

i

THESIS

AUTOMATIC ENDPOINT VULNERABILITY DETECTION

 OF LINUX AND OPEN SOURCE

USING THE NATIONAL VULNERABILITY DATABASE

Submitted by

Paul Arthur Whyman

Computer Science Department

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2008

Copyright by Paul Arthur Whyman 2005-2008

All Rights Reserved

ii

COLORADO STATE UNIVERSITY

June 30, 2008

WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER OUR

SUPERVISION BY PAUL ARTHUR WHYMAN ENTITLED AUTOMATIC

ENDPOINT VULNERABILITY DETECTION OF LINUX AND OPEN

SOURCE USING THE NATIONAL VULNERABILITY DATABASE BE

ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE.

Committee on Graduate work

__

__

__

__

Adviser

__

Department Head/Director

iii

ABSTRACT OF THESIS

AUTOMATED SYSTEM ENDPOINT HEALTH EVALUATION

USING THE NATIONAL VULNERABILITY DATABASE (NVD)

A means to reduce security risks to a network of computers is to manage

which computers can participate on a network, and control the participation of

systems that do not conform to the security policy. Requiring systems to

demonstrate their compliance to the policy can limit the risk of allowing un-

compiling systems access to trusted networks.

One aspect of determining the risk a system represents is patch-level, a

comparison between the availability of vendor security patches and their

application on a system. A fully updated system has all available patches applied.

Using patch level as a security policy metric, systems can evaluate as compliant,

yet may still contain known vulnerabilities, representing real risks of exploitation.

An alternative approach is a direct comparison of system software to

public vulnerability reports contained in the National Vulnerability Database

(NVD). This approach may produce a more accurate assessment of system risk

for several reasons including removing the delay caused by vendor patch

development and by analyzing system risk using vender-independent vulnerability

information. This work demonstrates empirically that current, fully patched

systems contain numerous software vulnerabilities. This technique can apply to

platforms other than those of Open Source origin.

This alternative method, which compares system software components to

lists of known software vulnerabilities, must reliably match system components to

iv

those listed as vulnerable. This match requires a precise identification of both the

vulnerability and the software that the vulnerability affects.

In the process of this analysis, significant issues arose within the NVD

pertaining to the presentation of Open Source vulnerability information. Direct

matching is not possible using the current information in the NVD. Furthermore,

these issues support the belief that the NVD is not an accurate data source for

popular statistical comparisons between closed and open source software.

Paul Arthur Whyman

Computer Science Department

Colorado State University

Fort Collins, CO 80523

Summer 2008

2

1. Introduction

The evaluation of a computer system‘s vulnerability state is an important

part of protocols that measure a system‘s ―health‖. These protocols use a health

metric to determine the extent that a system can then participate on a trusted

network. These protocols abound; and include efforts such as Cisco Network

Access Control (CNAC)
[0]

, Open Vulnerability and Assessment Language

(OVAL)
[1]

, Information Security Automation Program (ISAP)
[2]

, the Security

Content Automation Program (SCAP)
[3]

, and include standards organizations like

the Trusted Network Connect (TNC) Work Group
[4]

, and the IETF‘s Network

Endpoint Assessment[5]
 among others.

The intent of a health evaluation is to determine if systems that attach to a trusted

network comply with the networks security policy before a system receives rights

to participate on the network. Interrogation of health values can involve queries of

the system patch state, system network location or physical location, the state of a

system firewall and system virus protection, and may include other aspects

depending upon the security policy requirements.

A system‘s current vulnerability is dependent upon a changing threat

environment. To evaluate security policy compliance, up-to-date system health

information is necessary. It follows that the security policy should stipulate a

check to verify that a system has current security patches applied. The degree to

which a system has these security updates and patches applied can form part of a

system‘s ―health status‖. Often a security policy allows ―healthy‖ systems to

participate on trusted networks because the system contains all available updates.

3

Measuring patch level by available vender updates is important; however,

there is alternative information available at vulnerability data providers such as

the National Vulnerability Database (NVD)
[6]

. The NVD provides an aggregation

source for vulnerabilities, connecting information from various sources and

consolidating synonymous security issues to a single identifying Common

Vulnerabilities and Exposures (CVE) number.

The NVD represents two factors that are important to this work: It is a

source of vulnerability information independent of a single software vender, and

provides daily updates in machine-readable format that facilitates automatic

analysis. This work illuminates the importance of using vender-independent

vulnerability information for health checking, and discovers several critical

limitations of the NVD for this type of analysis.

In spite of these limitations, this thesis (this work) will show it is a fallacy

to assume a fully up-to-date system is ―healthy‖. This fallacy is apparent by the

presence of vulnerabilities (as published in the NVD) within ―healthy‖ systems.

Therefore, measuring a system‘s health status using a vendor‘s patch information

does not produce results as complete as using NVD information.

1.1 Problem Statement

Is it possible to use a vendor-independent vulnerability data source such as

the NVD to detect vulnerabilities within currently ―up-to-date‖ systems? Will

information obtained from the NVD produce results that are the same as those

obtained by using vendor-provided software update appraisals? In other words, if

4

a vendor‘s software update utility regards a system patch-level as ―up-to-date‖; is

it possible to demonstrate that there are un-patched vulnerabilities in the system,

and therefore prove it is a fallacy to assume an up-to-date patch level is the same

as vulnerability-free?

Furthermore, since the vulnerability information at the NVD is stored in

machine-readable format, is it possible to automate this process? Will the

information contained in the NVD be sufficient to make a complete analysis of a

system?

1.2 Expectations

The two different means to evaluate system health, via a vendor‘s update

system, or by a comparison to the NVD should produce different results for

several reasons.

First, software vendors prioritize their work on software patches

independent from information disclosed in public vulnerability repositories such

as the NVD. This is due to development priorities and schedule requirements,

which do not necessarily synchronize with the release of a CVE entry by the

NVD. Second, software vendors may obtain software vulnerability information by

different means than does the NVD.

The discovery of a vulnerability may originate from within the vendor

process, or by independent discovery. Vender notification of a discovery may

occur by the discreet means of responsible disclosure, may first appear as a bug

on the vendor‘s bug-tracking system, or by the news of an active exploit. These

5

examples show how the NVD and the vendor may become aware of

vulnerabilities at different times.

Software vendors may even disregard the credibility of a vulnerability

report, or deem it unnecessary
[7][8]

. When this occurs, vulnerabilities will never

receive a vendor‘s patch yet will perpetuate within public vulnerability lists.

Yet another cause for differences in the two evaluation means is the

latency in the vulnerability lifecycle shown in Figure 1. The illustration

represents a vulnerability lifecycle, which portrays the risks that a single system

faces over time due to a single vulnerability. The period between discovery and

patch application allows completely updated systems to contain publicly known

vulnerabilities during the time between disclosures and patch application. The

representation of ―at risk‖ is intentionally bi-modal; a system either contains, or

does not contain a given software flaw.

Figure 1 model of a generalized vulnerability risk lifecycle; an alternative means to measure

the areas of risk is the purpose of this work.

6

As a result, we should expect a difference between a vulnerability

inventory done by the comparison of system software with the NVD, and that of

an inventory done by comparing the system software and vendor update status. It

is reasonable to expect that if software developers and public vulnerability

databases had perfect knowledge, the two evaluations would be the same. Yet we

would also expect that long-term analysis should produce fewer differences

assuming the following: Vendors have the good intention to keep security flaws

out of production and to fix those that may appear. In addition, vulnerabilities

identified within the NVD are without error and vendors accept them. If these

assumptions are true, then eventually vendors will fix all reported security flaws.

Unfortunately, perfect knowledge is unrealistic, and system administrators

can only hope these differences are minor and do not represent a significant

exposure to un-patched vulnerabilities.

Furthermore, direct comparisons of system vulnerabilities with the NVD

eliminate the false sense of security presumed by a vendor update check. The

fallacy lies within comparing the system state with information provided by the

vendor of the very same system. This check relies upon incestuous data by not

including vulnerability data found outside the vendor‘s development stream. This

verification lacks a comparison to publicly known vulnerabilities that represent

threats to a fully patched system.

 ―Up-to-date‖ system status confuses the true vulnerability status of a

system; the difference being between having all available vendor patches applied,

and containing vulnerabilities; a system can be both.

7

2. Background

The Internet is a network of networks, a hierarchy of interconnected

computers sharing resources and communication pathways. This interconnectivity

has proven to be both the boon and the bane of the Internet: The benefits of the

Internet are largely due to the ease of information exchange between systems, the

risks of Internet use arises from the ease of vulnerability exploitation across these

same interconnected systems.

Certain vulnerabilities are susceptible to remote attack, and connecting

systems with such vulnerabilities to a network exposes them to the risk of attack.

Given isolation, computer systems are impervious to remote attack; obviously,

this solution is not practical for systems providing remote services. Therefore, the

securely deploying a systems on a network is complicated due to the ongoing

appearance of remote vulnerabilities which represent an ongoing threat to these

systems.

The current threat environment is constantly evolving with the discovery

of previously unknown threats. Software vulnerabilities are an ongoing issue, and

although security efforts attempt to adapt quickly, there are always new threats

that are previously unknown.

Consequently, security is a process to manage risk. Understanding the

vulnerabilities of a system is core to understanding the risk a system faces. In this

manner, understanding the risks of individual systems is core to understanding the

risks of a network of systems.

8

Often a secure perimeter intends to protect systems from these

undetermined risks, the goal being to separate the systems which comply with a

security policy from those that do not.

Recently, traditional security boundaries have begun to dissolve. Systems

can no longer depend upon the protection of a firewall. Simply shielding a single

gateway to the Internet is no longer effective due the increase in mobile

computing and wireless access. The location of a computer may change from

being inside to being outside of the protected perimeter. The systems residing

within the firewall perimeter can no longer rely upon the safety of a sanitized

Intranet. This is due to the risk of systems that bypass the perimeter walls such as

systems returning from the ‗wild‘ and visiting systems.

Network perimeters have the role of filtering what is safe and what is not.

However, a firewall cannot reduce risk when an attack originates from a

compromised system within the trusted perimeter. Because a secure perimeter is a

less reliable means to determine system risk, we must look elsewhere for this

determination. Systems containing known vulnerabilities represent risk to other

systems because they are susceptible to exploitation; if they succumb to their

vulnerability, they can then provide a platform to attack other systems. All

potential methods to mitigate this risk begin with the identification of vulnerable

systems.

9

2.1 Scope of this work

The beginning of a vulnerability lifecycle begins with the discovering of

the vulnerability. The discovery may or may not appear publicly, however this

thesis is concerned only with known vulnerabilities; managing risk posed by

publically unknown vulnerabilities (hidden by responsible disclosure) or zero-day

(previously unknown) attacks are outside of the scope of this thesis.

The validity of a vulnerability is also external to this investigation; that is,

whether the vulnerability is verified or even has basis as a security concern. This

thesis relies upon the NVD process to determine vulnerabilities regardless of a

vendor‘s acceptance of this determination. In short, if a software packages exists

within a NVD CVE, it is vulnerable within the scope of this thesis.

The examples within this thesis are only relevant to a particular time. The

rapidly changing vulnerability landscape does not allow all examples to undergo

post-experimental verification. New vulnerability information appears, patches

are developed, and the system state continuously changes. Nevertheless, the

general findings of this work are verifiable within this changing environment.

The analysis used Linux and Open Source systems, which rely upon the

Debian packaging system (.deb), using Advanced Package Manager (apt); in

practice this is the Ubuntu and Debian Linux distributions. Although this method

can be used on other systems such as .rpm based systems (Red Hat Linux, SUSE

Linux), or even Windows based systems, this was not done within the scope of

this work.

10

2.2 The need for an ongoing vulnerability analysis

The vulnerability state of a system is an ongoing process; this relates to

the nature of software development. Vulnerabilities are simply a specific form of

software flaws. Vulnerabilities affect both Open and Closed source software.

Open source software, can have slightly more than one software flaw for every

10,000 lines of code; five in every 100 software flaws is also a security

vulnerability
[9]

. Security flaws are concurrent with software development.

Furthermore, as general software flaws can remain undetected, so can

security flaws. Software components undergo a cyclic return to insecurity due to

the repeated discovery of new software vulnerabilities; followed by a patch to

return the system to a secure state. This pattern repeats throughout the life of

software (Figure 2).

Figure 2 software cycles between patched and un-patched states

2.3 patch management vs. vulnerability management

Given two systems: in the first, a patch management system indicates risk

exposure based upon the patch-level; and in the second, a comparison of system

components to known vulnerabilities determines the vulnerability exposure.

Which method describes the vulnerability exposure of a system with better

accuracy?

11

The first method relies upon software vendors to provide notifications

when new patches are available. Surprisingly, the majority of systems that have

succumbed to intruders do so because of a known vulnerability for which a patch

is readily available
[10]

.Therefore, keeping a system up to date with the most-recent

security patches is important to reduce exposure to known vulnerabilities, and can

reducing the largest factor of intrusion exposure
[10]

. What if a publically known

vulnerabilities exist, for which there are no patches? In this case, a system can still

face security risks hidden by the patch-level.

How can risks measured by patch-level be different from those measured

by the vulnerability level? This will occur when there is a period between a

vulnerability announcement and the availability of the patch. The vulnerability

lifecycle model describes this period.

This interesting period exists because of latency between the head of the

software development stream, and patches applied to systems. Patch management

reduces the risk of exposure after a vendor has produced a patch (Figure 3) but

does so by relying upon the vendor to produce the patch. In addition, the system

can appear vulnerability-free until the vendor indicates that there is something

wrong by issuing a patch.

12

Figure 3 patch applications reduces vulnerability risk, but patches depend upon vendors

production

Often there are delays between the public announcement of a

vulnerability, and the availability of a patch. These delays occur for various

reasons.

