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ABSTRACT OF DISSERTATION 

LARGE-SCALE COMPUTATIONAL ANALYSIS OF NATIONAL 

ANIMAL IDENTIFICATION SYSTEM MOCK DATA, INCLUDING 

TRACEBACK AND TRACE FORWARD 

Cattle production is the single largest segment of U.S. agriculture. An­

imal disease, whether a single incident or a full-scale outbreak, can result 

in significantly restricted access to both foreign and domestic markets. Re­

gaining consumer confidence is difficult. If a disease cannot be traced back 

to a common source, then only time can tell whether or not eradication 

and containment efforts have been successful. Simply "waiting it out" can 

result in long-term economic losses on a National scale especially when dis­

eases which are prone to epizootic outbreaks or those with long incubation 

periods are involved. 

The United States Department of Agriculture (USDA) maintains that 

traceability is the key to protecting animal health and marketability. The 

National Animal Identification System (NAIS) is a voluntary disease trace-

ability framework released by the USDA. Many of the efforts surrounding 

the development of the NAIS have encompased the identification of live­

stock production and handling premises as well as individuals or herds of 

animals, whereas little effort has been directed toward the ultimate goal of 

animal traceback in 48 hours. 
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In this dissertation, computational science is applied to the problem 

of animal disease traceability. In particular, a computational model is 

developed for the purpose of conducting large-scale traceability simula­

tions. The model consists of two components; the first being a parallel, 

Monte Carlo discrete events simulator capable of generating large, NAIS-

compliant, mock datasets representative of the processing requirements of 

actual NAIS data. The second component is a large-scale, parallel dis­

ease tracing algorithm that is mapped onto an SMP supercomputer where 

high-performance is achieved by adopting a hybrid parallel programming 

model that mixes a shared memory multi-threading model (OpenMP) with 

a distributed memory message passing model (MPI). 

The objectives of this dissertation are to characterize the computa­

tional requirements of the NAIS, identify computational platforms and pro­

gramming paradigms well suited to this effort, and to identify and address 

computational performance bottlenecks associated with large-scale tracing 

algorithms. 

Joshua Ladd 
Department of Mathematics 
Colorado State University 
Fort Collins, Colorado 80523 
Fall 2008 
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Chapter 1 

INTRODUCTION 

1.1 Domestic Impact of Animal Disease 

Cattle production is the single largest segment of U.S. agriculture. 

With a herd of over 100 million animals [68], and growing, the value of 

beef and dairy surpassed $31 billion ($19.4 and $12.3 billion, respectively), 

or about 40% of total U.S. agricultural production in 1999 [67]. At the 

consumer retail level, beef sales have started to rebound from a steady 20-

year decline that has seen per capita beef consumption cut in half from its 

1980 levels. In 1999, consumer sales posted a record $52 billion, with mean 

yearly consumption of 69.6 pounds per person [67]. Exports also represent a 

sizable portion of U.S. agricultural output. For example, the United States 

sold $2.7 billion in beef to trading partners in 1999. Four countries currently 

buy 95% of U.S. beef exports. Japan is the principal buyer ($1.4 billion), 

followed by Mexico ($454 million), Korea ($331 million), and Canada ($273 

million) [67]. 

Access to foreign and domestic markets can be severly restricted or 

prohibited altogether in the event of an animal disease outbreak. Such was 

the case in 2003 when the first reported instance of Bovine Spongeform En­

cephalopathy (BSE) (also known as mad cow disease) in the United States 

was announced. BSE is not common in the U.S. and feeding regulations 
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in this country make it unlikely that an outbreak in the U.S. would be 

widespread, however the following case study illustrates how a high pro­

file disease can have a serious impact on the confidence of consumers and 

trading partners. 

BSE is a chronic, degenerative disease affecting the central nervous 

system of cattle. BSE was discovered in Britain in 1986 and has remained a 

worldwide concern to the present day. BSE spreads among cattle primarily 

through feed containing meat and bone meal made from rendered ruminant 

products of infected animals [68]. 

The first diagnosis of BSE in the U.S. occurred on December 23, 2003. 

A second case was discovered in 2005 in a twelve-year old cow in Texas. 

A third case was discovered in 2006 in a ten-year old cow in Alabama. A 

large number of cows associated with the index herd were untraceable in 

each investigation. Each BSE case required the investigation of at least 

eight different herds and the three investigations took more than 155 days 

to complete [68, 67]. 

The short-term economic impact was devastating. U.S. beef exports 

dropped from a record 2.5 billion pounds in 2003 to 461 million pounds in 

2004, a fall of over 80%. The outbreak cost the beef industry over $2 billion 

in 2004 alone [68, 67]. 

In the U.S., a large-scale BSE outbreak is unlikely, however animal dis­

eases prone to epizootic outbreaks such as foot-and-mouth disease (FMD), 

bovine tuberculosis and exotic Newcastle disease (a viral infection of birds) 

remain clear and present dangers to U.S. agriculture. Indeed, the financial 

impact of recent animal disease investigations highlight this fact [67]. 
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Bovine Tuberculosis 

• Since 2002, detections in Arizona, California, Michigan, Minnesota, 

New Mexico and Texas have required the destruction of more than 

25,000 cattle. A new detection in June in New Mexico will add to 

this total. 

• USDA has spent approximately $130 million dollars on owner idem-

nification and control activities. 

• Producers are financially affected by strict movement controls applied 

after new detections. 

• Since 2004, USDA has tested 787,000 animals in response to TB out­

breaks. 

Exotic Newcastle Disease (2002) 

• Confirmed in California and quickly spread to the neighboring states 

of Arizona, Nevada, and Texas. 

• Largest animal disease outbreak in the United States in 30 years. It 

took 10 months to eradicate the disease at a cost of $180 million. 

• Poultry producers, both commercial and backyard flock owners, lost 

4 million birds during extensive depopulation activities. 

Bovine Spongeform Encephalopathy (2003) 

• USDA spent $5 million on its epidemiology investigation, depopula­

tion, and initial response. 
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• The United States lost 80 percent of its foreign beef trade. 

• As part of the effort to regain access to foreign markets, the USDA 

spent approximately $189 million on the enhanced BSE surveillance 

program. 

1.2 Impacts Elsewhere 

A comparison with the European livestock industry experience shows 

one possible scenario for what is at stake. In the EU, the beef industry 

suffered two major losses from their BSE crisis: (1) a 20-30% decline in do­

mestic beef sales due to negative long-term effects on consumers' confidence, 

and (2) losses in international trade in cattle, beef, and feed. 

Since the BSE epidemic began in Great Britain in 1986, Europe's cattle 

and meat industries have undergone a significant increase in regulation. 

Animal protein feed bans, quarantines, surveillance, increased testing, herd 

renewal, and selective cull measures are now in effect in many EU nations. 

In Great Britain, where the BSE epidemic has reached 179,000 confirmed 

cases in cattle since 1986, these measures appear to be resulting in a steady 

decrease in the number of infected cattle from the 1992 peak. One program, 

put in action following the 1996 U.K. beef and cattle ban by the EU, is the 

so called "Over Thirty Month Slaughter" scheme (OTMS). Under this plan, 

which bans the sale of meat from cattle aged over 30 months old, the U.K. 

has destroyed over 4.5 million animals, at a cost of $4 billion. Similar EU 

programs (which include feed bans, mandatory animal testing and tracing, 

and OTMS) could go into effect in Germany, Italy and Spain. Germany, 

for instance, expects to destroy about 400,000 cattle under a "purchase for 

destruction" program [54]. 
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In the United States, after the first BSE oubreak and subsequent eco­

nomic devastation, it is now widely believed that the implementation of 

a National animal traceability system that leverages current and evolving 

information technology is vital to safegaurding the U.S. food supply, pro­

tecting human health, and mitigating economic risk [54]. 

1.3 Mitigating Risk 

The United States Department of Agriculture maintains that traceabil­

ity is the key to protecting animal health and marketability [67]. In order to 

respond quickly and effectively to an animal disease event (whether it is a 

single incident or a full-scale outbreak), animal health officials need to know 

which animals are involved, where they are located, and what other animals 

might have been exposed. The sooner reliable data is available, affected an­

imals can be located, appropriate response measures can be established, 

and disease spread can be halted. 

Retrieving animal locations and movement data within 48-hours is op­

timal for efficient, effective disease containment [67]. As evidenced from 

case studies, current U.S. animal disease traceablity infrastructure falls well 

short of this objective . The U.S. Department of Agriculture (USDA) is fo­

cusing on opportunities to bolster disease tracing capabilities by increasing 

the quantity and quality of animal identification data and the efficient use 

of evolving technology solutions. 

1.4 Leveraging Technology to Enhance Traceability 

In April 2006 the USDA-APHIS released a voluntary animal identifi­

cation and traceability framework collectively known as the National Ani­

mal Identification System (NAIS). To date, much of the effort surrounding 
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the development of the NAIS has encompassed the identification of live­

stock production and handling premises, the identification of individuals or 

heards of animals, and harmonizing government and industry animal iden­

tification programs by standardizing data elements of disease programs to 

ensure compatability. However, little effort has been directed towards the 

accomplishment of the ultimate goal of the program which is an animal 

traceback in 48 hours [52]. Typically, epidemiological investigations are 

conducted through manual record retrieval and review. While increasing 

the quality and quantity of data clearly increases traceability, it can also 

present a significant barrier to the investigation as data acquisition efforts 

have far outstripped data analysis efforts. 

This dissertation will apply computational science to the problem of 

animal disease traceback. For a given volume of movement data, it is not 

known what the computational processing requirements are for achieving 

rapid traceback. In this dissertation, we develop a computational model of 

animal disease traceability for the purpose of conducting large-scale trace-

ability simulations. The goal of this approach is to characterize the com­

putational requirements of NAIS dataset processing. 

1.5 Overview of Dissertation 

In Chapter two, a computational architecture is presented. It is ar­

gued, via empirical benchmarking, that the platform is a good target to 

map a high-performance disease tracing algorithm onto. In Chapter three, 

a new, fast, portable parallel random number generator is implemented and 

the parallel performance and accuracy is assessed. The results of Chapter 

three are employed in the implementation of a parallel Monte Carlo discrete 
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events simulator which is described in Chapter four. Chapter four details a 

Monte Carlo process that models large animal populations for the purpose 

of conduction large-scale traceability simulations. The mock datasets gen­

erated consist of NAIS-compliant data and range in size from 2 million up 

to 100 million animals, representative of a "National" dataset. In Chapter 

five, a large-scale, parallel disease tracing algorithm is mapped onto the 

target architecture. High-performance is achieved by adopting a hybrid 

parallel programming model that mixes OpenMP with MPI which facili­

tates efficient use of and access to system memory. The datasets created 

in Chapter four are processed and computational performance is measured 

as problem size is scaled-up to that of the "National" dataset. Finally, in 

Chapter six, a summary of the major conclusions of this work are presented 

along with recommendations for further work. 
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Chapter 2 

MEASURED PERFORMANCE OF THE 
TARGET ARCHITECTURE 

A major distinction between good sequential algorithm design and 

good parallel algorithm design is that the latter is typically much more in­

timately dependent upon the target architecture. Since parallel algorithms 

are generally designed to optimize communication overhead, platform de­

pendent variables, e.g. interprocessor stream rates, induce a topology on 

an algorithm's performance space. In particular, an algorithm's scalability 

and efficiency are complicated functions of the architecture onto which the 

algorithm is mapped, requiring particular knowledge of the system charac­

teristics. 

Indeed, hardware characteristics that can affect an algorithm's parallel 

performance include; processor frequency and memory performance, hetero­

geneous memory paths, interprocessor communication latencies and stream 

rates, shared memory performance in a multi-core environment, and, at 

times, I/O performance. Making optimal use of a large-scale architecture 

requires quantitative insights gained through empirical benchmarking and 

performance profiling. The measured performance can be used to inform 

how best to map an algorithm to a specific target architecture. In the re­

mainder of this chapter, the performance space of the target architecture 
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is mapped by measuring processor and memory performance, shared mem­

ory performance, distributed memory performance, and I/O performance 

as both problem size and the number of processors are scaled-up. 

2.1 The Bassi System 

The research presented in this dissertation used resources of the Na­

tional Energy Research Scientific Computing Center (NERSC), which is 

supported by the Office of Science of the U.S. Department of Energy un­

der Contract No. DE-AC02-05CH11231. In particular, this research was 

awarded multiple allocations at NERSC that provided access to state-of-

the-art supercomputing architectures. 

The target architecture is the NERSC Bassi system, an IBM p575 

POWER5 distributed memory computer with 512 processors available to 

run scientific computing applications. The processors are distributed among 

64 compute nodes, each of which contains 8 processors. A compute node 

is an 8-way symmetric multiprocessor (SMP). Processors within each node 

have a shared memory pool of 32 GBytes. Each POWER5 processor core 

has a theoretical peak performance of 7.6 GFlops or 3.89 TFlops theoretical 

peak system performance. The compute nodes are interconnected with the 

IBM Federation HPS switch, a high-bandwidth switching network which is 

connected to a two-link network adapter on each node. Each node runs its 

own full instance of the standard AIX operating system. Detailed system 

specifications are provided below [57]: 

•IBM Cluster 

• 8-way single SMP cores per node 
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• 1.9 GHz single-core POWER 5 64-bit processors (DCM: Dual Chip 

Module with one active core) 

• 7.6 GFlops theoretical peak per processor 

• 64 KBytes 2-way associative Instruction cache 

• 32 KBytes 4-way associative Data cache 

• 2 MBytes on-chip L2 (10-way associative, 3x640 KBytes) 

• 36 MBytes L3 cache, with a L3 to L2 peak bandwidth of 243.2 GBytes 

per second. 

• 200 GBytes/sec cumulative peak theoretical memory bandwidth 

• 32 GBytes memory per node 

• 48 GBytes/sec theoretical peak I/O Bandwidth 

•Production System 

• 64 Compute nodes (512 compute processors) 

• 64*8*7.6 GFlops = 3.89 TFlops theoretical system peak performance 

•I/O Subsystem Configuration 

• 6 Virtual Shared Disk servers to support GPFS, each with 2 High 

Performance Switch (HPS) links. (See next section) 

• Each Virtual Shared Disk server has sixteen 2 Gbps Fibre Channel 

links 

•High Performance Switch (HPS) 
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• Each node: One 2-link High Performance Switch adapter 

• Each node: attaches to the interconnect with 2 links, one to each of 

2 separate planes 

• LAPI and MPI communication 

• Data uses LAPI over HPS 

• Peak HPS bandwidth - 2 GBytes per second per link each direction 

• MPI latency: less than 5 fis 

•Relevant Software 

• IBM AIX 5.3 

• IBM Parallel Environnent 4.2 

• IBM C/C++ Enterprise Edition 7.0 

• IBM Fortran Enterprise Edition 9.1 

2.2 Measured Performance 

In this section, various algorithms are used to call forth performance 

characteristics of the architecture as the problem is scaled-up. All results 

shown are averaged over 100 trials so as to produce repeatable, average 

values of execution rates. 
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Figure 2.1: High-level system structure for a dual-core IBM P0WER5 sys­
tem is shown on the left [57]. On the right, two POWER5 chips are in­
terconnected [43]. On Bassi, only a single processor core is active, eight 
single-core POWER5 chips make up a single 8-way SMP node. 

2.2.1 Processor Performance 

The IBM POWER5 chip used on the Bassi system is a single-core chip 

configured on a dual chip module. The dual chip module is depicted in 

Figure 2.1. Each chip and hence each processor core has its own cache 

hierarchy consisting of an on-chip Ll and L2 cache and an off-chip L3 

cache which serves as an L2 victim cache. The objective of this section is 

to measure the peak achievable floating point operation performance of a 

single processor core. Peak achievable performance is not simply a function 

of processor frequency, 1.9 GHz in this case, performance is a complicated 

function of factors such as the number of functional units, pipeline depth, 

translation lookaside buffer (TLB) size, cache performance, and memory 

access patterns. 

Dense matrix multiplication is the widely accepted floating point opera­

tion benchmarking kernel [21]. This linear algebra operation is a paradigm 
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in the study of performance optimization of numerically intensive codes. 

The peak achievable performance of a single processor core will be mea­

sured by multiplying two dense, square matrices together with the highly 

optimized Fortran 90 intrinsic function, matmul, which has been tuned to 

this particular architecture. 

Let A, B be two N x N matrices. Denote the i, j t h component of the 

product AB by [AB]jj. Then 

N 

[AB]itj = J2ai,kh,r (2.1) 

Each component of the product, AB, requires 2iV — 1 Flops to compute, 

thus dense matrix multiplication has cubic complexity. 

In Figure 2.2, on the left, the average execution time as a function of 

matrix size is depicted (red-squares) along with a least-squares fit of the 

data to a cubic polynomial (blue-line). On the right, the average floating 

point execution operation rate, measured in MFlops, is plotted as a func­

tion of matrix size. The data suggests that an individual processor core is 

capable of achieving nearly 36% of its theoretical peak on a non-trivial ap­

plication that requires significant low-level optimization in order to achieve 

high performance. 

