P ~ ,
i o533 F—— -

«CODy 2 ., American Geophysical Union Volume 34, Number 3 June 1953

ng Rox
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Chia-Shun Yih

Abstract-~-Tides in estuaries and around small islands are studied in this paper.
Under the assumption that the width and the mean depth of the estuary can be ade-
quately expressed as power functions of the longitudinal distance from a certain point
upstream, and that the depth of the ocean varies as a power function of the radial
distance from the island, analytical solutions can be found by very simple transfor-
mations.

Tides in estuaries--The problem of determining the variation of the amplitude of tide in a
gradually widening and deepening estuary while a periodic motion is maintained at sea is of some
interest. With sufficient latitude one can assume that the width b and the average depth h of the
estuary vary as certain arbitrary powers of x, which is measured along the estuary downstream
from a certain point. Denoting by s, bg, and hg respectively the values of x, b, and h at the mouth

of the estuary, one can write
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The periodic motion maintained at the mouth of the estuary can be described by
Mg = C cos A T RN S T P A (4)

where 7 is the deviation of the water surface from its equilibrium position and 7g is its value at
X = s, t is the time, and C, 0, and € are respectively the amplitude, frequency, and phase angle of
the periodic motion. The differential equation for 7 at any point in the estuary is [LAMB, 1945,

p. 274]
32n/3t2 = (g/b) (3/3%) (MDOM/BX) + v v eveeseeennn (5)

where g is the gravitational acceleration. In virtue of (1), (2), and (3), (5) can be written as

(s2/g hg) @2m/at2 = £™M (3/3¢) (E™* an/dk) ....... PO )
If one takes

7 = C cos AL TR ) ) R O T « (1)

then (6) becomes
E™™ (d/d€) (MM dX/dE) + (s202/ghgd) X=0 ............. 6)

For convenience one writes

a2n-g2q2/gng E1=2& ..... vn v 5 LR (9)

Then (8) becomes
(@/d€1) (P dx/dEg) +ET X=0 ...... R b, (10)

To seek a solution of (10) in terms of familiar functions, one tries the transformations

x=-ER1(8) ¥-g% ........ ol MGG RS BT (11)
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where the primes denote differentiation with respect to . Substituting (11) to (13) into (10), one
obtains
-n-2q+2 /
f7+[@p+m+n+q-1)/qF]1+[S 9 9%y pp+m+n -1)/q2r2]f=o Sl (14)
Demanding
p=(1-m-n)/2 g = (2 e o e el s aivasi (15)
one obtains Bessel’s differential equation
o075 (1 /a2 - pR/a2Y2) £l L ah (16)

the solutions of which are J,, ($/q) and T_., (§/q) where v= |p/a|. Of these two solutions, only one
will give an X (§1) which is finite at El = 0 together with d X/d €1, unless » is an integer, when
they will coincide. One will assume n < 1, so that q is positive. Remembering 7= ﬁlq, and that
[WHITTAKER and WATSON, 1945, p. 359]
v
Ty (Y0 = 5@, +ag824..)
I (89 =32"% (b +b2r2 Wk e

where ag, a2, bg, b2, etc., are numerical constants depending on v, one easily sees that with p
negative (so that »q = - p),
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Thus when p is negative, €1 T, (3/q) and its derivative with respect to £ are finite at £; = 0 (re-
calling n< 1), whereas, with 2 p - 1 = =(m + n), the quantity

(@/d&,) [EY T_,(3/0)

is definitely infinite at €1 = 0. Thus Aep ) (¥/q) should be chosen to be the solution. Similarly,
when p is positive, B El I_» (%/q) shouldlbe used.

The constants A and B are determined from (4) (the boundary condition at X = s where E =1,
E1 =2, 5=29 tobe

A=12PJ, (%9 B=1/APJ, (% ............... (17)
Thus one concludes that, for negative p
n=CANEIRP T, Bh)coslotre) . e b .. (18)
and for positive p
n=CBRE)PI, (/) cos(Ft+€) ..covevecevnnn. (19)

where A and B are given by (17) and ¥ is given by (9) and (11) to be (A\€) 9. When v is an integer,
the solutions given by (18) and (19) are identical.

As an example one takes the case m +n - 1, p =0. The solution is

m=CAlJ, (¥/q) cos (ot +€)
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In order to visualize the variation of the function Jo (§/q), it is plotted in Figure 1 against §/q.
It is seen that at certain points of the estuary the function is 2 maximum in absolute value, and
these maximum values increase in the upstream direction, so that the tide is augmented in the
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neighborhood of these points. It is also seen that at certain other points of the estuary the func-
tion Jo (r/q) is zero, These are the nodal points where the elevation of the water surface is not
affected by the tide. Similar conclusions can be drawn for the cases in which p is not equal to

zero.
The points at which the amplitude is a maximum are determined by
dJo ($/q)/d%=0
or [WHITTAKER and WATSON, 1945, p. 360, formula (B)]

I, e =0
the roots of which are [JAHNKE and EMDE, 1945, p. 168]
$1/a=0  ¥3/q-3.832 Y3/q=17016 $4/q=10173 ... ...... (20)

the spacing of subsequent roots being approximately 7. For cases in which p # 0, the points at
which the amplitude is a maximum can be similarly located.