The delay begins with the time needed to understand, confirm, fix, test and

deploy a solution. Within the Open Source community, this occurs at the head of

the stream, by those working on the project itself. After this solution becomes part

of the project, the version number is incremented, and a new release created.

Linux distributions managing their own packages, thus another set of

delays occur from the downstream package maintainer‘s work. The solution may

already exist for the head-of-stream version, however the process to understand,

confirm, fix, test and deploy the fix repeats downstream. Maintainers first need to

confirmation flaw because Linux distributions only contain periodic snapshots of

upstream development. Consequently, the vulnerability does not always exist in

13

all snapshots. The fix then requires extraction from the upstream release, and

often will need some refactoring to work with the version that the distribution is

maintaining. The distribution then applies this patch to their version and makes

both the source and binary versions available for their distribution releases and for

supported architecture. This work may repeat itself several times by different

distributions before it the solution reaches the client system, e.g. upstream-release,

to Red Hat Linux, to Red Flag Linux; or upstream-release, to Debian Linux to

Ubuntu Linux.

Consequently, software patches do not immediately propagate to the

various downstream consumers. The fix, submitted to the upstream source

repository may take some time for distribution maintainers to pick up, test, and

produce a patch. This can result in a gap between a public announcement and the

availability of a patch. This process also depends upon relatively easy fixes. If the

software flaw is highly coupled within the package, a fix may take some time to

produce.

Relying upon the arrival of a vendor patch can leave a system vulnerable

for an unnecessary period. The knowledge of a vulnerability before a patch is

available can enable other countermeasures to reduce the risk of a system.

Various hardening techniques can reduce risks to system that contains

vulnerabilities that do not currently have patches available (Figure 4). Examples

include confinement, resource limitation, and other techniques can protect

systems from these vulnerabilities. The process of securely configuring a system

can reduce risks in systems that host vulnerable software. This process begins

14

with the knowledge that a system contains vulnerable software, the knowledge of

the vulnerabilities nature, and then proceeds to specific techniques depending

upon the specific issues.

Figure 4 preventative measures can reduce risk of un-patched vulnerabilities; however, the

knowledge that a system is vulnerable is required first.

The illustrations of the various periods within the vulnerability lifecycle

(Figures 1, 3, and 4) describe the fallacy of determining system health based

upon ―patched‖ or ―un-patched‖ (Figure 2). This is because the ―patched‖ or ―un-

patched‖ metric fails to capture the complete period of system vulnerability

between public announcements and patch availability.

This thesis focuses on obtaining information to manage risks during this

period. The goal is to illuminate the nature of a system‘s vulnerability state during

15

this period, and thereby allow risk-mitigation techniques other than vendor-patch

management.

2.3.1 Tracking Vulnerabilities in Open Source

The proprietary software development process differs from the Open

Source software development process. Generally, a single controlling entity

manages the proprietary development process; while cooperating, autonomous

entities manage the Open Source development process. The Open Source

development process has several tradeoffs. For example, it allows the Open

Source community to be agile during the development process as each developer

within the community can work independently. However, there is no omnipotent

overseer (human or practice) ensuring the management of a given processes as it

spans across various domains such as developers, projects, maintainers,

distributions, and finally to individual users. This allows aspects of Open Source

software to diverge.

2.3.1.1 Not-so unique identifiers

Knowing whether a particular system, component, or library is vulnerable

is critical for determining the current risks a system faces. The concise

identification of software vulnerabilities has two requirements. Both the software

and the vulnerability must have unambiguous identification. One downside of the

Open Source infrastructure is that as distributions assimilate software packages

downstream, the package names diverge. The result is a difficulty identifying

16

vulnerable software. One example is the name given to the Apache HTTP Server.

On Red Hat Linux systems, it is httpd, and on Debian and Ubuntu Linux

systems, it will be apache or apache2.

The same problem exists with naming vulnerabilities, and affects

proprietary software as well. Different agencies, such as the Debian security team,

the Red Hat Bugzilla, Secunia, Security Focus, and other efforts track the same

software vulnerabilities. Therefore, it can be difficult to determine if an individual

system may contain two different vulnerabilities, or if there are two names for the

same vulnerability. For example, a single vulnerability for the Apache HTTP

Server will have a many different identifiers assigned.

The National Vulnerability Database resolves vulnerability naming

conflicts by assigning each a unique identifier (a CVE number) and then linking

the synonymous information from other agencies to that identifier. The CVE

number essentially becomes the canonical name for each vulnerability and thus

enables mapping between the various vulnerability reporting agencies.

NVD is a comprehensive cyber security vulnerability database that

integrates all publicly available U.S. Government vulnerability

resources and provides references to industry resources. It is based

on and synchronized with the Common Vulnerabilities and

Exposures (CVE®) vulnerability naming standard.
[6]

.

There is no such identification for software package names. Therefore,

vulnerability detection efforts become ambiguous if one cannot discern which

software a vulnerability affects.

17

2.3.2 Backporting obscures the upstream version

The process of Open Source development is also ‗open‘. One can monitor

the developer bulletin boards for critical system components and track

vulnerabilities as they flow through the layers of Open Source organizations.

Typically, vulnerabilities begin with an initial bug report submitted to the package

maintainer, who confirms the submission, produces a security vulnerability

announcement, fixes the issue, and adds it to the current stable stream. Linux

distributions then produce a patch for the fix, apply it to the vulnerable packages

in their distribution, make their own announcement, and provide the new package

binaries.

Distributions take a ―snapshot‖ of the ongoing development stream for a

given distribution release version. This is to limit new development in the

distribution release, and increase stability. Unfortunately, a fix made at the

beginning of the development stream might not be compatible with the

downstream versions of the vulnerable package. The fixes may need to be ―back-

ported‖ for earlier release versions. Different members of the community, from

the upstream package maintainer, distribution package maintainer, or even

members of the open source community at large may perform backporting

resulting in release patches and patched binaries.

This process adds confusion when identifying the patches applied to a

given binary version, or when determining a version's current vulnerability status.

One cannot determine whether a particular package is vulnerable by comparing its

18

version to the vulnerable versions at the head of the development stream. One

must also account for the applied back-ports.

2.4 Differences between Single-Path and Multi-Path development

The Open Source Software (OSS) development process is different from

proprietary, closed source software development. This difference allows a user to

procure the ―same‖ software in various different ways. Moreover, although these

different distribution paths result in similar naming and versioning, the resulting

software can have profoundly different security aspects.

Unlike the management of proprietary software development that

exclusively controls the release of software (Figure 5), Open Source development

is a composition of developers; software package development may follow

multiple paths from the maintainer(s) of the source to a specific package residing

in a particular system (Figure 6).

19

Figure 5 Closed source software has a single path between developer and users

The arbitrary path of OSS, from the head of the development stream to the

actual compiled binaries that run on a users system, produces certain difficulties

to the identification of software vulnerabilities. The compiling, and inclusion of

different portions of the source, is due to the openness of the Open Source process

that enables the compiling to take place in multiple locations. Binaries are

compiled at the source head, by a project fork, in the processes of various

distributions or distribution re-branding, by individual package re-branding, and

last, and perhaps most importantly, the subsequent package backporting which

may occur by most any of these entities.

20

Figure 6 Open Source has multiple paths between the developer and the system. Each path

varies the compilation of the same upstream source code

Because of the multiple origins of software binaries, a simple model,

which fits commercial software, does not apply to Open Source. In the simple

model, a vulnerability identified in a particular software binary applies to all

binaries; it is not possible to have a different binary; one which was not compiled

by the original developer. For example, Adobe has multiple versions of its

popular Acrobat reader; however, Adobe compiles all of the binaries. Therefore,

21

if a vulnerability is detected in a binary, then it can be tracked by its official name,

version, and even by a hash of the binary taken by the vendor at compilation time.

Contrary to this model, two Open Source packages based upon the same

upstream project do not indicate the vulnerability will be contained in each.

Conversely, a package which does not contain any known vulnerabilities in the

upstream source repository, but that is changed and recompiled downstream may

have vulnerabilities introduced
[11]

. In practice, the process of backporting often

removes vulnerabilities downstream.

2.5 Related Work

Work can relate to this thesis in two main areas: One, that of detecting

vulnerability on systems, Two, that of matching software components to those in

the NVD.

2.5.1 Vulnerability vs. update assessment

The detection of vulnerabilities is a common practice, but generally stops

where the work in this thesis begins, Vis-à-vis, a system vulnerability analysis

simply checks if there are updates available to a given system, and relies solely

upon vendor-supplied patch information, not that of independent vulnerability

databases. The majority of software exploits occur to systems with patches

available but not installed
[10][11]

. Therefore, the immediate updating of systems

with the most recent patches supplied by the vendor is critical.

22

2.5.1.1 Update management tools

A tool that provides update information for an OSS system is the

Advanced Packaging Tool (apt), which can compare the version of components

installed on a Debian-based system, to those currently available and can also

install required updates. Another tool, apt-show-versions provides a list of

installed package names and their update status in the same manner, but does not

install updates. Similar tools perform these functions for rpm-based systems such

as the Red Hat Update Agent; also know as up2date, which is similarly limited to

vendor-specified updates, not current vulnerabilities.

Many proprietary software vendors provide an update checking service

that periodically checks for available software updates; however, these agents

only check for updates within the specific vendor‘s updates and do not report

when a software package is vulnerable if there is not an update available. Adobe,

Apple, Microsoft, and Sun are among the companies that provide this type of

update agents. Adobe provides a menu control for Acrobat Reader, which will

even check for updates from a Linux system.

One agnostic update agent is the Secunia PSI
[13]

. This tool scans the

majority of software on a Microsoft Windows system and determines which have

outstanding security updates. The PSI agent function is an extension of the typical

update check as it checks software originating from multiple vendors for security

updates, and even ignores updates that are not security related. The PSI does not

however indicate packages, which contain vulnerabilities present on the system,

23

but do not have available updates; nor does it report vulnerabilities outside of the

vendor‘s own available patches.

2.5.1.2 The Debian vulnerability tool Debsecan

The tool debsecan does report vulnerable packages that do not yet have

available updates. However, the tool still relies upon vendor-based information.

Because the debsecan tool relies upon information produced by the Debian

security team, the report experiences the latency of the Debian Security Team

process. In some cases, vulnerabilities contained in the NVD, and present in the

list of Debian Security Team ―TODO‖ items are not part of the debsecan report.

For example, debsecan did not report a current gpg vulnerability CVE-2008-

1530, which had yet to receive attention from the Debian Security Team (as of

04/20/08).

Vulnerability information from debsecan only pertains to packages

maintained by the Debian distribution
[14]

. The Debian Security Team determines,

by hand, if vulnerabilities apply to packages within the Debian distribution. In

some cases, a vulnerability does not apply to the package maintained by Debian,

e.g. CVE-2007-4723 lists the ―Apache HTTP Server" as vulnerable;

however, the Debian security team does not agree, rather Ragnarok Online, a web

application using the Apache Web Server, is vulnerable. In this case, the Debian

Security Team labels the CVE as ―NOT-FOR-US‖. Interestingly, ―NOT-FOR-

US‖ does not always mean a miss-match, sometimes it means the data does not

24

exist e.g. “NOT-FOR-US: Data pre-dating the Security

Tracker”

Another instance when a vulnerability will not be reported by debsecan

is when the Security Team does not agree that the issue is security related, e.g.

CVE-2005-2541
[8]

:

severity="High"

CVSS_score="10.0"

desc= "Tar 1.15.1 does not properly warn the

user when extracting setuid or setgid files,

which may allow local users or remote

attackers to gain privileges."

…dismissed by the Debian security team:

CAN-2005-2541 (Tar 1.15.1 does not properly warn the user

when extracting setuid or ...)

NOTE: This is intended behaviour, after all tar is an

archiving tool and you need to give -p as a command line

flag

 - tar (unfixed; bug #328228; unimportant)

Because debsecan uses data generated because of Debian Security

Team evaluations, the datasets represent a ―filtered‖ subset of the NVD. The data

consists only of the NVD entries considered relevant by the Debian Security

Team, and contain fewer false-positives. The debsecan tool also has a more

straightforward means to detecting vulnerable system versions and packages as

the security team has converted the NVD data into a Debian format. As a result,

debsecan does not face matching problems discussed in Section 3, and the

resulting possibility of injecting errors.

25

In addition, the Debian Security Team tracks issues that do not have an

assigned CVE number
[15]

. It follows that more information is available to the

debsecan analysis since the data includes information sources from the Open

Source community, however one can speculate that eventually this security

information will eventually appear in the NVD.

The work within this thesis explores whether vulnerabilities are still

present on a fully patched system, by comparing system files to publicly known

vulnerabilities within the NVD. There is little work done in this area outside of

debsecan however, this tool (for better or for worse) uses domain-specific data

and will not detect vulnerabilities outside the domain of the Debian Security

Team.

2.5.2 Matching OSS packages with different vulnerability data sources

 The second area of related work pertains to the matching of software

contained within a software system with those listed in a vulnerability database

such as the NVD. This issue is central to the reliable automation of system health

evaluation, and currently limits the effectiveness of detection. Obviously, a

precise mapping must exist between the system software and that listed in a

vulnerability database. This currently does not exist; consequently, this thesis uses

a heuristic approach to matching. Creating a plethora of matching rules to

generate matches will not withstand changes to the naming practices of Ubuntu,

Debian, the upstream package maintainer, nor the NVD itself.

26

The current naming practices between these entities are ambiguous and do

not withstand the rigors of an automated system; therefore, an automated system

can only relieve some of the work required by human evaluation. Only a robust

naming schema will enable automated tools reliable and accurate matching.

