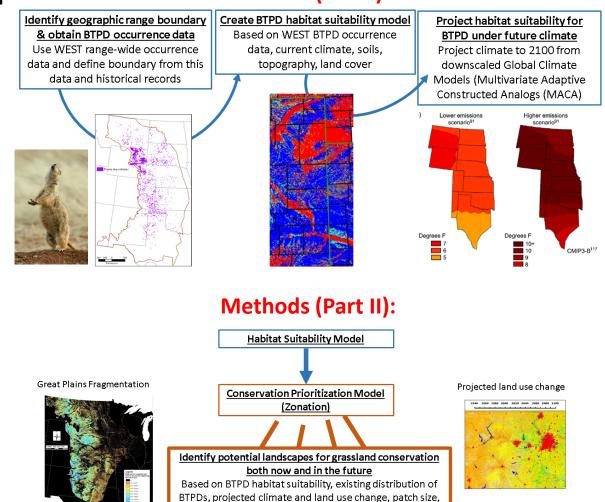
Conservation Planning (10:45-11:05)

Lee Grunau, CNHP David Augustine, USDA-ARS Tom Cardamone, WBI

Homes on the Range:

Identifying potential landscapes for conservation across North America's central grasslands: Integrating keystone species, land use patterns, and climate change

Ana Davidson, Colorado Natural Heritage Program (CNHP) & Dept. of Fish, Wildlife and Conservation Biology, Colorado State Univ (CSU) David Augustine, USDA-Agricultural Research Service Michael Menefee, CNHP, CSU Michelle Fink, CNHP, CSU Michael Houts, Kansas Biological Survey Fernanda Thiesen Brum, Universidade Federal do Paraná – Brazil Matt Williamson, Boise State University Lindsey Sterling-Krank, Prairie Dog Coalition, Humane Society of the US Bill Van Pelt, Western Association of Fish & Wildlife Agencies (WAFWA)



Methods for Identifying potential landscapes for grassland conservation Methods (Part I):

- 1) Generate BTPD habitat suitability model prairie dog ecosystem focus
- 2) Incorporating future <u>climate change</u> predictions into BTPD habitat suitability model
- 3) Identifying current & future priority areas within predicted suitable habitat

connectivity, threats, and social landscape

Scenario 2

Scenario 1

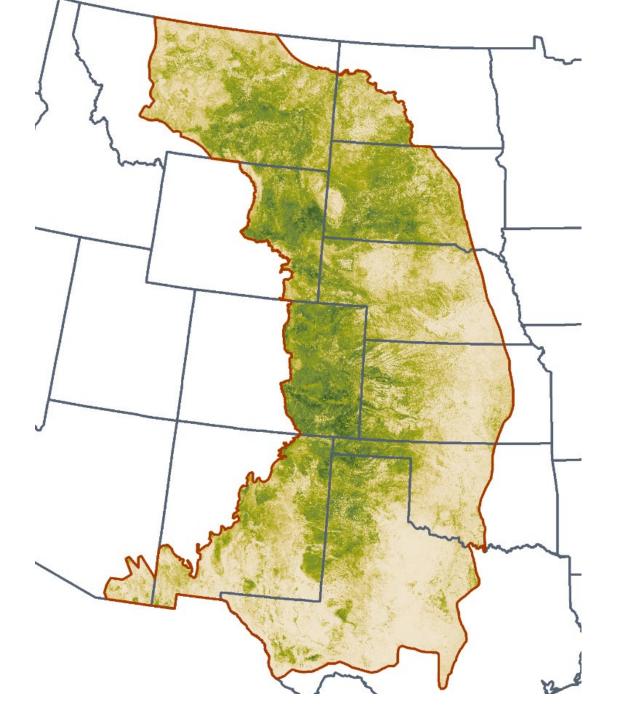
Scenario 3

Scenario x

Methods (Part I): Habitat Suitability Model (HSM)

Variable	Spatial data layer for Habitat Suitability Model	BTPD colonies	Max Temperature	Annual Precipitation	Land cover
BTPD colony occurrences	Prairie dog occurrences from WEST survey ¹⁰	Prairie dog colonies	Mex.summer temperature (1)-0 12:2:0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Annal Seal Precipitation (1994-2014) 119 mm 119 mm 100 m 100 m Klinneter.	Land over Copland Developed Developed Porst Porst Creasilated Other Weiland MWar Weiland Developed
Land Cover	USGS National Land Cover Database 2016				
Soils	POLARIS 30-m resolution database Metrics: bulk density to 100cm, %Sand to 100cm, %Clay to 100cm, % organic matter to 100cm, pH to 100cm				
Slope & elevation	National Elevation Dataset Metrics: Topographic Wetness Index, Topographic Ruggedness Index, slope, aspect	<figure></figure>	Topographic Wetness Index	<figure></figure>	
Climate – current	Current climate (1994-2014), using <u>GridMet</u> Metrics: Mean annual_precipitation (mm), winter + spring & summer + fall precipitation, max summer temperature, potential evapotranspiration, growing degree days				

