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ABSTRACT OF THESIS 

AUTOMATED SYSTEM ENDPOINT HEALTH EVALUATION 

USING THE NATIONAL VULNERABILITY DATABASE (NVD) 

 

A means to reduce security risks to a network of computers is to manage 

which computers can participate on a network, and control the participation of 

systems that do not conform to the security policy. Requiring systems to 

demonstrate their compliance to the policy can limit the risk of allowing un-

compiling systems access to trusted networks. 

One aspect of determining the risk a system represents is patch-level, a 

comparison between the availability of vendor security patches and their 

application on a system. A fully updated system has all available patches applied. 

Using patch level as a security policy metric, systems can evaluate as compliant, 

yet may still contain known vulnerabilities, representing real risks of exploitation.  

An alternative approach is a direct comparison of system software to 

public vulnerability reports contained in the National Vulnerability Database 

(NVD). This approach may produce a more accurate assessment of system risk 

for several reasons including removing the delay caused by vendor patch 

development and by analyzing system risk using vender-independent vulnerability 

information. This work demonstrates empirically that current, fully patched 

systems contain numerous software vulnerabilities. This technique can apply to 

platforms other than those of Open Source origin. 

This alternative method, which compares system software components to 

lists of known software vulnerabilities, must reliably match system components to 
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those listed as vulnerable. This match requires a precise identification of both the 

vulnerability and the software that the vulnerability affects.  

In the process of this analysis, significant issues arose within the NVD 

pertaining to the presentation of Open Source vulnerability information. Direct 

matching is not possible using the current information in the NVD. Furthermore, 

these issues support the belief that the NVD is not an accurate data source for 

popular statistical comparisons between closed and open source software. 

 

Paul Arthur Whyman 

Computer Science Department 

Colorado State University 

Fort Collins, CO 80523 

Summer 2008 
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1. Introduction 

The evaluation of a computer system‘s vulnerability state is an important 

part of protocols that measure a system‘s ―health‖. These protocols use a health 

metric to determine the extent that a system can then participate on a trusted 

network. These protocols abound; and include efforts such as Cisco Network 

Access Control (CNAC)
[0]

, Open Vulnerability and Assessment Language 

(OVAL)
[1]

, Information Security Automation Program (ISAP)
[2]

, the Security 

Content Automation Program (SCAP)
[3]

, and include standards organizations like 

the Trusted Network Connect (TNC) Work Group
[4]

, and the IETF‘s Network 

Endpoint Assessment[5]
 among others.  

The intent of a health evaluation is to determine if systems that attach to a trusted 

network comply with the networks security policy before a system receives rights 

to participate on the network. Interrogation of health values can involve queries of 

the system patch state, system network location or physical location, the state of a 

system firewall and system virus protection, and may include other aspects 

depending upon the security policy requirements.  

A system‘s current vulnerability is dependent upon a changing threat 

environment. To evaluate security policy compliance, up-to-date system health 

information is necessary. It follows that the security policy should stipulate a 

check to verify that a system has current security patches applied. The degree to 

which a system has these security updates and patches applied can form part of a 

system‘s ―health status‖. Often a security policy allows ―healthy‖ systems to 

participate on trusted networks because the system contains all available updates.  
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Measuring patch level by available vender updates is important; however, 

there is alternative information available at vulnerability data providers such as 

the National Vulnerability Database (NVD)
[6]

. The NVD provides an aggregation 

source for vulnerabilities, connecting information from various sources and 

consolidating synonymous security issues to a single identifying Common 

Vulnerabilities and Exposures (CVE) number.  

The NVD represents two factors that are important to this work: It is a 

source of vulnerability information independent of a single software vender, and 

provides daily updates in machine-readable format that facilitates automatic 

analysis. This work illuminates the importance of using vender-independent 

vulnerability information for health checking, and discovers several critical 

limitations of the NVD for this type of analysis. 

In spite of these limitations, this thesis (this work) will show it is a fallacy 

to assume a fully up-to-date system is ―healthy‖. This fallacy is apparent by the 

presence of vulnerabilities (as published in the NVD) within ―healthy‖ systems. 

Therefore, measuring a system‘s health status using a vendor‘s patch information 

does not produce results as complete as using NVD information.  

 

1.1 Problem Statement 

Is it possible to use a vendor-independent vulnerability data source such as 

the NVD to detect vulnerabilities within currently ―up-to-date‖ systems? Will 

information obtained from the NVD produce results that are the same as those 

obtained by using vendor-provided software update appraisals? In other words, if 
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a vendor‘s software update utility regards a system patch-level as ―up-to-date‖; is 

it possible to demonstrate that there are un-patched vulnerabilities in the system, 

and therefore prove it is a fallacy to assume an up-to-date patch level is the same 

as vulnerability-free?  

Furthermore, since the vulnerability information at the NVD is stored in 

machine-readable format, is it possible to automate this process? Will the 

information contained in the NVD be sufficient to make a complete analysis of a 

system? 

 

1.2 Expectations 

The two different means to evaluate system health, via a vendor‘s update 

system, or by a comparison to the NVD should produce different results for 

several reasons.  

First, software vendors prioritize their work on software patches 

independent from information disclosed in public vulnerability repositories such 

as the NVD. This is due to development priorities and schedule requirements, 

which do not necessarily synchronize with the release of a CVE entry by the 

NVD. Second, software vendors may obtain software vulnerability information by 

different means than does the NVD.  

The discovery of a vulnerability may originate from within the vendor 

process, or by independent discovery. Vender notification of a discovery may 

occur by the discreet means of responsible disclosure, may first appear as a bug 

on the vendor‘s bug-tracking system, or by the news of an active exploit. These 
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examples show how the NVD and the vendor may become aware of 

vulnerabilities at different times. 

Software vendors may even disregard the credibility of a vulnerability 

report, or deem it unnecessary
[7][8]

. When this occurs, vulnerabilities will never 

receive a vendor‘s patch yet will perpetuate within public vulnerability lists. 

Yet another cause for differences in the two evaluation means is the 

latency in the vulnerability lifecycle shown in Figure 1. The illustration 

represents a vulnerability lifecycle, which portrays the risks that a single system 

faces over time due to a single vulnerability. The period between discovery and 

patch application allows completely updated systems to contain publicly known 

vulnerabilities during the time between disclosures and patch application. The 

representation of ―at risk‖ is intentionally bi-modal; a system either contains, or 

does not contain a given software flaw. 

 

 

Figure 1 model of a generalized vulnerability risk lifecycle; an alternative means to measure 

the areas of risk is the purpose of this work. 
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As a result, we should expect a difference between a vulnerability 

inventory done by the comparison of system software with the NVD, and that of 

an inventory done by comparing the system software and vendor update status. It 

is reasonable to expect that if software developers and public vulnerability 

databases had perfect knowledge, the two evaluations would be the same. Yet we 

would also expect that long-term analysis should produce fewer differences 

assuming the following: Vendors have the good intention to keep security flaws 

out of production and to fix those that may appear. In addition, vulnerabilities 

identified within the NVD are without error and vendors accept them. If these 

assumptions are true, then eventually vendors will fix all reported security flaws. 

Unfortunately, perfect knowledge is unrealistic, and system administrators 

can only hope these differences are minor and do not represent a significant 

exposure to un-patched vulnerabilities.  

Furthermore, direct comparisons of system vulnerabilities with the NVD 

eliminate the false sense of security presumed by a vendor update check. The 

fallacy lies within comparing the system state with information provided by the 

vendor of the very same system. This check relies upon incestuous data by not 

including vulnerability data found outside the vendor‘s development stream. This 

verification lacks a comparison to publicly known vulnerabilities that represent 

threats to a fully patched system. 

 ―Up-to-date‖ system status confuses the true vulnerability status of a 

system; the difference being between having all available vendor patches applied, 

and containing vulnerabilities; a system can be both. 
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2. Background 

The Internet is a network of networks, a hierarchy of interconnected 

computers sharing resources and communication pathways. This interconnectivity 

has proven to be both the boon and the bane of the Internet: The benefits of the 

Internet are largely due to the ease of information exchange between systems, the 

risks of Internet use arises from the ease of vulnerability exploitation across these 

same interconnected systems.  

Certain vulnerabilities are susceptible to remote attack, and connecting 

systems with such vulnerabilities to a network exposes them to the risk of attack. 

Given isolation, computer systems are impervious to remote attack; obviously, 

this solution is not practical for systems providing remote services. Therefore, the 

securely deploying a systems on a network is complicated due to the ongoing 

appearance of remote vulnerabilities which represent an ongoing threat to these 

systems.  

The current threat environment is constantly evolving with the discovery 

of previously unknown threats. Software vulnerabilities are an ongoing issue, and 

although security efforts attempt to adapt quickly, there are always new threats 

that are previously unknown.  

Consequently, security is a process to manage risk. Understanding the 

vulnerabilities of a system is core to understanding the risk a system faces. In this 

manner, understanding the risks of individual systems is core to understanding the 

risks of a network of systems. 
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Often a secure perimeter intends to protect systems from these 

undetermined risks, the goal being to separate the systems which comply with a 

security policy from those that do not.  

Recently, traditional security boundaries have begun to dissolve. Systems 

can no longer depend upon the protection of a firewall. Simply shielding a single 

gateway to the Internet is no longer effective due the increase in mobile 

computing and wireless access. The location of a computer may change from 

being inside to being outside of the protected perimeter. The systems residing 

within the firewall perimeter can no longer rely upon the safety of a sanitized 

Intranet. This is due to the risk of systems that bypass the perimeter walls such as 

systems returning from the ‗wild‘ and visiting systems. 

Network perimeters have the role of filtering what is safe and what is not. 

However, a firewall cannot reduce risk when an attack originates from a 

compromised system within the trusted perimeter. Because a secure perimeter is a 

less reliable means to determine system risk, we must look elsewhere for this 

determination. Systems containing known vulnerabilities represent risk to other 

systems because they are susceptible to exploitation; if they succumb to their 

vulnerability, they can then provide a platform to attack other systems. All 

potential methods to mitigate this risk begin with the identification of vulnerable 

systems. 
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2.1 Scope of this work 

The beginning of a vulnerability lifecycle begins with the discovering of 

the vulnerability. The discovery may or may not appear publicly, however this 

thesis is concerned only with known vulnerabilities; managing risk posed by 

publically unknown vulnerabilities (hidden by responsible disclosure) or zero-day 

(previously unknown) attacks are outside of the scope of this thesis.  

The validity of a vulnerability is also external to this investigation; that is, 

whether the vulnerability is verified or even has basis as a security concern. This 

thesis relies upon the NVD process to determine vulnerabilities regardless of a 

vendor‘s acceptance of this determination. In short, if a software packages exists 

within a NVD CVE, it is vulnerable within the scope of this thesis.  

The examples within this thesis are only relevant to a particular time. The 

rapidly changing vulnerability landscape does not allow all examples to undergo 

post-experimental verification. New vulnerability information appears, patches 

are developed, and the system state continuously changes. Nevertheless, the 

general findings of this work are verifiable within this changing environment. 

The analysis used Linux and Open Source systems, which rely upon the 

Debian packaging system (.deb), using Advanced Package Manager (apt); in 

practice this is the Ubuntu and Debian Linux distributions. Although this method 

can be used on other systems such as .rpm based systems (Red Hat Linux, SUSE 

Linux), or even Windows based systems, this was not done within the scope of 

this work. 
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2.2 The need for an ongoing vulnerability analysis 

The vulnerability state of a system is an ongoing process; this relates to 

the nature of software development. Vulnerabilities are simply a specific form of 

software flaws. Vulnerabilities affect both Open and Closed source software. 

Open source software, can have slightly more than one software flaw for every 

10,000 lines of code; five in every 100 software flaws is also a security 

vulnerability
[9]

. Security flaws are concurrent with software development. 

Furthermore, as general software flaws can remain undetected, so can 

security flaws. Software components undergo a cyclic return to insecurity due to 

the repeated discovery of new software vulnerabilities; followed by a patch to 

return the system to a secure state.  This pattern repeats throughout the life of 

software (Figure 2). 

 

 

Figure 2 software cycles between patched and un-patched states 

 

 

 

2.3 patch management vs. vulnerability management 

Given two systems: in the first, a patch management system indicates risk 

exposure based upon the patch-level; and in the second, a comparison of system 

components to known vulnerabilities determines the vulnerability exposure. 

Which method describes the vulnerability exposure of a system with better 

accuracy?  
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The first method relies upon software vendors to provide notifications 

when new patches are available. Surprisingly, the majority of systems that have 

succumbed to intruders do so because of a known vulnerability for which a patch 

is readily available
[10]

.Therefore, keeping a system up to date with the most-recent 

security patches is important to reduce exposure to known vulnerabilities, and can 

reducing the largest factor of intrusion exposure
[10]

. What if a publically known 

vulnerabilities exist, for which there are no patches? In this case, a system can still 

face security risks hidden by the patch-level. 

How can risks measured by patch-level be different from those measured 

by the vulnerability level? This will occur when there is a period between a 

vulnerability announcement and the availability of the patch. The vulnerability 

lifecycle model describes this period. 

This interesting period exists because of latency between the head of the 

software development stream, and patches applied to systems. Patch management 

reduces the risk of exposure after a vendor has produced a patch (Figure 3) but 

does so by relying upon the vendor to produce the patch. In addition, the system 

can appear vulnerability-free until the vendor indicates that there is something 

wrong by issuing a patch. 
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Figure 3 patch applications reduces vulnerability risk, but patches depend upon vendors 

production 

 

 

Often there are delays between the public announcement of a 

vulnerability, and the availability of a patch. These delays occur for various 

reasons.  

The delay begins with the time needed to understand, confirm, fix, test and 

deploy a solution. Within the Open Source community, this occurs at the head of 

the stream, by those working on the project itself. After this solution becomes part 

of the project, the version number is incremented, and a new release created. 

