
THESIS

MODELING OF CHANNEL STACKING PATTERNS CONTROLLED BY NEAR WELLBORE

MODELING

Submitted by

Luis Carlos Escobar Arenas (he/him)

Department of Geosciences

In partial fulfillment of the requirements

for the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2023

Master’s Committee:

 Advisor: Lisa Stright

Michael Ronayne

 Elizabeth Barnes

Copyright by Luis Carlos Escobar Arenas 2023

All rights reserved

ii

ABSTRACT

MODELING OF CHANNEL STACKING PATTERNS CONTROLLED BY NEAR WELLBORE

MODELING

Reservoir models of deep-water channels rely upon low-resolution but spatially extensive seismic

data, high vertical resolution but spatially sparse well log data and geomodeling methods. The results cannot

predict architecture below seismic resolution or between well logs. Usually, the data and interpretations

that provide constraints for modeling workflows do not capture sub-seismic scale architecture. Therefore,

standard modeling methods do not generate models that include details that can impact hydrocarbon flow

and recovery. Constraining models to well and seismic data is problematic. Employing measured sections

in the Tres Pasos Fm. (Magallanes Basin, Chile) is feasible to predict deep-water channel architecture,

specifically channel stacking patterns with 1D information analogous to well data. This research performed

near-wellbore modeling to generate multiple scenarios of channel stacking patterns constrained by machine

learning-derived probabilities using (i) conditional Monte Carlo simulation with soft probabilities per

channel element within the measured section choosing the highest probabilities for each element (ii)

conditional Monte Carlo simulation of channel stacking, (iii) template-based modeling, (iv) forward

modeling with Markov transition probabilities without matching to thickness and (v) conditional Monte

Carlo simulation constrained to measured section thickness.

Machine learning workflows generate channel position probabilities (i.e., axis, off-axis, margin)

within a measured section given the interpreted top/bases of channel elements. These probabilities

constitute the input for Monte Carlo simulations capturing channel element stacking patterns at the

measured section locations. The most likely 2D channel stacking pattern scenarios defined channel

centerline points, and volumes of the individual channel elements can be generated connecting them.

iii

Surface-based modeling offers a way to depict reservoirs of hydrocarbons, water or low-enthalpy

geothermal systems in which small-scale heterogeneity needs to be captured explicitly by bounding surfaces

because it impacts fluid flow, improving our forecasts of resource exploitation. Furthermore, predicting

heterogeneity controlled by depositional architecture is critical for transport and storage capacity in CO2

reservoirs. The dataset provided and the advent of these flexible and accurate methods to depict the

subsurface offer the opportunity to overcome the historical limitations of grid-based models and allow us

to assess multi-scale architecture that controls fluid flow. This research aims to show the results of modeling

deep-water channels, including a 1D identification of architectural positions and a 2D arrangement of

channel stacking patterns.

iv

ACKNOWLEDGEMENTS

This work is a culmination of geologic research conducted by the Chile Slope Systems (CSS) Joint

Industry Project, which is a collaboration between the University of Calgary, Colorado State University,

Virginia Tech, and industry partners: Chevron, Repsol, Hess, Nexen/CNOOC, ConocoPhillips, BHP

Billiton, Anadarko, Equinor, Petrobras, and Shell. Fieldwork, data collection, and interpretation were

performed by Brian Romans, Steve Hubbard, Ryan Macauley, Sean Fletcher, and Sarah Southern.

The author thanks the Rocky Mountain Association of Geologists (RMAG), the Society for

Sedimentary Geology (SEPM), the American Association of Petroleum Geologists (AAPG) and the

Geological Society of America (GSA) for the funds provided.

v

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS .. iv

CHAPTER 1. RESEARCH MOTIVATION ... 1

1.1. Introduction .. 1

1.2. Hypotheses ... 1

1.3. Scientific significance ... 3

CHAPTER 2. GEOLOGIC BACKGROUND ... 4

2.1. Geological framework .. 4

2.2. Deep-water or submarine channels .. 8

2.2.1. Hierarchy of submarine channels .. 8

2.2.2. Submarine channel element architectural positions .. 9

2.3. Previous modeling work ... 10

CHAPTER 3. PREVIOUS WORK ON MODELING CHANNEL STACKING PATTERNS 13

3.1. Previous studies on submarine channel stacking patterns ... 13

3.2. Differences from previous work .. 18

3.3. Individual channel element geometry parameters .. 19

3.3.1. Width (w) ... 20

3.3.2. Thickness or depth (t) and height (k) ... 20

3.3.3. Lateral offset (x) ... 21

3.3.4. Vertical offset (y) .. 21

3.4. Methodology workflow .. 21

CHAPTER 4. MODELING CHANNEL STACKING PATTERNS WITH CONDITIONAL

SIMULATION AND SOFT PROBABILITIES ... 25

4.1. Motivation .. 25

4.2. Methods ... 25

vi

4.2.1. Database and coding style ... 25

4.2.2. Random variables ... 26

4.2.3. Cumulative probability functions (CDFs) .. 26

4.2.4. Probability density functions (PDFs) ... 26

4.2.5. Drawing probability density functions (PDFs) and cumulative distribution functions

(CDFs) in Python ... 27

4.2.6. Monte Carlo simulation .. 28

4.2.7. Running Monte Carlo simulations in Python ... 29

4.3. Results.. 30

4.3.1. Probability density functions and cumulative distribution functions 30

4.3.2. Testing Monte Carlo simulation .. 30

4.3.3. Monte Carlo simulation of multiple equiprobable stacking patterns 31

4.3.4. Channel stacking pattern templates ... 34

4.3.5. Channel stacking pattern generation .. 36

4.3.6. Channel stacking generation from Monte Carlo simulation 39

CHAPTER 5. MODELING CHANNEL STACKING PATTERNS WITH MARKOV TRANSITION

PROBABILITIES ... 45

5.1. Motivation .. 45

5.2. Methods ... 45

5.2.1. Database and coding style ... 45

5.2.2. Markov transition probabilities ... 47

5.2.3. Vertical transition count matrix ... 48

5.2.4. Vertical transition probability matrix ... 49

5.3. Results.. 49

5.3.1. Vertical transition count matrix ... 49

5.3.2. Vertical transition probability matrix ... 49

5.3.3. Normalized vertical transition probability matrix... 50

vii

5.3.4. Sensitivity analysis with Markov transitional probabilities 51

5.3.5. Channel stacking pattern construction from the outcrop statistics and a seed.......... 60

CHAPTER 6. MATCHING CHANNEL STACKING PATTERNS TO THICKNESS 67

6.1. Methods ... 67

6.1.1. Database and coding style ... 67

6.1.2. Parabola translations ... 67

6.2. Results.. 68

6.2.1. Obtaining a vertical offset that matches the thickness .. 68

6.2.2. Channel stacking pattern generation .. 70

6.2.3. Channel stacking patterns matched to thickness... 70

CHAPTER 7. DISCUSSION .. 75

7.1. Conditional simulation and soft probabilities .. 75

7.2. Forward modeling with Markov transition probabilities .. 78

7.3. Matching to thickness ... 79

7.4. Future work .. 80

CHAPTER 8. CONCLUSIONS .. 83

REFERENCES.. 84

APPENDIX A – DATABASE ... 90

APPENDIX B – PYTHON CODES .. 96

1

CHAPTER 1. RESEARCH MOTIVATION

1.1. Introduction

Deep-water channel systems host significant natural resources. Reservoir models help to predict

the range of possible volumes in place. These models are constrained by seismic, that at reservoir depths,

has limited ability to resolve the stratigraphic architectural features that control reservoir distribution.

Geoscientists can leverage seismic-scale outcrops, thereby bridging the gap between the aerial extent of

seismic and bed-scale characterization of stratigraphy.

The confined, amalgamated, seismic-scale channels exposed in the Upper Tres Pasos Fm.

(Magallanes Basin, Chile; Fig. 1A) exhibit high net-to-gross (NTG) axis, transitional NTG off-axis to low

NTG margin channel fills (Macauley and Hubbard, 2013) and are partitioned by thin, laterally persistent

muddy channel base drapes with low permeability (Hubbard et al., 2018) (Fig. 1B). Previous work includes

machine learning techniques to predict the stratigraphic architecture at the measured section from vertically

high-resolution grain-size curves (Vento, 2020), the generation of a 3D architectural model (Ruetten, 2021)

and a 3D seismic-derived probability cube for each architectural channel element from it (Langenkamp,

2021).

The purpose of this thesis is to show the results of multidimensional modeling of deep-water

channels, which includes a 1D identification of channel element architectural positions and 2D arrangement

of channel stacking patterns using machine learning-derived probabilities, conditional Monte Carlo

simulation with soft probabilities and Markov transition probabilities.

1.2. Hypotheses

Reservoir models of deep-water channels rely upon geomodeling methods to combine low vertical

resolution but spatially extensive seismic data and high vertical resolution but spatially sparse well log data.

2

Resulting models predict a range of possible architecture that is likely to exist below seismic resolution or

between well logs (Ringrose and Bentley, 2021) as long as architecture is taken into consideration during

the modeling process. Nevertheless, the interpretations and attributes that provide constraints for modeling

workflows cannot consider sub-seismic scale architecture, and standard modeling methods are limited in

their ability to generate realistic architecture and constraining to well and seismic data.

Fig. 1. (A) Geology of the Magallanes (Chile) or Austral (Argentina) Basin (Gómez et al., 2019). The Tres Pasos Fm. occurs as

part of the western Cretaceous thrust belt adjacent to the Neogene foreland basin. A generalized stratigraphic column, picture of

the outcrops, and stratigraphic correlation of the measured sections are also shown, (B) longitudinal and cross-section view of a

channel element, and the theoretical well log response of channel architectural elements (Hubbard et al., 2018), (C) sketch of the

proposed workflow to predict channel stacking patterns from spare well data attaining depositional concepts.

We hypothesize that we can leverage >5000 m of measured sections in the Upper Tres Pasos Fm.

(Magallanes Basin, Chile) to demonstrate a process of predicting stratigraphic architecture with 1D

information analogous to well data (Fig. 1A-C). In this research, we perform near-wellbore modeling to

generate multiple realizations of channel stacking patterns constrained by machine learning-derived

3

probabilities. These results will be the anchor points to correlate deep-water channels between wellbores

(Fig. 1C, 3D development of volumes).

1.3. Scientific significance

Currently, the advent of new methodologies to build predictive reservoir models of the subsurface

like rule-, surface- or process-based modeling allows us to obtain insights about the evolution of

channelized systems, the stratigraphy of small-scale heterogeneities and their impact on fluid flow

(Jacquemyn et al., 2019; Pyrcz et al., 2015). Several surface-based models exist for fluvial channels (Pyrcz

et al., 2009), shallow marine structures (Jackson et al., 2014; Nordahl et al., 2005), submarine lobes (Pyrcz

et al., 2005; Zhang et al., 2009) and submarine channels (Covault et al., 2016; McHargue et al., 2011b;

Pyrcz et al., 2015; Stright et al., 2013; Sylvester et al., 2011).

Nevertheless, there are still some remaining challenges in applying surface-based models. Recent

endeavors address the conditioning and fitting of the models to well data by performing two-step

simulations (Pyrcz et al., 2015) and using artificial neural networks (Titus et al., 2021). Now, we are

constraining 2D channel stacking patterns that honor the available data, generating a realistic stratigraphic

architectural representation that diminishes the oversimplification imposed by object-oriented models,

which cannot match depositional principles and data at the same time (Pyrcz et al., 2015; Pyrcz and Deutsch,

2014).

4

CHAPTER 2. GEOLOGIC BACKGROUND

2.1. Geological framework

The Southern Patagonian Andes resulted from the complex interaction between the South

American, Scotia and Antarctic plates, starting from the Jurassic with the rupture of Gondwana to the

ongoing Andean orogeny. The associated tectonic and sedimentary processes created a multi-episodic,

retro-arc foreland basin known as the Austral (Argentina) or Magallanes (Chile) Basin (Fig. 2) (Macauley

and Hubbard, 2013; Mpodozis et al., 2011; Romans et al., 2011, 2009).

The evolution of the Austral-Magallanes Basin includes two stages. The first stage, related to the

rupture of Gondwana, created extension from the middle Jurassic to the Early Cretaceous. Silicic rift-related

volcanism is recorded by the Tobífera Fm. (150 - 138 Ma), consisting of pyroclastic rocks intercalated with

lacustrine and fluvial-alluvial sediments. This formation occurs as continuous outcrops overlaying the

basement or limited within hemigrabens as sedimentary wedges with homoclinal attitudes (Mpodozis et al.,

2011). Extension finished with the development of the back-arc Rocas Verdes Basin (Romans et al., 2011),

and the bioturbed black shales with thin sandstone beds from the Zapata Fm. (101 Ma) were deposited.

They occur as a well-bedded sequence with a lack of sedimentary structures, suggesting deposition in an

anoxic, very deep and restricted environment (Mpodozis et al., 2011).

The second stage, related to the tectonic load from the Andean Orogeny has created compression

and uplift since approximately 85 Ma. As a result, a retro-arc foreland basin formed (Mpodozis et al., 2011).

The Punta Barrosa, Cerro Torro, Tres Pasos and Dorotea formations constitute the Mesozoic lithological

record of this stage (Fig. 3).

The Punta Barrosa Fm. (92 – 85 Ma) consists of interbedded sandy turbidites, slurry-flow deposits,

and siltstone and occurs as tabular to slightly lenticular packages related to lobe deposition in an unconfined

to weakly ponded setting (Mpodozis et al., 2011). The thickness of this formation is about 1000 m and

5

records the onset of deep-water, turbiditic sedimentation laying the retro-arc foreland basin (Romans et al.,

2011).

Fig. 2. Geology of the Magallanes (Chile) or Austral (Argentina) Basin (after Gómez et al. (2019)). The Tres Pasos Fm. occurs as

part of the western Cretaceous thrust belt adjacent to the Neogene foreland basin. The approximate location of the measured

sections is also shown.

6

The Cerro Toro Fm. (86 – 80 Ma) comprises conglomerate-filled turbidite channel-levee systems

within the overall shale-dominated succession and occurs as stacked conglomeratic and sandstone channel

fills with associated finer-grained overbank deposits. The thickness of this formation is 2500 m, deposited

in a foredeep-axial channel-levee system. This formation lays concordantly above the Punta Barrosa Fm.

(Mpodozis et al., 2011; Romans et al., 2011).

Fig. 3. Geology of the Ultima Esperanza District, southern Chile, showing the lithostratigraphic units of the Magallanes Basin.

Formations are younger and less structurally deformed to the east (Austral Basin, Argentina). The location of the measured sections

is shown in red points. After Fosdick et al. (2011).

7

The Tres Pasos Fm. (80 - 70 Ma) consists of sandstone-rich successions and mudstone-rich mass

transport deposits (MTDs) with highly variable thickness (from 1200 to 1500 m) and cross-sectional

geometry, and occurs as a basal mass transport deposit at the base of the slope and lower slope segments

and as prograding delta-fed slope clinoforms systems over the top (Mpodozis et al., 2011; Romans et al.,

2011).

Finally, the Dorotea Fm. (70 – 68 Ma) composes massive glauconitic sandstones with conglomerate

intercalations showing topset strata related to shallow-marine and deltaic deposits (Mpodozis et al., 2011).

This formation is genetically linked to the Tres Pasos Fm., in the sense that has been interpreted that it

prograded along the basin axis to the south (Romans et al., 2011). The stratigraphic column of the

Magallanes Basin is shown in Fig. 4.

Fig. 4. Stratigraphic column of the Magallanes Basin in the study area. From Daniels et al. (2018).

8

2.2. Deep-water or submarine channels

A deep-water or submarine channel is a negative topographical feature produced mainly by

turbidity currents that transport sediment and can be sites of deposition or erosion (Fig. 5). Channels can

be classified on the degree of confinement of the channel, which systematically changes downflow. Highly

confined channels form when the flow is contained within the channel and include submarine canyons and

erosional channels. In contrast, poorly confined channels with levees form when flows can escape the

channel confinement to build channel-bounding levees (Arnott, 2010).

Fig. 5. Schematic morphology of submarine or deep-water depositional environments, showing in colors how erosion and

deposition are relatively distributed over space. The upstream canyon is characterized by erosion, the channel by erosion, bypass

or deposition, and the lobe is the main depositional feature (Heijnen et al., 2022).

2.2.1. Hierarchy of submarine channels

In deep-water or submarine channelized systems, the smallest stratigraphic mappable architectural

unit is the channel element, which consists of a channel-form surface and its sediments (Fig. 6A, B).

Different channel elements are characterized by an abrupt vertical or lateral offset of channel element

9

architectural position or facies. Multiple channel elements that stack in a consistent pattern compose a

complex. If multiple complexes are present, they constitute a complex set. The term system is most often

equivalent to one or more complex sets (McHargue et al., 2011b).

Fig. 6. (A) Overview of the stratigraphic hierarchy classification scheme utilized for channel strata at Laguna Figueroa (B)

Elements are composite features, which represent the incision and filling of individual channels. Similar sedimentation units are

grouped into sedimentation unit associations or facies that can be related to intra-element architectural positions: axis, off-axis,

and margin. (C) Schematic measured section through one channel element, with the dark wavy line demarcating an erosional

contact. (D) Photographs of sedimentation unit associations or facies. They represent the fundamental architectural division

(Hubbard et al., 2023; Macauley and Hubbard, 2013).

2.2.2. Submarine channel element architectural positions

Submarine channels exposed in the Tres Pasos Fm. (Magallanes Basin, Chile) are low-sinuosity

channel elements with symmetric to slightly asymmetric fill. An erosive contact limits the channel elements

to the top, and a laterally extensive (but not always continuous) base drape outlines the channel element to

the base (Hubbard et al., 2018). The Tres Pasos Fm. was initially interpreted to contain eighteen channel

elements, grouped into three channel complexes (Fig. 6) (Macauley and Hubbard, 2013). Recent

reinterpretations point out 25 stacked channel elements, twelve of them belonging to the Lower Laguna

Figueroa Complex set (Ruetten, 2021; Southern et al., 2017; Vento, 2020). That complex set is the focus

of this thesis, and the code was written regarding the measured section CACH1 (Fig. 7).

10

These channels display three channel element architectural positions: axis, off-axis and margin

(Fig. 6C, D) (Macauley and Hubbard, 2013). Mostly thick-bedded, highly amalgamated sandstones

sedimentation unit associations or facies constitute the axis architectural position. Mostly thick- to thin-

bedded semi-amalgamated sandstones intercalated with mudstones facies compose the off-axis

architectural position. Finally, intercalations of thin-bedded non-amalgamated sandstones and mudstones

facies comprise the margin architectural position (Covault et al., 2016; Macauley and Hubbard, 2013;

McHargue et al., 2011b, 2011a). The transition from axis to margin architectural position usually occurs

across less than 30 m (Macauley and Hubbard, 2013).

2.3. Previous modeling work

This research is part of a series of master’s projects focused on the modeling of the lowermost

Laguna Figueroa channel complex outcrops (Fig. 7). Those projects have been conducted by Dr. Lisa

Stright’s students at the Department of Geosciences at CSU and built upon the previous work of researchers

in the Chile Slope Systems joint industry project.

Sedimentological observations and interpretations of the Laguna Figueroa outcrop (Fletcher, 2013;

Macauley and Hubbard, 2013) are the foundation for a database of outcrop statistics

(https://www.chileslopesystems.com/) that has been used to predict stratigraphic architecture (i.e., channel

element architectural positions) in deep-water slope channel system, addressing the gap between

sedimentology and data analytics using machine learning techniques (Vento, 2020).

Ruetten (2021) created a deterministic outcrop model that is 265 m height x 2.25 km long (oriented

north to south) x 2 km wide (oriented east to west), with ~ 5.7 M grid cells that are 50 m x 50 m x 2.5 m.

The model includes two channel complex sets (Lower and Upper Figueroa) separated by a mass transport

deposit (MTD) (Ruetten, 2021) associated with complex and complex set surfaces. Within the lowermost

channel complex set, 12 channel elements were revisited from the original interpretation of 18 channel

elements (Fig. 7) (Ruetten, 2021; Southern et al., 2017; Vento, 2020).

https://www.chileslopesystems.com/

11

Fig. 7. Upper panel, photo of the upper and lower channel complex sets at Laguna Figueroa with complex sets outlined. Lower

panel, an oblique dip-oriented cross-section of Lower Figueroa with channel complex sets and complexes (Vento, 2020). The

measured section CACH1 is highlighted by a red rectangle.

The channel element template used has a constant width of 400 m and is 25 m thick (Ruetten,

2021). Previous channel element dimensions used for modeling efforts from Dr. Stright’s research group

were 200-300 m wide x 14 m thick (Jackson et al., 2019; Meirovitz et al., 2020).

That study concluded that drapes and/or low net-to-gross (NTG) margins acted as baffles that

reduced water breakthrough. Increasing the drape leads the baffle to become a barrier. Furthermore,

reservoir compartmentalization is reported to be created by a variety of factors, like channel element base

12

drape coverage, laterally divergent stacking patterns, low NTG margins, and the presence of mass transport

deposits (MTDs) (Ruetten, 2021). Channel stacking pattern is again highlighted as an important factor that

impacts connectivity (Jackson et al., 2019; Meirovitz et al., 2020).

While these previous studies reveal the critical importance of channel element stacking patterns to

fluid flow and connectivity, channel elements are below seismic resolution and predicting their presence

and organization is difficult to achieve interpretively. Channel element stacking at a well location is directly

linked to the architectural element positions (axis, off-axis, and margin) that the wellbore intersects.

Machine learning algorithms were used to classify variables that predicted the probability of channel

element architectural positions (Vento, 2020). Complex techniques (random forests, XGBoost, and neural

networks) had higher accuracies (above 80%), while relatively less complex techniques (decision trees) had

lower accuracies (between 60% - 70%). The transitional off-axis architectural position was reported to be

the most difficult to classify by machine learning techniques (Vento, 2020). However, classifying the

architectural element positions at the wellbore requires an extra step of modeling channel element stacking

in 2D and 3D. Many studies have addressed different aspects of deep-water channel modeling.

13

CHAPTER 3. PREVIOUS WORK ON MODELING CHANNEL STACKING PATTERNS

3.1. Previous studies on submarine channel stacking patterns

Several authors have provided insights into how submarine channels are deposited and stacked

using (i) statistics from outcrops, wells, seismic data and modern analogs with event-based computational

models (McHargue et al., 2011b, 2011a), (ii) perturbation methods in grids/rasters (Li and Caers, 2011),

(iii) observations from outcrops (Macauley and Hubbard, 2013), (iv) Non-Uniform Rational B-Splines

(NURBS) with sequential Gaussian simulations (SGS) or multiple-point simulations (MPS) (Rongier et al.,

2017), and (v) channel trajectories (Morris et al., 2022; Sylvester et al., 2011).

McHargue et al. (2011a, 2011b) stress the importance of event-based models of submarine channels

given the lack of deep-water system outcrops expose on the Earth’s surface to provide accurate constraints

on the channel stacking patterns (2D) or even the geobodies (3D). Event-based models are constrained by

rules. A rule is “an observed pattern or trend, a statistically defined relationship, or even an expert opinion”

(McHargue et al., 2011a), and rules can be either empirical or predictive. Empirical rules are quantitative

summaries of trends, patterns, or dimensions with defined distribution and uncertainty and can be measured

directly. In contrast, predictive rules are hypotheses that build on incomplete knowledge of processes.

Predictive rules require inference of fundamental processes of sediment transport and deposition, meaning

that they are more linked to geological thinking. Some predictive rules used in those event-based models

are:

• Assuming that channel gradient is constant across the length of a hydrocarbon reservoir.

• Allogenic cyclicity is a simplifying assumption imposed by varying model parameters.

Autogenic processes are modeled through the interplay of multiple rules.

• Channel elements tend to stack with lateral offsets of less than a channel width in channel

complexes with organized channel stacking.

14

• Channel systems increase aggradation rate with time and evolve from disorganized

stacking to organized stacking patterns.

• The channel stacking of channel elements deposited within a channel complex set results

in a succession of channel complexes that tend to follow a pattern.

In that study, a channel stacking pattern is defined as the placement of one channel element relative

to another, and two kinds of channel stacking patterns were recognized: disorganized and organized (Fig.

8).

Organized channel stacking patterns occur when one channel element influences the deposition,

and therefore the location, geometry and stratigraphic architecture of the next channel element. In the end,

the two channel elements are very similar, providing a useful basis for predicting features of successive

channel elements within the same channel complex. Disorganized channel stacking patterns occur when

one channel element has little or no influence on the location, geometry and stratigraphic architecture of

the next channel element, so the features of successive channel elements cannot be predicted. Sketches of

the planform of organized vs. disorganized channel stacking patterns are shown in Fig. 8. The concepts of

organized vs. disorganized channel stacking patterns and some of the predictive rules have been widely

used in other studies and are useful for comparison purposes.

Li and Caers (2011) illustrate a channel stacking pattern modeling technique that uses a distribution

function of pattern parameters to simulate and perturb channel stacking patterns. Instead of simulating

lateral and vertical offsets, they used the overlap and migration ratios. The overlap ratio is defined as the

ratio of vertical overlap (h) between two channels and the channels' maximum thickness (H). The migration

ratio is the ratio of horizontal distance (x) between two adjacent channel centerpoints and the channel

amplitude (A) (Fig. 9). The probability distribution functions (PDFs) of the overlap and migration ratios

could be obtained from outcrops, training images or event- or process-based models. Channel element

cross-sections are defined by a parabola, and perturbations are done as a series of operations with

grids/rasters in a pixel-based stochastic engine.

15

Fig. 8. Planform of channel stacking patterns. A) Disorganized stacking pattern. B) Organized stacking pattern. The location,

geometry and stratigraphic architecture of successive channel elements are similar to the first channel element for B (McHargue

et al., 2011a).

Fig. 9. Parameters used to describe the channel element geometry and to perturb or model the channel stacking patterns (Li and

Caers, 2011).

16

The authors highlight how challenging the modeling of individual channel element geometry,

channel stacking patterns and well data conditioning or matching are, and also express the need for well or

measured section data to be interpreted in terms of channel element architectural positions.

Using the Tres Pasos Fm. outcrops (Magallanes Basin, Chile), Macauley and Hubbard (2013) used

the definitions of channel elements, channel complexes and channel complex sets and interpreted 18

channel elements and three channel complexes. Furthermore, with detailed sedimentological and

stratigraphical observations and paleocurrents, they followed and drew the approximate planform geometry

of the 18 channel elements. Digitizing this manual interpretation, they also created five depositional strike

cross-oriented sections displaying the channel stacking patterns throughout the three channel complexes

(Fig. 10). Using concepts like lateral and vertical offset for describing how the vertex of the channelized

form in an x, y plane changes throughout the channel elements, they concluded that greater than 80% of all

channels stacked within a half-width of the previous channel, demonstrating the limited lateral offsets

observed in that formation.

A geometrical and descriptive approach to stochastically model the channel stacking patterns is

developed by Rongier et al. (2017) relying on the simulation of an initial channel using a fractals generator

(Lindenmayer system) and simulating a migration factor using a sequential Gaussian simulation (SGS) or

a multiple-point simulation (MPS). The main difference between this modeling approach from the ones of

McHargue et al. (2011a, 2011b) is that this geostatistical simulation reproduces the geometry and

stratigraphy (distribution in time and space) resulting from the physical processes rather than modeling the

physical processes themselves. However, measured section or well data conditioning is not explored.

Sylvester et al. (2011) and Morris et al. (2022) use channel trajectories. Their models, besides

accounting for lateral offset or channel migration, also account for parameters such as incision, aggradation,

channel and overbank deposits and cutoffs, and use the following predictive rules or assumptions:

17

Fig. 10. Depositional-strike-oriented cross-sections. Vertical and lateral offset is measured between successive channel elements

to quantitatively analyze stacking patterns (Macauley and Hubbard, 2013).

18

• Within individual submarine channel systems, channel size variability is relatively small,

meaning that channel elements within a channel complex tend to have a characteristic and

relatively constant size and shape.

• Channels migrate systematically and their placement is not random in organized channel

stacking.