F


BTPD Rangewide Habitat Suitability

Current Climate

Final Ensemble Model derived from:1)Generalized Linear Mixed model2) Random Forest model3) Boosted Regression Tree model

Michelle Fink, Landscape Ecologist, Colorado Natural Heritage Program, CSU

Results (Part I): BTPD Habitat Suitability Model under current & future climate (2100):

HSM under Current Climate

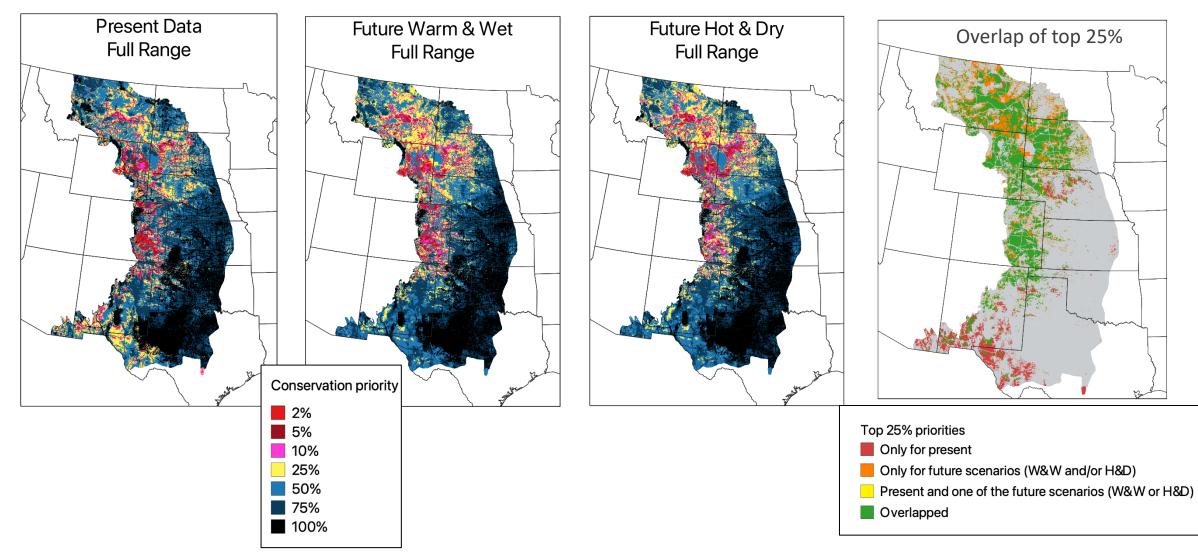
HSM under Future Climate (warm & wet scenario) HSM under Future Climate (hot and dry scenario)

F

Methods (Part II): Incorporating landscape & social variables to determine conservation priorities

Landscape variables	Source dataset		
Climate change	BTPD SDM under future climate change (2100) (Fink et al.)		
Landuse change	USGS (projected 2100)		
Landscape fragmentation	Augustine et al. (2019)		
Private Lands Conservation	Turner+SPLT+APR property boundaries		
BTPD occurences	WEST et al.		
Protected Area	PAD-US		
% CRP	County level CRP		
% Grass/shrub	2016 NLCD (52, 71, 81)		
% Emergent wetland	2016 NLCD (95)		
Percent tree cover	NLCD trees + NLCD % tree cover + PLJV cedar/mesquite		
Tillage risk	Olimb tillage risk		
Oil/gas wells (well count)	Welldatabase.com		
Oil/gas wells (well density)	Welldatabase.com		
Wind power potential	NREL wind speed at 100 meters		
Distance to Transmission lines	DHS transmission lines		
Wind turbines	FAA obstruction database		
Road density	Impervious descriptor dataset		
Social variables	Source dataset		
Social willingness to embrace conservation	League of Conservation Voters		
Social willingness to embrace conservation	LandVote database		
Social willingness to embrace prairie dog conservation	Prairie dog survey (Williamson et al.)		
Institutional capacity to actualize conservation	Count of Land and Water Conservation Fund projects		

F


Mike Houts, Research Associate, KS Biological Survey

Matt Williamson, Assistant Professor, Boise State University

Results (Part II): Identifying current & future priority areas and the top 25% across all