Linux distributions managing their own packages, thus another set of 

delays occur from the downstream package maintainer‘s work.  The solution may 

already exist for the head-of-stream version, however the process to understand, 

confirm, fix, test and deploy the fix repeats downstream. Maintainers first need to 

confirmation flaw because Linux distributions only contain periodic snapshots of 

upstream development. Consequently, the vulnerability does not always exist in 
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all snapshots. The fix then requires extraction from the upstream release, and 

often will need some refactoring to work with the version that the distribution is 

maintaining. The distribution then applies this patch to their version and makes 

both the source and binary versions available for their distribution releases and for 

supported architecture. This work may repeat itself several times by different 

distributions before it the solution reaches the client system, e.g. upstream-release, 

to Red Hat Linux, to Red Flag Linux; or upstream-release, to Debian Linux to 

Ubuntu Linux.  

Consequently, software patches do not immediately propagate to the 

various downstream consumers. The fix, submitted to the upstream source 

repository may take some time for distribution maintainers to pick up, test, and 

produce a patch. This can result in a gap between a public announcement and the 

availability of a patch. This process also depends upon relatively easy fixes. If the 

software flaw is highly coupled within the package, a fix may take some time to 

produce. 

Relying upon the arrival of a vendor patch can leave a system vulnerable 

for an unnecessary period. The knowledge of a vulnerability before a patch is 

available can enable other countermeasures to reduce the risk of a system. 

Various hardening techniques can reduce risks to system that contains 

vulnerabilities that do not currently have patches available (Figure 4). Examples 

include confinement, resource limitation, and other techniques can protect 

systems from these vulnerabilities. The process of securely configuring a system 

can reduce risks in systems that host vulnerable software. This process begins 
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with the knowledge that a system contains vulnerable software, the knowledge of 

the vulnerabilities nature, and then proceeds to specific techniques depending 

upon the specific issues.  

 

 

Figure 4 preventative measures can reduce risk of un-patched vulnerabilities; however, the 

knowledge that a system is vulnerable is required first. 

 

 

 

The illustrations of the various periods within the vulnerability lifecycle 

(Figures 1, 3, and 4) describe the fallacy of determining system health based 

upon ―patched‖ or ―un-patched‖ (Figure 2). This is because the ―patched‖ or ―un-

patched‖ metric fails to capture the complete period of system vulnerability 

between public announcements and patch availability.  

This thesis focuses on obtaining information to manage risks during this 

period. The goal is to illuminate the nature of a system‘s vulnerability state during 
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this period, and thereby allow risk-mitigation techniques other than vendor-patch 

management.  

 

 

2.3.1 Tracking Vulnerabilities in Open Source 

 

The proprietary software development process differs from the Open 

Source software development process. Generally, a single controlling entity 

manages the proprietary development process; while cooperating, autonomous 

entities manage the Open Source development process. The Open Source 

development process has several tradeoffs. For example, it allows the Open 

Source community to be agile during the development process as each developer 

within the community can work independently. However, there is no omnipotent 

overseer (human or practice) ensuring the management of a given processes as it 

spans across various domains such as developers, projects, maintainers, 

distributions, and finally to individual users. This allows aspects of Open Source 

software to diverge. 

 

2.3.1.1 Not-so unique identifiers 

Knowing whether a particular system, component, or library is vulnerable 

is critical for determining the current risks a system faces. The concise 

identification of software vulnerabilities has two requirements. Both the software 

and the vulnerability must have unambiguous identification. One downside of the 

Open Source infrastructure is that as distributions assimilate software packages 

downstream, the package names diverge. The result is a difficulty identifying 
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vulnerable software. One example is the name given to the Apache HTTP Server. 

On Red Hat Linux systems, it is httpd, and on Debian and Ubuntu Linux 

systems, it will be apache or apache2. 

The same problem exists with naming vulnerabilities, and affects 

proprietary software as well. Different agencies, such as the Debian security team, 

the Red Hat Bugzilla, Secunia, Security Focus, and other efforts track the same 

software vulnerabilities. Therefore, it can be difficult to determine if an individual 

system may contain two different vulnerabilities, or if there are two names for the 

same vulnerability. For example, a single vulnerability for the Apache HTTP 

Server will have a many different identifiers assigned. 

The National Vulnerability Database resolves vulnerability naming 

conflicts by assigning each a unique identifier (a CVE number) and then linking 

the synonymous information from other agencies to that identifier. The CVE 

number essentially becomes the canonical name for each vulnerability and thus 

enables mapping between the various vulnerability reporting agencies. 

 

NVD is a comprehensive cyber security vulnerability database that 

integrates all publicly available U.S. Government vulnerability 

resources and provides references to industry resources. It is based 

on and synchronized with the Common Vulnerabilities and 

Exposures (CVE®) vulnerability naming standard.
[6]

. 

 

There is no such identification for software package names. Therefore, 

vulnerability detection efforts become ambiguous if one cannot discern which 

software a vulnerability affects. 
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2.3.2 Backporting obscures the upstream version 

 

The process of Open Source development is also ‗open‘. One can monitor 

the developer bulletin boards for critical system components and track 

vulnerabilities as they flow through the layers of Open Source organizations. 

Typically, vulnerabilities begin with an initial bug report submitted to the package 

maintainer, who confirms the submission, produces a security vulnerability 

announcement, fixes the issue, and adds it to the current stable stream. Linux 

distributions then produce a patch for the fix, apply it to the vulnerable packages 

in their distribution, make their own announcement, and provide the new package 

binaries. 

Distributions take a ―snapshot‖ of the ongoing development stream for a 

given distribution release version. This is to limit new development in the 

distribution release, and increase stability. Unfortunately, a fix made at the 

beginning of the development stream might not be compatible with the 

downstream versions of the vulnerable package. The fixes may need to be ―back-

ported‖ for earlier release versions. Different members of the community, from 

the upstream package maintainer, distribution package maintainer, or even 

members of the open source community at large may perform backporting 

resulting in release patches and patched binaries.  

This process adds confusion when identifying the patches applied to a 

given binary version, or when determining a version's current vulnerability status. 

One cannot determine whether a particular package is vulnerable by comparing its 
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version to the vulnerable versions at the head of the development stream. One 

must also account for the applied back-ports. 

 

2.4 Differences between Single-Path and Multi-Path development 

The Open Source Software (OSS) development process is different from 

proprietary, closed source software development. This difference allows a user to 

procure the ―same‖ software in various different ways. Moreover, although these 

different distribution paths result in similar naming and versioning, the resulting 

software can have profoundly different security aspects. 

Unlike the management of proprietary software development that 

exclusively controls the release of software (Figure 5), Open Source development 

is a composition of developers; software package development may follow 

multiple paths from the maintainer(s) of the source to a specific package residing 

in a particular system (Figure 6).  
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Figure 5 Closed source software has a single path between developer and users 

 

 

The arbitrary path of OSS, from the head of the development stream to the 

actual compiled binaries that run on a users system, produces certain difficulties 

to the identification of software vulnerabilities. The compiling, and inclusion of 

different portions of the source, is due to the openness of the Open Source process 

that enables the compiling to take place in multiple locations. Binaries are 

compiled at the source head, by a project fork, in the processes of various 

distributions or distribution re-branding, by individual package re-branding, and 

last, and perhaps most importantly, the subsequent package backporting which 

may occur by  most any of these entities.  
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Figure 6 Open Source has multiple paths between the developer and the system. Each path 

varies the compilation of the same upstream source code 

 

 

Because of the multiple origins of software binaries, a simple model, 

which fits commercial software, does not apply to Open Source. In the simple 

model, a vulnerability identified in a particular software binary applies to all 

binaries; it is not possible to have a different binary; one which was not compiled 

by the original developer. For example, Adobe has multiple versions of its 

popular Acrobat reader; however, Adobe compiles all of the binaries. Therefore, 
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if a vulnerability is detected in a binary, then it can be tracked by its official name, 

version, and even by a hash of the binary taken by the vendor at compilation time.  

Contrary to this model, two Open Source packages based upon the same 

upstream project do not indicate the vulnerability will be contained in each. 

Conversely, a package which does not contain any known vulnerabilities in the 

upstream source repository, but that is changed and recompiled downstream may 

have vulnerabilities introduced
[11]

. In practice, the process of backporting often 

removes vulnerabilities downstream. 

 

2.5 Related Work 

Work can relate to this thesis in two main areas: One, that of detecting 

vulnerability on systems, Two, that of matching software components to those in 

the NVD.  

 

2.5.1 Vulnerability vs. update assessment  

The detection of vulnerabilities is a common practice, but generally stops 

where the work in this thesis begins, Vis-à-vis, a system vulnerability analysis 

simply checks if there are updates available to a given system, and relies solely 

upon vendor-supplied patch information, not that of independent vulnerability 

databases. The majority of software exploits occur to systems with patches 

available but not installed
[10][11]

. Therefore, the immediate updating of systems 

with the most recent patches supplied by the vendor is critical.   
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2.5.1.1 Update management tools  

A tool that provides update information for an OSS system is the 

Advanced Packaging Tool (apt), which can compare the version of components 

installed on a Debian-based system, to those currently available and can also 

install required updates. Another tool, apt-show-versions provides a list of 

installed package names and their update status in the same manner, but does not 

install updates. Similar tools perform these functions for rpm-based systems such 

as the Red Hat Update Agent; also know as up2date, which is similarly limited to 

vendor-specified updates, not current vulnerabilities. 

Many proprietary software vendors provide an update checking service 

that periodically checks for available software updates; however, these agents 

only check for updates within the specific vendor‘s updates and do not report 

when a software package is vulnerable if there is not an update available. Adobe, 

Apple, Microsoft, and Sun are among the companies that provide this type of 

update agents. Adobe provides a menu control for Acrobat Reader, which will 

even check for updates from a Linux system.  

One agnostic update agent is the Secunia PSI
[13]

. This tool scans the 

majority of software on a Microsoft Windows system and determines which have 

outstanding security updates. The PSI agent function is an extension of the typical 

update check as it checks software originating from multiple vendors for security 

updates, and even ignores updates that are not security related. The PSI does not 

however indicate packages, which contain vulnerabilities present on the system, 
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but do not have available updates; nor does it report vulnerabilities outside of the 

vendor‘s own available patches. 

 

2.5.1.2 The Debian vulnerability tool Debsecan 

The tool debsecan does report vulnerable packages that do not yet have   

available updates. However, the tool still relies upon vendor-based information. 

Because the debsecan tool relies upon information produced by the Debian 

security team, the report experiences the latency of the Debian Security Team 

process. In some cases, vulnerabilities contained in the NVD, and present in the 

list of Debian Security Team ―TODO‖ items are not part of the debsecan report. 

For example, debsecan did not report a current gpg vulnerability CVE-2008-

1530, which had yet to receive attention from the Debian Security Team (as of 

04/20/08).   

Vulnerability information from debsecan only pertains to packages 

maintained by the Debian distribution
[14]

. The Debian Security Team determines, 

by hand, if vulnerabilities apply to packages within the Debian distribution. In 

some cases, a vulnerability does not apply to the package maintained by Debian, 

e.g. CVE-2007-4723 lists the ―Apache HTTP Server" as vulnerable; 

however, the Debian security team does not agree, rather Ragnarok Online, a web 

application using the Apache Web Server, is vulnerable. In this case, the Debian 

Security Team labels the CVE as ―NOT-FOR-US‖. Interestingly, ―NOT-FOR-

US‖ does not always mean a miss-match, sometimes it means the data does not 
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exist e.g. “NOT-FOR-US: Data pre-dating the Security 

Tracker” 

Another instance when a vulnerability will not be reported by debsecan 

is when the Security Team does not agree that the issue is security related, e.g. 

CVE-2005-2541
[8]

: 

severity="High"  

CVSS_score="10.0" 

 

desc= "Tar 1.15.1 does not properly warn the 

user when extracting setuid or setgid files, 

which may allow local users or remote 

attackers to gain privileges." 

 

…dismissed by the Debian security team:         

CAN-2005-2541 (Tar 1.15.1 does not properly warn the user 

when extracting setuid or ...) 

 

NOTE: This is intended behaviour, after all tar is an 

archiving tool and you need to give -p as a command line 

flag 

 - tar (unfixed; bug #328228; unimportant) 

 

Because debsecan uses data generated because of Debian Security 

Team evaluations, the datasets represent a ―filtered‖ subset of the NVD. The data 

consists only of the NVD entries considered relevant by the Debian Security 

Team, and contain fewer false-positives. The debsecan tool also has a more 

straightforward means to detecting vulnerable system versions and packages as 

the security team has converted the NVD data into a Debian format. As a result, 

debsecan does not face matching problems discussed in Section 3, and the 

resulting possibility of injecting errors.  
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In addition, the Debian Security Team tracks issues that do not have an 

assigned CVE number
[15]

. It follows that more information is available to the 

debsecan analysis since the data includes information sources from the Open 

Source community, however one can speculate that eventually this security 

information will eventually appear in the NVD.  

The work within this thesis explores whether vulnerabilities are still 

present on a fully patched system, by comparing system files to publicly known 

vulnerabilities within the NVD. There is little work done in this area outside of 

debsecan however, this tool (for better or for worse) uses domain-specific data 

and will not detect vulnerabilities outside the domain of the Debian Security 

Team.  