Each Flop requires two loads and a single store. Hence taking 2.7 

GFlops as peak achievable floating point operation performance, the local 

memory path has a peak achievable bandwidth of 65 GBytes/sec. 

2.2.2 Memory Performance 

System memory and cache performance are measured by computing 

the dot product of two large arrays at various strides. Computationally, 

this is accomplished by executing Algorithm 1 for various values of S and 
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Figure 2.2: Performance results for dense matrix multiplication at various 
scales. On the left, the average exectution time versus matrix size is plot­
ted (red-squares), a least-squares approximation, plotted as a solid blue 
line, fits the data to a cubic polynomial. On the right, average processor 
performance, measured in MFlops, is plotted as a function of matrix size. 

measuring the execution time. In each experimental trial, N is fixed at 90 

million and each array contains N, 8-byte, double-precision words. Longer 

strides will increase the cache miss rate which should decrease processor 

performance. The POWER5 cache hierarchy, characterized on page 5 and 

seen schematically in Figure 2.1, is similar in design to the cache systems 

described and analyzed in [69, 24]. 

Algorithm 1 Computes the dot product with stride S. 
l: double A(N), B(N) 

2: for (i = l:S: N) do 
3: sum <r- sum + A(i) * B(i) 
4: end for 

In Figure 2.3 the processor performance, measured in MFlops, is plot­

ted versus stride. Performance degrades as O^" 1 ) , as expected, and levels-

off for strides larger than 500 double words. This empirically determines 

cache-line size to be 500 doublewords on this machine and the time to 

1600 2000 
Matrix Dimension 
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transfer a cache line from memory to cache is about 0.157 /xs. Thus spatial 

locality is maximized when data and access patterns are structured so that 

strides do not exceed 500 double-precision words. 

4501 1 -i 1 :—, 1 , 

400 • V 

350 • 

300 • 

150 -

[] 
100 • 

5°" I 
1 rS^-Fna B - . n , . " 

0 2000 4000 6000 8000 10000 
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Figure 2.3: Processor performance, measured in MFlops, is plotted as a 
function of stride. The plot was generated by computing the dot product 
of two large arrays at various strides. 

In this experiment, processor performance is quite different from that 

observed for dense matrix multiplication. With unit stride, a single proces­

sor core achieves only about 1.5% of its peak theoretical performance. Two 

observations explain this disparity. The first is clear, in the dot product 

experiment each array contains 90 million 8-byte, double-precision words. 

Whereas the largest matrix studied contains only 9 million 8-byte, double-

precision words. In comparison, the memory requirement of the dot product 

experiment far exceeds that of the matrix multiply experiment resulting in 

many more off-chip memory calls and, as expected, leads to an overall per­

formance degradation. When the length of the arrays in the dot product 

experiment are decreased, overall performance improves. A second and 

more subtle reason for the observed performance disparity lies in the fact 
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that matrix multiplication is accomplished with a Fortran 90 intrinsic and 

the dot product is computed with unoptimized code. On this platform, 

when the intrinsic matmul is called, a high-performance implementation, 

tuned to this particular platform, is invoked resulting in significantly better 

floating point performance. 

2.2.3 Shared Memory Performance 

Each SMP node consists of eight single-core POWER5 chips which 

share 32 GBytes of memory. The objective of this benchmark is to quantify 

the cost to access shared memory as the number of processor cores within 

a node increase. Algorithm 2 reads an array, A, with stride, S, 100 times. 

Reads are processed concurrently by a team of OpenMP threads which share 

the array A. After each read, the data or fractions of it, are in cache for 

the next read. The cache is flushed after each read in order to equalize the 

cost of successive reads. Performance is assessed by measuring the parallel 

speedup as the number of threads increases. 

Algorithm 2 Multi-threaded reads with stride S. 

1: double A{N), 5(100) 

!$OMP PARALLEL DO 
for (x = 1 : 100) do 

flush cache 

for (j = 1 : S : N) do 
B(i) - A(j) 

end for 
end for 
!$OMP END PARALLEL DO 

Results in Figure 2.4 are separated into two categories; small-stride 

(left) and large-stride (right). For small strides, the parallel performance is 
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Figure 2.4: On the left, small-stride shared memory parallel performance 
within a node. On the right, large stride performance (right). Bandwidth 
contention degrades shared memory performance as the stride is increased. 

observed to increase with stride length. Performance is maximal for strides 

in the range of 100 - 500 double words. For large strides, parallel perfor­

mance monotonically decreases with increased stride and slowly approaches 

a steady-state speedup. 

Although Algorithm 2 is embarassingly parallel, the performance in 

Figure 2.4 is rarely observed to be optimal. This is common in shared 

memory systems since usually the original memory path is shared by mul­

tiple processors. Degradation occurs when processors compete for limited 

shared memory bandwidth. The experiment suggests, however, that shared 

memory performance can be improved by making efficient use of the cache 

hierarchy. Since each POWER5 chip has its own cache hierarchy, finding 

the optimal stride and structuring access patterns accordingly minimizes 

shared memory traffic and can maximize individual processor performance. 

This experiment is designed to quantify the single-access cost per proces­

sor per stride. Because the cache is flushed after each read, the effects of 
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temporal locality are unaccounted for in these observations. Reusing data 

can improve shared memory performance as well by taking full advantage 

of the large L3 cache which serves as an L2 victim cache (temporal locality 

is a good way to exploit a victim cache) and resides on the processor side 

of the fabric controller. 

2.2.4 Distributed Memory Communication Performance 

On Bassi, distributed memory parallelism is facilitated by the Message 

Passing Interface (MPI) API. On this platform, not all MPI communication 

goes across the switch. For communications among tasks that reside on the 

same node, MPI messages are instead routed through fast shared memory 

buffers. The objective of the next benchmark is to measure MPI transfer 

rates for inter-nodal and intra-nodal communication. In this context, the 

transfer rate is measured by timing how long it takes to send a one-way 

message of a given size. Timings account for both latency and stream rate. 

Both one-to-all collective messaging (MPI broadcast) and point-to-point 

(MPI send/receive) messaging are considered. 

Comparing timings and usage of global collectives is much simpler than 

surveying the space of possible pairwise communications. The performance 

of point-to-point messaging depends closely on the pattern of messages in 

a code. In this experiment, the point-to-point transfer rate is measured 

by sending a one-way message of a given size to a neighboring MPI task. 

In order to test one-to-all messaging, a message of a given size is broad­

cast to all active processors. In both experiments, the effect of bandwidth 

contention on transfer rates is assessed by increasing the number of ac­

tive processors. In the point-to-point experiment send/receive pairs send 

messages concurrently. 
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Results for intra-node messaging are depicted in Figure 2.5. On the 

left, average transfer rates for send/receive pairs are plotted as a function 

of message size. Messages in the range of 1 MByte in length (105 words) 

exhibit optimal performance topping out at 6 GBytes/sec when all eight 

processors are active. On the right, the average transfer rates for an MPI 

broadcast are plotted as a function of message size. Broadcast transfer rates 

are comparable to those for point-to-point messaging. 

Results for inter-node messaging are depicted in Figure 2.6. On the 

left, the average transfer rates between a send/receive pair are plotted as 

a function of message size. Bandwidth peaks for large messages approach­

ing a steady-state transfer rate of about 1.8 GBytes/sec. On the right, 

the average transfer rates for an MPI broadcast are plotted as a function 

of message size. When the number of nodes is large, broadcasting across 

nodes is significantly more expensive than sending many point-to-point mes­

sages simultaneously between nodes. Broadcast bandwidth peaks for large 

messages and approaches a steady-state of about 600 MBytes/sec. 

Comparing both possible paths that MPI messages take, the data 

clearly show that routing small messages through shared memory buffers 

is much more efficient than routing them through the HPS switch. For 

large messages, point-to-point transfer rates within a node are comparable 

to those between nodes. This observation suggests that shared memory 

buffers have much lower latency than the HPS switch but have comparable 

stream rates. This argument is further bolstered by the observation that 

within a node, the broadcast transfer rate is nearly identical to the point-

to-point transfer rate. Thus the main difference between the two data paths 

is the latency which is significantly larger for the HPS switch. The main 
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conclusion in all of this is MPI performance is optimal for fine-grained ac­

cess within a node due to low latency and coarse-grain access between and 

amongst nodes due to high-bandwidth, and is that Broadcast latency scales 

well within a node, and scales poorly between nodes. 

IMra-l*)deMPI_SENDTransfaf Rates Intra-NodB MPI_BCASTTransfer Rates 

Message Size (lag^ Words) Message Size (tog10 Words) 

Figure 2.5: On the left, intra-node point-to-point send/receive transfer rate 
versus message size are plotted. A peak bandwidth of about 6 GBytes/sec 
can be achieved for messages in the range of 105 double-precision words. 
On the right, the transfer rate versus message size for intra-node one-to-all 
broadcast are plotted. Performance is comparable or superior to that of 
point-to-point communication, suggesting that broadcast latency is small 
within a node. 

2.2.5 I /O Performance 

The I/O transfer rate is measured by reading a large file into main 

memory and then writting the same file back to disk. In particular, mea­

surements are made by reading files consisting of 103, 104, 105, and 106 

double-precision words and subsequently writting them back to disk. On 

this architecture, the I/O transfer rate is observed to be independent of the 

physical location of a processor. The average input transfer rate is 4.87 

MBytes/sec and the average output transfer rate is 3.8 MBytes/sec. 
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Figure 2.6: On the left, inter-node point-to-point send/receive transfer rate 
versus message size are plotted. Peak bandwidths are approached as mes­
sage size increases, as expected for a high bandwidth switch. On the right, 
the transfer rate versus message size for inter-node one-to-all broadcast are 
plotted. Broadcast performance suffers due to the high latency associated 
with barrier synchronization over the HPS switch. 

2.3 Conclusions 

In conclusion, the NERSC Bassi system is a high performing compu­

tational platform with fast, low-latency shared memory SMP nodes which 

are interconnected over a high-bandwidth switch network. An individual 

POWER5 processor core has an achievable peak speed of 2.7 GFlops, at­

taining 36% of its peak theoretical speed. 

The POWER5 memory hierarchy consists of a dual-level on-chip cache 

system and a single off-chip Level 3 cache that can greatly improve floating 

point performance for in-cache data access. The length of a cache line is 

empirically determined to be 500 double words and reading a cache line in 

from memory to cache takes about 0.157 fis. Spatial locality is optimal for 

data access patterns with strides smaller than or equal to 500 double words. 
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Shared memory performance scales poorly for both very large and for 

very small strides. Optimal strides for single use data are in the range of 

100-500 double words. Performance can be further improved by making 

efficient use of the large L3 victim cache by increasing temporal locality. 

Distributed memory performance is heterogeneous and depends on the 

path the data travels. For point-to-point messages sent over the HPS switch, 

a steady-state transfer rate of 1.8 GBytes/sec is approached as both the 

number of nodes and problem size is scaled up. Inter-node MPI broad­

cast transfer rates scale poorly due to latency associated with synchroniz­

ing nodes over the HPS switch. Broadcast transfer rates approach 500 

MBytes/sec. 

Messages between MPI tasks on the same node do not travel over the 

HPS switch but are instead routed through shared memory buffers. This 

can result in performance gains of over a factor of three for messages of 

size 107 8-byte double words. Messages in this range have an achievable 

transfer rate of 6 GBytes/sec. Intra-node latency is small in comparison 

to the latency of the HPS switch, but stream rates are comparable. MPI 

performance is optimal for fine-grained access within a node, due to low 

latency, and coarse-grain access between and amongst nodes because of the 

high-bandwidth HPS switch. 

The average disk input stream rate is measured to be 4.8 MBytes/sec 

and the average disk output (write) stream rate is found to be 3.8 MBytes/sec 

Table 2.1 suggests that high performance can be achieved by leveraging 

both the fast, low-latency shared memory within a node and the high-

bandwidth HPS interconnect. For a memory intensive application, a hybrid 

parallel programming model that mixes shared memory multi-threading 
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Local memory 
Intra-node send/receive 
Intra-node broadcast 
Inter-node send/receive 
Inter-node broadcast 
Input 
Output 

Achievable Bandwidth 
(GBytes/sec) 

65 
6 
6 

1.8 
0.5 

0.0048 
0.0038 

Relative 
Cost 
1 : 1 
11:1 
11 : 1 
36 :1 
130:1 

13500 : 1 
17100 : 1 

Table 2.1: Relative cost of memory access. 

within a node and message passing between nodes, to the extent possible, is 

the most effective strategy to maximize parallel performance. Even though 

shared memory contention can lead to some performance degradation. 
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Chapter 3 

A FAST, PORTABLE, PARALLEL 
RANDOM NUMBER GENERATOR 

At large-scale, the performance and accuracy of a Monte Carlo ap­

plication can depend in a highly nontrivial way on the parallel random 

number generator (RNG) employed. Monte Carlo methods involve the de­

liberate use of random numbers in a calculation that has the structure of 

a stochastic process. A stochastic process is a sequence of states whose 

evolution is determined by random events that, on a computer, are de­

termined by pseudo-random numbers [29] (hereinafter, we will omit the 

'pseudo', consistent with standard paractice). Monte Carlo calculations 

have in the past, and continue to, consume a significant fraction of avail­

able high-performance computing cycles [60]. This is due, in part, to the 

fact that some important Monte Carlo calculations lend themselves to a 

highly efficient and portable parallelization. 

On a computer, an RNG is actually a deterministic algorithm that typ­

ically produces a periodic sequence of states by means of a linear recursion 

that appears random to an application. Effective RNGs of this type have 

extremely long periods so that an application is never affected by this peri­

odic structure. In addition to possessing long-periods, an effective sequential 

RNG must be free of intra-stream correlations that can bias the outcome 
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of a stochastic process. Parallel RNGs must further provide an algorithm 

which allocates the state-space of the RNG to different processors. 

It is necessary to subject any RNG to a rigorous comprehensive analy­

sis and assessment before it is deployed in a large-scale application. Current 

large-scale Monte Carlo computations may consume the entire periods of 

many older generators in only a few seconds [60]. Tests on important appli­

cations at large-scale have revealed defects in RNGs that were not apparent 

when run on smaller simulations [18, 22]. A defective RNG can insidiously 

compromise the accuracy of a Monte Carlo calculation at large-scale and is 

difficult, if not impossible, to diagnose at runtime. 

The most effective manner in which to assess the quality of an RNG 

is by direct empirical testing of the streams produced. While the quality 

of an RNG sequence is extremely important, the unfortunate fact is that 

little mathematical theory exists to assess the quality of the current, most 

sophisticated generators. Though some theoretical results exist in the lit­

erature, most of the theory is limited to defining criteria for achieving a 

maximal period since mathematical bounds on correlations are extremely 

difficult to prove. The situation is further complicated for parallel RNGs 

by the fact that effective parallel RNGs must be free of both intra-stream 

correlations within individual streams as well as inter-stream correlations 

between and among streams on separate processors. 

Empirical testing falls into two broadly defined categories: (i) statis­

tical tests, and (ii) application-based tests. Statistical tests compare some 

statistic obtained with an RNG sequence to the expected statistic assuming 

the sequence were truly random. Applications-based tests employ an RNG 

in an actual application with a known solution or convergence rate. If the 
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results of any of the tests are sufficiently far from those expected, then the 

RNG is considered suspect. If the outcome of most of the tests are far 

from the expected, then the RNG is considered defective. In some cases, 

statistical tests can be used to locate isolated defects which may be treated 

and cured. This type of tuning can play an important role in long-term 

code maintenence. 

This chapter presents a novel enhancement and implementation of a 

fast, portable parallel random number generator. The implementation is 

assessed through rigorous empirical testing. Both types of empirical testing, 

statistical and applications-based, are employed. In particular, a subset of 

Knuth's so-called stringent tests and Marsaglia's Diehard tests, which have 

been particularly effective at exposing defects in parallel RNGs, are used. 

The proposed parallelization is implemented in a Monte Carlo photon heat 

transfer code which has a known solution and convergence rate. As an 

application-based test, the heat transfer code is run at large-scale and the 

empirical outcome is compared to what is theoretically expected. 

3.1 Additive Lagged Fibonacci Generators 

The definitive reference on sequential RNGs is Knuth [31]. Some imple­

mentations of sequential algorithms can also be found in Numerical Recipes 

[46]. Perhaps the most accessible exposition is that of Anderson [3], who 

presents some excellent illustrative graphics. Of particular interest to the 

present effort is the family of linear recurssions collectively termed, Additive 

Lagged Fibonacci Generators (ALFG). This type of sequential generator has 

been extensively tested for randomness [38] and given high marks. 
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To begin, consider the class of additive lagged fibonnacci generators 

which are defined by the family of linear recursions 

xn = (xn-i + xn-k)mod(M), I > k > 0. (3.1) 

In order to compute the (/ + l)th value, the I previous values are required. 

