Ein, E^t

read {A, P, Ein, E^t, Co)
R«- sort(P)
build R* A*

MPI-Init(nnode, myid)

for (i = 0 : (L - 1)) do
JVj «- length(Ci)

MPI Scatter (d)

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE^)
!$OMP DO SCHEDULE(STATIC)
for (j = 1 : (Ni/nnode)) do

Cj+i <— T (C j)

end for
!$OMP END DO NOWAIT
!$OMP END PARALLEL

MPI Mather (d+i)

end for
MPI-FinalizeQ

write X

end program

OpenMP/MPI implementation. In particular, a single MPI task, as pre

viously defined, is mapped to a single SMP node. This reduces the total

number of MPI tasks by a factor of eight. Within a node, each MPI task be

comes a master OpenMP thread and is responsible for forking a team of re

trieval threads which concurrently and asynchronously retrieve coresidents.

Node 0 is the master node and the root for MPI scatter/gather operations.

In the hybrid model, coresidency levels are scattered and gathered to and

from SMP nodes via MPI collectives, while retrievals are processed concur

rently within a node via shared memory multi-threading. When all retrieval

90

tasks complete, control is returned to the master thread which prepares for

node synchronization. The necessary extension is found in Algorithm 8, it

only requires a single OpenMP do-loop directive judiciously placed.

This approach provides a more efficient use of memory. The memory

is again bound to the size of an SMP node, as it is for the sequential al

gorithm. However, concurrency is increased and the memory requirements

scale as 0(na * nnodes). Threads can process retrievals concurrently, how

ever this doesn't necessarily imply perfect parallel scaling within a node.

As demonstrated in Chapter 2, data access patterns with very large or very

small strides can result in shared memory contention and result in poor

parallel performance. As population size increases, so too does the number

of records and premises. With this we should expect the average access

stride to increase as well.

5.3 Numerical Results

In this section dataset processing performance results are presented.

The datasets are of the following size: 2 million animals (0.5 GBytes), 10

million (2.5 GBytes), 20 million (5 Gbytes), 50 million (12 GBytes) and 100

million (24 GBytes). For each dataset the hybrid model presented in Algo

rithm 8 is executed on a variable number of nodes. Each node employs all 8

available threads, unless otherwise stated. The algorithm is implemented in

Fortran 90 and is compiled on the target architecture with an IBM rnpxlf-r

compiler. The compiler optimization level is -04, and the -qsmp=omp flag

is set enabling OpenMP. On the target architecture the compiler produces

20 GByte large-page 64-bit executeables. The objective of the code is the

same in each numerical experiment; trace a single infected animal, chosen

91

at random, through 14 coresidency levels, map the coresidency level of each

exposed animal, and record the earliest exposure time.

The total execution times reported are the sum of the execution times

for the scatter-gather (MPI) phase with the execution time for the retrieval

phase (OpenMP). The processor times required to precompute the relevant

data structures (pointers) are not included in the timings. The expected

scaling versus the size of the data for the heap sort operation [32] is observed

and execution times for preprocessing range from 3.9 seconds for 2 million

animals up to 13 minutes for 100 million animals. The sequential sorting

performance can be improved upon by either parallelizing the heap sort

or simply employing an optimized intrinsic such as Fortran's quick sort

routine (QSort). Therefore, attention hereinafter is on parallel execution

time. Timings presented measure events occuring in between the initialize

and finalize MPI directives in Algorithm 8.

5.3.1 Observed Performance

[""• IMM[

L,
, " — r — • • • i n • — — — . . m

0 100 200 300 400 500 -lOO 0 100 200 300 400 500
Processors Processors

Figure 5.4: On the left, parallel timing results for 2 million animals, and on
the right, parallel timings for 100 million animals. Single processor time is
722 sec and 62,039 sec respectively.

700

600

„6DD

f 400
E

I 300
o
200

100

[
f D 2M

•

•

-

L .

92

MPI Synchronization Times

• 10M

Figure 5.5: Time spent performing global MPI commuincation as a function
of processor count. Execution time scales as 0(log(nnodes)).

Timings Figure 5.4 shows timing results for both 2 million and 100 mil

lion animals. Based on raw timing alone, parallel results are excellent. On a

single processor it takes 722.11 seconds, or 12 minutes, to trace an infected

animal through a population of 2 million animals. Utilizing all 512 available

processors, the time is reduced to 3.31 seconds. For 100 million animals the

same exercise takes over 17 hours on a single processor. Utilizing all 512

available processors the execution time is reduced to 361.5 seconds, or just

slightly over 6 minutes. Intermediate datasets scale linearly with population

size, parallel timings follow and timing plots are omitted.

MPI Commuincation Time The execution times presented in Figure

5.4 are obtained by summing the execution time of the retrieval phases,

93

which decrease with processor count, with the execution times of the scatter-

gather phases, which increase with processor count. Barrier synchronization

is achieved with global MPI communication routines. The communication

overhead associated with these opertations is shown in Figure 5.5. The

overhead is observed to scale as 0(log(nnodes)), which is the expected

behavior.

