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ABSTRACT OF DISSERTATION 

SHORT TIME ANALYSIS OF DETERMINISTIC ODE SOLUTIONS AND THE 
EXPECTED VALUE OF A CORRESPONDING BIRTH-DEATH PROCESS 

There is a standard way to construct a discrete birth-death probability model for 

an evolution system, in which an ODE model of the system is used to define the 

probabilities governing the evolution of the stochastic model. Given the significant 

differences in the dynamical behavior of ODE solutions which are inherently smooth, 

and stochastic models which are subject to random variation, the question naturally 

arises about the connection between the two models. In particular, we investigate the 

validity of using a continuum model to define the evolution of a stochastic model. 

We show a consistent way to define the probabilities for the stochastic model if the 

ODE has the form y — f(y) — yg{y). The deterministic model can then be compared 

to the expected value of the discrete probability model. For an ODE of this form 

describing population dynamics, we can describe each individual of the population 

as a categorical random variable. In this formulation, the probability for a birth or 

death to occur in a population of size y over a time interval of length At. is given by 

yg(y)At + o(At), depending on the sign of g(y). 

We derive local and global bounds for the difference between the expected value of 

the discrete probability model and the solution of the ODE. Locally, the two models 

behave similarly. Global bounds, however, imply the difference between these two 

models may be at most exponential in nature. Such a large bound must account for 

the possibility that the associated probability model may jump across a steady state 

of the ODE and exhibit divergent behavior while the ODE remains stable. 
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We explore our results for a number of models. In particular, we provide examples 

that show that there can be fundamental differences in the dynamical behavior of the 

stochastic and ODE model solutions, even when they are close over any given step. 

Our results represent a different approach from another view, which derives some 

ODE that governs the expected value of the stochastic system. That ODE and the 

original ODE are not the same in general. 

Megan H. Buzby 

Mathematics Department 

Colorado State University 

Fort Collins, CO 80523 

Summer 2009 
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Chapter 1 

Introduction and Background 

Probability models are used in almost every scientific discipline; including ecological 

population modeling, weather modeling and prediction, chemical reactions, disease 

prevalence, and more. Stochastic models are often used specifically to describe such 

rare events that may not follow a smooth trajectory (extreme weather events, earth­

quakes, volcanoes, etc.). We consider a common approach in ecological population 

and disease modeling which defines a birth-death Markov process with probabilities 

determined by a standard ODE model of the same physical system. 

Our main purpose in this dissertation is to explore the mathematical consistency 

between the deterministic behavior of ordinary differential equations and statistics 

of the discrete events of the associated probability model. Depending on the form 

°f V — /(y)) the mathematical connection between the rates of the ODE and the 

probabilities of a birth-death process may not be entirely clear. 

The ODE has the property that solutions that start near each other, remain close 

for at least some time, and solutions diverge and converge in a smooth fashion. The 

stochastic birth-death process we are interested in uses probabilities determined by 

f(y), but the discrete changes vary significantly, so that two real solutions starting 
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near each other may not be close at all. This means that there can be significant 

differences in the behavior of the two models over any sizeable time interval. For ex­

ample, consider an ODE model with a saddle point equilibrium which is convergent 

for solutions less than the steady state and divergent behavior for solutions greater 

than the steady state. In the equivalent probability model we describe, a particular 

simulation may approach the steady state for some time and then jump to the diver­

gent family of solutions with some positive probability, which depends on the size of 

the allowable discrete jump. The ODE from which the probabilities are taken has no 

solution with this type of behavior. Fig. 1.1 shows 20 simulations of such a model, 

which we consider in more detail in Section 1.3. This significantly different dynamical 

behavior motivates studying the difference between continuous rates of a differential 

equation and the discrete probabilities of the related birth-death process. 

20 sims. of ydot = y(y-0.975fty+0.975)2 w/ exponential dist. 

APMU JJ. 

••'•• true soln 

- • m e a n stoch 

50 100 150 200 250 300 350 400 450 
time 

Figure 1.1: Simulations for y = y(y - 0.9755)2(y + 0.9755)2 using the 'basic model' 
and the Gillespie algorithm described in Appendix B. 