The modeled channel stacking patterns are created by modifying the migration, or total offset of a

single channel element or shape, with varying degrees of vertical offset or aggradation and lateral offset or

lateral migration. Furthermore, they highlight that some seismic studies suggest that the vertical offset or

component of the channel trajectory is unlikely to change sign (eroding and depositing) frequently, and

often consists of a single incision-aggradation, with no evidence for multiple reincisions. They also used a

parabola for the parameterization of the channel elements. The channel centerpoint is the channel midpoint

at the top, and at each time step, the new location of the centerpoint is defined by a lateral offset or horizontal

component and a vertical offset or component applied to the coordinate at the previous time step. Finally,

the parameters x and z define the channel trajectory. Their channel element template is 600 m in width x

60 m thick, in agreement with the work of Jobe et al. (2016).

Furthermore, Morris et al. (2022) use a centerline creation algorithm designed for fluvial models

(e.g., Pyrcz et al., 2009) to generate deep-water channels (Covault et al., 2016), then hypothesizing that the

stratigraphic complexity of submarine channels can be explained or reproduced by a continuous flow

(Sylvester et al., 2011) instead of by punctuated events (Arnott, 2010; Hubbard et al., 2014; Macauley and

Hubbard, 2013).

3.2. Differences from previous work

Macauley and Hubbard (2013) provide fundamental concepts for organized channels from

outcrops. Nevertheless, the planform geometries of the channels from which the cross-sections of the

channels stacking patterns were created should be considered as an initial, deterministic, qualitative

19

approximation. Our approach for generating the channel stacking patterns is based on machine learning-

derived probabilities based on the new interpretation (Vento, 2020). The incorporation of probabilities

results in a range of stochastic models that all match the measured section data, rather than a single

interpretation.

Additional CSS internal work has lumped and reinterpreted channel elements, reducing the total

number of elements from 18 to 12 in Lower Laguna Figueroa (the focus of this study). Therefore, the

channel elements are 400 m width x 25 m thick, rather than the 300 m width x 15 m thickness of Macauley

and Hubbard (2013). These values are consistent with the most recent modeling studies of channel elements

in the Tres Pasos Fm. (Langenkamp, 2021; Ruetten, 2021). Exact measurements of channel element width

and height are difficult to ascertain from subsurface data, and outcrop and modern analog studies present a

range of values (McHargue et al., 2011a). Therefore, channel width and thickness (treated as constant in

this study) can be treated as a variable in future modeling approaches.

Sylvester et al. (2011) use a similar approach to ours, using parabolas as a template for channel

elements, and calculating a total offset as a result of two components, the vertical and lateral offsets.

However, instead of defining the channel centerpoint as the channel midpoint at the top, our channel

element centerpoint is the parabola vertex. Channel trajectories are better to conceptualize and quantify

channel evolution in a slope-parallel section, whereas our approach is suitable when measured section or

well data conditioning and matching is required.

3.3. Individual channel element geometry parameters

For representing and modeling channelized forms, parabolas have been extensively used (Li and

Caers, 2011; Morris et al., 2022; Rongier et al., 2017; Sylvester et al., 2011). The equation used in this

study is below (Eq. 1), and parameters like width (w), thickness or depth (t) and height (k), lateral offset (x)

and vertical offset (y) were used for modeling the channel stacking patterns (Fig. 11).

20

𝑃𝑎𝑟𝑎𝑏𝑜𝑙𝑎 (𝑝) = 𝑎𝑥2 + 𝑦 = 𝑡(𝑤2)2 × (𝑥0 − 𝑥)2 + 𝑦 (1)

3.3.1. Width (w)

Width is defined as “the maximum width of the channel; it is located at the top of the channel” (Li

and Caers, 2011) without erosion. The widths of channel elements fall between 100 and 800 m

(outcrop)/600 m (subsurface) with an average of 300 m (outcrop)/200 m (subsurface) (McHargue et al.,

2011b). Measurements from outcrops suggest a wider range of values with an average width of 300 m.

Widths measured from outcrops are apparent widths (McHargue et al., 2011b). As mentioned above, for

our channel element template we used a width of 400 m (Langenkamp, 2021; Ruetten, 2021).

Fig. 11. Template used in this study. We used a template of 400 m width x 25 m thick.

3.3.2. Thickness or depth (t) and height (k)

Thickness is “the maximum thickness of the channel; it is located at the center of the channel” (Li

and Caers, 2011). Preserved element thickness values are on average 10.7 m (subsurface)/13 m (outcrop)

with maximum observed values between 35 and 40 m (McHargue et al., 2011b). The thickness used for

this research was 25 m (Langenkamp, 2021; Ruetten, 2021) based on observed outcrop data. Thickness is

21

inversely related to height in a parabola (i.e., when the parabola reaches the maximum thickness, height is

0). Thickness is defined and measured as a perpendicular line that goes from the vertex to the middle top

of the parabola. In contrast, height is defined by a perpendicular line from an x-plane at the vertex of a

parabola to the base of the parabola.

3.3.3. Lateral offset (x)

Lateral offset is defined as the x-component of an x, y point that defines the vertex of a parabola.

This concept is introduced by Macauley and Hubbard (2013) (Fig. 12).

3.3.4. Vertical offset (y)

Vertical offset is defined as the y-component of an x, y point that defines the vertex of a parabola.

This concept is introduced by Macauley and Hubbard (2013) (Fig. 12).

Fig. 12. Sketch of two stacked channel elements to illustrate measurements of vertical and lateral offset (Macauley and Hubbard,

2013). Notice that both components are measured regarding the vertex of the channelized from, in contrast to Sylvester et al.

(2011).

3.4. Methodology workflow

Here we present the general pseudocode that we used to guide the programming in Python (Fig.

13):

1. Read axis/off-axis/margin and thickness for each channel element probabilities (Neural Network [NN],

Vento (2020), Chapter 4; Transition Probabilities [TP]; Chapter 5). Read A/OA/M and thickness for

22

each channel element probabilities (Neural Network [NN], Vento (2020); Transition Probabilities [TP];

Chapter 5)

2. Convert PDF to CDF

3. For s = number of realizations

a. Conditional simulation (n=1, first channel element): random draw from CDF for axis/off-

axis/margin

i. NN conditioning to well, Chapter 4 or uniform random draw as start for TP, Chapter

5

ii. If off-axis or margin drawn, random uniform draw to right off-axis/margin or left off-

axis/margin, if axis drawn, then axis

iii. Result: element n, position axis / (left/right) off-axis / (left/right) margin for element

n = 1

b. Conditional simulation (For n=2 to num elements); random draw from CDF for axis/off-

axis/margin

i. CDF:

1. NN results at channel element = n (Chapter 4);

2. TP based on random draw for n = 1 (Chapter 5)

ii. If off-axis or margin drawn, random draw to right off-axis/margin or left off-

axis/margin, if axis drawn, then axis

iii. Generate parabola and plot data

c. Result: element n=2 to num elements, position axis / (left/right) off-axis / (left/right) margin;

i.e., multiple equiprobable realizations that are conditioned to probabilities at the wellbore

(Chapter 4) or conditioned to honor TP (Chapter 5)

d. For n = 1 to number of channel elements

i. Shift channel element vertical position to match thickness in 1D data (Chapter 6)

ii. Generate parabola and plot data

23

iii. Result: multiple equiprobable realizations that are conditioned to probabilities at the

wellbore (Chapter 4) or conditioned to honor TP (Chapter 5) and place correctly to

match thicknesses at the wellbore

e. Break when the number of unique possibilities is reached.

We also performed a sensitivity analysis for:

a. The number of simulations required to generate all equiprobable cases and

b. Evaluate the 10 most likely and 10 least likely cases.

24

Fig. 13. Overview of the methods used in this research.

25

CHAPTER 4. MODELING CHANNEL STACKING PATTERNS WITH CONDITIONAL

SIMULATION AND SOFT PROBABILITIES

4.1. Motivation

Interpretation of stacking patterns has been qualitative and deterministic (Macauley and Hubbard,

2013). With the advent of new technologies for reprocessing vast quantities of data in a short time, machine

learning techniques were used on several measured sections of the Tres Pasos Fm. A neural network

algorithm classified the channel element architectural positions (Vento, 2020). Assuming the probabilities

of classification as probabilities of occurrence, it is possible to use them to model stochastically deep-water

channel stacking patterns for the first time.

A computational straightforward procedure for doing it is Monte Carlo simulation. Here, we try to

get equiprobable realizations modeling individual channel elements and modeling channel stacking (i.e.,

how architectural positions stack vertically) using conditional simulation with the soft probabilities of

occurrence and extrapolate those results to get 2D representations of the channel stacking patterns.

4.2. Methods

4.2.1. Database and coding style

For performing the modeling of the channel stacking patterns with independent probabilities, we

used machine learning-derived probabilities from the neural network classification of architectural

positions of Vento (2020). Those probabilities are condensed in the .xlsx file NN_Results.xlsx (not included

in this thesis). In this thesis, we include a modified version of that file, that includes the thicknesses of each

channel element per architectural position (NN_Results_2.xlsx, Appendix A).

For each channel element, there is an axis, off-axis and margin architectural position probability of

interpretation or occurrence. Those probabilities then sum up 1, or 100%. From Vento (2020), only some

26

channel element architectural positions are available per measured section, due to the occurrence of mass

transport deposits (MTDs), stratigraphic intervals covered by vegetation or debris and intervals that were

not classified. We are assuming then a measured section without gaps, with a complete record and without

stratigraphic vertical complexity (no mass transport deposits – MTDs occurrence).

Then, we proceeded to upload this .xlsx file as a pandas.DataFrame in Python using JupyterLab.

The scripts were written in a functional programming style (compare with object programming style).

4.2.2. Random variables

The fundamental concept of all statistics and probability theory is that of a random variable or

function. A random variable is “a variable that can take a series of possible outcomes, each with a certain

probability or frequency of occurrence” and is denoted by the letter Z (Remy et al., 2009). In contrast, a

deterministic variable takes only one value or outcome. A random variable can be either discrete or

continuous. For discrete random variables, each outcome is attached to a probability value. For a continuous

random variable, the distribution of probability values can take the form of a cumulative distribution

function (CDF) or a probability density function (PDF). Even though lithological classifications are

typically expressed as a discrete random variable, expressing their probabilities in a histogram resembling

a probability density function (PDF) and then creating a cumulative distribution function (CDF) provides

us with tools to model them stochastically.

4.2.3. Cumulative probability functions (CDFs)

A cumulative distribution function (CDF) provides the probability for a random variable not to

exceed a given threshold value and it is pictured as a cumulative histogram (Remy et al., 2009) (Fig. 14a).

4.2.4. Probability density functions (PDFs)

27

A probability density function (PDF) is defined as the derivative or the slope of the previous

cumulative distribution function (CDF) at values where the CDF is differentiable, and is pictured as a

histogram (Remy et al., 2009) (Fig. 14b).

Fig. 14. Sketches of (a) a cumulative distribution function (CDF) and (b) a probability density function (PDF) (Remy et al., 2009).

4.2.5. Drawing probability density functions (PDFs) and cumulative distribution functions (CDFs) in

Python

After uploading the curated .xlsx file into JupyterLab as a pandas.DataFrame, we selected the

measured section and the axis, off-axis and margin architectural position probabilities and converted them

into a NumPy array using the function values.

Then we defined two functions, one for generating NumPy arrays for drawing the probability

density functions (PDFs) or plotting as bars the architectural positions and another one for generating

NumPy arrays for drawing the cumulative distribution functions (CDFs).

The PDFs arrays generator function (prob function) adds a row of 0 to the NumPy array with the

architectural positions’ probabilities, so we could draw the CDFs on top and compare. The CDFs arrays

28

generator function (prob_cumsum function) calculates the cumulative sum of the architectural positions

probabilities and then inserts a 0 value as the first element to draw the CDFs from (0,0) to (3,1).

An architectural element position names array (ArchitecturalElementPositionNames) was created to plot

both the PDFs and the CDFs. Then, the pdfs_and_cdfs function plots the PDFs and CDFs distribution of

the architectural position probabilities per channel element within the measured section. This function plots

the PDFs and the CDFs from the geological or stratigraphical base to the top and labels them

correspondingly.

4.2.6. Monte Carlo simulation

Statistical simulation is a popular method to address problems that require the stochastic generation

of multiple scenarios to assess uncertainty. One of those methodologies is to draw samples that follow a

desired probability density function (PDF). Once many realizations have been obtained, the final PDF

function is estimated from those samples. This procedure is termed Monte Carlo simulation, and some

practical applications for geological modeling are provided by Avseth et al. (2005).

For the simple case of a univariate variable and a known PDF, we can perform a Monte Carlo

simulation by drawing n samples by first generating a uniform random value between 0 and 1 and then

evaluating the results at the CDF, which is a monotonic increasing function and take values between 0 and

1. Hence the simulated values follow the desired PDF.

Univariate Monte Carlo simulation may be described as shown in Fig. 15.

After extending the data by Monte Carlo simulation, it is important to check that the estimated and

original values have similar statistical distributions. This can be done by plotting comparative histograms,

quantile–quantile plots and scatter plots of the original and the simulated values (Avseth et al., 2005). For

performing this check, we compare visually the PDFs, or bar plots of the architectural position probabilities

with the histograms of the distribution of the samples simulated.

29

Fig. 15. Univariate Monte Carlo simulation using the CDF of the variable to be estimated (Avseth et al., 2005).

4.2.7. Running Monte Carlo simulations in Python

For running Monte Carlo simulations in Python, we need:

• The cumulative distribution functions (CDFs). These are described as NumPy arrays with

elements or probabilities from 0 to 1.

• A random number generator from a uniform distribution: we used the random module of

Python, and the random sample is drawn from the random.uniform function.

We created the montecarlo function, which works as follows. First, we define a list with four

elements [0, 1, 2, 3]. Numbers 1, 2, and 3 are related to axis, off-axis and margin architectural positions

respectively. Then, we create an empty list, that is going to store every value of the n iterations. We compare

the architectural positions' numerical list [0, 1, 2, 3] with the cumulative sum of the architectural positions’

probabilities [w, x, y, z] defining three options (axis, 1; off-axis, 2; and margin, 3), each associated with

one of the three slope segments of the CDF. Later, we draw a random value from a uniform distribution

with values from 0 to 1 using the random.uniform function. Finally, If the value falls between w and x is

going to be assigned a value of 1 (i.e., axis). If the value falls between x and y is going to be assigned a

30

value of 2 (i.e., margin). If the value falls between y and z is going to be assigned a value of 3 (i.e., margin)

(Fig. 16).

Fig. 16. Cumulative distribution function (CDF) of one of the channel element architectural positions within the measured section

CACH1. When a value is drawn from a uniform distribution that goes from 0 to 1, one of the three possible architectural positions

is going to be assigned. In this case, the randomly generated value of 0.6 (orange arrow), is going to be assigned an off-axis

position (2). The three architectural positions are limited by changes in the slope of the line segments that describe the CDF.

This process is repeated n iterations, producing n simulated values or samples, and the results are

stored in a list. Then, we can calculate the probability of occurrence of axis, off-axis and margin positions

by counting the number of times that the random process yielded 1, 2, and 3 respectively and dividing that

by the number of simulated samples or iterations.

4.3. Results

4.3.1. Probability density functions and cumulative distribution functions

The pdfs_and_cdfs function plots the PDFs and CDFs distribution of the architectural position

probabilities per channel element within the measured section from the geological or stratigraphical base

to the top and was used in the measured section CACH1 (Fig. 17).

4.3.2. Testing Monte Carlo simulation

31

The Monte Carlo simulation is performed for each channel element, using the corresponding

architectural position probabilities. In the end, a histogram showing the distribution of the simulated

samples is generated for each channel element, again from bottom to top. We can now compare the PDFs,

CDFs and histograms (Fig. 18) to see if the estimated and original values have similar statistical

distributions.

By plotting the probability density functions (PDFs) and the cumulative distribution functions

(CDFs) in one column, and the histograms of the distribution of the simulated values from the Monte Carlo

simulation in another column, we can see that the distribution of the results from the Monte Carlo simulation

is similar to the original probability density functions (PDFs). It is important to plot the PDFs, CDFs and

histograms from bottom to top, so we can also add the geological information provided by the measured

section and see graphically the relationship between the architectural position probabilities and the channel

elements stacked within the measured section CACH1 (Fig. 18).

4.3.3. Monte Carlo simulation of multiple equiprobable stacking patterns

We built several realizations of channel stacking patterns based on a random draw on the CDFs of

the different channel elements constrained to the probabilities of classification for axis, off-axis and margin

from the neural network. The results are multiple equiprobable realizations that are conditioned to

probabilities at the wellbore. From them, the individual architectural positions of the channel elements were

reclassified (i.e., the final architectural positions were gotten from the maximum number of occurrences

from 10000 iterations over the CDFs for every channel element).

32

Fig. 17. From left to right, measured section CACH1, showing the actual layers observed in the field and the tops and bases of the

five channel elements within the measured section. In analyzing the measured sections, we are assuming no gaps (a continuous

record). In the second column, the PDFs, or bars of the architectural position probability of classification, or occurrence. Orange

lines are the CDFs. It is important to generate the PDFs and CDFs from bottom to top so they can be easily linked to the geological

observations.

33

Fig. 18. From left to right, first column, measured section CACH1. In the second column, the PDFs, or bars of the architectural

position probability of classification, or occurrence. Orange lines are the CDFs. In the third column, histograms show the

distribution of the simulated samples. Notice that the distribution of those histograms is similar to the PDFs.

34

4.3.4. Channel stacking pattern templates

As mentioned above, parabolas have proved to be a convenient way for representing and modeling

channel elements (Li and Caers, 2011; Morris et al., 2022; Rongier et al., 2017; Sylvester et al., 2011).

From Eq. 1, we can model several parabolas at once relating the parabolas’ vertex to the total offset from

two components, the lateral offset (x) and vertical offset (y). Nevertheless, we would have infinite options

for both the lateral offset (x) and vertical offset (y). Or at least, if we control the vertex on an x, y plane

from the origin (i.e., x=0, y=0 coordinate), the lateral offset (x) would be a number between -200 m and 200

m to fit any architectural position within a measured section, and the vertical offset (y), a number between

0 m and the cumulative thickness of the specific measured section.

Since the channels of the Tres Pasos Fm. are low-sinuosity, high-symmetry channels, there are at

least five architectural positions: the left margin, the left off-axis, the axis, the right off-axis and the right

margin. From the channel dimensions used by Ruetten (2021), the left and right margins were assigned

each 12.5% of the parabola, or 50 m on the x-axis. The left and right off-axis were assigned each 7.5% of

the parabola, or 30 m in the x-axis. This is the narrowest architectural position, and as mentioned above,

the transition from margin to axis occurs over the 30 m in the x-axis of the off-axis architectural position

(Macauley and Hubbard, 2013). Finally, the axis was assigned 60% of the parabola, or 240 m on the x-axis.

All those distances regarding the x-axis sum up 400 m, the width of the individual channel element template.

Five possible lateral offsets, directly related to the five possible architectural positions were

modeled from the middle distances on the x-axis per architectural position to the y-axis. Then, the lateral

offset (x) of the axis is 0 m, the lateral offsets for the left and right off-axis are -135 and 135 m respectively,

and the ones for the left and right margins are -175 and 175 m respectively. The five possible lateral

offsets/architectural positions are shown in Fig. 19.

35

Fig. 19. At the top, the conceptual cross-section of channel element architectural positions from Macauley and Hubbard (2013);

at the bottom, are templates of the five possible lateral offsets, which in turn are related to at least five architectural positions.

These sketches were created with a hypothetical vertical offset (y) of 25 m between parabolas for visualization purposes.

Regarding the vertical offset (y), we can choose any number, as long as our geological thought

remains valid for a particular situation. Setting up a vertical offset of 25 m means perfect preservation of

the tops and bottoms of the channels, which is rare. Rather than that, usually, the tops of the channels are

eroded as the accommodation space for the next channel is created, so vertical offsets of less than 25 m will

make more sense. Other times, channels are stacked just with lateral offset (x), so no or little vertical offset

would be required. Fig. 20 shows the different channel stacking patterns for some hypothetical vertical and

lateral offsets. Notice that you have many theoretically infinite possibilities for channel stacking patterns,

but not all of them have geological significance.

36

Fig. 20. The number of channel element stacking patterns is theoretically infinite but can be described by the vertical and lateral

offsets. It requires geological thinking to match the information provided by the measured sections. From Hubbard et al. (2023).

4.3.5. Channel stacking pattern generation

For generating several realizations of channel stacking patterns, considering that there are two

margins (left and right) and two off-axis (left and right), and understanding the visualization limitation

inherent to measured sections, or well log data (i.e., allow us to see information as vertical profiles, or 1D),

we define the function stacking_patterns. Within that function, it is required to define the final chain or list

of numbers with the numerical code of the architectural positions from the Monte Carlo simulation, the

number of random stacking patterns you want to visualize, and a constant vertical offset that makes sense

with geological reasoning. Furthermore, it is possible to change the distances of lateral offsets by defining

37

a percentage from the axis to the final distance of a specific architectural position. In the end, a list of lateral

and vertical offsets is generated.

For generating the list of lateral offsets, an empty list is first defined, then for each channel element

in the measured section, a random choice between left and right (for margin and off-axis architectural

positions) is selected using the random.choice function. Each result of the loop is attached using the append

function. The list of vertical offsets is generated by creating an empty list, and then multiplying a constant

vertical offset by the number of cumulative channel elements within the section from bottom to base. Each

result of the loop is attached using the append function.

For plotting the randomly generated channel stacking patterns, we define a list of lateral and vertical

offsets from the results of the stacking_patterns function, and another line of code takes these two lists and

generates random channel stacking patterns with constant vertical offsets. Randomly generated channel

stacking patterns for a constant 25 m vertical offset of the measured section CACH 1 are shown in Fig. 21.

Random channel stacking patterns with constant vertical offsets of 20, 15 and 10 m are shown in

Fig. 22, Fig. 23 and Fig. 24 respectively, to illustrate the differences in total thickness if we decrease the

vertical offset. Overall, also notice that some channel stacking patterns look more “harmonic”, in contrast

with other channel stacking patterns that look more “disorganized”.

Running an experiment with 100 realizations would be robust enough to be able to depict the

number of possible channel stacking patterns because the number of possible channel stacking patterns n

for this measured section is 2 x 2 x 1 x 2 x 2 or = 16 when modeling individual channel elements first. Then,

using the plotting code line for depicting the randomly generated channel stacking patterns, we got a figure

with all the possible channel stacking patterns for the measured section from the list of unique possible

lateral offsets and the constant vertical offsets defined in the stacking_patterns function results (Fig. 25).

Again, some possibilities look perfectly “harmonic” (Fig. 25, stacking patterns 8 and 9), whereas

others look more “disorganized”.

38

Fig. 21. Nine random realizations of channel stacking patterns for the measured section CACH1, with a constant vertical offset of

25 m. Notice that some channel stacking patterns look more “harmonic” (channel stacking patterns 5 and 9 in this figure), whereas

in others the lateral offset between two channel elements exceeds half-width of the previous channel element. The black lines denote

the trace of the measured section.

Fig. 22. Three random realizations of channel stacking patterns for the measured section CACH1, with a constant vertical offset

of 20 m. Notice that some channel stacking pattern three looks more “harmonic”, and also the total thickness decreases. The black

lines denote the trace of the measured section.

39

Fig. 23. Three random realizations of channel stacking patterns for the measured section CACH1, with a constant vertical offset

of 15 m. Notice that some channel stacking pattern three looks more “harmonic”, and the total thickness decreases. The black

lines denote the trace of the measured section.

Fig. 24. Three random realizations of channel stacking patterns for the measured section CACH1, with a constant vertical offset

of 10 m. Notice that some channel stacking pattern three looks more “harmonic”, and the total thickness decreases. The black

lines denote the trace of the measured section.

4.3.6. Channel stacking generation from Monte Carlo simulation

The channel stacking is modeled (rather than the individual channel elements and then the channel

stacking) using the soft probabilities. From statistics, the total number of possible channel stacking patterns

(n) with a channel template with five possible architectural positions (or five possible lateral offsets) and

five stacked channel elements is n = 5 x 5 x 5 x 5 x 5 or 55 = 3125. Using the var_levels function, which

runs several simulations from a list of iterations and plots the unique channel stacking pattern possibilities

vs. the total number of iterations per simulation (Fig. 26) we can see that even 1000000 realizations of

40

random channel stacking given the soft probabilities cannot capture all possible channel stacking (3125

possibilities).

From the results of the simulation with 1000000 iterations, we sorted and filtered the 10 most likely

channel stacking possibilities (Table 1). The probability of occurrence of those channel stacking patterns is

about 1.4% out of 1000000 iterations. Then we plotted the results as channel stacking patterns without

matching to thickness (Fig. 27).

Table 1. The 10 most likely channel stacking possibilities. Elem: channel element from base to the top, -2: left margin, -1: left off-

axis, 0: axis, 1: right off-axis, 2: right margin.

 Elem1 Elem2 Elem3 Elem4 Elem5 Count

1 -1 0 1 2 1 14688

2 -1 0 -1 2 1 14594

3 1 0 1 -2 1 14566

4 -1 0 -1 -2 -1 14521

5 -1 0 1 -2 1 14509

6 -1 0 -1 -2 1 14470

7 1 0 1 2 -1 14424

8 -1 0 1 2 -1 14355

9 1 0 1 2 1 14335

10 1 0 -1 2 1 14331

Following a similar procedure, from the results of the simulation with 1000000 iterations, we sorted

and filtered the 10 least likely channel stacking possibilities (Table 2). The probability of occurrence of

those channel stacking patterns is 0.0001% out of 1000000 iterations. They are unlikely. Then we plotted

the results as channel stacking patterns without matching to thickness (Fig. 28).

41

Fig. 25. Unique channel stacking pattern possibilities for the measured section CACH1. A constant vertical offset of 25 m between channel elements was used for visualization

purposes. The channel stacking pattern possibilities are sorted from the one that has a more negative lateral offset (Stacking pattern 1) to the possibility that has a more positive

lateral offset (Stacking pattern 16).

42

Fig. 26. Variability levels of several simulations of channel stacking. The curve was plotted from the results of performing 10, 100,

500, 1000, 5000, 10000, 50000, 100000, 250000, 500000 and 1000000 iterations per simulation. Notice that it is not possible to

get the total number of possible channel stacking (3125 possibilities).

Table 2. The 10 least likely channel stacking possibilities. Elem: channel element from base to the top, -2: left margin, -1: left off-

axis, 0: axis, 1: right off-axis, 2: right margin.

 Elem1 Elem2 Elem3 Elem4 Elem5 Count

1 0 -1 -2 -2 -2 1

2 0 -1 -2 -1 2 1

3 1 1 -1 1 -2 1

4 -2 2 -2 2 1 1

5 0 -1 -1 -1 2 1

6 2 -1 2 1 1 1

7 2 -1 2 2 -2 1

8 -2 2 -2 1 0 1

9 -2 2 -2 -2 0 1

10 2 -2 0 1 1 1

43

Fig. 27. The 10 most likely channel stacking pattern possibilities for the measured section CACH1, simulating the channel stacking

directly from the soft probabilities. The channel stacking pattern possibilities are sorted from the one that has more occurrences

out of 1000000 iterations to the possibility that has fewer occurrences. The black line is the trace of the measured section and the

red line follows the parabola vertexes of the channel elements.

44

Fig. 28. The 10 least likely channel stacking pattern possibilities for the measured section CACH1, simulating the channel stacking

directly from the soft probabilities. All these channel stacking pattern possibilities had just one occurrence out of 1000000

iterations. The black line is the trace of the measured section and the red line follows the parabola vertexes of the channel elements.

45

CHAPTER 5. MODELING CHANNEL STACKING PATTERNS WITH MARKOV TRANSITION

PROBABILITIES

5.1. Motivation

Markov transition probabilities have been noted in many geological situations, including

stratigraphic sequences of rocks and sedimentary processes. A Markov chain is a probabilistic model

showing a special type of dependence, given the present condition, the future prediction does depend on

the past. Previous studies have shown a strong dependence on the deposition of a given channel element by

the composition and location of previous ones in organized channel systems (Macauley and Hubbard, 2013;

McHargue et al., 2011a; Sylvester et al., 2011). Given that, the stacking of deep-water channels can be

represented as a Markov chain, and channel stacking patterns can be predicted by using a vertical transition

probability matrix directly obtained from measured sections.

With this approach, the prediction of the channel stacking pattern is given by the deposition of the

first channel element, or in this case, a random seed, rather than being controlled by the soft probabilities

from the neural network. This allows us to contrast the results from the conditional modeling with soft

probabilities, test if the vertical transition probability matrix could be used to create organized vs.

disorganized channel stacking patterns and see how the results would be if we used that matrix alone to

create channel stacking patterns.