2.5.2.1 Matching with the National Vulnerability Database

 The NVD relies upon a single-path development model to depict OSS and

thus fails to recognize the unique relationship between packages that are derived

works of an upstream source, which do not have a superset-subset relation. The

derived work of an Open Source project is a new software entity that cannot have

superset-subset rules successfully applied, e.g. a vulnerability in a package may

simply not exist within its derived work because that portion of the code was

never included or compiled downstream. (Section 3 describes many other NVD

matching issues). Conversely, downstream modifications can create original

vulnerabilities that are serious and have a widespread effect
[16]

.

A FAQ entry presented on the NVD Website may explain why OSS

vulnerabilities are difficult for the NVD:

 “How are Linux vulnerabilities handled within NVD?

Linux distributions are often made up of a large collections of

independently developed software and it is sometimes difficult to

determine which software packages should be considered part of

the operating system and which should be considered independent

but merely included along with the operating system. In addition,

some vulnerabilities occur within the Linux kernel and for those

vulnerabilities we do not enumerate all of the hundreds of Linux

distributions.”
[7]

27

Separating what is part of the Linux Kernel and what is not is indeed

difficult when a simpler closed source model is used. Open Source systems use

the terms ―kernel-space‖ and ―user-space‖ to distinguish the categories described

by the FAQ as ―part of the operating system‖ or ―independent of the operating

system‖. Moreover, it follows that an operational definition of any process is to

determine whether it occupies kernel-space memory or user-space memory when

executing
[17]

. Furthermore, the Open Source model uses the term ―Kernel

Module‖ to refer to a component similar to that of a ―driver‖, both of which

enable hardware. Forcing the OSS development model to fit into a closed source

model causes these issues.

Open Source Software is a significant part of the software world, and is

widely incorporated within commercial products and it even runs on closed

source platforms and not exclusively on ―Linux‖ systems. The popularity of the

Mozilla Firefox Web Browser is an example of this duel nature of OSS
[18]

.

Security risks occur in Open Source Software just as they do in closed-

source software and both benefits from the services of the NVD. The NVD has

the opportunity to overcome the problems mentioned in the FAQ and thus provide

the same support to OSS as closed source. A solution that incorporates ontology

into the data model of the NVD, with both the terms and architecture from OSS

and the Linux Kernel, will enable the NVD to support the security information

needs of OSS systems. This will enable the NVD to provide unambiguous

28

information for all software regardless of its development process. More

discussions of NVD improvements are in Section 7.1.

2.5.2.2 Matching with the Common Platform Enumeration

 The Common Platform Enumeration (CPE) intends to resolve the issue of

different domains using different naming conventions by normalizing the

information. The CPE aims to establish a software-naming standard for use by

automated security tools. Unfortunately, this effort will not solve an underlying

issue that prevents identification: different domains represent essentially the same

canonical entity with different names. Even after carefully enumerating each

package, these differences will remain.

When the enumeration is complete, it will require approximately

96,821,863 entries to list the current vulnerable software found in Open Source

Linux Distributions, the same as the number of hashes required by the NSRL

method discussed in Section 2.5.3.2. The large number CPE items required to

describe Open Source may make the dataset unwieldy.

Another issue arises from the efforts to normalize the information into a

standard form: The requirements of the data structure produce a lossy result.

Because dashes are not a legal character in XML, this entry does not represent

any Debian package:

 <cpe-item name="cpe:/a:debian:apache:1.3.34.4">

29

The entry for apache replaces the dash from the Debian version

1.3.34-4 with a dot, which obscures the information the dash had provided.

This dash is important; it represents the difference between the upstream version

of the package (1.3.34) and the Debian update version (4). The dash

represents the boundary between the upstream development and the work of the

Debian package maintainer. Lost is the indication that this is the fourth package

released by Debian, based upon the upstream 1.3.34 version.

Another entry further obscures the Debian package elvis-tiny, by

replacing the dash with an underscore:

<cpe-item name="cpe:/a:debian:elvis_tiny">

These examples show that the CPE does not list Open Source packages

well because the specification does not correctly enumerate the Open Source

development process. Specifically, the CPE does not accommodate the special

nuances of multi-path software development (Figures 6) annotated within Open

Source version strings (Figure 7).

30

Figure 7 The CPE cannot describe libuuid1

31

2.5.3.2 Matching with National Software Reference Library techniques

The National Software Reference Library (NSRL) is a set of software

signatures used by tools performing forensic evidence analysis of large datasets

such as those found on personal computer hard drives. The data sets enable tools

to reduce the quantity of files needing further examination by positively

identifying files originating from known sources. Comparisons to the reference

data can determine the difference between system files to ignore, and user files to

examine further (Figure 8).

Figure 8 the NSRL identifies computer files of known origins (in red)

Can software signatures positively identify vulnerable files on a system?

This depends upon how well this method applies to the problem of identifying

OSS. Using signatures eliminates the need to construct ontology to map various

naming conventions used by the OSS community to a single identifier.

32

Signatures also eliminate the need to standardize the various downstream version

addendums used by the OSS community. The signature method sidesteps these

issues by comparing the set of software on a system to that in a ―Vulnerability

Reference Library‖ (VRL).

Figure 9 identifying known vulnerabilities (in red) using hashes

A dataset called the ―VRL‖ does not exist at this time, yet the idea is quite

simple. This dataset would contain a list of hashes from instances of publicly

known vulnerable software, mapped to CVE numbers (Figure 9)

The NSRL hash-set does not contain a sufficient number of OSS to enable

its use as a tool to detect software vulnerabilities. Furthermore it is unlikely the

NSRL will ever do so as the typical means to obtain OSS does not fulfill the

requirements to be acquired by the NSRL because software downloads are not

accepted, and relatively few OSS is available via ―shrink wrap‖ packages, only

major distributions such as Red Hat and SUSE Linux.

33

The results of a matching comparison between a system package hash, and

a set of package hashes can determine the following three outcomes depending

upon the extent of the dataset:

Match

1) Matched hash is associated with CVE number

 package contains a known vulnerability

 this dataset only need contain hashes of vulnerable software

2) Matched hash is NOT associated with CVE number

 package does not contain a known vulnerability

 this dataset must contain ALL software hashes

No Match

Package unknown, dataset will not contain vulnerability

information.

 Classically, time and space complexities limit computer systems.

Likewise, the answer to the question ―can a system using techniques like the

NSRL be used to identify vulnerable software on Open Source systems‖ is also

bound by these limits. Perhaps this simple analysis can produce a practical answer

to our question.

We first assume is that it is possible to create a set of hashes that represent

all OSS. This universal set contains hashes representing both vulnerable and non-

vulnerable OSS. This universal set allows us to identify with confidence whether

any OSS has vulnerabilities. Exploring our complexity limits, the question then

becomes ―how many hashes are needed determine if a given OSS package

contains known vulnerabilities?

34

We begin by determining the number of hashes needed to represent a

single Open Source Linux Distribution. Debian 4.0 Etch has approximately

18,497 packages and 11 architectures. Examining several Debian systems we

discover that each packages has an average of 66.59 changes per package

(Appendix I). This rough estimate indicates that 13,548,867 hashes are needed to

represent the current Debian Etch release. We now add a second distribution

release, Ubuntu Feisty, which contains 21,183 packages, 7 architectures and

approximately 66.24 changes per package equivalent to 9,822,133 hashes.

Together, only these two distributions require 23,371,000 hashes. This is roughly

equivalent to the number of hashes in the NSRL application file list. However,

our hash set only represent two distributions, the current releases in Debian and

Ubuntu, not the entire supported release sets from these Distributions, nor does

our hash set contain the hash sets from the other 352 distributions. It not feasible

to represent all Open Source Software in this way, the number of hashes needed is

far too large. Perhaps we can limit the number of hashes by only listing those

hashes of vulnerable software.

The set that contains all Open Source Software packages is very large. The

diversity of the Apache HTTP Server makes determining the vulnerability of one

particular instance of the Apache HTTP Server difficult. Because hashes represent

a unique signature, they appear to be an ideal solution to this problem.

The Apache HTTP Server is one of approximately 59 projects maintained

by the Apache Software Foundation. The Apache HTTP Server code has

35

undergone seven major releases, each of which has undergone up to sixty-three

minor releases (Figure 10)

Figure 10 The number of Apache Software Foundation release instances expands by

multiplying the number of projects, by the number of major releases and finally by the

number of minor releases.

The Apache HTTP Server is a common part of many Linux and Open

Source Distributions. There are approximately 352 Distributions, which include

the various major and minor releases of the Apache HTTP Server. Distributions

have their own releases, architectures and backports, which further multiply the

number of Apache HTTP Server instances (Figure 11).

36

Figure 11 The number of Apache HTTP Server releases expands by multiplying the number

of Apache Software Foundation releases by distributions, architectures, and back-port

releases.

If we limit our matches to simply indicate that a package contains a

vulnerability, (only the first outcome of a match) then our hash set must contain

96,821,863 hashes to represent the current known vulnerabilities in Open Source

software (Table 1).

The NSRL hash-set RDS_219_C contains some 23,978,697 hashes; it is

approximately 2.9 gigabytes. Assuming the dataset needed to represent Open

Source vulnerabilities is similar, it would be approximately 11.65 gigabytes in

size when uncompressed.

A vulnerability tool needs to compare the system packages to those in the

entire dataset on a daily basis to track the daily changes in vulnerability

37

information. To do so, the tool must download the current dataset and then

evaluate each entry and compare it to those on the system. While it is possible, the

size of this dataset is prohibitive for processing by vulnerability analysis tools and

transmitting over the Internet.

Approximate
Number of

Distributions

Average
Number of
Packages

per
Distribution

Average Number
 of Architectures
per Distribution

Average
Number of
Releases

per
Distribution

Average
Number of

Vulnerabilities
per

Distribution

Estimated Total
Number of

hashes needed
to represent
vulnerable

Open Source
software

352 8,043 2.306 4.41 3.36 96,821,863

Table 1 estimated number of hashes needed to represent existing vulnerable Open Source

software. This table generated from the data shown in Appendix I.

2.6 Future Work

One issue with using the NVD as a data source is the latency between the

first report of a vulnerability and the listing of the issue within the NVD. This

latency can increase the length of exposure to new exploits, if one solely relies

upon the information provided by the NVD. The process to assign a CVE to a

given vulnerability takes time; often the documentation of a vulnerability begins

with a bug report to the package maintainer or upstream source. Retrieving

information from such a source would bring awareness sooner, and could further

reduce the time of exposure from known vulnerabilities.

Fine-tuning the match function‘s result vetting can speed up the analysis

of accuracy. The current method is time intensive due to processes requiring

human review.

38

The approach discussed in this work can be applied to other Open Source

Distributions e.g. red hat and SUSE. These different domains do require that some

methods be adapted to fit different technical requirements such as for systems that

use .rpm packages. This does not prevent their analysis; the rpm format has a

comparable tool-set that allows similar queries as apt. Windows-based systems

are also conducive to this approach, there exists an API which enables software

interrogation, enabling the comparison of vulnerability data with that of the

system software.

3. Method

A comparison between a list of vulnerable software from the NVD and a

list of software from an Open Source system determines a test system‘s

vulnerability. The system can either be active and used for other work, or a test

system, expressly intended for these analyses. The test does not require special

system preparation, aside from loading the test scripts and obtaining the current

NVD data. The analysis is self-contained; the system can perform the

investigation without external interactions.

3.1 System used

Several Open Source Software systems are the test beds for vulnerability

analysis. The security patch process, like most Open Source development, is open

to allow an insider‘s perspective of this normally hidden commercial activity.

This aids the verification of results that closed development processes would not.

39

The selection of Ubuntu and Debian from the many possible choices of

Linux distributions enables the robust Advanced Packaging Tool (apt), to provide

package management information and metadata for Debian (.deb) packages.

Furthermore, Ubuntu has a larger and more diverse repository of packages than

other popular distributions such as Red Hat, SUSE, or even Debian. The

repositories contain otherwise unavailable packages such as proprietary drivers

and other commercial software making for a more well rounded test of system

vulnerabilities.

3.2 Heuristics for vulnerability detection

Two heuristics determine if a particular system package is vulnerable as

defined by the NVD:

1. The system package appears in the NVD.

2. The version of the system package appears in the NVD.

The first heuristic determines if the NVD contains an entry for a software

package. This indicates the package has contained a publicly disclosed

vulnerability. The second heuristic refines the first. It determines if the software

version on the test system still contains the vulnerability. If the package version

from the system is greater than any of those listed in the NVD the assumption is

that the software contains a fix (Figure 12).

40

Figure 12 ideal matching

All heuristics intend to maximize vulnerability detection, and to err on the

side of ‗safety‘. This is to reduce the chances of a false negative rather than

producing false-positives; It is safer to misdetect packages which are not

vulnerable than it is to miss actual vulnerable packages.

3.2.1 Determining if specific software appears in the NVD — Matching

These two heuristics are comparable to a matching exercise: Match system

software with the software listed in the NVD, and then match the system version

with those listed in the NVD. Conformation of both matches indicates a

vulnerability is present on the testing system.

Again, note that in the context of this work this is the definition of a

‗vulnerability‘. Whether ―proof‖ a vulnerability exists, has a feasible exploit, or is

within the current system configuration is outside scope.

41

3.2.1.1 Name matching

The matching system must find comparable information in both the NVD

and the system; on a system, software names identify packages; name collisions

would not allow the operating system to determine which component to invoke.

NVD documentation indicates the NVD also intends for software names to

determine vulnerability matches:

National Vulnerability Database Version 2.1

NVD is the U.S. government repository of standards based

vulnerability management data represented using the Security

Content Automation Protocol (SCAP). This data enables

automation of vulnerability management, security measurement,

and compliance. NVD includes databases of security checklists,

security related software flaws, misconfigurations, product names,

and impact metrics. NVD supports the Information Security

Automation Program (ISAP)
[6]

.

The NVD documentation contains the following information for the element

―prod‖:

Product wrapper tag.

Versions of this product that are affected by this vulnerability are

listed within this tag.