 

2.5.2 Matching OSS packages with different vulnerability data sources   

 The second area of related work pertains to the matching of software 

contained within a software system with those listed in a vulnerability database 

such as the NVD. This issue is central to the reliable automation of system health 

evaluation, and currently limits the effectiveness of detection. Obviously, a 

precise mapping must exist between the system software and that listed in a 

vulnerability database. This currently does not exist; consequently, this thesis uses 

a heuristic approach to matching. Creating a plethora of matching rules to 

generate matches will not withstand changes to the naming practices of Ubuntu, 

Debian, the upstream package maintainer, nor the NVD itself.  
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The current naming practices between these entities are ambiguous and do 

not withstand the rigors of an automated system; therefore, an automated system 

can only relieve some of the work required by human evaluation. Only a robust 

naming schema will enable automated tools reliable and accurate matching.  

 

2.5.2.1 Matching with the National Vulnerability Database 

 The NVD relies upon a single-path development model to depict OSS and 

thus fails to recognize the unique relationship between packages that are derived 

works of an upstream source, which do not have a superset-subset relation. The 

derived work of an Open Source project is a new software entity that cannot have 

superset-subset rules successfully applied, e.g. a vulnerability in a package may 

simply not exist within its derived work because that portion of the code was 

never included or compiled downstream. (Section 3 describes many other NVD 

matching issues). Conversely, downstream modifications can create original 

vulnerabilities that are serious and have a widespread effect
[16]

. 

A FAQ entry presented on the NVD Website may explain why OSS 

vulnerabilities are difficult for the NVD: 

  

 “How are Linux vulnerabilities handled within NVD? 

Linux distributions are often made up of a large collections of 

independently developed software and it is sometimes difficult to 

determine which software packages should be considered part of 

the operating system and which should be considered independent 

but merely included along with the operating system. In addition, 

some vulnerabilities occur within the Linux kernel and for those 

vulnerabilities we do not enumerate all of the hundreds of Linux 

distributions.” 
[ 7]
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Separating what is part of the Linux Kernel and what is not is indeed 

difficult when a simpler closed source model is used. Open Source systems use 

the terms ―kernel-space‖ and ―user-space‖ to distinguish the categories described 

by the FAQ as ―part of the operating system‖ or ―independent of the operating 

system‖. Moreover, it follows that an operational definition of any process is to 

determine whether it occupies kernel-space memory or user-space memory when 

executing
[17]

. Furthermore, the Open Source model uses the term ―Kernel 

Module‖ to refer to a component similar to that of a ―driver‖, both of which 

enable hardware. Forcing the OSS development model to fit into a closed source 

model causes these issues. 

Open Source Software is a significant part of the software world, and is 

widely incorporated within commercial products and it even runs on closed 

source platforms and not exclusively on ―Linux‖ systems. The popularity of the 

Mozilla Firefox Web Browser is an example of this duel nature of OSS
[18]

. 

Security risks occur in Open Source Software just as they do in closed-

source software and both benefits from the services of the NVD. The NVD has 

the opportunity to overcome the problems mentioned in the FAQ and thus provide 

the same support to OSS as closed source. A solution that incorporates ontology 

into the data model of the NVD, with both the terms and architecture from OSS 

and the Linux Kernel, will enable the NVD to support the security information 

needs of OSS systems. This will enable the NVD to provide unambiguous 
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information for all software regardless of its development process.  More 

discussions of NVD improvements are in Section 7.1. 

 

2.5.2.2 Matching with the Common Platform Enumeration 

 The Common Platform Enumeration (CPE) intends to resolve the issue of 

different domains using different naming conventions by normalizing the 

information. The CPE aims to establish a software-naming standard for use by 

automated security tools. Unfortunately, this effort will not solve an underlying 

issue that prevents identification: different domains represent essentially the same 

canonical entity with different names. Even after carefully enumerating each 

package, these differences will remain.  

When the enumeration is complete, it will require approximately 

96,821,863 entries to list the current vulnerable software found in Open Source 

Linux Distributions, the same as the number of hashes required by the NSRL 

method discussed in Section 2.5.3.2. The large number CPE items required to 

describe Open Source may make the dataset unwieldy.  

Another issue arises from the efforts to normalize the information into a 

standard form: The requirements of the data structure produce a lossy result. 

Because dashes are not a legal character in XML, this entry does not represent 

any Debian package: 

 

    <cpe-item name="cpe:/a:debian:apache:1.3.34.4"> 
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The entry for apache replaces the dash from the Debian version 

1.3.34-4 with a dot, which obscures the information the dash had provided. 

This dash is important; it represents the difference between the upstream version 

of the package (1.3.34) and the Debian update version (4).  The dash 

represents the boundary between the upstream development and the work of the 

Debian package maintainer. Lost is the indication that this is the fourth package 

released by Debian, based upon the upstream 1.3.34 version.  

Another entry further obscures the Debian package elvis-tiny, by 

replacing the dash with an underscore: 

 

<cpe-item name="cpe:/a:debian:elvis_tiny"> 

 

These examples show that the CPE does not list Open Source packages 

well because the specification does not correctly enumerate the Open Source 

development process. Specifically, the CPE does not accommodate the special 

nuances of multi-path software development (Figures 6) annotated within Open 

Source version strings (Figure 7). 
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Figure 7 The CPE cannot describe libuuid1 
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2.5.3.2 Matching with National Software Reference Library techniques 

The National Software Reference Library (NSRL) is a set of software 

signatures used by tools performing forensic evidence analysis of large datasets 

such as those found on personal computer hard drives. The data sets enable tools 

to reduce the quantity of files needing further examination by positively 

identifying files originating from known sources. Comparisons to the reference 

data can determine the difference between system files to ignore, and user files to 

examine further (Figure 8). 

 

 

Figure 8 the NSRL identifies computer files of known origins (in red) 

 

Can software signatures positively identify vulnerable files on a system? 

This depends upon how well this method applies to the problem of identifying 

OSS. Using signatures eliminates the need to construct ontology to map various 

naming conventions used by the OSS community to a single identifier.   
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Signatures also eliminate the need to standardize the various downstream version 

addendums used by the OSS community. The signature method sidesteps these 

issues by comparing the set of software on a system to that in a ―Vulnerability 

Reference Library‖ (VRL).  

 

Figure 9 identifying known vulnerabilities (in red) using hashes 

 

A dataset called the ―VRL‖ does not exist at this time, yet the idea is quite 

simple. This dataset would contain a list of hashes from instances of publicly 

known vulnerable software, mapped to CVE numbers (Figure 9) 

The NSRL hash-set does not contain a sufficient number of OSS to enable 

its use as a tool to detect software vulnerabilities. Furthermore it is unlikely the 

NSRL will ever do so as the typical means to obtain OSS does not fulfill the 

requirements to be acquired by the NSRL because software downloads are not 

accepted, and relatively few OSS is available via ―shrink wrap‖ packages, only 

major distributions such as Red Hat and SUSE Linux. 
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The results of a matching comparison between a system package hash, and 

a set of package hashes can determine the following three outcomes depending 

upon the extent of the dataset:  

  

Match  

1) Matched hash is associated with CVE number 

 package contains a known vulnerability 

 this dataset only need contain hashes of vulnerable software 

2) Matched hash is NOT associated with CVE number 

 package does not contain a known vulnerability 

 this dataset must contain ALL software hashes 

 

No Match  

Package unknown, dataset will not contain vulnerability 

information. 

 

 

 

 Classically, time and space complexities limit computer systems. 

Likewise, the answer to the question ―can a system using techniques like the 

NSRL be used to identify vulnerable software on Open Source systems‖ is also 

bound by these limits. Perhaps this simple analysis can produce a practical answer 

to our question.  

We first assume is that it is possible to create a set of hashes that represent 

all OSS. This universal set contains hashes representing both vulnerable and non-

vulnerable OSS. This universal set allows us to identify with confidence whether 

any OSS has vulnerabilities. Exploring our complexity limits, the question then 

becomes ―how many hashes are needed determine if a given OSS package 

contains known vulnerabilities?  
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We begin by determining the number of hashes needed to represent a 

single Open Source Linux Distribution. Debian 4.0 Etch has approximately 

18,497 packages and 11 architectures. Examining several Debian systems we 

discover that each packages has an average of 66.59 changes per package 

(Appendix I). This rough estimate indicates that 13,548,867 hashes are needed to 

represent the current Debian Etch release. We now add a second distribution 

release, Ubuntu Feisty, which contains 21,183 packages, 7 architectures and 

approximately 66.24 changes per package equivalent to 9,822,133 hashes. 

Together, only these two distributions require 23,371,000 hashes. This is roughly 

equivalent to the number of hashes in the NSRL application file list.  However, 

our hash set only represent two distributions, the current releases in Debian and 

Ubuntu, not the entire supported release sets from these Distributions, nor does 

our hash set contain the hash sets from the other 352 distributions. It not feasible 

to represent all Open Source Software in this way, the number of hashes needed is 

far too large. Perhaps we can limit the number of hashes by only listing those 

hashes of vulnerable software. 

The set that contains all Open Source Software packages is very large. The 

diversity of the Apache HTTP Server makes determining the vulnerability of one 

particular instance of the Apache HTTP Server difficult. Because hashes represent 

a unique signature, they appear to be an ideal solution to this problem.   

The Apache HTTP Server is one of approximately 59 projects maintained 

by the Apache Software Foundation. The Apache HTTP Server code has 
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undergone seven major releases, each of which has undergone up to sixty-three 

minor releases (Figure 10) 

 

 

Figure 10 The number of Apache Software Foundation release instances expands by 

multiplying the number of projects, by the number of major releases and finally by the 

number of minor releases. 

 

 

The Apache HTTP Server is a common part of many Linux and Open 

Source Distributions.  There are approximately 352 Distributions, which include 

the various major and minor releases of the Apache HTTP Server. Distributions 

have their own releases, architectures and backports, which further multiply the 

number of Apache HTTP Server instances (Figure 11). 
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Figure 11 The number of Apache HTTP Server releases expands by multiplying the number 

of Apache Software Foundation releases by distributions, architectures, and back-port 

releases. 

 

 

If we limit our matches to simply indicate that a package contains a 

vulnerability, (only the first outcome of a match) then our hash set must contain 

96,821,863 hashes to represent the current known vulnerabilities in Open Source 

software (Table 1). 

The NSRL hash-set RDS_219_C contains some 23,978,697 hashes; it is 

approximately 2.9 gigabytes. Assuming the dataset needed to represent Open 

Source vulnerabilities is similar, it would be approximately 11.65 gigabytes in 

size when uncompressed.  

A vulnerability tool needs to compare the system packages to those in the 

entire dataset on a daily basis to track the daily changes in vulnerability 
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information. To do so, the tool must download the current dataset and then 

evaluate each entry and compare it to those on the system. While it is possible, the 

size of this dataset is prohibitive for processing by vulnerability analysis tools and 

transmitting over the Internet. 

 

Approximate 
Number of 

Distributions 

Average 
Number of 
Packages 

per 
Distribution 

Average Number 
 of Architectures 
per Distribution 

Average 
Number of 
Releases 

per 
Distribution 

Average 
Number of 

Vulnerabilities 
per 

Distribution 

Estimated Total 
Number of 

hashes needed 
to represent 
vulnerable 

Open Source 
software 

352 8,043 2.306 4.41 3.36 96,821,863 
 

Table 1 estimated number of hashes needed to represent existing vulnerable Open Source 

software. This table generated from the data shown in Appendix I. 

 

2.6 Future Work 

One issue with using the NVD as a data source is the latency between the 

first report of a vulnerability and the listing of the issue within the NVD. This 

latency can increase the length of exposure to new exploits, if one solely relies 

upon the information provided by the NVD. The process to assign a CVE to a 

given vulnerability takes time; often the documentation of a vulnerability begins 

with a bug report to the package maintainer or upstream source. Retrieving 

information from such a source would bring awareness sooner, and could further 

reduce the time of exposure from known vulnerabilities. 

Fine-tuning the match function‘s result vetting can speed up the analysis 

of accuracy. The current method is time intensive due to processes requiring 

human review. 
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The approach discussed in this work can be applied to other Open Source 

Distributions e.g. red hat and SUSE. These different domains do require that some 

methods be adapted to fit different technical requirements such as for systems that 

use .rpm packages. This does not prevent their analysis; the rpm format has a 

comparable tool-set that allows similar queries as apt. Windows-based systems 

are also conducive to this approach, there exists an API which enables software 

interrogation, enabling the comparison of vulnerability data with that of the 

system software.  

 

3. Method 

A comparison between a list of vulnerable software from the NVD and a 

list of software from an Open Source system determines a test system‘s 

vulnerability. The system can either be active and used for other work, or a test 

system, expressly intended for these analyses. The test does not require special 

system preparation, aside from loading the test scripts and obtaining the current 

NVD data. The analysis is self-contained; the system can perform the 

investigation without external interactions.  

 

3.1 System used 

Several Open Source Software systems are the test beds for vulnerability 

analysis. The security patch process, like most Open Source development, is open 

to allow an insider‘s perspective of this normally hidden commercial activity. 

This aids the verification of results that closed development processes would not. 
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The selection of Ubuntu and Debian from the many possible choices of 

Linux distributions enables the robust Advanced Packaging Tool (apt), to provide 

package management information and metadata for Debian (.deb) packages. 

Furthermore, Ubuntu has a larger and more diverse repository of packages than 

other popular distributions such as Red Hat, SUSE, or even Debian. The 

repositories contain otherwise unavailable packages such as proprietary drivers 

and other commercial software making for a more well rounded test of system 

vulnerabilities.  

 

3.2 Heuristics for vulnerability detection  

Two heuristics determine if a particular system package is vulnerable as 

defined by the NVD:  

1. The system package appears in the NVD. 

2. The version of the system package appears in the NVD. 

 

The first heuristic determines if the NVD contains an entry for a software 

package. This indicates the package has contained a publicly disclosed 

vulnerability. The second heuristic refines the first. It determines if the software 

version on the test system still contains the vulnerability. If the package version 

from the system is greater than any of those listed in the NVD the assumption is 

that the software contains a fix (Figure 12). 
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Figure 12 ideal matching 

 

All heuristics intend to maximize vulnerability detection, and to err on the 

side of ‗safety‘. This is to reduce the chances of a false negative rather than 

producing false-positives; It is safer to misdetect packages which are not 

vulnerable than it is to miss actual vulnerable packages.  