In Chapter 2, it is shown that large messages achieve peak bandwidth;

in this implementation, messages are na double-precision words (8-bytes)

in size. Due to the large message size, MPI communication overhead is

dominated by stream rate and not latency. The implementation exploits

the high bandwidth HPS switch by hiding the latency associated with col

lective communication with large messages. MPI communication overhead

is observed to be very small in comparison to computation times. Even for

the largest dataset, 100 million animals, the total communication overhead

on 512 processors is only slightly larger than 2 minutes. Small in compar

ison to 17 hours on a single processor, however this is significant in terms

of the total execution time of about six minutes on all 512 processors.

The parallel tracing algorithm requires global and synchronous MPI

communication. In Chapter 2 it is demonstrated that global MPI commu

nication is more expensive than local communication. The hybrid model

pays large dividends in this case by significantly reducing the number of

MPI tasks; it is much easier to synchronize 64 tasks than it is to synchro

nize 512 tasks.

Parallel Efficiency and Speedup Raw timings are by no means a com

plete characterization of performance. Figure 5.6 shows the speedup (top)

94

600

500

400

a.

» 300
Q.

DO

200

100

rv

O
o

. o
o
o

•

-

2M
10M
20M
50M
100M

1 1 T 1

y^

y

X

X ^^<^-^Z^^^^^

_ i J i i . i

100 200 300
Processors

400 500 600

Parallel Efficiency

300
Processors

o
+
V
a
o

2M
10M
20M
50M
100M

600

Figure 5.6: Speedup (top) and parallel efficiency (bottom) for the tracing
phase of the hybrid implementation.

Nodes

1
1
2
4
8
16
32
64

Procs

1
8
16
32
64
128
256
512

OpenMP
(sec)

62,028.438
13,865.177
6,870.025
3,534.795
1,738.886
899.335
467.733
238.296

MPI
(sec)

10.475
9.354

45.083
59.582
86.679
98.850
105.850
123.220

Total

62,038.913
13,874.531
6,915.108
3,594.377
1,825.565
998.185
573.583
361.516

Parallel
Efficiency

1.0
0.559
0.561
0.539
0.531
0.486
0.423
0.335

Speedup

1.0
4.471
8.972
17.260
33.983
62.151
108.160
171.607

Table 5.1: Parallel performance results for 100 million animals.

and parallel efficiency (bottom) for all sized problems. The data reveal in

sight not apparent in raw timings. Table 5.2 shows performance data for 2

million animals and Table 5.1 shows performance data for 100 million ani

mals (similar tables for all datasets are found in Appendix B). The far left

column of the tables contains the number of nodes and hence the number of

MPI tasks. The first two entries in this column are single node results, the

first, a single processor and the second, all eight processors within a node.

Since no MPI communication occurs with a single node, performance degra

dation that occurs between the first two entries of the tables is attributed

exclusively to shared memory.

The parallel efficiency is particular telling; the hybrid algorithm, when

executed on 2 million animals and utilizing all 512 processors, is observed

to achieve a 42% parallel efficiency and a speedup of 218. Performance

degradation is due almost exclusively to MPI overhead. Shared memory

performance is seen to be excellent, indeed nearly perfect at 97% parallel

efficiency and a 7.75 speedup. MPI overhead degrades efficiency at a rate

of about 0.1077% per processor.

96

Nodes

1
1
2
4
8
16
32
64

Procs

1
8
16
32
64
128
256
512

OpenMP
(sec)

721.921
92.979
46.490
23.606
11.874
5.964
3.175
1.701

MPI
(sec)

0.189
0.210
0.530
0.630
0.970
1.390
1.440
1.609

Total

722.110
93.189
47.020
24.236
12.844
7.354
4.615
3.31

Parallel
Efficiency

1.0
0.969
0.960
0.931
0.878
0.767
0.611
0.426

Speedup

1.0
7.749
15.357
29.795
56.219
98.191
156.470
218.095

Table 5.2: Parallel performance results for 2 million animals.

At larger scale, beginning with 10 million animals, the observed perfor

mance is quite different. Most noteably, in Figure 5.6, a sharp degradation

in parallel efficiency is observed between 1 and 8 processors indicating a

degradation in shared memory performance. This degradation is compen

sated for by an improvement in MPI performance as seen by the "flattening"

of the slope over the interval 8 — 512. The asymptotic MPI performance ap

pears at or slightly before 10 million animals, as successively larger datasets

also show nearly the same degradation rate of about 0.04% per processor.

For 10 million animals the increase in MPI performance offsets the

degradation in shared memory performance at around 256 processors and

corresponds to the intersection of the two parallel efficiency curves in Fig

ure 5.6. When using more than 256 processors, the algorithm processes

10 million animals more efficiently than it does 2 million animals. For 10

million animals utilizing all 512 processors, a speedup of nearly 252 is ob

served corresponding to a 50% parallel efficiency. This is the peak observed

parallel efficiency using all 512 processors. For datasets larger than 10 mil

lion animals, shared memory performance declines sharply in between 10

97

and 20 million animals, and then appears to slowly approach a steady-state

degradation in parallel efficiency of 45%.

When executed at largest scale, 100 million animals, and utilizing all

512 processors, a speedup of nearly 172 is observed corresponding to a par

allel efficiency of 33.5%. At this scale, the hybrid algorithm requires nearly

a TByte of memory and stresses the full system resources; memories, caches,

processors and network. The hybrid model requires the full utilization of

all system resources to reduce the tracing time from 17 hours down to 6

minutes. The observed speedup is analogous to the difference between walk

ing at a brisk pace of 5 miles an hour and traveling in a supersonic jet at a

speed of over mach 1.