Attributes:

 "name" => Product name

 "vendor" => Vendor of this product

If a package name matches a NVD name, the package is ‗vulnerable‘

unless further test heuristics can change this result to negative (Figure 12).

42

3.2.1.2 Version matching

The NVD documentation contains the following information for the

element ―vers‖:

Represents a version of this product that is affected by this

vulnerability.

Attributes:

"num" => This version number

"prev" => Indicates that versions previous to this

version Number are also affected by this

vulnerability

The NVD presents information about vulnerable versions in two ways. By

either enumerating every vulnerable version or listing a single version with a flag

to indicate that all previous versions are also vulnerable.

Because the NVD fails to recognize the presence of major release versions

(Section 3.3.2), and the enumeration process is fallible, packages evaluate as

vulnerable if their version is less-than-or-equal to the maximum version (Figure

12). The goal of the heuristic design is to fail on the side of safety; therefore, even

though the NVD may contain more expressive version information, comparisons

only use the maximum listed vulnerability.

3.2.2 Issues with matching: The simple two-fold heuristic does not work

Unfortunately, many issues diminish the effectiveness of automated

vulnerability detection in Open Source Systems using the NVD. That is not to say

that in some cases these issues are unsolvable by human intervention; however,

by doing so one cannot take advantage of a computer-automated process.

43

When ambiguities are present in the CVE listings, assumptions in the

matching function heuristics intentionally produce a false positive. The intention

is that potential, yet ambiguously determined vulnerabilities will appear, and by

making these possible security issues visible, they may undergo further

examination. These heuristics also fail on the side of safety

.

3.2.2.1 Names

The identification of vulnerable software is a critical component of an

accurate analysis. An ideal positive match between an entry in the NVD and a

software package on a system must ensure the software on the system is the same

as that listed as vulnerable within the NVD. This is to ensure the results do not

contain either false positives or false negatives. Software packages must (and do)

have unique identification within systems to prevent name collisions. Names are

the de-facto identifier on a system. Two packages with the same name cannot

exist in the same system location. Path information resolves name collisions

present in different locations.

In addition to the ontology issue described in Section 2.3.1.1, a software

name can vary depending upon its location. One is the name of a file as it resides

on a particular system, another is the name of the package as delivered to the

system, and yet another is the name as given by the upstream project. Often the

names are the same; however, the package name can contain different information

depending upon the packaging rules for the various distributions of Linux and

Open Source.

44

Names within NVD entries often do not match the names found on actual

systems, preventing name-matching (Table 2). Heuristics help resolve this

matching issue.

Debian & Ubuntu Name NVD Name

apache2

apache2.2-common

apache2-mpm-prefork

apache2-utils

Apache

mysql-client-5.0

mysql-server-5.0

mysql-common

MySQL

libdns22 BIND

Table 2 System names and their NVD counterparts

3.2.2.2 Versions

Closed source development processes are less stream-like and exhibit

deliberate and punctuated public releases. A single entity controls software

versions, and the number of versions are less numerous. Open Source Software

development represents a continuous stream of development
[19]

; new features

appear at the head and are refined through testing and bug fixes as the stream

progresses.

As the package undergoes change downstream, the community adds small

descriptive terms after to the version number to represent the changes. Removing

this additional information allows a comparison between the package versions and

those in the NVD (Table 3).

45

Ubuntu NVD

2.0.52-38.ent 2.0.52

2.2.3-4+etch1 2.2.3

0.9.8f-1 0.9.8

1:9.3.4-2ubuntu2.1 9.3.4

Table 3 Examples of System versions and their NVD counterparts

A simple comparison between the truncated system version and the set of

versions within a CVE is still not possible, the version format which typically

contains multiple decimals e.g., xxx.xxx.xxx. One additional step is required

before comparing the package and CVE versions; converting both into decimal

format (Table 4).

Package Name Version String Decimal used for comparison

Perl 5.8.8 5.008008

Apache2 2.2.3 2.002003

Bind9 9.4.0 9.004000

Table 4 System package version to decimal conversions

3.3 Developing match heuristics

To automate vulnerability detection, a tool simply implements the

heuristics contained in this work. This tool represents a matching function, where

the input is a package and NVD data; the output is a determination of

vulnerability.

The first heuristic matches a package name to software names in the NVD.

Although matching names is a simple string comparison, this simple match

function failed to produce a significant number of positive results:

46

$CVE_Name eq $systemPackage

Searching the NVD for vulnerabilities published in the year 2007 through

September 2007, the evaluation produced only the following nine matches:

irssi, tar, gimp, screen, slocate, findutils,

lftp, w3m, xterm

If accurate, these results indicate only these few packages have contained

vulnerabilities.

3.3.1 Problems with case matching

Widely publicized vulnerabilities in The Mozilla Foundation‘s Firefox

Web Browser are missing from the initial result set. Why does the match function

fail to match the Mozilla Firefox Web Browser?

The reason is due to case sensitive Linux systems i.e. names that differ in

case but are the same in all other aspects are not equivalent. In contrast, the NVD

is case-insensitive and contains a mix of upper and lower case names. Therefore,

the comparison function must also ignore case:

lc $CVE_Name eq lc $systemPackage

47

After this modification, the matching function reveals twenty additional

matches, including Firefox:

VLC, VIM, Fetchmail, Samba, ImageMagick, GnuPG,

Firefox, Sudo, Xscreensaver, phpMyAdmin, Python,

GIMP, Snort, TCPDump, Subversion, PostgreSQL,

Evolution, OpenSSL, Ekiga, Rsync

This first heuristic of the matching function demonstrates that NVD does

not contain consistent capitalization in listing vulnerable software names. Some

entries are in lower-case and some in mixed case. The typical practice on a Linux

system is to use all lower-case letters for package names, yet the NVD contains

CVE records having the product name ambiguously represented with a

combination of upper and lower (Table 5).

Package Listings CVE Number
GNU Image

Manipulation Program „gimp‟ CVE-2007-3741

 „GIMP‟ CVE-2007-2356

The Open Source toolkit

for SSL/TLS „openssl‟ CVE-2004-0079

 „OpenSSL‟ CVE-2007-4995

Table 5 Case-based ambiguities within the NVD

This may not appear to be important. However, this practice prevents an

automatic health evaluation tool from differentiating between vulnerabilities in

different packages such as ‗Ant‘ and ‗ANT‘. On Linux systems, the letter-case of

a package name prevents name collisions; i.e. the package Ant (automated

software build tool) is different from ANT (desktop ISDN telephony application)

and yet the system can determine the difference by the case.

48

3.3.2 Problems with major release name matching

The Apache HTTP Server is an Open Source Web Server developed by

the Apache foundation. It is the most commonly used Web server in the world
[20]

.

Historically, the Apache HTTP Server has contained vulnerabilities. The Apache

HTTP Server version 2 is present on the testing system; yet ―Apache‖ fails to

appear in the matched list. Why does the match function fail to match the Apache

HTTP Server?

The reason is due to the NVD not differentiating between the major-

releases of Open Source Software. Currently, the Apache Foundation produces

three major-releases of the Apache HTTP Server. The test systems contain the

apache2 release; however a search for either a case-insensitive string ―apache2‖

or a case-sensitive search for ―Apache2‖ produce no matches within the entire

NVD.

This is because the NVD lists the various Apache Server major-releases

under a single product name. This is analogous to listing ―Windows 95‖,

―Windows 98‖, and ―Windows 2000‖ as simply ―Windows‖ – or simply calling

all Windows systems, including desktop applications such as Microsoft Word

2003 by the name ―Microsoft‖. The Apache Open Source foundation maintains

numerous software projects in addition to the popular Apache HTTP Server.

Listing the Apache HTTP Server as ‗apache‘ also does not differentiate

between these projects.

The Open Source development credo is ―Release-Early, Release-

Often‖
[19]

, which is often contrary to many commercial practices. Open Source

49

encourages prototyping new ideas and immediately releasing them into the

community for evaluation. Open Source software development releases are an

almost-continuous stream of iterative versions, with both flaw-fixes and new

feature development occurring at the same time, and appearing at the head of the

stream. An unwanted repercussion of early-release development is that the

software may never completely finish the development process; this practice, if

unmanaged, can lack rigorous testing, bug fixes, and the like before initial release.

This practice is by design; yet, the rapid release model may not fit the need of

enterprise users requiring software stability. To address this need, the Open

Source community will often ―freeze‖ a development branch by stopping the

inclusion of new features and concentrate on software stabilization.

This stabilizing technique ‗forks‘ the software, creating two branches, one

that continues with the addition of new features, and the other that no longer

receives new features and the potential for instability they bring. When this

happens, the project community will begin work on the new features in a new

major version of the software, the version number assigned to this development

branch of the fork being ―significantly‖ different (Table 6).

Forking the project, by intent, creates two different bodies of code. As a

result, modules that work on one fork may not work in the other, calls to the API

of one may not be the same as to the other. Moreover, and significant to this

discussion, security vulnerabilities affecting one branch of the fork may not affect

the other. Using PHP as an example, CVE-2007-3294 only affects PHP 5, and

CVE-2007-1286 only affects PHP 4.

50

Package Major Releases

Apache HTTP Server 1.3.x

 2.0.x

 2.2.x

The Perl Programming Language 4.x.x

 5.x.x

 6.x.x

Linux Kernel 2.0.x.x

 2.2.x.x

 2.4.x.x

 2.6.x.x

PHP Scripting Language 4.x.x

 5.x.x

Table 6 Examples of OSS not differentiated within the NVD. The major-releases represent

significant changes between Open Source Software, and do not represent a continuous

stream.

Returning to the Apache HTTP Server example, vulnerabilities affecting

Apache 2 may not affect Apache 1.3. Using the same name for both of these

major-releases affects the accurate determination of their current vulnerability

status. If Apache 1.3 is present on a system, searching for the string ‗apache‘ will

produce false-positives from vulnerabilities in Apache 2. Conversely, searching

for the string ‗apache2‘ will not match any entry in the NVD and therefore

implies it is not vulnerable. One must know that searching for vulnerabilities in

packages with major-releases is a special case for the NVD.

Because the NVD does not list major versions, the match function must

first drop any trailing number from a package name; these numbers represent the

major release version (Table 7). From the perspective of the system, this

combines otherwise unique software units. Nevertheless, this match function

heuristic adheres to the policy to error in favor of false positives.

51

To illustrate the combining heuristic; the system package name

‗apache2‟ becomes the search string ‗apache‟, packages ‗perl4‟,

‗perl5‟, and ‗perl6‟ become the search string ‗perl‟, the packages

‗php4‟ and ‗php5‟ become ‗php‟ etc.

System Package NVD match NVD Vulnerability
php5 php CVE-2007-1286

libgtop2 libgtop CVE-2007-0235

libpng12 libpng CVE-2007-5269

Table 7 Examples of vulnerability matches discovered ONLY after removing major release

numbers from system package names

3.3.3 Problems with major release version matching

Combining major-releases of OSS discussed in Section 3.3.2 also

increases the difficulty to compare system versions with a NVD entry. The match

function must ignore the major release found on the system, and then treat the

versions found in an NVD entry as continues. This is required because the NVD

treats major-releases as separate versions and not as separate entities.

Major release versions of OSS confound the notion of the ―normal‖

commercial software model of the NVD, which typically assigns a single CVE

product name for each vulnerability. As an example, Windows 95 and Windows

98 have a similar code base yet appear as separate entities in the NVD. This

makes sense as each represent a separate body of code.

This is not to say that a flaw‘s effect cannot span between major-

releases—it can. Software forks contain a common ancestral body of code and so

they can share common vulnerabilities introduced into their common ancestor.

52

Vulnerabilities begin when a security flaws enters the development stream, and

will persist until detected. Consequently, the initial vulnerable version, and all

subsequent releases of the software are vulnerable. Also possible is the

vulnerability resides within a single major-release only, and that the previous and

later major-releases are unaffected.

A safe inference is to assume all prior releases contain this vulnerability

up until and including the version where the vulnerability first appeared. The

same logic holds when searching the NVD. When a software package has several

current major release versions (e.g. Apache, Perl, PHP, etc), the safe inference

is that all prior releases of the software contain this vulnerability up until and

including the highest version listed.

Yet another problem arises when matching vulnerable software versions

due to the absence of major release versions within the NVD. The NVD data

structure has a flag that indicates if prior versions of the named software are also

vulnerable. The CVE-2007-3996 <vers> entry indicates a specific version of

PHP is vulnerable, and that all prior versions are vulnerable:

<vers num="5.2.3" prev="1" />

Because the highest affected version is within PHP 5, any version of

PHP 4 will also evaluate as vulnerable. Yet PHP 4 is part of a separate major-

release, body of code, patch and revision process. The Open Source community

will produce individual patches for each major-release and will increment their

53

versions individually. This cannot be discerned in the CVE entry; when PHP 4 is

patched it will still appear vulnerable compared to this NVD entry.

The <prod> element of CVE-2007-3799 generalizes the major-releases

of PHP 4 and PHP 5 therefore the match function must also by dropping the

release number. However, the <vers> element specifies versions of PHP 4 and

PHP 5. In this example, versions of PHP 4 will also evaluate as vulnerable

because the major release of PHP 4 is always less than 5.2.3:

 <vuln_soft>

 <prod name="PHP" vendor="PHP">

 <vers num="4.4.7" prev="1" />

 <vers num="5.2.3" prev="1" />

 </prod>

 </vuln_soft>

Two issues exist with another CVE entry for the Linux Kernel, CVE-

2008-0001 that indicates vulnerable versions as:

 <prod name="Kernel" vendor="Linux">
 <vers num="2.6.22.16" prev="1" />

 <vers num="2.6.23.14" prev="1" />

 </prod>

The issues are: 1) An unnecessary version number of 2.6.22.16 that is

less than the 2.6.23.14 2) Other Linux Kernel major version release such

as the 2.4 and the 2.2 series will always evaluate as vulnerable by a matching

function.