5.2. Methods

5.2.1. Database and coding style

For calculating the Markov transition probabilities, we used the information provided by the Chile

Slope Systems consortium database (https://www.chileslopesystems.com/). After accessing the database,

we downloaded a .xlsx copy of it. This database contains information of 785 channel elements, in contrast

https://www.chileslopesystems.com/

46

with the machine learning-derived probabilities of classification of Vento (2020), which contains

information of 154 channel elements from 64 measured sections.

We also performed a quality control of the database. From the original database, about 60% of

architectural positions of the channel elements were ‘NoneDefined’, meaning that they had not been

classified for either a geologist or a machine learning-related technique. There were full measured sections

in which the ‘NoneDefined’ category existed. Nevertheless, there were ‘NoneDefined’ architectural

positions within a measured section with some information. By cross-validation with the measured sections,

sometimes these ‘NoneDefined’ intervals were related to mass transport deposits (MTDs, not considered

in this research) but other times they do not.

We removed then all the measured sections with only ‘NoneDefined’ architectural position classes

and the ‘NoneDefined’ classes of measured sections that still had some architectural positions classified, to

focus on calculating the transition probabilities for axis, off-axis and margin architectural positions. In the

end, we worked with the architectural position classifications of 157 channel elements from 64 measured

sections, just a little bit more channel elements than the ones provided by Vento (2020).

Again, by removing all ‘NoneDefined’ classes, we are assuming a measured section without gaps,

with a complete record and without stratigraphic vertical complexity (no mass transport deposits – MTDs

occurrence). Then, we proceeded to upload the .xlsx file as a pandas.DataFrame in Python using

JupyterLab. Code to generate channel stacking patterns with the information of a vertical transition

probability matrix and a seed was created. We used a random choice between axis, off-axis and margin as

the seed for the simulations. The code also allows to choose between one of them if required. We modeled

five stacked channel elements. These results are unmatched to thickness. Finally, we created a function that

calculates the total distance between the parabola vertexes per channel stacking pattern (distances function)

as an indicator to compare channel stacking patterns with low vs. high lateral offset. The script was written

in a functional programming style.

47

5.2.2. Markov transition probabilities

Markov transition probabilities have been noted in many geological situations, including

stratigraphic sequences of rocks and sedimentary processes. Stratigraphy (i.e., the branch of geology that

studies layered rocks, and in general, the distribution in time and space of rocks) can be represented as a

Markov chain.

Let’s consider layers of rocks at discrete points along a vertical profile. The points are numbered

from bottom to top, and the use of the Markov transition probabilities assumes that the lithology of a

younger rock depends on the lithology of the immediately older rock. Sometimes the same lithology is

observed at successive layers of rocks. Then, the transition matrix that gives the probability of going from

one lithology to another has nonzero probabilities on the diagonals (Krumbein and Dacey, 1969).

A Markov chain is a probabilistic model showing a special type of dependence, given the present

condition, the future prediction does depend on the past. In 1D situations, as the geological record is shown

in measured sections and well logs, a Markov chain is represented by a vertical transition probability matrix.

Transition probabilities correspond to the frequencies of transitions from a certain layer of rock to another

layer of rock and are arranged in a square matrix form (Fig. 29). Those probabilities are called single-step

transitions (Elfeki and Dekking, 2001).

Fig. 29. Example of a square matrix with transition probabilities (Elfeki and Dekking, 2001).

48

Given that measured sections and well logs are represented as vertical profiles, we can estimate the

vertical transition probability matrix directly from them. First, the vertical profile (either measured sections

or well logs) is divided into channel elements, each of them with its corresponding architectural position.

Then a vertical transition count matrix is obtained by classic statistics, by counting the number of possible

pairs. Dividing the number of possible pairs by the total number of pairs or transitions, in this case in the

vertical direction, the vertical transition probability matrix is finally obtained (Cao et al., 2021; Qi et al.,

2016).

5.2.3. Vertical transition count matrix

For getting the vertical transition count matrix, after uploading the .xlsx file

CSS_DB_v0.2_ElementData_filtered.xlsx as a pandas.DataFrame in Python using JupyterLab, we

converted this DataFrame into a NumPy array with the values function. Then, we got a list of the measured

sections using the unique function.

We need to perform the counting of pairs per measured section, not for the whole database. If we

did it for the whole database, extra pairs would appear because of counting the information between

measured sections.

An empty list is generated, and for each measured section within the database, we create a list with

the numerical code of the architectural position (i.e., axis = 1, off-axis = 2 and margin = 3). Then we define

transition possibilities or pairs per measured section by using the trans_prob_pairs function. This function

generates two NumPy arrays per measured section, one with all the first elements of the list but the last,

and another with all the last elements of the list but the first. Then, these two arrays are stacked using the

stack function. Finally, this function returns the list of transition possibilities or pairs per measured section.

With the final counting of transition possibilities or pairs, we concatenated all the lists from all the

measured sections to then unpack them. In the end, a NumPy array with the pairs is obtained. The unique

function allowed to get the list of possible transition pairs. Then, we performed the counting of the transition

49

pairs by generating an empty list and running a loop for counting the number of elements in the final

transition pairs that match the list of unique pairs. A list of the counting is gotten. 93 transition pairs of 9

possible transition pairs were counted out of 157 channel elements from 64 measured sections.

For visualization purposes, we converted the list to a pandas.DataFrame and processed the results

into a separate .xlsx file. The results take all the available data, without evaluating any statistical stationarity

(e.g., changes in stacking pattern throughout the study area).

5.2.4. Vertical transition probability matrix

The previous results provided us with the vertical transition probability matrix, by dividing the

number of pairs counted by the number of total pairs (93 pairs). We also converted the final NumPy array

to a pandas.DataFrame and processed the information in a .xlsx file for formatting purposes.

5.3. Results

5.3.1. Vertical transition count matrix

The final vertical transition count matrix is shown in Table 3. Hot (red) colors indicate more pairs

counted. Cool (green) colors indicate fewer pairs counted.

Table 3. Vertical transition count matrix for the Chile Slope Systems consortium database.

 Axis Off-axis Margin

Axis 9 18 5

Off-axis 15 17 7

Margin 8 7 7

5.3.2. Vertical transition probability matrix

50

The final vertical transition probability matrix is shown in Table 4. Hot (red) colors indicate higher

probabilities. Cool (green) colors indicate lower probabilities. As expected, the sum of all the possible

probabilities (all cells in Table 4) is equal to 1.

Table 4. Vertical transition probability matrix for the Chile Slope Systems consortium database.

 Axis Off-axis Margin

Axis 0.1 0.19 0.05

Off-axis 0.16 0.18 0.08

Margin 0.09 0.08 0.08

5.3.3. Normalized vertical transition probability matrix

We also generated a normalized vertical transition probability matrix (Table 5). The values per row

were normalized to 1, so it can be seen specifically, for example, what the probabilities of transitioning

vertically from axis to axis, off-axis and margin are (Table 5, first row).

Table 5. Normalized vertical transition probability matrix for the Chile Slope Systems consortium database.

 Axis Off-axis Margin

Axis 0.29 0.56 0.15

Off-axis 0.38 0.43 0.19

Margin 0.36 0.32 0.32

From Table 5, it is 56% more likely to transition vertically from axis to off-axis architectural

position. Transitioning to axis (29%) or margin (15%) is also possible but less likely. From an off-axis

architectural position, it is more likely to transition vertically to off-axis (43%) or axis (38%). It is less

likely to transition vertically into margin (19%) but still possible. Finally, transitioning from a margin to

either an axis, off-axis and margin position (36%, 32% and 32% respectively) look equiprobable.

51

5.3.4. Sensitivity analysis with Markov transitional probabilities

We tested the code using several hypothetical vertical transition probability matrices to test if the

vertical probability transition matrix could be used to generate organized vs. disorganized channel stacking

patterns and evaluate what the most and least likely channel stacking patterns would be.

For the first hypothetical vertical transition probability matrix (Table 6), the probability of

transitioning from axis to axis, from off-axis to off-axis and from margin to margin is equal to 1, and the

probabilities of transitioning to the rest of possibilities is zero.

Table 6. First hypothetical vertical transition probability matrix for generating channel stacking patterns from a seed.

 Axis Off-axis Margin

Axis 1.00 0.00 0.00

Off-axis 0.00 1.00 0.00

Margin 0.00 0.00 1.00

Using that hypothetical vertical transition probability matrix for generating channel stacking

patterns from a random seed, and using the var_levels function, which runs several simulations from a list

of iterations and plots the unique channel stacking pattern possibilities vs. the total number of iterations per

simulation, we can see that after 500 realizations of random channel stacking given the hypothetical vertical

transition probability matrix we get 65 possibilities (Fig. 30).

52

Fig. 30. Variability levels of simulations of channel stacking for the first hypothetical vertical transition probability matrix. The

maximum number of iterations is reached after 500 realizations. The curve was plotted from the results of performing 10, 100, 500,

1000, 5000, 10000, 50000 and 100000 iterations per simulation.

The possible channel stacking patterns for this matrix are: (i) for the first channel element, there

are 5 possibilities and (ii) given the seed, the channel stacking is going to get stuck within the same

architectural position. If axis, the subsequent channels are going to be axis (1 possibility). If off-axis or

margin, there are two possibilities associated with the left and right architectural positions (64 possibilities).

The 10 most likely channel stacking pattern possibilities using this matrix are shown in Fig. 31.

The vertically aligned axis channel elements are by far the most likely because there is no uncertainty

associated with the random selection of left or right architectural positions. 33423 occurrences were counted

out of 100000 iterations. Next, random combinations between left and right off-axis and margins are the

more likely channel stacking pattern. Vertically, the architectural position remains the same, but laterally,

the random selection between left and right architectural positions creates random patterns. Those channel

stacking patterns are about 1% likely out of 100000 iterations. The total distance, and therefore, the lateral

offset between channel elements is variable (from 100 for the vertically stacked axis to 1077.67 for stacked

off-axis and margin with high lateral offset, Fig. 31).

53

The 10 least likely channel stacking pattern possibilities using this matrix are shown in Fig. 32

Nevertheless, all realizations using this vertical transition probability matrix can be considered

equiprobable, as expected. The 10 least likely channel stacking pattern possibilities also have a 1%

probability of occurrence. The total distance is variable (from 346.15 to 1084.60 m, greater dispersion, Fig.

32).

In the second hypothetical vertical transition probability matrix (Table 7) the probability of

transitioning from axis, off-axis and margin to off-axis is 1, and the rest of probabilities is zero. We wanted

to illustrate a case in which all the architectural position transition towards the intermediate architectural

position, or what could happen if the probabilities of transitioning to a fixed architectural position were the

highest.

Using that hypothetical vertical transition probability matrix for generating channel stacking

patterns from a random seed, and using the var_levels function, we can see that after 100 realizations of

random channel stacking given the hypothetical vertical transition probability matrix, we get 80 possibilities

(Fig. 33).

Table 7. Second hypothetical vertical transition probability matrix for generating channel stacking patterns from a seed.

 Axis Off-axis Margin

Axis 0.00 1.00 0.00

Off-axis 0.00 1.00 0.00

Margin 0.00 1.00 0.00

54

Fig. 31. The 10 most likely channel stacking pattern possibilities for five stacked channel elements using the first hypothetical

vertical transition matrix. The channel stacking pattern possibilities are sorted from the one that has more occurrences out of

100000 iterations to the possibility that has fewer occurrences. The black line is the trace of the measured section and the red line

follows the parabola vertexes of the channel elements

55

Fig. 32. The 10 least likely channel stacking pattern possibilities for five stacked channel elements using the first hypothetical

vertical transition matrix. The channel stacking pattern possibilities are sorted from the one that has more occurrences out of

100000 iterations to the possibility that has fewer occurrences. The black line is the trace of the measured section and the red line

follows the parabola vertexes of the channel elements.

56

The possible channel stacking patterns for this matrix are: (i) for the first channel element, there

are 5 possibilities and (ii) given the seed, all subsequent channel elements are going to be either left off-

axis or right off-axis (5 x 24 = 80 possible channel stacking patterns).

Fig. 33. Variability levels of simulations of channel stacking for the second hypothetical vertical transition probability matrix. The

maximum number of iterations is reached after 100 realizations. The curve was plotted from the results of performing 10, 100, 500,

1000, 5000, 10000, 50000 and 100000 iterations per simulation.

The 10 most likely channel stacking pattern possibilities using this matrix are shown in Fig. 34.

The channel stacking patterns starting with the axis architectural position are the most likely because there

is not a random selection such as left or right axis (2% likely). Subsequent channel elements are assigned

to the left or right off-axis. Those channel stacking patterns are about 1% likely out of 100000 iterations.

The total distances vary between 212.30 and 950.75 m, but most channel stacking patterns have 704.60 m.

The 10 least likely channel stacking pattern possibilities using this matrix are shown in Fig. 35. All

realizations using this vertical transition probability matrix can be considered equiprobable, as expected.

The 10 least likely channel stacking pattern possibilities also have a 1% probability of occurrence. Using

57

this matrix, was introduced more randomness between the seed and the subsequently predictable channel

elements. The total distance shows greater dispersion (from 122.17 to 1084.60 m).

In the third hypothetical vertical transition probability matrix (Table 8), the probabilities of

transitioning from axis to margin, off-axis to off-axis and margin to axis are 1, and the rest of the

probabilities are 0. We wanted to see if we could generate channel stacking patterns with larger lateral

offset by assigning the axis to margin and margin to axis probability as 1.

Table 8. Third hypothetical vertical transition probability matrix for generating channel stacking patterns from a seed.

 Axis Off-axis Margin

Axis 0.00 0.00 1.00

Off-axis 0.00 1.00 0.00

Margin 1.00 0.00 0.00

Using that hypothetical vertical transition probability matrix for generating channel stacking

patterns from a random seed, and using the var_levels function, we can see that after 500 realizations of

random channel stacking given the hypothetical vertical transition probability matrix we get 44 possibilities

(Fig. 36). The seed has five possibilities. If off-axis, the channel stacking pattern will swing between left

and right off-axis (2 x 2 x 2 x 2 x 2 = 25 = 32 possibilities).

If axis, the stacking pattern is going to swing between axis in the odd channel elements and left and

right margins in the even channel elements (1 x 2 x 1 x 2 x 1 = 4 possibilities). If margin, the stacking

pattern is going to swing between left and right margin in the odd elements and axis in the even elements

(2 x 1 x 2 x 1 x 2 = 8 possibilities). Therefore, 32 + 4 + 8 = 44 possible channel stacking patterns.

58

Fig. 34. The 10 most likely channel stacking pattern possibilities for five stacked channel elements using the second hypothetical

vertical transition matrix. The channel stacking pattern possibilities are sorted from the one that has more occurrences out of

100000 iterations to the possibility that has fewer occurrences. The black line is the trace of the measured section and the red line

follows the parabola vertexes of the channel elements.

59

Fig. 35. The 10 least likely channel stacking pattern possibilities for five stacked channel elements using the second hypothetical

vertical transition matrix. The channel stacking pattern possibilities are sorted from the one that has more occurrences out of

100000 iterations to the possibility that has fewer occurrences. The black line is the trace of the measured section and the red line

follows the parabola vertexes of the channel elements.

60

The 10 most likely channel stacking pattern possibilities using this matrix are shown in Fig. 37.

The channel stacking patterns involving axis to margin and margin to axis transitions are more likely. Their

probability of occurrence ranges from 8% when axis is the seed to 4% when margin is the seed, as expected

given the left or right margin random choice. The total distance of those possibilities is 702.12 m.

Fig. 36. Variability levels of simulations of channel stacking for the third hypothetical vertical transition probability matrix. The

maximum number of iterations is reached after 500 realizations. The curve was plotted from the results of performing 10, 100, 500,

1000, 5000, 10000, 50000 and 100000 iterations per simulation.

The 10 least likely channel stacking pattern possibilities using this matrix are shown in Fig. 38. All

combinations involving off-axis are the less likely, and their probability of occurrence is about 1%. The

total distance in those stacking patterns is variable (from approx. 100 to 1000 m).

5.3.5. Channel stacking pattern construction from the outcrop statistics and a seed

Following robust testing of the channel simulation with transition probabilities, the outcrop-derived

probabilities can be confidently used to generate simulations. The hypothesis is that the resulting

simulations will more closely match stacking patterns from the outcrop. A caveat is, however, that the

transition probabilities are derived from the full dataset, and an analysis of statistical stationarity is

61

considered. Channel stacking patterns vary throughout the study area. The resulting simulation does not

capture any end-member stacking patterns and will not reproduce stacking patterns at the outcrop. Rather,

the goal here is to demonstrate the use of outcrop-derived data in a near-wellbore simulation.

We used the real vertical transition probability matrix (Table 4) from the Chile Slope Systems

consortium database for generating the most likely realizations of channel stacking patterns and quantifying

their occurrence. We used a random choice between axis, off-axis and margin architectural positions as the

seed, or first channel element architectural position and modeled five stacked channel elements.

Using the outcrop-derived vertical transition probability matrix for generating channel stacking

patterns and the var_levels function, we can see that the total number of possible channel stacking patterns

is reached after performing more than 50000 realizations. After that, the number of possibilities remains

3125, no matter the number of iterations (Fig. 39).

The 10 most likely channel stacking pattern possibilities using this matrix are shown in Fig. 40.

Generating channel stacking patterns with the information from the real Markov vertical transition

probability matrix, the most likely channel stacking patterns are the ones that involved intercalations

between axis and off-axis architectural positions. The other ones more likely, are the ones in which there

are amalgamated axis, with an occasional intercalation of off-axis. Those channel stacking patterns are

around 4% likely and reflect the data from the real vertical transition count matrix (Table 3). The majority

of transitional pairs counted are: from axis to off-axis (18 pairs), from off-axis to off-axis (17 pairs) and

from off-axis to axis (15 pairs) and their transition probabilities are the highest (19%, 18% and 16%

respectively).

The 10 least likely channel stacking pattern possibilities using the real vertical transition probability

matrix are shown in Fig. 41. Vertically aligned intercalations of off-axis and margin architectural position

are less likely (around 0.03% probability of occurrence). This also concurs with the data from the real

vertical transition count matrix (Table 3).

62

Fig. 37. The 10 most likely channel stacking pattern possibilities for five stacked channel elements using the third hypothetical

vertical transition matrix. The channel stacking pattern possibilities are sorted from the one that has more occurrences out of

100000 iterations to the possibility that has fewer occurrences. The black line is the trace of the measured section and the red line

follows the parabola vertexes of the channel elements.

63

Fig. 38. The 10 least likely channel stacking pattern possibilities for five stacked channel elements using the third hypothetical

vertical transition matrix. The channel stacking pattern possibilities are sorted from the one that has more occurrences out of

100000 iterations to the possibility that has fewer occurrences. The black line is the trace of the measured section and the red line

follows the parabola vertexes of the channel elements.

64

Fig. 39. Variability levels of simulations of channel stacking for the real vertical transition probability matrix (Table 4). The

maximum number of iterations is reached after 50000 realizations. The curve was plotted from the results of performing 10, 100,

500, 1000, 5000, 10000, 50000, 100000 and 1000000 iterations per simulation.

65

Fig. 40. The 10 most likely channel stacking pattern possibilities for five stacked channel elements using the real vertical transition

probability matrix. The channel stacking pattern possibilities are sorted from the one that has more occurrences out of 1000000

iterations to the possibility that has fewer occurrences. The black line is the trace of the measured section and the red line follows

the parabola vertexes of the channel elements.

66

Fig. 41. The 10 least likely channel stacking pattern possibilities for five stacked channel elements using the real vertical transition

probability matrix. The channel stacking pattern possibilities are sorted from the one that has more occurrences out of 1000000

iterations to the possibility that has fewer occurrences. The black line is the trace of the measured section and the red line follows

the parabola vertexes of the channel elements.

67

CHAPTER 6. MATCHING CHANNEL STACKING PATTERNS TO THICKNESS

6.1. Methods

6.1.1. Database and coding style

For performing the match to the thickness of the channel stacking patterns, we used a modified

version of the machine learning-derived probabilities from the neural network classification of architectural

positions of Vento (2020). This includes the thicknesses of each channel element per architectural position

(NN_Results_2.xlsx, Appendix A) from the Chile Slope System consortium database

(https://www.chileslopesystems.com/). Then, we proceeded to upload this .xlsx file as a pandas.DataFrame

in Python using JupyterLab.

This script includes the drawing of the probability density functions (PDF) and cumulative

distribution functions (CDF) (Chapter 4) to generate realizations of channel stacking patterns that match

the actual thickness of the channel elements within the measured section and therefore, the total thickness.

The script was written in a functional programming style.

6.1.2. Parabola translations

For generating the channel stacking patterns, the code has been dealing with the template of a

parabola (Eq. 1). Parameters like width (w), thickness, depth or height (h), lateral offset (x) and vertical

offset (y) can be modeled. For this research, width (w) and thickness, depth or height (h) have remained

constant.

A parabola can be expressed mathematically by the standard form of the quadratic equation (Eq.

2).

https://www.chileslopesystems.com/

68

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (2)

A parabola also can be expressed mathematically by the vertex form (Eq. 3), where a is a constant

or coefficient, h is the x-coordinate of the parabola vertex and k is the y-coordinate of the parabola vertex.

𝑦 = 𝑎(𝑥 − ℎ)2 + 𝑘 (3)

If the parabola does not have any translation (i.e., shifting), then Eq. 3 is reduced to Eq 4.

𝑦 = 𝑎𝑥2 (4)

And finally, for a constant x and y, we can calculate the a coefficient, or stretching constant (Eq.

5), so the parabolas are going to look the same no matter the translation (x and y values).

𝑎 = 𝑦𝑥2 (5)

Given that our channel element template is a parabola, the thickness y (the distance from the vertex

of the parabola to the top) is 25 m and the width (the distance between the minimum and maximum points)

in the x-axis is 400 m, and half-width is x = 200 m, the stretching constant for out channel element template

a is 0.000625.

Now, for populating the channel stacking with the template, and given that a predefined lateral

offset (x) has been chosen and is related to the architectural positions (axis, off-axis and margin, Chapter 4,

section 4.3.4) and have been simulated from the Monte Carlo simulation, the only variable missing is the

vertical offset (y). It is required to find a list of vertical offsets (y) in a way that the parabola translations

regarding the y-axis match the thickness of the channel elements.

6.2. Results

6.2.1. Obtaining a vertical offset that matches the thickness

69

Controlling the vertex (h, k) of the parabola (Eq. 3) is a mathematically straightforward procedure

to translate a parabola template and the lateral offset (x) has been modeled and is known. Now, we need to

find a list of vertical offsets (y) that matches the thicknesses.

Thickness (t) is inversely related to the y-coordinate of the vertex of a parabola k, or height (i.e.,

when the parabola reaches the maximum thickness, k is 0). Thickness is defined and measured as a

perpendicular line that goes from the vertex to the middle top of the parabola. In contrast, k is defined by a

perpendicular line from a y-plane at the vertex of a parabola to the base of the parabola. Given that there

are only five possible lateral offsets (x), a list of k can be generated to adjust the vertical offset (y) given a

certain architectural position (Fig. 42).

Fig. 42. The three k’s used for calculating the final vertical offsets that match thicknesses regarding the architectural position.

From lower to greater k, axis, off-axis and margin.

The final list of vertical offsets, or k’s that match the thickness, are calculated given that the net

vertical offset (y) for a given channel element n is the difference between the cumulative thickness up to

channel element n-1 and a k given the channel element n architectural position. The cumulative thickness

was also edited so the information can be matched with a measured section at the origin (0, 0) up to (0, y =

cumulative thickness).

70

6.2.2. Channel stacking pattern generation

Then, following the procedure illustrated in Chapter 4 for generating realizations of the channel

stacking patterns using the stacking_patterns function, it is possible to generate realizations that honor the

thickness and the architectural position. A modified version of the stacking_patterns function, the

stacking_patterns_to_thick function, is defined to generate the final channel stacking patterns. Instead of

defining a constant vertical offset, it is required to define a list of fixed final vertical offsets.

6.2.3. Channel stacking patterns matched to thickness

From the results of the simulation with 1000000 iterations, we sorted and filtered the 10 most likely

channel stacking possibilities (Table 9). The probability of occurrence of those channel stacking patterns is

about 1.4% out of 1000000 iterations. Then we plotted the results as channel stacking patterns matched to

thickness (Fig. 43).

Furthermore, we created a function that calculates the total distance between the parabola vertexes

per channel stacking pattern (distances function) as an indicator to compare channel stacking patterns with

low vs. high lateral offset (Table 9) matched to thickness. Given this parameter, channel stacking patterns

1, 4 and 9 have less lateral offset regarding the other channel stacking pattern possibilities. This total

distance is 355.95 m when matched to thickness. From Fig. 43, those channel stacking patterns appear to

be highly vertically aligned.

Following a similar procedure, from the results of the simulation with 1000000 iterations, we sorted

and filtered the 10 least likely channel stacking possibilities (Table 10). The probability of occurrence of

those channel stacking patterns is 0.0001% out of 1000000 iterations. They are unlikely. Then we plotted

the results as channel stacking patterns matched to thickness (Fig. 44).

71

Table 9. The 10 most likely channel stacking possibilities. Elem: channel element from base to the top, TD: total distance matched

to thickness, -2: left margin, -1: left off-axis, 0: axis, 1: right off-axis, 2: right margin.

 Elem1 Elem2 Elem3 Elem4 Elem5 Count TD

1 -1 0 1 2 1 14688 355.95

2 -1 0 -1 2 1 14594 625.92

3 1 0 1 -2 1 14566 892.14

4 -1 0 -1 -2 -1 14521 355.95

5 -1 0 1 -2 1 14509 892.14

6 -1 0 -1 -2 1 14470 622.17

7 1 0 1 2 -1 14424 622.17

8 -1 0 1 2 -1 14355 622.17

9 1 0 1 2 1 14335 355.95

10 1 0 -1 2 1 14331 625.92

Table 10. The 10 least likely channel stacking possibilities. Elem: channel element from base to the top, TD: total distance matched

to thickness, -2: left margin, -1: left off-axis, 0: axis, 1: right off-axis, 2: right margin.

 Elem1 Elem2 Elem3 Elem4 Elem5 Count TD

1 0 -1 -2 -2 -2 1 193.86

2 0 -1 -2 -1 2 1 528.63

3 1 1 -1 1 -2 1 858.8

4 -2 2 -2 2 1 1 1094.96

5 0 -1 -1 -1 2 1 468.93

6 2 -1 2 1 1 1 674.36

7 2 -1 2 2 -2 1 976.9

8 -2 2 -2 1 0 1 1147.77

9 -2 2 -2 -2 0 1 884.33

10 2 -2 0 1 1 1 675.48

Using the total distance between the parabola vertexes per channel stacking pattern as an indicator

to compare channel stacking patterns with low vs. high lateral offset (Table 10) matched to thickness, the

lateral offset highly varies for these unlikely channel stacking patterns possibilities, from 193.89 (channel

stacking pattern 1) to 1147.77 m (channel stacking pattern 8). A little total distance is related to high

vertically aligned channel stacking patterns, whereas long distances are related to channel stacking patterns

in which the lateral offset between channel elements is greater.

72

From Fig. 44, off-axis and margin positions are sometimes unrealistically thicker, so there are big

gaps between channel elements in some channel stacking pattern possibilities (e.g., channel stacking pattern

10).

73

Fig. 43. The 10 most likely channel stacking pattern possibilities for the measured section CACH1, simulating the channel stacking

directly from the soft probabilities and matched to thickness. The channel stacking pattern possibilities are sorted from the one

that has more occurrences out of 1000000 iterations to the possibility that has fewer occurrences. The black line is the trace of the

measured section and the red line follows the parabola vertexes of the channel elements.

74

Fig. 44. The 10 least likely channel stacking pattern possibilities for the measured section CACH1, simulating the channel stacking

directly from the soft probabilities and matched to thickness. All these channel stacking pattern possibilities had just one occurrence

out of 1000000 iterations. The black line is the trace of the measured section and the red line follows the parabola vertexes of the

channel elements

75

CHAPTER 7. DISCUSSION

7.1. Conditional simulation and soft probabilities

Using machine learning-derived probabilities of classification of architectural positions of channel

elements allows us to assess probabilistically, or stochastically, the probability of occurrence of them.

Even though lithological classifications are usually deterministic, the truth is that for sedimentary

rocks (and for rocks in general) there is a continuous spectrum between classifications (Fig. 45), and

therefore facies and architectural positions. Dealing with the discrete information provided by machine

learning techniques as a continuous random variable has more geological sense and provides us with tools

to model sedimentary systems.