To explore this connection, however, we cannot compare particular simulations 
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of a probability model to solutions of an ODE. Rather, we consider some sort of 

statistical quantity, e.g. the expected value over many simulations. 

The discrete probability model we consider in this dissertation begins with a dif­

ferential equation of a particular form, y = yg(y), that provides a natural way to 

define probabilities and a discrete birth-death probability model. We then seek to 

estimate the difference between the expected value of the discrete probability model 

and the ODE solution. If we assume the particular form of the ODE /(y) = yg{y), it 

is clear that the expected value is the correct statistic to consider. We show that it 

remains close to the solution of the differential equation for short time. In particular, 

we determine local and global bounds for the difference between the expectation of 

the probability model and the solution of the differential equation, then consider how 

the properties of g(y) affect this difference. 

Here, we note that another commonly used technique in population models [28], 

[34], chemical kinetics [19], and disease modeling [13], [24] considers another approach. 

In this approach, a discrete probability model is assumed and it is shown that its 

expected value converges to a solution of some differential equation, in the limit of 

large populations. Note the difference between this method and the one we discuss -

we approach the problem beginning with the ODE and defining a 'close' probability 

model as opposed to beginning with a probability model and showing convergence 

to a differential equation. It is not clear that the expectation of this stochastic 

model should converge to the same differential equation as we might use to define 

the probability model in our method. We will show some examples, such as the one 

shown in Fig. 1.1 for which the expected value of the probability model does not 
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converge to a trajectory of the original ODE. 
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1.1 The Basic Stochastic Model 

We now review the set-up from Kot [28] and Renshaw [34] of a simple linear birth pro­

cess, also called the Yule-Furry process [28]. We use this basic model as justification 

for a more general non-linear model. 

The pure-birth (or general birth-death) process is a continuous-time Markov pro­

cess, wherein the probability of future events occuring only depends on the current 

state. For a population model, we assume the state space is any potential number of 

individuals in the population (n = 0,1,2,...) at any time t > 0. Note that in expand­

ing this to non-population models, the state space may also be negative. We assume 

that the population is well-mixed and each individual acts independently of the oth­

ers. The assumption of independence is necessary for this formulation, but may not 

hold for some populations. Animals with complex social structures, for example killer 

whales [9] and primates, may deviate far from this assumption. 

We let X(t) be a random variable representing the population at time t. Thus, 

P(X{t + l) = n\X(t) = X), n = 0,1,2,... 

gives the probability that the random population variable X is of size n at time t, 

given the knowledge that the population at the previous time step was X. 

For a single individual in a pure birth process, the following probabilities are 

assumed 

P(l birth in(t,t + At]\ X(t) = 1) = XAt + o(At) 

P{> 1 birth in(i, t + At] \ X{t) = 1) = o(At) 
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P(0 births in(t, t + At}\ X(t) = 1) = 1 - \At + o(At), 

for some constant A, where At is taken small enough so that the probability of more 

than one birth occuring in a given time interval is negligable. 

Now if the population is of size n and a single birth occurs for one individual, 

then n — 1 individuals did not give birth. There are (") = n ways for this to happen, 

which means the probability for a single birth to occur in the entire population over 

an interval of length At is given by 

F(l event in(i, t + At}\ X(t) = n) = (?) (XAt + o(At)){l - XAt + o( At))n_1 

= n\At + o(At). 

(1.1) 

Similarly, 

P(0 events m(t,t + At] \ X{t) = n) = 1 - n\At + o(At) (1.2) 

and 

P(> 1 event in(«, t + At]\ X(t) = n) = o{At). (1.3) 

At this point, we diverge from the standard model described by Kot and Ren-

shaw. Kot and Renshaw proceed to long time results by using Chapman-Kolmogorov 

equations [10] to find a closed form of the probability a population is size n at time t. 

This leads to a probability model where event times are the random variable, drawn 

from an exponential distribution with parameter nX. Simulations of this model use 

Gillespie's algorithm, described in the Appendix B. 