5.3.2 Analysis

OpenMP Speedup OpenMP Parallel Efficiency

Threads Threads

Figure 5.7: Speedup (left) and parallel efficiency (right) within an SMP
node. For large datasets (> 10 million animals), large strides increase main
memory traffic. OpenMP threads compete for shared memory bandwidth
and performance degrades. Total parallel performance is bound by this
bottleneck.

Efficiency is determined by shared memory parallel performance. Within

a node, the performance decreases as the datasets grow in size. In order to

98

better understand this performance bottleneck, refer back to Figure 2.1 in

Chapter 2 which details the POWER5 microchip architecture. Each chip

consists of a single processor core and a cache hierarchy consisting of a 2

MByte on-chip L2 cache, and a 36 MByte off-chip L3 cache. The L3 cache

resides on the processor side of the fabric, thus L3 traffic does not increase

traffic on inter-chip buses.

In Figure 5.7 the effects of shared memory contention can be seen in

both the parallel speedup (left) and the parallel efficiency (right) for 10,

20 and 50 million animals. The small (2 million animal) dataset is small

enough to make efficient use of the large L3 cache; memory contention is

not observed and shared memory performance is excellent. Starting around

10 million animals, datasets become so large that cache hierarchies can no

longer be efficiently utilized resulting in more memory traffic. Shared mem

ory performance suffers as the number of threads increases since the main

memory data path is shared among all threads. These observations imply

that as the amount of memory used within a node increases, per processor

performance decreases in proportion to the number of active threads.

5.4 Conclusions

In conclusion, a hybrid OpenMP/MPI disease tracing algorithm has

been designed and mapped in a way which takes maximal advantage of

the target architecture. This programming model has been demonstrated

to facilitate efficient use of and access to system data resulting in high-

performance. Observed parallel timings are excellent, 100 million animals

can be processed in just over 6 minutes on 512 processors resulting in a

speedup of 171, corresponding to a parallel efficiency of 33.5%.

99

At small-scale, shared memory performance is nearly optimal and per

formance degradation is due primarily to MPI overhead. As the population

size increases, MPI performance improves and approaches a steady-state

performance degradation rate of about 0.04% per processor. As problem

size increases, the primary performance bottleneck is the shared memory

parallel performance which degrades precipitously at 10 million animals due

to memory bandwidth contention inherent in the L3 cache design.

High-performance is achieved and requires the full resources of the tar

get architecture. Disease tracing is a memory intensive application and an

SMP supercomputer with low-latency shared memory nodes interconnected

via a high bandwidth switch is demonstrated to be an ideal candidate ar

chitecture to solve this problem on when coupled with a hybrid parallel

programming model. The primamry performance bottleneck is observed

to be shared memory contention which increases with problem size. On a

single node, at large-scale only about four threads can be used highly effi

ciently. The performance data collected, when viewed as a whole, suggests

that parallel performance can be greatly improved by doubling the num

ber of nodes (and hence doubling the available memory) and halving the

number of processors within a node.

100

Chapter 6

CONCLUSIONS AND
RECOMMENDATIONS

6.1 Conclusions

A summary of the major conclusions of this work follows.

• A traceability simulation has been designed and implemented. A

Monte Carlo process is used to produce large, NAIS-compliant mock

datasets. The Monte Carlo simulation employs a new, fast, portable,

parallel LFG random number generator and has been implemented

on an SMP supercomputer. Animal populations ranging in size from

2 million to 100 million animals have been created for subsequent

traceability scaling studies.

• A disease tracing algorithm has been mapped onto a large-scale, shared

memory SMP supercomputer whose nodes are interconnected via a

high-bandwidth switch. Based on insights gained via empirical ma

chine benchmarking, the algorithm is mapped onto the target ar

chitecture in a way which takes maximal advantage of the memory

hierarchy. It is found that an SMP architecture with large, shared

memory nodes is well suited to the disease tracing problem when cou

pled with a hybrid parallel programming model.

101

• Dataset processing requirements depend upon the population size,

premises size distribution, and transaction number distribution. In

general, increasing the number of large-sized premises (e.g. very large

feedlot premises) increases serial execution time. The single proces

sor execution time is highly sensitive to changes in the premises size

distributions.

• The current implementation is capable of accomplishing traceback on

100 million animals in under seven minutes when utilizing all 512

available processors. The same dataset, when processed on a single

processor, takes over seventeen hours to process. This translates to an

achievable speedup of 171 corresponding to a 30% parallel efficiency.

• Sequential execution time is dominated by the traceback phase, a

nested-loop algorithm. In particular, the entire hybrid program, Al

gorithm 8, can be executed in about seventeen hours and forty-five

minutes on a single processor. The traceback phase requires about

seventeen hours. Of the remaining forty minutes, thirty minutes are

used for I/O and about ten minutes are required to precompute the

data structures required for efficient search and retrieval.

• When utilizing all 512 processors, the total execution time of the

hybrid program (Algorithm 8) is dominated by I/O time which takes

about 30 minutes for 100 million animals.

• Achieving high-performance when processing a National dataset (100

million animals) requires both a very large amount of memory and

very fast access to that memory. Thus rapid traceback necessitates a

102

large-scale supercomputing platform. In this implementation, mem

ory use scales as 0(nnodes * na) and na is bound by the amount of

available memory on a single node and not the total aggregate system

memory.