Let the I most current values occupy the / x 1 state-vector 

/ x° \ 
Xx 

X2 

r = 

Xl-2 

\xi-i/ 

Then equation (3.1) defines a linear transformation, T 

acts on the state-vector in (3.2) as 

/ 

(3.2) 

which 

/ x° \ 
xx 

X-i 

Xl-k 
Xl-2 

\xi-i/ 

\ xx 

x2 

Xl-k 

Xl-2 

Xl-X 

\xi = XQ + xi-kJ 

(3-3) 

The state vector (3.2) is called the ALFG register and contains the I most 

current values which axe required to compute the next value in the sequence. 

We say that / is the length of the ALFG register and that k is the tap point. 

For computational efficiency the value of the modulus M is usually chosen 

to be a power of 2, i.e. M = 2m where for a 32-bit signed integer it makes 

sense to choose m = 31. The structure of the ALFG in (3.1) is completely 

characterized by the register length, tap point and modulus, thus we adopt 
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the notation LFG(l, k, m) where m is the power of two used for the modulus 

M. The initial seed is defined as an initial fill of the ALFG's register with I 

words and is denoted f0. The first I words must be filled by an application; 

the process in which the initial seed is assigned is termed initialization. In 

this work, initialization is done at the bit level by employing FORTRAN 

bit-wise intrinsic functions. With this in mind, the initial seed is viewed 

as an m x I binary matrix with 2ml — 1 nontrivial bit-wise states. Table 

bm-x 
bm-2 
: 

61 
bo 

* 
* 

* 
* 

* 

x0 

* 
* 

* 
* 

* 

X\ 

* 
* 

• • . 

* 

* 

* 
* 

* 
* 
* 

xc 

* 
* 

* 

* 

* 
* 

* 
* 

* 

xk-i 

* 

* 

* 
* 

* 

* 

* 
* 
* 

Xl-2 

* 
* 

* 
* 
* 

Xl-1 

MSB 

LSB 
Word 

Table 3.1: Binary matrix perspective of an ALFG initial seed. 

3.1 depicts an ALFG register as a binary state matrix. Each word in the 

register is an m — bit integer where the most significant bits (MSB) of the 

register occupy the top row of the matrix and the least significant bits (LSB) 

occupy the bottom row. 

3.1.1 Period of the ALFG 

For the ALFG with power of two modulus, the maximum possible 

period is huge: (2' — l)2m _ 1 [39]. However, notice that the maximum 

possible period is considerably smaller than the number of nonzero fills, 

2ml — 1. The missing state space can be accounted for by the large number 

of disjoint maximum period cycles. A necessary condition for achieving a 

maximal period is that the characteristic polynomial associated with the 

recurrence, f(x) = xk + xl + 1 be primitive modulo 2, I > 2 [8]. The only 

additional requirement to obtain a full period cycle is that not all least 
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significant bits be zero. In terms of residues modulo 2, this is achieved 

if one or more words of the initial seed r*0 is odd. A simple computation 

shows that the number of initial seeds that give maximal possible period is 

(2l — l)2'(m~x). Since each of these initial seeds is in a maximum possible 

period cycle, there must be 

(2* - l ) ^ " - 1 ) _ ( z_i ) ( m_i) , . 

( 2 * - 1 J 2 ™ - 1 { } 

cycles with maximum possible period. Following [39], if we define an equiv­

alence relation among initial seeds so that two seeds are equivalent if they 

are in the same cycle, then the generator has E distinct maximal period 

cycles. 

3.1.2 A Canonical Form 

The state space of the ALFG as described above is toroidal [40] with 

equation (3.1) providing the algorithm for movement in one torus dimen­

sion. Mascagni et al. [39] have provided an elegant algorithm for movement 

in the second torus dimension (movement from cycle to cycle) by exploiting 

the following result. 

Theorem 3.1.1. Suppose I and k are such that xl + xk + 1 is primitive 

modulo 2. Then for every m — bit initial seed fa which has at least one odd 

element, there exists an integer 0 < p < (2l — l)2m _ 1 such that the register 

state, Tpfo has the form shown in Table 3.2. That is, the first word is 0 

and all words except for word xc are even. Furthermore, the index of the 

single odd word is uniquely determined by I and k. 

Theorem 3.1.1 implies the existence of a canonical form for initial seeds 

which satisfy the hypothesis. The (m — 1) x (I — 1) subarray in Table 3.2 

29 



bm-i 

bm-2 
; 

h 
bo 

0 
0 

0 
0 
0 

X0 

* 

* 

* 
* 

0 
Xl 

* 

* 

-. 

* 

0 

* 

* 

* 
* 

1 
xc 

* 

* 

* 

0 

* 

* 

* 
* 

0 
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0 
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0 
Xl-2 

* 

* 

* 
* 

0 
Xl-l 

MSB 

LSB 
Word 

Table 3.2: The canonical register state of an initial seed which corresponds 
to a maximal period cycle. The state-space of the (m — 1) x (I — 1) canonical 
rectangle is in one-to-one correspondence with the set of maximal period cy­
cles. The canonical least significant bit position, xc, is uniquely determined 
by I and k. 

has 2^1)x(m - 1) possible states. Each one of these states corresponds to a 

different maximal period cycle. This subarray is appropriately called the 

canonical rectangle and allows us to fully enumerate the set of maximal 

period cycles. In light of Theorem 3.1.1, the equivalence class previously 

defined can be restated more precisely; two initial seeds are equivalent if, 

when put into canonical form, they have the same canonical rectangle state. 

3.2 Parallel Implementation 

Suppose now that one ALFG sequence is initialized on each of nproc 

processors in a parallel program. A good parallel initialization must satisfy 

the following criteria [9]: 

1. Each processor is assigned a sequence which is taken from a different 

cycle, easy to accomplish using the canonical form. 

2. The initial states of the ith and (i~l)th sequence should look relatively 

random so as to eliminate short-range inter-stream correlations. 

3. A sequence initialized on processor i should be uncorrelated (over the 

long-range) with a sequence initialized on processor j . 
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A good parallel initialization can be achieved if, on each processor, 

the canonical rectangle is bitwise filled with a random bit generator. In 

particular, the canonical rectangle can be filled as follows: 

1. A global initial seed, SG, is selected by the user and broadcast to all 

processors. 

2. Each processor initializes a binary shift register with the binary num­

ber SQ + myid, where myid is the unique task identifier assigned to 

each processor. 

3. The binary shift register is stepped R times, the output bits placed 

sequentially in the canonical rectangle. 

Provided an effective binary shift regsiter, this initialization satisfies the 

criteria stated above. In practical application an appropriate choice of the 

global seed is 

SG = (sec + 60 x (min + 60 x (hr + 24 x (day + 30 x (mon + 12 x yr))))). 

Successive runs will therefore generate different sequences, as long as the 

jobs are launched more than JV/64 seconds apart. This SG is guaranteed to 

fit into 31-bits, is constantly changing, and is unlikely to be identical to a 

number chosen diliberately by the user. 

3.3 Parallel Initialization Schemes 

In the proposed parallel initialization, each ALFG stream requires a 

random bitwise fill of its canonical rectangle. In this section, an effective 

random bitwise initialization is presented. In particular, two binary shift 

register schemes are introduced, implemented and their computational effi­

ciencies compared. 
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3.3.1 Binary Shift Registers 

A binary shift register (BSR), also known as a Tauseworthe generator, 

is an important class of random number generators. They are particularly 

well suited to the task of generating random binary bit sequences and, as 

such, this is their primary usage in modern applications. To understand 

the mathematical principles underlying a binary shift register, consider the 

following 

Definition 3.3.1. An n-bit register f is an (n x 1) state vector whose 

components are in GF{2) — {0,1} 

f b0 \ 
h 

(3.5) 

&n-2 

\bn-lj 

In the case of n = 32, each state of a 32-bit register naturally coincides 

with a 32-bit integer by associating bo with the most significant bit (MSB) 

and 63i with the least significant bit (LSB) of the integer. For example, 

the standard unit vectors, e;, which have a 1 in the ith component and 

are 0 in all other components, correspond to the integers 232, 231,...,22,21,1 

respectively. 

Definition 3.3.2. A binary shift register is a linear transformation recur­

sively applied to an n-bit register which, by successive iteration, produces a 

sequence of register states 

rk+i = Afk. (3.6) 

Where the matrix of the recursion, A, is an element of GF(2)nxn and ad­

dition is modulo 2. 
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3.3.2 Fibonnaci Register 

To begin the discussion of a Fibonacci register (not to be confused with 

an ALFG), we start with a primitive, irreducible, n-degree polynomial, p(x) 

with coefficients in the finite field GF(2) 

p(x) = 1 + aix + a2x
2 H f- an^xx

n~l + anx
n. (3.7) 

For the present effort, primitive polynomial will mean the following 

Definition 3.3.3. We say a polynomial p(x) with coefficients in the field 

GF(2) is primitive to mean that 

<x>=(GF(2)[x}/(p(xW. (3.8) 

In words, p(x) is primitive if # is a cyclic generator of the multiplicative 

group of nonzero elements of the finite field, GF(2)[x]/(p(x)) which is, it­

self, isomorphic to S — {ao + a,\X + a2x
2 H h an_2£n - 2 + an-ix

n~l\ai E 

GF(2)} — 0, the set of all non-zero polynomials of degree (n — 1) with coeffi­

cients in GF(2). The set S has 2 n - l elements, thus x e (GF(2)[x]/{p{x)))x 

has order 2" — 1. By construction, x is a root of p(x) over the field 

GF(2)[x]/(p(x)) which implies the following identity 

xn = 1 + atx + a2x
2 + ••• + an^2x

n~2 + an-Xxn~l, a» 6 GL{2). (3.9) 

This identity defines the multiplication in the finite field GF(2)[x]/(p(x)). 

The abstract multiplication can be implemeted in a binary shift register 

as a rule for forward stepping. Given the most current n values, which are 

stored in an n-bit shift register, rn can be computed for all subsequent times 

as 

rn = r0 4- air\ + ct2r2 -I h an_2rn_2+ a„_irn_1, a, e GL(2). (3.10) 
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The recursive relationship is linear with the following action 

fb0\ 
h 
b2 

bn-2 

\K-iJ 

b2 

h 

bn-l 
\bn / 

(3.11) 

where bn is computed with (3.10). The n x n matrix, AF, has the form 

AF = 
0 ' n - l 

h 
(3.12) 

where 0 is an (n — 1) x 1 zero vector, / is the (n — 1) x (n — 1) identity 

matrix and h = (ai a2 • • • an_2 an_i) is the l x ( n - l ) vector of polynomial 

coefficients. The indices of the non-zero entries of h are called tap points. 

Primality implies that 0 is always a tap point since a® = 1 is a necessary 

requirement for an irreducible polynomial. A matrix of the form (3.12) 

whose tap points correspond to a primitive polynomial, which is used to 

step a shift register forward is called a Fibonacci register. The following is 

true of a Fibonacci register: 

1. The matrix AF in (3.12) is periodic and has period 2n — 1 

2. The sequence of register states 

S={Af0,A
2f0,...,A

2n-lf0} 

is a group under the binary operation (r\, fj) —* A^+^f0 for fi, fj € S. 

3. S is isomorphic to the multiplicative group of nonzero elements of the 

finite field GF(2)[x]/{p(x)) 

S^(GF(2)[x]/(p(xW. 
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4. The sequence of most significant and/or least significant bits of 5 is 

a high quality random binary bit sequence. 

As a specific example, consider the primitive trinomial 

this defines the recursion 

p(x) = 1 + x3 + 

r5 = r0 + r3 

x (3.13) 

(3.14) 

which has the Fibonacci stepping matrix 

/0 1 0 0 0 \ 
0 0 1 0 0 

AF= 0 0 0 1 0 
0 0 0 0 1 

\ 1 0 0 1 0/ 

stepping the shift register forward has the following action 

(3.15) 

/0 1 0 0 0\ 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 

\l 0 0 1 OJ 

fb0\ 
h 
b2 

h 
w 

= 

f h \ 
&2 

h 
h 

\bo + hj 

(3.16) 

In terms of logical operations, the 5-bit Fibonacci register can be accom­

plished by summing the values of the shift register at the tap points, re­

ducing this modulo two, left-shifting the register one bit towards the MSB, 

and placing the resultant sum in the LSB position. To see how the Fi­

bonacci register acts on a 5-bit integer, consider the integer 28 = I l 1. 

Then AF28 — • 1 6 1 = 25. 

The bottom row of (3.12) is an n-bit binary sequence which can be 

interpreted as an n-bit integer whose MSB is to the left of the LSB. The 

bottom row of (3.12) will play an important role in the discussion of the 

Galois register. Therefore, it is given the following definition 
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Definition 3.3.4. The mask, Mp, of a Fibonacci register corresponding to 

the primitive polynomial p(x) is the bottom row of the matrix (3.12). 

The mask is 1 at tap points and 0 elsewhere. 

For the present effort, a 32-bit binary shift register is used which cor­

responds to the primitive polynomial 

p(x) = l + x25 + x27 + x29 + xm + x31 + x32. (3.17) 

The Fibonacci mask associated with this primitive polynomial, expressed 

in hexadecimal, is 

MF = 0x80000057. (3.18) 

When using Fortran 90 bit-wise intrinsics, the MSB corresponds to element 

31 of the binary number Mp and the LSB corresponds to element 0. Thus 

using the appropriate Fortran indexing, the tap locations corresponding 

to the polynomial (3.17) are 31, 6, 4, ,2, 1, 0. The Fibonacci register is 

logically implemented in Algorithm 3. Given an initial fill of the 32-bit 

register, each call to Algorithm 3 advances the state of register and returns 

the MSB of the previous state. Successive calls to Algorithm 3 results in 

a random binary bit sequence which can be used to bit-wise initialize the 

canonical rectangle of an ALFG register. 

3.3.3 Galois Register 

The Galois register is derived from the Fibonacci register by taking 

the transpose of the matrix representation for the Fibonacci register, 

(° 
Vn-1 

A 
h) 

where 0 is 1 x (n — 1) and h is (n — 1) x 1. The Galois mask, MQ, is 

the same as the Fibonacci mask, Mp, but plays an important role in the 
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Algorithm 3 Fibonacci register implementation. Successive calls generates 
a random binary bit sequence. 

1: common integer F 
2: integer TAP = ( 31, 6, 4, 2, 1, 0 ) 

3: bit<-0 
4: j *- 1 
5: while (j < length(TAP)) do 
6: bit *- bit + getbit(F, TAP(j)) 
7: end while 
8: bit <— iand(bit, 1) 
9: F «- leftshift(F) 

10: if (bit) then 
11: F «- bitset(F, 0) 
12: end if 
13: return bit 

/0 0 0 0 l \ 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 1 

\0 0 0 1 Oj 

fbo\ 
6i 
&2 

63 
\&4y 

= 

( b* \ 
60 
h 

62 + 64 

v &3 y 

= 

/ o \ 
60 
h 
62 

\h) 

+ 64 

/ 1 \ 
0 
0 
1 w 

logical implementation of the shift register on a computer. To understand 

the action of the transformation on a shift register, consider the 5x5 Galois 

step, derived from the primitive trinomial (3.13), applied to an arbitrary 

shift register 

(3.20) 

Again, taking the MSB of the register to be r0 and the LSB to be r3i , the 

Galois step is logically implemented in Algorithm 4. The matrix AG has 

the same algebraic properties as AF, however, Algorithm 4 can be imple­

mented more efficiently than Algorithm 3. To see this, let A; denote the 

number of non-zero terms of the primitive polynomial (3.7). The logical 

operations necessary to advance the register a single step with Algorithm 3 

are: perform a fc-term summation of tap points, perform a logical AND on 

the resultant, logically leftshift the register 1-bit towards MSB, and feed the 
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resultant bit into the LSB position. This requires A;+ 3 operations. The Ga­

lois register is efficiently implemented by exploiting the Galois mask. The 

logical operations necessary to advance the register a single step with Algo­

rithm 4 are: obtain the LSB, logically rightshift the register 1-bit towards 

the LSB, and logically XOR the register with LSB * MG. This requires 

four operations regardless of the number of tap points. Thus, employing a 

dense primitive polynomial (which has certain advantages itself) adds no 

additional compuational expense. 

Initializing the canonical rectangle with a Galois register is a novel 

enhancement which should improve initialization efficiency. In order to 

compare the initialization times, both registers are used to initialize the 

canonical rectangle for an ALFG of varying register length. Figure 3.1 

shows the initialization time, measured in milliseconds, as a function of 

ALFG register length. Results are averaged over 100,000 trials and, as 

expected, initialization times are significatly smaller when using a Galois 

step. 

Algorithm 4 Galois register implementation. Successive calls generates a 
random binary bit sequence. ' 

1: common integer G 
2: integer MG 

3: bit+-getbit(G,0) 
4: G <- rightshift(G) 
5: G <- G © (bit * MG) 
6: return bit 

3.4 Statistical Tests 

As mentioned previously, empirical tests of RNGs fall into two cate­

gories: statistical tests and applications-based tests. Statistical tests are 
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Figure 3.1: Initialization timings for Galois (blue) and Fibonacci (red) shift 
registers. Timings, measured in milliseconds, are plotted as a function of 
ALFG lag length. 

further subdivided into two categories: weak tests and strong tests. Weak 

tests exercise the minimum qualifications necessary for a sequence to be con­

sidered random. They are often easy to implement and easy to pass (even 

for low-quality generators.) While weak tests cannot confirm the quality 

of a sophisticated RNG, they may quickly rule a generating algorithm out. 