Fig. 45. Nomenclature used for mixtures of gravel, sand and mud in sediments and sedimentary rock (Nichols, 2009).

76

This approach seems to be successful, we introduced randomness in the modeling of architectural

positions. For example, in Fig. 18, even though the probability of occurrence of margin for elements 2 and

5 was virtually 0, after running a Monte Carlo simulation a little probability of occurrence appears. This

could be useful for generating stochastic realizations of channel stacking patterns.

Visually, the estimated values from the Monte Carlo simulations are following the distributions of

our original dataset, indicating that we are performing a procedure that has statistical ground (Avseth et al.,

2005) and also cross-checking that the code is executing correctly.

As laterally contiguous conditions and processes, and then environments of deposition of sediments

in a region shift with time in response to geologic conditions (e.g., climate, source areas, tectonism) layers

of rocks also shift and eventually the deposits of one depositional environment lie above those of another.

This idea constitutes one of the most important concepts in geology. Walther’s Law establishes that “a

direct environmental relationship exists between lateral facies and vertically stacked or superimposed

successions of strata” (Boggs, 2014).

In order words, layers of rocks that are found in a vertical profile coexisted horizontally at the same

time. Given this, the vertical exhibition of rocks itself should be able to tell something about the horizontal

distribution of rocks. This is the fundamental concept behind predicting channel stacking patterns from

architectural elements in vertical profiles, and its application in submarine channels is mentioned by

Macauley and Hubbard (2013). The second panel of Fig. 19 illustrates this point, showing how it is possible

to get a sequence of architectural positions that coexisted horizontally stacked in a vertical profile by the

accumulation of sediments at different time steps.

The generation of stacking patterns using five templates related to five lateral offsets that in turn

are related to the five (left margin, left off-axis, axis, right off-axis and right margin, Fig. 19) basic

architectural positions provided us with a simple framework to generate a baseline of equiprobable channel

stacking patterns. Furthermore, using initially a constant vertical offset between channel elements allowed

77

us to visually assess the “organization” of some channel stacking patterns vs. other ones by enhancing the

visualization of them with enough vertical separation (Fig. 22, Fig. 23 and Fig. 24). Also, it would allow us

to build models for assessing theoretical scenarios in which the deposition of sediments was constant over

cyclic time intervals.

Modeling the architectural positions of individual channel elements with conditional simulation

and soft probabilities using Monte Carlo simulation and then using the most likely channel stacking to

generate realizations of the 2D channel stacking patterns, it was possible to get equiprobable realizations

of channel stacking patterns.

Applying the qualitative, predictive rules provides us with insight into which channel stacking

pattern is more likely. The most important are:

• Channel elements tend to stack with lateral offsets of less than a channel width in channel

complexes with organized channel stacking (Macauley and Hubbard, 2013; McHargue et

al., 2011a).

• Within individual submarine channel systems, channel size variability is relatively small,

meaning that channel elements within a channel complex tend to have a characteristic and

relatively constant size and shape (Sylvester et al., 2011).

• Channels migrate systematically and their placement is not random in organized channel

stacking (Sylvester et al., 2011).

As mentioned, the Tres Pasos Fm. channels have been considered as showing an organized stacking

pattern (Macauley and Hubbard, 2013). From equiprobable realizations, the prediction will depend on the

background, knowledge and experience of the interpreter. Nevertheless, applying the predictive rules and

geological thinking, from Fig. 25 the most likely channel stacking patterns are numbers 8 and 9 (Fig. 46).

78

The specific selection from those two can be done by leveraging seismic attributes, or seismic

probability cubes (Langenkamp, 2021) and observations from partial tridimensional perspectives in the

field (Hubbard et al., 2023).

Fig. 46. Qualitatively the most likely channel stacking patterns with independent probabilities and Monte Carlo simulation. A

constant vertical offset of 25 m was used.

For quantifying the probability of occurrence of the channel stacking patterns given the conditional

simulations with soft probabilities, we focused on modeling channel stacking (instead of modeling

individual channel elements). After performing experiments with several millions of iterations, it was not

possible to get the total number of possible channel stacking patterns given the soft probabilities. The

probabilities of classification for axis and margin from the neural network (Vento, 2020) are high (around

90% of accuracy), so generating the total number of channel stacking patterns is itself unlikely. The curve

from Fig. 26 started to get asymptotic by 1000000 realizations, or 2000 channel stacking patterns. The least

likely channel stacking possibilities are unrealistic stacking patterns that do not match the measured section

data.

7.2. Forward modeling with Markov transition probabilities

79

We performed forward modeling or automatic channel stacking pattern construction from a seed

with Markov transitional probabilities, in this case, the architectural position of the first channel element of

a vertical profile. Several hypothetical vertical transition probability matrices behaved as expected. Using

the real vertical transition probability matrix, only the axis and off-axis positions stack vertically, reflecting

that many transitional pairs counted are from axis to off-axis, from off-axis to off-axis and from off-axis to

axis. This could be a result of measuring vertical profiles preferentially through sandy bodies, the targets

of the industry. One channel stacking pattern was found to be the most likely vertically, by 0.4%.

Nevertheless, by stacking channel elements using just the Markov transition probabilities, the channels have

a significant horizontal offset between them, and the channel stacking pattern appears disorganized, in sharp

contrast with the products seen in nature and expected using qualitative or predictive rules (Macauley and

Hubbard, 2013; McHargue et al., 2011a, 2011b; Sylvester et al., 2011).

Given that, for using transition probabilities matrices for controlling the occurrence of channel

stacking patterns you would need to incorporate either (i) a distribution regarding the lateral offset or (ii)

consider the right and left architectural positions within the vertical transition probability matrix.

The total distance metric used to evaluate the organization of channel stacking patterns (sensu

Langenkamp, 2021) provides insight into the lateral offset, and it was taken in both channel stacking

patterns with a constant vertical offset and channel stacking patterns matched to thickness. It was useful in

both scenarios, particularly in the matched-to-thickness one when you cannot see the distribution of channel

elements within the stacking pattern. We can now choose quantitatively which stacking pattern would be

more likely. The most likely possibilities usually are equiprobable and have the same total distance or less

dispersion. The total distances of least likely possibilities have greater dispersion.

7.3. Matching to thickness

Models of submarine channels are usually generated from seismic data alone (Ringrose and

Bentley, 2021). Geoscientists must study seismic-scale outcrops bridging the gap between the aerial extent

80

of seismic data and the characterization of stratigraphy (Arnott, 2010) including architecture and channel

stacking patterns. However, finding those outcrops is rare, and that is why the study of the submarine

channels of the Tres Pasos Fm. offers a unique opportunity to contribute to solving a variety of geological

problems.

As mentioned, previous studies have focused on understanding submarine channels using statistics

and numerical models (Li and Caers, 2011; McHargue et al., 2011a, 2011b; Morris et al., 2022; Rongier et

al., 2017; Sylvester et al., 2011) with the rare exception of Macauley and Hubbard (2013), that used

outcrops. The study of outcrops is a crucial component of exploration geology and ranks as the most

important source of information from the Earth and the one that should be honored the most over indirect

surveys (well logs and seismic data). This research attempted to bridge the gap between computational

models and information provided by outcrops.

For doing that, matching thickness has been recognized as one of the most challenging tasks (Li

and Caers, 2011). Previous authors were able to achieve it using a complex series of operations in

grids/rasters (Li and Caers, 2011), two-step simulations (Pyrcz et al., 2015) and artificial neural networks

(Titus et al., 2021). Nevertheless, information from outcrops was not considered, and in this research

matching thickness was accomplished using information from outcrops for the very first time.

7.4. Future work

Jackson et al. (2019) proved that channel stacking patterns impact connectivity, and that high lateral

channel element offsets reduce it. Assessing multiple channel stacking patterns is crucial for understanding

flow units and has implications on well placement and reservoir connectivity. Geological interpretations

are often very qualitative and deterministic, so the results of this research provide a framework to evaluate

stochastically interpretations and can even be extended to the assessment of uncertainty and risk of

subseismic architecture and its impact on reservoir connectivity. Furthermore, adding more stratigraphic

81

complexity, the impacts of thin bed presence and position could be stochastically evaluated when having

channel stacking patterns with different lateral or vertical offsets (Meirovitz et al., 2020).

Even though our models are simple, they have the potential to give clues for better modeling

submarine channels while honoring the data and using statistical techniques. Given the lack of “true” or

“ground” information, by replicating the methods of this research to the other measured sections in the Tres

Pasos Fm. and adding some stratigraphic complexities (like the occurrence of mass transport deposits,

MTDs), the deterministic interpretations of channel stacking patterns could be changed in a minimum time

while recognizing uncertainty. This would allow to revisit the planform deterministic interpretations of

Macauley and Hubbard (2013) and strengthen the statistics of the submarine channels of the Tres Pasos

Fm.

Currently, the advent of new methodologies to build predictive reservoir models of the subsurface

like rule-, surface- or process-based modeling allows us to obtain clues about the evolution of channelized

systems (Pyrcz et al., 2015). However, these models rely on algorithms for centerline generation adapted

from fluvial models (Covault et al., 2016; McHargue et al., 2011b, 2011a; Morris et al., 2022; Pyrcz et al.,

2015; Sylvester et al., 2011).

Despite submarine channels and fluvial channels share features like the development of terraces

and channel morphologies, from braided to meandering, (i) submarine channels are larger and occur more

commonly than subaerial channels, (ii) mainly intermittent turbidity currents construct submarine channels,

(iii) those flows travel more slowly than an equidimensional river and (iv) Coriolis effects are more

significant for turbidity currents than for fluvial streams (MacNaughton et al., 2005).

By extrapolating the results of this research to the other measured sections would be possible to

define paleochannel trajectory points per measured section that match the “ground” data, and by using Non-

Uniform Rational B-Splines (NURBS) (Jacquemyn et al., 2019; Ruiu et al., 2016) find the paleochannel

trajectory and build algorithms for centerline generation that considers the difference between fluvial and

82

submarine channels. Also, it would be possible to analyze the paleotopography of the channelized surface

and its influence on depositional and erosional processes and the preservation of architecture.

83

CHAPTER 8. CONCLUSIONS

Architectural position probabilities generated by machine learning are a useful foundation for

generating near-wellbore models of channel stacking, and modeling stochastically a discrete random

variable like architectural position allows to assess the probability of occurrence while making more sense

of the continuous nature of sedimentary systems. We demonstrated a method to generate multiple scenarios

of channel stacking patterns at measured sections using templates of channel elements. Fixed lateral offsets

depict different architectural positions.

Conditional Monte Carlo simulation with soft probabilities per channel element allowed us to build

equiprobable realizations of channel stacking patterns but are unable to quantify their probability of

occurrence.

Modeling channel stacking (instead of modeling individual channel elements) allowed us to

quantify the probability of occurrence of the possibilities. Impossible channel stacking patterns are unlikely

to be obtained given the high probabilities of occurrence of the classification of architectural position from

the soft probabilities. Using forward modeling or Markov transitional probabilities for automatic channel

stacking pattern construction from a seed without constraints from the measured section yields slightly

more likely channel stacking patterns but unrealistic lateral offsets. The total distance metric provides

insight into the organization and can be used to compare low vs. high lateral offsets scenarios.

The channel stacking patterns generated match thickness using a straightforward procedure that

can be replicated without the use of time-expensive, complex simulations. Deterministic interpretations of

channel stacking patterns can be revisited in a minimum time.

84

REFERENCES

Arnott, R.W.C., 2010. Deep-marine sediments and sedimentary systems, in: Facies Models. pp. 295–322.

Avseth, P., Mukerji, T., Mavko, G., 2005. Quantitative seismic interpretation: Applying rock physics tools

to reduce interpretation risk, Quantitative Seismic Interpretation: Applying Rock Physics Tools to

Reduce Interpretation Risk. https://doi.org/10.1017/CBO9780511600074

Boggs, S., 2014. Principles of sedimentology and stratigraphy, Fifth edit. ed, Sedimentary Geology.

Pearson. https://doi.org/10.1016/0037-0738(95)00151-4

Cao, W., Zhou, A., Shen, S.L., 2021. An analytical method for estimating horizontal transition probability

matrix of coupled Markov chain for simulating geological uncertainty. Computers and Geotechnics

129, 103871. https://doi.org/10.1016/j.compgeo.2020.103871

Covault, J.A., Sylvester, Z., Hubbard, S.M., Jobe, Z.R., Sech, R.P., 2016. The Stratigraphic Record of

Submarine-Channel Evolution. The Sedimentary Record 14, 4–11.

https://doi.org/10.2110/sedred.2016.3.4

Daniels, B.G., Auchter, N.C., Hubbard, S.M., Romans, B.W., Matthews, W.A., Stright, L., 2018. Timing

of deep-water slope evolution constrained by large-n detrital and volcanic ash zircon geochronology,

Cretaceous Magallanes Basin, Chile. Bulletin of the Geological Society of America 130, 438–454.

https://doi.org/10.1130/B31757.1

Elfeki, A., Dekking, M., 2001. A Markov chain model for subsurface characterization: Theory and

applications. Mathematical Geology 33, 569–589. https://doi.org/10.1007/s11004-006-9037-9

Fletcher, S., 2013. Stratigraphic Characterization of a Cretaceous Slope Channel Complex in the Tres Pasos

Formation, Arroyo Picana-Laguna Figueroa Outcrop Belt, Chilean Patagonia.

https://doi.org/10.11575/PRISM/27886

85

Fosdick, J.C., Romans, B.W., Fildani, A., Bernhardt, A., Calderón, M., Graham, S.A., 2011. Kinematic

evolution of the Patagonian retroarc fold-and-thrust belt and Magallanes foreland basin, Chile and

Argentina, 51°30’s. Bulletin of the Geological Society of America 123, 1679–1698.

https://doi.org/10.1130/B30242.1

Gómez, J., Schobbenhaus, C., Montes, N.E., 2019. Geological Map of South America 2019. Scale 1:5 000

000. Commission for the Geological Map of the World (CGMW), Colombian Geological Survey and

Geological Survey of Brazil, Paris. https://doi.org/https://doi.org/10.32685/10.143.2019.92

Heijnen, M.S., Clare, M.A., Cartigny, M.J.B., Talling, P.J., Hage, S., Pope, E.L., Bailey, L., Sumner, E.,

Gwyn Lintern, D., Stacey, C., Parsons, D.R., Simmons, S.M., Chen, Y., Hubbard, S.M., Eggenhuisen,

J.T., Kane, I., Hughes Clarke, J.E., 2022. Fill, flush or shuffle: How is sediment carried through

submarine channels to build lobes? Earth and Planetary Science Letters 584, 117481.

https://doi.org/10.1016/j.epsl.2022.117481

Hubbard, S.M., Covault, J.A., Fildani, A., Romans, B.W., 2014. Sediment transfer and deposition in slope

channels: Deciphering the record of enigmatic deep-sea processes from outcrop. Bulletin of the

Geological Society of America 126, 857–871. https://doi.org/10.1130/B30996.1

Hubbard, S.M., Romans, B.W., Southern, S., Stright, L., Daniels, B.G., Fletcher, S.A., Jackson, A.,

Kaempfe, S., Macauley, R. V., Nielsen, A., Niquet, D., Mierowitz, C., Pemberton, E.A.L., Reimchen,

A., 2018. Core- and log-based recognition criteria for deep-water channel bodies: Using outcrops to

inform stratigraphic architecture predictions beyond the wellbore. AAPG Annual Convention and

Exhibition, Salt Lake City, Utah, May 20-23, 2018.

Hubbard, S.M., Romans, B.W., Stright, L., Kaempfe, S., 2023. Stratigraphic Architecture and Evolution of

Slope Systems: Magallanes Basin, southern Chile. Calgary.

Jackson, A., Stright, L., Hubbard, S.M., Romans, B.W., 2019. Static connectivity of stacked deep-water

channel elements constrained by high-resolution digital outcrop models. AAPG Bulletin 103, 2943–

86

2973. https://doi.org/10.1306/03061917346

Jackson, M.D., Hampson, G.J., Saunders, J.H., El-Sheikh, A., Graham, G.H., Massart, B.Y.G., 2014.

Surface-based reservoir modelling for flow simulation. Geological Society, London, Special

Publications 387, 271–292. https://doi.org/10.1144/sp387.2

Jacquemyn, C., Jackson, M.D., Hampson, G.J., 2019. Surface-Based Geological Reservoir Modelling

Using Grid-Free NURBS Curves and Surfaces. Mathematical Geosciences 51, 1–28.

https://doi.org/10.1007/s11004-018-9764-8

Jobe, Z.R., Howes, N.C., Auchter, N.C., 2016. Comparing submarine and fluvial channel kinematics:

Implications for stratigraphic architecture. Geology 44, 931–934. https://doi.org/10.1130/G38158.1

Krumbein, W.C., Dacey, M.F., 1969. Markov chains and embedded Markov chains in geology. Journal of

the International Association for Mathematical Geology 1, 79–96.

https://doi.org/10.1007/BF02047072

Langenkamp, T.R., 2021. Evaluating the impact of deep-water channel architecture on the probability of

correct facies classification using 3D synthetic seismic data. Colorado State University.

Li, H., Caers, J., 2011. Geological Modelling and History Matching of Multi-Scale Flow Barriers in

Channelized Reservoirs: Methodology and Application. Petroleum Geoscience 17, 17–34.

https://doi.org/10.1144/1354-079309-825

Macauley, R. V., Hubbard, S.M., 2013. Slope channel sedimentary processes and stratigraphic stacking,

Cretaceous Tres Pasos Formation slope system, Chilean Patagonia. Marine and Petroleum Geology

41, 146–162. https://doi.org/10.1016/j.marpetgeo.2012.02.004

MacNaughton, R., Beauchamp, B., Dewing, K., Smith, I., Wilson, N., Zonneveld, J.P., 2005. Encyclopedia

of sediments and sedimentary rocks. Geoscience Canada.

McHargue, T., Pyrcz, M.J., Sullivan, M.D., Clark, J., Fildani, A., Levy, M., Drinkwater, N., Posamentier,

87

H., Romans, B., Covault, J., 2011a. Event-Based Modeling of Turbidite Channel Fill, Channel

Stacking Pattern, and Net Sand Volume. Outcrops Revitalized 163–173.

https://doi.org/10.2110/sepmcsp.10.163

McHargue, T., Pyrcz, M.J., Sullivan, M.D., Clark, J.D., Fildani, A., Romans, B.W., Covault, J.A., Levy,

M., Posamentier, H.W., Drinkwater, N.J., 2011b. Architecture of turbidite channel systems on the

continental slope: Patterns and predictions. Marine and Petroleum Geology 28, 728–743.

https://doi.org/10.1016/j.marpetgeo.2010.07.008

Meirovitz, C.D., Stright, L., Hubbard, S.M., Romans, B.W., 2020. The influence of inter-and intra-channel

architecture on deep-water turbidite reservoir performance. Petroleum Geoscience 27.

https://doi.org/10.1144/petgeo2020-005

Morris, P.D., Sylvester, Z., Covault, J.A., Mohrig, D., 2022. Channel trajectories control deep-water

stratigraphic architecture. Depositional Record 880–894. https://doi.org/10.1002/dep2.189

Mpodozis, C., Mella, P., Padva, D., 2011. Estratigrafía y megasecuencias sedimentarias en la cuenca

Austral – Magallanes , Argentina y Chile. VIII Congreso de Exploración y Desarrollo de

Hidrocarburos 97–138.

Nichols, G., 2009. Sedimentology and stratigraphy, Second edi. ed. Wiley-Blackwell.

Nordahl, K., Ringrose, P.S., Wen, R., 2005. Petrophysical characterization of a heterolithic tidal reservoir

interval using a process-based modelling tool. Petroleum Geoscience 11, 17–28.

https://doi.org/10.1144/1354-079303-613

Pyrcz, M.J., Boisvert, J.B., Deutsch, C. V., 2009. ALLUVSIM: A program for event-based stochastic

modeling of fluvial depositional systems. mComputers and Geosciences 35, 1671–1685.

https://doi.org/10.1016/j.cageo.2008.09.012

Pyrcz, M.J., Catuneanu, O., Deutsch, C. V., 2005. Stochastic surface-based modeling of turbidite lobes.

88

American Association of Petroleum Geologists Bulletin 89, 177–191.

https://doi.org/10.1306/09220403112

Pyrcz, M.J., Deutsch, C. V., 2014. Geostatistical reservoir modeling. Oxford University Press.

Pyrcz, M.J., Sech, R.P., Covault, J.A., Willis, B.J., 2015. Stratigraphic rule-based reservoir modeling.

Bulletin of Canadian Petroleum Geology 63, 287–303.

Qi, X.H., Li, D.Q., Phoon, K.K., Cao, Z.J., Tang, X.S., 2016. Simulation of geologic uncertainty using

coupled Markov chain. Engineering Geology 207, 129–140.

https://doi.org/10.1016/j.enggeo.2016.04.017

Remy, N., Boucher, A., Wu, J., 2009. Applied geostatistics with SGeMS, First edit. ed. Cambridge

University Press, New York.

Ringrose, P.S., Bentley, M., 2021. Reservoir Model Design, Second. ed, Reservoir Model Design. Springer.

https://doi.org/10.1007/978-94-007-5497-3

Romans, B.W., Fildani, A., Hubbard, S.M., Covault, J.A., Fosdick, J.C., Graham, S.A., 2011. Evolution of

deep-water stratigraphic architecture, Magallanes Basin, Chile. Marine and Petroleum Geology 28,

612–628. https://doi.org/10.1016/j.marpetgeo.2010.05.002

Romans, B.W., Hubbard, S.M., Graham, S.A., 2009. Stratigraphic evolution of an outcropping continental

slope system, Tres Pasos Formation at Cerro Divisadero, Chile. Sedimentology 56, 737–764.

https://doi.org/10.1111/j.1365-3091.2008.00995.x

Rongier, G., Collon, P., Renard, P., 2017. A geostatistical approach to the simulation of stacked channels.

Marine and Petroleum Geology 82, 318–335. https://doi.org/10.1016/j.marpetgeo.2017.01.027

Ruetten, A., 2021. Evaluating the Impact of Hierarchical Deep-Water Slope Channel Architecture on Fluid

Flow Behavior, Cretaceous Tres Pasos Formation, Chile. Colorado State University.

89

Ruiu, J., Caumon, G., Viseur, S., 2016. Modeling Channel Forms and Related Sedimentary Objects Using

a Boundary Representation Based on Non-uniform Rational B-Splines. Mathematical Geosciences

48, 259–284. https://doi.org/10.1007/s11004-015-9629-3

Southern, S., Stright, L., Jobe, Z., Romans, B., Hubbard, S., 2017. The Stratigraphic Expression of Slope

Channel Evolution: Insights From Qualitative and Quantitative Assessment of Channel Fills From the

Cretaceous Tres Pasos Formation, Southern Chile.

Stright, L., Bernhardt, A., Boucher, A., 2013. DFTopoSim: Modeling Topographically-Controlled

Deposition of Subseismic Scale Sandstone Packages Within a Mass Transport Dominated Deep-

Water Channel Belt. Mathematical Geosciences 45, 277–296. https://doi.org/10.1007/s11004-013-

9444-7

Sylvester, Z., Pirmez, C., Cantelli, A., 2011. A model of submarine channel-levee evolution based on

channel trajectories: Implications for stratigraphic architecture. Marine and Petroleum Geology 28,

716–727. https://doi.org/10.1016/j.marpetgeo.2010.05.012

Titus, Z., Heaney, C., Jacquemyn, C., Salinas, P., Jackson, M.D., Pain, C., 2021. Conditioning surface-

based geological models to well data using artificial neural networks. Computational Geosciences.

https://doi.org/10.1007/s10596-021-10088-5

Vento, N.F.R., 2020. Hypothesis-based machine learning for deep-water channel systems. Colorado State

University.

Zhang, X., Pyrcz, M.J., Deutsch, C. V., 2009. Stochastic surface modeling of deepwater depositional

systems for improved reservoir models. Journal of Petroleum Science and Engineering 68, 118–134.