54

Vulnerability CVE-2008-0455 has a good description of the ranges in the

different Apache major-releases of 2.2, 2.0, and 1.3:

 <descript source="cve"> Cross-site scripting
(XSS) vulnerability in the mod_negotiation module

in the Apache HTTP Server 2.2.6 and earlier in

the 2.2.x series, 2.0.61 and earlier in the 2.0.x

series, and 1.3.39 and earlier in the 1.3.x

series allows remote authenticated users to…

</descript>

Unfortunately, a free-text description that contains the information

necessary to evaluate an Apache HTTP Server version for a vulnerably is not

machine-readable.

3.3.4 Problems with version set matching

The NVD contains entries that either 1) describe them as a range

extending to all previous versions before a known vulnerable version, or 2)

enumerates the exact set of vulnerable versions. If an NVD entry contains an

incomplete list of enumerated versions, the possibility exists of injecting a

‗clerical‘ error.

Again, CVE-2008-0455 is an example of this kind of error. The machine-

readable version information for CVE-2008-0455 is not complete, therefore does

not allow an accurate evaluation. Among the missing versions are v2.2.1,

v2.0.11 –through– v2.0.27, v1.3.10, and v1.3.11. Overall,

approximately 42 versions indicated as vulnerable in the description are excluded

in the machine-readable element <vers=" "/>

55

Because of this uncertainty, the match function must test for the maximum

vulnerability listed within a given CVE, and then compare it to the version found

on the system. Again, this heuristic produces errors in favor of false positives.

This method does not miss a vulnerable version missing from a list of vulnerable

versions within the CVE-2008-0455 entry.

3.3.5 Problems with consistent granularity of component entries

Complex software systems are often broken down into components. The

Apache Software Foundation currently designs the Apache HTTP Server in this

manner. Among the intentions to componentized large software projects is to

separate concerns, decouple dependencies, and promote software re-use.

Software vulnerabilities may appear in any component of a system, and it

is important to consider how to disclose the vulnerability with respect to the de-

composed system. This issue is one of ―granularity‖: should the individual

components appear in a vulnerability disclosure, or should the entire composed

system? In practical terms: it better for the NVD to list individual components, or

the package of which the component is part? These are important questions to

consider, and although their answers are outside of the scope of this thesis, the

matching function requires information contained in the NVD CVE entries to

follow a well-documented and internally consistent practice.

The NVD does not present consistent component naming between entries.

As an example, Apache Module vulnerabilities may appear different ways:

56

Named as part of an Apache HTTP Server entry or named in a separate entry

(Table 8).

A typical Apache installation contains a standard set of common modules,

and optional modules are added as needed. Both the standard set and the option

set of modules can be enabled or disabled individually within a specific

installation, both types of modules are present in the NVD.

CVE <prod name=' '> Affected component Vendor Module Set

2007-3303 "Apache HTTP Server" Prefork MPM module
"Apache Software
Foundation" "Core"

2007-1862 "Apache HTTP Server" "mod_mem_cache"
"Apache Software
Foundation" "Core Other"

2007-6258 "mod_jk" "mod_jk"
"Apache Software
Foundation" “Optional”

2007-1349
"mod_perl",
"Apache" "mod_perl"

"Apache Software
Foundation" “Optional”

2007-3847 "Apache HTTP Server" "mod_proxy"
"Apache Software
Foundation" "Core Other"

2007-4465 "Apache HTTP Server" "mod_autoindex"
"Apache Software
Foundation" "Core Other"

2007-5000 "Apache HTTP Server"
"mod_imap",
"mod_imagemap"

"Apache Software
Foundation" "Core Other"

2007-6421 "Apache HTTP Server" "mod_proxy_balancer"
"Apache Software
Foundation" "Core Other"

2007-0450
"Apache HTTP Server",
"Tomcat"

"mod_proxy",
"mod_rewrite",
"mod_jk"

"Apache Software
Foundation"

"Core Other",
"Core Other",
Optional

2006-1095 mod_python "mod_python"
"Apache Software
Foundation" “Optional”

2005-0088 mod_python "mod_python"
"Apache Software
Foundation" “Optional”

2005-0108 mod_auth_radius "mod_auth_radius"
"Apache Software
Foundation"

Not – Apache
“freeradius”

2005-1268 "Apache" "mod_ssl"
"Apache Software
Foundation" "Core Other"

2005-2700

“Enterprise Linux AS”
“Enterprise Linux WS”
"Apache",
“Mod_ssl”
"Desktop" "mod_ssl"

“Red Hat”
“Red Hat”
"Apache Software
Foundation",
"mod_ssl",
“Red Hat” "Core Other"

Table 8 various examples of NVD Apache modules that have an ambiguous “granularity”

associated with their names.

57

Because of this ambiguity, the matching function needs to check for the

name of the actual module and the parent package when searching the NVD.

Section 3.3.6 discusses this issue in detail.

3.3.6 Problems with the canonical form of packages

Matching names of system packages with those found in the NVD is

difficult. Many system names are similar, but not the same as those present within

entries in the NVD. The policy: ―false positives are better than false negatives‖

intends to limit the number of undetected vulnerable packages present on a

system. Heuristics intend to produce false positives enable the matching function

to discover more name matches, and expose hidden and potentially vulnerable

packages to further scrutiny.

Employing these heuristics, matching becomes an exercise of examining

the system package to discover the canonical name. The difficult part of matching

is the successfully mapping of system packages and CVE entries to their

canonical form. Once this is accomplished, matching is trivial.

The first example is that of inconsistent names for basic entries. The

Apache HTTP Server appears as either ―Apache‖ or as the ―Apache HTTP

Server‖. Since there is no ―canonical form‖ for the Apache HTTP Server, the

matching function must search two times, one for ―Apache‖ and one for

―Apache HTTP Server‖ (Table 9).

58

CVE <prod name=' '> Affected component Vendor
Number of
Entries

2007-6203 "Apache" "Apache HTTP Server"
"Apache Software
Foundation"

90

2007-6388 "Apache HTTP Server" "Apache HTTP Server"
"Apache Software
Foundation"

38

Table 9 the Apache HTTPD Server appears in the NVD under more than one way

3.3.6.1 Problems with adjectives

The second example of canonical naming issues relates to the way that

package names appear on OSS systems. Many system package names are

composed of a ―base‖ name, often this is similar to a ―canonical name‖, and

various descriptive words or adjectives added to this base name, often separated

by dashes. Examples of these names are apache-common, libapache,

apache-utils. On occasion, system package names do not contain dashes but

the adjectives are embedded within the package name, e.g. libapache,

libssl, and libmpeg3. System package names that contain adjectives

cannot match with NVD entries as CVE product names seldom contain adjectives.

An examination of the package names contained on a Debian-based system

reveals many common adjectives (Table 10).

Name Occurrences Name Occurrences

"lib" 7,693 "bin" 203

"dev" 2,759 "app" 196

"perl" 1,277 "base" 179

"plugin" 303 "all" 163

"mod" 553 "conf" 163

"data" 313 "core" 97

"php" 253 "driver" 21

Table 10 A Debian packages contain repeating adjectives

59

A match between a system package name and a NVD entry may be

determined by removing various descriptive terms found within the package

name. The match function attempts to do so and then tries to match against CVE

entries (Tables 11, 12).

System Name Successful Match Vulnerability
gnome-terminal-data gnome-terminal CVE-2003-0070

gedit-common gedit CVE-2005-1686

irssi-text irssi CVE-2003-1020

Table 11 vulnerabilities matched by alternative searches using adjective-removal

productions separated by dashes

System Name Successful Match Vulnerability
libtar tar CVE-2005-2541

Table 12 Productions that remove adjectives imbedded in package names

3.3.6.2 Problems with significantly different names

Another issue with matching package names with NVD entries occurs

when the two names are significantly different and do not contain similar base

names. An approach to discover the canonical name of a package involves

examining the package itself. Like other package files, Debian package files

(.deb), contain metadata describing the binary package. The package tool apt-

cache presents the metadata contained in the Apache 2.0 HTTP Server as:

$ apt-cache show apache2

Package: apache2

Priority: optional

Section: web

Installed-Size: 84

Maintainer: Ubuntu Core Developers <ubuntu-devel-

discuss@lists.ubuntu.com>

Original-Maintainer: Debian Apache Maintainers

<debian-apache@lists.debian.org>

60

Architecture: all

Version: 2.2.3-3.2ubuntu2

Depends: apache2-mpm-worker (>= 2.2.3-3.2ubuntu2) |

apache2-mpm-prefork (>= 2.2.3-3.2ubuntu2) |

apache2-mpm-event (>= 2.2.3-3.2ubuntu2)

Filename: pool/main/a/apache2/apache2_2.2.3-

3.2ubuntu2_all.deb

Size: 38764

MD5sum: 94bc013993063da5830e8a57ddc99694

SHA1: ef3e480e5bc1cb7e71708b7ac15ef8ae878307da

SHA256:

ec711521f176b091dd8ac5f003269a00c5c491b722cb8608be

9cc82ce3bbd9fd

Description: Next generation, scalable, extendable

web server. Apache v2 is the next generation of

the omnipresent Apache web server. This version -

a total rewrite - introduces many new

improvements, such as threading, a new API, IPv6

support, request/response filtering, and more.

Bugs: mailto:ubuntu-users@lists.ubuntu.com

Origin: Ubuntu

Task: lamp-server

Within the metadata is an optional field ―Source‖ which indicates, if

present, that the package is a subcomponent part of a parent package. This field is

not present within apache2 metadata therefore the apache2 package is not

provided by another source other than itself.

If present, the Source field contains the name of the parent package that

supplies the sub-package. Often, such as in the apache example, the source

packages require several other components to supply the entire functionality. The

components start with the binary itself, libraries needed for various functions,

modules for different services, etc.

An example of a package that contains the ―Source‖ metadata field is the

package avifile-xvid-plugin:

$ apt-cache show avifile-xvid-plugin

Package: avifile-xvid-plugin

Priority: optional

61

Section: contrib/libs

Installed-Size: 28

Maintainer: Zdenek Kabelac <kabi@debian.org>

Architecture: i386

Source: avifile (1:0.7.44.20051021-2.2)

Version: 1:0.7.44.20051021-2.2+b1

Depends: libavifile-0.7c2 (>= 1:0.7.43.20050224-1),

libc6

Filename:pool/contrib/a/avifile/avifile-xvid-

plugin_0.7.44.20051021-2.2+b1_i386.deb

Size: 930

MD5sum: 55db4dbea6277dba90a8d0145855b257

SHA1: 01277b2426be9b58afa41c0c093a27d6aa5c1a51

SHA256:

be5e6d1766458e0a4d785e95978710cea2ec294cf61f7dd9e8bda

150ebeb821c

Description: XviD video encoding plugin for

libavifile

 Plugin for encoding DivX4 video.

 NOTICE: This plugin requires separate installation

of ibxvidcore 1.0 library which is not a part of

this package nor official Debian itself. See

documentation for more details.

 In general you do not need this plugin.

After the adjective production removes the adjective ―plugin‖, the name

string becomes ―avifile-xvid‖ which is still not the canonical name. The

adjective ―xvid‖ is not a common adjective, therefore not on the adjective

removal list, therefore no further decomposition will occur by the adjective –

removing productions.

However, a substitution of the name ―avifile” found in the ―Source‖

metadata field of the package ―avifile-xvid-plugin” yields the canonical

package ―avifile‖. The package name ―avifile‖ would not otherwise receive

any attention from the matching function and thus not compared to NVD entries

because it is not loaded on the system:

$ apt-cache show avifile

W: Unable to locate package avifile

E: No packages found

62

Nevertheless, the name ―avifile‖ is likely to appear in a CVE entry

when describing vulnerabilities and not the name ―avifile-xvid-plugin‖. By

adding the source name, when found in the package metadata, to the search of the

NVD we increase the accuracy of the evaluation. There exist examples when the

―Source‖ metadata field produces redundant results, which are the same as the

adjective decomposition, however in other cases, metadata production produce

surprising and unexpected names (Table 13).

System Name Source Name Vulnerability

extract libextractor CVE-2006-1244

libgadu3 ekg CVE-2005-1850

bsdutils util-linux CVE-2005-2876

Table 13 Vulnerabilities detected via source names that other heuristic productions will not

discover

3.3.3.5 Recursive lookups

After attempting to find a match between the system name and a NVD

name, the matching function attempts to find matches by recursively applying

productions. Matching some system packages is not possible without several

applied productions (Table 14).

System Name Intermediate Production Successful Match Vulnerability

libcurl3 libcurl curl CVE-2006-1061

php4-cgi php4 php CVE-2007-1286

Table 14 Recursive productions of major version, imbedded-adjective, or word-adjectives.

63

Such is the case of BIND, an important component found on many Linux

Systems. The Berkeley Internet Name Domain (BIND) is an implementation of

the Domain Name System (DNS) protocols. In addition to Linux systems, the vast

majority of name serving machines on the Internet
[21]

 uses it. BIND also has

experienced a number of vulnerabilities; the NVD contains 42 CVE entries that

explicitly name BIND vulnerabilities between 1999 and 2008. The most recent

CVE-2008-0122 published January 15
th

 2008.

Figure 13 illustrates several issues when matching the BIND package

from Linux systems. 1) Matching BIND system names cannot occur directly;

normalization of the names must occur first. Both the major release numbers ―9‖

and ―9-0‖and the adjectives ―lib‖ and ―host‖ need removal before ―BIND‖

will match. Once normalized, three system packages are vulnerable. 2) Six

additional packages are vulnerable by discovering their source is from BIND. 3)

The issue of ―granularity‖ exists within the BIND packages; The NVD contains

six current BIND vulnerabilities; but which of the nine components contain these

flaws?