Computing the mean, standard deviation and higher order moments of a se­

quence of random numbers are considered weak tests. Stringent (or strong) 

tests are more difficult to implement and more difficult to pass as they are 

designed to detect subtle defects in RNGs. The stringent tests employed 

herein are the Birthday Spacings Test [38], Collisions Test, Gap Test, and 
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Runs Test [31]. These specific tests have been particularly effective in ex­

posing defects in parallel RNGs [60]. 

Each test is applied to a sequence x±, x2,...,xn?... of real numbers, which 

purports to be independently and uniformly distributed between zero and 

one. Some of the tests are designed primarily for integer-valued sequences, 

instead of a real-valued sequence. In this case, the integer sequence, Ii, 

72,...,/nv) defined by In = floor(d a;n), is a sequence of integers that 

purports to be independently and uniformly distributed between 0 and d—1. 

The number d is choosen for convenience, e.g. if d = 26, then /„ might 

represent 6 specific bits in a 32-bit signed integer. 

3.4.1 Birthday Spacings Test 

Let the RNG produce m integers Ii,...,Im in the range 0 < h < d. 

The integers can be thought of as m birthdays in a year consisting of d 

days. The birthday spacings test measures the number of "days" between 

successive birthdays. Assuming a uniform distribution of birthdays, the set 

of successive days apart produces a statistic that is asymptotically Poisson 

with parameter A = m3/4d. Good values for m and d are found to be 

m = 210 and d = 224. The Poisson distribution function is discrete and 

therefore discontinuous, thus a KS test cannot be immediately applied. In 

order to combine a chi-square test with a KS test the following steps are 

performed: 

1. Produce 500 31-bit integer streams of length m. 

2. For each of these streams, extract a sequence of m 24-bit integers from 

the original stream by extracting bit fields 0-23 from each integer in 
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the original stream. This produces 500 sequences that satisfy the 

hypotheses of the birthday spacings test. 

3. Perform a birthday spacings test on all 500 24-bit sequences. Bin the 

trials out and compute a single x2 value, V\. 

4. Logically shift the bit window one position to the left (towards the 

MSB) and repeat steps 1-3, this time on bit fields 1-24. This produces 

the second x2 value, V2. 

5. Proceed inductively through bit positions 6-29. In this way, seven x2 

values, Vx,...,V7, are obtained. 

6. Compute the EDF, F7(x), from the observed x2 values. 

7. Perform a KS test by computing the statistics, Kf and K^. If the KS 

percentile falls within the 95% confidence interval of the appropriate 

KS distribution, then the test is passed. 

3.4.2 Collisions Test 

probability 
collisions 

.009 
0-101 

.034 
102-108 

.201 
109-119 

.232 
120-126 

.266 
127-134 

.204 
135-145 

.043 
146-153 

.011 
> 154 

Table 3.3: Discrete PDF for the collisions test. 

Suppose n balls are tossed at random into m urns. If m » n then, 

on average, most balls will land in urns that were previously empty. If a 

ball falls into an urn which is already occupied, then a collision occurs. 

This test counts the number of observed collisions and compares it to the 

known distribution which is given in Table 3.3. The observations fall into 

one of 8 distinct categories, thus a chi-square test is appropriate. As with 
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the birthday spacings test, the chi-square test must be repeatedly applied 

in order to apply a KS test. The test is applied to a sequence of 5n random 

numbers by choosing n = 214 and m — 220 and doing the following: 

1. Form a sequence of n = 214 20-bit integers by extracting bit fields 0-3 

from 5 consecutive integers of the original sequence and concatenating 

the binary sequence to form a single integer in the new sequence. 

2. Search the new sequence. If an integer is repeated, then a collision is 

recorded. 

3. Repeat the test 100 times on different sections of the stream, bin the 

trials out, and compute a single x2 value, V\. 

4. Logically shift the bit window one position to the left and repeat Steps 

1-3 on bit fields 1-4 and compute V2. 

5. Proceed inductively to obtain ten x2 values, Vi,..., Vio-

6. Compute the EDF, Fw(x), for the observed V '̂s. 

7. Perform a KS test and compute the statistics, KiQ and K^0. If both 

KS percentiles fall within the 95% confidence interval of the associated 

KS distribution, then the test is passed. 

3.4.3 Gap Test 

This is a test on a sequence of real numbers x\, rr2,..., xn, — This 

test is used to examine the length of a gap between occurances of a value 

Xj that falls within a specified range [a,0\. The true distribution for the 

outcome is discrete; thus a x2 test is applied. As before the gap test is 

performed on several different sections of the random number stream by 

doing the following: 
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1. Apply the test to one-hundred different sections of the random number 

sequence and obtain one-hundred x2 values, V\,..., Vioo-

2. Compute the EDF, Fw0(x) from the observed x2 values. 

3. Perform a KS test by computing the statistics, K^Q, / Q 0 . If both 

values fall within the 95% confidence interval of the KS distribution, 

then the test is passed. 

3.4.4 Runs Test 

This is also a test on real numbers. The test is very similar to the Gap 

test and the exact same statistic is computed. 

1. Apply the test to one-hundred different sections of the random number 

sequence and obtain V\,..., Vioo-

2. Compute the EDF, Fx^x) from the observed chi-square values. 

3. Perform a KS test by computing the KS statistics, K^00, -^IOO- ^ both 

values fall with the 95% confidence interval of the KS distribution, 

then the test is passed. 

3.5 Results 

In this section, results of the statistical tests are presented. In order to 

assess the effectiveness of the parallel initialization we follow Marsaglia [14] 

and interleave parallel streams. Suppose there are nproc parallel streams, 

then streams are interleaved in the following manner: If stream % is given 

by 

Xi,o,Xi,i,...,xitk,... 0<i<nproc (3.21) 
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then the new stream is 

%Q,0,Xl,O,--;xN,0,Z0,l,Xl,l, ••••>xnproc,l, ••• (3.22) 

If the parallel streams are independent of each other, then the newly formed 

stream (3.22) should be random. Any correlation amongst parallel streams 

manifests itself as intra-stream correlation in (3.22) [60]. 

In order to assess the quality of the two initialization schemes, both 

registers are used to initialize parallel streams and the resulting streams are 

subjected to the suite of statistical tests. The ALFGs studied herein are: 

LFG(607,334,31), LFG(127,97,31), LFG(7,3,31). If a stream passes a 

test, then the result is labeled (P), else it is labeled (F). 

3.5.1 Single-Stream Results 

Each ALFG produces a random number sequence consisting of 10 mil­

lion numbers. Both the 31-bit integer and real number sequences are col­

lected and analyzed. The results of the statistical tests are summarized in 

Table 3.4. 

LFG(7,3,31) fails all of the stringent tests except for the gap test. It 

does, however, pass the weak tests. Figure 3.2 (left image) shows that as 

the length of the sequence is increased, the mean value converges to 1/2, 

as expected. Figure 3.2 (right image) also shows the defective sequence 

embedded in the unit square by plotting successive values of the sequence, 

(xn,xn+\). This visual test is easy to apply and may quickly identify a 

suspect RNG. When visualized this way, two-dimensional correlations can 

manifest themselves as noticeable patterns in the distribution of points. 

The image is that of a very uniformly distributed set of points in the plane, 
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however, the stringent tests reveal the presence of higher-dimensional cor­

relations. Figures 3.3 and 3.4 show graphical results of the stringent tests 

for LFG(7,3,31). All tests except for the gap test produced KS percentiles 

far outside their respective 95% confidence intervals. 

ALFG 
LFG(7,3,31) 
LFG(127,97,31) 
LFG(607,334,31) 

Collisions 
F 
P 
P 

Runs 
F 
P 
P 

Gap 
P 
P 
P 

Birthday 
F 
F 
P 

Table 3.4: Stringent test results for single-stream ALFGs. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1 

Figure 3.2: On the left, a single stream LFG(7,3,31) converging to the 
expected mean value of 1/2 as the length of the sequence increases. On the 
right, the same stream embedded in the unit square by plotting succesive 
values, (xn,xn+i). No visible pattern or structure is apparent. 

Weak Test with 1 Streams 

4 4.5 5 
Power of 10 
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Gap Test with 1 Streams Runs Test with 1 Streams 

10 12 14 16 18 20 10 12 14 16 16 20 

Figure 3.3: On the left, results of the gap test applied to a single stream 
LFG(7,3,31) are plotted. On the right, results of the run test are plotted. 
The sequence passes the gap test and fails the run test. The EDFs are 
depicted in blue and the expected distributions in red. 
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Figure 3.4: On the left, results of the collisions test applied to a single 
stream LFG{7,3,31) are plotted. On the right, results of the birthday 
spacings test are plotted. The sequence fails both tests. The EDFs are 
depicted in red and EDFs in red. 

LFG(127,97,31) easily passes the weak tests and passes all stringent 

tests except for the birthday spacings test. Therefore LFG(127,97,31) 
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is suspect but not necessarily defective. The ALFG is known to fail the 

birthday spacings test for small values of I (I < 127) [38]. The figures in 

Figure 3.5 show graphical test results of the birthday spacings test applied 

to a single stream LFG(127,97,31). On the left, Figure 3.5 shows the EDF 

compared to the expected distribution for the collected x2 values. The KS 

value computed from these distributions is far outside the 95% confidence 

interval. On the right, Figure 3.5 shows the results of the birthday spacings 

test performed on individual bit blocks from which the seven \2 values are 

computed. LFG(607,334,31) easily passes all tests. 

nl—HHHHU Q1—HI^^H 

H i Observed 

+ Expected 

50 60 70 BO wtsumm 

Figure 3.5: Birthday spacings test resulting in failure of a single stream 
LFG(127,97,31). On the left, a KS test is applied to the observed x2 

values that are obtained from the image on the right which shows seven 
observed distributions, compared to the expected Poisson distribution, each 
one corresponding to a different bit block. 

3.5.2 Multiple-Stream Results 

For multiple stream testing, only the effective sequential generators, 

LFG(607,334,31) and LFG(127,97,31), are considered. Each test is per­

formed twice on a sequence consisting of 107 random numbers. Once ini­

tializing the streams with a Galois generator and once with a Fibonacci 
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generator. If nproc streams are initialized, then each stream produces a 

sequence of ~~ random numbers. The nproc streams are interleaved into 

a single sequence and tested. Test results are summarized in Tables 3.5 

and 3.6. Parallel streams initialized with a Galois register are statistically 

indistinguishable from those initialized with a Fibonacci register. All tests 

are passed regardless of the initialization schemem employed. 

Streams 
5 
10 
50 
100 

Collisions 
P 
P 
P 
P 

Runs 
P 
P 
P 
P 

Gap 
P 
P 
P 
P 

Birthday 
P 
P 
P 
P 

Table 3.5: Stringent test results for LFG{127,97,31) initialized with a Ga­
lois register. Test results are identical when initialized with a Fibonacci 
register. 

Streams 
5 
10 
50 
100 

Collisions 
P 
P 
P 
P 

Runs 
P 
P 
P 
P 

Gap 
P 
P 
P 
P 

Birthday 
P 
P 
P 
P 

Table 3.6: Stringent test results for LFG(607,334,31) initialized with a Ga­
lois register. Test results are identical when initialized with a Fibonacci 
register. 

Figures 3.6 and 3.7 show stringent test results for a 50 stream LFG(127,97,31). 

Figures 3.8 and 3.9 show test results for a 50 stream LFG(607,334,31). In 

these tests, 50 streams are initialized and, after an initial run-off (an issue 

addressed in the next section), produce 50 random number sequences each 

consisting of 200,000 numbers. The sequences are interleaved and tested; 

all tests are passed. 

Several different streams were tested, each using different values of the 

global seed Sa- This is done to ensure that a pass wasn't simply a patho-

48 



Gap Test wfth 50 Streams 
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Runs Test with 50 Streams 
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Figure 3.6: On the left, gap test results for an LFG(127,97,31) sequences 
composed of 50 parallel streams. On the right, the results of the runs test 
on the same sequence. The sequence passes both tests. 

Collisions Test witti 50 

tO 12 14 16 18 20 

Figure 3.7: On the left, collisions test results for an LFG(127,97,31) se­
quences composed of 50 parallel streams. On the right, the results of the 
birthday spacings test on the same sequence. The sequence passes both 
tests. 

logical occurance. It was consistently observed that when a test was passed 

once, it was passed upon every other retest with a different global seed. 

49 



Therefore, the empirical evidence strongly suggests that both initialization 

schemes are effective at initializing high quality parallel streams. 

Gap Test with 60 Streams 
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Runs Test with 56 Streams 
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Figure 3.8: On the left, gap test results for an LFG(607,334,31) sequences 
composed of 50 parallel streams. On the right, the results of the runs test 
on the same sequence. The sequence passes both tests. 

Collisions Test with 50 Streams 
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Figure 3.9: On the right, collisions test results for an LFG(607,334,31) 
sequences composed of 50 parallel streams. On the right, the results of the 
birthday spacings test on the same sequence. The sequence passes both 
tests. 
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Figure 3.10: On the left, the results of the birthday spacings test on an 
LFG(127,97,31) stream composed of a single stream and, on the right, re­
sults of the same test for a sequence composed of 5 parallel streams. The 
parallel stream passes the birthday spacing test while the single stream fails. 

50 BO 70 80 

Figure 3.11: Birthday spacings test results on an LFG(127,97,31) stream 
composed of 50 parallel streams. The parallel stream passes the test. 

An interesting observation is the discovery that parallel streams are 

more random than individual sequences. This phenomenon is observed for 

all values of I, and k tested, regardless of the initialization scheme employed. 
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Figures 3.10 and 3.11 depict this phenomenon in the case of the birthday 

spacings test applied to LFG(127,97,31). Figure 3.10 shows the failure of a 

single stream sequence in the left panel. On the right, an LFG(127,97,31) 

stream composed of 5 parallel streams passes the test. In Figure 3.11 a 

stream composed of 50 parallel streams is an excellent pass. It has been em­

pirically observed that combination generators perform better than either 

of the component generators and the performance improves as the number 

of parallel streams increases. A hueristic argument for this phenomenon 

is given in [38] and helps explain this observation. Parallel streams, each 

coming from a separate cycle, can be thought of as a type of combination 

generator. 

3.5.3 Improving Quality 

It is also found that the number of transients purged from the generator 

is important. It is well known that when using the canonical form, initially, 

the LSB behaves in a less than random way and is the same for all streams 

on each processor. For all other bit fields, including the next-to-least sig­

nificant, there is no such defect. Several possibilities exist for remedying 

this situation: i) the use of a separate, independent generator for only the 

LSB, ii) shifting off the LSB of the generated random number, so that the 

integers returned by the generator are in the range [0,230 — 1] instead of 

[0,231 — 1], iii) a huge run-up of the generator in order to purge this defect 

(empirical studies have shown that about 20 million random numbers must 

be purged from LFG(607,334,31)) or iv) simply neglecting this aspect, a 

viable stratagem when generating random, real numbers where the LSB is 

not important. 
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In this work, we choose to implement option (i). This strategy is 

easy to implement in this situation given that each processor has already 

initialized a shift register. One solution is to step the shift register with 

either Algorithm 3 or 4 and replace the least significant bit of XN with 

the output bit. The added computational expense is negligible and the 

enhancement results in immediate gains in accuracy. This particular bit 

replacement strategy was implemented and the experiment was repeated. 

All tests were passed at the bit-level, including the birthday spacings test 

on the low order bits, without any initial run-up. 

3.6 Applications-Based Test 

The performance and accuracy of the parallel ALFG is further assessed 

by employing it in an idealized problem in radiative transport. Figure 3.12 

depicts, in cross-section, a two-dimensional, Cartesian, prismatic geometry 

with two internal baffles. Baffles are typically used to collimate particulate 

transport or to regulate temperature. Only two baffles are modeled in this 

geometry. The more general situation, where many baffles are likely to be 

used, follows by induction. 

The cross-section of the geometry is square, of unit height and width. 

The slits made by the infinitely thin baffles are of height 2h, and the baffles 

are a width 2w apart. The source surface is on the left, and the target sur­

face is on the right. The geometry is vertically and horizontally symmetric -

although this fact could be used to reduce the computations, it will not be, 

as the purpose here is to illustrate the characteristics of the parallel ALFG. 

The outputs desired from this geometry are the shape or view factors 

from the source to the target, Fst, and from the source to the second baffle, 
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Figure 3.12: Two-dimensional geometry for radiative transfer square with 
baffles 

FSb2- Hottel's crossed-string method is used to compute the view factors, 

as all surfaces are diffuse and black. This problem is modeled numerically 

using the well known Monte Carlo ray tracing technique [36]. For small 

values of w and h, the computation of these view factors by Monte Carlo is 

very challenging due to the large number of emissions required to achieve 

accuracy in the very small answers. The emissions from the source surfaces 

must be distributed directionally and spatially very accurately, as any slight 

bias or aliasing will manifest in error. Thus, the problem is ideal to illustrate 

both the accuracy and performance (as many emmissions will be required) 

of the parallel implementation of the ALFG. 