• A hybrid OpenMP/MPI parallel programing model is a highly effec

tive programming paradigm that maps well onto an SMP supercom

puter consisting of several shared memory nodes. The hybrid model

facilitates both effective use of and efficient access to memory.

• For small datasets, parallel performance degradation is due almost

exclusively to inter-node synchronization overhead (MPI), however

the degradation rate is small, about 0.1077% per processor.

• MPI performances improves for large datasets, this is due to the high-

bandwidth HPS switch. For populations larger than 10 million an

imals, performance degradation due to MPI overhead approaches a

steady rate of about 0.04% per processor.

• The opposite is true of shared memory performance which is opti

mal for small datasets. A precipitous degradation occurs for large

datasets, starting around 10 million animals. Shared memory degra

dation is the primary performance bottleneck, accounting for a 50%

decrease in overall parallel performance for large datasets. Because of

this, performance is bound by the performance within a single shared-

memory node.

• Shared memory degradation can be explained by inefficient use of

the large L3 cache. As the datasets grow in size, so too does the

103

average access stride per retrieval. Larger strides decrease the effective

size of the cache hierarchy which leads to an increase in memory

traffic. While increasing the number of OpenMP threads within a

node decreases per processor workload, when both shared-data and

access strides are large, average per processor performance decreases

in proportion to the number of active threads computing.

• There are two ways to add processors on this architecture; processor

cores can be added to computational nodes, or more computational

nodes can be added by interconnecting them to the HPS switch. The

hybrid OpenMP/MPI algorithm scales very well across nodes and

scales poorly within a node. Significantly higher performance can

be attained if the number of nodes is doubled and the number of

processors within a node is halved.

6.2 Recommendations

• For even larger problems, a parallel model which distributes the data

structures should be developed and implemented. Based on current

results, this should improve shared memory performance. Decreas

ing the amount of memory used on each node will increase perfor

mance. Partitioning the data tasks amongst many computational

nodes, however, could introduce load-balancing issues and fine-grained

inter-nodal communication not present in the current implementation.

• A cluster of large, shared memory SMP nodes interconnected via a

high-bandwidth switch is well suited to disease tracing. The current

implementation should be ported to several different additional HPC

104

architectures. A study comparing and contrasting the performance of

the current implementation on various HPC platforms with various

processors, interconnects, and cache hierarchies should be conducted.

• A hybrid OpenMP/MPI programming model is well suited to this

problem, but other parallel programming models should be explored

also. In particular, the tracing algorithm should be implemented with

a Partitioned Global Address Space (PGAS) programming model and

implemented on a large, shared memory machine. In this model,

portions of the shared memory space have an affinity for a particular

thread, thereby exploiting locality of references.

• Robustness to changes in dataset parameters should be further stud

ied. It was observed throughout the course of many simulations

that small changes to the premises size distribution can lead to large

changes in execution time.

• A study should be conducted to determine the effects of reduced par

ticipation in the NAIS. It is currently estimated that only 30% of

producers have registered their premises and herds. This simulation

could be used to empirically discover the critical mass necessary to

contain an outbreak within a given confidence level.

• In this research it is assumed that the entire dataset is centrally lo

cated in storage. Due to various political and commercial interests

this assumption may not be satisfied. The effects of distributing the

dataset over a large geographic area should be studied by quanti

fying and categorizing asynchronous communication volume among

retrieval and data tasks.

105

• When all processors are utilized, execution time is dominated by slow

I/O, in particular reading the datasets into memory. MPI-IO should

be explored as a viable way to address this overhead.

106

Bibliography

[1] A. Aho, J. Hopcroft, J. Uilman Data Structures and Algorithms,
Addison-Wesley, Reading, MA, 1983.

[2] G.S. Amalsi, A. Gottlieb Highly Parallel Computing, (2nd edition),
Benjamin/Cummings, 1994.

[3] S.L. Anderson Random Number Generators on Vector Supercomputers
and Other Advanced Architectures, SIAM Review, vol. 32(2), pp.221-
251, 1990.

[4] T. Anderson, D. Culler, D. Patterson, et al. A Case for Networks of
Workstations: NOW, IEEE Micro, 1995.

[5] M. Bane, R. Keller, M. Pettipher, I. Smith A Comparision of MPI
and OpenMP Implementations of a Finite Element Analysis Code, In
Proceedings of Cray User Group Summit (CUG 2000), May 22-26,
2000.

[6] D.J. Becker, Thomas Sterling, Daniel Savarese, John E. Dorband,
Udaya A. Ranawak, Charles V. Packer, BEOWULF: A Parallel Work
station for Scientific Computing, Proceedings of International Confer
ence on Parallel Processing, 1995.

[7] R.P. Brent Uniform Random Number Generators for Supercomputers,
Proceedings Fifth Australian Supercomputer Conference, SASC Orga
nizing Committee, 1992, pp. 95-104.

[8] R.P. Brent On the Periods of Generalized Fibonacci Recurrences, in
the Press, Math. Comput. (1994).

[9] P.J. Burns, J.S. Ladd Implementation of a Fast, Portable, Parallel
Random Number Generator, In preparation 2008.

[10] P.J. Burns, D.V. Pryor Surface Radiative Transport at Large-Scale via
Monte Carlo, Annual Review of Heat Transfer, 9, C.L. Tien, ed., pp. 79-
158, Begell House, New York, 1998.