 

3.2.1 Determining if specific software appears in the NVD — Matching  

These two heuristics are comparable to a matching exercise: Match system 

software with the software listed in the NVD, and then match the system version 

with those listed in the NVD. Conformation of both matches indicates a 

vulnerability is present on the testing system.  

Again, note that in the context of this work this is the definition of a 

‗vulnerability‘. Whether ―proof‖ a vulnerability exists, has a feasible exploit, or is 

within the current system configuration is outside scope. 
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3.2.1.1 Name matching 

The matching system must find comparable information in both the NVD 

and the system; on a system, software names identify packages; name collisions 

would not allow the operating system to determine which component to invoke. 

NVD documentation indicates the NVD also intends for software names to 

determine vulnerability matches: 

National Vulnerability Database Version 2.1 

NVD is the U.S. government repository of standards based 

vulnerability management data represented using the Security 

Content Automation Protocol (SCAP). This data enables 

automation of vulnerability management, security measurement, 

and compliance. NVD includes databases of security checklists, 

security related software flaws, misconfigurations, product names, 

and impact metrics. NVD supports the Information Security 

Automation Program (ISAP)
[6]

.  

 

 

The NVD documentation contains the following information for the element 

―prod‖: 

Product wrapper tag.  

Versions of this product that are affected by this vulnerability are 

listed within this tag.  

 

Attributes: 

   "name" => Product name  

   "vendor" => Vendor of this product  

 

If a package name matches a NVD name, the package is ‗vulnerable‘ 

unless further test heuristics can change this result to negative (Figure 12). 
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3.2.1.2 Version matching 

The NVD documentation contains the following information for the 

element ―vers‖: 

Represents a version of this product that is affected by this 

vulnerability.  

 

Attributes:  

"num" =>  This version number  

"prev" =>  Indicates that versions previous to this 

version Number are also affected by this 

vulnerability 

 

The NVD presents information about vulnerable versions in two ways. By 

either enumerating every vulnerable version or listing a single version with a flag 

to indicate that all previous versions are also vulnerable.  

Because the NVD fails to recognize the presence of major release versions 

(Section 3.3.2), and the enumeration process is fallible, packages evaluate as 

vulnerable if their version is less-than-or-equal to the maximum version (Figure 

12). The goal of the heuristic design is to fail on the side of safety; therefore, even 

though the NVD may contain more expressive version information, comparisons 

only use the maximum listed vulnerability. 

 

3.2.2 Issues with matching: The simple two-fold heuristic does not work 

Unfortunately, many issues diminish the effectiveness of automated 

vulnerability detection in Open Source Systems using the NVD. That is not to say 

that in some cases these issues are unsolvable by human intervention; however, 

by doing so one cannot take advantage of a computer-automated process. 
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When ambiguities are present in the CVE listings, assumptions in the 

matching function heuristics intentionally produce a false positive. The intention 

is that potential, yet ambiguously determined vulnerabilities will appear, and by 

making these possible security issues visible, they may undergo further 

examination. These heuristics also fail on the side of safety 

. 

3.2.2.1 Names 

The identification of vulnerable software is a critical component of an 

accurate analysis. An ideal positive match between an entry in the NVD and a 

software package on a system must ensure the software on the system is the same 

as that listed as vulnerable within the NVD. This is to ensure the results do not 

contain either false positives or false negatives. Software packages must (and do) 

have unique identification within systems to prevent name collisions. Names are 

the de-facto identifier on a system. Two packages with the same name cannot 

exist in the same system location. Path information resolves name collisions 

present in different locations. 

In addition to the ontology issue described in Section 2.3.1.1, a software 

name can vary depending upon its location. One is the name of a file as it resides 

on a particular system, another is the name of the package as delivered to the 

system, and yet another is the name as given by the upstream project. Often the 

names are the same; however, the package name can contain different information 

depending upon the packaging rules for the various distributions of Linux and 

Open Source.  
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Names within NVD entries often do not match the names found on actual 

systems, preventing name-matching (Table 2). Heuristics help resolve this 

matching issue. 

 

Debian & Ubuntu Name NVD Name 

apache2 

apache2.2-common 

apache2-mpm-prefork 

apache2-utils 

Apache 

mysql-client-5.0 

mysql-server-5.0 

mysql-common  

MySQL 

libdns22 BIND 

Table 2 System names and their NVD counterparts 

 

3.2.2.2 Versions 

Closed source development processes are less stream-like and exhibit 

deliberate and punctuated public releases. A single entity controls software 

versions, and the number of versions are less numerous. Open Source Software 

development represents a continuous stream of development
[19]

; new features 

appear at the head and are refined through testing and bug fixes as the stream 

progresses.  

As the package undergoes change downstream, the community adds small 

descriptive terms after to the version number to represent the changes. Removing 

this additional information allows a comparison between the package versions and 

those in the NVD (Table 3). 
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Ubuntu NVD 

2.0.52-38.ent 2.0.52 

2.2.3-4+etch1  2.2.3  

0.9.8f-1 0.9.8 

1:9.3.4-2ubuntu2.1 9.3.4 

 

Table 3 Examples of System versions and their NVD counterparts 

 

 

A simple comparison between the truncated system version and the set of 

versions within a CVE is still not possible, the version format which typically 

contains multiple decimals e.g., xxx.xxx.xxx. One additional step is required 

before comparing the package and CVE versions; converting both into decimal 

format (Table 4). 

 

Package Name Version String Decimal used for comparison 

Perl 5.8.8 5.008008 

Apache2 2.2.3 2.002003 

Bind9 9.4.0 9.004000 

 

Table 4 System package version to decimal conversions 

 

3.3 Developing match heuristics 

To automate vulnerability detection, a tool simply implements the 

heuristics contained in this work. This tool represents a matching function, where 

the input is a package and NVD data; the output is a determination of 

vulnerability. 

The first heuristic matches a package name to software names in the NVD. 

Although matching names is a simple string comparison, this simple match 

function failed to produce a significant number of positive results: 
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$CVE_Name eq $systemPackage 

 

Searching the NVD for vulnerabilities published in the year 2007 through 

September 2007, the evaluation produced only the following nine matches: 

 

irssi, tar, gimp, screen, slocate, findutils, 

lftp, w3m, xterm 

 

 

If accurate, these results indicate only these few packages have contained 

vulnerabilities.  

 

3.3.1 Problems with case matching 

Widely publicized vulnerabilities in The Mozilla Foundation‘s Firefox 

Web Browser are missing from the initial result set. Why does the match function 

fail to match the Mozilla Firefox Web Browser?  

The reason is due to case sensitive Linux systems i.e. names that differ in 

case but are the same in all other aspects are not equivalent. In contrast, the NVD 

is case-insensitive and contains a mix of upper and lower case names. Therefore, 

the comparison function must also ignore case: 

 

lc $CVE_Name eq lc $systemPackage 
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After this modification, the matching function reveals twenty additional 

matches, including Firefox: 

 

VLC, VIM, Fetchmail, Samba, ImageMagick, GnuPG, 

Firefox, Sudo, Xscreensaver, phpMyAdmin, Python, 

GIMP, Snort, TCPDump, Subversion, PostgreSQL, 

Evolution, OpenSSL, Ekiga, Rsync 

 

This first heuristic of the matching function demonstrates that NVD does 

not contain consistent capitalization in listing vulnerable software names. Some 

entries are in lower-case and some in mixed case.  The typical practice on a Linux 

system is to use all lower-case letters for package names, yet the NVD contains 

CVE records having the product name ambiguously represented with a 

combination of upper and lower (Table 5).  

 

Package Listings CVE Number 
GNU Image 

Manipulation Program  „gimp‟  CVE-2007-3741 

 „GIMP‟ CVE-2007-2356 

The Open Source toolkit 

for SSL/TLS „openssl‟ CVE-2004-0079 

 „OpenSSL‟ CVE-2007-4995 

 

Table 5 Case-based ambiguities within the NVD 

 

 

This may not appear to be important. However, this practice prevents an 

automatic health evaluation tool from differentiating between vulnerabilities in 

different packages such as ‗Ant‘ and ‗ANT‘. On Linux systems, the letter-case of 

a package name prevents name collisions; i.e. the package Ant (automated 

software build tool) is different from ANT (desktop ISDN telephony application) 

and yet the system can determine the difference by the case.  
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3.3.2 Problems with major release name matching 

The Apache HTTP Server is an Open Source Web Server developed by 

the Apache foundation. It is the most commonly used Web server in the world
[20]

. 

Historically, the Apache HTTP Server has contained vulnerabilities. The Apache 

HTTP Server version 2 is present on the testing system; yet ―Apache‖ fails to 

appear in the matched list. Why does the match function fail to match the Apache 

HTTP Server? 

The reason is due to the NVD not differentiating between the major-

releases of Open Source Software. Currently, the Apache Foundation produces 

three major-releases of the Apache HTTP Server. The test systems contain the 

apache2 release; however a search for either a case-insensitive string ―apache2‖ 

or a case-sensitive search for ―Apache2‖ produce no matches within the entire 

NVD.  

This is because the NVD lists the various Apache Server major-releases 

under a single product name. This is analogous to listing ―Windows 95‖, 

―Windows 98‖, and ―Windows 2000‖ as simply ―Windows‖ – or simply calling 

all Windows systems, including desktop applications such as Microsoft Word 

2003 by the name ―Microsoft‖. The Apache Open Source foundation maintains 

numerous software projects in addition to the popular Apache HTTP Server. 

Listing the Apache HTTP Server as ‗apache‘ also does not differentiate 

between these projects. 

The Open Source development credo is ―Release-Early, Release-

Often‖
[19]

, which is often contrary to many commercial practices. Open Source 
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encourages prototyping new ideas and immediately releasing them into the 

community for evaluation. Open Source software development releases are an 

almost-continuous stream of iterative versions, with both flaw-fixes and new 

feature development occurring at the same time, and appearing at the head of the 

stream. An unwanted repercussion of early-release development is that the 

software may never completely finish the development process; this practice, if 

unmanaged, can lack rigorous testing, bug fixes, and the like before initial release. 

This practice is by design; yet, the rapid release model may not fit the need of 

enterprise users requiring software stability. To address this need, the Open 

Source community will often ―freeze‖ a development branch by stopping the 

inclusion of new features and concentrate on software stabilization.  

This stabilizing technique ‗forks‘ the software, creating two branches, one 

that continues with the addition of new features, and the other that no longer 

receives new features and the potential for instability they bring. When this 

happens, the project community will begin work on the new features in a new 

major version of the software, the version number assigned to this development 

branch of the fork being ―significantly‖ different (Table 6). 

Forking the project, by intent, creates two different bodies of code. As a 

result, modules that work on one fork may not work in the other, calls to the API 

of one may not be the same as to the other. Moreover, and significant to this 

discussion, security vulnerabilities affecting one branch of the fork may not affect 

the other. Using PHP as an example, CVE-2007-3294 only affects PHP 5, and 

CVE-2007-1286 only affects PHP 4. 
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Package Major Releases 

Apache HTTP Server  1.3.x 

 2.0.x 

 2.2.x 

The Perl Programming Language 4.x.x 

 5.x.x 

 6.x.x 

Linux Kernel 2.0.x.x 

 2.2.x.x 

 2.4.x.x 

 2.6.x.x 

PHP Scripting Language 4.x.x 

 5.x.x 

 

Table 6 Examples of OSS not differentiated within the NVD. The major-releases represent 

significant changes between Open Source Software, and do not represent a continuous 

stream. 

 

Returning to the Apache HTTP Server example, vulnerabilities affecting 

Apache 2 may not affect Apache 1.3. Using the same name for both of these 

major-releases affects the accurate determination of their current vulnerability 

status. If Apache 1.3 is present on a system, searching for the string ‗apache‘ will 

produce false-positives from vulnerabilities in Apache 2. Conversely, searching 

for the string ‗apache2‘ will not match any entry in the NVD and therefore 

implies it is not vulnerable. One must know that searching for vulnerabilities in 

packages with major-releases is a special case for the NVD. 

Because the NVD does not list major versions, the match function must 

first drop any trailing number from a package name; these numbers represent the 

major release version (Table 7). From the perspective of the system, this 

combines otherwise unique software units.  Nevertheless, this match function 

heuristic adheres to the policy to error in favor of false positives.  
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To illustrate the combining heuristic; the system package name 

‗apache2‟ becomes the search string ‗apache‟, packages ‗perl4‟, 

‗perl5‟, and ‗perl6‟ become the search string ‗perl‟, the packages 

‗php4‟ and ‗php5‟ become ‗php‟ etc. 

 

System Package NVD match NVD Vulnerability 
php5  php CVE-2007-1286 

libgtop2 libgtop CVE-2007-0235 

libpng12 libpng CVE-2007-5269 

 

Table 7 Examples of vulnerability matches discovered ONLY after removing major release 

numbers from system package names 
 

 

3.3.3 Problems with major release version matching 

Combining major-releases of OSS discussed in Section 3.3.2 also 

increases the difficulty to compare system versions with a NVD entry. The match 

function must ignore the major release found on the system, and then treat the 

versions found in an NVD entry as continues. This is required because the NVD 

treats major-releases as separate versions and not as separate entities. 

Major release versions of OSS confound the notion of the ―normal‖ 

commercial software model of the NVD, which typically assigns a single CVE 

product name for each vulnerability. As an example, Windows 95 and Windows 

98 have a similar code base yet appear as separate entities in the NVD.  This 

makes sense as each represent a separate body of code. 