https://doi.org/10.1016/j.petrol.2009.06.019

90

APPENDIX A – DATABASE

• NN_Results_2.xlsx

Axis_Pro

b

Off_Axis_Pro

b

Margin_Pro

b

Pred_Clas

s

True_Clas

s

Geobod

y Meas_Sect

Complex

Set

Thicknes

s

0.20 0.76 0.04 2 2 2 CACH1 'Lower' 8.13

0.90 0.10 0.00 1 1 3 CACH1 'Lower' 17.73

0.19 0.48 0.33 2 2 6 CACH1 'Lower' 6.14

0.00 0.10 0.90 3 3 7 CACH1 'Lower' 11.45

0.22 0.78 0.00 2 2 8 CACH1 'Lower' 18.39

0.01 0.17 0.83 3 3 2 CACH2 'Lower' 6.61

0.73 0.27 0.00 1 1 3 CACH2 'Lower' 20.10

0.00 0.00 1.00 3 3 8 DS1 'Lower' 6.58

0.00 0.00 1.00 3 3 9 DS1 'Lower' 6.14

0.00 0.21 0.79 3 3 3 DYMD1 'Lower' 7.84

0.25 0.55 0.20 2 2 2 FIG100 'Upper' 8.05

0.00 0.10 0.90 3 3 3 FIG100 'Upper' 10.02

0.99 0.01 0.00 1 1 8 FIG100 'Upper' 21.85

0.88 0.11 0.00 1 2 10 FIG100 'Upper' 11.84

0.00 0.09 0.91 3 3 11 FIG100 'Upper' 13.97

0.00 0.08 0.91 3 3 12 GC1 'Upper' 10.38

0.48 0.51 0.01 2 1 11 GC10 'Upper' 10.24

0.00 0.10 0.90 3 3 12 GC2 'Upper' 10.28

0.81 0.19 0.00 1 1 12 GC3 'Upper' 19.20

0.29 0.70 0.00 2 2 12 GC4 'Upper' 16.71

91

0.88 0.12 0.00 1 1 11 GC6 'Upper' 10.79

0.67 0.33 0.00 1 1 12 GC7 'Upper' 24.00

1.00 0.00 0.00 1 1 12 GC8 'Upper' 24.40

0.00 0.02 0.98 3 3 12 GCNOR 'Upper' 6.75

0.99 0.01 0.00 1 1 8 GD1 'Upper' 11.59

0.40 0.59 0.00 2 2 10 GD1 'Upper' 12.50

0.00 0.08 0.92 3 3 2 GD3 'Upper' 5.22

0.03 0.28 0.70 3 3 5 GD3 'Upper' 7.62

0.15 0.60 0.25 2 1 10 GD5GC5 'Upper' 6.42

0.85 0.12 0.03 1 1 11 GD5GC5 'Upper' 6.31

0.99 0.01 0.00 1 1 12 GD5GC5 'Upper' 23.56

0.02 0.47 0.51 3 3 6 GD6KS7 'Upper' 7.24

0.66 0.33 0.01 1 1 11 GD6KS7 'Upper' 7.32

0.97 0.03 0.00 1 1 11 GD7 'Upper' 11.79

0.00 0.01 0.99 3 3 5 GD8 'Upper' 11.74

0.00 0.01 0.99 3 3 3 GOLDA 'Lower' 8.32

0.04 0.75 0.21 2 2 3 GOLDB 'Lower' 10.78

0.09 0.82 0.09 2 2 3 GOLDC 'Lower' 11.30

0.11 0.88 0.01 2 2 3 GOLDD 'Lower' 15.48

0.77 0.23 0.00 1 1 2 KJ1 'Lower' 9.18

0.11 0.87 0.02 2 2 3 KJ1 'Lower' 13.87

0.04 0.70 0.26 2 2 5 KJ1 'Lower' 11.27

0.98 0.02 0.00 1 1 7 KJ1 'Lower' 7.94

0.00 0.23 0.77 3 3 8 KJ1 'Lower' 7.72

0.01 0.92 0.08 2 2 9 KJ1 'Lower' 12.33

0.00 0.06 0.94 3 3 10 KJ1 'Lower' 6.15

0.00 0.00 1.00 3 3 12 KS3 'Upper' 8.52

0.95 0.05 0.00 1 1 7 MM1 'Lower' 12.86

92

0.00 0.00 1.00 3 3 3 MM101 'Lower' 6.34

0.41 0.57 0.02 2 2 5 MM101 'Lower' 9.86

0.47 0.53 0.00 2 1 7 MM101 'Lower' 13.07

0.15 0.85 0.00 2 1 9 MM101 'Lower' 22.26

0.00 0.09 0.91 3 3 10 MM101 'Lower' 4.86

0.06 0.94 0.00 2 2 2 MM102 'Lower' 15.90

0.00 0.01 0.99 3 3 3 MM102 'Lower' 6.30

0.32 0.67 0.00 2 2 5 MM102 'Lower' 10.40

0.02 0.84 0.13 2 2 6 MM102 'Lower' 9.20

0.27 0.69 0.04 2 2 7 MM102 'Lower' 11.32

0.82 0.18 0.00 1 1 9 MM102 'Lower' 21.51

0.05 0.76 0.19 2 2 5 MM103 'Upper' 9.66

0.77 0.23 0.00 1 1 12 MM103 'Upper' 22.76

0.00 0.00 1.00 3 3 7 MM2 'Lower' 9.08

0.05 0.60 0.35 2 2 9 OP1 'Lower' 7.80

0.27 0.71 0.02 2 2 6 OP2 'Lower' 13.09

0.85 0.15 0.00 1 1 8 OP2 'Lower' 25.78

0.13 0.65 0.22 2 2 9 OP2 'Lower' 7.09

0.24 0.62 0.14 2 2 2 P10 'Upper' 8.90

0.15 0.82 0.03 2 2 3 P10 'Upper' 11.53

0.90 0.10 0.00 1 1 8 P10 'Upper' 15.46

0.00 0.10 0.90 3 3 2 P11 'Upper' 6.33

0.00 0.02 0.98 3 2 5 P11 'Upper' 8.72

0.04 0.33 0.63 3 3 6 P12 'Upper' 5.95

0.12 0.58 0.30 2 2 7 P12 'Upper' 12.11

0.01 0.05 0.94 3 3 2 P13 'Upper' 4.34

0.07 0.55 0.38 2 2 5 P13 'Upper' 9.44

0.75 0.25 0.00 1 1 3 P2 'Upper' 11.01

93

0.29 0.69 0.02 2 2 11 P3 'Upper' 10.61

0.98 0.02 0.00 1 1 11 P4 'Upper' 12.26

0.00 0.00 1.00 3 3 5 P5 'Upper' 10.62

0.03 0.55 0.42 2 3 6 P5 'Upper' 6.45

0.00 0.21 0.79 3 3 7 P5 'Upper' 11.26

0.64 0.36 0.00 1 1 11 P5 'Upper' 11.48

0.03 0.74 0.24 2 3 5 P6DS5GC9 'Upper' 10.72

0.00 0.17 0.83 3 3 6 P6DS5GC9 'Upper' 5.31

0.09 0.68 0.23 2 3 7 P6DS5GC9 'Upper' 11.12

0.94 0.06 0.00 1 1 11 P6DS5GC9 'Upper' 13.05

0.08 0.66 0.26 2 3 12 P6DS5GC9 'Upper' 8.50

0.04 0.36 0.60 3 3 5 P7GD4 'Upper' 8.15

0.99 0.01 0.00 1 1 8 P7GD4 'Upper' 11.00

0.34 0.55 0.12 2 2 10 P7GD4 'Upper' 6.73

0.00 0.02 0.98 3 2 11 P7GD4 'Upper' 14.48

0.05 0.63 0.32 2 3 5 P8 'Upper' 10.55

0.00 0.01 0.99 3 3 2 P9 'Upper' 4.93

0.15 0.81 0.03 2 2 2 PEQ1 'Lower' 14.22

0.96 0.04 0.00 1 1 3 PEQ1 'Lower' 22.44

0.01 0.29 0.70 3 2 6 PEQ1 'Lower' 7.01

0.96 0.04 0.00 1 1 8 PEQ1 'Lower' 23.74

0.66 0.34 0.00 1 2 10 PEQ1 'Lower' 11.82

0.77 0.23 0.00 1 2 3 PEQ2LOWER 'Lower' 13.70

0.00 0.00 1.00 3 3 7 PEQ2LOWER 'Lower' 4.93

0.06 0.38 0.56 3 3 6 PEQ2UPPER 'Lower' 8.35

0.99 0.01 0.00 1 1 8 PEQ2UPPER 'Lower' 25.02

0.32 0.66 0.02 2 2 10 PEQ2UPPER 'Lower' 9.00

0.75 0.25 0.00 1 1 2 SUBBB1 'Lower' 23.28

94

0.17 0.81 0.03 2 2 3 SUBBB1 'Lower' 9.52

0.51 0.44 0.05 1 1 6 SUBBB1 'Lower' 10.20

0.11 0.88 0.01 2 2 7 SUBBB1 'Lower' 12.91

0.03 0.96 0.01 2 2 8 SUBBB1 'Lower' 14.89

0.29 0.69 0.01 2 2 10 SUBBB1 'Lower' 16.86

0.53 0.47 0.00 1 1 6 SUBBB2 'Lower' 11.94

0.40 0.60 0.00 2 2 7 SUBBB2 'Lower' 14.90

0.95 0.05 0.00 1 1 2 SUBBB3 'Lower' 22.19

0.80 0.19 0.00 1 1 6 SUBBB3 'Lower' 10.49

0.48 0.51 0.00 2 2 7 SUBBB3 'Lower' 13.04

0.01 0.57 0.42 2 2 8 SUBBB3 'Lower' 6.49

0.15 0.81 0.04 2 2 10 SUBBB3 'Lower' 20.25

0.06 0.93 0.01 2 2 2 SUBBB4 'Lower' 18.60

0.18 0.69 0.13 2 2 3 SUBBB4 'Lower' 8.88

0.28 0.71 0.02 2 1 6 SUBBB4 'Lower' 13.51

0.15 0.85 0.00 2 1 8 SUBBB4 'Lower' 13.67

0.29 0.71 0.00 2 2 10 SUBBB4 'Lower' 21.25

0.38 0.62 0.00 2 2 2 VACA1 'Lower' 17.07

0.05 0.76 0.19 2 2 3 VACA1 'Lower' 9.62

0.03 0.86 0.10 2 2 6 VACA1 'Lower' 13.23

0.43 0.56 0.00 2 1 8 VACA1 'Lower' 16.30

0.64 0.36 0.00 1 1 10 VACA1 'Lower' 19.69

0.83 0.17 0.00 1 2 3 VACA2 'Lower' 11.99

0.01 0.30 0.69 3 2 6 VACA2 'Lower' 8.99

0.98 0.02 0.00 1 1 8 VACA2 'Lower' 25.12

0.22 0.75 0.03 2 2 10 VACA2 'Lower' 10.96

0.67 0.33 0.00 1 1 10 VACA3VV3 'Upper' 12.05

0.77 0.23 0.00 1 1 11 VACA3VV3 'Upper' 20.27

95

0.97 0.02 0.00 1 1 2 VACA4VV4 'Upper' 6.83

0.76 0.24 0.00 1 2 3 VACA4VV4 'Upper' 16.58

0.99 0.01 0.00 1 1 8 VACA4VV4 'Upper' 17.86

0.00 0.08 0.92 3 3 10 VACA4VV4 'Upper' 11.77

0.07 0.61 0.31 2 3 11 VACA4VV4 'Upper' 12.85

0.44 0.55 0.01 2 1 8

VACA8VV8GD

2 'Upper' 13.78

0.11 0.86 0.03 2 2 10

VACA8VV8GD

2 'Upper' 12.94

0.19 0.72 0.09 2 2 11

VACA8VV8GD

2 'Upper' 8.97

0.01 0.36 0.63 3 2 2 VCM1VV5 'Upper' 7.02

0.00 0.23 0.77 3 3 3 VCM1VV5 'Upper' 12.82

0.94 0.06 0.00 1 1 8 VCM1VV5 'Upper' 13.19

0.10 0.82 0.08 2 2 10 VCM1VV5 'Upper' 6.91

0.76 0.24 0.00 1 2 11 VCM1VV5 'Upper' 16.99

0.81 0.19 0.00 1 1 8 VCM2 'Upper' 11.50

0.00 0.32 0.68 3 3 9 VCM2 'Upper' 12.22

0.00 0.13 0.87 3 3 9 VCM3 'Upper' 12.76

0.73 0.20 0.07 1 2 2 VV2 'Upper' 8.18

0.18 0.72 0.10 2 2 3 VV2 'Upper' 11.82

0.99 0.01 0.00 1 1 8 VV2 'Upper' 11.14

0.57 0.43 0.00 1 1 11 VV7 'Upper' 26.42

0.00 0.01 0.99 3 3 11 VVEDGE 'Upper' 5.90

0.03 0.92 0.05 2 3 11 VVWB 'Upper' 14.20

96

APPENDIX B – PYTHON CODES

• Chapter 4

Uploading the data

import pandas as pd
import matplotlib.pyplot as plt
import NumPy as np

from matplotlib import rcParams
rcParams['font.family'] = 'sans-serif'
rcParams['font.sans-serif'] = ['Franklin Gothic Book']
rcParams['font.size'] = '18'

df=pd.read_excel('NN_Results_2.xlsx')
df

 Axis_Prob Off_Axis_Prob Margin_Prob Pred_Class True_Class Geobody \
0 0.200129 0.764206 0.035665 2 2 2
1 0.896818 0.103155 0.000027 1 1 3
2 0.185925 0.479642 0.334434 2 2 6
3 0.001238 0.096551 0.902211 3 3 7
4 0.217810 0.781036 0.001154 2 2 8
..
149 0.176377 0.722527 0.101096 2 2 3
150 0.985616 0.014327 0.000057 1 1 8
151 0.565369 0.434623 0.000009 1 1 11
152 0.000003 0.009516 0.990481 3 3 11
153 0.030788 0.920465 0.048747 2 3 11

 Meas_Sect Complex Set Thickness
0 CACH1 'Lower' 8.126835
1 CACH1 'Lower' 17.730909
2 CACH1 'Lower' 6.141687
3 CACH1 'Lower' 11.450495
4 CACH1 'Lower' 18.390356
..
149 VV2 'Upper' 11.824580
150 VV2 'Upper' 11.138141
151 VV7 'Upper' 26.417171
152 VVEDGE 'Upper' 5.896554
153 VVWB 'Upper' 14.202635

[154 rows x 9 columns]

Meas_Sect=df[df['Meas_Sect']=='CACH1']#REPLACE THE NAME OF THE MEASURED SECTION
Meas_Sect=Meas_Sect[['Axis_Prob', 'Off_Axis_Prob', 'Margin_Prob']]
Meas_Sect

 Axis_Prob Off_Axis_Prob Margin_Prob
0 0.200129 0.764206 0.035665
1 0.896818 0.103155 0.000027
2 0.185925 0.479642 0.334434
3 0.001238 0.096551 0.902211
4 0.217810 0.781036 0.001154

97

Meas_Sect=Meas_Sect.values
Meas_Sect

array([[2.00128968e-01, 7.64206174e-01, 3.56648580e-02],
 [8.96817877e-01, 1.03154714e-01, 2.74090607e-05],
 [1.85924709e-01, 4.79641650e-01, 3.34433641e-01],
 [1.23753958e-03, 9.65514118e-02, 9.02211049e-01],
 [2.17809653e-01, 7.81036309e-01, 1.15403762e-03]])

Histograms (or Probability Density Functions, PDFs) and Cummulative Distribution Functions, or

CDFs

def prob(Meas_Sect):
 prob=np.insert(Meas_Sect, 0, 0, 1)
 return prob

def prob_cumsum(Meas_Sect):
 prob_cumsum=Meas_Sect.cumsum(axis=1)
 prob_cumsum=np.insert(prob_cumsum, 0, 0, 1)
 return prob_cumsum

Meas_Sect_probs=prob(Meas_Sect)
Meas_Sect_probs, Meas_Sect_probs.shape

(array([[0.00000000e+00, 2.00128968e-01, 7.64206174e-01, 3.56648580e-02],
 [0.00000000e+00, 8.96817877e-01, 1.03154714e-01, 2.74090607e-05],
 [0.00000000e+00, 1.85924709e-01, 4.79641650e-01, 3.34433641e-01],
 [0.00000000e+00, 1.23753958e-03, 9.65514118e-02, 9.02211049e-01],
 [0.00000000e+00, 2.17809653e-01, 7.81036309e-01, 1.15403762e-03]]),
 (5, 4))

Meas_Sect_probs_cum=prob_cumsum(Meas_Sect)
Meas_Sect_probs_cum, Meas_Sect_probs_cum.shape

(array([[0. , 0.20012897, 0.96433514, 1.],
 [0. , 0.89681788, 0.99997259, 1.],
 [0. , 0.18592471, 0.66556636, 1.],
 [0. , 0.00123754, 0.09778895, 1.],
 [0. , 0.21780965, 0.99884596, 1.]]),
 (5, 4))

ArchitecturalElementPositionNames=['0', 'Axis (1)', 'Off-axis (2)', 'Margin (3)']
ArchitecturalElementPositionNames

['0', 'Axis (1)', 'Off-axis (2)', 'Margin (3)']

ArchitecturalElementPositionNumbers=np.array([0, 1, 2, 3])
print(ArchitecturalElementPositionNumbers.shape, ArchitecturalElementPositionNumbers)

(4,) [0 1 2 3]

def pdfs_and_cdfs(Meas_Sect_probs, Meas_Sect_probs_cum):
 plt.figure(figsize=(6, 22)) #create the figure, then change the size of it
 for c in range(len(Meas_Sect_probs)): #for each sample in the dimension length... THIS IS
USEFUL! TO GO OVER INDEXES OR REPEAT X TIMES A SEQUENCE!!!
 plt.subplot(len(Meas_Sect_probs), 1, len(Meas_Sect_probs)-c) #display the graphs in 4
rows, 3 columns
 plt.bar(ArchitecturalElementPositionNames, Meas_Sect_probs[c]) #plot bars
 plt.plot(Meas_Sect_probs_cum[c], color='orange', linewidth=2) #plot a line above
 plt.title('Channel element '+str(c+1))
 plt.ylabel('Probability') #y label

98

 plt.xlabel('Architectural position') #x label
 plt.ylim((0,1.05)) #same dimensions for all the graphs
 plt.xlim((0,4)) #same dimensions for all the graphs
 plt.tight_layout() #improve the layout

pdfs_and_cdfs(Meas_Sect_probs, Meas_Sect_probs_cum)

99

import random

n_samples=10000
#EMPTY LIST 1: probability of arch el, (axis, off-axis, margin) per channel element
results=[]
plt.figure(figsize=(6, 22))
for probs in range(len(Meas_Sect_probs_cum)):
 #EMPTY LIST 2: classifications from eCDF (1,2,3)
 mc_sim=[]
 arch_pos=np.array([0, 1, 2, 3])
 a,b,c,d=arch_pos
 w,x,y,z=Meas_Sect_probs_cum[probs]
 plt.subplot(len(Meas_Sect_probs), 1, len(Meas_Sect_probs)-probs)
 #repeat n samples (n_samples)
 for n in range(n_samples):
 value=round(np.random.uniform(0, 1), ndigits=2)
 if w < value <= x:
 arch_el = b
 elif x < value <= y:
 arch_el = c
 else:
 arch_el = d
 # ___OUTPUT 2___
 mc_sim.append(arch_el)
 p_axis=round(mc_sim.count(b)/n_samples, ndigits=2)
 p_offaxis=round(mc_sim.count(c)/n_samples, ndigits=2)
 p_margin=round(mc_sim.count(d)/n_samples, ndigits=2)
 #___OUTPUT 1____
 results.append([p_axis, p_offaxis, p_margin])
 plt.hist(mc_sim)
 plt.title('Architectural element ' + str(probs+1))
 plt.ylabel('Number of samples',fontsize=16) #y label
 plt.xlabel('Architectural position',fontsize=16) #x label
 plt.ylim((0,n_samples)) #same dimensions for all the graphs
 plt.xlim((0,4)) #same dimensions for all the graphs
plt.tight_layout()
results, type(results)

([[0.21, 0.75, 0.04],
 [0.89, 0.1, 0.01],
 [0.17, 0.48, 0.34],
 [0.0, 0.09, 0.91],
 [0.21, 0.78, 0.01]],
 list)

100

101

Getting the maximum probabilities

arch_pos_codes={1:'axis',
 2:'off-axis',
 3:'margin'}
arch_pos_codes

{1: 'axis', 2: 'off-axis', 3: 'margin'}

max_prob=np.amax(results, axis=1)
max_prob, max_prob.shape, type(max_prob)

(array([0.75, 0.89, 0.48, 0.91, 0.78]), (5,), NumPy.ndarray)

max_final_facies=np.argmax(results,axis=1)+1
max_final_facies, max_final_facies.shape, type(max_final_facies)

(array([2, 1, 2, 3, 2], dtype=int64), (5,), NumPy.ndarray)

ms_final_results_codes_max=[]
for i in range(len(results)):
 codes=arch_pos_codes[max_final_facies[i]]
 ms_final_results_codes_max.append(codes)
ms_final_results_codes_max=np.array(ms_final_results_codes_max)
ms_final_results_codes_max

array(['off-axis', 'axis', 'off-axis', 'margin', 'off-axis'], dtype='<U8')

ms_final_results_max=np.stack((max_final_facies, ms_final_results_codes_max, max_prob), axis=1
)
ms_final_results_max, ms_final_results_max.shape, type(ms_final_results_max)

(array([['2', 'off-axis', '0.75'],
 ['1', 'axis', '0.89'],
 ['2', 'off-axis', '0.48'],
 ['3', 'margin', '0.91'],
 ['2', 'off-axis', '0.78']], dtype='<U32'),
 (5, 3),
 NumPy.ndarray)

Getting the minimum probabilities

min_prob=np.amin(results, axis=1)
min_prob, min_prob.shape, type(min_prob)

(array([0.04, 0.01, 0.17, 0. , 0.01]), (5,), NumPy.ndarray)

min_final_facies=np.argmin(results,axis=1)+1
min_final_facies, min_final_facies.shape, type(min_final_facies)

(array([3, 3, 1, 1, 3], dtype=int64), (5,), NumPy.ndarray)

ms_final_results_codes_min=[]
for i in range(len(results)):
 codes=arch_pos_codes[min_final_facies[i]]
 ms_final_results_codes_min.append(codes)
ms_final_results_codes_min=np.array(ms_final_results_codes_min)
ms_final_results_codes_min

array(['margin', 'margin', 'axis', 'axis', 'margin'], dtype='<U6')

102

ms_final_results_min=np.stack((min_final_facies, ms_final_results_codes_min, min_prob), axis=1
)
ms_final_results_min, ms_final_results_min.shape, type(ms_final_results_min)

(array([['3', 'margin', '0.04'],
 ['3', 'margin', '0.01'],
 ['1', 'axis', '0.17'],
 ['1', 'axis', '0.0'],
 ['3', 'margin', '0.01']], dtype='<U32'),
 (5, 3),
 NumPy.ndarray)

Parabola generation

def parabola(half_width,height,y_offset=0,x_offset=0):
 xaxis=range(-(half_width-1),half_width)
 xaxis=np.array(xaxis)+x_offset
 yaxis=(height/(half_width-1)**2)*((xaxis-x_offset)**2)+y_offset
 x_top_parabola=[min(xaxis), max(xaxis)]
 y_top_parabola=[max(yaxis), max(yaxis)]
 return plt.plot(xaxis,yaxis,'--',color='gray'), plt.plot(x_top_parabola, y_top_parabola,'-
-',color='gray')

par_test=parabola(half_width=200,height=25,y_offset=0,x_offset=0)

def parabola_temp(half_width,height,y_offset,x_offset):
 xaxis=range(-(half_width-1),half_width)
 xaxis=np.array(xaxis)+x_offset
 yaxis=(height/(half_width-1)**2)*((xaxis-x_offset)**2)+y_offset
 x_top_parabola=[min(xaxis), max(xaxis)]
 y_top_parabola=[max(yaxis), max(yaxis)]
 return plt.figure(figsize=(12, 3)), plt.plot(xaxis,yaxis,'--',color='red'),plt.plot(x_top_
parabola, y_top_parabola,'--',color='red'),plt.xlabel('Width (m)'), plt.ylabel('Thickness (m)'
)

par_test=parabola_temp(half_width=200,height=25,y_offset=0,x_offset=0)

103

def parabola_fill(half_width,height,y_offset=0,x_offset=0):
 xaxis=range(-(half_width-1),half_width)
 xaxis=np.array(xaxis)+x_offset
 yaxis=(height/(half_width-1)**2)*((xaxis-x_offset)**2)+y_offset
 x_top_parabola=[min(xaxis), max(xaxis)]
 y_top_parabola=[max(yaxis), max(yaxis)]
 ms_trace=max(yaxis)
 return plt.figure(figsize=(12, 3)),plt.plot(xaxis,yaxis,'--',color='black'),plt.xlabel('Wi
dth (m)'), plt.ylabel('Thickness (m)'),plt.fill(xaxis,yaxis,'--',color='yellow')

par_fill=parabola_fill(half_width=200,height=25,y_offset=0,x_offset=0)

Setting the parameters for the five possible architectural positions

width_total=400
perc_to_axis=0
perc_to_offaxis=0.3375
perc_to_margin=0.4375
temp_x_offset=[width_total*-perc_to_margin, width_total*-perc_to_offaxis, width_total*perc_to_
axis, width_total*perc_to_offaxis, width_total*perc_to_margin]
y_offset=25
temp_y_offset=[]
for i in range(len(temp_x_offset)):
 step=y_offset*i
 temp_y_offset.append(step)
print(temp_x_offset, type(temp_x_offset), len(temp_x_offset))
print(temp_y_offset, type(temp_y_offset), len(temp_y_offset))

[-175.0, -135.0, 0, 135.0, 175.0] <class 'list'> 5
[0, 25, 50, 75, 100] <class 'list'> 5

def parabola_temp(half_width,height,y_offset,x_offset): #WORKING...
 xaxis=range(-(half_width-1),half_width)
 xaxis=np.array(xaxis)+x_offset
 yaxis=(height/(half_width-1)**2)*((xaxis-x_offset)**2)+y_offset

104

 x_top_parabola=[min(xaxis), max(xaxis)]
 y_top_parabola=[max(yaxis), max(yaxis)]
 ms_trace=max(yaxis)
 return plt.plot(xaxis,yaxis,'--',color='red'),plt.xlabel('Width (m)'), plt.ylabel('Thickne
ss (m)'),plt.plot(x_top_parabola, y_top_parabola,'--',color='red'),plt.plot([0,0], [0,ms_trace
],color='black')

plt.figure(figsize=(15, 5))
for i in range(len(temp_x_offset)):
 parabola_temp(half_width=200,height=25,y_offset=temp_y_offset[i],x_offset=temp_x_offset[i]
)

def parabola_fill(half_width,height,y_offset=0,x_offset=0):
 xaxis=range(-(half_width-1),half_width)
 xaxis=np.array(xaxis)+x_offset
 yaxis=(height/(half_width-1)**2)*((xaxis-x_offset)**2)+y_offset
 x_top_parabola=[min(xaxis), max(xaxis)]
 y_top_parabola=[max(yaxis), max(yaxis)]
 ms_trace=max(yaxis)
 return plt.plot(xaxis,yaxis,'--',color='black'),plt.xlabel('Width (m)'), plt.ylabel('Thick
ness (m)'),plt.fill(xaxis,yaxis,'--',color='yellow'),plt.plot([0,0], [0,ms_trace],color='black
')

plt.figure(figsize=(15, 5))
for i in range(len(temp_x_offset)):
 parabola_fill(half_width=200,height=25,y_offset=temp_y_offset[i],x_offset=temp_x_offset[i]
)

Generation of stacking patterns

ms_final_results_max, ms_final_results_max.shape, type(ms_final_results_max)

105

(array([['2', 'off-axis', '0.75'],
 ['1', 'axis', '0.89'],
 ['2', 'off-axis', '0.48'],
 ['3', 'margin', '0.91'],
 ['2', 'off-axis', '0.78']], dtype='<U32'),
 (5, 3),
 NumPy.ndarray)

x-offset = 25

def stacking_patterns(results, n_stack_patterns, y_offset, width_total=400, perc_to_axis=0, pe
rc_to_offaxis=0.3375, perc_to_margin=0.4375):
 temp_incision=[width_total*-perc_to_margin, width_total*-perc_to_offaxis, width_total*perc
_to_axis, width_total*perc_to_offaxis, width_total*perc_to_margin]
 x_offset_list=[]
 for j in range(n_stack_patterns):
 incision=[]
 for i in range(len(results)):
 rand_margin=np.random.choice([-2,2])
 rand_offaxis=np.random.choice([-1,1])
 rand_axis=0
 if rand_margin==-2 and int(results[i,0])==3:
 inc_step=temp_incision[0]
 else:
 if rand_offaxis==-1 and int(results[i,0])==2:
 inc_step=temp_incision[1]
 else:
 if rand_axis==0 and int(results[i,0])==1:
 inc_step=temp_incision[2]
 else:
 if rand_offaxis==1 and int(results[i,0])==2:
 inc_step=temp_incision[3]
 else:
 inc_step=temp_incision[4]
 incision.append(inc_step)
 x_offset_list.append(incision)
 x_offset_list=np.array(x_offset_list)
 y_offset_list=[]
 for k in range(len(incision)):
 agg_step=y_offset*k
 y_offset_list.append(agg_step)
 return x_offset_list, y_offset_list

stack_pat_test=stacking_patterns(ms_final_results_max, 9, 25)
x_offset, y_offset=stack_pat_test

plt.figure(figsize=(20, 20))
for k in range(len(x_offset)):
 hor_disp=x_offset[k]
 plt.subplot(4, 3, k+1)
 for i in range(len(hor_disp)):
 parabola_fill(half_width=200,height=25,y_offset=y_offset[i],x_offset=hor_disp[i])
 plt.title('Stacking pattern '+str(k+1))
 plt.ylabel('Height (m)') #y label
 plt.xlabel('Width (m)') #x label
plt.tight_layout()

106

y-offset = 25m

stack_pat_25m=stacking_patterns(ms_final_results_max, 3, 25)
x_offset, y_offset=stack_pat_25m

plt.figure(figsize=(20, 20))
for k in range(len(x_offset)):
 hor_disp=x_offset[k]
 plt.subplot(4, 3, k+1)
 for i in range(len(hor_disp)):
 parabola_fill(half_width=200,height=25,y_offset=y_offset[i],x_offset=hor_disp[i])
 plt.ylim([0,130])
 plt.title('Stacking pattern '+str(k+1))
 plt.ylabel('Height (m)') #y label
 plt.xlabel('Width (m)') #x label
plt.tight_layout()

107

y-offset = 20m

stack_pat_20m=stacking_patterns(ms_final_results_max, 3, 20)
x_offset, y_offset=stack_pat_20m

plt.figure(figsize=(20, 20))
for k in range(len(x_offset)):
 hor_disp=x_offset[k]
 plt.subplot(4, 3, k+1)
 for i in range(len(hor_disp)):
 parabola_fill(half_width=200,height=25,y_offset=y_offset[i],x_offset=hor_disp[i])
 plt.ylim([0,130])
 plt.title('Stacking pattern '+str(k+1))
 plt.ylabel('Height (m)') #y label
 plt.xlabel('Width (m)') #x label
plt.tight_layout()

y_offset = 15m

stack_pat_15m=stacking_patterns(ms_final_results_max, 3, 15)
x_offset, y_offset=stack_pat_15m

plt.figure(figsize=(20, 20))
for k in range(len(x_offset)):
 hor_disp=x_offset[k]
 plt.subplot(4, 3, k+1)
 for i in range(len(hor_disp)):
 parabola_fill(half_width=200,height=25,y_offset=y_offset[i],x_offset=hor_disp[i])
 plt.ylim([0,130])
 plt.title('Stacking pattern '+str(k+1))
 plt.ylabel('Height (m)') #y label
 plt.xlabel('Width (m)') #x label
plt.tight_layout()

Assesing multiple realizations of stacking patterns

def multiple_stack_pat(x_offset):
 possibilities_list=np.unique(x_offset, axis=0).tolist()

108

 x_offset_list=x_offset.tolist()
 labels=list(range(1,len(possibilities_list)+1))
 prel_results=[]
 for i in range(len(possibilities_list)):
 counting=x_offset_list.count(possibilities_list[i])
 prel_results.append(counting)
 return plt.bar(labels, prel_results), plt.title('n = '+str(len(x_offset_list))), plt.ylabe
l('Number of realizations'), plt.xlabel('Possible stacking pattern')

