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Abstract

Most eigendecomposition algorithms operate on
correlated images that are characterized by only one
parameter. Hence they lack the required specifications
of fully general 3D image data sets, in which the images
need to be characterized by three parameters. In this
paper, an extension of one of the fastest known eigende-
composition algorithms is successfully implemented to
improve the computational efficiency of computing the
eigendecomposition of such 3D image sets. This algo-
rithm can be used in pattern recognition applications
such as fully general 3D pose estimation of objects.

1 Introduction

Eigendecomposition-based techniques play an im-
portant role in numerous image processing and com-
puter vision applications. The advantage of these tech-
niques is that they are purely appearance based and re-
quire few online computations. Singular value decom-
position (SVD) is one such eigendecomposition tech-
nique that has been used extensively in a variety of ap-
plications including pattern recognition [1-3]. All of
these applications take advantage of the fact that a set
of highly correlated images can be approximately rep-
resented by a small set of eigenimages. However, the
offline calculation required to determine both the appro-
priate number of eigenimages as well as the eigenim-
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ages themselves can be prohibitively expensive. In par-
ticular, common SVD algorithms to compute the com-
plete SVD of a general m X n matrix require on the or-
der of mn? flops. The computational complexity of the
SVD has been the subject of much research [4-10] with
one of the fastest known algorithms described in [10].

Most previous eigenimage calculations considered
images that varied in only one dimension, typically
time. These image sets will be referred to as 1D im-
age sets. However, certain pattern recognition applica-
tions require that different views of an object taken from
different 3D spatial camera locations be considered in
the training data set. Because they are characterized by
three parameters, such image data sets will be referred
to as 3D image sets. The goal of this paper is to extend
Chang’s algorithm [10] to effectively compute the SVD
of 3D image sets.

This paper is organized as follows. Section 2 gives
the fundamentals of applying the SVD to 1D image sets
and a brief overview of Chang’s SVD algorithm. Sec-
tion 3 explains the generation of fully general 3D image
sets, while Section 4 explains how Chang’s algorithm
can be extended to compute the SVD of such image
sets. Supporting results are shown in Section 5, while
Section 6 concludes this paper.

2 Eigendecomposition of 1D image sets

Consider an image set containing n correlated im-
ages (intensity normalized between 0 and 1) with m
pixels each (m > n). The images are row-scanned
to obtain the corresponding image vectors x; and the
m X n image data matrix X = [x1,X2, - ,Xp] is gen-
erated. The SVD of X is given by

X =Uuxv7T (1)



where U € R"™*™ and V' € R™*" are orthogonal, and
Y = [X4 0|7 € R™*" where ¥4 = diag(oy, - ,05)
with oy > 02 > -+ > 0, > 0 and O is an n by
m — n zero matrix. The columns of U, denoted u,,
t = 1,---,m, are referred to as the eigenimages of
X; the columns of V, denoted v;, 2 = 1,--- ,n, are
referred to as the right singular vectors of X, while the
diagonal entries o; of X give the corresponding singular
values of X.

In practice, true eigenimages u; are not computed
exactly, and instead estimates eq, - - - , ey that form a k-
dimensional basis are used. To quantify the accuracy
of these estimates, the measure “energy recovery ratio,”
denoted p, is used here, which is given by
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where || - || denotes the Frobenious norm. Note that
the true eigenimages give the optimal energy recovery
ratio, i.e., e; = u; with k = n gives p = 1.

In general, the intensity values of pixels in the cor-
related images in X vary slowly over time. Chang et
al. [10] used this property to show that the right singu-
lar vectors v; of X are spanned by a few low-frequency
sinusoids and the dominant frequencies in their power
spectra increased approximately linearly with their in-
dex. Consequently, projection of the row space of
X (i.e., variation in each pixel) to a smaller subspace
spanned by a few low-frequency sinusoids can be used
to improve the computational efficiency of the SVD of
X. In particular, consider a single sinusoid with a fre-
quency of «, denoted f,,, elements of which are given
by
—j2rax/n

:\/—ﬁe

3)

with 0 < = < n — 1. Then the orthonormal basis that
consists of sinusoids with increasing frequencies can be
found using the basis of the 1D discrete Fourier trans-
form (DFT) and the corresponding real Fourier matrix
H given by

H = [hg hy hy hg hy -]
- \/5[ Lfy R Sfi RE Of }
% Co —3S0 Co —S0
% c1 —S1 C3  —So
= g % C2 —82 (4 —384
n .
1
E Cn —Sn Con —San
4

204

where ¢j, = cos(22%) and s;, = sin(22%), while R and
S denote the real and the imaginary part, respectively.
Chang et al. showed that if p is such that the power
spectra of the first k v;’s of X are restricted to the band
[0, 27rp/n], then the first k eigenimages e; of X H,, are
a good approximation to those of X, where H,, denotes
the matrix containing the first p columns of H.