This is not to say that a flaw‘s effect cannot span between major-

releases—it can. Software forks contain a common ancestral body of code and so 

they can share common vulnerabilities introduced into their common ancestor. 
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Vulnerabilities begin when a security flaws enters the development stream, and 

will persist until detected. Consequently, the initial vulnerable version, and all 

subsequent releases of the software are vulnerable. Also possible is the 

vulnerability resides within a single major-release only, and that the previous and 

later major-releases are unaffected.  

A safe inference is to assume all prior releases contain this vulnerability 

up until and including the version where the vulnerability first appeared. The 

same logic holds when searching the NVD. When a software package has several 

current major release versions (e.g. Apache, Perl, PHP, etc), the safe inference 

is that all prior releases of the software contain this vulnerability up until and 

including the highest version listed.  

Yet another problem arises when matching vulnerable software versions 

due to the absence of major release versions within the NVD. The NVD data 

structure has a flag that indicates if prior versions of the named software are also 

vulnerable. The CVE-2007-3996 <vers> entry indicates a specific version of 

PHP is vulnerable, and that all prior versions are vulnerable: 

 

<vers num="5.2.3" prev="1" /> 

 

Because the highest affected version is within PHP 5, any version of 

PHP 4 will also evaluate as vulnerable. Yet PHP 4 is part of a separate major-

release, body of code, patch and revision process. The Open Source community 

will produce individual patches for each major-release and will increment their 
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versions individually. This cannot be discerned in the CVE entry; when PHP 4 is 

patched it will still appear vulnerable compared to this NVD entry.  

The <prod> element of CVE-2007-3799 generalizes the major-releases 

of PHP 4 and PHP 5 therefore the match function must also by dropping the 

release number. However, the <vers> element specifies versions of PHP 4 and 

PHP 5. In this example, versions of PHP 4 will also evaluate as vulnerable 

because the major release of PHP 4 is always less than 5.2.3: 

 
    <vuln_soft> 

      <prod name="PHP" vendor="PHP"> 

        <vers num="4.4.7" prev="1" /> 

        <vers num="5.2.3" prev="1" /> 

      </prod> 

    </vuln_soft> 

 

Two issues exist with another CVE entry for the Linux Kernel, CVE-

2008-0001 that indicates vulnerable versions as: 

      <prod name="Kernel" vendor="Linux"> 
        <vers num="2.6.22.16" prev="1" /> 

        <vers num="2.6.23.14" prev="1" /> 

      </prod> 

 

The issues are: 1) An unnecessary version number of 2.6.22.16 that is 

less than the 2.6.23.14 2) Other Linux Kernel major version release such 

as the 2.4 and the 2.2 series will always evaluate as vulnerable by a matching 

function. 
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Vulnerability CVE-2008-0455 has a good description of the ranges in the 

different Apache major-releases of 2.2, 2.0, and 1.3: 

 

 <descript source="cve"> Cross-site scripting 
(XSS) vulnerability in the mod_negotiation module 

in the Apache HTTP Server 2.2.6 and earlier in 

the 2.2.x series, 2.0.61 and earlier in the 2.0.x 

series, and 1.3.39 and earlier in the 1.3.x 

series allows remote authenticated users to… 

</descript> 

 

 

Unfortunately, a free-text description that contains the information 

necessary to evaluate an Apache HTTP Server version for a vulnerably is not 

machine-readable.  

 

3.3.4 Problems with version set matching 

The NVD contains entries that either 1) describe them as a range 

extending to all previous versions before a known vulnerable version, or 2) 

enumerates the exact set of vulnerable versions. If an NVD entry contains an 

incomplete list of enumerated versions, the possibility exists of injecting a 

‗clerical‘ error.  

Again, CVE-2008-0455 is an example of this kind of error. The machine-

readable version information for CVE-2008-0455 is not complete, therefore does 

not allow an accurate evaluation. Among the missing versions are v2.2.1, 

v2.0.11 –through– v2.0.27, v1.3.10, and v1.3.11. Overall, 

approximately 42 versions indicated as vulnerable in the description are excluded 

in the machine-readable element <vers=" "/> 
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Because of this uncertainty, the match function must test for the maximum 

vulnerability listed within a given CVE, and then compare it to the version found 

on the system. Again, this heuristic produces errors in favor of false positives. 

This method does not miss a vulnerable version missing from a list of vulnerable 

versions within the CVE-2008-0455 entry.   

 

3.3.5 Problems with consistent granularity of component entries 

Complex software systems are often broken down into components. The 

Apache Software Foundation currently designs the Apache HTTP Server in this 

manner. Among the intentions to componentized large software projects is to 

separate concerns, decouple dependencies, and promote software re-use.  

Software vulnerabilities may appear in any component of a system, and it 

is important to consider how to disclose the vulnerability with respect to the de-

composed system. This issue is one of ―granularity‖: should the individual 

components appear in a vulnerability disclosure, or should the entire composed 

system? In practical terms: it better for the NVD to list individual components, or 

the package of which the component is part? These are important questions to 

consider, and although their answers are outside of the scope of this thesis, the 

matching function requires information contained in the NVD CVE entries to 

follow a well-documented and internally consistent practice.  

The NVD does not present consistent component naming between entries. 

As an example, Apache Module vulnerabilities may appear different ways: 
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Named as part of an Apache HTTP Server entry or named in a separate entry 

(Table 8).  

A typical Apache installation contains a standard set of common modules, 

and optional modules are added as needed. Both the standard set and the option 

set of modules can be enabled or disabled individually within a specific 

installation, both types of modules are present in the NVD.  

 

 
CVE <prod name='  '> Affected component  Vendor Module Set 

2007-3303 "Apache HTTP Server" Prefork MPM module 
"Apache Software 
Foundation" "Core" 

2007-1862 "Apache HTTP Server" "mod_mem_cache" 
"Apache Software 
Foundation" "Core Other" 

2007-6258 "mod_jk" "mod_jk" 
"Apache Software 
Foundation" “Optional” 

2007-1349 
"mod_perl", 
"Apache" "mod_perl" 

"Apache Software 
Foundation" “Optional” 

2007-3847 "Apache HTTP Server" "mod_proxy" 
"Apache Software 
Foundation" "Core Other" 

2007-4465 "Apache HTTP Server" "mod_autoindex" 
"Apache Software 
Foundation" "Core Other" 

2007-5000 "Apache HTTP Server" 
"mod_imap", 
"mod_imagemap" 

"Apache Software 
Foundation" "Core Other" 

2007-6421 "Apache HTTP Server" "mod_proxy_balancer" 
"Apache Software 
Foundation" "Core Other" 

2007-0450 
"Apache HTTP Server", 
"Tomcat" 

"mod_proxy", 
"mod_rewrite", 
"mod_jk" 

"Apache Software 
Foundation" 

"Core Other", 
"Core Other", 
Optional 

2006-1095 mod_python "mod_python" 
"Apache Software 
Foundation" “Optional” 

2005-0088 mod_python "mod_python" 
"Apache Software 
Foundation" “Optional” 

2005-0108 mod_auth_radius "mod_auth_radius" 
"Apache Software 
Foundation" 

Not – Apache 
“freeradius” 

2005-1268 "Apache" "mod_ssl" 
"Apache Software 
Foundation" "Core Other" 

2005-2700 

“Enterprise Linux AS” 
“Enterprise Linux WS” 
"Apache", 
“Mod_ssl” 
"Desktop" "mod_ssl" 

“Red Hat” 
“Red Hat” 
"Apache Software 
Foundation", 
"mod_ssl", 
“Red Hat” "Core Other" 

 

Table 8 various examples of NVD Apache modules that have an ambiguous “granularity” 

associated with their names. 
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Because of this ambiguity, the matching function needs to check for the 

name of the actual module and the parent package when searching the NVD. 

Section 3.3.6 discusses this issue in detail. 

 

3.3.6 Problems with the canonical form of packages  

Matching names of system packages with those found in the NVD is 

difficult. Many system names are similar, but not the same as those present within 

entries in the NVD. The policy: ―false positives are better than false negatives‖ 

intends to limit the number of undetected vulnerable packages present on a 

system. Heuristics intend to produce false positives enable the matching function 

to discover more name matches, and expose hidden and potentially vulnerable 

packages to further scrutiny. 

Employing these heuristics, matching becomes an exercise of examining 

the system package to discover the canonical name. The difficult part of matching 

is the successfully mapping of system packages and CVE entries to their 

canonical form. Once this is accomplished, matching is trivial.   

The first example is that of inconsistent names for basic entries. The 

Apache HTTP Server appears as either ―Apache‖ or as the ―Apache HTTP 

Server‖. Since there is no ―canonical form‖ for the Apache HTTP Server, the 

matching function must search two times, one for ―Apache‖ and one for 

―Apache HTTP Server‖ (Table 9). 
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CVE <prod name='  '> Affected component  Vendor 
Number of 
Entries 

2007-6203 "Apache" "Apache HTTP Server" 
"Apache Software 
Foundation" 

90 

2007-6388 "Apache HTTP Server" "Apache HTTP Server" 
"Apache Software 
Foundation" 

38 

 

Table 9 the Apache HTTPD Server appears in the NVD under more than one way 

 

3.3.6.1 Problems with adjectives 

The second example of canonical naming issues relates to the way that 

package names appear on OSS systems. Many system package names are 

composed of a ―base‖ name, often this is similar to a ―canonical name‖, and 

various descriptive words or adjectives added to this base name, often separated 

by dashes. Examples of these names are apache-common, libapache, 

apache-utils. On occasion, system package names do not contain dashes but 

the adjectives are embedded within the package name, e.g. libapache, 

libssl, and libmpeg3. System package names that contain adjectives 

cannot match with NVD entries as CVE product names seldom contain adjectives. 

An examination of the package names contained on a Debian-based system 

reveals many common adjectives (Table 10). 

 

Name Occurrences Name Occurrences 

"lib"  7,693 "bin"  203 

"dev" 2,759 "app"  196 

"perl"  1,277 "base"  179 

"plugin"  303 "all"  163 

"mod" 553 "conf"  163 

"data"   313 "core"  97 

"php"   253 "driver"  21 

 

Table 10 A Debian packages contain repeating adjectives 
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A match between a system package name and a NVD entry may be 

determined by removing various descriptive terms found within the package 

name. The match function attempts to do so and then tries to match against CVE 

entries (Tables 11, 12). 

 
System Name Successful Match Vulnerability  
gnome-terminal-data gnome-terminal CVE-2003-0070 

gedit-common gedit CVE-2005-1686 

irssi-text irssi  CVE-2003-1020 

 

Table 11 vulnerabilities matched by alternative searches using adjective-removal 

productions separated by dashes 

 

 
System Name Successful Match Vulnerability  
libtar tar CVE-2005-2541 

 

Table 12 Productions that remove adjectives imbedded in package names 

 
 

3.3.6.2 Problems with significantly different names 
 

Another issue with matching package names with NVD entries occurs 

when the two names are significantly different and do not contain similar base 

names. An approach to discover the canonical name of a package involves 

examining the package itself. Like other package files, Debian package files 

(.deb), contain metadata describing the binary package. The package tool apt-

cache presents the metadata contained in the Apache 2.0 HTTP Server as: 

$ apt-cache show apache2 

Package: apache2 

Priority: optional 

Section: web 

Installed-Size: 84 

Maintainer: Ubuntu Core Developers <ubuntu-devel-

discuss@lists.ubuntu.com> 

Original-Maintainer: Debian Apache Maintainers 

<debian-apache@lists.debian.org> 
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Architecture: all 

Version: 2.2.3-3.2ubuntu2 

Depends: apache2-mpm-worker (>= 2.2.3-3.2ubuntu2) | 

apache2-mpm-prefork (>= 2.2.3-3.2ubuntu2) | 

apache2-mpm-event (>= 2.2.3-3.2ubuntu2) 

Filename: pool/main/a/apache2/apache2_2.2.3-

3.2ubuntu2_all.deb 

Size: 38764 

MD5sum: 94bc013993063da5830e8a57ddc99694 

SHA1: ef3e480e5bc1cb7e71708b7ac15ef8ae878307da 

SHA256: 

ec711521f176b091dd8ac5f003269a00c5c491b722cb8608be

9cc82ce3bbd9fd 

Description: Next generation, scalable, extendable 

web server. Apache v2 is the next generation of 

the omnipresent Apache web server. This version - 

a total rewrite - introduces many new 

improvements, such as threading, a new API, IPv6 

support, request/response filtering, and more. 

Bugs: mailto:ubuntu-users@lists.ubuntu.com 

Origin: Ubuntu 

Task: lamp-server 

 

 

Within the metadata is an optional field ―Source‖ which indicates, if 

present, that the package is a subcomponent part of a parent package. This field is 

not present within apache2 metadata therefore the apache2 package is not 

provided by another source other than itself.  

If present, the Source field contains the name of the parent package that 

supplies the sub-package. Often, such as in the apache example, the source 

packages require several other components to supply the entire functionality. The 

components start with the binary itself, libraries needed for various functions, 

modules for different services, etc.  

An example of a package that contains the ―Source‖ metadata field is the 

package avifile-xvid-plugin: 

 

$ apt-cache show avifile-xvid-plugin 

Package: avifile-xvid-plugin 

Priority: optional 
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Section: contrib/libs 

Installed-Size: 28 

Maintainer: Zdenek Kabelac <kabi@debian.org> 

Architecture: i386 

Source: avifile (1:0.7.44.20051021-2.2) 

Version: 1:0.7.44.20051021-2.2+b1 

Depends: libavifile-0.7c2 (>= 1:0.7.43.20050224-1), 

libc6 

Filename:pool/contrib/a/avifile/avifile-xvid-

plugin_0.7.44.20051021-2.2+b1_i386.deb 

Size: 930 

MD5sum: 55db4dbea6277dba90a8d0145855b257 

SHA1: 01277b2426be9b58afa41c0c093a27d6aa5c1a51 

SHA256: 

be5e6d1766458e0a4d785e95978710cea2ec294cf61f7dd9e8bda

150ebeb821c 

Description: XviD video encoding plugin for 

libavifile 

 Plugin for encoding DivX4 video. 