Alternatively, we may directly use Eqns (1.1), (1.2), and (1.3) to arrive at the basic 

discrete short time probability model which we simulate for a given initial population. 
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Beginning at some initial time, we progress an interval of length At, check a random 

number against the event probability, and update the population size accordingly. 

We then proceed another interval of length At and repeat the process. In this model, 

the time interval is fixed and the population is the random variable. 

We now use the form of this basic model to motivate probability definitions for a 

birth-death process of a general non-linear model. 

1.2 Probability Model for a General Non-linear 
ODE 

Consider a general non-linear ODE 

iy = f(y) ( 1 4 ) 

Now, we aim to use f(y) to define the probabilities of a birth-death process. In this 

general form, it is not clear that there is a connection to any probabilities. However, 

if f[y) = Ay, then we can use the rate A to define the probability \At for a single 

individual to give birth (since f(y) > 0) over the time interval of length At. Assuming 

independence, individuals in the population can be defined as categorical variables, 

each with identical probabilities for events occuring. (A categorical random variable 

may have more than two possible outcomes and is described as a generalization of a 

Bernoulli random variable.) The expression yXAt then represents the probability for 

an entire population of size y to increase by one. 

We want to use a similar movitation to define a birth-death process for a general 

non-linear ODE. To justify such a model, we consider only differential equations of the 
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form f(y) — yg(y). This structure implies a population of size y with each individiual 

a categorical random variable i.i.d. with probability g(y)At of an event occuring. As 

in the linear case, this gives yg(y)At as the probability a single event occurs in the 

entire population over [t,t. + At], with a birth or death occuring depending on the 

sign of g. 

To make this more clear, we are now restricting ourselves to any ODE of the form 

J v = f(y) = yg{y) n ^ 
I v(0) = y0 ' ( L 5 ) 

where 

g(y) = gi(y) - giiy) 

and gx(y) and <?2(y) are nonnegative. 

With these assumptions, we use the rates of the ODE to define a discrete birth-

death process. The probability an event occurs to a single individual in a population 

of size Yn-i is defined 

P(l birth in(i, t + At]\ Y(t) = Yn_x) = 5l(Kn_i)A* 

P(l death in(t, t + At] | Y(t) = K- i ) = <72(K-i)A* 

P(0 events m(t, t + At]\ Y{t) = Yn.{) = 1 - (51(^-1) + g2(Yn^))At. 

Furthermore, we define the probability of more than one event occurring in the interval 

[tn-i,tn] to be zero. 

Given an ODE of the form (1.5) and event probabilities for individuals defined 

above, we now consider event probabilities for an entire population of size Vn_j. 
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Again, independence implies the entire population is a sum of V^-i categorical ran­

dom variables with three 'success' probabilities occurring in a time interval of length 

[£n_i,£n]. Within this framework, we can define the probability for the entire popu­

lation Y(t + At) to have 1 birth, 0 deaths, and no events occuring for the remaining 

y„_i — 1 individuals in the following way: 

P(Y(t + At)-Y(t) = l\Y(t) = Yn.l) 
= noiflCV-i)! (5i(K-i)Ai) 

•(g2(Yn^)At)° 

• (1 - O/iCTn-i) + g2(Yn^))At)Y^-1-° , 
or 

p(Y{t + At) - Y(t) = i\Y(t) = rn_j) - yn_l5l(yn_!)Af + 0 (A*) . 

Similarly, 

P(Y(t + At) - Y(t) = -l\Y(t) = yn_0 = Yn^g2{Yn^)At + o(At) 

and 

P(Y(t + At) - Y(t) = 0\Y(t) = Kn_!) = 1 - y„_! ( 5 i (n- i ) + 92{Yn-i)) At + o(At). 