107

[11] I.J. Bush, C.J. Noble, R.J. Allan Mixed OpenMP and MPI for Par
allel Fortran Applications, In European Workshop on OpenMP 2000,
Edinburgh, UK, 2000.

[12] F. Cappello, D. Etiemble MPI versus MPI+OpenMP on IBM SP for
the NAS Benchmarks In Proceedings of the 2000 ACM/IEEE Confer
ence on Supercomputing, Dallas, TX, 2000. IEEE Computer Society
Press.

[13] F. Cappello, O. Richard, D. Etiemble Investigating the performance of
two programming models for clusters of SMP PCs, In IEEE HPCA6,
2000.

[14] S.A. Cuccaro, M. Mascagni, D.V. Pryor Techniques for Testing the
Quality of Parallel Pseudorandom Number Generators, Proc. of the 7th
SIAM Conf. on Parallel Processing for Scientific Computing, SIAM,
1995.

[15] J.L. Devore Probablity and Statistics for Engineering and the Sciences
fourth edition, ITP Publishing, 1995.

[16] S. Dong, G.E. Karniadakis Dual-Level Parallelism for Deterministic
and Stochastic GFD Problems, In Proceedings of the 2002 ACM/IEEE
Conference on Supercomputing, Baltimore, MD, USA, 2002. IEEE
Computer Society Press.

[17] N. Drosinos, N. Koziris Performance Comparison of Pure MPI vs Hy
brid MPI-OpenMP Parallelization Models on SMP Clusters, IPDPS,
p. 15a, 18th International Parallel and Distributed Processing Sympo
sium (IPDPS'04) - Papers, 2004.

[18] A.M. Ferrenberg, D.P. Landau, Y.J. Wong Monte Carlo simulations:
hidden errors from "good" random number generators, Phys. Rev. Let.
69 (1992) 3382-3384.

[19] M. Feyereisen, R. Kendall An efficient implementation of the Direct-
SCF algorithm on parallel computer architectures, Theoretica Chimica
Acta, 84:289-299, 1993.

[20] I. Foster Designing and Building Parallel Programs Concepts and Tools
for Parallel Software Engineering, Addison-Wesley Publishing, 1995.

[21] S. Goedecker, A. Hoisie Performance Optimization of Numerically In
tensive Codes (Software, Environments and Tools), SIAM Publishing,
2001.

108

[22] P. Grassberger On Correlations in 'good' random number generators,
Phys. Rev. Lett. A 181 (1) (1993) 43-46.

[23] C. Grassel Blended programming: MPI and OpenMP, T.J. Watson
Research Center presentations, IBM 1999.

[24] J. Handy The Cache Memory Book, Morgan Kaufmann Publishers,
ISBN 0123229804, 1997.

[25] Y. He, C.H.Q. Ding MPI and OpenMP Paradigms on Clusters of SMP
Architecture: The Vacancy Tracking Algorithm for Multi-Dimensional
Array Transposition, In Proceedings of the 2002 ACM/IEEE Confer
ence on Supercomputing, Baltimore, MD, USA, 2002. IEEE Computer
Society Press.

[26] D.S. Henty Performance of Hybrid Message-Passing and Shared-
Memory Parallelism for Discrete Element Modeling, In Proceedings of
the 2000 ACM/IEEE Conference on Supercomputing, page 10,Dallas,
Texas, 2000.

[27] P. Lanucara, S. Rovida Conjugate-gradients algorithms: An MPI-
OpenMP implementation on distributed shared memory systems, In
First European Workshop on OpenMP, pages 76-78, Lund, Sweden,
1999.

[28] R.D. Loft, S.J. Thomas, J.M. Dennis Terascale Spectral Element Dy
namical Core for Atmospheric General Circulation Models, In Proceed
ing of the 2001 ACM/IEEE Conference on Supercomputing, pages 18-
18, Denver, CO, 2001.

[29] M.H. Kalos, P.A. Whitlock Monte Carlo Methods Volume I: Basics,
Wiley-Interscience Publication, 1986.

[30] D. Klepacki Mixed-mode programming, T.J. Watson Research Center
Presentations, IBM 1999.

[31] D.E. Knuth The Art of Computer Programming, Vol.2 Seminumerical
Algorithms, 2nd ed., Addison-Wesley, Reading, Massachusetts (1981).

[32] D.E. Knuth The Art of Computer Programming, Vol.3 Sorting and
Searching, 2nd ed., Addison-Wesley, Reading, Massachusetts, 1981.

[33] G. Krawezik, F. Cappello Performance Comparisons of MPI and Three
OpenMP Programming Styles on Shared Memory Multi-Processors, IN
ACM SPAA 2003, Sna Diego, CA, 2003.

109

[34] V. Kumar, A. Grama, A. Gupta, G. Karypis Introduction to Parallel
Computing Design and Analysis of Algorithms, Benjamin/Cummings
Publishing, 1994.

[35] Parallel Performance Study of Monte Carlo Photon Transport Code
on Shared, Distributed, and Distributed-Shared-MemoryArchitectures,
Proceedings of the 14th International Parallel & Distributed Processing
Symposium (IPDPS'OO), P. 93-, 2000.

[36] J.D. Maltby, B.T. Komblum MONT3E: A Monte Carlo Electron Heat
Transfer Code, Proceedings of the 1990 Conference on Supercomput-
ing, 1990.