 NOTICE: This plugin requires separate installation 

of ibxvidcore 1.0 library which is not a part of 

this package nor official Debian itself. See 

documentation for more details. 

   In general you do not need this plugin. 

 

 

After the adjective production removes the adjective ―plugin‖, the name 

string becomes ―avifile-xvid‖ which is still not the canonical name. The 

adjective ―xvid‖ is not a common adjective, therefore not on the adjective 

removal list, therefore no further decomposition will occur by the adjective –

removing productions. 

However, a substitution of the name ―avifile” found in the ―Source‖ 

metadata field of the package ―avifile-xvid-plugin” yields the canonical 

package ―avifile‖. The package name ―avifile‖ would not otherwise receive 

any attention from the matching function and thus not compared to NVD entries 

because it is not loaded on the system: 

 

$ apt-cache show avifile             

W: Unable to locate package avifile 

E: No packages found 
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Nevertheless, the name ―avifile‖ is likely to appear in a CVE entry 

when describing vulnerabilities and not the name ―avifile-xvid-plugin‖. By 

adding the source name, when found in the package metadata, to the search of the 

NVD we increase the accuracy of the evaluation. There exist examples when the 

―Source‖ metadata field produces redundant results, which are the same as the 

adjective decomposition, however in other cases, metadata production produce 

surprising and unexpected names (Table 13). 

 

System Name  Source Name Vulnerability 

extract libextractor CVE-2006-1244 

libgadu3  ekg CVE-2005-1850 

bsdutils util-linux CVE-2005-2876 

 

Table 13 Vulnerabilities detected via source names that other heuristic productions will not 

discover 

 

3.3.3.5 Recursive lookups  

After attempting to find a match between the system name and a NVD 

name, the matching function attempts to find matches by recursively applying 

productions.  Matching some system packages is not possible without several 

applied productions (Table 14).  

 

System Name Intermediate Production Successful Match Vulnerability  

libcurl3 libcurl curl CVE-2006-1061 

php4-cgi php4 php CVE-2007-1286 

 

Table 14 Recursive productions of major version, imbedded-adjective, or word-adjectives. 
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Such is the case of BIND, an important component found on many Linux 

Systems. The Berkeley Internet Name Domain (BIND) is an implementation of 

the Domain Name System (DNS) protocols. In addition to Linux systems, the vast 

majority of name serving machines on the Internet
[21]

 uses it. BIND also has 

experienced a number of vulnerabilities; the NVD contains 42 CVE entries that 

explicitly name BIND vulnerabilities between 1999 and 2008. The most recent 

CVE-2008-0122 published January 15
th

 2008.  

Figure 13 illustrates several issues when matching the BIND package 

from Linux systems. 1) Matching BIND system names cannot occur directly; 

normalization of the names must occur first. Both the major release numbers ―9‖  

and ―9-0‖and the adjectives ―lib‖ and ―host‖ need removal before ―BIND‖ 

will match. Once normalized, three system packages are vulnerable. 2) Six 

additional packages are vulnerable by discovering their source is from BIND. 3) 

The issue of ―granularity‖ exists within the BIND packages; The NVD contains 

six current BIND vulnerabilities; but which of the nine components contain these 

flaws?  
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Figure 13 the relationships between BIND vulnerabilities and matched packages on a Linux 

system. 

 

 

3.3.3.5 Two additional matching heuristics 
 

Often a CVE <prod name=" "> entry contains several words, or even 

a description separated by spaces. In such cases, the package name, which never 

contains spaces, cannot ever match. Nevertheless, it may be possible to attempt to 

match the single word within the description. E.g. the word "Linux" cannot 

match <prod name="Enterprise Linux"; however the single word 

―Linux‖ from the CVE can be matched back to the system name. Similarly, the 

system name "libwpd" with <prod name="libwpd library">. The 

match function attempts to match each word found in the CVE <prod name=" 

"> with a package name from the system. This heuristic name is a ―reverse‖ 

match.  

Similarly, any single word from within the CVE <prod name="  "> 

entry may be matched with any word derived from the Match Function 
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productions, e.g. the system name "libmagic1" produces the word "magic" 

which in turn is contained in <prod name="Fx Magic Music"> This 

match function heuristic name is a ―any‖ match.  

Although these two matching heuristics do produce additional matches, 

the quality of these matches is very poor. They produce a tremendous quantity of 

false positives, and the correct results they produce are generally duplicates of 

other heuristic productions. Package names that contain the adjectives ‗file‘, 

‗Linux‘, ‗ftp‘, or ‗telnet‘, are particularly problematic, as they are quite 

common in the NVD. The string ‗file‘ even occurs in both the system and the 

NVD. 
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3.3.3.5 Summary of match heuristics 

Of the three general match heuristics tried, ―Reverse‖, ―Alternate‖, and 

―Any‖ only the ―Alternate‖ method is successful. Discovering alternate names by 

using case-insensitive matching, removing numbers and adjectives or by replacing 

the package name with the source name produced the best results (Figure 14 and 

Table 15).  

 

 

Figure 14 Summary of name matching heuristics 
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Heuristic 
Added 

Matches 
Match 

Function Description 
Precise 7 $CVE_Name eq $systemPackage String match, including case 

e.g  'gimp' will not match 

'Gimp'  

 

Note: does not produce a 

significant matches -not used 

 

Exact 30 lc $CVE_Name eq lc $sysPackage Case insensitive string match,  

creates case collisions e.g. Ant 

and ANT 

 

Reverse 21 $systemPackage ~= $CVE_Name CVE name matches a substring 

within the system name e.g. 

matches system name 'file' with 

NVD entry 'Text File Search'.  

 

Note: produces many false 

positives-not used 

 

Alternate 335 foreach $alt (@productions) { 

   $CVE_Name eq $alt  

} 

Productions remove adjective 

and numbers from system 

names, result matched to NVD 

entries along with the source 

package name if it exists e.g. 

matches CVE name "Bind‖ by 

mapping system name 

"liblwres9" with source name 

"bind‖, also system name 

"apache2.2-common" with 

CVE name "Apache" 

 

Any 263 lc $CVE_Name ~= lc systemPackage  The system name matches a 

substring of the CVE name  

e.g. system name "libusb-0.1-4" 

with NVD entry "Secustick 

USB flash drive"  

 

Note: produces many false 

positives-not used 

 

 

Table 15 the results of matching between a system containing roughly ~2000 packages and 

the NVD_CVE_2007.xml file (as of September) containing 5164 vulnerability entries 

 

3.3.4 Match Accuracy  

Confidence in matches between CVE names and alternative names found 

by productions cannot be the same as the confidence in the exact matches. 

Production heuristics contain assumptions; and these can be false. The matching 
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function compensates by labeling each successful match with the heuristic name 

that produced the match. In this way, the labels provide information for further 

scrutiny of the match confidence. 

 The policy of the match function is to discover matches between a  

system‘s package names and NVD entries, and when there are uncertain results, 

to fail by generating false-positives. The various productions, multiplied by the 

intentional production of uncertain results as positives, do create duplicate results. 

The matching function often identifies several files corresponding to one 

vulnerability. This is intentional as the exact location of the vulnerability is 

unknown and therefore all potential vulnerable files need recognition. Often, as in 

the case of a recent e2fs vulnerability, CVE-2007-5497, many related packages 

required security patches: libcomerr2, libuuid1, libss2, 

libblkid1, e2fslibs, e2fsprogs. 

 

3.3.5 The problem of detecting downstream alteration 

Open Source Software, by definition, has permissive software licenses that 

permit the modification of packages. The license, along with the availability of 

the source code, allows changes to occur at any time in the software lifecycle. 

This is very different from the closed source process. Significant changes to Open 

Source Software do not necessarily occur at the head of the development stream; 

software experiences changes all along the development stream including changes 

by the end-user. This poses additional problems to determine if vulnerable 

software exists on a system using the NVD. The software name and version found 

in the NVD is likely from the head of the development stream and does not reflect 
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the myriad of changes the downstream community has made. This issue is the 

same as the name and version matching problems described in Section 3.2.2 

This downstream alteration effect continues after the matching function 

has accurately matched a system name with a CVE entry, and has determined that 

the system version is less-than or equal-to the greatest vulnerable version in the 

CVE. Surprisingly it is very likely this matched package is still not vulnerable. 

This has caused much confusion for IT personnel attempting to detect vulnerable 

OSS software. 

The root of the confusion is that CVE entries contain versions as listed at 

the head of the development stream. The subsequent downstream alternations are 

not apparent in the CVE, and without accounting for these alterations, comparing 

version information is worthless. 

Section 3.2.2.2 describes the truncation of system version information 

after the upstream version. This must occur to enable a comparison with the 

NVD. Unfortunately, the information added after the upstream system version 

represents important alterations that affected the package including the 

backporting of security patches. Table 3 shows versions of several Ubuntu 

packages and their truncated counterparts. These annotations signify profound 

changes from the upstream version.  

At the head of a development stream (Figure 6), the project maintainer, 

produces release versions, and downstream, various entities make changes to this 

version. These changes fundamentally alter the software to such a degree that it 

may no longer behave the same. Alterations may be for many purposes, not only 



  

70 

for security. The changes modify the package in many ways. They may even 

introduce new vulnerabilities e.g. CVE-2007-3379, is a vulnerability introduced 

into the red hat Linux Kernel or, as in the case of a security back-port, a patch 

from the head of the development stream fixes a downstream version. The 

backporting process eliminates the vulnerability within the older ―version‖, but 

the older version will still appears to be ―vulnerable‖ by comparison to the NVD 

version regardless that it no longer contains the faulty code.  

The practice of ―backporting‖ a security fix will reduce the latency of the 

patch to precede down the development stream, anyone can do the work; 

however, it is often the work of distribution package maintainers. The work done 

to produce the security patch begins with a patch submission to the head of the 

development stream. Thereafter, this fix becomes part of all future versions. 

Unfortunately, this resolves the security vulnerability only at the head of the 

development stream; the older, stable portions of the stream are still subject to the 

exploitation of the security flaw. Therefore, the patch must also apply to the 

―stable‖ versions of the software. This takes additional work, as the stable 

versions may not be the same as the code at the head of development in lieu of the 

freeze for stability. The process of refactoring the patch to apply it to the stable 

software is one form of ―backporting‖ the security patch. 
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3.3.6 Detecting downstream alteration with the changelog 

We cannot directly compare a CVE version with a System version. Left 

unaltered, the system package version often contains extra annotations added by 

downstream package maintainer (Figure 15). These annotations indicate if the 

system version is vulnerable or if a back-port has been applied. Removing 

annotations such as show in Table 3 enables numerical comparison to those in the 

NVD; however, the results now contain false positives. The package versions 

detected as vulnerable by this comparison may actually contain applied back-

ported security patches.  

Fortunately, .deb package binaries include a changelog file that lists a 

history of the package maintainer‘s work, including applied security patches
[22]

. 

Each security patch, which is back-ported by a package maintainer to fix a bug or 

security fault, will reference the original issue by its unique CVE (or candidate) 

id.  

Because CVE numbers mark when patches have fixed security flaws, the 

matching function can equate the presence of a CVE number to a back-ported fix 

within the package. The changelog can provide information that the package is 

not vulnerable even when the comparison of the system and CVE version 

indicates the package is vulnerable. By parsing the changelog for a specific CVE, 

the match function can automatically determine if a back-port fix for CVE is 

present in the package binary. Figure 16 shows this heuristic added to the 

matching process.  
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Figure 15 examples of package versions present on an Ubuntu 7.10 system, annotations by 

downstream package maintainers describe downstream changes  
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If a package is listed in the NVD, and has an upstream version less than or 

equal to any version listed in the NVD, it is vulnerable only if the CVE number is 

not found in its changelog. Note that there is an implicit decision to trust the work 

of the package maintainer. In addition, determining whether the presence of the 

CVE number is accurate in the package changelog is beyond the scope of this 

work. Moreover, all Debian packagers do not follow the Debian packager‘s 

manual, e.g. gcc, does not list CVE numbers when back-port security patches are 

applied. 

                

 

Figure 16 adding the back-port check to the end of the analysis 

 

3.3.7 Verification of matching function accuracy 

The aim of this work is to determine if it is possible to detect 

vulnerabilities in a fully ―patched‖ system by using the information contained in 

the NVD. A secondary concern is to do this comparison by exclusively using 

information available on the system and the NVD. This secondary exercise is to 
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determine if an analysis of this kind is possible, independent of the determination 

by the vendor of the system, i.e. the Linux distribution that provides the system. 

External verification is required to determine accuracy of such an 

independent analysis. One method for verification is to compare each non-

negative result produced by the matching function against the list of packages the 

system itself determines are vulnerable. Of course, this verification is impractical 

if done ―by hand‖ through the systematic examination of each vulnerability and 

each NVD entry.  

To avoid this impracticality, the Debian system tools apt-get, apt-

show-versions, and the security tool debsecan partially automate the 

verification. The system tools simply check if there are updates available on the 

update mirror, the tool debsecan compares the installed system packages to the 

vulnerability notes of the Debian security team. 