In this model, each individual is a categorical random variable with three possible 

outcomes - birth, death, and no event - with probabilities listed above. Note that 

without this particular structure of f{y), the connection between the expected value 

of the discrete stochastic model with categorical random variables and the solution of 

the ODE is not apparent. This becomes more clear in the description of conditional 

expectation below. 
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However, when the ODE is in this form, we can derive a direct connection between 

continuous rates from an ODE and discrete probabilities of a birth-death process. A 

limitation of this model is that we must have y(gi{y) + g2(y))At < 1 so the equations 

above do, in fact, describe probabilities. This implies that the probability model we 

describe is only valid for small At over a time interval where this inequality holds. If 

this is not the case, the assumptions and the probability model are not valid beyond 

this point. For several models, decreasing the size of At extends the validity of the 

probability model at least for some time. However, this does increase computational 

cost and may not completely resolve the issue depending on the behavior of the ODE, 

e.g. exponential growth or some non-linear behaviors. Note in the case of exponential 

growth, we may also place an artificial bound on g(y) for a fixed At to ensure the 

probability assumption. Unless otherwise stated, from here on we assume At is small 

enough to ensure the probability assumption of our model over the time interval of 

interest. 

1.2.0.1 Scaling 

We note that one apparent issue is that the discrete probability model involves 

changes of 1, while an ODE describes infinitely small changes. However, if we scale 

Yn — Yn/M, M a large maximum population, then we can convert the discrete prob­

ability model to a model for density that increments by 1/M. We can compute the 

appropriately scaled ODE and obtain the same results. 

For the linear case where f(y) = Ay or for functions which describe total numbers 

of individuals (not densities), scaling is not necessary. 
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1.2.0.2 Lipschitz continuity 

We must also assume the functions / and g are Lipschitz continuous. This continuity 

has a direct effect on the validity of the difference bounds in Chapters 2 and 4. Recall 

that / is Lipschitz continuous with constant Lj if the following holds: 

l/C^i) — f{%2)\ < L/\zi — .T2| for all x\,x2 in a specified compact set. (1.6) 

We denote the Lipschitz constant of g by Lg. 

In practice, / and g are differentiable and we compute the Lipschitz constant using 

the maximum of the function's derivative, f'(y) or g'(y), over its domain. 

1.2.1 Conditional Expectation of the Probability Model 

Assuming that the individual probabilities are between 0 and 1 and the assumptions 

of the ODE hold, we consider the expectation of the discrete probability model. As 

the birth-death process is a Markov process, we define the conditional expectation 

using the dependence on the population at the previous time step. 

Similar to what is used for an explicit Euler method, the model indicates 

Yn ~ Vn-1 = /(Vn-l)Ai = Yn.l9(Yn^)At 

or 

Yn - rn_! = yn_1</1(rn_1)At - yn_1<?2(Yn_1)A*. 

If we think of the right hand side as a conditional expected change in the popula­

tion size over the time interval [in-ii tn], this supports the assumption that P(birth) = 

gi(y)At and F(death) = g2{y)At give the probabilities a birth and death occur, 
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respectively, and the probability of an event (whether it is a birth or death) is 

p = P(birth) + P(death). 

We compute the expected population change conditioned on the previous popula­

tion at time tn-i and use it to determine the total expectation of the population size 

at time tn. We use the notation Cat(pfc) for the categorical variable with probability 

Pk,k= 1,2,3. 

E(yn-rn_1|yn_1) = (-^(^cat^^At)!*;-!) 

+(l)£(yE Cat(gi(Yn^)At)\Yn^) 

+(0)£( £ Cat(l - gi(Yn^)At, - g2(Yn^)At)\Yn^) 
i= l 

Using the linearity of expectation, we have 

E(Yn-Yn^\Yn^) = (-1) g'tftCat^yn-OAOlVn-i) 

+(i) £lE(Cat(5l(yn_1)Ai)|v;_1). 
i = l 

Since the probabilities do not depend on i and the expectation of a categorical random 

variable is its success probability pk, this expression becomes 

E(Yn - r„_i|y„_i) = -Yn^g2{yn-iW + Yn^gi{Yn^)At 

or 

E(Yn - Vn-xirn-i) = yn_ l5(y„-i)At. (i.7) 

Again, using the linearity of expectation, this gives 

E(Yn\Yn^) = E(y„_!) + Yn^g{Yn_x)At. 