Partners

ZUSGS

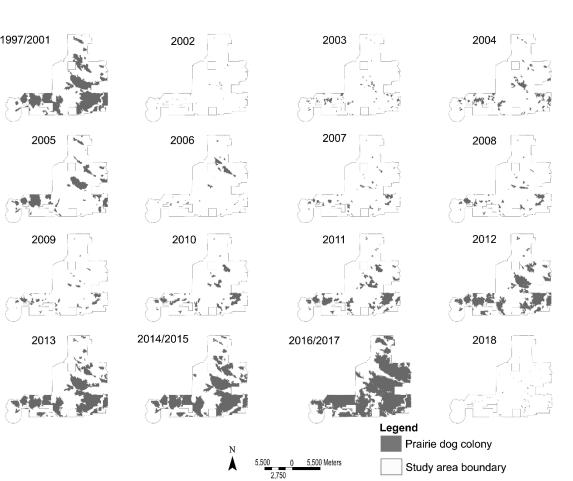
science for a changing world

USDA Agricultural Research Service

Prairie Dog Colony Dynamics and Their Coexistence with Cattle

Ana Davidson

Colorado Natural Heritage Program & Dept. of Fish, Wildlife and Conservation Biology Colorado State University



In Press: Boom and bust cycles of black-tailed prairie dog populations in the Thunder Basin grassland ecosystem

Journal of Mammalogy

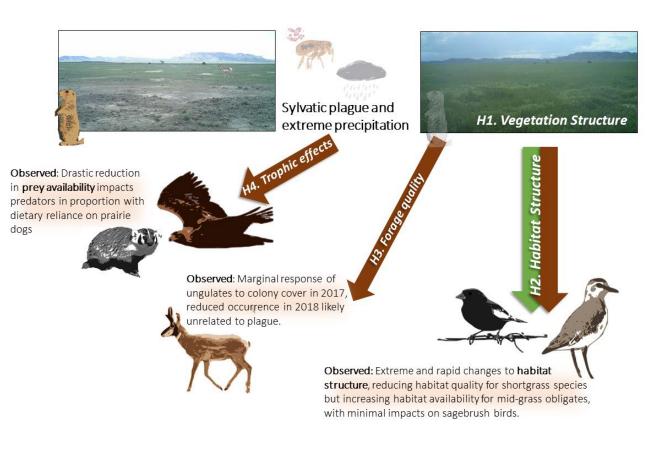
Ana Davidson^{1,2*}, David J. Augustine³, Hannah Jacobsen^{1,4}, Dave Pellatz⁵, Lauren M. Porensky³, Gwyn McKee⁶, and Courtney Duchardt⁷

^{1*}Colorado Natural Heritage Program, Colorado State University (CSU)
²Department of Fish, Wildlife Conservation Biology, CSU, Fort Collins, CO
³USDA Agricultural Research Service, Fort Collins, CO
⁴Department of Human Dimensions, CSU, Ft. Collins, CO
⁵Thunder Basin Grasslands Prairie Ecosystem Association, Douglas, WY
⁶Great Plains Wildlife Consulting, Inc., Banner, WY
⁷Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK

In Revision: Disease and weather induce rapid shifts in a rangeland ecosystem mediated by a keystone species (*Cynomys Iudovicianus*)

Ecological Applications

Courtney Duchardt^{1,2}, David Augustine³, Lauren M. Porensky³, Jeff Beck², Jacob Hennig², Dave Pellatz⁴, Lauren Connell⁵, and Ana Davidson^{6,7}


¹Department of Natural Resource Ecology and Management,

Oklahoma State University, Still water, OK

²Department of Ecosystem Science and Management, University (

Wyoming, Laramie, WY

- ³USDA-Agricultural Research Service, Fort Collins, CO
- ⁴Thunder Basin Grassland Prairie Ecosystem Association, Bill, WY
- ⁵Bird Conservancy of the Rockies, Fort Collins, CO
- ⁶Colorado Natural Heritage Program, , Colorado State University
- ⁷Department of Fish, Wildlife Conservation Biology, CSU

Current Research: How can prairie dogs and cattle co-exist in a way that supports *both* livestock production and grassland ecosystem conservation?

Ana Davidson^{1,2*}, David J. Augustine³, Gabe Barrile¹, Justin Derner³, Courtney Duchardt⁴, Cynthia Hartway¹, Greg Newman⁵, Dave Pellatz⁶, Lauren M. Porensky³, Derek Scasta⁷, Kevin Shoemaker⁸

^{1*}Colorado Natural Heritage Program, Colorado State University (CSU)

²Department of Fish, Wildlife Conservation Biology, CSU, Fort Collins, CO

³USDA Agricultural Research Service, Fort Collins, CO

⁴Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK

⁵Natural Resource Ecology Laboratory, CSU, Fort Collins, CO

⁶Thunder Basin Grasslands Prairie Ecosystem Association, Douglas, WY

⁷Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY ⁸Department of Natural Resources, University of Nevada-Reno, Reno, NV

Current Research: How can prairie dogs and cattle co-exist in a way that supports *both* livestock production and grassland ecosystem conservation?

Goals:

- Understanding drivers of boom-bust cycles
- Determine where, when, and how to best manage prairie dogs

Approaches:

- Long-term data and ecological modelling
- Participatory research
- Co-create decision support tools with ranchers