For io = d = (5, applying Hottel's crossed-string method yields: 

F^ = 26(V2 - 1) (3.23) 

and 

FM = )J\ + 26* - y/2(± - 6). (3.24) 
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Applying equations 3.23 and 3.24 with 5 - 0.005 yields Fst = 0.0041421, 

and Fst,2 = 0.0029643. A typical assumption is that the average value 

of a large number of samples from most distributions is well modeled by 

a normal distribution with a specific expected value, /i, and variance, a2 

[71]. Both Fat and Fab2 are Bernoulli variables governed by a binomial 

distribution. Thus for sufficiently large trials, N, the distribution should 

be approximated by a normal distribution. With this in mind the 95% 

fractional confidence interval, S, can be derived from the Central Limit 

Theorem as [36]: 

8 = zy/(l - F)/FN (3.25) 

where F is the current fraction, N is the number of photons emitted and z is 

the cummulative normal distribution coefficient, which for a 95% confidence 

interval is about 1.96 [15]. The fractional confidence interval converges to 

0 as N —* oo thus guaranteeing convergence, albeit at a slow 0(iV_1/2) 

algebraic rate. 

The individual photons do not interact and are thus statistically in­

dependent. This leads to a fine-grained parallelism well suited for multi­

ple independent processors [36]. Letting N be the total number of pho­

tons emitted, Ni = — j ^ be the number of photons emitted by processor 

i — 0,..., (nproc — 1) and let Hi be the total number of hits observed by 

processor i. 

Each task initializes its own independent ALFG stream by following 

the steps outlined in this chapter. Then Monte Carlo estimates of Fst and 

Fsb2 are computed by emitting JVj photons per processor. After the emis­

sion phase, an all-to-all reduction collective, such as MPFALLREDUCE 
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is called to compute and store ^"=0* *"* * 1 Hi in each processor's local 

memory. The approximate fraction is finally computed as 

TT-*nproc— 1 TT 

F ~ / w \ - (3-26) 

A floating point, parallel implementaion of LFG(127,27,31) has been 

implemented on the NERSC Bassi system. The implementation generates 

a global seed, SG, on myid = 0 by calling the datcandJimeQ FORTRAN 

intrinsic and assigning 

SG = (sec+60x(min+60x(/ir+24x(day+30x(mon+12xj/r))))). (3.27) 

as the global seed which is then broadcast to all processors. Each processor 

subsequently initializes its binary shift register with the binary number 

SG + myid. The register is then stepped R — 126 x 30 times with the output 

bits placed sequentially in each processor's canonical rectangle. The ALFG 

is not run-up, instead the bit replacement strategy discussed previously is 

implemented. The parallel ALFG generates 3 random numbers per photon 

emission and computes Fst and Fsvi via Monte Carlo. 

In order to quantify the efficiency of this implementation, we define 

the commonly used metric, the parallel efficiency, pe. Let t\ be the time to 

execute an algorithm on a single processor, tnproc the time to execute the 

same algorithm on nproc processors then the parallel efficiency is defined 

as: 

pe = . (3.28) 

Parallel timing results for 128 x 107 photon emmissions are shown in 

Figure 3.13 (left). Figure 3.13 (right) depicts the parallel efficency for up to 

128 processors. Broadcast and reduction times are are seen to be negligible 
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as the parallel performance is observed to be excellent with nearly perfect 

scaling on 128 CPU's. 

The convergence characteristics are seen in Figure 3.14 to be excel­

lent as well. In this figure each processor emits 1 x 107 photons. Results 

are summed and estimates are computed. In this way, convergence can be 

viewed as a function of the number of processors. In order to obtain a sta­

tistically valid empirical distribution, 1,000 Monte Carlo estimates are com­

puted for a fixed number of processors. Given the expected 95% fractional 

confidence interval (3.25), the accuracy of the simulation can be assessed 

by counting the number of approximations that fall outside this envelope. 

For 1,000 trials, one expects to observe, on average, 50 approximations to 

fall outside the 95% confidence envelope. As evidenced in Table 3.7, the 

approximations of Fst and Fs&2 converge to their true values at exactly the 

rate predicted by the Central Limit Theorem. 

Num 
Tasks 

1 
2 
4 
8 
16 
32 
64 
128 

Fst Mean Error 
xMT4 

0.1739 
0.1129 
0.0819 
0.0590 
0.0407 
0.0281 
0.0203 
0.0145 

Fst Hits 
Outside Envelope 
(Expected = 50) 

69 
48 
53 
60 
52 
44 
45 
47 

Fsb2 Mean Error 
xlO-4 

0.2150 
0.1483 
0.1052 
0.0753 
0.0545 
0.0384 
0.0255 
0.0187 

Fsb2 Hits 
Outside Envelope 
(Expected = 50) 

53 
39 
52 
63 
56 
53 
48 
50 

Table 3.7: Monte Carlo convergence results; in each trial, active processors 
emit 1 x 107 photons, 1,000 trials are conducted for a given number of 
processors. Of the 1,000 trials, we expect, on average, 50 trials to fall 
outside the 95% confidence interval. 

57 



330 

300 

250 

lm 

3 150 

100 

50 

n 

Emissions N = 128 x 107 Photons 

] ' ' ' ' ' 

I 

L 

^~~~"a—; |-B . . 

-

-

' 

—+—a 

Parallel EBcieiscy N = 128 x 107 Photons 

0 20 «1 60 80 100 120 140 
Number of Processors 

Figure 3.13: CPU timing (left) and parallel efficiency (right) for parallel 
Monte Carlo photon heat transfer code using 128 x 107 photon emissions. 
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Figure 3.14: Monte Carlo convergence characteristics and theoretically ex­
pected 95% confidence intervals for Fst (left) and Fsb2 (right). 

3.7 Conclusions 

In conclusion, a high-performing, portable, parallel random number 

generator has been implemented and assessed. It has been demonstrated 

that multiple, parallel ALFG streams can be effectively initialized using a 

binary shift register with either a Fibonacci generator or a Galois generator. 

While both initialization strategies are effective, a Galois generator can be 
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implemented much more efficiently resulting in initialization times 1/6 of 

those achieved with a Fibonnaci generator. Furthermore, the statistical 

characteristics of the parallel RNG streams produced by initializing with a 

Galois generator are excellent - equally as good as those produced with a 

Fibonacci initialization. 

For sufficiently long register length, the sequential ALFG passes all 

stringent tests. This result is consistent with past observations. It is also 

found that interleaved parallel streams are more random than individual 

streams, a phenomenon explained by the fact that combination generators 

have been observed to perform better than either of the component gen­

erators. Therefore, sequentially sampling across different cycles is a viable 

strategy for improving a sequential ALFG. 

It is observed that the least significant bit is initially not as random as 

other bits. This is due to the fact that initializing the canonical rectangle 

results in an initial imbalance in the number of odd numbers in the RNG 

sequence. An effecive strategy for dealing with this transient defect is to 

replace the least significant bit by stepping the already initialized binary 

shift register with either a Fibonacci or Galois step. This effectively and 

efficiently (especially if using a Galois step) balances the register's even/odd 

output distribution. 

Furthermore, the proposed parallel ALFG has been implemented and 

executed in a numerically challenging Monte Carlo diffuse radiative transfer 

simulation. The simulation was run at large-scale on a high-performing, 

massively parallel architecture. The parallel implementation is observed to 

scale perfectly and to generate highly accurate results which converge at 

exactly the statistical rates predicted by the central limit theorem. 
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Chapter 4 

MODELING LARGE ANIMAL 
POPULATIONS FOR TRACEABILITY 

SIMULATIONS 

According to the USDA, the National Animal Identification System 

(NAIS) program consists of three components: premises registration, ani­

mal identification, and animal tracing. Animal identification provides an­

imal health officials with a starting point for animal tracing. As part of 

the animal tracing component, producers can choose an Animal Tracking 

Database (ATD) to record their animal's movements. In the event of an 

animal disease, epidemiologists will have access to these databases to de­

termine, via traceback, movements and locations of animals involved in the 

investigation. 

As an actual NAIS ATD does not exist, it is necessary to produce 

an appropriate surrogate or mock dataset for the purpose of conducting 

traceback simulations. This chapter outlines a Monte Carlo process that 

generates NAIS-compliant mock datasets. In particular, mock datasets are 

generated with a Monte Carlo discrete events simulator that uses current 

USDA statistics as input. 

This chapter begins with a discussion on probability distribution func­

tions and events probability matrices, continues with the details of the 
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steps used to produce an output file, and concludes with a summary of the 

datasets created. 

4.1 Theoretical Framework 

4.1.1 Probability Distribution Functions 

The output of the simulation is based upon probability distribution 

functions (PDFs) that describe the probability of occurances of discrete 

events and probability matrices that describe animal transactions which 

change the state of animal (e.g. birth, death, transfer into and out of 

premises). A discreet PDF can be defined mathematically in the following 

way, let H(x — N) be the unit Heaviside function shifted N units to the 

right 

H(x - N) = \ (4.1) 
I I if x > N 

and define the interval function H^M(X) = H(x — N) — H(x — M) for 

N < M, which is simply 1 for N < x < M and 0 elsewhere. A general 

discrete PDF describing k events is defined in terms of the interval function 

as 
k 

F(x) = J2fiHNi^Ni(x) (4.2) 
i = l 

where No < JVi < N2 < ... < Nk-i < Nk define k discreet bins of width 

Wi = Ni — Ni^i. The values of F(x) are constant within each bin. Each bin 

describes the fraction, /*, of occurances between the numbers JVj_i and A .̂ 

For example, if the PDF describes animal premises sizes, then bin 3 specifies 

the fraction of premises /3 that exist of sizes between N2 and N3. In general, 

bin % describes the fraction of observations /* that occurs between numbers 

iVj_! and Ni. The first bin always begins at -/V0 = 0. Some properties and 

constraints that must be observed are 
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1. Each PDF has a user selectable number of bins, A;. 

2. The spacing of the JVj is arbitary and need not be uniform. 

3. fi > 0 for all i. 

4. The sum of all fi must equal 1 or 100%. 

4.1.2 Animal Transactions and Animal Events 

The mock datasets consists of animal events, wherein an animal may 

change its state. Examples of animal events include: birth, tagging, death, 

sold, purchase, etc. For a detailed list of the actual 15 animal, NAIS events 

modeled see [52]. Herein, animal states are determined probabilistically 

using transactions that may result in one or more events, to allow for ani­

mal movement. For example, a transaction might be an animal being sold 

and consequently purchased - in this example, the animal existing on one 

premise is sold (first event) and then it is purchased and moved (possibly) 

to another premise (second event). Each such event is written to the output 

file as a row of data. In this example, two rows (events) are written to the 

output file as a result of a single transaction. Thus the output file created 

is an events output file. 

In the simulation, animal events are mapped to each animal transac­

tion. Event types modeled in this research are from the NAIS specifications 

cited in [44]. Of the 15 animal, NAIS events modeled only five are of par­

ticular interest for the present problem. The birth event, the in event, the 

out event, the transition to feedlot event, and the died on premises event. 

Each animal is "born" on a premises with a birth event. Some animals die 

on premises and are removed permanently from the simulation population. 
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Of particular interest, however, are the in and out events as well as the 

transition to feedlot event which all result in animal movement. Animal 

transactions which result in animal movement are important for traceabil-

ity simulations as these events induce an interconnected "social network" 

through which a pathogen may travel. 

The number of transactions an animal undergoes in a lifetime is deter­

mined probabilistically with a transactions PDF which describes the proba­

bility that an animal undergoes some number of transactions. Furthermore, 

to add fidelity, the events probabilities are modeled as varying with the num­

ber of transactions. For example, an animal undergoing many transactions 

is more likely to die on premises than an animal undergoing only a few 

transactions. 

Events are modeled using an events probability matrix. The rows of the 

matrix are the number of animal transactions and the colums correspond 

to the animal event probabilities. As an example, assume that the total 

number of events is 3: purchased, slaughtered, died. Assume further that 

the maximum number of events, excluding birth, is 2. Then Table 4.1 gives 

the probability of each event for the number of transactions an animal 

undergoes. The events probability matrix for this scenario would be: 

No. of 
Transactions 
1 
2 

purchased 
event 
0.0 
0.20 

slaughtered 
event 
0.90 
0.60 

died 
event 
0.10 
0.20 

Table 4.1: An events probability matrix 

fO.Q 0.9 0. l \ 
^0.2 0.6 0.2J 
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4.1.3 Algorithmic Approach 

The simulation generates an animal's event history by probabilistically 

determining a birth premises, birth date and the number of transactions the 

animal undergoes in its lifetime. For each transaction, one or more animal 

events is defined via an events probability matrix. The animal events trace 

the history of the animal's movements from birth up to either death or the 

present time. 

The simulation requires the following user input parameters for each 

distinct population type: 

1. The total number of animals, na, of a particular type . 

2. A PDF, A(x), that characterizes animal age. 

3. A PDF, T(x), that characterizes the number of transactions an animal 

undergoes. 

4. A PDF, P(x), that characterizes premises sizes. 

5. An events probability matrix M which characterizes animal events in 

terms of the number of transactions. 

Collectively, these inputs completely characterize an animal population. 

The simulation writes a mock ATD of animal events by implemeting the 

following steps for each of the NA animals: 

1. A birth event occurs and an animal age is selected from A(x). 

2. The animal's birth premise is selected from P(x). 

3. The birth event is written to the output file. 
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4. The number of transactions the animal undergoes is selected from 

T(x). 

5. Events are mapped, via M, to each transaction. 

6. Each event is processed and written to the output file. 

7. If the event is a death or missing, then processing for that animal 

ceases. 

4.2 Characteristics of Data Used in This Study 

Input data to construct the PDF's is obtained from [64]. Because of 

their differences in ages and premises-movement characteristics, 3 types of 

animals are simulated: mature cows, preweaned calves, and feedlot cattle. 

Age and transaction PDFs, A(x) and T(x) respectively, for mature 

cows are depicted in Figure 4.1. Premises placement PDF, P(x), for mature 

cows is shown in Figure 4.2, and the event probability matrix, M, for mature 

cows can be seen in Figure 4.3. For this population, the fraction of the 

mature cow population between 365 and 730 days old is 0.22 or 22% of the 

total mature cow population. The fraction of the population undergoing 

3 transactions is 0.32 or 32%. The total fraction of premises with mature 

cow populations between 0 and 10 animals is 15%. This does not mean, 

however, that 15% of the mature cow population reside on premises of this 

size. A simple calculation shows that, in fact, only 1.72% of the mature 

cow population is resident on premises within this size range. 

The PDFs, A(x), T(x), P(x) and events probability matrix M which 

characterize the preweaned calf population are depicted in Figures 4.4, 4.5 

and 4.6 respectively. 
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Figure 4.1: Mature cow ages PDF (left) and transactions PDF (right). 
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Figure 4.2: Mature cow premise placement PDF. 

Transactions 
1 
2 
3 
4 
5 

Purchased 
0.900 
0.800 
0.700 
0.600 
0.500 

Slaughtered 
0.05 
0.150 
0.250 
0.350 
0.450 

Died 
0.025 
0.025 
0.025 
0.025 
0.025 

Missing 
0.025 
0.025 
0.025 
0.025 
0.025 

Figure 4.3: Events probability matrix for mature cattle. 
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Figure 4.4: Preweaned calf ages PDF (left) and transactions PDF (right). 
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Figure 4.5: Preweaned calf premise placement PDF. 

Transactions 
1 
2 
3 

Tagging 
1.00 
0.00 
0.00 

Purchased 
0.00 
0.90 
0.90 

Slaughtered 
0.00 
0.00 
0.00 

Died 
0.09 
0.09 
0.09 

Missing 
0.01 
0.01 
0.01 

Figure 4.6: Events probability matrix for preweaned calves. 

PDFs and event probability matrix for feedlot cattle are depicted in 

Figures 4.7, 4.8 and 4.9. It is noted that all animals, including feedlot ani-
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mals, are born and placed onto a birth premises. However, feedlot animals 

are eventually transitioned to feedlot premises unless they die or are miss­

ing. Mature cows and preweaned calves can be purchased, and move among 

premises. 

4.3 Parallel Implementation 

The events simulator is easily parallelized due to the independent na­

ture of the underlying Monte Carlo process. Animal event generation can 

execute concurrently and independently. The total number of animals to 

be simulated is evenly distributed among processors. Each processor reads 

the input file containing PDFs and events matrices. The current imple­

mentation is simple with respect to parallel I/O; each processor writes the 

events it is responsible for to a local output file. A more sophisticated 

implementation could write to a single, global output file. A complicated 

parallel I/O model is not necessary for the present effort, as local files can 

simply be concatenated using the unix " cat" command. However, this can 

be accomplished, for example, with MPI-I/O (a common parallel I/O API). 

The simulation is parallelized as follows: 

1. Each processor reads the input file containing the PDFs and events 

matrices. 