Taking the expected value of both sides one more time then gives the total expec­

tation, 
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E(Yn) = £?(y„_i) + E(Yn^g(Yn^))At. (1.8) 
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1.3 Scalar Examples 

In this section, we consider several examples of ODEs. We form the corresponding 

birth-death process and observe the simulations and expected value as they compare 

to the solution of the ODE. We illustrate several issues that may require adjustments 

to the model: probability assumptions for large populations or time steps, single or 

randomly chosen initial conditions, and stability of steady states. 

1.3.1 Exponential Growth 

We first consider the basic ODE of exponential growth, 

ftm* (19) 

with A = 3, yo = 6. -

Note that in this simple case, the ODE function is linear and analysis is greatly 

simplified. We discuss implications of this linearity for each of the difference bounds 

in the following sections. Since Vn_i is increasing, the probability condition of 

AVn_iAi < 1 requires At to be very small for any significant time interval. Fig. 1.2 

shows the stochastic simulations, expected value, and ODE solution for At = 0.001, 

yo€£/([l,ll]). 

In this figure, note that the expected value of these simulations follows very closely 

to the solution of the ODE initially. At t = 0.971, however, the probability of an 

event occuring becomes greater than 1 for simulations with Y > 333. The discrete 

probability model is not valid after this time. 

In this case, it is illustrative to consider what happens if we use the model past 
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this time interval. Once the probability threshold is reached, we see linear behavior 

in each of the simulations. This occurs because we test whether an event occurs by 

comparing a random number on U([0,1]) to the birth probability. If the random 

number is less than the probability, we say an event occured and we update the 

population by 1. This means that we accept every random number compared to the 

event probability and a birth is guaranteed to occur at every time step. This results 

in an understimation of the number of births that occured, thus maintaining linear, 

instead of exponential, growth. 

ydot = 3 y, popn changes +/- 1/M = 1/1, dt = 0.001 

0 0.5 1 1.5 
prob > 1 att = 0.971, Y0in U([1,11]) 

Figure 1.2: Simulations for exponential growth for At — 0.001 and Y0 e U([l, 11]). 
The probability model is only valid on the time interval [0, 0.971] for Y < 333. 

1.3.2 Logistic Growth 

We next consider the ODE for the logistic model with carrying capacity, K, where 

y(t) describes the population density at time t. For more on the impact of scaling, 

refer to the discussion at the end of this section. 
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j * = nr(i-»/*> ( u o ) 
[vw = yo-

For this example and in the following figures, we assume r = 1 and K = 0.5. Assuming 

population density, we scaled the discrete probability model such that y = y* M and 

simulations describe discrete changes of size ±1/M. 

In this example, the probability remains less than one until carrying capacity is 

reached, but the initial nonlinearity has a significant impact on the expected value 

of the simulations. If we choose yo to be randomly chosen from some interval (for 

example, uniformly on [0, 0.1]), the expected value averages these nonlinearities from 

simulations that fall on different trajectories of the ODE solution. We show this in 

Fig. 1.3. Compare this expected value to the expected value in Fig. 1.4, where each 

simulation has the same initial value, 0.05. See Chapter 2 for more on how this non-

linearity effects the potential difference between discrete probability and deterministic 

models. 

Note that for M = 1000 and At = 0.001, the probability model is only valid 

up to a population equivalent to the carrying capacity. This occurs for at least one 

simulation at time t = 4.047 and t — 3.363 in Fig. 1.4 and Fig. 1.3, respectively. 

The shorter end time shown in Fig. 1.3 makes sense as the variability increases with 

a range of initial conditions. See the following sections for more on the impact of M 

and At on the discrete probability model. 
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1000 Sims, of ydol = y (1 - y/K) with +/- 1/1000 popn changes and dl = 0.001 

prob > 1 at t = 3.363 or prob > 1 at y = 0.5, yO = (M/10)*rand 

Figure 1.3: Simulations for logistic growth with At = 0.001, and random initial 
conditions on {/([0,0.1]). 