10 iterations of stacking patterns

stack_pat_15m_100=stacking_patterns(ms_final_results_max, 10, 25)
n_incision, aggradation=stack_pat_15m_100
multiple_stack_pat(n_incision)

(<BarContainer object of 9 artists>,
 Text(0.5, 1.0, 'n = 10'),
 Text(0, 0.5, 'Number of realizations'),
 Text(0.5, 0, 'Possible stacking pattern'))

100 iterations of stacking patterns

stack_pat_15m_100=stacking_patterns(ms_final_results_max, 100, 25)
n_incision, aggradation=stack_pat_15m_100
multiple_stack_pat(n_incision)

(<BarContainer object of 16 artists>,
 Text(0.5, 1.0, 'n = 100'),
 Text(0, 0.5, 'Number of realizations'),
 Text(0.5, 0, 'Possible stacking pattern'))

109

1000 iterations of stacking patterns

stack_pat_15m_1000=stacking_patterns(ms_final_results_max, 1000, 25)
n_incision, aggradation=stack_pat_15m_1000
multiple_stack_pat(n_incision)

(<BarContainer object of 16 artists>,
 Text(0.5, 1.0, 'n = 1000'),
 Text(0, 0.5, 'Number of realizations'),
 Text(0.5, 0, 'Possible stacking pattern'))

110

10000 iterations of stacking patterns

stack_pat_15m_10000=stacking_patterns(ms_final_results_max, 10000, 25)
n_incision, aggradation=stack_pat_15m_10000
multiple_stack_pat(n_incision)

(<BarContainer object of 16 artists>,
 Text(0.5, 1.0, 'n = 10000'),
 Text(0, 0.5, 'Number of realizations'),
 Text(0.5, 0, 'Possible stacking pattern'))

111

Generating possible stacking patterns with lateral offset of 25

stack_pat_15m_100=stacking_patterns(ms_final_results_max, 100, 25)
n_incision, aggradation=stack_pat_15m_100
multiple_stack_pat(n_incision)

(<BarContainer object of 16 artists>,
 Text(0.5, 1.0, 'n = 100'),
 Text(0, 0.5, 'Number of realizations'),
 Text(0.5, 0, 'Possible stacking pattern'))

112

unique_possibilities=np.unique(n_incision, axis=0)
unique_possibilities, unique_possibilities.shape

(array([[-135., 0., -135., -175., -135.],
 [-135., 0., -135., -175., 135.],
 [-135., 0., -135., 175., -135.],
 [-135., 0., -135., 175., 135.],
 [-135., 0., 135., -175., -135.],
 [-135., 0., 135., -175., 135.],
 [-135., 0., 135., 175., -135.],
 [-135., 0., 135., 175., 135.],
 [135., 0., -135., -175., -135.],
 [135., 0., -135., -175., 135.],
 [135., 0., -135., 175., -135.],
 [135., 0., -135., 175., 135.],
 [135., 0., 135., -175., -135.],
 [135., 0., 135., -175., 135.],
 [135., 0., 135., 175., -135.],
 [135., 0., 135., 175., 135.]]),
 (16, 5))

plt.figure(figsize=(40, 25))
for k in range(len(unique_possibilities)):
 hor_disp=unique_possibilities[k]
 plt.subplot(4, 4, k+1)
 for i in range(len(hor_disp)):
 parabola_fill(half_width=200,height=25,y_offset=aggradation[i],x_offset=hor_disp[i])
 plt.title('Stacking pattern '+str(k+1))
 plt.ylabel('Height (m)') #y label
 plt.xlabel('Width (m)') #x label
plt.tight_layout()

113

• Chapter 5

import pandas as pd
import matplotlib.pyplot as plt
import NumPy as np

df=pd.read_excel('CSS_DB_v0.2_ElementData_filtered.xlsx')
df

 NameMS StudyAreaName ElementNumber ComplexNumber \
0 CACH1 LOWER LAGUNA FIGUEROA 2 2
1 CACH1 LOWER LAGUNA FIGUEROA 3 2
2 CACH1 LOWER LAGUNA FIGUEROA 6 3
3 CACH1 LOWER LAGUNA FIGUEROA 7 3
4 CACH1 LOWER LAGUNA FIGUEROA 8 4
..
152 VV2 UPPER LAGUNA FIGUEROA 3 1
153 VV2 UPPER LAGUNA FIGUEROA 8 3
154 VV7 UPPER LAGUNA FIGUEROA 11 3
155 VVEDGE UPPER LAGUNA FIGUEROA 11 3
156 VVWB UPPER LAGUNA FIGUEROA 11 3

 ComplexSetNumber ElemWidth ElementThickness gs_min gs_max \
0 1 350 8.126835 0.008109 3.663190
1 1 350 17.730909 0.007651 3.687447
2 1 350 6.141687 0.007734 0.327069
3 1 350 11.450495 0.007776 0.329495
4 1 350 18.390356 0.007551 3.713348
..
152 2 350 11.824580 0.007664 1.059548
153 2 350 11.138141 0.138707 0.360099

114

154 2 350 26.417171 0.007500 0.852589
155 2 350 5.896554 0.007500 1.787164
156 2 350 14.202635 0.007500 1.771524

 gs_p10 ... ArchitecturalElementPosition \
0 0.236430 ... 2
1 0.224206 ... 1
2 0.197877 ... 2
3 0.007816 ... 3
4 0.183924 ... 2
..
152 0.109490 ... 2
153 0.263874 ... 1
154 0.193419 ... 1
155 0.007500 ... 3
156 0.007552 ... 3

 MaxPreserved_ElementThickness MaxPreserved_NTG_gs MinPreserved_NTG_gs \
0 23.284407 1.000000 0.802115
1 22.442429 0.986979 0.357143
2 13.505807 0.990228 0.704192
3 14.895533 0.997481 0.111789
4 25.782145 1.000000 0.431611
..
152 16.576063 0.991304 0.565523
153 21.849939 1.000000 0.302405
154 26.417171 1.000000 0.252542
155 26.417171 1.000000 0.252542
156 26.417171 1.000000 0.252542

 AspectRatio Net2D Gross2D NTG2D \
0 15.031519 7665.740733 8149.542332 0.940635
1 15.595460 6268.391889 7854.850006 0.798028
2 25.914779 4275.209395 4727.032423 0.904417
3 23.496978 3815.054052 5213.436413 0.731773
4 13.575287 7485.050423 9023.750591 0.829483
..
152 21.114784 5010.105030 5801.622105 0.863570
153 16.018351 6047.025885 7647.478771 0.790721
154 13.248958 7172.708740 9246.010017 0.775763
155 13.248958 7172.708740 9246.010017 0.775763
156 13.248958 7172.708740 9246.010017 0.775763

 Architecture Clinoform
0 Vertically aligned, aggradational slope channe... Figueroa
1 Vertically aligned, aggradational slope channe... Figueroa
2 Vertically aligned, aggradational slope channe... Figueroa
3 Vertically aligned, aggradational slope channe... Figueroa
4 Vertically aligned, aggradational slope channe... Figueroa
..
152 Vertically aligned, aggradational slope channe... Figueroa
153 Vertically aligned, aggradational slope channe... Figueroa
154 Vertically aligned, aggradational slope channe... Figueroa
155 Vertically aligned, aggradational slope channe... Figueroa
156 Vertically aligned, aggradational slope channe... Figueroa

[157 rows x 42 columns]

data=df.values
data, data.shape, type(data)

115

(array([['CACH1', 'LOWER LAGUNA FIGUEROA', 2, ..., 0.940634506940842,
 'Vertically aligned, aggradational slope channel system',
 'Figueroa'],
 ['CACH1', 'LOWER LAGUNA FIGUEROA', 3, ..., 0.798028209805489,
 'Vertically aligned, aggradational slope channel system',
 'Figueroa'],
 ['CACH1', 'LOWER LAGUNA FIGUEROA', 6, ..., 0.904417192935943,
 'Vertically aligned, aggradational slope channel system',
 'Figueroa'],
 ...,
 ['VV7', 'UPPER LAGUNA FIGUEROA', 11, ..., 0.775762596726417,
 'Vertically aligned, aggradational slope channel system',
 'Figueroa'],
 ['VVEDGE', 'UPPER LAGUNA FIGUEROA', 11, ..., 0.775762596726417,
 'Vertically aligned, aggradational slope channel system',
 'Figueroa'],
 ['VVWB', 'UPPER LAGUNA FIGUEROA', 11, ..., 0.775762596726417,
 'Vertically aligned, aggradational slope channel system',
 'Figueroa']], dtype=object),
 (157, 42),
 NumPy.ndarray)

np.unique(data[:,32])

array([1, 2, 3], dtype=object)

measured_sections=np.unique(data[:,0]).tolist()
measured_sections, type(measured_sections), len(measured_sections)

(['CACH1',
 'CACH2',
 'DS1',
 'DYMD1',
 'FIG100',
 'GC1',
 'GC10',
 'GC2',
 'GC3',
 'GC4',
 'GC6',
 'GC7',
 'GC8',
 'GCNOR',
 'GD1',
 'GD3',
 'GD5GC5',
 'GD6KS7',
 'GD7',
 'GD8',
 'GOLDA',
 'GOLDB',
 'GOLDC',
 'GOLDD',
 'KJ1',
 'KS3',
 'MM1',
 'MM101',
 'MM102',
 'MM103',
 'MM2',
 'OP1',

116

 'OP2',
 'P10',
 'P11',
 'P12',
 'P13',
 'P2',
 'P3',
 'P4',
 'P5',
 'P6DS5GC9',
 'P7GD4',
 'P8',
 'P9',
 'PEQ1',
 'PEQ2LOWER',
 'PEQ2UPPER',
 'SUBBB1',
 'SUBBB2',
 'SUBBB3',
 'SUBBB4',
 'VACA1',
 'VACA2',
 'VACA3VV3',
 'VACA4VV4',
 'VACA8VV8GD2',
 'VCM1VV5',
 'VCM2',
 'VCM3',
 'VV2',
 'VV7',
 'VVEDGE',
 'VVWB'],
 list,
 64)

measured_sections_arch_ele_pos=[]
for measured_section in measured_sections:
 measured_section_chain=list(df[df['NameMS']==measured_section]['ArchitecturalElementPositi
on'])
 measured_sections_arch_ele_pos.append(measured_section_chain)
measured_sections_arch_ele_pos, len(measured_sections_arch_ele_pos)

([[2, 1, 2, 3, 2],
 [3, 1],
 [3, 3],
 [3],
 [2, 3, 1, 2, 3],
 [3],
 [1],
 [3],
 [1],
 [2],
 [1],
 [1],
 [1, 1],
 [3],
 [1, 2],
 [3, 3],
 [1, 1, 1, 1],
 [3, 1],
 [1],

117

 [3],
 [3],
 [2],
 [2],
 [2],
 [1, 2, 2, 1, 3, 2, 3],
 [3],
 [1],
 [3, 2, 1, 1, 3],
 [2, 3, 2, 2, 2, 1],
 [2, 1],
 [3],
 [2],
 [2, 1, 2],
 [2, 2, 1],
 [3, 2],
 [3, 2],
 [3, 2],
 [1],
 [2],
 [1],
 [3, 3, 3, 1],
 [3, 3, 3, 1, 3],
 [3, 1, 2, 2],
 [3],
 [3],
 [2, 1, 2, 1, 2],
 [2, 3],
 [3, 1, 2],
 [1, 2, 1, 2, 2, 2],
 [1, 2, 2],
 [1, 1, 2, 2, 2],
 [2, 2, 1, 1, 2],
 [2, 2, 2, 1, 1],
 [2, 2, 1, 2],
 [1, 1],
 [1, 2, 1, 3, 3],
 [1, 2, 2],
 [2, 3, 1, 2, 2],
 [1, 3],
 [3],
 [2, 2, 1],
 [1],
 [3],
 [3]],
 64)

def trans_prob_pairs(measured_section_chain):
 arch_ele_pos_list_m=np.array(measured_section_chain[:-1])
 arch_ele_pos_list_n=np.array(measured_section_chain[1:])
 pairs=np.stack((arch_ele_pos_list_m, arch_ele_pos_list_n), axis=1).tolist()
 return pairs
#pd.DataFrame(pairs, columns=('From', 'To'))

pairs_total=[]
for measured_section_chain in range(len(measured_sections_arch_ele_pos)):
 pairs_per_ms=trans_prob_pairs(measured_sections_arch_ele_pos[measured_section_chain])
 pairs_total.append(pairs_per_ms)
pairs_total, len(pairs_total)

118

([[[2, 1], [1, 2], [2, 3], [3, 2]],
 [[3, 1]],
 [[3, 3]],
 [],
 [[2, 3], [3, 1], [1, 2], [2, 3]],
 [],
 [],
 [],
 [],
 [],
 [],
 [],
 [[1, 1]],
 [],
 [[1, 2]],
 [[3, 3]],
 [[1, 1], [1, 1], [1, 1]],
 [[3, 1]],
 [],
 [],
 [],
 [],
 [],
 [],
 [[1, 2], [2, 2], [2, 1], [1, 3], [3, 2], [2, 3]],
 [],
 [],
 [[3, 2], [2, 1], [1, 1], [1, 3]],
 [[2, 3], [3, 2], [2, 2], [2, 2], [2, 1]],
 [[2, 1]],
 [],
 [],
 [[2, 1], [1, 2]],
 [[2, 2], [2, 1]],
 [[3, 2]],
 [[3, 2]],
 [[3, 2]],
 [],
 [],
 [],
 [[3, 3], [3, 3], [3, 1]],
 [[3, 3], [3, 3], [3, 1], [1, 3]],
 [[3, 1], [1, 2], [2, 2]],
 [],
 [],
 [[2, 1], [1, 2], [2, 1], [1, 2]],
 [[2, 3]],
 [[3, 1], [1, 2]],
 [[1, 2], [2, 1], [1, 2], [2, 2], [2, 2]],
 [[1, 2], [2, 2]],
 [[1, 1], [1, 2], [2, 2], [2, 2]],
 [[2, 2], [2, 1], [1, 1], [1, 2]],
 [[2, 2], [2, 2], [2, 1], [1, 1]],
 [[2, 2], [2, 1], [1, 2]],
 [[1, 1]],
 [[1, 2], [2, 1], [1, 3], [3, 3]],
 [[1, 2], [2, 2]],
 [[2, 3], [3, 1], [1, 2], [2, 2]],
 [[1, 3]],
 [],
 [[2, 2], [2, 1]],

119

 [],
 [],
 []],
 64)

final_pairs=[]
for measured_section_pairs in range(len(pairs_total)):
 unpack_ms=pairs_total[measured_section_pairs]
 for pairs_in_ms in range(len(unpack_ms)):
 unpack_pair=unpack_ms[pairs_in_ms]
 final_pairs.append(unpack_pair)
final_pairs_list=final_pairs.copy()
final_pairs=np.array(final_pairs)
final_pairs, final_pairs.shape, len(final_pairs)

(array([[2, 1],
 [1, 2],
 [2, 3],
 [3, 2],
 [3, 1],
 [3, 3],
 [2, 3],
 [3, 1],
 [1, 2],
 [2, 3],
 [1, 1],
 [1, 2],
 [3, 3],
 [1, 1],
 [1, 1],
 [1, 1],
 [3, 1],
 [1, 2],
 [2, 2],
 [2, 1],
 [1, 3],
 [3, 2],
 [2, 3],
 [3, 2],
 [2, 1],
 [1, 1],
 [1, 3],
 [2, 3],
 [3, 2],
 [2, 2],
 [2, 2],
 [2, 1],
 [2, 1],
 [2, 1],
 [1, 2],
 [2, 2],
 [2, 1],
 [3, 2],
 [3, 2],
 [3, 2],
 [3, 3],
 [3, 3],
 [3, 1],
 [3, 3],
 [3, 3],
 [3, 1],

120

 [1, 3],
 [3, 1],
 [1, 2],
 [2, 2],
 [2, 1],
 [1, 2],
 [2, 1],
 [1, 2],
 [2, 3],
 [3, 1],
 [1, 2],
 [1, 2],
 [2, 1],
 [1, 2],
 [2, 2],
 [2, 2],
 [1, 2],
 [2, 2],
 [1, 1],
 [1, 2],
 [2, 2],
 [2, 2],
 [2, 2],
 [2, 1],
 [1, 1],
 [1, 2],
 [2, 2],
 [2, 2],
 [2, 1],
 [1, 1],
 [2, 2],
 [2, 1],
 [1, 2],
 [1, 1],
 [1, 2],
 [2, 1],
 [1, 3],
 [3, 3],
 [1, 2],
 [2, 2],
 [2, 3],
 [3, 1],
 [1, 2],
 [2, 2],
 [1, 3],
 [2, 2],
 [2, 1]]),
 (93, 2),
 93)

possibilities=np.unique(final_pairs, axis=0).tolist()
possibilities, type(possibilities), len(possibilities)

([[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3], [3, 1], [3, 2], [3, 3]],
 list,
 9)

prel_results=[]
for i in range(len(possibilities)):
 counting=final_pairs_list.count(possibilities[i])

121

 prel_results.append(counting)
prel_results, sum(prel_results), len(prel_results)

([9, 18, 5, 15, 17, 7, 8, 7, 7], 93, 9)

prel_results_array=np.array(prel_results).reshape(3,3)
prel_results_df=pd.DataFrame(prel_results_array,columns=['Axis', 'Off-axis', 'Margin'],index=[
'Axis', 'Off-axis', 'Margin'])
prel_results_df

 Axis Off-axis Margin
Axis 9 18 5
Off-axis 15 17 7
Margin 8 7 7

final_results=[]
for i in range(len(possibilities)):
 prob_i=prel_results[i]/sum(prel_results)
 final_results.append(prob_i)
final_results=np.array(final_results).reshape(3,3).round(2)
final_results, sum(final_results), len(final_results)

(array([[0.1 , 0.19, 0.05],
 [0.16, 0.18, 0.08],
 [0.09, 0.08, 0.08]]),
 array([0.35, 0.45, 0.21]),
 3)

final_results_df=pd.DataFrame(final_results,columns=['Axis', 'Off-axis', 'Margin'],index=['Axi
s', 'Off-axis', 'Margin'])
final_results_df

 Axis Off-axis Margin
Axis 0.10 0.19 0.05
Off-axis 0.16 0.18 0.08
Margin 0.09 0.08 0.08

final_results_norm=[]
for position_prob in final_results:
 for position_prob_ind in position_prob:
 final_results_norm.append(position_prob_ind/sum(position_prob))
final_results_norm

[0.29411764705882354,
 0.5588235294117647,
 0.14705882352941177,
 0.380952380952381,
 0.42857142857142855,
 0.1904761904761905,
 0.36,
 0.32,
 0.32]

final_results_norm_df=pd.DataFrame(np.array(final_results_norm).reshape(3,3).round(2),columns=
['Axis', 'Off-axis', 'Margin'],index=['Axis', 'Off-axis', 'Margin'])
final_results_norm_df

 Axis Off-axis Margin
Axis 0.29 0.56 0.15
Off-axis 0.38 0.43 0.19
Margin 0.36 0.32 0.32

122

final_results_norm

[0.29411764705882354,
 0.5588235294117647,
 0.14705882352941177,
 0.380952380952381,
 0.42857142857142855,
 0.1904761904761905,
 0.36,
 0.32,
 0.32]

Uploading the data

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import math

from matplotlib import rcParams
rcParams['font.family'] = 'sans-serif'
rcParams['font.sans-serif'] = ['Franklin Gothic Book']
rcParams['font.size'] = '18'

df=pd.read_excel('NN_Results_2.xlsx')
df

 Axis_Prob Off_Axis_Prob Margin_Prob Pred_Class True_Class Geobody \
0 0.200129 0.764206 0.035665 2 2 2
1 0.896818 0.103155 0.000027 1 1 3
2 0.185925 0.479642 0.334434 2 2 6
3 0.001238 0.096551 0.902211 3 3 7
4 0.217810 0.781036 0.001154 2 2 8
..
149 0.176377 0.722527 0.101096 2 2 3
150 0.985616 0.014327 0.000057 1 1 8
151 0.565369 0.434623 0.000009 1 1 11
152 0.000003 0.009516 0.990481 3 3 11
153 0.030788 0.920465 0.048747 2 3 11

 Meas_Sect Complex Set Thickness
0 CACH1 'Lower' 8.126835
1 CACH1 'Lower' 17.730909
2 CACH1 'Lower' 6.141687
3 CACH1 'Lower' 11.450495
4 CACH1 'Lower' 18.390356
..
149 VV2 'Upper' 11.824580
150 VV2 'Upper' 11.138141
151 VV7 'Upper' 26.417171
152 VVEDGE 'Upper' 5.896554
153 VVWB 'Upper' 14.202635

[154 rows x 9 columns]

Meas_Sect=df[df['Meas_Sect']=='CACH1'] #REPLACE THE NAME OF THE MEASURED SECTION
Meas_Sect=Meas_Sect[['Axis_Prob', 'Off_Axis_Prob', 'Margin_Prob']]
Meas_Sect

 Axis_Prob Off_Axis_Prob Margin_Prob
0 0.200129 0.764206 0.035665

123

1 0.896818 0.103155 0.000027
2 0.185925 0.479642 0.334434
3 0.001238 0.096551 0.902211
4 0.217810 0.781036 0.001154

Meas_Sect=Meas_Sect.values
Meas_Sect

array([[2.00128968e-01, 7.64206174e-01, 3.56648580e-02],
 [8.96817877e-01, 1.03154714e-01, 2.74090607e-05],
 [1.85924709e-01, 4.79641650e-01, 3.34433641e-01],
 [1.23753958e-03, 9.65514118e-02, 9.02211049e-01],
 [2.17809653e-01, 7.81036309e-01, 1.15403762e-03]])

Histograms (or Probability Density Functions, PDFs) and Cummulative Distribution Functions, or

CDFs

def prob(Meas_Sect):
 prob=np.insert(Meas_Sect, 0, 0, 1)
 return prob

def prob_cumsum(Meas_Sect):
 prob_cumsum=Meas_Sect.cumsum(axis=1)
 prob_cumsum=np.insert(prob_cumsum, 0, 0, 1)
 return prob_cumsum

Meas_Sect_probs=prob(Meas_Sect)
Meas_Sect_probs, Meas_Sect_probs.shape

(array([[0.00000000e+00, 2.00128968e-01, 7.64206174e-01, 3.56648580e-02],
 [0.00000000e+00, 8.96817877e-01, 1.03154714e-01, 2.74090607e-05],
 [0.00000000e+00, 1.85924709e-01, 4.79641650e-01, 3.34433641e-01],
 [0.00000000e+00, 1.23753958e-03, 9.65514118e-02, 9.02211049e-01],
 [0.00000000e+00, 2.17809653e-01, 7.81036309e-01, 1.15403762e-03]]),
 (5, 4))

Meas_Sect_probs_cum=prob_cumsum(Meas_Sect)
Meas_Sect_probs_cum, Meas_Sect_probs_cum.shape

(array([[0. , 0.20012897, 0.96433514, 1.],
 [0. , 0.89681788, 0.99997259, 1.],
 [0. , 0.18592471, 0.66556636, 1.],
 [0. , 0.00123754, 0.09778895, 1.],
 [0. , 0.21780965, 0.99884596, 1.]]),
 (5, 4))

ArchitecturalElementPositionNames=['0', 'Axis (1)', 'Off-axis (2)', 'Margin (3)']
ArchitecturalElementPositionNames

['0', 'Axis (1)', 'Off-axis (2)', 'Margin (3)']

ArchitecturalElementPositionNumbers=np.array([0, 1, 2, 3])
print(ArchitecturalElementPositionNumbers.shape, ArchitecturalElementPositionNumbers)

(4,) [0 1 2 3]

def pdfs_and_cdfs(Meas_Sect_probs, Meas_Sect_probs_cum):
 plt.figure(figsize=(6, 22)) #create the figure, then change the size of it
 for c in range(len(Meas_Sect_probs)): #for each sample in the dimension length... THIS IS
USEFUL! TO GO OVER INDEXES OR REPEAT X TIMES A SEQUENCE!!!
 plt.subplot(len(Meas_Sect_probs), 1, len(Meas_Sect_probs)-c) #display the graphs in 4

124

rows, 3 columns
 plt.bar(ArchitecturalElementPositionNames, Meas_Sect_probs[c]) #plot bars
 plt.plot(Meas_Sect_probs_cum[c], color='orange', linewidth=2) #plot a line above
 plt.title('Channel element '+str(c+1))
 plt.ylim((0,1.05)) #same dimensions for all the graphs
 plt.xlim((0,4)) #same dimensions for all the graphs
 plt.tight_layout() #improve the layout

pdfs_and_cdfs(Meas_Sect_probs, Meas_Sect_probs_cum)

125

import random

Luis Carlos: Here's where I made some modifications, in this cell below and the cell after that.

With some shifting around, there is a result that produces the most likely random stacking

126

patterns using the well soft probabilities. The following cell summarized those to see the most

likely stacking pattern.

def montecarlo(NameMS, NameMS_cumsum, n_samples):
 arch_pos=[0,1,2,3]
 results=[]
 # plt.figure(figsize=(6, 22))
 # repeat n samples (n_samples)
 for n in range(n_samples):
 mc_sim = []
 for probs in range(len(NameMS)):
 #EMPTY LIST 2: classifications from eCDF (1,2,3)

 a,b,c,d=arch_pos
 w,x,y,z=NameMS_cumsum[probs]
 # plt.subplot(len(NameMS), 1, len(NameMS)-probs)

 value=round(np.random.uniform(0, 1), ndigits=2)
 if w < value <= x:
 arch_el = 0
 elif x < value <= y:
 arch_el = np.random.choice([-1,1])
 else:
 arch_el = np.random.choice([-2,2])
 # ___OUTPUT 2___
 mc_sim.append(arch_el)
 # p_axis=round(mc_sim.count(b)/n_samples, ndigits=2)
 # p_offaxis=round(mc_sim.count(c)/n_samples, ndigits=2)
 # p_margin=round(mc_sim.count(d)/n_samples, ndigits=2)
 #___OUTPUT 1____
 # results.append([p_axis, p_offaxis, p_margin])
 results.append(mc_sim)
 # plt.hist(mc_sim)
 # plt.title('Architectural element ' + str(probs+1))
 #plt.ylabel('Number of samples',fontsize=16) #y label
 #plt.xlabel('Architectural position',fontsize=16) #x label
 # plt.ylim((0,n_samples)) #same dimensions for all the graphs
 # plt.xlim((0,4)) #same dimensions for all the graphs
 # plt.tight_layout()
 return results, type(results), pd.DataFrame(results,columns=['Elem1', 'Elem2', 'Elem3','El
em4','Elem5'])

a, b, c =montecarlo(Meas_Sect_probs, Meas_Sect_probs_cum, 100)

Count Unique STacking Patterns
countrows = c.pivot_table(index = ['Elem1', 'Elem2', 'Elem3', 'Elem4', 'Elem5'], aggfunc = 'si
ze')
countrows = pd.DataFrame(countrows)
countrows.columns = ['count']
countrows = countrows.reindex(countrows.sort_values(by='count', ascending=False).index)
countrows

 count
Elem1 Elem2 Elem3 Elem4 Elem5
-1 0 1 2 1 4
 -2 -2 1 4
 1 0 1 2 1 3
-1 0 2 2 1 3
 1 0 1 -2 1 3
... ...