2. Each processor initializes an ALFG stream (see Chapter 3). 

3. Processors concurrently execute the same instructions on disjoint sets 

of animals and writes the output to a local, private file. 

4. The local files are concatenated into a single, large file with the unix 

"cat" command. 
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Parallel execution is independent and, with the exception of the ALFG 

initialization, requires no communication. It is therefore expected to scale 

linearly. Table 4.2 contains parallel performance and timing results of the 

simulation for 2 million animals and verifies the expected performance. 

Processors 
1 
2 
4 
8 
16 

Time (sec) 
79.45 
40.12 
20.27 
10.16 
5.05 

Parallel Efficiency 
1.0 

0.990 
0.979 
0.977 
0.983 

Table 4.2: Parallel performance results simulating 2 million animals. 

4.4 Verification of Output 

The output of the Monte Carlo discrete events simulator is verified by 

comparing the statistics of a simulated population with the input PDFs. 

Results from runs simulating a population consisting of 2 million animals 

generated on 5 processors of the NERSC Bassi system are presented. In 

this simulation, 800,000 mature cows, 700,000 preweaned calves and 500,000 

feedlot cows are simulated. Figure 4.10 shows the age (left) and number of 

transactions (right) PDFs for the simulated mature cow population dataset. 

In Figure 4.11, the size of every birth premises is plotted above the premises 

ID number. All results are in excellent agreement with the input PDFs for 

mature cows. 

Figure 4.12 shows the age (left) and number of transctions (right) PDF 

for preweaned calves, and Figure 4.13 depicts the same results for feedlot 

cows. Figure 4.14 shows the population of every feedlot premises plotted 

above the premises ID. The population is recorded only after all feedlot 
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animals have been transitioned into the feedlots. Again, all results are in 

excellent agreement with the input PDFs. 

4.5 Datasets Produced 

For traceback modeling, several datasets of varying size have been gen­

erated. The largest of these mock datasets contains the records for 100 

million animals resident on over 1.5 million premises consisting of over 200 

million records. All datasets are simulated with the same input PDFs. The 

datasets are summarized in Table 4.3. The files range in size from 0.50 

GBytes for 2 million animals up to 24.0 GBytes for 100 million animals. 

No. 
Animals 
2 million 
10 rnillion 
20 million 
50 million 
100 million 

No. 
Premises 

35,433 
187,706 
354,323 
938,532 

1,771,616 

No. 
Events 

4,290,418 
21,045,631 
42,905,964 
105,218,330 
214,516,041 

Filesize 
(GBytes) 

0.5 
2.5 
5.0 
12.0 
24.0 

Table 4.3: Summary of datasets generated for subsequent traceback mod­
eling. 

4.6 Conclusions 

In conclusion, a parallel Monte Carlo discrete events simulator capa­

ble of generating large, NAIS-compliant mock datasets for the purpose of 

conducting traceability simulations has been presented. The algorithm has 

been implemented in parallel on the target architecture of Chapter 2. The 

output of the simulation has been extensively tested and verified for accu­

racy. The parallel implementation employs the parallel ALFG in the Monte 

Carlo phase due to the size of datasets generated. Parallel performance of 

70 



the Monte Carlo phase is observed to be excellent, the simulation is highly 

scaleable and capable of generating massive datasets on the target archi­

tecture. For the present effort, datasets consisting of 2, 10, 20, 50, and 100 

million have been generated. 
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Figure 4.7: Feedlot cattle ages distribution (left) and transactions PDF 
(right). 

Feedlot Cattle Premises Size Distribution 

Figure 4.8: Feedlot cattle premise size PDF. 

Transactions 
1 
2 
3 
4 
5 
6 

Purchased 
0.950 
0.850 
0.750 
0.650 
0.500 
0.550 

Slaughtered 
0.040 
0.140 
0.240 
0.340 
0.440 
0.540 

Died 
0.009 
0.009 
0.009 
0.009 
0.009 
0.009 

Missing 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 

Figure 4.9: Feedlot cattle events probability matrix. 
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Figure 4.10: Age (left) and transaction number PDFs (right) for a simulated 
mature cow population. The simulation was run on five processors. 

Birth Premises Steady-State Populations 

Figure 4.11: Simulated birth premises size distribution. 
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Figure 4.12: Simulated ages (left) and transactions (right) distributions for 
a population of preweaned calved. Simulation was run on five processors. 
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Figure 4.13: Simulated ages (left) and transactions (right) distributions for 
a population of feedlot cows. Simulation was run on five processors. 

Feedlot Premises Steady-State Populations 

Figure 4.14: Simulated feedlot premises size distribution after all animals 
have transitioned. 
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Chapter 5 

MEASURED PERFORMANCE AND 
SCALABILITY OF DATASET 
TRACEBACK PROCESSING 

Traceability is defined as the ability to trace (identify and measure) all 

the stages that led to a particular point in a process that consists of a chain 

of interrelated events. Diesease tracing can be thought of as a two step 

process, traceback-hom where did the disease come? and trace forward-to 

where has the disease spread? Here, "traceback" will be used generically 

for both functions, back and forward. In 2008, the current U.S. food supply 

contains some 108 million head of cattle [65]. Achieving rapid and accu­

rate traceback on a "National" dataset clearly requires a computer. But 

the questions remain; what computer resources are required? What types 

of algorithms and programming models should be used? How do system 

resources and computational performance scale with population size? In 

order to answer these questions, the techniques of computational science 

are applied in this chapter. 

Due to the size of the "National" dataset produced in Chapter four, 

an SMP supercomputer consisting of large, shared memory nodes, each 

containing a small number of processor cores, interconnected over a high 
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bandwidth switch is a good candidate architecture onto which a high-

performance tracing algorithm may be mapped. In Chapter 2, it is ar­

gued that a hybrid parallel programming model is the best way to make 

efficient use of system memory on such a system. One way to implement 

a hybrid parallel programming model is to use OpenMP for shared mem­

ory multi-threading within a node and MPI to pass messages between and 

amongst nodes. This approach has been applied to many scientific appli­

cations [16, 25, 26, 28, 27, 35]. Recent scientific work uncovers the com­

plexity of the many aspects that affect the overall performance of hybrid 

programs [12, 33, 50, 48]. For some problems, hybrid performance can be 

inferior to that of a pure MPI implementation, however, substantial perfor­

mance gains have been observed for certain problems run on SMP clusters 

[12, 13, 17, 23, 33]. Indeed, this has been demonstrated in the architectural 

study conducted in Chapter 2. 

The goal of this chapter is to devise an efficient and scalable mapping of 

a disease tracing algorithm and to exercise it on the mock datasets generated 

in Chapter four. Of particular interest is the parallel performance as the 

problem size is scaled-up from 2 million animals through intermediate sized 

datasets to 100 million animals, a "National" dataset. The objectives in 

doing this are to characterize the computational requirements of the NAIS, 

determine the feasibility of a 48 hour traceback, provide empirical evidence 

to support or deny the claim that high-performance can be achieved with 

a hybrid programming model, and to identify and address computational 

performance bottlenecks associated with large-scale tracing algorithms. 

In the remainder of this chapter, a tracing algorithm is outlined, a 

hybrid OpenMP/MPI implementation is mapped onto the target architec-
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ture, large-scale tracebaek simulations are conducted and the parallel per­

formance is measured as the problem is scaled-up in size from 2, 10, 20, 

50 and 100 million animals. Finally, performance data are presented and 

analyses follow. 

5.1 An Algorithmic Approach 

Tracing algorithms typically require nested loops. Such algorithms 

represent an important class of computationally intensive scientific applica­

tions and pertinent algorithms have been well studied (see [21] for a good 

overview). These algorithms usually impose various data dependencies that 

result in the need for frequent data exchange among processors when par­

allelized. 

5.1.1 Definitions 

We begin by first making some simplifying assumptions and defining 

relevant quantities. The term coresident is used frequently throughout the 

rest of the chapter and has a precise meaning. In particular, two animals 

are coresident if they reside on the same premises at the same time. We 

distinguish between three basic states of animal health; Infected - it has 

been confirmed that this animal has an infectious disease. Exposed - an an­

imal is exposed if it has been coresident with either an exposed or infected 

animal. Unexposed - the animal is neither exposed nor infected. Expo­

sures are categorized by coresidency level, this quantity characterizes how 

many degrees removed an exposed animal is from the infected animal. A 

coresidency level of 1 implies a direct exposure to the infected animal which 

has coresidency level 0. In general, an animal with coresidency level i is 

separated from the infected animal by i degrees and "transmits" i + 1 level 
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exposures to its unexposed coresidents. The smaller an animal's coresidency 

level, presumeably, the higher the risk that it may itself be infected. 

The movement of animals over time induces a "social network" through 

which a pathogen may travel via direct or indirect contact on a common 

premises. The well known small world phenomenon (also known as six-

degrees-of-separation) makes the following highly likely; most, if not all, 

animals are exposed at some level, and animals that are exposed have been 

coresident with several different exposed animals at different times in their 

lives. The recorded exposure time is the earliest over all such exposure times 

and the recorded coresidency level corresponds to the minimum level over 

all exposures. 

5.1.2 A Basic Tracing Algorithm 

Tracing is accomplished in parallel at each level and involves recur­

sive scatter-gathers of animal coresidency levels as depicted in Figure 5.1. 

Suppose T(C) is a retrival function that returns the coresidents of C, then 

tracing can be solved by recursion, 

Ci+1+-T(Q). (5.1) 

The initial state is a list containing a single infected animal, C0. After 

one iteration, C\ <— T(Co); the new list contains N\ primary coresidents 

removed one-degree from the infected animal. After two iterations, Ci <— 

T(C\)\ the list contains N2 secondary coresidents. The process continues, 

in principle, until the null set is returned. In practice, however, if we have 

not yet reached the null set, then we stop after fourteen iterations. 
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Figure 5.1: A recursive scatter-gather algorithm for disease tracing. Cj 
is scattered into Ni retrieval tasks. Coresidents are gathered, concatenated 
and scattered again. Scatter-gather pairs enforce barrier synchronization at 
the beginning and end of each iteration. In principle, the algorithm proceeds 
until the null set is returned, in practice we trace through fourteen levels. 

5.1.3 Organizing Efficient Data Structures 

In this section, the retrieval function is described. Efficient search and 

retrieval requires precomputing data structures consisting of indexed point­

ers [1, 63]. In our simulation, events are sequential in time for each animal. 

It is simple to transform a time sequential dataset into an animal sequential 

dataset, so without loss of generality, assume the data are sequential with 

respect to animal identification number, / , where / = l,...,na and na is 

the number of animals tracked in the data file. Each event written to the 

file is a line of data consisting of a unique animal identification number, / , 
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Algorithm 5 The full traceability algorithm with all four computational 
stages: the data is read into memory, data structures are precomputed, the 
infected animal is traced through L levels, and the results are written to 
disk. The vast majority of program execution time is spent on the traceback 
phase which is enclosed within the nested loop. 

1: •program main 

2: common A, A*, R, R*, P, X, Ein, E^t 

3: read (A, P, Eim E^, C0) 

4: R^-sort(P) 

5: build R* A* 

6 

7: 

8 

9 

10 

11 

12 

13 

for (i = 0 : (L - 1)) do 
N{ «- length(Ci) 

for (j = 1: Nt) do 

Ci+1*-T(C!) 

end for 
end for 

write X 

end program 

a premises identification number, p, where p = 1,..., np and np is the total 

number of premises, and a time of entry into or exit out of p. 

After the data file is read into memory, the data are organized into 

the following data structures; let A1 be an array of animal i.d.'s which is, 

by construction, already sorted by index in ascending order. If animal 1 

undergoes k events in its lifetime, then ^41:fc = 1. Let P% be an array of 

premises i.d.'s. Let E\n and E^ be arrays containing arrival and departure 

times respectively of the ith record, where i — 1, ...,nr and nr > na is the 

total number of data records. Let X be an na x 2 array that contains the 

coresidency level and exposure time for every animal. Initially, for every 

animal, the coresidency level is set to " — 1" and the exposure time is set to 

oo. 

81 



Traceback is performed by keying on the premises animals have occu­

pied. Fast retrival of premises i.d. is accomplished by initially sorting the 

array, P, in ascending order and storing the sorted indices in an array, R\ 

where PR* is monotonically increasing with i. Animal records can then be 

gathered quickly using the precomputed pointer A], where j — 1,..., na+1. 

Aj points to the first event address of animal j in array A. Similarly, 

premises records are available for quick retrieval using the pointer P%, where 

k — 1,..., np + 1. P£ points to the first record address of premises k. 

Algorithm 5 details the the four distinct computational phases; input, 

precompute data structures, trace, and output. Algorithm 6 details the 

retrieval function and its use of the data structures for efficient search and 

retrieval. Important points to note about this implementation: 

1. The algorithm consists of four nested loops. 

2. Exhaustive searching is avoided entirely in exchange for a single sort; 

this reaps large dividends by reducing search and retrival complexity 

from quadratic to linear complexity. 

3. The single sort can be accomplished in 0(nr * log(nr)) time. Here, 

we use a heap sort due to its predictable performance. 

4. The time it takes to sort the data and precompute the pointers is negli­

gible compared to the time it takes to sequentially perform traceback. 

5. The array, Rl, is a permutation of the integers [1 : nr] governed by 

the input PDFs in Chapter four. For all practical purposes it behaves 

as a random sequence of integers. 
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6. While "virtual" premises and event addresses, A* and P*, exhibit spa­

tial locality and can be accessed with unit stride, the actual addresses 

they point to, in general, are distributed throughout memory. 

Algorithm 6 The retrieval function T(ri) efficiently retrieves coresidents 
by accessing precomputed data structures. 

1: function T(n) 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

common A, A*, R, R*, P, X, Ein, E^t 

count <— 0 

for (i = A*n : (^n + 1 ) - 1)) do 

for (j = R% : (R*{pi+1) - 1)) do 

read Eg, E& 

if {coresident) then 
count *— count + 1 

update XA 

end if 
end for 

end for 
return coresidents 

5.2 Mapping the Algorithm 

As noted by Foster [20], a "good" parallel algorithm has four fundamen­

tal requirements: concurrency, scalability, locality, and modularity. A good 

parallel program strikes a balance between the often conflicting goals of 

maximizing concurrency, while simultaneously minimizing non-local mem­

ory access. 

There are two basic parallel computing paradigms: shared memory 

and distributed memory. In the shared memory model, processors share a 

global address space. A shared memory program is a collection of threads of 
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control which can be created dynamically mid-execution. Threads commu­

nicate implicitly by writing and reading shared variables and coordinate by 

synchronizing on shared variables. In the distributed memory model, the 

total physical memory is distributed over a collection of processors. Each 

processor executes the same algorithm under a separate address spaces and 

thus global variables declared in an distributed memory program are pri­

vate to each processor. Processors must explicitly communicate with each 

other through message passing in order to access remote data. 

SMP clusters can be thought of as an hierarchical two-level parallel 

architecture since they combine features of shared and distributed memory 

machines. On the target architecture, it is possible to mix OpenMP with 

MPI, and a convincing case is made to do so in Chapter 2. In the following, 

we first develop a pure MPI parallelization of the tracing algorithm and 

subsequently extend it to a hybrid OpenMP/MPI model. Our program 

design approach follows the parallel software engineering methodolgy of 

Foster [20]. 

5.2.1 An MPI Approach 

MPI is the de facto message-passing standard [42] widely used for high-

performance parallel applications and has been implemented on numerous 

computer systems. In this section, a pure MPI implementation of Algorithm 

5 is designed. 

Partition Due to the recursive dependence, Q+i <— T(Cj), it is not possi­

ble to partition Figure 5.1 horizontally across levels i. The natural partition 

is depicted in Figure 5.2 where TV, < na retrieval tasks are created at each 
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Figure 5.2: Communication channels for a single iteration, Ci+i <— T(Ci). 
Three distinct communication phases are defined. Phase I scatters Ci into 
Ni retrieval tasks. In Phase II, retrieval tasks retrieve coresidents concur­
rently by asynchronously requesting data from data tasks. In phase III, 
retrieval tasks merge their lists to the master which synchronizes X and 
prepares to scatter the new list at the start of the next iteration. Scatter-
gathers are barrier synchronization events. 

iteration, a master task coordinates and schedules their execution, and sep­

arate data tasks service retrieval requests. 

Partitioning in this manner has several attractive features. It creates 

a very large number of fine-grained retrieval tasks, several orders of magni­

tude larger than the number of available processors, all of which can execute 

concurrently. This partition exposes the maximum opportunity for concur­

rent execution and allows for the most flexibility in design. Retrieval tasks 

are of comparable size; each is responsible for applying T to a single suspect 
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coresident. Retrieval tasks scale ideally; the number of retrieval tasks in­

crease with population size, but the amount of computation each performs 

remains constant. This partition is not optimal, however, as data tasks do 

not scale well with problem size. Data tasks grow in size and not in number 

as population size scales-up. 