64

Figure 13 the relationships between BIND vulnerabilities and matched packages on a Linux

system.

3.3.3.5 Two additional matching heuristics

Often a CVE <prod name=" "> entry contains several words, or even

a description separated by spaces. In such cases, the package name, which never

contains spaces, cannot ever match. Nevertheless, it may be possible to attempt to

match the single word within the description. E.g. the word "Linux" cannot

match <prod name="Enterprise Linux"; however the single word

―Linux‖ from the CVE can be matched back to the system name. Similarly, the

system name "libwpd" with <prod name="libwpd library">. The

match function attempts to match each word found in the CVE <prod name="

"> with a package name from the system. This heuristic name is a ―reverse‖

match.

Similarly, any single word from within the CVE <prod name=" ">

entry may be matched with any word derived from the Match Function

65

productions, e.g. the system name "libmagic1" produces the word "magic"

which in turn is contained in <prod name="Fx Magic Music"> This

match function heuristic name is a ―any‖ match.

Although these two matching heuristics do produce additional matches,

the quality of these matches is very poor. They produce a tremendous quantity of

false positives, and the correct results they produce are generally duplicates of

other heuristic productions. Package names that contain the adjectives ‗file‘,

‗Linux‘, ‗ftp‘, or ‗telnet‘, are particularly problematic, as they are quite

common in the NVD. The string ‗file‘ even occurs in both the system and the

NVD.

66

3.3.3.5 Summary of match heuristics

Of the three general match heuristics tried, ―Reverse‖, ―Alternate‖, and

―Any‖ only the ―Alternate‖ method is successful. Discovering alternate names by

using case-insensitive matching, removing numbers and adjectives or by replacing

the package name with the source name produced the best results (Figure 14 and

Table 15).

Figure 14 Summary of name matching heuristics

67

Heuristic
Added

Matches
Match

Function Description
Precise 7 $CVE_Name eq $systemPackage String match, including case

e.g 'gimp' will not match

'Gimp'

Note: does not produce a

significant matches -not used

Exact 30 lc $CVE_Name eq lc $sysPackage Case insensitive string match,

creates case collisions e.g. Ant

and ANT

Reverse 21 $systemPackage ~= $CVE_Name CVE name matches a substring

within the system name e.g.

matches system name 'file' with

NVD entry 'Text File Search'.

Note: produces many false

positives-not used

Alternate 335 foreach $alt (@productions) {

 $CVE_Name eq $alt

}

Productions remove adjective

and numbers from system

names, result matched to NVD

entries along with the source

package name if it exists e.g.

matches CVE name "Bind‖ by

mapping system name

"liblwres9" with source name

"bind‖, also system name

"apache2.2-common" with

CVE name "Apache"

Any 263 lc $CVE_Name ~= lc systemPackage The system name matches a

substring of the CVE name

e.g. system name "libusb-0.1-4"

with NVD entry "Secustick

USB flash drive"

Note: produces many false

positives-not used

Table 15 the results of matching between a system containing roughly ~2000 packages and

the NVD_CVE_2007.xml file (as of September) containing 5164 vulnerability entries

3.3.4 Match Accuracy

Confidence in matches between CVE names and alternative names found

by productions cannot be the same as the confidence in the exact matches.

Production heuristics contain assumptions; and these can be false. The matching

68

function compensates by labeling each successful match with the heuristic name

that produced the match. In this way, the labels provide information for further

scrutiny of the match confidence.

 The policy of the match function is to discover matches between a

system‘s package names and NVD entries, and when there are uncertain results,

to fail by generating false-positives. The various productions, multiplied by the

intentional production of uncertain results as positives, do create duplicate results.

The matching function often identifies several files corresponding to one

vulnerability. This is intentional as the exact location of the vulnerability is

unknown and therefore all potential vulnerable files need recognition. Often, as in

the case of a recent e2fs vulnerability, CVE-2007-5497, many related packages

required security patches: libcomerr2, libuuid1, libss2,

libblkid1, e2fslibs, e2fsprogs.

3.3.5 The problem of detecting downstream alteration

Open Source Software, by definition, has permissive software licenses that

permit the modification of packages. The license, along with the availability of

the source code, allows changes to occur at any time in the software lifecycle.

This is very different from the closed source process. Significant changes to Open

Source Software do not necessarily occur at the head of the development stream;

software experiences changes all along the development stream including changes

by the end-user. This poses additional problems to determine if vulnerable

software exists on a system using the NVD. The software name and version found

in the NVD is likely from the head of the development stream and does not reflect

69

the myriad of changes the downstream community has made. This issue is the

same as the name and version matching problems described in Section 3.2.2

This downstream alteration effect continues after the matching function

has accurately matched a system name with a CVE entry, and has determined that

the system version is less-than or equal-to the greatest vulnerable version in the

CVE. Surprisingly it is very likely this matched package is still not vulnerable.

This has caused much confusion for IT personnel attempting to detect vulnerable

OSS software.

The root of the confusion is that CVE entries contain versions as listed at

the head of the development stream. The subsequent downstream alternations are

not apparent in the CVE, and without accounting for these alterations, comparing

version information is worthless.

Section 3.2.2.2 describes the truncation of system version information

after the upstream version. This must occur to enable a comparison with the

NVD. Unfortunately, the information added after the upstream system version

represents important alterations that affected the package including the

backporting of security patches. Table 3 shows versions of several Ubuntu

packages and their truncated counterparts. These annotations signify profound

changes from the upstream version.

At the head of a development stream (Figure 6), the project maintainer,

produces release versions, and downstream, various entities make changes to this

version. These changes fundamentally alter the software to such a degree that it

may no longer behave the same. Alterations may be for many purposes, not only

70

for security. The changes modify the package in many ways. They may even

introduce new vulnerabilities e.g. CVE-2007-3379, is a vulnerability introduced

into the red hat Linux Kernel or, as in the case of a security back-port, a patch

from the head of the development stream fixes a downstream version. The

backporting process eliminates the vulnerability within the older ―version‖, but

the older version will still appears to be ―vulnerable‖ by comparison to the NVD

version regardless that it no longer contains the faulty code.

The practice of ―backporting‖ a security fix will reduce the latency of the

patch to precede down the development stream, anyone can do the work;

however, it is often the work of distribution package maintainers. The work done

to produce the security patch begins with a patch submission to the head of the

development stream. Thereafter, this fix becomes part of all future versions.

Unfortunately, this resolves the security vulnerability only at the head of the

development stream; the older, stable portions of the stream are still subject to the

exploitation of the security flaw. Therefore, the patch must also apply to the

―stable‖ versions of the software. This takes additional work, as the stable

versions may not be the same as the code at the head of development in lieu of the

freeze for stability. The process of refactoring the patch to apply it to the stable

software is one form of ―backporting‖ the security patch.

71

3.3.6 Detecting downstream alteration with the changelog

We cannot directly compare a CVE version with a System version. Left

unaltered, the system package version often contains extra annotations added by

downstream package maintainer (Figure 15). These annotations indicate if the

system version is vulnerable or if a back-port has been applied. Removing

annotations such as show in Table 3 enables numerical comparison to those in the

NVD; however, the results now contain false positives. The package versions

detected as vulnerable by this comparison may actually contain applied back-

ported security patches.

Fortunately, .deb package binaries include a changelog file that lists a

history of the package maintainer‘s work, including applied security patches
[22]

.

Each security patch, which is back-ported by a package maintainer to fix a bug or

security fault, will reference the original issue by its unique CVE (or candidate)

id.

Because CVE numbers mark when patches have fixed security flaws, the

matching function can equate the presence of a CVE number to a back-ported fix

within the package. The changelog can provide information that the package is

not vulnerable even when the comparison of the system and CVE version

indicates the package is vulnerable. By parsing the changelog for a specific CVE,

the match function can automatically determine if a back-port fix for CVE is

present in the package binary. Figure 16 shows this heuristic added to the

matching process.

72

Figure 15 examples of package versions present on an Ubuntu 7.10 system, annotations by

downstream package maintainers describe downstream changes

73

If a package is listed in the NVD, and has an upstream version less than or

equal to any version listed in the NVD, it is vulnerable only if the CVE number is

not found in its changelog. Note that there is an implicit decision to trust the work

of the package maintainer. In addition, determining whether the presence of the

CVE number is accurate in the package changelog is beyond the scope of this

work. Moreover, all Debian packagers do not follow the Debian packager‘s

manual, e.g. gcc, does not list CVE numbers when back-port security patches are

applied.

Figure 16 adding the back-port check to the end of the analysis

3.3.7 Verification of matching function accuracy

The aim of this work is to determine if it is possible to detect

vulnerabilities in a fully ―patched‖ system by using the information contained in

the NVD. A secondary concern is to do this comparison by exclusively using

information available on the system and the NVD. This secondary exercise is to

74

determine if an analysis of this kind is possible, independent of the determination

by the vendor of the system, i.e. the Linux distribution that provides the system.

External verification is required to determine accuracy of such an

independent analysis. One method for verification is to compare each non-

negative result produced by the matching function against the list of packages the

system itself determines are vulnerable. Of course, this verification is impractical

if done ―by hand‖ through the systematic examination of each vulnerability and

each NVD entry.

To avoid this impracticality, the Debian system tools apt-get, apt-

show-versions, and the security tool debsecan partially automate the

verification. The system tools simply check if there are updates available on the

update mirror, the tool debsecan compares the installed system packages to the

vulnerability notes of the Debian security team.

4. Results of testing the matching function

Using the heuristics described in this work, an automated matching

function was able to detect publically disclosed vulnerabilities within fully

patched Linux systems. The results produced by the matching function

consistently indicated 5%-12% more vulnerabilities than the tool debsecan

(Table 16).

75

Year Packages

Matching Function Debsecan

Δ Matched Vulnerable Matched Vulnerable

2008* 402 55 12% 47 10% 6% n/a % 16 4% 6%

2007 402 90 22% 68 17% 7% n/a % 39 10% 7%

2006 402 73 18% 52 13% 12% n/a % 4 1% 12%

2005 402 85 21% 49 12% 12% n/a % 1 0% 12%

2004 402 93 23% 36 9% 9% n/a % 0 0% 9%

2003 402 59 15% 22 5% 5% n/a % 0 0% 5%

2002 402 108 27% 32 8% n/a n/a % 0 0% 8%

Table 16 current system vulnerabilities reported by the matching function and debsecan,

by year, analysis as of April 14 2008. *detail results for 2008 in Figure 13

To compare these tools further, results for the year 2008 are show in

Figure 17. Note the matching function detects all the vulnerable packages

detected by debsecan, several false positives, and several that debsecan misses.

Sections 4.1.1 and 4.1.2 describe each numerated portion of this figure in detail.

76

Each numbered portion of Figure 17 has text description consisting of:

a) Synopsis of match accuracy

b) Packages names involved

c) CVE numbers involved

d) Analysis

Figure 17 results diff between debsecan and the match function. No highlighting indicates

both tools detected the same vulnerability, gray indicates name not detected, yellow indicates

an additional match. Enumerated callouts discussed in the text.

77

4.1 Items only reported by debsecan

1. debsecan false-positive

Package:

 Gallery2

 CVE-2008-1066 (The modifier.regex_replace.php plugin in Smarty before

2.6.19, as used by Serendipity (S9Y) and other products,...)

Analysis:

The comparison shows the matching function does not detect the

vulnerable package ―gallery2‖ which is assigned the vulnerability entry

CVE-2008-1066. However, this CVE is for the package ―Smarty‖, not

―Gallery2‖ according to the NVD and confirmed by the Debian security

advisory DSA-1520. This vulnerability is an example of a composition

issue similar to the one described in Section 3.3.5 but in contrast, the

composition not present in the NVD. Otherwise, components affected by

the smarty vulnerability, such as the package gallery2, would be part of

CVE-2008-1066. Due to the stipulation that the contents of the NVD

determine vulnerability status, not the vendor, this result is a false positive.

Regardless, the tool debsecan, which relies upon vendor information, has

correctly indicated that the package Gallery2 is vulnerable.

78

4.2 Items only reported by the Match Function

2. Match Function false-positive

Packages provided by the GNU Compiler Collection:

cpp-4.1 4.1.1

gcc

gcc-3.3-base 3.3.6

gcc-3.4-base

gcc-4.1

gcc-4.1-base

libg2c0

libgcc1

libgfortran1

libssp0

libstdc++6

Two CVEs are reported by the Match Function:

 CVE-2008-1685 (gcc 4.2.0 through 4.3.0 in GNU Compiler Collection, when

casts are not ...)

 CVE-2008-1367 (gcc 4.3.x does not generate a cld instruction while

compiling ...)

Analysis:

Both of these vulnerabilities are for specific versions. The matching

function determines vulnerabilities by the highest version found in the NVD

(Section 3.2.1.2); therefore, by these heuristics the GCC packages receive a

vulnerable label, even when the NVD does not indicate they are.

3. Match Function false-positive

Packages provided by gpg:

gnupg 1.4.6

gpgv 1.4.6

 CVE-2008-1530 (GnuPG (gpg) 1.4.8 and 2.0.8 allows remote attackers to

cause a denial ...)

79

Analysis:

This vulnerability is for a specific version. The matching function

determines vulnerabilities by the highest version found in the NVD (Section

3.2.1.2); therefore, by these heuristics GnuPG and gpgv receive a vulnerable

label, when debsecan does not indicate they are.

4. Vulnerabilities not reported by debsecan

-also-

Match Function false-positive

Packages provided by php4:

libapache2-mod-php 4.4.4

libapache-mod-php4 4.4.4

php4 4.4.4

php4-cgi 4.4.4

php4-cli 4.4.4

php4-common 4.4.4

php4-mysql 4.4.4

 CVE-2008-1384 (Integer overflow in PHP 5.2.5 and earlier allows

context-dependent ...)