Now consider the frequency domain representation
of a single row of X (denoted g), which can be com-
puted using the 1D DFT as follows:

n—1

1 —j2max/n

G(a) %Zg(fﬂ)@ Jamec/
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x=0

Then (3), (4), and (5) clearly indicate that the multi-
plication X H can be alternately performed using fast
Fourier transform (FFT) techniques for better computa-
tional efficiency [10].

3 Generating 3D Image Sets

Fig. 1 illustrates the setup for generating fully gen-
eral 3D image sets, in which the correlated images are
characterized by three parameters instead of one. In this
setup, camera locations are defined in a spherical patch
above the object with two consecutive camera locations
separated by an equiangular distance in that patch. The
range of these camera locations is characterized by two
parameters, i.e., a; and (,,, while the third parameter
~n, characterizes image plane rotation to capture differ-
ent views of the object in equal increments. In practice,
the required images can be captured using a video cam-
era attached to a robot end-effector. The robot move-
ment can be controlled to position the camera in one of
the specified locations in the spherical patch and then
the robot end-effector can be rotated to rotate the image
plane of the camera for capturing different orientations
of the object from the same location.

The image data matrix for the resulting 3D image
sets is given by

X3 = [X111, "+ »XL11, X121, X121, , XLM1,

X112, s XLM2, " 7XLMN]

(6)

where an image vector X;,,, corresponds to the row-
scanned image of an object taken from camera location
(I, m) at image plane rotation n, where 1 < [ < L,
1<m< M,and1 <n<N.



Figure 1. This figure shows the simula-
tion setup for generating 3D image sets,
in which the images are characterized by
three parameters, i.e., oy, 3,,, and ~,,. The
crosses (x) denote the simulated camera
locations that are placed in the spherical
patch above the object. The range of the
parameters o; and 3, is from —45° to 45°
with respect to nadir, whereas ~,, ranges
from 0 to 360 degrees.

4 Extension of Chang’s SVD Algorithm to
3D Image Sets

Consider a three-dimensional signal g(x,y, z) con-
taining L, M, and N samples in z, y, and z dimensions,
respectively. The corresponding frequency representa-
tion using the 3D DFT can be given by

G(l,m,n) =
L-1M-1N-1

1 T m nz (7)
JIMN Z Z Z 9(z,y, wpwy Wiy
=0 y=0 2z=0
where wy, = e 927/L oy = e7927/M gnd wy =

e~727/N Thus, similar to 1D image sets, an orthonor-
mal basis for the image data matrix X5 can be generated
using the basis for the 3D DFT. In particular, the follow-
ing matrix represents one 3D frequency:

1
LMN

az, By, vz
wp Wy W

Fozﬁ'y(ajaz%z) = (8)

where a, (3, and 7 denote the desired frequency com-
ponents in three dimensions with 0 < =z < L — 1,

0<y<M-1,and0 < z <N — 1. All F{,3, matri-
ces can be lexicographically ordered (similar to the or-
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dering of x;,,,,, vectors in X3) into their respective col-
umn vectors (denoted f,3,) so that the corresponding
(L x M x N)x (L x M x N) “3D” Fourier matrix is
given by

F3 = [fooo| - [fapy| - [fo—vyr—nyv—p)]-  (9)
Note that the columns of F35 give the 3D DFT basis
for complex matrices. However, for real images in
3D image sets, the matrix X3 in (6) will contain all
real values and hence, similar to the basis given by
columns of H in (4) for 1D image sets, X3 will have
a real basis. To find this real basis, Euler’s formula
(e79% = cosx — jsinz) can be used to rewrite (8) as
follows:

Fa,@“/(ir7y7 Z) =
1

LMN

[(CazCByCyz — CazSBySyz

(10)

— SazCBySyz — SazSPyCyz)
— J(CazCySyz — CazSpyCyz

— 5aCayCyz T SaxSBySyz)]

where cop = cos(Z22), cg, = cos(2PY), and
2wyz :
Cy. = cos(“RF7), while 544, 53y, and s, are the cor-

responding sine components. Let r denote the num-
ber of non-zero «, (3, and y frequencies. Then there
will be 2" different sine-cosine combinations for Fi,g- .
If these sine-cosine combinations are lexicographically
ordered and are scaled by V27 to give orthonormal
columns of H,g-, then the real 3D Fourier matrix of
size (L x M x N) x (L x M x N) can be given by

H;z = [ fooo Hopy -+ ] (11)
where the first column, fog, of Hs refers to the DC
component corresponding to » = (0. Note that if any
of the three dimensions, for e.g., L, is even, then only
the cosine (real) component of the corresponding maxi-
mum “real” frequency, i.e., %, is considered, otherwise
both cosine (real) and sine (imaginary) components of
% are considered while generating the corresponding
orthonormal columns in H3.