1000 Sims, of ydot = y (1 - y/K) with +/- 1/1000 popn changes and dt = 0.001 

, i , , , , , 

0 2 4 6 8 10 
prob > 1 at t = 4.047 or prob > 1 at y = 0.5, yO = M/20 

Figure 1.4: Simulations for logistic growth with all simulations having the same initial 
condition, Y0 = 0.05, At = 0.001. 

18 



1.3.3 Gompertz growth for tumors with t ime dependent pa­
rameter 

Cancerous tumors were initially modeled with simple exponential growth. In 1964, 

A.K. Laird [30] successfully modeled tumor growth data with the Gompertz curve 

given by the solution of the ODE (1.3.3), which was a significant improvement over 

purely exponential growth. The ODE is described as 

V(0) = V0, 

with solution 

V(t) = K exp(m(V0/K) * exp(-crt)) 

where V is the volume of the tumor, a is a constant related to the potential for rapid 

growth of the cells, and K is the maximum possible size of the tumor. Since tumors 

are just cellular populations growing in a confined space with limited nutrients, the 

use of a 'carrying capacity' in the model makes sense. 

As the ODE has a stable behavior at K, the short time step model does a very 

good job matching the expected value to the solution of the ODE, regardless of initial 

conditions less than or greater than K. See Fig. 1.5. Biologically speaking, VQ < K 

is the scenario where the tumor was found relatively early and Vo > K is possible if 

the tumor is found late and treatment is being pursued. 

Note that the issue of time dependent parameters is already covered in the for­

mulation of the general non-linear model. These probabilities were dependent on 

the population size, which varies with time and is therefore naturally computed as a 

time-dependent parameter. 
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500 Sims, of Vdot = r(t) * V(t), scaled with M = 1 dt = 0.001 
300 

200 

100 

0 
0 0.5 1 1.5 2 

a = 3.1, K = 300, VQ = 50, time when p > 1 is 2 

400 

300 

200 

100 

0 
0 0.5 1 1.5 2 

a = 3.1, K = 300, VQ = 400, time when p > 1 is 2 

Figure 1.5: Simulations for the birth-death process associated with (1.3.3) with a = 
3.1 and K = 300. 

1.3.4 Periodic Functions 

We also consider the model as it pertains to an ODE with a periodic solution: 

y = -(0.25 + sm(irt))y2 

y(o) = yo-

A time step of At = 0.01 gives probabilities greater than 1 at t = 0.07, so we 

reduce At to 0.001 for [0, T]. Fig. 1.6 shows these simulations as well as the difference, 

\E(Y) — y\, at each time step with a single initial condition of yo = 1.5. 

In this case, the decreasing trend of the model is sufficient to stabilize the peri­

odic changes in population and results in a fairly accurate probability model with 

a maximum difference less than 1%. Even for a range of initial conditions on [0,3], 

the expected value of the probability model captures the periodic behavior of the 

deterministic solution fairly well. 

- - - true soln 
• - • - • mean stoch 

stoch sims 

- true soln 
mean stoch 
stoch sims 
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1000 stochastic sims. of ydot + (0.25 + sinful))/5 = 0, reseated with M = 100 
1.5 
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0.5 
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0.01 

0.008 

0.006 

0.004 

0.002 

0 ( 

Figure 1.6: Simulations for the birth-death process associated with (1.11) for At = 
0.001, y0 =1.5. The second plot shows the difference \E(Y) — y\ for this example. 

1.3.5 Multiple Steady-State Models 

1.3.5.1 Stable Steady States 

Next we consider a multiple steady state model with stable and unstable equilibria 

but no saddle points, 

ii = y{y - l)*{y + 1)* n 19 , 
y(o) = yo- { ] 

For the same initial condition on each simulation, the stochastic model matches 

the solution of the ODE quite well, as shown in Fig. 1.7. 

In this case of stable steady states, we do not worry about simulations crossing 

the steady state or averaging simulations across this value, as seen in Fig. 1.8. There 

is still a positive probability that some simulations cross the steady state, but the 

stability properties maintain the correct behavior for the simulations and expected 

value, even if the steady state is crossed. 