127

 0 0 1 -2 0 1
-1 -1 -2 2 1 1
 0 0 1 -1 -1 1
 2 -2 0 1
 2 0 2 -1 1 1

[72 rows x 1 columns]

a, b, c =montecarlo(Meas_Sect_probs, Meas_Sect_probs_cum, 1000000)

Count Unique STacking Patterns
countrows = c.pivot_table(index = ['Elem1', 'Elem2', 'Elem3', 'Elem4', 'Elem5'], aggfunc = 'si
ze')
countrows = pd.DataFrame(countrows)
countrows.columns = ['count']
countrows = countrows.reindex(countrows.sort_values(by='count', ascending=False).index)
countrows

 count
Elem1 Elem2 Elem3 Elem4 Elem5
 1 0 -1 2 1 14584
 -2 -1 14582
 1 2 1 14565
-1 0 1 2 -1 14547
 1 0 -1 2 -1 14532
... ...
 2 -2 0 -2 0 1
-1 -2 -1 2 2 1
 0 -2 2 1
 2 -2 -1 -1 -1 1
 1 -2 -1 1

[1843 rows x 1 columns]

def var_levels(Meas_Sect_probs, Meas_Sect_probs_cum,experiments_list):
 lenght_rows=[]
 for i in experiments_list:
 a,b,c=montecarlo(Meas_Sect_probs, Meas_Sect_probs_cum, i)
 # Count Unique STacking Patterns
 countrows = c.pivot_table(index = ['Elem1', 'Elem2', 'Elem3', 'Elem4', 'Elem5'], aggfu
nc = 'size')
 countrows = pd.DataFrame(countrows)
 countrows.columns = ['count']
 countrows = countrows.reindex(countrows.sort_values(by='count', ascending=False).index
)
 lenght_rows.append(len(countrows))
 return lenght_rows

experiments_list=[10,100,500,1000,5000,10000,50000,100000,250000,500000,1000000]
lenght_rows=var_levels(Meas_Sect_probs, Meas_Sect_probs_cum,experiments_list)

experiments_list, lenght_rows

([10, 100, 500, 1000, 5000, 10000, 50000, 100000, 250000, 500000, 1000000],
 [9, 67, 184, 263, 514, 676, 1103, 1277, 1519, 1709, 1854])

plt.figure()
plt.plot(experiments_list, lenght_rows)
plt.title("Variability levels")
plt.xlabel("Number of iterations (n)")
plt.ylabel("Unique stacking patterns (n)")

128

Text(0, 0.5, 'Unique stacking patterns (n)')

Getting the 10 most probable results

Count Unique STacking Patterns
countrows = c.pivot_table(index = ['Elem1', 'Elem2', 'Elem3', 'Elem4', 'Elem5'], aggfunc = 'si
ze')
countrows = pd.DataFrame(countrows)
countrows.columns = ['count']
countrows = countrows.reindex(countrows.sort_values(by='count', ascending=False).index)
countrows.head(10)

 count
Elem1 Elem2 Elem3 Elem4 Elem5
 1 0 -1 2 1 14584
 -2 -1 14582
 1 2 1 14565
-1 0 1 2 -1 14547
 1 0 -1 2 -1 14532
-1 0 -1 2 1 14487
 1 0 1 -2 1 14474
-1 0 1 -2 1 14458
 1 0 1 2 -1 14456
-1 0 -1 -2 -1 14449

Count Unique STacking Patterns
countrows = c.pivot_table(index = ['Elem1', 'Elem2', 'Elem3', 'Elem4', 'Elem5'], aggfunc = 'si
ze')
countrows = pd.DataFrame(countrows)
countrows.columns = ['count']
countrows = countrows.reindex(countrows.sort_values(by='count', ascending=False).index)

129

countrows.head(10)
likelihood=np.array(pd.DataFrame(countrows.to_records()))

most_likely=likelihood[0:10,:-1]
most_likely, most_likely.shape

(array([[1, 0, -1, 2, 1],
 [1, 0, -1, -2, -1],
 [1, 0, 1, 2, 1],
 [-1, 0, 1, 2, -1],
 [1, 0, -1, 2, -1],
 [-1, 0, -1, 2, 1],
 [1, 0, 1, -2, 1],
 [-1, 0, 1, -2, 1],
 [1, 0, 1, 2, -1],
 [-1, 0, -1, -2, -1]], dtype=int64),
 (10, 5))

Less likely channel stacking

Count Unique STacking Patterns
countrows = c.pivot_table(index = ['Elem1', 'Elem2', 'Elem3', 'Elem4', 'Elem5'], aggfunc = 'si
ze')
countrows = pd.DataFrame(countrows)
countrows.columns = ['count']
countrows = countrows.reindex(countrows.sort_values(by='count', ascending=False).index)
countrows.tail(10)

 count
Elem1 Elem2 Elem3 Elem4 Elem5
 2 -2 1 -1 0 1
-1 -2 -1 2 -2 1
 1 -1 2 1 -2 1
 2 -2 1 -2 -2 1
 0 1 1 1
 -2 0 1
-1 -2 -1 2 2 1
 0 -2 2 1
 2 -2 -1 -1 -1 1
 1 -2 -1 1

less_likely=likelihood[-10:,:-1]
less_likely, less_likely.shape

(array([[2, -2, 1, -1, 0],
 [-1, -2, -1, 2, -2],
 [1, -1, 2, 1, -2],
 [2, -2, 1, -2, -2],
 [2, -2, 0, 1, 1],
 [2, -2, 0, -2, 0],
 [-1, -2, -1, 2, 2],
 [-1, -2, 0, -2, 2],
 [2, -2, -1, -1, -1],
 [2, -2, 1, -2, -1]], dtype=int64),
 (10, 5))

most_likely[most_likely==-2]=-175
most_likely[most_likely==-1]=-135
most_likely[most_likely==0]=0
most_likely[most_likely==1]=135

130

most_likely[most_likely==2]=175
most_likely

array([[135, 0, -135, 175, 135],
 [135, 0, -135, -175, -135],
 [135, 0, 135, 175, 135],
 [-135, 0, 135, 175, -135],
 [135, 0, -135, 175, -135],
 [-135, 0, -135, 175, 135],
 [135, 0, 135, -175, 135],
 [-135, 0, 135, -175, 135],
 [135, 0, 135, 175, -135],
 [-135, 0, -135, -175, -135]], dtype=int64)

Setting the parameters for the five possible architectural positions

def parabola_fill(half_width,height,y_offset=0,x_offset=0):
 xaxis=range(-(half_width-1),half_width)
 xaxis=np.array(xaxis)+x_offset
 yaxis=(height/(half_width-1)**2)*((xaxis-x_offset)**2)+y_offset
 x_top_parabola=[min(xaxis), max(xaxis)]
 y_top_parabola=[max(yaxis), max(yaxis)]
 ms_trace=max(yaxis)
 return plt.plot(xaxis,yaxis,'--',color='black'),plt.xlabel('Width (m)'), plt.ylabel('Thick
ness (m)'),plt.fill(xaxis,yaxis,'--',color='yellow'),plt.plot([0,0], [0,ms_trace],color='black
')

thickness=df[df['Meas_Sect']=='CACH1']['Thickness'] #NAME OF THE MEASURED SECTION
thickness=thickness.values
thickness

array([8.12683487, 17.73090935, 6.14168692, 11.45049477, 18.39035606])

def y_offset_to_thickness(results, thicknesses, height=25, width_total=400, perc_to_axis=0, pe
rc_to_offaxis=0.3375, perc_to_margin=0.4375):
 net_erosion=[]
 x_offset=[width_total*perc_to_axis, width_total*perc_to_offaxis, width_total*perc_to_margi
n]
 for c in x_offset:
 value=height/(width_total/2)**2*c**2
 net_erosion.append(value)
 net_y_offset=[]
 arch_pos=results
 for i in range(len(arch_pos)):
 if int(abs(arch_pos[i]))==175:
 value=net_erosion[2]
 elif int(abs(arch_pos[i]))==135:
 value=net_erosion[1]
 else:
 value=net_erosion[0]
 net_y_offset.append(value)
 net_y_offset=np.array(net_y_offset)
 thickness_cumsum=thicknesses.cumsum()
 thickness_cumsum=np.insert(thickness_cumsum[:-1], 0, 0)
 final_y_offset=(thickness_cumsum-net_y_offset).tolist()
 return final_y_offset

y_offset_stack_pattern=[]
for channel_stacking in most_likely:
 ind_y_offset=y_offset_to_thickness(channel_stacking, thickness, height=25, width_total=400
, perc_to_axis=0, perc_to_offaxis=0.3375, perc_to_margin=0.4375)

131

 y_offset_stack_pattern.append(ind_y_offset)
y_offset_stack_pattern=np.array(y_offset_stack_pattern)
#y_offset_stack_pattern, y_offset_stack_pattern.shape()
y_offset_stack_pattern, y_offset_stack_pattern.shape

(array([[-11.390625 , 8.12683487, 14.46711922, 12.85880613,
 32.0593009],
 [-11.390625 , 8.12683487, 14.46711922, 12.85880613,
 32.0593009],
 [-11.390625 , 8.12683487, 14.46711922, 12.85880613,
 32.0593009],
 [-11.390625 , 8.12683487, 14.46711922, 12.85880613,
 32.0593009],
 [-11.390625 , 8.12683487, 14.46711922, 12.85880613,
 32.0593009],
 [-11.390625 , 8.12683487, 14.46711922, 12.85880613,
 32.0593009],
 [-11.390625 , 8.12683487, 14.46711922, 12.85880613,
 32.0593009],
 [-11.390625 , 8.12683487, 14.46711922, 12.85880613,
 32.0593009],
 [-11.390625 , 8.12683487, 14.46711922, 12.85880613,
 32.0593009],
 [-11.390625 , 8.12683487, 14.46711922, 12.85880613,
 32.0593009]]),
 (10, 5))

Generating the top 10 most likely channel stacking pattern

y_offset_test=[0,25,50,75,100]

plt.figure(figsize=(15, 25))
for k in range(len(most_likely)):
 hor_disp=most_likely[k]
 plt.subplot(5, 2, k+1)
 for i in range(len(hor_disp)):
 parabola_fill(half_width=200,height=25,y_offset=y_offset_test[i],x_offset=hor_disp[i])
 plt.title('Stacking pattern '+str(k+1))
 plt.ylabel('Height (m)') #y label
 plt.xlabel('Width (m)') #x label
 plt.xlim([-400,400])
 plt.plot(most_likely[k].flatten(), y_offset_test,'red',linewidth=2)
plt.tight_layout()

132

133

plt.figure(figsize=(15, 25))
for k in range(len(most_likely)):
 hor_disp=most_likely[k]
 ver_disp=y_offset_stack_pattern[k]
 plt.subplot(5, 2, k+1)
 for i in range(len(hor_disp)):
 parabola_fill(half_width=200,height=25,y_offset=ver_disp[i],x_offset=hor_disp[i])
 plt.title('Stacking pattern '+str(k+1))
 plt.ylabel('Height (m)') #y label
 plt.xlabel('Width (m)') #x label
 plt.xlim([-400,400])
 plt.plot(most_likely[k].flatten(), y_offset_stack_pattern[k].flatten(),'red',linewidth=2)
plt.tight_layout()

134

135

def distances(most_likely, y_offset_stack_pattern):
 total_magnitudes=[]
 for i in range(len(most_likely)):
 lat_offset=most_likely[i]
 ver_offset=y_offset_stack_pattern[i]
 magnitude=[]
 for k in range(len(lat_offset)-1):
 distance=round((((lat_offset[k+1]-lat_offset[k])**2)+((ver_offset[k+1]-ver_offset[
k])**2))**(1/2),2)
 magnitude.append(distance)
 total_magnitudes.append(magnitude)
 return total_magnitudes

distances(most_likely, y_offset_stack_pattern)

[[136.4, 135.15, 310.0, 44.37],
 [136.4, 135.15, 40.03, 44.37],
 [136.4, 135.15, 40.03, 44.37],
 [136.4, 135.15, 40.03, 310.59],
 [136.4, 135.15, 310.0, 310.59],
 [136.4, 135.15, 310.0, 44.37],
 [136.4, 135.15, 310.0, 310.59],
 [136.4, 135.15, 310.0, 310.59],
 [136.4, 135.15, 40.03, 310.59],
 [136.4, 135.15, 40.03, 44.37]]

total_distances=distances(most_likely, y_offset_stack_pattern)
pd.DataFrame(np.array(total_distances).sum(axis=1).reshape(10,1))

 0
0 625.92
1 355.95
2 355.95
3 622.17
4 892.14
5 625.92
6 892.14
7 892.14
8 622.17
9 355.95

Generating the top less likely channel stacking patterns

less_likely[less_likely==-2]=-175
less_likely[less_likely==-1]=-135
less_likely[less_likely==0]=0
less_likely[less_likely==1]=135
less_likely[less_likely==2]=175
less_likely

array([[175, -175, 135, -135, 0],
 [-135, -175, -135, 175, -175],
 [135, -135, 175, 135, -175],
 [175, -175, 135, -175, -175],
 [175, -175, 0, 135, 135],
 [175, -175, 0, -175, 0],
 [-135, -175, -135, 175, 175],
 [-135, -175, 0, -175, 175],
 [175, -175, -135, -135, -135],
 [175, -175, 135, -175, -135]], dtype=int64)

136

y_offset_test=[0,25,50,75,100]

plt.figure(figsize=(15, 25))
for k in range(len(less_likely)):
 hor_disp=less_likely[k]
 plt.subplot(5, 2, k+1)
 for i in range(len(hor_disp)):
 parabola_fill(half_width=200,height=25,y_offset=y_offset_test[i],x_offset=hor_disp[i])
 plt.title('Stacking pattern '+str(k+1))
 plt.ylabel('Height (m)') #y label
 plt.xlabel('Width (m)') #x label
 plt.xlim([-400,400])
 plt.plot(less_likely[k].flatten(), y_offset_test,'red',linewidth=2)
plt.tight_layout()

137

138

y_offset_stack_pattern=[]
for channel_stacking in less_likely:
 ind_y_offset=y_offset_to_thickness(channel_stacking, thickness, height=25, width_total=400
, perc_to_axis=0, perc_to_offaxis=0.3375, perc_to_margin=0.4375)
 y_offset_stack_pattern.append(ind_y_offset)
y_offset_stack_pattern=np.array(y_offset_stack_pattern)
#y_offset_stack_pattern, y_offset_stack_pattern.shape()
y_offset_stack_pattern, y_offset_stack_pattern.shape

(array([[-19.140625 , -11.01379013, 14.46711922, 20.60880613,
 43.4499259],
 [-11.390625 , -11.01379013, 14.46711922, 12.85880613,
 24.3093009],
 [-11.390625 , -3.26379013, 6.71711922, 20.60880613,
 24.3093009],
 [-19.140625 , -11.01379013, 14.46711922, 12.85880613,
 24.3093009],
 [-19.140625 , -11.01379013, 25.85774422, 20.60880613,
 32.0593009],
 [-19.140625 , -11.01379013, 25.85774422, 12.85880613,
 43.4499259],
 [-11.390625 , -11.01379013, 14.46711922, 12.85880613,
 24.3093009],
 [-11.390625 , -11.01379013, 25.85774422, 12.85880613,
 24.3093009],
 [-19.140625 , -11.01379013, 14.46711922, 20.60880613,
 32.0593009],
 [-19.140625 , -11.01379013, 14.46711922, 12.85880613,
 32.0593009]]),
 (10, 5))

plt.figure(figsize=(15, 25))
for k in range(len(less_likely)):
 hor_disp=less_likely[k]
 ver_disp=y_offset_stack_pattern[k]
 plt.subplot(5, 2, k+1)
 for i in range(len(hor_disp)):
 parabola_fill(half_width=200,height=25,y_offset=ver_disp[i],x_offset=hor_disp[i])
 plt.title('Stacking pattern '+str(k+1))
 plt.ylabel('Height (m)') #y label
 plt.xlabel('Width (m)') #x label
 plt.xlim([-400,400])
 plt.plot(less_likely[k].flatten(), y_offset_stack_pattern[k].flatten(),'red',linewidth=2)
plt.tight_layout()

139

140

total_distances=distances(less_likely, y_offset_stack_pattern)
pd.DataFrame(np.array(total_distances).sum(axis=1).reshape(10,1))

 0
0 1068.13
1 747.62
2 932.64
3 982.59
4 675.48
5 882.06
6 408.88
7 744.51
8 415.11
9 1015.51

import numpy as np
import random as rm
import matplotlib.pyplot as plt
import pandas as pd

from matplotlib import rcParams
rcParams['font.family'] = 'sans-serif'
rcParams['font.sans-serif'] = ['Franklin Gothic Book']
rcParams['font.size'] = '18'

From https://www.datacamp.com/tutorial/markov-chains-python-tutorial

The statespace
states = ["1","2","3"]

Possible sequences of events
transitionName = [["11","12","13"],["21","22","23"],["31","32","33"]]

Transition matrix 1

Probabilities matrix (transition matrix)
transitionMatrix = np.array([[1, 0, 0],
 [0, 1, 0],
 [0, 0, 1]])

transitionMatrix = np.array([[0.29411764705882354, 0.5588235294117647,

0.14705882352941177], [0.380952380952381, 0.42857142857142855, 0.1904761904761905],

[0.36, 0.32, 0.32]])

A function that implements the Markov model to forecast the state/mood.
def forecast(transitionMatrix, future_ch_ele):

 # Probabilities matrix (transition matrix)
transitionMatrix = np.array([[0.29411764705882354, 0.5588235294117647, 0.147058823529411
77],
[0.380952380952381, 0.42857142857142855, 0.1904761904761905],
[0.36, 0.32, 0.32]])

transitionMatrix = np.array([[1, 0, 0],
[0, 1, 0],

https://www.datacamp.com/tutorial/markov-chains-python-tutorial

141

[0, 0, 1]])
transitionMatrix = np.array([[0.3333333333, 0.3333333333, 0.3333333333],
[0.3333333333, 0.3333333333, 0.3333333333],
[0.3333333333, 0.3333333333, 0.3333333333]])
transitionMatrix = np.array([[0.1, 0.45, 0.45],
[0.45, 0.1, 0.45],
[0.45, 0.45, 0.1]])
if sum(transitionMatrix[0])+sum(transitionMatrix[1])+sum(transitionMatrix[1]) != 3:
print("Somewhere, something went wrong. Transition matrix, perhaps?")
else: print("All is gonna be okay, you should move on!! ;)")

 # transitionMatrix = [[1,0,0],[0,1,0],[0,0,1]]
 # Choose the starting state
 seed=str(np.random.choice([1,2,3]))
 activityToday = seed
print("Start state: " + activityToday)
 # Shall store the sequence of states taken. So, this only has the starting state for now.
 activityList = [activityToday]
 i = 0
 # To calculate the probability of the activityList
 prob = 1
 while i != future_ch_ele:
 if activityToday == "1":
 change = np.random.choice(transitionName[0],replace=True,p=transitionMatrix[0])
 if change == "11":
 prob = prob * transitionMatrix[0,0]
 activityList.append("1")
 pass
 elif change == "12":
 prob = prob * transitionMatrix[0,1]
 activityToday = "2"
 activityList.append("2")
 else:
 prob = prob * transitionMatrix[0,2]
 activityToday = "3"
 activityList.append("3")
 elif activityToday == "2":
 change = np.random.choice(transitionName[1],replace=True,p=transitionMatrix[1])
 if change == "22":
 prob = prob * transitionMatrix[1,1]
 activityList.append("2")
 pass
 elif change == "21":
 prob = prob * transitionMatrix[1,0]
 activityToday = "1"
 activityList.append("1")
 else:
 prob = prob * transitionMatrix[1,2]
 activityToday = "3"
 activityList.append("3")
 elif activityToday == "3":
 change = np.random.choice(transitionName[2],replace=True,p=transitionMatrix[2])
 if change == "33":
 prob = prob * transitionMatrix[2,2]
 activityList.append("3")
 pass
 elif change == "31":
 prob = prob * transitionMatrix[2,0]
 activityToday = "1"
 activityList.append("1")
 else:

142

 prob = prob * transitionMatrix[2,1]
 activityToday = "2"
 activityList.append("2")
 i += 1
 #print("Possible states: " + str(activityList))
 #print("End state after "+ str(future_ch_ele) + " future_ch_ele: " + activityToday)
 #print("Probability of the possible sequence of states: " + str(prob))
 return activityList

Function that forecasts the possible state for the next future_ch_ele
#forecast(4,"2")

def channel_stack_trans_prob(transitionMatrix,channel_stack_number,n_channels):
 channel_stacking=[]
 for n in range(channel_stack_number):
 chan_stack=forecast(transitionMatrix,n_channels-1)
 channel_stacking.append(chan_stack)
 return channel_stacking

def individual_stacking_pattern(result, width_total=400, perc_to_axis=0, perc_to_offaxis=0.337
5, perc_to_margin=0.4375):
 temp_incision=[width_total*-perc_to_margin, width_total*-perc_to_offaxis, width_total*perc
_to_axis, width_total*perc_to_offaxis, width_total*perc_to_margin]
 incision=[]
 for i in range(len(result)):
 rand_margin=np.random.choice([-2,2])
 rand_offaxis=np.random.choice([-1,1])
 rand_axis=0
 if rand_margin==-2 and int(result[i])==3:
 inc_step=temp_incision[0]
 else:
 if rand_offaxis==-1 and int(result[i])==2:
 inc_step=temp_incision[1]
 else:
 if rand_axis==0 and int(result[i])==1:
 inc_step=temp_incision[2]
 else:
 if rand_offaxis==1 and int(result[i])==2:
 inc_step=temp_incision[3]
 else:
 inc_step=temp_incision[4]
 incision.append(inc_step)
 #y_offset_list=[]
 #for k in range(len(incision)):
 #agg_step=y_offset*k
 #y_offset_list.append(agg_step)
 return incision#, y_offset_list

def stacking_pattern_trans_prob(channel_stack_list):
 stacking_patterns=[]
 for i in range(len(channel_stack_list)):
 result_step=individual_stacking_pattern(channel_stack_list[i], width_total=400, perc_t
o_axis=0, perc_to_offaxis=0.3375, perc_to_margin=0.4375)
 stacking_patterns.append(result_step)
 stacking_patterns=np.array(stacking_patterns)
 return pd.DataFrame(stacking_patterns,columns=['Elem1', 'Elem2', 'Elem3','Elem4','Elem5'])

def var_levels(transitionMatrix,experiments_list,n_channels):
 lenght_rows=[]
 for i in experiments_list:
 channel_stack=channel_stack_trans_prob(transitionMatrix,i,n_channels)

143

 stack_pattern=stacking_pattern_trans_prob(channel_stack)
 #a,b,c=montecarlo(Meas_Sect_probs, Meas_Sect_probs_cum, i)
 # Count Unique STacking Patterns
 countrows = stack_pattern.pivot_table(index = ['Elem1', 'Elem2', 'Elem3', 'Elem4', 'El
em5'], aggfunc = 'size')
 countrows = pd.DataFrame(countrows)
 countrows.columns = ['count']
 countrows = countrows.reindex(countrows.sort_values(by='count', ascending=False).index
)
 lenght_rows.append(len(countrows))
 return lenght_rows

experiments_list=[10,100,500,1000,5000,10000,50000,100000]
lenght_rows=var_levels(transitionMatrix,experiments_list, 5)
experiments_list, lenght_rows

([10, 100, 500, 1000, 5000, 10000, 50000, 100000],
 [8, 44, 64, 65, 65, 65, 65, 65])

plt.figure()
plt.plot(experiments_list, lenght_rows)
plt.title("Variability levels")
plt.xlabel("Number of iterations (n)")
plt.ylabel("Unique stacking patterns (n)")

Text(0, 0.5, 'Unique stacking patterns (n)')

Getting the 10 most probable results

trans_prob_ch_stack=channel_stack_trans_prob(transitionMatrix,100000,5)
trans_prob_stack_pat=stacking_pattern_trans_prob(trans_prob_ch_stack)
trans_prob_stack_pat

144

 Elem1 Elem2 Elem3 Elem4 Elem5
0 -175.0 -175.0 175.0 -175.0 -175.0
1 -135.0 -135.0 -135.0 -135.0 135.0
2 -175.0 -175.0 175.0 175.0 175.0
3 135.0 -135.0 -135.0 135.0 -135.0
4 135.0 135.0 135.0 135.0 -135.0
...
99995 175.0 175.0 -175.0 -175.0 -175.0
99996 175.0 -175.0 175.0 -175.0 -175.0
99997 -135.0 -135.0 -135.0 135.0 -135.0
99998 -175.0 175.0 -175.0 175.0 -175.0
99999 -135.0 -135.0 135.0 -135.0 -135.0

[100000 rows x 5 columns]

Count Unique STacking Patterns
countrows = trans_prob_stack_pat.pivot_table(index = ['Elem1', 'Elem2', 'Elem3', 'Elem4', 'Ele
m5'], aggfunc = 'size')
countrows = pd.DataFrame(countrows)
countrows.columns = ['count']
countrows = countrows.reindex(countrows.sort_values(by='count', ascending=False).index)
countrows.head(10)
#likelihood=np.array(pd.DataFrame(countrows.to_records()))

 count
Elem1 Elem2 Elem3 Elem4 Elem5
 0.0 0.0 0.0 0.0 0.0 33338
-135.0 -135.0 -135.0 135.0 -135.0 1128
-175.0 -175.0 -175.0 175.0 -175.0 1122
-135.0 -135.0 135.0 135.0 -135.0 1115
 175.0 175.0 175.0 -175.0 175.0 1094
-175.0 175.0 175.0 175.0 -175.0 1091
 175.0 1084
 135.0 -135.0 135.0 135.0 -135.0 1084
-135.0 -135.0 -135.0 -135.0 -135.0 1084
 135.0 -135.0 -135.0 135.0 -135.0 1081

likelihood=np.array(pd.DataFrame(countrows.to_records()))
most_likely=likelihood[0:10,:-1]
most_likely, most_likely.shape

(array([[0., 0., 0., 0., 0.],
 [-135., -135., -135., 135., -135.],
 [-175., -175., -175., 175., -175.],
 [-135., -135., 135., 135., -135.],
 [175., 175., 175., -175., 175.],
 [-175., 175., 175., 175., -175.],
 [-175., 175., 175., 175., 175.],
 [135., -135., 135., 135., -135.],
 [-135., -135., -135., -135., -135.],
 [135., -135., -135., 135., -135.]]),
 (10, 5))

Generating the top 10 most likely channel stacking pattern

def parabola_fill(half_width,height,y_offset=0,x_offset=0):
 xaxis=range(-(half_width-1),half_width)
 xaxis=np.array(xaxis)+x_offset
 yaxis=(height/(half_width-1)**2)*((xaxis-x_offset)**2)+y_offset
 x_top_parabola=[min(xaxis), max(xaxis)]
 y_top_parabola=[max(yaxis), max(yaxis)]

145

 ms_trace=max(yaxis)
 return plt.plot(xaxis,yaxis,'--',color='black'),plt.xlabel('Width (m)'), plt.ylabel('Thick
ness (m)'),plt.fill(xaxis,yaxis,'--',color='yellow'),plt.plot([0,0], [0,ms_trace],color='black
')

y_offset_test=[0,25,50,75,100]
plt.figure(figsize=(15, 25))
for k in range(len(most_likely)):
 hor_disp=most_likely[k]
 plt.subplot(5, 2, k+1)
 for i in range(len(hor_disp)):
 parabola_fill(half_width=200,height=25,y_offset=y_offset_test[i],x_offset=hor_disp[i])
 plt.title('Stacking pattern '+str(k+1))
 plt.ylabel('Height (m)') #y label
 plt.xlabel('Width (m)') #x label
 plt.xlim([-400,400])
 plt.plot(most_likely[k].flatten(), y_offset_test,'red',linewidth=2)
plt.tight_layout()

146

147

def distances(most_likely, y_offset_stack_pattern):
 total_magnitudes=[]
 for i in range(len(most_likely)):
 lat_offset=most_likely[i]
 ver_offset=y_offset_stack_pattern
 magnitude=[]
 for k in range(len(lat_offset)-1):
 distance=round((((lat_offset[k+1]-lat_offset[k])**2)+((ver_offset[k+1]-ver_offset[
k])**2))**(1/2),2)
 magnitude.append(distance)
 total_magnitudes.append(magnitude)
 return total_magnitudes

total_distances=distances(most_likely, y_offset_test)
pd.DataFrame(np.array(total_distances).sum(axis=1).reshape(10,1))

 0
0 100.00
1 592.30
2 751.78
3 592.30
4 751.78
5 751.78
6 425.89
7 838.45
8 100.00
9 838.45

Less likely stacking

Count Unique STacking Patterns
countrows = trans_prob_stack_pat.pivot_table(index = ['Elem1', 'Elem2', 'Elem3', 'Elem4', 'Ele
m5'], aggfunc = 'size')
countrows = pd.DataFrame(countrows)
countrows.columns = ['count']
countrows = countrows.reindex(countrows.sort_values(by='count', ascending=False).index)
countrows.tail(10)

 count
Elem1 Elem2 Elem3 Elem4 Elem5
-175.0 175.0 -175.0 175.0 175.0 1004
-135.0 135.0 -135.0 135.0 135.0 1000
 -135.0 135.0 -135.0 -135.0 1000
 175.0 175.0 175.0 -175.0 -175.0 999
-175.0 -175.0 -175.0 -175.0 -175.0 996
 175.0 -175.0 -175.0 175.0 175.0 993
 175.0 175.0 175.0 175.0 992
-135.0 135.0 -135.0 -135.0 -135.0 991
 135.0 135.0 -135.0 -135.0 -135.0 973
 175.0 -175.0 175.0 175.0 -175.0 966

less_likely=likelihood[-10:,:-1]
less_likely, less_likely.shape

(array([[-175., 175., -175., 175., 175.],
 [-135., 135., -135., 135., 135.],
 [-135., -135., 135., -135., -135.],
 [175., 175., 175., -175., -175.],
 [-175., -175., -175., -175., -175.],
 [175., -175., -175., 175., 175.],
 [175., 175., 175., 175., 175.],