Figure 5.3: Tasks are agglomerated and mapped onto two MPI tasks. Tasko 
owns the master task and is thus the root for collective communication. 
Both tasks also function as workers. Each MPI tasks also contains a repli­
cated copy of the data structures required for efficient search and retrieval. 
Communication paths that intersect the red dividing line require MPI col­
lective communication for data synchronization. 

Communication Figure 5.2 provides a detailed depiction of the required 

communication channels and dependencies. Three distinct communication 

phases are identified. Phase I scatters Cj into Ni retrieval tasks. In Phase 
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II, tasks concurrently retrieve coresidents via asynchronous data requests 

serviced by data tasks. In phase III, retrieval tasks merge their lists to 

the master which synchronizes X, and prepares to scatter the new list at 

the start of the next iteration. Scatter-gathers are barrier synchronization 

events. 

Communication among retrieval tasks and data tasks is asynchronous, 

unstructured and voluminous. Retrieval tasks can execute concurrently, 

however speedups will not scale if data tasks must sequentially process re­

quests from retrieval tasks. This is likely the case in a message passing 

model which requires two-sided communication. In this case, data tasks 

must continuously probe for incoming requests and are only able to process 

a single request at a time. In a shared memory model, this problem is allevi­

ated by one-sided communication however, as seen in Chapter 2, bandwidth 

contention may degrade performance. Too many retrievals and not enough 

data tasks to effectively service them is the primary concern for this com­

munication model. 

Agglomeration Asynchronous communication is reduced by agglomer­

ating retrieval tasks and a replicated copy of the data tasks into a single 

MPI task. The memory requirements of each MPI task scales as 0(na). 

The head MPI task (myid = 0) plays the role of the master task and 

scatters Q into chunks of size Ni/nproc to all MPI tasks (itself included). 

The retrieval tasks allocated to an individual MPI task are processed se­

quentially. However, the collection of MPI tasks can process their retrieval 

tasks concurrently and independently of one-another. When all retrievals 

have completed, the master MPI task gathers the resultant coresidents, con-
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catenates the coresidents into C i+1, synchronizes the state X, and finally 

scatters Ci+i signaling the start of the next iteration. 

Data replication is a common technique intended to improve locality 

with minimal software engineering cost [19, 20]. The principle disadvantage 

is, of course, that the memory requirements do not scale. However agglom­

erating this way has some attractive features. In particular, it maximizes 

concurrency and minimizes communication by increasing locality. Also, by 

replicating the data, the number of retrievals that can be processed concur­

rently is increased. 

Mapping Each MPI task is mapped onto one of nproc physical proces­

sors. Conceptually, this mapping is equivalent to partitioning the domain 

in the vertical direction as shown in Figure 5.3, and assigning each piece to 

a processor. Arrows crossing the solid, red partition-line requires an MPI 

collective communication. In this example, Tasko contains the master task 

and therefore this task is the root for scatter/gather operations. The nec­

essary modifications to Algorithm 5 are made in Algorithm 7. Note the 

placement of the MPI initialize and finalize directives in the algorithm. A 

single processor reads the data and precomputes the data structures, and 

only after these phases are the MPI tasks forked. Once the tracing phase is 

complete, the MPI tasks are dissolved and only the master task writes the 

output to disk. 

Analysis This mapping is clearly problematic. MPI tasks grow in size far 

too fast. The memory requirments of this implementation scale as 0(nproc* 

na). This mapping is neither scalable with problem size nor processor count. 

The total aggregate memory available on the target architecture is about 2 
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TBytes, however, it is not globally addressable. The sequential algorithm 

(Algorithm 5) is bound by the amount of memory available on a single node, 

32 GBytes. The MPI mapping is bound by 1/8 of the available memory on 

a node, 4 GBytes. This effectively reduces the range of problems accessible 

to the MPI mapping to below that of the sequential algorithm. Despite the 

fact that the mapping maximizes locality and concurrency, it is an inefficient 

use of memory resources. 

Algorithm 7 A pure MPI implementation of Algorithm 5. 
1: program mpi main 
2: common A, A*, R, R*, P, X, Ein, E^t 

3: read (A, P, Ein, E^, C0) 
4: R*-sort(P) 

5: build R* A* 

6: MPI-Init(nproc, myid) 

7: for (i = 0 : (L - 1)) do 
8: Ni <- length(Ci) 

9: MPIScatter(Ci) 
10: for (j = 1 : (Ni/nproc)) do 

11: Ci+1 - T(Cj) 

12: end for 
13: MPIMather(Ci+i) 
14: end for 
15: MPI-FinalizeQ 

16: write X 

17: end program 

5.2.2 A Hybrid Approach 

In the pure MPI implementation, concurrency and locality have been 

maximized at the expense of scalability. This inefficient use of memory 

can be ameliorated by extending the pure MPI implementation to a hybrid 
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Algorithm 8 A hybrid OpenMP/MPI implementation of Algorithm 5. 
1 

2 

3: 

4: 

5 

6 

7: 

8 

9 

10 
11 
12 

13 

14 
15 
16: 

17: 

18 

19 

20 

21 

program ompi mam 
common A, A*, R, R*, P, X, Ein, E^t 

read {A, P, Ein, E^t, Co) 
R«- sort(P) 
build R* A* 

MPI-Init(nnode, myid) 

for (i = 0 : (L - 1)) do 
JVj «- length(Ci) 

MPI Scatter (d) 

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE^) 
!$OMP DO SCHEDULE(STATIC) 
for (j = 1 : (Ni/nnode)) do 

Cj+i <— T ( C j ) 

end for 
!$OMP END DO NOWAIT 
!$OMP END PARALLEL 

MPI Mather (d+i) 

end for 
MPI-FinalizeQ 

write X 

end program 

OpenMP/MPI implementation. In particular, a single MPI task, as pre­

viously defined, is mapped to a single SMP node. This reduces the total 

number of MPI tasks by a factor of eight. Within a node, each MPI task be­

comes a master OpenMP thread and is responsible for forking a team of re­

trieval threads which concurrently and asynchronously retrieve coresidents. 

Node 0 is the master node and the root for MPI scatter/gather operations. 

In the hybrid model, coresidency levels are scattered and gathered to and 

from SMP nodes via MPI collectives, while retrievals are processed concur­

rently within a node via shared memory multi-threading. When all retrieval 
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tasks complete, control is returned to the master thread which prepares for 

node synchronization. The necessary extension is found in Algorithm 8, it 

only requires a single OpenMP do-loop directive judiciously placed. 

This approach provides a more efficient use of memory. The memory 

is again bound to the size of an SMP node, as it is for the sequential al­

gorithm. However, concurrency is increased and the memory requirements 

scale as 0(na * nnodes). Threads can process retrievals concurrently, how­

ever this doesn't necessarily imply perfect parallel scaling within a node. 

As demonstrated in Chapter 2, data access patterns with very large or very 

small strides can result in shared memory contention and result in poor 

parallel performance. As population size increases, so too does the number 

of records and premises. With this we should expect the average access 

stride to increase as well. 

5.3 Numerical Results 

In this section dataset processing performance results are presented. 

The datasets are of the following size: 2 million animals (0.5 GBytes), 10 

million (2.5 GBytes), 20 million (5 Gbytes), 50 million (12 GBytes) and 100 

million (24 GBytes). For each dataset the hybrid model presented in Algo­

rithm 8 is executed on a variable number of nodes. Each node employs all 8 

available threads, unless otherwise stated. The algorithm is implemented in 

Fortran 90 and is compiled on the target architecture with an IBM rnpxlf-r 

compiler. The compiler optimization level is -04, and the -qsmp=omp flag 

is set enabling OpenMP. On the target architecture the compiler produces 

20 GByte large-page 64-bit executeables. The objective of the code is the 

same in each numerical experiment; trace a single infected animal, chosen 
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at random, through 14 coresidency levels, map the coresidency level of each 

exposed animal, and record the earliest exposure time. 

The total execution times reported are the sum of the execution times 

for the scatter-gather (MPI) phase with the execution time for the retrieval 

phase (OpenMP). The processor times required to precompute the relevant 

data structures (pointers) are not included in the timings. The expected 

scaling versus the size of the data for the heap sort operation [32] is observed 

and execution times for preprocessing range from 3.9 seconds for 2 million 

animals up to 13 minutes for 100 million animals. The sequential sorting 

performance can be improved upon by either parallelizing the heap sort 

or simply employing an optimized intrinsic such as Fortran's quick sort 

routine (QSort). Therefore, attention hereinafter is on parallel execution 

time. Timings presented measure events occuring in between the initialize 

and finalize MPI directives in Algorithm 8. 

5.3.1 Observed Performance 
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Figure 5.4: On the left, parallel timing results for 2 million animals, and on 
the right, parallel timings for 100 million animals. Single processor time is 
722 sec and 62,039 sec respectively. 
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MPI Synchronization Times 

• 10M 

Figure 5.5: Time spent performing global MPI commuincation as a function 
of processor count. Execution time scales as 0(log(nnodes)). 

Timings Figure 5.4 shows timing results for both 2 million and 100 mil­

lion animals. Based on raw timing alone, parallel results are excellent. On a 

single processor it takes 722.11 seconds, or 12 minutes, to trace an infected 

animal through a population of 2 million animals. Utilizing all 512 available 

processors, the time is reduced to 3.31 seconds. For 100 million animals the 

same exercise takes over 17 hours on a single processor. Utilizing all 512 

available processors the execution time is reduced to 361.5 seconds, or just 

slightly over 6 minutes. Intermediate datasets scale linearly with population 

size, parallel timings follow and timing plots are omitted. 

MPI Commuincation Time The execution times presented in Figure 

5.4 are obtained by summing the execution time of the retrieval phases, 
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which decrease with processor count, with the execution times of the scatter-

gather phases, which increase with processor count. Barrier synchronization 

is achieved with global MPI communication routines. The communication 

overhead associated with these opertations is shown in Figure 5.5. The 

overhead is observed to scale as 0(log(nnodes)), which is the expected 

behavior. 

In Chapter 2, it is shown that large messages achieve peak bandwidth; 

in this implementation, messages are na double-precision words (8-bytes) 

in size. Due to the large message size, MPI communication overhead is 

dominated by stream rate and not latency. The implementation exploits 

the high bandwidth HPS switch by hiding the latency associated with col­

lective communication with large messages. MPI communication overhead 

is observed to be very small in comparison to computation times. Even for 

the largest dataset, 100 million animals, the total communication overhead 

on 512 processors is only slightly larger than 2 minutes. Small in compar­

ison to 17 hours on a single processor, however this is significant in terms 

of the total execution time of about six minutes on all 512 processors. 

The parallel tracing algorithm requires global and synchronous MPI 

communication. In Chapter 2 it is demonstrated that global MPI commu­

nication is more expensive than local communication. The hybrid model 

pays large dividends in this case by significantly reducing the number of 

MPI tasks; it is much easier to synchronize 64 tasks than it is to synchro­

nize 512 tasks. 

Parallel Efficiency and Speedup Raw timings are by no means a com­

plete characterization of performance. Figure 5.6 shows the speedup (top) 
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phase of the hybrid implementation. 



Nodes 

1 
1 
2 
4 
8 
16 
32 
64 

Procs 

1 
8 
16 
32 
64 
128 
256 
512 

OpenMP 
(sec) 

62,028.438 
13,865.177 
6,870.025 
3,534.795 
1,738.886 
899.335 
467.733 
238.296 

MPI 
(sec) 

10.475 
9.354 

45.083 
59.582 
86.679 
98.850 
105.850 
123.220 

Total 

62,038.913 
13,874.531 
6,915.108 
3,594.377 
1,825.565 
998.185 
573.583 
361.516 

Parallel 
Efficiency 

1.0 
0.559 
0.561 
0.539 
0.531 
0.486 
0.423 
0.335 

Speedup 

1.0 
4.471 
8.972 
17.260 
33.983 
62.151 
108.160 
171.607 

Table 5.1: Parallel performance results for 100 million animals. 

and parallel efficiency (bottom) for all sized problems. The data reveal in­

sight not apparent in raw timings. Table 5.2 shows performance data for 2 

million animals and Table 5.1 shows performance data for 100 million ani­

mals (similar tables for all datasets are found in Appendix B). The far left 

column of the tables contains the number of nodes and hence the number of 

MPI tasks. The first two entries in this column are single node results, the 

first, a single processor and the second, all eight processors within a node. 

Since no MPI communication occurs with a single node, performance degra­

dation that occurs between the first two entries of the tables is attributed 

exclusively to shared memory. 

The parallel efficiency is particular telling; the hybrid algorithm, when 

executed on 2 million animals and utilizing all 512 processors, is observed 

to achieve a 42% parallel efficiency and a speedup of 218. Performance 

degradation is due almost exclusively to MPI overhead. Shared memory 

performance is seen to be excellent, indeed nearly perfect at 97% parallel 

efficiency and a 7.75 speedup. MPI overhead degrades efficiency at a rate 

of about 0.1077% per processor. 
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Nodes 

1 
1 
2 
4 
8 
16 
32 
64 

Procs 

1 
8 
16 
32 
64 
128 
256 
512 

OpenMP 
(sec) 

721.921 
92.979 
46.490 
23.606 
11.874 
5.964 
3.175 
1.701 

MPI 
(sec) 

0.189 
0.210 
0.530 
0.630 
0.970 
1.390 
1.440 
1.609 

Total 

722.110 
93.189 
47.020 
24.236 
12.844 
7.354 
4.615 
3.31 

Parallel 
Efficiency 

1.0 
0.969 
0.960 
0.931 
0.878 
0.767 
0.611 
0.426 

Speedup 

1.0 
7.749 
15.357 
29.795 
56.219 
98.191 
156.470 
218.095 

Table 5.2: Parallel performance results for 2 million animals. 

At larger scale, beginning with 10 million animals, the observed perfor­

mance is quite different. Most noteably, in Figure 5.6, a sharp degradation 

in parallel efficiency is observed between 1 and 8 processors indicating a 

degradation in shared memory performance. This degradation is compen­

sated for by an improvement in MPI performance as seen by the "flattening" 

of the slope over the interval 8 — 512. The asymptotic MPI performance ap­

pears at or slightly before 10 million animals, as successively larger datasets 

also show nearly the same degradation rate of about 0.04% per processor. 

For 10 million animals the increase in MPI performance offsets the 

degradation in shared memory performance at around 256 processors and 

corresponds to the intersection of the two parallel efficiency curves in Fig­

ure 5.6. When using more than 256 processors, the algorithm processes 

10 million animals more efficiently than it does 2 million animals. For 10 

million animals utilizing all 512 processors, a speedup of nearly 252 is ob­

served corresponding to a 50% parallel efficiency. This is the peak observed 

parallel efficiency using all 512 processors. For datasets larger than 10 mil­

lion animals, shared memory performance declines sharply in between 10 
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and 20 million animals, and then appears to slowly approach a steady-state 

degradation in parallel efficiency of 45%. 

When executed at largest scale, 100 million animals, and utilizing all 

512 processors, a speedup of nearly 172 is observed corresponding to a par­

allel efficiency of 33.5%. At this scale, the hybrid algorithm requires nearly 

a TByte of memory and stresses the full system resources; memories, caches, 

processors and network. The hybrid model requires the full utilization of 

all system resources to reduce the tracing time from 17 hours down to 6 

minutes. The observed speedup is analogous to the difference between walk­

ing at a brisk pace of 5 miles an hour and traveling in a supersonic jet at a 

speed of over mach 1. 

5.3.2 Analysis 

OpenMP Speedup OpenMP Parallel Efficiency 

Threads Threads 

Figure 5.7: Speedup (left) and parallel efficiency (right) within an SMP 
node. For large datasets (> 10 million animals), large strides increase main 
memory traffic. OpenMP threads compete for shared memory bandwidth 
and performance degrades. Total parallel performance is bound by this 
bottleneck. 

Efficiency is determined by shared memory parallel performance. Within 

a node, the performance decreases as the datasets grow in size. In order to 

98 



better understand this performance bottleneck, refer back to Figure 2.1 in 

Chapter 2 which details the POWER5 microchip architecture. Each chip 

consists of a single processor core and a cache hierarchy consisting of a 2 

MByte on-chip L2 cache, and a 36 MByte off-chip L3 cache. The L3 cache 

resides on the processor side of the fabric, thus L3 traffic does not increase 

traffic on inter-chip buses. 

In Figure 5.7 the effects of shared memory contention can be seen in 

both the parallel speedup (left) and the parallel efficiency (right) for 10, 

20 and 50 million animals. The small (2 million animal) dataset is small 

enough to make efficient use of the large L3 cache; memory contention is 

not observed and shared memory performance is excellent. Starting around 

10 million animals, datasets become so large that cache hierarchies can no 

longer be efficiently utilized resulting in more memory traffic. Shared mem­

ory performance suffers as the number of threads increases since the main 

memory data path is shared among all threads. These observations imply 

that as the amount of memory used within a node increases, per processor 

performance decreases in proportion to the number of active threads. 