The points of zero amplitude (the nodes) are determined by

Jo (r/Q) =0
the roots of which are [JAHNKE and EMDE, p. 168]
§/a=2.405  %,/q=5520 S,/a-8624 ... kb s i iel (C2R)

the spacing of subsequent roots being approximately 7. For cases in which p # 0, the nodes can
be similarly located. Of course, the actual number of nodes as well as that of maximum ampli-
tudes is limited by the length of the estuary for a certain frequency and a certain hg. If the value
of A calm.xlated from (9) is too small, it may happen that there are no nodes at all, and that the
only maximum amplitude occurs at § = 0 (or x = 0). This happens if the estuary is not extremely
long. Thus for an ordinary estuary there is an augmentation of the amplitude of tide over its
entire length,

> Another point of interest is the phenomenon of resonance. There are many values of A for
which J, (A9/q) is zero. In fact, they are given by (21) on changing § to A4. For a given estuary
there are many values of ¢ corresponding to these values of A according to (9). These special
Vfllues of o v?ill cause A to become infinite and can be called the natural or characteristic frequen-
cies of the given channel. When the frequency at the sea comes near the natural frequencies of the
channel, a state of resonance is approached.. In such cases the given solution fails, and one is
compelled to take friction into consideration. For an estuary of moderate length, ¢ is usually so

small that even the first of these natural frequencies is not reached.
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Tides around small islands--Supposing that r is measured radially from an island which is
small compared with the wave length of the tide, and that the depth h of the sea is a power function

of r
B e i s o ate's res @ = (22)

where s is the value of r at which a periodic motion is maintained (at the open sea) and hg is the
value of h at r = s, one proposes to study the amplitude of tides around the island. Let the peri-
odic motion at the open sea be represented by

N Ccos (ot +€) eiﬂ'e ..................... (23)

where 6 is the coordinate angle and the other quantities have the same meanings as before. The
differential equation for 7 is [LAMB, 1945, p. 291}

327/3t2 =g (hV27m + (Ah/dr)31/Br) .« voeeeanannnn (24)

where
v2=02/ar2 + (1/1)3/ 81 +(1/r)) 8%/ 262

and g is again the gravitational acceleration.

With p = r/s one can write (24) as

2 2 2 -
(*/ghg) 82 n/at? = (p" v manp" Tt am/dp) .iiii..... 25)
where
A 2 2, .2 2
vi=0lap® + (1/p)8/3p + (1/p 2%/ 36
Taking
m=Ccos (ct+¢€)R(p) elHb
one has
P B [R”+ (1/p) R’ - (/.1.2/p2) R]+np n-lpria2mpg_y
where
AP -Weihtiodig v w1 S0 VNS RGAE, 0 AP ipy (26)
Writing p; for Ap , one has
2
a®R/dp . + (2/p) d R/dp ~ WD) R+ (1/pHR=0 ........... @7)

To seek a solution in terms of familiar functions, one tries the transformations
R=py 1)  T=p"
substitution of which into (27) yields, in a way similar to that of deriving (14)
a®1/a82 s [2p+a+n)/qf]de/at +{[r““*2‘2“)/‘1/q21- (k2-p (@ +n)]/a? l’z}f -0
Demanding
p==n/2 A S G = E Se e o ety oo w0+ . o5, e o (28)
one obtains the Bessel equation
a2/a82 /) dr/as+(1/a? - wlen2/a/a2g? -0 ... ..., (29)

the solutions of which are J,, (.‘f/q) and J_,, ($/q) where

o SRR B g o oinea s to are & e (30)

It may be noted that since values of n greater than two are unlikely, q will be considered as posi=
tive. Since p = - n/2 is always negative, J;, should always be chosen so that R will not have a pole
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at £=0. It is interesting to note that since Jy (¥/q) varies as

v__ (uPn2/4)1/2
=P

L6
the origin, 5
near the g R - PIP 5 ($/q) -py n/2 JVG/Q)
varies there as y (w2 +n2/4) /2 - ny2
1

which vanishes at 7 = 0 for ## 0. Consequently, only the effect of the gravest mode correspond-
ing to 4 = 0 is felt at the island.

In view of (23) (since p = AP and p = 1 at r = s) the solution is thus
m=[C/Ty OYaQ)]p ""/2 71, (§/q) cos (ct+e) eH8 ... ... ... @1

This solution can be discussed in a way similar to that for the case of the estuary. It is topo~
graphically unlikely that any nodal circle exists for the low frequency of the ordinary tide. For
the gravest mode (i = 0) usually there will be only one point of maximum amplitude, which is at
the origin. Thus for this mode (which is the most likely to occur), the amplitude of tide increases
with decreasing distance from the island.

For higher modes (u=1, 2,3, .. .), there are nodal lines radiating from the island dividing
the whole angle into equal segments.

It is obvious that (31) can be generalized to satisfy the following boundary condition at r = s
mg = Ccos (ot +€) F (6)

where F (f) has a period 2. All that is necessary is to expand F (f) in a Fourier series, and to
use as the solution the corresponding series cdnsisting of terms like the one on the right side of

(31).

Concluding remarks--Under the assumptions on which the calculations of this paper are based,
it can be concluded from the foregoing that there is an augmentation of the.amplitude of tide over
certain portions of the estuary if it is extremely long, that this augmentation is over the entire
length of the estuary if it is of ordinary length, that at the island only the effect of the gravest
mode of the tide (which is the most likely to occur) is felt, and that for this mode the amplitude of
tide generally increases with decreasing distance from the island.

It is worth noticing that if the periodic motion at the mouth of the estuary or in the open sea
for the case of the island is described by a general periodic function of time, the corresponding
problems can be solved by superposition and applying the Fourier series, utilizing the results
obtained in the foregoing.
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