 

4. Results of testing the matching function 

Using the heuristics described in this work, an automated matching 

function was able to detect publically disclosed vulnerabilities within fully 

patched Linux systems. The results produced by the matching function 

consistently indicated 5%-12% more vulnerabilities than the tool debsecan 

(Table 16). 
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Year Packages 

Matching Function Debsecan 

Δ Matched Vulnerable Matched Vulnerable 

2008* 402 55 12% 47 10% 6% n/a % 16 4% 6% 

2007 402 90 22% 68 17% 7% n/a % 39 10% 7% 

2006 402 73 18% 52 13% 12% n/a % 4 1% 12% 

2005 402 85 21% 49 12% 12% n/a % 1 0% 12% 

2004 402 93 23% 36 9% 9% n/a % 0 0% 9% 

2003 402 59 15% 22 5% 5% n/a % 0 0% 5% 

2002 402 108 27% 32 8% n/a n/a % 0 0% 8% 
 

Table 16 current system vulnerabilities reported by the matching function and debsecan, 

by year, analysis as of April 14 2008. *detail results for 2008 in Figure 13  

 

 

To compare these tools further, results for the year 2008 are show in 

Figure 17. Note the matching function detects all the vulnerable packages 

detected by debsecan, several false positives, and several that debsecan misses. 

Sections 4.1.1 and 4.1.2 describe each numerated portion of this figure in detail.  
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Each numbered portion of Figure 17 has text description consisting of: 

a) Synopsis of match accuracy 

b) Packages names involved 

c) CVE numbers involved  

d) Analysis 

 

Figure 17 results diff between debsecan and the match function. No highlighting indicates 

both tools detected the same vulnerability, gray indicates name not detected, yellow indicates 

an additional match. Enumerated callouts discussed in the text.  
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4.1 Items only reported by debsecan 

1. debsecan false-positive 

Package:  

  Gallery2 

 CVE-2008-1066 (The modifier.regex_replace.php plugin in Smarty before 

2.6.19, as used by Serendipity (S9Y) and other products,...) 

 

Analysis: 

The comparison shows the matching function does not detect the 

vulnerable package ―gallery2‖ which is assigned the vulnerability entry 

CVE-2008-1066. However, this CVE is for the package ―Smarty‖, not 

―Gallery2‖ according to the NVD and confirmed by the Debian security 

advisory DSA-1520.  This vulnerability is an example of a composition 

issue similar to the one described in Section 3.3.5 but in contrast, the 

composition not present in the NVD. Otherwise, components affected by 

the smarty vulnerability, such as the package gallery2, would be part of 

CVE-2008-1066. Due to the stipulation that the contents of the NVD 

determine vulnerability status, not the vendor, this result is a false positive. 

Regardless, the tool debsecan, which relies upon vendor information, has 

correctly indicated that the package Gallery2 is vulnerable. 
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4.2 Items only reported by the Match Function 

2. Match Function false-positive  

Packages provided by the GNU Compiler Collection:  

cpp-4.1  4.1.1 

gcc 

gcc-3.3-base 3.3.6 

gcc-3.4-base 

gcc-4.1 

gcc-4.1-base 

libg2c0 

libgcc1 

libgfortran1 

libssp0 

libstdc++6 

 

Two CVEs are reported by the Match Function: 

 

 CVE-2008-1685 (gcc 4.2.0 through 4.3.0 in GNU Compiler Collection, when 

casts are not ...) 

 CVE-2008-1367 (gcc 4.3.x does not generate a cld instruction while 

compiling ...) 

 

 

Analysis: 

Both of these vulnerabilities are for specific versions. The matching 

function determines vulnerabilities by the highest version found in the NVD 

(Section 3.2.1.2); therefore, by these heuristics the GCC packages receive a 

vulnerable label, even when the NVD does not indicate they are.  

 

3. Match Function false-positive 

Packages provided by gpg:  

gnupg  1.4.6 

gpgv   1.4.6 

 

 CVE-2008-1530 (GnuPG (gpg) 1.4.8 and 2.0.8 allows remote attackers to 

cause a denial ...) 
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Analysis: 

This vulnerability is for a specific version. The matching function 

determines vulnerabilities by the highest version found in the NVD (Section 

3.2.1.2); therefore, by these heuristics GnuPG and gpgv receive a vulnerable 

label, when debsecan does not indicate they are.  

 

 

4. Vulnerabilities not reported by debsecan 

-also- 

Match Function false-positive 

Packages provided by php4:  

libapache2-mod-php  4.4.4 

libapache-mod-php4 4.4.4 

php4    4.4.4 

php4-cgi   4.4.4 

php4-cli   4.4.4 

php4-common  4.4.4 

php4-mysql  4.4.4 

 

 

 CVE-2008-1384 (Integer overflow in PHP 5.2.5 and earlier allows 

context-dependent ...) 

 CVE-2008-0145 (Unspecified vulnerability in glob in PHP before 

4.4.8, when ...) 

 

 

Package: 

 mysql  5.0.23 

 

 CVE-2008-0226 (Multiple buffer overflows in yaSSL 1.7.5 and 

earlier, as used in MySQL ...) 
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Analysis: 

The CVE indicates the PHP vulnerability is for all versions 

preceding a specific version. The upstream version represented by the 

system is less than both 5.2.5 and 4.4.8. In addition, both CVE numbers 

are not within the package changelogs. Therefore, by these heuristics the 

packages provided by php4 are vulnerable. 

The detection of the mysql vulnerability is due to the 

decomposition of the package name. The NVD contains a CVE for a 

product named ―mysql‖, however there is no version given. The match 

function will attempt to discover if the CVE number is present in the 

changelog for the reported package, in this case mysql which is not found 

on the system. MySQL has multiple components on a system: mysql-

common, mysql-server, and mysql-client. A mapping between the NVD 

package name and the system package name is needed to resolve this false 

positive. 

 

5. Match Function false-positive  

Package: 

 libapache2-svn  1.4.2 

 

 CVE-2008-0005 (mod_proxy_ftp in Apache 2.2.x before 2.2.7-dev, 

2.0.x before ...) 

 CVE-2008-0455 (Cross-site scripting (XSS) vulnerability in the 

mod_negotiation module ...) 

 CVE-2008-0456 (CRLF injection vulnerability in the mod_negotiation 

module in the ...) 
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Analysis: 

The package libapache2-svn extends the functionality of the Apache HTTP 

Server, and to three of the Web Servers vulnerabilities. 

 

6.  Match Function false-positive  

Package: 

 libldap2 2.1.30 

 CVE-2008-0658 (slapd/back-bdb/modrdn.c in the BDB backend for 

slapd in OpenLDAP ...) 

 
Analysis: 

This vulnerability is for a specific version. The matching function determines 

vulnerabilities by the highest version found in the NVD (Section 3.2.1.2); 

therefore, by these heuristics libldap2 receive a vulnerable label, when debsecan 

does not indicate so.  

 

 

7.  Vulnerabilities not reported by debsecan 

Packages provided by netpbm: 

libnetpbm10  10.000 

netpbm  10.000 

 

 CVE-2008-0554 (Buffer overflow in the readImageData function in 

giftopnm.c in netpbm ...) 

 

 
Analysis: 

This vulnerability is for all versions preceding a specific version. The upstream 

version represented by the system is less than 10.26. In addition, the CVE 
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number is not within the package changelogs. Therefore, by these heuristics 

the packages provided by netpbm are vulnerable. 

 

8. Vulnerability not reported by debsecan 

Package: 

 libtorrent9 0.10.4-1 

 CVE-2008-0646 (The bdecode_recursive function in 

include/libtorrent/bencode.hpp in Rasterbar Software libtorrent before 

0.12.1, as used in Deluge before 0.5.8.3 and other products…) 

 
Analysis: 

This vulnerability is for all versions preceding a specific version. The upstream 

version represented by the system is less than 0.12.1. In addition, the CVE 

number is not within the package changelogs. Therefore, by these heuristics 

the package libtorrent9 is vulnerable. Why debsecan does not detect this 

vulnerability is unclear, perhaps it is because the package libtorrent9 is sourced 

by the package libtorrent which is not on the system. 

 

 

9. Virtual Package 

Analysis: 

The Match function reports two vulnerable components of the latest kernel 

2.6.18 within Debian Etch. The package linux-image-2.6-686 is a virtual 

package
[23]

, not reported by debsecan, and not be reported by the match 

function. 
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Vulnerabilities not reported by debsecan 

-also- 

Match Function false-positive 

Packages provided by python:  

 
python    2.4.4 

python2.4   2.4.4 

python2.4-minimal  2.4.4 

python-support   0.5.6 

python-apt  0.6.19 

 

 CVE-2008-1721 (Integer signedness error in the zlib extension module 

in Python 2.5.2 and earlier allows remote attackers to execute 

arbitrary…) 

 
 

Analysis: 

This vulnerability is for all versions preceding a specific version. The 

upstream version represented by the system is less than 2.5.2. In addition, 

the CVE number is not within the package changelogs. Therefore, by 

these heuristics the packages python, python2.4, and 

python2.4-minimal are vulnerable. 

The packages python-support and python-apt should not 

be reported vulnerable. They match because the normalization productions 

decomposed their names to match with python, although they are not part 

of the python package. 
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4.3 Testing the entire system  

Using the entire NVD data set, an automated matching function matched 

publically disclosed vulnerability within updated Linux systems. A summary of 

the vulnerabilities discovered in a fully patched system matched against NVD 

files between 2002 and 2008 is in Table 17. Additional detailed analysis were not 

performed, but is expected be similar to that of the details of the 2008 analysis.  

 

Year 
Matching 
CVEs  

Unfixed 
Vulnerabilities Not for us Back-port fix Upstream fix 

2008 105 80 76% 1 1% 9 9% 15 14% 

2007 1319 883 67% 62 5% 233 18% 141 11% 

2006 749 150 20% 14 2% 71 9% 514 69% 

2005 649 61 9% 0 0% 42 6% 546 84% 

2004 651 104 16% 4 1% 39 6% 504 77% 

2003 390 57 15% 6 2% 2 1% 325 83% 

2002 1234 49 4% 159 13% 2 0% 1024 83% 
 

Table 17 System vulnerabilities, as detected by the matching function, categories by year 

 

 

 Several interesting trends are present in Table 17. First, there is an 

inverse-relationship between back-port fixes and upstream fixes. This fits our 

understanding of the Open Source security model: The maintainers do not wait for 

the upstream security fix to arrive through the normal distribution update 

schedule. Instead, security fixes are back-ported in order to secure the package 

and to preserve the stability of the package. We see this by noting that recent 

years have many more back-port fixes, earlier years have more upstream fixes. 

Second, there exists public vulnerabilities in all years analyzed. The increased 

amount of vulnerabilities that the Debian security team labels as ―NOT-FOR-US‖ 

in the file nvd-cve-2002.txt is due to the number of CVEs that predate the Debian 

security tracker.  
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5. Conclusion 

This work investigates the feasibility of using a vendor-independent 

vulnerability data source such as the NVD to determine whether vulnerabilities 

exist within fully patched and ―up-to-date‖ Open Source computer systems. This 

method discovered a set of vulnerable packages on fully patched systems. A 

comparison of these results examined their content verses two other result sets 

produced by independent tools. These comparison result sets used vendor-specific 

data; one set by the Debian tool debsecan, and the other set by the package 

update manager apt using Debian update mirrors.  

The results differ between all three methods. First, a fully up-to-date 

system, as reported by the update manager apt, yields apparent vulnerabilities 

when analyzed by either the matching function, or the vendor-specific tool 

debsecan.  Therefore, it is possible to demonstrate the presence of un-patched 

vulnerabilities in fully updated system, proving it is a fallacy to assume an up-to-

date or fully patched system will also be vulnerability-free.  

This work also attempted to automate the matching process. This portion 

of the thesis was partially successful, limited by inconsistencies and absence of 

critical information within the NVD.   

The tool debsecan produced fewer false positives than the method used 

in this thesis but is not able to perform a complete analysis of a system without 

domain-specific information. Therefore, although a partially automated analysis is 

feasible, it is not possible to automate a complete and accurate result by 
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comparing the information contained in the NVD and that of the packages present 

on an Open Source computer system. 

Conversely, the matching function was able to bypass the latency required 

to generate the domain-specific analysis. The matching function detected 

vulnerabilities in the system impossible to detect by debsecan due to the 

Debian Security Team having not finished the analysis of the CVE entry.  

The information presented in this thesis can only represent a precise 

snapshot in time. All of the data sources relied upon to generate the analysis 

experience ongoing changes, which affect their outcome.  The NVD changes 

daily, new CVE entries appear and existing entries modified. Information 

produced by the Debian Security Team also changes daily, if not hourly. Mirror 

sites reflect ongoing updates and releases of Open Source packages with new 

releases, back-ports, and updates. 

Significant issues exist within the NVD regarding the presentation of 

Open Source vulnerability information. These issues impair the accuracy of 

conclusions drawn from NVD data, such as the numerous vulnerability 

comparisons between closed and open source software
[24]

. 

 

5.1 Recommendations for the NVD 

One great value of the NVD and the CVE entries therein, is that of 

aggregation; divergent vulnerability information is associated and assigned a 

common identifier to resolve synonymous data. This standardization facilitates 

human communication, and greatly enables the interoperability of automated 



  

87 

tools. Unfortunately, the identification of vulnerabilities requires two identified 

components: the vulnerably and the software. Unfortunately, the NVD does not 

sufficiently support the identification of software, and consequently the value of 

NVD suffers. Furthermore, if users of the NVD do not accommodate these 

shortcomings, then too the conclusions drawn from NVD data also suffer. 

The question this work answers is whether publically known vulnerabilities 

exist within fully updated OSS systems. During the process of resolving this 

question, many issues within the NVD became apparent. These issues were 

significant enough to limit the effectiveness of a determination of vulnerability on 

Open Source systems. Many accommodations were then included into the 

software matching heuristics of this work that increased the precision of the 

result. However, these accommodations do not represent a complete solution. 

Matching software techniques have a limited ability to resolve the data issues 

within the NVD, and certainly not to a sufficient extent as to make the NVD 

robust enough to support complete vulnerability matching. For complete 

resolution, the NVD must adopt a data model that includes the means to identify 

vulnerable software. 