[37] J.D. Maltby Analysis of Electron Heat Transfer via Monte Carlo Simu
lation, PhD Dissertation, Department of Mechanical Engineering, Col
orado State University, 1990.

[38] G. Marsaglia A Current View of Random Number Generators, in Com
puter Science and Statistics: Proceedings of the XVIth Symposium on
the Interface, 1985, pp. 3-10.

[39] M. Mascagni, S.A. Cuccaro, D.V. Pryor, M.L. Robinson A Fast, High
Quality, and Reproducible Parallel Lagged-Fibonacci Pseudorandom
Number Generator, Journal of Computational Physics, 1994.

[40] M. Mascagni Some Methods of Parallel Pseudorandom Number Gener
ation,^ Proceedings of the IMA Workshop on Algorithms for Parallel
Processing, Springer-Verlag, 1997.

[41] J.M. May, B.R. Supinski Experiences with mixed MPI and threaded
programming models, Center for Applied Scientific Computing, pre
sentation at the IBM Advanced Computing Technology Center SP
Scientific Applications and Optimizations Meeting at the San Diego
Supercomputing Center, 1999.

[42] MPI-Forum, MPI Forum, 1999. http://www.mpi-forum.org.

[43] NERSC Web documentation NERSC, LBNL,
http://www.nersc.gov/nusers/systems/bassi/more.php

[44] NIDT 2003 United States Animal Identification Plan,
version 4.1. National Identification Development Team.
http://usaip.info/USAIP4. l.pdf.

[45] OpenMP The OpenMP ARB, http://www.openmp.org/

110

http://www.mpi-forum.org
http://www.nersc.gov/nusers/systems/bassi/more.php
http://usaip.info/USAIP4
http://www.openmp.org/

[46] W.F. Press, B.P. Flannery, S.A. Tuekolsky and W.T. Vetterling Nu
merical Recipes in FORTRAN, Cambridge University Press, pp. 191-
225, 1988.

[47] B.V. Protopopov, A. Skjellum Shared-memory communication ap
proaches for an MPI message-passing library, Coneurency: Practices
and Experiences, 12:799-820, 2000.

[48] B.V. Protopopov, A. Skjellum A Multi-Threaded Message Passing In
terface (MPI) Architecture: Performance and Program Issues, JPDC,
2001.

[49] D.V. Pryor, S.A. Cuccaro, M. Mascagni, M.L. Robinson Implementa
tion and Usage of a Portable and Reproducible Parallel Pseudorandom
Number Generator, 1994.

[50] R. Rabenseifner, G. Wellein Communication and Optimization Aspects
of Parallel Programming Models on Hybrid Architectures, International
Journal on High Performance Computing Applications, 17(l):49-62,
2003.

[51] M. Resch, B. Sander A Comparision of OpenMP and MPI for the Par
allel CFD Test Case, In Proceedings of the first European Workshop
on OpenMP, Lund, Sweden, p. 71-75, 1999.

[52] J. Scanga, T. Hoffman, J. Picanso, S.V. Rajopadhye, D.G. Kim, A.
Gupta, R. Forbes, J.S. Ladd, P.J. Burns Development of Compu
tational Models for the Purpose of Conducting Individual Livestock
and Premise Traceback Investigations Utilizing NAIS Compliant Data,
Journal of Animal Science, 2006.

[53] R. Sedgewick Algorithms in C, Addision-Wesley, Reading, MA, 1990.

[54] A.E. Segarra and J.M. Rawson Mad Cow Disease: Agricultural Issues,
U.S. Department of State, http://fpc.state.gov/fpc/6121.htm

[55] H. Shan, J.P. Singh, L. Oliker, R. Biswas Message passing and shared
address space prallelism on an SMP cluster, Parallel Computing, sub
mitted.

[56] K. Shen, H.Tang, and T. Yang Adaptive Two-Level Thread Manage
ment for Fast Execution on Shared Memory Machine, In Proceed
ings of ACM/IEEE Supercomputing '99, New York, November 1999.
ACM/IEEE.

I l l

http://fpc.state.gov/fpc/6121.htm

B. Sinharoy, R.N. Kalla, J.M. Tendler, R.J. Eickenmeyer, J.B. Joyner
POWER5 System Microarchitecture, IBM Journal of Research and De
velopment, Vol. 49, NO. 45, July/September 2005.

L.A. Smith Mixed Mode MPI/OpenMP Pro
gramming, Technical Report (UKHEC 2000),
http://www.ukhec.ac.uk/pubhcations/tw/mixed.pdf,

L.A. Smith, P. Kent Development and performance of a mixed
OpenMP/MPI quantum Monte Carlo code, Concurrency: Practice and
Experience, 12:1121-1129, 2000.

A. Srinivasan, M. Mascagni, D. Ceperley Testing Parallel Random
Number Generators, Parallel Computing29, 2003, pp. 69-94 Physica
D, 61:260, 1992.

H. Tang, K. Shen, T. Yang Program Transformation and Runtime Sup
port for Threaded MP1 Execution on Shared Memory Machines, ACM
Transactions on Programming Languages and Systems, 2000.

H. Tang, T. Yang Optimizing Threaded MPI Execution on SMP Clus
ters, ICS, P. 381-392, 2001.

A. Tucker Applied Combinatorics,John Wiley and Sons, 1995.

USDA. 2006b. National Agricultural Statistical Service-Quick
Stats, USDA, National Agricultural Statistical Services.
http://www.nass.usda.gov/index.asp.