 CVE-2008-0145 (Unspecified vulnerability in glob in PHP before

4.4.8, when ...)

Package:

 mysql 5.0.23

 CVE-2008-0226 (Multiple buffer overflows in yaSSL 1.7.5 and

earlier, as used in MySQL ...)

80

Analysis:

The CVE indicates the PHP vulnerability is for all versions

preceding a specific version. The upstream version represented by the

system is less than both 5.2.5 and 4.4.8. In addition, both CVE numbers

are not within the package changelogs. Therefore, by these heuristics the

packages provided by php4 are vulnerable.

The detection of the mysql vulnerability is due to the

decomposition of the package name. The NVD contains a CVE for a

product named ―mysql‖, however there is no version given. The match

function will attempt to discover if the CVE number is present in the

changelog for the reported package, in this case mysql which is not found

on the system. MySQL has multiple components on a system: mysql-

common, mysql-server, and mysql-client. A mapping between the NVD

package name and the system package name is needed to resolve this false

positive.

5. Match Function false-positive

Package:

 libapache2-svn 1.4.2

 CVE-2008-0005 (mod_proxy_ftp in Apache 2.2.x before 2.2.7-dev,

2.0.x before ...)

 CVE-2008-0455 (Cross-site scripting (XSS) vulnerability in the

mod_negotiation module ...)

 CVE-2008-0456 (CRLF injection vulnerability in the mod_negotiation

module in the ...)

81

Analysis:

The package libapache2-svn extends the functionality of the Apache HTTP

Server, and to three of the Web Servers vulnerabilities.

6. Match Function false-positive

Package:

 libldap2 2.1.30

 CVE-2008-0658 (slapd/back-bdb/modrdn.c in the BDB backend for

slapd in OpenLDAP ...)

Analysis:

This vulnerability is for a specific version. The matching function determines

vulnerabilities by the highest version found in the NVD (Section 3.2.1.2);

therefore, by these heuristics libldap2 receive a vulnerable label, when debsecan

does not indicate so.

7. Vulnerabilities not reported by debsecan

Packages provided by netpbm:

libnetpbm10 10.000

netpbm 10.000

 CVE-2008-0554 (Buffer overflow in the readImageData function in

giftopnm.c in netpbm ...)

Analysis:

This vulnerability is for all versions preceding a specific version. The upstream

version represented by the system is less than 10.26. In addition, the CVE

82

number is not within the package changelogs. Therefore, by these heuristics

the packages provided by netpbm are vulnerable.

8. Vulnerability not reported by debsecan

Package:

 libtorrent9 0.10.4-1

 CVE-2008-0646 (The bdecode_recursive function in

include/libtorrent/bencode.hpp in Rasterbar Software libtorrent before

0.12.1, as used in Deluge before 0.5.8.3 and other products…)

Analysis:

This vulnerability is for all versions preceding a specific version. The upstream

version represented by the system is less than 0.12.1. In addition, the CVE

number is not within the package changelogs. Therefore, by these heuristics

the package libtorrent9 is vulnerable. Why debsecan does not detect this

vulnerability is unclear, perhaps it is because the package libtorrent9 is sourced

by the package libtorrent which is not on the system.

9. Virtual Package

Analysis:

The Match function reports two vulnerable components of the latest kernel

2.6.18 within Debian Etch. The package linux-image-2.6-686 is a virtual

package
[23]

, not reported by debsecan, and not be reported by the match

function.

83

Vulnerabilities not reported by debsecan

-also-

Match Function false-positive

Packages provided by python:

python 2.4.4

python2.4 2.4.4

python2.4-minimal 2.4.4

python-support 0.5.6

python-apt 0.6.19

 CVE-2008-1721 (Integer signedness error in the zlib extension module

in Python 2.5.2 and earlier allows remote attackers to execute

arbitrary…)

Analysis:

This vulnerability is for all versions preceding a specific version. The

upstream version represented by the system is less than 2.5.2. In addition,

the CVE number is not within the package changelogs. Therefore, by

these heuristics the packages python, python2.4, and

python2.4-minimal are vulnerable.

The packages python-support and python-apt should not

be reported vulnerable. They match because the normalization productions

decomposed their names to match with python, although they are not part

of the python package.

84

4.3 Testing the entire system

Using the entire NVD data set, an automated matching function matched

publically disclosed vulnerability within updated Linux systems. A summary of

the vulnerabilities discovered in a fully patched system matched against NVD

files between 2002 and 2008 is in Table 17. Additional detailed analysis were not

performed, but is expected be similar to that of the details of the 2008 analysis.

Year
Matching
CVEs

Unfixed
Vulnerabilities Not for us Back-port fix Upstream fix

2008 105 80 76% 1 1% 9 9% 15 14%

2007 1319 883 67% 62 5% 233 18% 141 11%

2006 749 150 20% 14 2% 71 9% 514 69%

2005 649 61 9% 0 0% 42 6% 546 84%

2004 651 104 16% 4 1% 39 6% 504 77%

2003 390 57 15% 6 2% 2 1% 325 83%

2002 1234 49 4% 159 13% 2 0% 1024 83%

Table 17 System vulnerabilities, as detected by the matching function, categories by year

 Several interesting trends are present in Table 17. First, there is an

inverse-relationship between back-port fixes and upstream fixes. This fits our

understanding of the Open Source security model: The maintainers do not wait for

the upstream security fix to arrive through the normal distribution update

schedule. Instead, security fixes are back-ported in order to secure the package

and to preserve the stability of the package. We see this by noting that recent

years have many more back-port fixes, earlier years have more upstream fixes.

Second, there exists public vulnerabilities in all years analyzed. The increased

amount of vulnerabilities that the Debian security team labels as ―NOT-FOR-US‖

in the file nvd-cve-2002.txt is due to the number of CVEs that predate the Debian

security tracker.

85

5. Conclusion

This work investigates the feasibility of using a vendor-independent

vulnerability data source such as the NVD to determine whether vulnerabilities

exist within fully patched and ―up-to-date‖ Open Source computer systems. This

method discovered a set of vulnerable packages on fully patched systems. A

comparison of these results examined their content verses two other result sets

produced by independent tools. These comparison result sets used vendor-specific

data; one set by the Debian tool debsecan, and the other set by the package

update manager apt using Debian update mirrors.

The results differ between all three methods. First, a fully up-to-date

system, as reported by the update manager apt, yields apparent vulnerabilities

when analyzed by either the matching function, or the vendor-specific tool

debsecan. Therefore, it is possible to demonstrate the presence of un-patched

vulnerabilities in fully updated system, proving it is a fallacy to assume an up-to-

date or fully patched system will also be vulnerability-free.

This work also attempted to automate the matching process. This portion

of the thesis was partially successful, limited by inconsistencies and absence of

critical information within the NVD.

The tool debsecan produced fewer false positives than the method used

in this thesis but is not able to perform a complete analysis of a system without

domain-specific information. Therefore, although a partially automated analysis is

feasible, it is not possible to automate a complete and accurate result by

86

comparing the information contained in the NVD and that of the packages present

on an Open Source computer system.

Conversely, the matching function was able to bypass the latency required

to generate the domain-specific analysis. The matching function detected

vulnerabilities in the system impossible to detect by debsecan due to the

Debian Security Team having not finished the analysis of the CVE entry.

The information presented in this thesis can only represent a precise

snapshot in time. All of the data sources relied upon to generate the analysis

experience ongoing changes, which affect their outcome. The NVD changes

daily, new CVE entries appear and existing entries modified. Information

produced by the Debian Security Team also changes daily, if not hourly. Mirror

sites reflect ongoing updates and releases of Open Source packages with new

releases, back-ports, and updates.

Significant issues exist within the NVD regarding the presentation of

Open Source vulnerability information. These issues impair the accuracy of

conclusions drawn from NVD data, such as the numerous vulnerability

comparisons between closed and open source software
[24]

.

5.1 Recommendations for the NVD

One great value of the NVD and the CVE entries therein, is that of

aggregation; divergent vulnerability information is associated and assigned a

common identifier to resolve synonymous data. This standardization facilitates

human communication, and greatly enables the interoperability of automated

87

tools. Unfortunately, the identification of vulnerabilities requires two identified

components: the vulnerably and the software. Unfortunately, the NVD does not

sufficiently support the identification of software, and consequently the value of

NVD suffers. Furthermore, if users of the NVD do not accommodate these

shortcomings, then too the conclusions drawn from NVD data also suffer.

The question this work answers is whether publically known vulnerabilities

exist within fully updated OSS systems. During the process of resolving this

question, many issues within the NVD became apparent. These issues were

significant enough to limit the effectiveness of a determination of vulnerability on

Open Source systems. Many accommodations were then included into the

software matching heuristics of this work that increased the precision of the

result. However, these accommodations do not represent a complete solution.

Matching software techniques have a limited ability to resolve the data issues

within the NVD, and certainly not to a sufficient extent as to make the NVD

robust enough to support complete vulnerability matching. For complete

resolution, the NVD must adopt a data model that includes the means to identify

vulnerable software.

This work has noted many shortcomings in the NVD while attempting to

identify vulnerable software; the intent of this last section is to provide insight

into the resolution of some of these issues.

88

5.2 Resolutions for the NVD

The solution organization is in two categories:

1) Resolution of consistency in the format and conventions within NVD

entries

2) Resolution of ambiguous matching of vulnerable OSS

5.2.1 Resolutions for the NVD consistency problems

In order for the NVD to provide unambiguous name matching, a single

name it must reference different vulnerabilities of the same software with the

same name. As an example of currently there are 90 CVE entries with a product

name of ―Apache‖ and 39 entries with the product name of ―Apache HTTP

Server‖. This is a problem of data normalization, and the solution is to choose one

name or the other. In this case, the name ―Apache HTTP Server‖ is more precise.

NVD entries provide limited information about the vulnerable software

itself. A description of the vulnerable software can help to determine which

package the vulnerability affects. Such an description may be from the software

vendor itself:

Apache HTTP Server

Versatile, high-performance HTTP server The most popular server

in the world, Apache features a modular design and supports

dynamic selection of extension modules at runtime. Some of its

strong points are its range of possible customization, dynamic

adjustment of the number of server processes, and a whole range

of available modules including many authentication mechanisms,

server-parsed HTML, server-side includes, access control, CERN

httpd metafiles emulation, proxy caching, etc. Apache also

supports multiple virtual homing. . Separate packages are

89

available for PHP, mod_perl, Java Servlet support, Apache-SSL,

and other common extensions. More information is available at

http://www.apache.org/.

Resolving match ambiguities due to treating the names of the same

software entities with different font cases can also be resolved through data

normalization. The case of the names needs also to be consistent; referring to the

Gnu Compiler Collection as both ―GCC‖ and ―gcc‖ raises the question of whether

these names refer to the same software entity or not. If the NVD does not use case

to identify software, then it should at least consistently refer to software with the

same case. However, not using case disallows the identification between software

names that depend upon case, such as discerning the differences between Ant

(automated software build tool) and ANT (desktop ISDN telephony application)

and therefore is not a good idea.

Resolving match ambiguities due to granularity inconsistencies will

require the NVD entries to use a consistent naming convention. Many complex

software solutions have components. Devising a consistent means to identify

these components is important to resolve the ambiguities currently in the NVD.

Table 15 lists some of the ―granularity‖ inconsistencies within the names of such

a system, the Apache HTTP Server. This is a difficult problem to solve, as it may

be important to provide vulnerability information regarding both the software

component, e.g. ―mod_ssl‖ and the software composition, ―Apache HTTP

Server‖. The resolution for this issue is within Section 5.2.2

90

5.2.2 Resolutions for matching problems with NVD names and versions

 After the inconsistencies within the NVD names and conventions are

resolved there will still problems matching the names and the versions of

vulnerable software. One of these problems is due to the same software entities

having different names within different domains. The good example being that the

name for the Apache HTTP Server is ―apache‖ on Debian Linux systems and

―httpd‖ on Red Hat Linux systems.

The problem of mapping various name synonyms, originating from

different domains, to a single identifier is the issue that the NVD was created to

solve. This same solution, applied to software names, will resolve many of the

matching issues this work uncovered.

Figure 18 Ontology can help resolve naming problems due to different names

A unique identifier, called a Canonical Number (CN) allows unambiguous

matches of case-sensitive names (Figure 18). Adding the number CN-1234-5678

to an Ant vulnerability to allows Ant (automated software build tool) to match,

while not matching the number CN-0123-4567 for ANT (desktop ISDN telephony

application). Moreover, it also resolves ambiguities caused by various Linux

Distributions naming the same software by different names.

91

The number CN-1762-5678 can refer to both ―apache‖, ―httpd‖, and

to ―Apache HTTP Server‖ With the same result, names with adjectives

added will resolve without the complexity of the adjective removing production

upon which this work relies. ―libapache-mod-ssl‖ (Debian name),

―mod_ssl‖ (project name) and ―Mod_ssl‖ (NVD name) can all resolve to CN-

2587-4750.

The examples so far are recognizable matches by human review. A

canonical number will also allow matching between entities that would otherwise

be un-matchable even by a human. The series of BIND vulnerabilities shown in

Figure 13 requires the tool to use package metadata to conclude six other

components are part of the BIND package. Ontology with information regarding

the composition of packages, their components and dependencies, will allow tools

to traverse these mappings to find matches un-readable by human inspection.

Packages are often a component part of a larger system (e.g. Apache and

Apache modules). One form of canonicalization involves the understanding that

an Apache module is ―part of‖ an Apache installation. This enables the match to

discover vulnerabilities where direct name matching will fail.

Resolving match ambiguities due to major release name and version

matching still needs to be addressed for a different reason, that of the fact that

major releases represent vastly different bodies of code. The simple solution is to

delineate the major releases by giving them a product name of their own, just as

successive major releases of windows receives different entries. The NVD

currently has product entries for Windows 3.51, Windows 95, Windows 98,

92

Windows NT, Windows 2000, Windows ME, Windows XP, and Windows Vista.