148

 [-135., 135., -135., -135., -135.],
 [135., 135., -135., -135., -135.],
 [175., -175., 175., 175., -175.]]),
 (10, 5))

y_offset_test=[0,25,50,75,100]
plt.figure(figsize=(15, 25))
for k in range(len(less_likely)):
 hor_disp=less_likely[k]
 plt.subplot(5, 2, k+1)
 for i in range(len(hor_disp)):
 parabola_fill(half_width=200,height=25,y_offset=y_offset_test[i],x_offset=hor_disp[i])
 plt.title('Stacking pattern '+str(k+1))
 plt.ylabel('Height (m)') #y label
 plt.xlabel('Width (m)') #x label
 plt.xlim([-400,400])
 plt.plot(less_likely[k].flatten(), y_offset_test,'red',linewidth=2)
plt.tight_layout()

149

150

total_distances=distances(less_likely, y_offset_test)
pd.DataFrame(np.array(total_distances).sum(axis=1).reshape(10,1))

 0
0 1077.67
1 838.45
2 592.30
3 425.89
4 100.00
5 751.78
6 100.00
7 592.30
8 346.15
9 1077.67

• Chapter 6

Uploading the data

import pandas as pd
import matplotlib.pyplot as plt
import NumPy as np

from matplotlib import rcParams
rcParams['font.family'] = 'sans-serif'
rcParams['font.sans-serif'] = ['Franklin Gothic Book']
rcParams['font.size'] = '18'

df=pd.read_excel('NN_Results_2.xlsx')
df

 Axis_Prob Off_Axis_Prob Margin_Prob Pred_Class True_Class Geobody \
0 0.200129 0.764206 0.035665 2 2 2
1 0.896818 0.103155 0.000027 1 1 3
2 0.185925 0.479642 0.334434 2 2 6
3 0.001238 0.096551 0.902211 3 3 7
4 0.217810 0.781036 0.001154 2 2 8
..
149 0.176377 0.722527 0.101096 2 2 3
150 0.985616 0.014327 0.000057 1 1 8
151 0.565369 0.434623 0.000009 1 1 11
152 0.000003 0.009516 0.990481 3 3 11
153 0.030788 0.920465 0.048747 2 3 11

 Meas_Sect Complex Set Thickness
0 CACH1 'Lower' 8.126835
1 CACH1 'Lower' 17.730909
2 CACH1 'Lower' 6.141687
3 CACH1 'Lower' 11.450495
4 CACH1 'Lower' 18.390356
..
149 VV2 'Upper' 11.824580
150 VV2 'Upper' 11.138141
151 VV7 'Upper' 26.417171
152 VVEDGE 'Upper' 5.896554
153 VVWB 'Upper' 14.202635

[154 rows x 9 columns]

151

Meas_Sect=df[df['Meas_Sect']=='CACH1'] #REPLACE THE NAME OF THE MEASURED SECTION
Meas_Sect=Meas_Sect[['Axis_Prob', 'Off_Axis_Prob', 'Margin_Prob']]
Meas_Sect

 Axis_Prob Off_Axis_Prob Margin_Prob
0 0.200129 0.764206 0.035665
1 0.896818 0.103155 0.000027
2 0.185925 0.479642 0.334434
3 0.001238 0.096551 0.902211
4 0.217810 0.781036 0.001154

Meas_Sect=Meas_Sect.values
Meas_Sect

array([[2.00128968e-01, 7.64206174e-01, 3.56648580e-02],
 [8.96817877e-01, 1.03154714e-01, 2.74090607e-05],
 [1.85924709e-01, 4.79641650e-01, 3.34433641e-01],
 [1.23753958e-03, 9.65514118e-02, 9.02211049e-01],
 [2.17809653e-01, 7.81036309e-01, 1.15403762e-03]])

Histograms (or Probability Density Functions, PDFs) and Cummulative Distribution Functions, or

CDFs

def prob(Meas_Sect):
 prob=np.insert(Meas_Sect, 0, 0, 1)
 return prob

def prob_cumsum(Meas_Sect):
 prob_cumsum=Meas_Sect.cumsum(axis=1)
 prob_cumsum=np.insert(prob_cumsum, 0, 0, 1)
 return prob_cumsum

Meas_Sect_probs=prob(Meas_Sect)
Meas_Sect_probs, Meas_Sect_probs.shape

(array([[0.00000000e+00, 2.00128968e-01, 7.64206174e-01, 3.56648580e-02],
 [0.00000000e+00, 8.96817877e-01, 1.03154714e-01, 2.74090607e-05],
 [0.00000000e+00, 1.85924709e-01, 4.79641650e-01, 3.34433641e-01],
 [0.00000000e+00, 1.23753958e-03, 9.65514118e-02, 9.02211049e-01],
 [0.00000000e+00, 2.17809653e-01, 7.81036309e-01, 1.15403762e-03]]),
 (5, 4))

Meas_Sect_probs_cum=prob_cumsum(Meas_Sect)
Meas_Sect_probs_cum, Meas_Sect_probs_cum.shape

(array([[0. , 0.20012897, 0.96433514, 1.],
 [0. , 0.89681788, 0.99997259, 1.],
 [0. , 0.18592471, 0.66556636, 1.],
 [0. , 0.00123754, 0.09778895, 1.],
 [0. , 0.21780965, 0.99884596, 1.]]),
 (5, 4))

ArchitecturalElementPositionNames=['0', 'Axis (1)', 'Off-axis (2)', 'Margin (3)']
ArchitecturalElementPositionNames

['0', 'Axis (1)', 'Off-axis (2)', 'Margin (3)']

ArchitecturalElementPositionNumbers=np.array([0, 1, 2, 3])
print(ArchitecturalElementPositionNumbers.shape, ArchitecturalElementPositionNumbers)

(4,) [0 1 2 3]

152

def pdfs_and_cdfs(Meas_Sect_probs, Meas_Sect_probs_cum):
 plt.figure(figsize=(6, 22)) #create the figure, then change the size of it
 for c in range(len(Meas_Sect_probs)): #for each sample in the dimension length... THIS IS
USEFUL! TO GO OVER INDEXES OR REPEAT X TIMES A SEQUENCE!!!
 plt.subplot(len(Meas_Sect_probs), 1, len(Meas_Sect_probs)-c) #display the graphs in 4
rows, 3 columns
 plt.bar(ArchitecturalElementPositionNames, Meas_Sect_probs[c]) #plot bars
 plt.plot(Meas_Sect_probs_cum[c], color='orange', linewidth=2) #plot a line above
 plt.title('Channel element '+str(c+1))
 plt.ylim((0,1.05)) #same dimensions for all the graphs
 plt.xlim((0,4)) #same dimensions for all the graphs
 plt.tight_layout() #improve the layout

pdfs_and_cdfs(Meas_Sect_probs, Meas_Sect_probs_cum)

153

154

import random

def montecarlo(NameMS, NameMS_cumsum, n_samples):
 arch_pos=[0,1,2,3]
 results=[]
 plt.figure(figsize=(6, 22))
 for probs in range(len(NameMS)):
 #EMPTY LIST 2: classifications from eCDF (1,2,3)
 mc_sim=[]
 a,b,c,d=arch_pos
 w,x,y,z=NameMS_cumsum[probs]
 plt.subplot(len(NameMS), 1, len(NameMS)-probs)
 #repeat n samples (n_samples)
 for n in range(n_samples):
 value=round(np.random.uniform(0, 1), ndigits=2)
 if w < value <= x:
 arch_el = b
 elif x < value <= y:
 arch_el = c
 else:
 arch_el = d
 # ___OUTPUT 2___
 mc_sim.append(arch_el)
 p_axis=round(mc_sim.count(b)/n_samples, ndigits=2)
 p_offaxis=round(mc_sim.count(c)/n_samples, ndigits=2)
 p_margin=round(mc_sim.count(d)/n_samples, ndigits=2)
 #___OUTPUT 1____
 results.append([p_axis, p_offaxis, p_margin])
 plt.hist(mc_sim)
 plt.title('Architectural element ' + str(probs+1))
 #plt.ylabel('Number of samples',fontsize=16) #y label
 #plt.xlabel('Architectural position',fontsize=16) #x label
 plt.ylim((0,n_samples)) #same dimensions for all the graphs
 plt.xlim((0,4)) #same dimensions for all the graphs
 plt.tight_layout()
 return results, type(results), pd.DataFrame(results,columns=['Axis', 'Off-axis', 'Margin']
)

montecarlo_results=montecarlo(Meas_Sect_probs, Meas_Sect_probs_cum, 10000)
montecarlo_results

([[0.2, 0.76, 0.04],
 [0.89, 0.1, 0.01],
 [0.18, 0.48, 0.34],
 [0.0, 0.09, 0.91],
 [0.21, 0.78, 0.01]],
 list,
 Axis Off-axis Margin
 0 0.20 0.76 0.04
 1 0.89 0.10 0.01
 2 0.18 0.48 0.34
 3 0.00 0.09 0.91
 4 0.21 0.78 0.01)

155

156

Transitional probabilities incorporation

#AFTER CALCULATING THE TRANSITIONAL PROBABILITIES FROM SCRIPT 2
trans_prob=np.array([0.29411764705882354,
 0.5588235294117647,
 0.14705882352941177,
 0.380952380952381,
 0.42857142857142855,
 0.1904761904761905,
 0.36,
 0.32,
 0.32]).reshape(3,3).round(2)
trans_prob

array([[0.29, 0.56, 0.15],
 [0.38, 0.43, 0.19],
 [0.36, 0.32, 0.32]])

def montecarlo_trans_prob(NameMS, NameMS_cumsum, n_samples): #DOUBLE MONTECARLO SIMULATION
 simulation=[]
 plt.figure(figsize=(6, 22))
 for probs in range(len(NameMS)):
 mc_sim=[]
 #a,b,c,d=arch_pos
 w,x,y,z=NameMS_cumsum[probs]
 initial_probs=NameMS[probs,1:]
 plt.subplot(len(NameMS), 1, len(NameMS)-probs)
 for i in range(n_samples):
 value1=round(np.random.uniform(0, 1), ndigits=2)
 if w < value1 <= x:
 trans_prob_imp=initial_probs*trans_prob[0]
 norm_probs=trans_prob_imp/sum(trans_prob_imp)
 norm_cumsum=np.insert(norm_probs.cumsum(), 0, 0, 0)
 l,m,n,o=norm_cumsum
 value2=round(np.random.uniform(0, 1), ndigits=2)
 if l < value2 <= m:
 arch_ele = 1
 elif m < value2 <= n:
 arch_ele = 2
 else:
 arch_ele = 3
 elif x < value1 <= y:
 trans_prob_imp=initial_probs*trans_prob[1]
 norm_probs=trans_prob_imp/sum(trans_prob_imp)
 norm_cumsum=np.insert(norm_probs.cumsum(), 0, 0, 0)
 l,m,n,o=norm_cumsum
 value2=round(np.random.uniform(0, 1), ndigits=2)
 if l < value2 <= m:
 arch_ele = 1
 elif m < value2 <= n:
 arch_ele = 2
 else:
 arch_ele = 3
 else:
 trans_prob_imp=initial_probs*trans_prob[2]
 norm_probs=trans_prob_imp/sum(trans_prob_imp)
 norm_cumsum=np.insert(norm_probs.cumsum(), 0, 0, 0)
 l,m,n,o=norm_cumsum
 value2=round(np.random.uniform(0, 1), ndigits=2)
 if l < value2 <= m:
 arch_ele = 1

157

 elif m < value2 <= n:
 arch_ele = 2
 else:
 arch_ele = 3
 mc_sim.append(arch_ele)
 p_axis=round(mc_sim.count(1)/n_samples, ndigits=2)
 p_offaxis=round(mc_sim.count(2)/n_samples, ndigits=2)
 p_margin=round(mc_sim.count(3)/n_samples, ndigits=2)
 simulation.append([p_axis, p_offaxis, p_margin])
 plt.hist(mc_sim)
 plt.title('Architectural element ' + str(probs+1))
 #plt.ylabel('Number of samples',fontsize=16) #y label
 #plt.xlabel('Architectural position',fontsize=16) #x label
 plt.ylim((0,n_samples)) #same dimensions for all the graphs
 plt.xlim((0,4)) #same dimensions for all the graphs
 plt.tight_layout()
 return simulation, type(simulation), pd.DataFrame(simulation,columns=['Axis', 'Off-axis',
'Margin'])

double_montecarlo=montecarlo_trans_prob(Meas_Sect_probs, Meas_Sect_probs_cum, 10000)
double_montecarlo

([[0.17, 0.81, 0.02],
 [0.81, 0.17, 0.01],
 [0.19, 0.58, 0.23],
 [0.0, 0.1, 0.9],
 [0.18, 0.81, 0.01]],
 list,
 Axis Off-axis Margin
 0 0.17 0.81 0.02
 1 0.81 0.17 0.01
 2 0.19 0.58 0.23
 3 0.00 0.10 0.90
 4 0.18 0.81 0.01)

158

159

a,b,c=double_montecarlo
results=a
results

[[0.17, 0.81, 0.02],
 [0.81, 0.17, 0.01],
 [0.19, 0.58, 0.23],
 [0.0, 0.1, 0.9],
 [0.18, 0.81, 0.01]]

Getting the maximum probabilities

arch_pos_codes={1:'axis',
 2:'off-axis',
 3:'margin'}
arch_pos_codes

{1: 'axis', 2: 'off-axis', 3: 'margin'}

max_prob=np.amax(results, axis=1)
max_prob, max_prob.shape, type(max_prob)

(array([0.81, 0.81, 0.58, 0.9 , 0.81]), (5,), NumPy.ndarray)

max_final_facies=np.argmax(results,axis=1)+1
max_final_facies, max_final_facies.shape, type(max_final_facies)

(array([2, 1, 2, 3, 2], dtype=int64), (5,), NumPy.ndarray)

ms_final_results_codes_max=[]
for i in range(len(results)):
 codes=arch_pos_codes[max_final_facies[i]]
 ms_final_results_codes_max.append(codes)
ms_final_results_codes_max=np.array(ms_final_results_codes_max)
ms_final_results_codes_max

array(['off-axis', 'axis', 'off-axis', 'margin', 'off-axis'], dtype='<U8')

ms_final_results_max=np.stack((max_final_facies, ms_final_results_codes_max, max_prob), axis=1
)
ms_final_results_max, ms_final_results_max.shape, type(ms_final_results_max)

(array([['2', 'off-axis', '0.81'],
 ['1', 'axis', '0.81'],
 ['2', 'off-axis', '0.58'],
 ['3', 'margin', '0.9'],
 ['2', 'off-axis', '0.81']], dtype='<U32'),
 (5, 3),
 NumPy.ndarray)

Getting the minimum probabilities

min_prob=np.amin(results, axis=1)
min_prob, min_prob.shape, type(min_prob)

(array([0.02, 0.01, 0.19, 0. , 0.01]), (5,), NumPy.ndarray)

min_final_facies=np.argmin(results,axis=1)+1
min_final_facies, min_final_facies.shape, type(min_final_facies)

(array([3, 3, 1, 1, 3], dtype=int64), (5,), NumPy.ndarray)

160

ms_final_results_codes_min=[]
for i in range(len(results)):
 codes=arch_pos_codes[min_final_facies[i]]
 ms_final_results_codes_min.append(codes)
ms_final_results_codes_min=np.array(ms_final_results_codes_min)
ms_final_results_codes_min

array(['margin', 'margin', 'axis', 'axis', 'margin'], dtype='<U6')

ms_final_results_min=np.stack((min_final_facies, ms_final_results_codes_min, min_prob), axis=1
)
ms_final_results_min, ms_final_results_min.shape, type(ms_final_results_min)

(array([['3', 'margin', '0.02'],
 ['3', 'margin', '0.01'],
 ['1', 'axis', '0.19'],
 ['1', 'axis', '0.0'],
 ['3', 'margin', '0.01']], dtype='<U32'),
 (5, 3),
 NumPy.ndarray)

Parabola generation

def parabola_fill(half_width,height,y_offset=0,x_offset=0):
 xaxis=range(-(half_width-1),half_width)
 xaxis=np.array(xaxis)+x_offset
 yaxis=(height/(half_width-1)**2)*((xaxis-x_offset)**2)+y_offset
 x_top_parabola=[min(xaxis), max(xaxis)]
 y_top_parabola=[max(yaxis), max(yaxis)]
 ms_trace=max(yaxis)
 return plt.figure(figsize=(12, 3)),plt.plot(xaxis,yaxis,'--',color='black'),plt.xlabel('Wi
dth (m)'), plt.ylabel('Thickness (m)'),plt.fill(xaxis,yaxis,'--',color='yellow')

par_fill=parabola_fill(half_width=200,height=25,y_offset=0,x_offset=0)

Setting the parameters for the five possible architectural positions

width_total=400
perc_to_axis=0
perc_to_offaxis=0.3375
perc_to_margin=0.4375
temp_x_offset=[width_total*-perc_to_margin, width_total*-perc_to_offaxis, width_total*perc_to_
axis, width_total*perc_to_offaxis, width_total*perc_to_margin]
y_offset=25
temp_y_offset=[]
for i in range(len(temp_x_offset)):
 step=y_offset*i
 temp_y_offset.append(step)

161

print(temp_x_offset, type(temp_x_offset), len(temp_x_offset))
print(temp_y_offset, type(temp_y_offset), len(temp_y_offset))

[-175.0, -135.0, 0, 135.0, 175.0] <class 'list'> 5
[0, 25, 50, 75, 100] <class 'list'> 5

def parabola_fill(half_width,height,y_offset=0,x_offset=0):
 xaxis=range(-(half_width-1),half_width)
 xaxis=np.array(xaxis)+x_offset
 yaxis=(height/(half_width-1)**2)*((xaxis-x_offset)**2)+y_offset
 x_top_parabola=[min(xaxis), max(xaxis)]
 y_top_parabola=[max(yaxis), max(yaxis)]
 ms_trace=max(yaxis)
 return plt.plot(xaxis,yaxis,'--',color='black'),plt.xlabel('Width (m)'), plt.ylabel('Thick
ness (m)'),plt.fill(xaxis,yaxis,'--',color='yellow'),plt.plot([0,0], [0,ms_trace],color='black
')

plt.figure(figsize=(15, 5))
for i in range(len(temp_x_offset)):
 parabola_fill(half_width=200,height=25,y_offset=temp_y_offset[i],x_offset=temp_x_offset[i]
)

Generation of stacking patterns

ms_final_results_max, ms_final_results_max.shape, type(ms_final_results_max)

(array([['2', 'off-axis', '0.81'],
 ['1', 'axis', '0.81'],
 ['2', 'off-axis', '0.58'],
 ['3', 'margin', '0.9'],
 ['2', 'off-axis', '0.81']], dtype='<U32'),
 (5, 3),
 NumPy.ndarray)

Generating stacking patterns that match to thickness

ms_final_results_max

array([['2', 'off-axis', '0.81'],
 ['1', 'axis', '0.81'],
 ['2', 'off-axis', '0.58'],
 ['3', 'margin', '0.9'],
 ['2', 'off-axis', '0.81']], dtype='<U32')

162

thickness=df[df['Meas_Sect']=='CACH1']['Thickness'] #NAME OF THE MEASURED SECTION
thickness=thickness.values
thickness

array([8.12683487, 17.73090935, 6.14168692, 11.45049477, 18.39035606])

def y_offset_to_thickness(results, thicknesses, height=25, width_total=400, perc_to_axis=0, pe
rc_to_offaxis=0.3375, perc_to_margin=0.4375):
 net_erosion=[]
 x_offset=[width_total*perc_to_axis, width_total*perc_to_offaxis, width_total*perc_to_margi
n]
 for c in x_offset:
 value=height/(width_total/2)**2*c**2
 net_erosion.append(value)
 net_y_offset=[]
 arch_pos=results[:,0]
 for i in range(len(arch_pos)):
 if int(arch_pos[i])==1:
 value=net_erosion[0]
 else:

 if int(arch_pos[i])==2:
 value=net_erosion[1]
 else:
 value=net_erosion[2]
 net_y_offset.append(value)
 net_y_offset=np.array(net_y_offset)
 thickness_cumsum=thicknesses.cumsum()
 thickness_cumsum=np.insert(thickness_cumsum[:-1], 0, 0)
 final_y_offset=(thickness_cumsum-net_y_offset).tolist()
 return final_y_offset

y_offset=y_offset_to_thickness(ms_final_results_max, thickness)
y_offset

[-11.390625,
 8.12683486938477,
 14.46711921691897,
 12.858806133270292,
 32.05930089950569]

def stacking_patterns_to_thick(results, n_stack_patterns, net_y_offset, width_total=400, perc_
to_axis=0, perc_to_offaxis=0.3375, perc_to_margin=0.4375):
 temp_incision=[width_total*-perc_to_margin, width_total*-perc_to_offaxis, width_total*perc
_to_axis, width_total*perc_to_offaxis, width_total*perc_to_margin]
 x_offset_list=[]
 for j in range(n_stack_patterns):
 incision=[]
 for i in range(len(results)):
 rand_margin=np.random.choice([-2,2])
 rand_offaxis=np.random.choice([-1,1])
 rand_axis=0
 if rand_margin==-2 and int(results[i,0])==3:
 inc_step=temp_incision[0]
 else:
 if rand_offaxis==-1 and int(results[i,0])==2:
 inc_step=temp_incision[1]
 else:
 if rand_axis==0 and int(results[i,0])==1:
 inc_step=temp_incision[2]
 else:

163

 if rand_offaxis==1 and int(results[i,0])==2:
 inc_step=temp_incision[3]
 else:
 inc_step=temp_incision[4]
 incision.append(inc_step)
 x_offset_list.append(incision)
 x_offset_list=np.array(x_offset_list)
 y_offset_list=net_y_offset
 #y_offset_list=[]
 #for k in range(len(incision)):
 #agg_step=y_offset*k
 #y_offset_list.append(agg_step)
 return x_offset_list, y_offset_list

stack_pat_test=stacking_patterns_to_thick(ms_final_results_max, 9, y_offset)
x_offset, y_offset=stack_pat_test

y_offset

[-11.390625,
 8.12683486938477,
 14.46711921691897,
 12.858806133270292,
 32.05930089950569]

plt.figure(figsize=(20, 20))
for k in range(len(x_offset)):
 hor_disp=x_offset[k]
 plt.subplot(4, 3, k+1)
 for i in range(len(hor_disp)):
 parabola_fill(half_width=200,height=25,y_offset=y_offset[i],x_offset=hor_disp[i])
 plt.title('Stacking pattern '+str(k+1))
 plt.ylabel('Height (m)') #y label
 plt.xlabel('Width (m)') #x label
plt.tight_layout()

164

Generating possible stacking patterns with thicknesses

def multiple_stack_pat(x_offset):
 possibilities_list=np.unique(x_offset, axis=0).tolist()
 x_offset_list=x_offset.tolist()
 labels=list(range(1,len(possibilities_list)+1))
 prel_results=[]
 for i in range(len(possibilities_list)):
 counting=x_offset_list.count(possibilities_list[i])
 prel_results.append(counting)
 return plt.bar(labels, prel_results), plt.ylabel('Number of realizations'), plt.xlabel('Po
ssible stacking pattern')

stack_pat_15m_100=stacking_patterns_to_thick(ms_final_results_max, 100, y_offset)
n_incision, aggradation=stack_pat_15m_100
multiple_stack_pat(n_incision)

(<BarContainer object of 16 artists>,
 Text(0, 0.5, 'Number of realizations'),
 Text(0.5, 0, 'Possible stacking pattern'))

165

unique_possibilities=np.unique(n_incision, axis=0)
unique_possibilities, unique_possibilities.shape

(array([[-135., 0., -135., -175., -135.],
 [-135., 0., -135., -175., 135.],
 [-135., 0., -135., 175., -135.],
 [-135., 0., -135., 175., 135.],
 [-135., 0., 135., -175., -135.],
 [-135., 0., 135., -175., 135.],
 [-135., 0., 135., 175., -135.],
 [-135., 0., 135., 175., 135.],
 [135., 0., -135., -175., -135.],
 [135., 0., -135., -175., 135.],
 [135., 0., -135., 175., -135.],
 [135., 0., -135., 175., 135.],
 [135., 0., 135., -175., -135.],
 [135., 0., 135., -175., 135.],
 [135., 0., 135., 175., -135.],
 [135., 0., 135., 175., 135.]]),
 (16, 5))

plt.figure(figsize=(30, 20))
for k in range(len(unique_possibilities)):
 hor_disp=unique_possibilities[k]
 plt.subplot(4, 4, k+1)
 for i in range(len(hor_disp)):
 parabola_fill(half_width=200,height=25,y_offset=aggradation[i],x_offset=hor_disp[i])
 plt.title('Stacking pattern '+str(k+1))
 plt.ylabel('Height (m)') #y label
 plt.xlabel('Width (m)') #x label
plt.tight_layout()

166

	ABSTRACT
	ACKNOWLEDGEMENTS
	CHAPTER 1. RESEARCH MOTIVATION
	1.1. Introduction
	1.2. Hypotheses
	1.3. Scientific significance

	CHAPTER 2. GEOLOGIC BACKGROUND
	2.1. Geological framework
	2.2. Deep-water or submarine channels
	2.2.1. Hierarchy of submarine channels
	2.2.2. Submarine channel element architectural positions

	2.3. Previous modeling work

	CHAPTER 3. PREVIOUS WORK ON MODELING CHANNEL STACKING PATTERNS
	3.1. Previous studies on submarine channel stacking patterns
	3.2. Differences from previous work
	3.3. Individual channel element geometry parameters
	3.3.1. Width (w)
	3.3.2. Thickness or depth (t) and height (k)
	3.3.3. Lateral offset (x)
	3.3.4. Vertical offset (y)

	3.4. Methodology workflow

	CHAPTER 4. MODELING CHANNEL STACKING PATTERNS WITH CONDITIONAL SIMULATION AND SOFT PROBABILITIES
	4.1. Motivation
	4.2. Methods
	4.2.1. Database and coding style
	4.2.2. Random variables
	4.2.3. Cumulative probability functions (CDFs)
	4.2.4. Probability density functions (PDFs)
	4.2.5. Drawing probability density functions (PDFs) and cumulative distribution functions (CDFs) in Python
	4.2.6. Monte Carlo simulation
	4.2.7. Running Monte Carlo simulations in Python

	4.3. Results
	4.3.1. Probability density functions and cumulative distribution functions
	4.3.2. Testing Monte Carlo simulation
	4.3.3. Monte Carlo simulation of multiple equiprobable stacking patterns
	4.3.4. Channel stacking pattern templates
	4.3.5. Channel stacking pattern generation
	4.3.6. Channel stacking generation from Monte Carlo simulation

	CHAPTER 5. MODELING CHANNEL STACKING PATTERNS WITH MARKOV TRANSITION PROBABILITIES
	5.1. Motivation
	5.2. Methods
	5.2.1. Database and coding style
	5.2.2. Markov transition probabilities
	5.2.3. Vertical transition count matrix
	5.2.4. Vertical transition probability matrix

	5.3. Results
	5.3.1. Vertical transition count matrix
	5.3.2. Vertical transition probability matrix
	5.3.3. Normalized vertical transition probability matrix
	5.3.4. Sensitivity analysis with Markov transitional probabilities
	5.3.5. Channel stacking pattern construction from the outcrop statistics and a seed

	CHAPTER 6. MATCHING CHANNEL STACKING PATTERNS TO THICKNESS
	6.1. Methods
	6.1.1. Database and coding style
	6.1.2. Parabola translations

	6.2. Results
	6.2.1. Obtaining a vertical offset that matches the thickness
	6.2.2. Channel stacking pattern generation
	6.2.3. Channel stacking patterns matched to thickness

	CHAPTER 7. DISCUSSION
	7.1. Conditional simulation and soft probabilities
	7.2. Forward modeling with Markov transition probabilities
	7.3. Matching to thickness
	7.4. Future work

	CHAPTER 8. CONCLUSIONS
	REFERENCES
	APPENDIX A – DATABASE
	APPENDIX B – PYTHON CODES