USDA. 2008 National Agricultural Statistical Ser
vice, USDA, National Agricultural Statistical Services,
http://usda.mannlib.cornell.edu/usda/current/Catt/Catt-07-25-
2008.pdf

USDA. 2007 United States Department of Agriculture Fact Sheet,
USDA, http://animalid.aphis.usda.gov/

USDA. December 2007 United States Department of Agriculture Fact
Sheet, USDA, http://animalid.aphis.usda.gov/

USDA-APHIS, 2008 USDA-APHIS, USDA-APHIS,
http://animahd.aphis.usda.gOv/nais/why/bse.shtml#bse

R. Van der Pass Memory Hierarchy in Cache Based Systems, Sun Blue
prints, 2002.

112

http://www.ukhec.ac.uk/pubhcations/tw/mixed.pdf
http://www.nass.usda.gov/index.asp
http://usda.mannlib.cornell.edu/usda/current/Catt/Catt-07-25-
http://animalid.aphis.usda.gov/
http://animalid.aphis.usda.gov/
http://animahd.aphis.usda.gOv/nais/why/bse.shtml%23bse

[70] IBM XL Fortran Enterprise Edition for AIX - User's Guide, Version
9.1, http://www.nersc.gov/vendor_docs/ibm/pdf/xlf_9.1 -0.2_ug.pdf

[71] C.N. Zeeb Performance and Accuracy Enhancements of Radiative Heat
Transfer Modeling via Monte Carlo, PhD Dissertation, Department of
Mechanical Engineering, Colorado State University, 2002.

113

http://www.nersc.gov/vendor_docs/ibm/pdf/xlf_9

Appendix A

STATISTICAL TESTING PROCEDURES

In this section a rigorous staticstical framework is built, within which,

empirical tests on the performance and quality of the parallel ALFG are

performed. The theory of statistics provides quantitative measures for ran

domness. Since an RNG is supposed to produce a sequence of independent,

identically distributed (i.i.d.) random variables X\, X2, Xs,..., any statis

tic that is computed with elements of the sequence may serve as a test,

if its distribution is known. If the distribution of the statistic, computed

using an RNG sequence, is sufficiently close to the expected distribution

which assumes a sequence of i.i.d. random variables, then the RNG is said

to be good. If it is far from the expected distribution, then the RNG is

considered defective. In this section, statistical metrics are defined and a

precise definition of close is provided. Once well defined, these metrics can

be used to assess both the quality of the individual ALFG streams (test

ing for intra-stream correlation) as well as the effectiveness of the proposed

parallel initialization (testing for inter-stream correlation).

A.l The Kolmogorav-Smirnov Test

A general way to specify the distribution of a random variable X, be

it discrete or continuous, is in terms of the distribution function F(x)

F(x) = p(x < X) (A.l)

114

where p(E) is the probability of event E.

If n independent observations of the random quantity X are made,

thereby obtaining the values Xi, X2, ..., Xn. Then the empirical distribu

tion function (EDF) Fn(x) is defined as

_, , . number of Xx,..., Xn that are < x .. rt. •Fn(x) = . (A.2)
n

If the observed data are actually distributed according to F(x). Then as

n —> 00, Fn(x) converges, in measure, to F(x)>

The Kolmogorov-Smirnov test (KS test) can be applied when F(x) is

continuous [31]. It is based on the difference between F(x) and Fn(x). A

bad source of random numbers will produce EDFs which do not approxi

mate F(x) sufficiently well.

To make a KS test, the following statistics are formed:

K+ = y/n max(Fn(x) — F(x)), —00 < x < 00; (A.3)

K~ = y/n max(F(x) — Fn(x)), —00 < x < 00. (A.4)

These values are distributed according to the Kolmogorov distribution, and

may be obtained in a percentile lookup table, such as the one provided in

[31], to determine if the values are significantly high or low.

A distinct advantage to the KS test is that it provides an exact dis

tribution for any number of observations, n. A KS test may be employed

reliably, even when the number of observations is small. This is in con

trast to the x2 test, which will be introduced in the next section, which

provides an asymptotic distribution that is only valid for a large number of

observations.

115

A.2 The x2 Test

The x2 test (chi-square test) is one of the best known and most basic

methods to compare two discrete probability distribution functions. In

general, suppose that every observation of the random variable falls into

one of k possible categories. Consider n independent observations of the

random quantity X (independent means that the outcome of one observation

has absolutely no effect on the outcome of any of the others). Let ps be

the probability that some observation falls into category s. Let Ys be the

observed number of trials that fall into category s. The expected number

of trials which fall into category s is psn. With this, the chi-square statistic

is defined as

v^(Ys-psnf
ti Psn

This statistic is distributed according to the chi-square distribution with

v = k — 1 degrees of freedom. With distribution function

'-«-W <">
where

j(a,x)= I t^e^dt (A.7)
Jo

and
/•oo

T(a)= / e-xe*dt. (A.8)
./o

This test is applied whenever observations fall into a discrete set of

categories. In other words, a chi-square test can be employed when the

random variable in question is distributed according to a discrete probability

distribution (as is the case when flipping coins or rolling die.) Discrete

probability distributions give rise to discontinuous distributions in which

116

case the KS test is not applicable. As previously mentioned, the distribution

in A.6 is an asymptotic result which is only valid for a large number of

observations.