The resulting matrix {3, which is generated for a
given X3, can be used to extend Chang’s algorithm to
compute the approximate SVD of X3. In particular,
the row space of X3 can be projected to the first few
columns of Hj and the SVD of X3H3(;,) can be used
to approximate the SVD of X, where Hj ;) denotes the
matrix containing the first p columns of Hs.



1,1,N/2
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a

Figure 2. This figure shows a few example
synthetic images of a PUMA 560 Robot
generated using ray-tracing. The first two
letters in the heading indicate the simu-
lated camera location coordinates, while
the third letter indicates the image plane
rotation index.

S Experimental results

The proposed extension of Chang’s algorithm to ef-
ficiently compute the SVD of fully general 3D image
sets was analyzed using a variety of objects. Two ray-
traced image sets of a PUMA 560 robot are used as il-
lustrative examples here. The first image set had the
same number of images in all three dimensions with
L = M = N = 10, while the second image set used
L =M =10, N = 36. Recall that the simulation setup
used in this study considers a range of 90 degrees for
both o; and (3, (refer to Fig. 1), while the ,, parameter
is allowed to span a full 360 degrees. Therefore, the an-
gular separation between consecutive images in the first
image set is different, while it is kept the same in the
second image set.

Fig. 2 illustrates a few of the images (with 64 x 64 =
4096 pixels each) showing different views of the robot
taken from simulated camera locations that are at the
four extreme corners of the spherical patch above the
robot. In particular, images in the last two rows in Fig. 2
are obtained after rotating the corresponding images in
the first two rows through 180 degrees. Using the two
image sets, the corresponding image data matrices X3
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Apprxomation of left singular vectors (first image set)
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Figure 3. This figure shows the typical
relationship between the true left singu-
lar vectors, the computed estimates (as a
function of £, 1 < k < p, for several fixed
values of p), and pure sinusoids. The
plots shown here are for an image data
matrix generated for the robot in Fig. 2
with L = M = N = 10.

and the real Fourier matrices Hs were generated. In
particular, X3 and H3 for the first image set were of
size 4096 x 1000 and 1000 x 1000, respectively, while
for the second image set, they were of size 4096 x 3600
and 3600 x 3600, respectively.

For both image sets, the columns of H3 were placed
in descending order of their ability to recover energy
in X3 using p(X7 hy, hy,---)in (2). It was observed
that these ordered harmonics can be effectively used to
improve the computational efficiency of the SVD of X.
This is illustrated in Fig. 3 and Fig. 4, where p is again
used to measure the quality of the estimates of the u,.
The solid line shows p(X,uy,--- ,u,) as a function
of p, while the dotted lines show p(X,eq, -+ ,ey) for
k=1,2,--- ,pand p = 50,100,150, 200, 250. It is
evident that the e; give good estimates of the u; even
at small values of p indicating an effective extension of
Chang’s algorithm. Note that the difference between
the results for both image sets is minimal considering
the difference between the number of images used in
the corresponding X3 matrices.



Apprxomation of left singular vectors (second image set)
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Figure 4. This figure shows the same
plots as in Fig. 3 for an image data ma-
trix generated for the robot in Fig. 2 with
L=M=10and N = 36.

6 Conclusion and Future Work

This paper has illustrated an extension of Chang’s al-
gorithm to compute an estimate of the SVD of 3D image
sets, in which the images are characterized by three pa-
rameters instead of one. The empirical evidence shows
that this extension can be effectively used to improve
the offline computational efficiency of calculating the
SVD of 3D image sets commonly used in 3D pose esti-
mation.

The work presented here lays a foundation for a com-
putationally efficient SVD algorithm for 3D image sets.
However, there are still two issues that need to be re-
solved. The first issue is related to the optimum order-
ing of the frequencies of 3D image sets based on their
energy recovery ability, while the second issue involves
the choice of the number of frequencies, p that should
be considered before computing the SVD of X3Hj ).
For 1D image sets, it was observed that the columns of
H in (4) were already ordered in terms of their ability to
recover energy in X and p(XT, hy,--- , h,) provided
a very conservative lower bound for p(X, e, -+ ,ex)
and hence the two issues were automatically resolved in
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Chang’s algorithm [10]. However, because the columns
of Hj3 are unordered and because the corresponding
p(XT, hy, - hy,) gives a very loose lower bound for
p(Xs,e1, - ,ep), there is a need to resolve the two
aforementioned issues.
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