Similarly, there should be product names for PHP 4, PHP 5 and the major releases

of Perl, and the Apache HTTP Server, etc. This will allow a specific major release

to match without results from other major releases confusing the match results

and other sets of versions. An example for PHP:

 <vuln_soft>

 <prod name="PHP4" vendor="PHP">

 <vers num="4.4.7" prev="1" />

 </prod>

 <prod name="PHP5" vendor="PHP">

 <vers num="5.2.3" prev="1" />

 </prod>

 </vuln_soft>

The attempt to present a set of vulnerable versions in a CVE has produced

errors as noted before (Section 3.3.4). This resolution follows the method in this

work, which is to present only the highest known vulnerable version. In this, way

both the data consistency and the comparison by a matching tool will be simpler

and less prone to error. Software with major releases can still share the same

vulnerabilities, which requires a maximum vulnerable version listing in each.

Some of the responsibility for version ambiguities rests on the shoulders

of the Distributions. The resolution of this issue is the one used in this thesis.

Debian, for the most part, is a good example of a Linux Distribution whose

changelogs contain machine-readable annotations regarding security fixes. Other

Linux Distributions can replicate this example and therefore back-ported security

patches will be visible to automated tools.

93

6. References

[0]
 Network Admission Control. Cisco Systems, Inc.. Retrieved April 12, 2008,

from http://www.cisco.com/go/nac

[1]

 Open Vulnerability Assessment Language. The MITRE Corporation. Retrieved

June 20, 2008, from http://oval.mitre.org/index.html

[2]
The Information Security Automation Program. NIST, OSD, DHS, NSA, and

DISA. Retrieved June 20, 2008, from http://nvd.nist.gov/scap.cfm

[3]

 The Security Content Automation Protocol. NIST, OSD, DHS, NSA, and

DISA. Retrieved June 20, 2008, from http://nvd.nist.gov/scap.cfm

[4]

 Trusted Network Connect Work Group. Trusted Computing Group. Retrieved

Feb 15, 2008, from https://www.trustedcomputinggroup.org/groups/network/

[5]

 Sangster P., et al. (2008). RFC 5209 - Network Endpoint Assessment (NEA):

Overview and Requirements. IETF Network Working Group . Retrieved June,

2008, from http://www.ietf.org/rfc/rfc5209.txt

[6]

 National Vulnerability Database. Version 2.1. (2008). US-CERT. Retrieved

June 30, 2008, from http://nvd.nist.gov/

[7]

 NVD Frequently Asked Questions. NIST Computer Security Division.

Retrieved June 15, 2008, from http://nvd.nist.gov/faq.cfm

[8]

 Pitt M., Garbee B., Schilling J. et al. (2005). Debian Bug report log - #328228

tar should warn when extracting setuid/setgid files. Debian. Retrieved May 11,

2008, from http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=328228

[9]

 Alhazmi O. H., Malaiya I. K., Ray I. (2006). Measuring, analyzing and

predicting security vulnerabilities in software systems. Computers & Security

25(7), 1-10. Retrieved November 24, 2007, from www.elsevier.com/locate/cose

[10]

 J. Howard, An Analysis Of Security Incidents On The Internet: 1989–1995.

Carnegie-Mellon University, April 1997.

[11]

 Pescatore , J. (2008). OpenSSL Vulnerability Shows Open-Source Process

Weaknesses. Gartner, Inc. Retrieved 22 May, 2008 , from

http://www.gartner.com/DisplayDocument?doc_cd=158357

[12]

 Balle, J. (2007). 28% of all detected applications are insecure. Secunia .

Retrieved May 8, 2008, from http://secunia.com/blog/11/

http://www.cisco.com/go/nac
http://oval.mitre.org/index.html
http://nvd.nist.gov/scap.cfm
http://nvd.nist.gov/scap.cfm
https://www.trustedcomputinggroup.org/groups/network/
http://www.ietf.org/rfc/rfc5209.txt
http://nvd.nist.gov/
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=328228
http://writing.colostate.edu/tools/bib/www.elsevier.com/locate/cose
http://www.gartner.com/DisplayDocument?doc_cd=158357
http://secunia.com/blog/11/

94

[13]
 (2007). Secunia PSI - Personal Software Inspector v0.9.0.4 [Computer

Software]. Secunia .

[14]

 Testing Security Team. (2008). Vulnerable source packages in the stable suite.

Debian. Retrieved June 30, 2008, from http://security-

tracker.debian.net/tracker/status/release/stable

[15]

 (2008). Automatically generated issue names. Debian. Retrieved June 30,

2008, from http://security-tracker.debian.net/tracker/data/fake-names

[16]

 (2008). Ubuntu Security Notice USN-612-1 . Canonical Ltd.. Retrieved May

15, 2008, from http://www.ubuntu.com/usn/usn-612-1

[17]

 (2005). Kernel Space Definition. Bellevue Linux. Retrieved Feb 22, 2008,

from http://www.bellevuelinux.org/kernel_space.html

[18]

 (2008). Browser Statistics. W3Schools . Retrieved from

http://www.w3schools.com/browsers/browsers_stats.asp

[19]

 Eric S. Raymond (1999). The Cathedral & the Bazaar. O'Reilly. ISBN 1-

56592-724-9.

[20]

 (2008). June 2008 Web Server Survey. Netcraft Ltd. Retrieved June 10, 2008,

from http://news.netcraft.com/archives/2008/06/22/june_2008_web_server_survey.html

[21]

 (2008). Berkeley Internet Name Domain (BIND). Internet Systems

Consortium, Inc. Retrieved June 30, 2008, from

http://www.isc.org/index.pl?/sw/bind/index.php

[22]

 Barth A., Di Carlo A., Hertzog R., Schwarz C., and Jackson J.. (2007). Debian

Developer's Reference - Chapter 5 - Managing Packages. Developer's Reference

Team. Retrieved June 30, 2008, from http://www.debian.org/doc/developers-

reference/ch-pkgs.en.html

[23]

 (2007). Debian Developer's Reference - Chapter 3 - Managing Packages.

Developer's Reference Team. Retrieved June 30, 2008, from

http://www.debian.org/doc/debian-policy/ch-binary.html

[24]

 Shaver. (2007). counting still easy, critical thinking still surprisingly hard.

Retrieved June 17, 2008, from http://shaver.off.net/diary/2007/11/30/counting-

still-easy-critical-thinking-still-surprisingly-hard/

http://security-tracker.debian.net/tracker/status/release/stable
http://security-tracker.debian.net/tracker/status/release/stable
http://security-tracker.debian.net/tracker/data/fake-names
http://www.ubuntu.com/usn/usn-612-1
http://www.bellevuelinux.org/kernel_space.html
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=1565927249
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=1565927249
http://news.netcraft.com/archives/2008/06/22/june_2008_web_server_survey.html
http://www.isc.org/index.pl?/sw/bind/index.php
http://www.debian.org/doc/developers-reference/ch-pkgs.en.html
http://www.debian.org/doc/developers-reference/ch-pkgs.en.html
http://www.debian.org/doc/debian-policy/ch-binary.html
http://shaver.off.net/diary/2007/11/30/counting-still-easy-critical-thinking-still-surprisingly-hard/
http://shaver.off.net/diary/2007/11/30/counting-still-easy-critical-thinking-still-surprisingly-hard/

95

Appendix I,

Tables Used for Calculating the Number of Packages

Represented by Open Source Distributions

96

Name Releases

64 Studio 2

aLinux 13

ALT Linux 4

Annvix 2

Arch Linux 2

Ark Linux 2

Arudius 2

Asianux 3

Aurox 12

BLAG 7

Caixa Mágica 2

José Guimarães 2

Paulo Trezentos 2

CentOS 5

CRUX 3

Damn Small Linux 5

Debian 6

Desktop Light Linux 2

DeMuDi 2

dyne:bolic 3

Elive 1

EnGarde Secure Linux 2

Fedora 8

Finnix 10

Foresight Linux 2

Fox Linux 1

Frugalware 2

Gentoo Linux 2

gNewSense 2

Gnoppix 3

gnuLinEx 2

GoboLinux 13

Impi Linux 7

Kanotix 2

Knoppix 6

KnoppMyth 2

Kurumin Linux 7

Linspire 6

Freespire 2

Linux Mint 4

Lunar Linux 2

Mandriva Linux 2

MontaVista Linux 5

Musix GNU+Linux 2

Myah OS 3

NimbleX 2

Nitix 5

Open Enterprise Server 2

openSUSE 11

Paipix 8

Pardus 2

Parsix 2

PCLinuxOS 2

PLD Linux Distribution 2

Pie Box Enterprise Linux 5

Puppy Linux 4

QiLinux 2

Red Flag Linux 5

Red Hat Enterprise Linux 6

Red Hat Linux 9

Rxart 2

Sabayon Linux 4

Satux 2

Scientific Linux 6

sidux 2

SimplyMEPIS 7

Slackware 12

SLAX 2

Source Mage GNU/Linux 2

SUSE Linux 10

Symphony OS 2

Trustix Secure Linux 4

Ubuntu 8

Kubuntu 8

Xubuntu 8

Edubuntu 8

Gobuntu 8

Ututo 2

VectorLinux 6

Xandros 4

Yoper 4

Zenwalk Linux 5

Average 4.41

Table 1 numbers of releases for various

Linux distributions, and the average of

this dataset.

97

Name Architectures

64 Studio 2

aLinux 2

ALT Linux 2

Annvix 2

Arch Linux 2

Ark Linux 1

Arudius 1

Asianux 5

Aurox 1

BLAG Linux 1

Caixa Mágica 3

CentOS 3

CRUX 1

Damn Small Linux 1

Debian 12

DeLi Linux 1

DeMuDi 1

dyne:bolic 1

Elive 1

EnGarde Secure 2

Fedora 3

Finnix 4

Foresight Linux 1

Frugalware 2

Gentoo 13

gnuLinEx 2

GoboLinux 2

Impi Linux 2

Kanotix 2

Knoppix 1

Kurumin Linux 1

Linspire 1

Linux Mint 1

Lunar Linux 2

Mandriva Linux 3

MEPIS 2

Musix GNU+Linux 1

Myah OS 1

NimbleX 1

Nitix 1

OES2-Linux 3

openSUSE 7

Paipix 2

Pardus 1

Parsix 2

PCLinuxOS 1

Pie Box Enterprise 1

PLD Linux 4

Puppy Linux 1

QiLinux 1

Red Flag Linux 4

Red Hat 5

Rxart Desktop 2

Sabayon Linux 2

Satux 1

Scientific Linux 3

sidux 2

Slackware 1

Slax 1

Source Mage 3

SUSE Linux 7

Symphony OS 1

Ubuntu 3

UTUTO GNU/Linux 2

VectorLinux 1

Xandros Desktop OS 1

Yellow Dog Linux 2

Yoper 1

Zenwalk Linux 1

Xubuntu 3

Edubuntu 3

Kubuntu 3

Average 2.306

Table 2 Numbers of architectures

supported by various Linux distributions,

and the average of this dataset.

98

Name Packages

aLinux 1200

ALT Linux 7500

Arch Linux 15000

Ark Linux 4000

Aurox 3000

BLAG Linux and GNU 9000

Caixa Mágica 1155

CentOS 1660

CRUX 610

Damn Small Linux 26000

Debian 150

DeLi Linux 875

Elive 20000

EnGarde Secure Linux 500

Fedora 8000

Finnix 350

Foresight Linux 15000

Frugalware 3000

Gentoo 12000

gnuLinEx 200

GoboLinux 636

Kanotix 1200

Knoppix 3600

Linspire 2200

Linux Mint 20000

Lunar Linux 3120

Mandriva Linux 16000

MEPIS 20000

Musix GNU+Linux 1300

NimbleX 500

openSUSE 22000

Paipix 2000

Pardus 1600

PCLinuxOS 5025

Pie Box Enterprise Linux 1500

PLD Linux Distribution 13500

Puppy Linux 300

QiLinux 2500

Red Hat Enterprise Linux 3000

Rxart Desktop 5000

Sabayon Linux 12000

sidux 22950

Slackware 544

Slax 2050

Source Mage GNU/Linux 5514

SUSE Linux 22000

Ubuntu 23000

Xandros Desktop OS 5000

Yoper 2000

Xubuntu 23000

Edubuntu 23000

Kubuntu 23000

Average 8,043

Table 3 Various numbers of packages

contained in different Linux

Distributions, and the average of this

dataset.

99

System Distro Release Packages Changes CVE
Vuln/
Pkg

Chgs/
Pkg Description

PTS Ubuntu Feisty 1357 112351 4379 3.23 82.79
Server,

enterprise packages

Mahalo Ubuntu Feisty 2033 107514 3868 1.90 52.88
Workstation,

user packages

Doc Ubuntu Feisty 319 22195 1276 4.00 69.58
Server,

minimum install

Sleepy Ubuntu Feisty 331 24307 1611 4.87 73.44
Server,

minimum install

GNU Debian Etch 749 49036 2509 3.35 65.47
Server,

medium install

Weeber Debian Etch 403 27286 1372 3.40 67.71
Server,

minimum install

Legstrong Ubuntu Feisty 1199 62949 3298 2.75 52.50
Workstation,

user packages

Table 4 Total number of vulnerabilities and changes as reported within package changelogs,

and the averages of each dataset.

System Packages Changes CVE Vulnerabilities / Package Changes / Package

Ubuntu 1,048 65,863 2,886 3.35 66.24

Debian 576 38,161 1,941 3.38 66.59

Workstation 1,616 85,231 3,583 2.33 52.69

Server 631 47,035 2,229 3.77 71.80

Overall 913 57,948 2,616 3.36 66.34

Table 5 Average numbers of vulnerabilities and changes found on various systems.