A more effective strategy for testing a random number sequence is to

use the chi-square test in conjunction with the KS test [31]. To illustrate

how this might be done, suppose 10 independent x2 tests have been made on

different parts of a random sequence, so that values V\, V2,...,Vio have been

obtained. It does not suffice to simply count the number of suspiciously

large or small values. A better procedure is to compute the empirical dis

tribution Fio(x), perform a KS test, and obtain the statistics KIQ, K{0.

This gives a clearer picture of the results of the x2 test. It may be the

case that individually, each value passes the chi-square test, yet collectively

these observations are not at all correct (see [31] for an example of this).

117

Appendix B

PARALLEL PERFORMANCE RESULTS

B.l Traceback Timing Results

Nodes

1
1
2
4
8
16
32
64

Procs

1
8
16
32
64
128
256
512

OpenMP
(sec)

6,180.810
950.776
476.814
238.572
120.604
61.125
31.097
13.832

MPI
(sec)

1.030
1.020
7.970
6.480
6.579
6.430
7.690
10.710

Total

6,181.84
951.796
484.784
245.052
127.183
67.555
38.787
24.542

Parallel
Efficiency

1.0
0.812
0.797
0.788
0.756
0.715
0.623
0.492

Speedup

1.0
6.495
12.752
25.227
48.606
91.509
159.376
251.884

Table B.l: Parallel performance results for 10 million animals.

Nodes

i—
i

1
2
4
8
16
32
64

Procs

i—
i

8
16
32
64
128
256
512

OpenMP
(sec)

13,398.617
2,683.292
1,349.73
675.448
339.075
172.840
88.474
45.729

MPI
(sec)

1.960
1.940
4.280
7.410
12.910
13.060
15.140
17.690

Total

13,400.577
2,685.232
1,354.010
682.858
351.985
185.900
103.614
63.419

Parallel
Efficiency

1.0
0.624
0.625
0.613
0.595
0.563
0.505
0.412

Speedup

1.0
4.990
10.000
19.624
38.071
72.084
129.331
211.301

Table B.2: Parallel performance results for 20 million animals.

118

Nodes

1
1
2
4
8
16
32
64

Proes

1
8
16
32
64
128
256
512

OpenMP
(sec)

23,493.641
4,618.628
2,229.586
1,181.014
581.948
302.505
148.936
76.614

MPI
(sec)

4.520
4.468
10.357
16.211
30.611
28.630
38.650
40.770

Total

23,498.161
4,623.096
2,239.943
1,197.225
612.559
331.135
187.586
117.384

Parallel
Efficiency

1.0
0.635
0.656
0.613
0.599
0.554
0.489
0.391

Speedup

1.0
5.083
10.491
19.627
38.361
70.962
125.266
200.182

Table B.3: Parallel performance results for 50 million animals.

In this section, performance data for all datasets processed in Chapter

5 is presented. In particular, parallel timing and performance results for

10, 20, and 50 million animals are tabulated. The total parallel execution

time is the sum of the OpenMP retrieval phase with the MPI scatter-gather

phase. Both parallel efficiency and speedup are measured.

B.2 Shared-Memory Performance

In this section, shared-memory parallel performance results are pre

sented. Only datasets of size 10, 20, and 50 million animals are considered.

In these runs, the hybrid code is executed on a single SMP node and the

number of threads is increased from one to eight. Since no MPI communi

cation occurs parallel results measure only shared-memory performance.

The data contained in Tables B.4, B.5, B.6 is plotted in Figure 5.7 in

Chapter 5. The data shows that shared-memory performance contributes

to an overall 19% decreases in parallel efficiency. Shared memory degrada

tion is negligible for 2 million animals and thus the results are not included

herein. For both 20 million and 50 million animals, shared-memory degra-

119

dation contributes to an overall 36% decrease in parallel efficiency and is

the dominant performance bottleneck.

Threads

1
2
3
4
5
6
7
8

Time
(sec)

6,180.810
3,088.763
2,388.315
1,673.392
1,373.035
1,210.621
1,047.543
950.776

Parallel
Efficiency

1.0
1.0

0.863
0.923
0.900
0.851
0.843
0.813

Speedup

1.0
2.0

2.588
3.694
4.502
5.106
5.900
6.501

Table B.4: Shared-memory parallel performance results for 10 million ani
mals.

Threads

1
2
3
4
5
6
7
8

Time
(sec)

14,235.472
7,730.157
5,195.155
4,572.177
3,738.290
3,293.327
2,936.956
2,751.069

Parallel
Efficiency

1.0
0.921
0.913
0.778
0.762
0.720
0.692
0.647

Speedup

1.0
1.841
2.740
3.113
3.808
4.322
4.847
5.175

Table B.5: Shared-memory parallel performance results for 20 million ani
mals.

120

Threads

1
2
3
4
5
6
7
8

Time
(sec)

23,493.641
12,491.451
8,954.275
7,051.483
5,789.175
5,080.830
4,667.434
4,618.628

Parallel
Efficiency

1.0
0.940
0.875
0.833
0.812
0.771
0.719
0.636

Speedup

1.0
1.881
2.624
3.332
4.058
4.624
5.033
5.087

Table B.6: Shared-memory parallel performance results for 50 million ani
mals.

121