This work has noted many shortcomings in the NVD while attempting to 

identify vulnerable software; the intent of this last section is to provide insight 

into the resolution of some of these issues.  
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5.2 Resolutions for the NVD 

The solution organization is in two categories:  

1) Resolution of consistency in the format and conventions within NVD 

entries 

2) Resolution of ambiguous matching of vulnerable OSS 

 

5.2.1 Resolutions for the NVD consistency problems  

In order for the NVD to provide unambiguous name matching, a single 

name it must reference different vulnerabilities of the same software with the 

same name. As an example of currently there are 90 CVE entries with a product 

name of ―Apache‖ and 39 entries with the product name of ―Apache HTTP 

Server‖. This is a problem of data normalization, and the solution is to choose one 

name or the other. In this case, the name ―Apache HTTP Server‖ is more precise. 

NVD entries provide limited information about the vulnerable software 

itself. A description of the vulnerable software can help to determine which 

package the vulnerability affects. Such an description may be from the software 

vendor itself:  

 

Apache HTTP Server 

Versatile, high-performance HTTP server The most popular server 

in the world, Apache features a modular design and supports 

dynamic selection of extension modules at runtime. Some of its 

strong points are its range of possible customization, dynamic 

adjustment of the number of server processes, and a whole range 

of available modules including many authentication mechanisms, 

server-parsed HTML, server-side includes, access control, CERN 

httpd metafiles emulation, proxy caching, etc. Apache also 

supports multiple virtual homing. . Separate packages are 
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available for PHP, mod_perl, Java Servlet support, Apache-SSL, 

and other common extensions. More information is available at 

http://www.apache.org/. 
 

Resolving match ambiguities due to treating the names of the same 

software entities with different font cases can also be resolved through data 

normalization. The case of the names needs also to be consistent; referring to the 

Gnu Compiler Collection as both ―GCC‖ and ―gcc‖ raises the question of whether 

these names refer to the same software entity or not. If the NVD does not use case 

to identify software, then it should at least consistently refer to software with the 

same case.  However, not using case disallows the identification between software 

names that depend upon case, such as discerning the differences between Ant 

(automated software build tool) and ANT (desktop ISDN telephony application) 

and therefore is not a good idea. 

Resolving match ambiguities due to granularity inconsistencies will 

require the NVD entries to use a consistent naming convention. Many complex 

software solutions have components. Devising a consistent means to identify 

these components is important to resolve the ambiguities currently in the NVD. 

Table 15 lists some of the ―granularity‖ inconsistencies within the names of such 

a system, the Apache HTTP Server. This is a difficult problem to solve, as it may 

be important to provide vulnerability information regarding both the software 

component, e.g. ―mod_ssl‖ and the software composition, ―Apache HTTP 

Server‖. The resolution for this issue is within Section 5.2.2  
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5.2.2 Resolutions for matching problems with NVD names and versions 

 After the inconsistencies within the NVD names and conventions are 

resolved there will still problems matching the names and the versions of 

vulnerable software. One of these problems is due to the same software entities 

having different names within different domains. The good example being that the 

name for the Apache HTTP Server is ―apache‖ on Debian Linux systems and 

―httpd‖ on Red Hat Linux systems.  

The problem of mapping various name synonyms, originating from 

different domains, to a single identifier is the issue that the NVD was created to 

solve. This same solution, applied to software names, will resolve many of the 

matching issues this work uncovered. 

 

 

Figure 18 Ontology can help resolve naming problems due to different names 

 

A unique identifier, called a Canonical Number (CN) allows unambiguous 

matches of case-sensitive names (Figure 18). Adding the number CN-1234-5678 

to an Ant vulnerability to allows Ant (automated software build tool) to match, 

while not matching the number CN-0123-4567 for ANT (desktop ISDN telephony 

application). Moreover, it also resolves ambiguities caused by various Linux 

Distributions naming the same software by different names.  
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The number CN-1762-5678 can refer to both ―apache‖, ―httpd‖, and 

to ―Apache HTTP Server‖ With the same result, names with adjectives 

added will resolve without the complexity of the adjective removing production 

upon which this work relies. ―libapache-mod-ssl‖ (Debian name), 

―mod_ssl‖ (project name) and ―Mod_ssl‖ (NVD name) can all resolve to CN-

2587-4750. 

The examples so far are recognizable matches by human review. A 

canonical number will also allow matching between entities that would otherwise 

be un-matchable even by a human. The series of BIND vulnerabilities shown in 

Figure 13 requires the tool to use package metadata to conclude six other 

components are part of the BIND package. Ontology with information regarding 

the composition of packages, their components and dependencies, will allow tools 

to traverse these mappings to find matches un-readable by human inspection. 

Packages are often a component part of a larger system (e.g. Apache and 

Apache modules). One form of canonicalization involves the understanding that 

an Apache module is ―part of‖ an Apache installation. This enables the match to 

discover vulnerabilities where direct name matching will fail.  

Resolving match ambiguities due to major release name and version 

matching still needs to be addressed for a different reason, that of the fact that 

major releases represent vastly different bodies of code. The simple solution is to 

delineate the major releases by giving them a product name of their own, just as 

successive major releases of windows receives different entries. The NVD 

currently has product entries for Windows 3.51, Windows 95, Windows 98, 



  

92 

Windows NT, Windows 2000, Windows ME, Windows XP, and Windows Vista. 

Similarly, there should be product names for PHP 4, PHP 5 and the major releases 

of Perl, and the Apache HTTP Server, etc. This will allow a specific major release 

to match without results from other major releases confusing the match results 

and other sets of versions. An example for PHP: 

 

    <vuln_soft> 

      <prod name="PHP4" vendor="PHP"> 

        <vers num="4.4.7" prev="1" /> 

      </prod>  

      <prod name="PHP5" vendor="PHP"> 

        <vers num="5.2.3" prev="1" /> 

      </prod> 

    </vuln_soft> 

 

The attempt to present a set of vulnerable versions in a CVE has produced 

errors as noted before (Section 3.3.4). This resolution follows the method in this 

work, which is to present only the highest known vulnerable version. In this, way 

both the data consistency and the comparison by a matching tool will be simpler 

and less prone to error. Software with major releases can still share the same 

vulnerabilities, which requires a maximum vulnerable version listing in each. 

Some of the responsibility for version ambiguities rests on the shoulders 

of the Distributions. The resolution of this issue is the one used in this thesis.  

Debian, for the most part, is a good example of a Linux Distribution whose 

changelogs contain machine-readable annotations regarding security fixes. Other 

Linux Distributions can replicate this example and therefore back-ported security 

patches will be visible to automated tools. 
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Appendix I, 

Tables Used for Calculating the Number of Packages 

Represented by Open Source Distributions 
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Name Releases 

64 Studio  2 

aLinux  13 

ALT Linux  4 

Annvix  2 

Arch Linux  2 

Ark Linux  2 

Arudius  2 

Asianux  3 

Aurox  12 

BLAG  7 

Caixa Mágica  2 

José Guimarães 2 

Paulo Trezentos  2 

CentOS  5 

CRUX  3 

Damn Small Linux  5 

Debian  6 

Desktop Light Linux  2 

DeMuDi  2 

dyne:bolic  3 

Elive  1 

EnGarde Secure Linux  2 

Fedora  8 

Finnix  10 

Foresight Linux  2 

Fox Linux  1 

Frugalware  2 

Gentoo Linux  2 

gNewSense  2 

Gnoppix  3 

gnuLinEx  2 

GoboLinux  13 

Impi Linux  7 

Kanotix  2 

Knoppix  6 

KnoppMyth  2 

Kurumin Linux  7 

Linspire  6 

Freespire  2 

Linux Mint  4 

Lunar Linux  2 

Mandriva Linux  2 

MontaVista Linux  5 

Musix GNU+Linux  2 

Myah OS  3 

NimbleX  2 

Nitix  5 

Open Enterprise Server 2 

openSUSE  11 

Paipix  8 

Pardus  2 

Parsix  2 

PCLinuxOS  2 

PLD Linux Distribution  2 

Pie Box Enterprise Linux  5 

Puppy Linux  4 

QiLinux  2 

Red Flag Linux  5 

Red Hat Enterprise Linux  6 

Red Hat Linux  9 

Rxart  2 

Sabayon Linux  4 

Satux  2 

Scientific Linux  6 

sidux  2 

SimplyMEPIS  7 

Slackware  12 

SLAX  2 

Source Mage GNU/Linux  2 

SUSE Linux  10 

Symphony OS  2 

Trustix Secure Linux  4 

Ubuntu  8 

Kubuntu  8 

Xubuntu  8 

Edubuntu  8 

Gobuntu  8 

Ututo  2 

VectorLinux  6 

Xandros  4 

Yoper  4 

Zenwalk Linux  5 

  

Average 4.41 

 

Table 1 numbers of releases for various 

Linux distributions, and the average of 

this dataset.
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Name Architectures 

64 Studio  2 

aLinux  2 

ALT Linux  2 

Annvix  2 

Arch Linux  2 

Ark Linux  1 

Arudius  1 

Asianux  5 

Aurox  1 

BLAG Linux 1 

Caixa Mágica  3 

CentOS  3 

CRUX  1 

Damn Small Linux  1 

Debian 12 

DeLi Linux  1 

DeMuDi  1 

dyne:bolic  1 

Elive  1 

EnGarde Secure  2 

Fedora  3 

Finnix  4 

Foresight Linux  1 

Frugalware  2 

Gentoo  13 

gnuLinEx  2 

GoboLinux 2 

Impi Linux  2 

Kanotix 2 

Knoppix 1 

Kurumin Linux 1 

Linspire  1 

Linux Mint  1 

Lunar Linux  2 

Mandriva Linux  3 

MEPIS  2 

Musix GNU+Linux  1 

Myah OS  1 

NimbleX  1 

Nitix  1 

OES2-Linux  3 

openSUSE  7 

Paipix  2 

Pardus  1 

Parsix  2 

PCLinuxOS  1 

Pie Box Enterprise  1 

PLD Linux 4 

Puppy Linux 1 

QiLinux  1 

Red Flag Linux  4 

Red Hat 5 

Rxart Desktop  2 

Sabayon Linux  2 

Satux  1 

Scientific Linux  3 

sidux  2 

Slackware 1 

Slax 1 

Source Mage  3 

SUSE Linux  7 

Symphony OS  1 

Ubuntu     3 

UTUTO GNU/Linux  2 

VectorLinux  1 

Xandros Desktop OS  1 

Yellow Dog Linux 2 

Yoper 1 

Zenwalk Linux 1 

Xubuntu 3 

Edubuntu 3 

Kubuntu 3 

  

Average 2.306 

 

Table 2 Numbers of architectures 

supported by various Linux distributions, 

and the average of this dataset. 
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Name Packages 

aLinux  1200 

ALT Linux  7500 

Arch Linux  15000 

Ark Linux  4000 

Aurox  3000 

BLAG Linux and GNU  9000 

Caixa Mágica  1155 

CentOS  1660 

CRUX  610 

Damn Small Linux  26000 

Debian 150 

DeLi Linux  875 

Elive  20000 

EnGarde Secure Linux  500 

Fedora  8000 

Finnix  350 

Foresight Linux  15000 

Frugalware  3000 

Gentoo  12000 

gnuLinEx  200 

GoboLinux 636 

Kanotix 1200 

Knoppix 3600 

Linspire  2200 

Linux Mint  20000 

Lunar Linux  3120 

Mandriva Linux  16000 

MEPIS  20000 

Musix GNU+Linux  1300 

NimbleX  500 

openSUSE  22000 

Paipix  2000 

Pardus  1600 

PCLinuxOS  5025 

Pie Box Enterprise Linux  1500 

PLD Linux Distribution   13500 

Puppy Linux 300 

QiLinux  2500 

Red Hat Enterprise Linux  3000 

Rxart Desktop  5000 

Sabayon Linux  12000 

sidux  22950 

Slackware 544 

Slax 2050 

Source Mage GNU/Linux 5514 

SUSE Linux  22000 

Ubuntu     23000 

Xandros Desktop OS  5000 

Yoper 2000 

Xubuntu 23000 

Edubuntu 23000 

Kubuntu 23000 

  

Average 8,043 

 

Table 3 Various numbers of packages 

contained in different Linux 

Distributions, and the average of this 

dataset.
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System Distro Release Packages Changes CVE 
Vuln/ 
Pkg 

Chgs/ 
Pkg Description 

PTS Ubuntu Feisty 1357 112351 4379 3.23 82.79 
Server, 

enterprise packages 

Mahalo Ubuntu Feisty 2033 107514 3868 1.90 52.88 
Workstation,  

user packages 

Doc Ubuntu Feisty 319 22195 1276 4.00 69.58 
Server,  

minimum install 

Sleepy Ubuntu Feisty 331 24307 1611 4.87 73.44 
Server, 

minimum install 

GNU Debian Etch 749 49036 2509 3.35 65.47 
Server,  

medium install 

Weeber Debian Etch 403 27286 1372 3.40 67.71 
Server,  

minimum install 

Legstrong Ubuntu Feisty 1199 62949 3298 2.75 52.50 
Workstation,  

user packages 
 

Table 4 Total number of vulnerabilities and changes as reported within package changelogs, 

and the averages of each dataset. 

 

System Packages Changes CVE Vulnerabilities / Package Changes / Package 

Ubuntu 1,048 65,863 2,886 3.35 66.24 

Debian 576 38,161 1,941 3.38 66.59 

Workstation 1,616 85,231 3,583 2.33 52.69 

Server 631 47,035 2,229 3.77 71.80 

Overall 913 57,948 2,616 3.36 66.34 

 

Table 5 Average numbers of vulnerabilities and changes found on various systems. 