5.4 Conclusions 

In conclusion, a hybrid OpenMP/MPI disease tracing algorithm has 

been designed and mapped in a way which takes maximal advantage of 

the target architecture. This programming model has been demonstrated 

to facilitate efficient use of and access to system data resulting in high-

performance. Observed parallel timings are excellent, 100 million animals 

can be processed in just over 6 minutes on 512 processors resulting in a 

speedup of 171, corresponding to a parallel efficiency of 33.5%. 
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At small-scale, shared memory performance is nearly optimal and per­

formance degradation is due primarily to MPI overhead. As the population 

size increases, MPI performance improves and approaches a steady-state 

performance degradation rate of about 0.04% per processor. As problem 

size increases, the primary performance bottleneck is the shared memory 

parallel performance which degrades precipitously at 10 million animals due 

to memory bandwidth contention inherent in the L3 cache design. 

High-performance is achieved and requires the full resources of the tar­

get architecture. Disease tracing is a memory intensive application and an 

SMP supercomputer with low-latency shared memory nodes interconnected 

via a high bandwidth switch is demonstrated to be an ideal candidate ar­

chitecture to solve this problem on when coupled with a hybrid parallel 

programming model. The primamry performance bottleneck is observed 

to be shared memory contention which increases with problem size. On a 

single node, at large-scale only about four threads can be used highly effi­

ciently. The performance data collected, when viewed as a whole, suggests 

that parallel performance can be greatly improved by doubling the num­

ber of nodes (and hence doubling the available memory) and halving the 

number of processors within a node. 
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Chapter 6 

CONCLUSIONS AND 
RECOMMENDATIONS 

6.1 Conclusions 

A summary of the major conclusions of this work follows. 

• A traceability simulation has been designed and implemented. A 

Monte Carlo process is used to produce large, NAIS-compliant mock 

datasets. The Monte Carlo simulation employs a new, fast, portable, 

parallel LFG random number generator and has been implemented 

on an SMP supercomputer. Animal populations ranging in size from 

2 million to 100 million animals have been created for subsequent 

traceability scaling studies. 

• A disease tracing algorithm has been mapped onto a large-scale, shared 

memory SMP supercomputer whose nodes are interconnected via a 

high-bandwidth switch. Based on insights gained via empirical ma­

chine benchmarking, the algorithm is mapped onto the target ar­

chitecture in a way which takes maximal advantage of the memory 

hierarchy. It is found that an SMP architecture with large, shared 

memory nodes is well suited to the disease tracing problem when cou­

pled with a hybrid parallel programming model. 
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• Dataset processing requirements depend upon the population size, 

premises size distribution, and transaction number distribution. In 

general, increasing the number of large-sized premises (e.g. very large 

feedlot premises) increases serial execution time. The single proces­

sor execution time is highly sensitive to changes in the premises size 

distributions. 

• The current implementation is capable of accomplishing traceback on 

100 million animals in under seven minutes when utilizing all 512 

available processors. The same dataset, when processed on a single 

processor, takes over seventeen hours to process. This translates to an 

achievable speedup of 171 corresponding to a 30% parallel efficiency. 

• Sequential execution time is dominated by the traceback phase, a 

nested-loop algorithm. In particular, the entire hybrid program, Al­

gorithm 8, can be executed in about seventeen hours and forty-five 

minutes on a single processor. The traceback phase requires about 

seventeen hours. Of the remaining forty minutes, thirty minutes are 

used for I/O and about ten minutes are required to precompute the 

data structures required for efficient search and retrieval. 

• When utilizing all 512 processors, the total execution time of the 

hybrid program (Algorithm 8) is dominated by I/O time which takes 

about 30 minutes for 100 million animals. 

• Achieving high-performance when processing a National dataset (100 

million animals) requires both a very large amount of memory and 

very fast access to that memory. Thus rapid traceback necessitates a 
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large-scale supercomputing platform. In this implementation, mem­

ory use scales as 0(nnodes * na) and na is bound by the amount of 

available memory on a single node and not the total aggregate system 

memory. 

• A hybrid OpenMP/MPI parallel programing model is a highly effec­

tive programming paradigm that maps well onto an SMP supercom­

puter consisting of several shared memory nodes. The hybrid model 

facilitates both effective use of and efficient access to memory. 

• For small datasets, parallel performance degradation is due almost 

exclusively to inter-node synchronization overhead (MPI), however 

the degradation rate is small, about 0.1077% per processor. 

• MPI performances improves for large datasets, this is due to the high-

bandwidth HPS switch. For populations larger than 10 million an­

imals, performance degradation due to MPI overhead approaches a 

steady rate of about 0.04% per processor. 

• The opposite is true of shared memory performance which is opti­

mal for small datasets. A precipitous degradation occurs for large 

datasets, starting around 10 million animals. Shared memory degra­

dation is the primary performance bottleneck, accounting for a 50% 

decrease in overall parallel performance for large datasets. Because of 

this, performance is bound by the performance within a single shared-

memory node. 

• Shared memory degradation can be explained by inefficient use of 

the large L3 cache. As the datasets grow in size, so too does the 
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average access stride per retrieval. Larger strides decrease the effective 

size of the cache hierarchy which leads to an increase in memory 

traffic. While increasing the number of OpenMP threads within a 

node decreases per processor workload, when both shared-data and 

access strides are large, average per processor performance decreases 

in proportion to the number of active threads computing. 

• There are two ways to add processors on this architecture; processor 

cores can be added to computational nodes, or more computational 

nodes can be added by interconnecting them to the HPS switch. The 

hybrid OpenMP/MPI algorithm scales very well across nodes and 

scales poorly within a node. Significantly higher performance can 

be attained if the number of nodes is doubled and the number of 

processors within a node is halved. 

6.2 Recommendations 

• For even larger problems, a parallel model which distributes the data 

structures should be developed and implemented. Based on current 

results, this should improve shared memory performance. Decreas­

ing the amount of memory used on each node will increase perfor­

mance. Partitioning the data tasks amongst many computational 

nodes, however, could introduce load-balancing issues and fine-grained 

inter-nodal communication not present in the current implementation. 

• A cluster of large, shared memory SMP nodes interconnected via a 

high-bandwidth switch is well suited to disease tracing. The current 

implementation should be ported to several different additional HPC 
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architectures. A study comparing and contrasting the performance of 

the current implementation on various HPC platforms with various 

processors, interconnects, and cache hierarchies should be conducted. 

• A hybrid OpenMP/MPI programming model is well suited to this 

problem, but other parallel programming models should be explored 

also. In particular, the tracing algorithm should be implemented with 

a Partitioned Global Address Space (PGAS) programming model and 

implemented on a large, shared memory machine. In this model, 

portions of the shared memory space have an affinity for a particular 

thread, thereby exploiting locality of references. 

• Robustness to changes in dataset parameters should be further stud­

ied. It was observed throughout the course of many simulations 

that small changes to the premises size distribution can lead to large 

changes in execution time. 

• A study should be conducted to determine the effects of reduced par­

ticipation in the NAIS. It is currently estimated that only 30% of 

producers have registered their premises and herds. This simulation 

could be used to empirically discover the critical mass necessary to 

contain an outbreak within a given confidence level. 

• In this research it is assumed that the entire dataset is centrally lo­

cated in storage. Due to various political and commercial interests 

this assumption may not be satisfied. The effects of distributing the 

dataset over a large geographic area should be studied by quanti­

fying and categorizing asynchronous communication volume among 

retrieval and data tasks. 
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• When all processors are utilized, execution time is dominated by slow 

I/O, in particular reading the datasets into memory. MPI-IO should 

be explored as a viable way to address this overhead. 
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Appendix A 

STATISTICAL TESTING PROCEDURES 

In this section a rigorous staticstical framework is built, within which, 

empirical tests on the performance and quality of the parallel ALFG are 

performed. The theory of statistics provides quantitative measures for ran­

domness. Since an RNG is supposed to produce a sequence of independent, 

identically distributed (i.i.d.) random variables X\, X2, Xs,..., any statis­

tic that is computed with elements of the sequence may serve as a test, 

if its distribution is known. If the distribution of the statistic, computed 

using an RNG sequence, is sufficiently close to the expected distribution 

which assumes a sequence of i.i.d. random variables, then the RNG is said 

to be good. If it is far from the expected distribution, then the RNG is 

considered defective. In this section, statistical metrics are defined and a 

precise definition of close is provided. Once well defined, these metrics can 

be used to assess both the quality of the individual ALFG streams (test­

ing for intra-stream correlation) as well as the effectiveness of the proposed 

parallel initialization (testing for inter-stream correlation). 

A.l The Kolmogorav-Smirnov Test 

A general way to specify the distribution of a random variable X, be 

it discrete or continuous, is in terms of the distribution function F(x) 

F(x) = p(x < X) (A.l) 
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where p(E) is the probability of event E. 

If n independent observations of the random quantity X are made, 

thereby obtaining the values Xi, X2, ..., Xn. Then the empirical distribu­

tion function (EDF) Fn(x) is defined as 

_, , . number of Xx,..., Xn that are < x .. rt. •Fn(x) = . (A.2) 
n 

If the observed data are actually distributed according to F(x). Then as 

n —> 00, Fn(x) converges, in measure, to F(x)> 

The Kolmogorov-Smirnov test (KS test) can be applied when F(x) is 

continuous [31]. It is based on the difference between F(x) and Fn(x). A 

bad source of random numbers will produce EDFs which do not approxi­

mate F(x) sufficiently well. 

To make a KS test, the following statistics are formed: 

K+ = y/n max(Fn(x) — F(x)), —00 < x < 00; (A.3) 

K~ = y/n max(F(x) — Fn(x)), —00 < x < 00. (A.4) 

These values are distributed according to the Kolmogorov distribution, and 

may be obtained in a percentile lookup table, such as the one provided in 

[31], to determine if the values are significantly high or low. 

A distinct advantage to the KS test is that it provides an exact dis­

tribution for any number of observations, n. A KS test may be employed 

reliably, even when the number of observations is small. This is in con­

trast to the x2 test, which will be introduced in the next section, which 

provides an asymptotic distribution that is only valid for a large number of 

observations. 
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A.2 The x2 Test 

The x2 test (chi-square test) is one of the best known and most basic 

methods to compare two discrete probability distribution functions. In 

general, suppose that every observation of the random variable falls into 

one of k possible categories. Consider n independent observations of the 

random quantity X (independent means that the outcome of one observation 

has absolutely no effect on the outcome of any of the others). Let ps be 

the probability that some observation falls into category s. Let Ys be the 

observed number of trials that fall into category s. The expected number 

of trials which fall into category s is psn. With this, the chi-square statistic 

is defined as 

v^(Ys-psnf 
ti Psn 

This statistic is distributed according to the chi-square distribution with 

v = k — 1 degrees of freedom. With distribution function 

'-«-W <"> 
where 

j(a,x)= I t^e^dt (A.7) 
Jo 

and 
/•oo 

T(a)= / e-xe*dt. (A.8) 
./o 

This test is applied whenever observations fall into a discrete set of 

categories. In other words, a chi-square test can be employed when the 

random variable in question is distributed according to a discrete probability 

distribution (as is the case when flipping coins or rolling die.) Discrete 

probability distributions give rise to discontinuous distributions in which 
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case the KS test is not applicable. As previously mentioned, the distribution 

in A.6 is an asymptotic result which is only valid for a large number of 

observations. 

A more effective strategy for testing a random number sequence is to 

use the chi-square test in conjunction with the KS test [31]. To illustrate 

how this might be done, suppose 10 independent x2 tests have been made on 

different parts of a random sequence, so that values V\, V2,...,Vio have been 

obtained. It does not suffice to simply count the number of suspiciously 

large or small values. A better procedure is to compute the empirical dis­

tribution Fio(x), perform a KS test, and obtain the statistics KIQ, K{0. 

This gives a clearer picture of the results of the x2 test. It may be the 

case that individually, each value passes the chi-square test, yet collectively 

these observations are not at all correct (see [31] for an example of this). 
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Appendix B 

PARALLEL PERFORMANCE RESULTS 

B.l Traceback Timing Results 

Nodes 

1 
1 
2 
4 
8 
16 
32 
64 

Procs 

1 
8 
16 
32 
64 
128 
256 
512 

OpenMP 
(sec) 

6,180.810 
950.776 
476.814 
238.572 
120.604 
61.125 
31.097 
13.832 

MPI 
(sec) 

1.030 
1.020 
7.970 
6.480 
6.579 
6.430 
7.690 
10.710 

Total 

6,181.84 
951.796 
484.784 
245.052 
127.183 
67.555 
38.787 
24.542 

Parallel 
Efficiency 

1.0 
0.812 
0.797 
0.788 
0.756 
0.715 
0.623 
0.492 

Speedup 

1.0 
6.495 
12.752 
25.227 
48.606 
91.509 
159.376 
251.884 

Table B.l: Parallel performance results for 10 million animals. 

Nodes 

i—
i 

1 
2 
4 
8 
16 
32 
64 

Procs 

i—
i 

8 
16 
32 
64 
128 
256 
512 

OpenMP 
(sec) 

13,398.617 
2,683.292 
1,349.73 
675.448 
339.075 
172.840 
88.474 
45.729 

MPI 
(sec) 

1.960 
1.940 
4.280 
7.410 
12.910 
13.060 
15.140 
17.690 

Total 

13,400.577 
2,685.232 
1,354.010 
682.858 
351.985 
185.900 
103.614 
63.419 

Parallel 
Efficiency 

1.0 
0.624 
0.625 
0.613 
0.595 
0.563 
0.505 
0.412 

Speedup 

1.0 
4.990 
10.000 
19.624 
38.071 
72.084 
129.331 
211.301 

Table B.2: Parallel performance results for 20 million animals. 
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Nodes 

1 
1 
2 
4 
8 
16 
32 
64 

Proes 

1 
8 
16 
32 
64 
128 
256 
512 

OpenMP 
(sec) 

23,493.641 
4,618.628 
2,229.586 
1,181.014 
581.948 
302.505 
148.936 
76.614 

MPI 
(sec) 

4.520 
4.468 
10.357 
16.211 
30.611 
28.630 
38.650 
40.770 

Total 

23,498.161 
4,623.096 
2,239.943 
1,197.225 
612.559 
331.135 
187.586 
117.384 

Parallel 
Efficiency 

1.0 
0.635 
0.656 
0.613 
0.599 
0.554 
0.489 
0.391 

Speedup 

1.0 
5.083 
10.491 
19.627 
38.361 
70.962 
125.266 
200.182 

Table B.3: Parallel performance results for 50 million animals. 

In this section, performance data for all datasets processed in Chapter 

5 is presented. In particular, parallel timing and performance results for 

10, 20, and 50 million animals are tabulated. The total parallel execution 

time is the sum of the OpenMP retrieval phase with the MPI scatter-gather 

phase. Both parallel efficiency and speedup are measured. 

B.2 Shared-Memory Performance 

In this section, shared-memory parallel performance results are pre­

sented. Only datasets of size 10, 20, and 50 million animals are considered. 

In these runs, the hybrid code is executed on a single SMP node and the 

number of threads is increased from one to eight. Since no MPI communi­

cation occurs parallel results measure only shared-memory performance. 

The data contained in Tables B.4, B.5, B.6 is plotted in Figure 5.7 in 

Chapter 5. The data shows that shared-memory performance contributes 

to an overall 19% decreases in parallel efficiency. Shared memory degrada­

tion is negligible for 2 million animals and thus the results are not included 

herein. For both 20 million and 50 million animals, shared-memory degra-
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dation contributes to an overall 36% decrease in parallel efficiency and is 

the dominant performance bottleneck. 

Threads 

1 
2 
3 
4 
5 
6 
7 
8 

Time 
(sec) 

6,180.810 
3,088.763 
2,388.315 
1,673.392 
1,373.035 
1,210.621 
1,047.543 
950.776 

Parallel 
Efficiency 

1.0 
1.0 

0.863 
0.923 
0.900 
0.851 
0.843 
0.813 

Speedup 

1.0 
2.0 

2.588 
3.694 
4.502 
5.106 
5.900 
6.501 

Table B.4: Shared-memory parallel performance results for 10 million ani­
mals. 

Threads 

1 
2 
3 
4 
5 
6 
7 
8 

Time 
(sec) 

14,235.472 
7,730.157 
5,195.155 
4,572.177 
3,738.290 
3,293.327 
2,936.956 
2,751.069 

Parallel 
Efficiency 

1.0 
0.921 
0.913 
0.778 
0.762 
0.720 
0.692 
0.647 

Speedup 

1.0 
1.841 
2.740 
3.113 
3.808 
4.322 
4.847 
5.175 

Table B.5: Shared-memory parallel performance results for 20 million ani­
mals. 
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Threads 

1 
2 
3 
4 
5 
6 
7 
8 

Time 
(sec) 

23,493.641 
12,491.451 
8,954.275 
7,051.483 
5,789.175 
5,080.830 
4,667.434 
4,618.628 

Parallel 
Efficiency 

1.0 
0.940 
0.875 
0.833 
0.812 
0.771 
0.719 
0.636 

Speedup 

1.0 
1.881 
2.624 
3.332 
4.058 
4.624 
5.033 
5.087 

Table B.6: Shared-memory parallel performance results for 50 million ani­
mals. 
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