Similar to the logistic case in Equation (1.10), using a large range of initial con-
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|E(Y) - y| for 1000 simulations 

2 4 6 8 10 
dt = 0.001, y0 = 1.5*M, prob. > 1 att = 10 



- true soln 
- • mean stoch 

YO = 0.7. P = (My)((y/M)-1)°((y/M)+1)° dt, prob > 1 at time 10 

Figure 1.7: Simulations for the birth-death process associated with (1.12). 

1000 stochastic sims. of ydot=y(y-1)3(y+1)3, rescaled with M = 100, dt = 0.01 

-0.5 

Y0 = -0.5 + rand, P = (My)((y/M)-1)3((y/M)+1)3 dt, prob > 1 at time 10 

Figure 1.8: Simulations for the birth-death process associated with (1.12). 
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ditions highly skews the expected value since simulations immediately follow the 

behavior of many different trajecties, as seen in Fig. 1.9. 

1000 stochastic sims. of ydot=y(y-lf(y+1)3, reseated with M = 100, dt = 0.01 

Y0 = 0.70035, P = (My)((y/M)-1)3((y/M)+1)3 dt, prob > 1 at time 10 

Figure 1.9: Simulations for the birth-death process associated with (1.13). 

Intuitively, models with unstable steady states behave similar to the exponential 

growth example and require a truncation of the model when the probability becomes 

larger than 1. 

1.3.5.2 Saddle Point 

We next consider the example shown by Fig. 1.1 in the introductory section. This 

figure shows the result of using sojourn times drawn from an exponential distribution 

as described by Gillespie's algorithm in [19]. This example is a pivotal case where 

the use of the short time step model is vital if we wish to compare the probability 

model to the differential equation via expected value. For now, we show the results 

of using short times, holding probability assumptions true and using a single initial 

condition for each simulation. Then, in the following section, we consider the effect 
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of using longer time steps. 

The deterministic model for this example is given by 

\y = y(y - 0.9755)2(y + 0.9755)2 

1y(0) = yo, 
(1.13) 

with equilibria at y = ±0.9755 and y = 0. We focus on the probability's behavior 

near the equilibrium y* = 0.9755, which is stable for y < 0.9755 and unstable for 

y* > 0.9755. Fig. 1.10 shows this model using short time steps, which keeps the 

probabilities less than one and gives the expected value the same behavior as the 

ODE. 
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0.4 

0.3 
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0.1 

20 Sims, of ydot=y(y-0.9755fty+0.9755)2, rescaled with M = 1000 dt = 0.001 

\ r — — — — — — — 

~* - true soln 
- - • mean stoch 

stoch sims 

i i _ 

0 50 100 150 200 250 300 350 400 450 
y0 = 0.01, p>1af terT = 450 

Figure 1.10: Simulations for the birth-death process associated with (1.13) using the 
short time step model. Notice that by keeping the time step small we avoid jumps 
across the steady state. 

In the next progression of this short time step model, we consider increasing the 

efficiency by using larger time steps in cases of already stable behavior. We propose 

such a model in the following section and observe the impact on the above example. 
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1.3.5.3 The Effect of Changing Time Step Size 

In trajectories where the behavior of the ODE is stable, we attempt to improve the 

efficiency of the model by increasing the time step. To implement this, we first 

choose a larger time step. If it turns out that the time step is too large such that 

the probability of an event is greater than 1, we decrease the time step until the 

probability is exactly 1. Updating the population, we repeat the process maintaining 

the size of At for this intermediate behavior. 

If the expected value of the stochastic model matches the ODE, we should see 

similar stable behavior in the expected value. In examples with stable steady states, 

such as (1.12), this long time model works quite well. If a simulation crosses the steady 

state (for which there is still a small, but positive probability that this occurs), the 

behavior of the new trajectory forces it back toward equilibrium. 

However, in the case of (1.13), we have a saddle point at y* — 0.9755 and things 

do not behave so nicely. Fig. 1.11 shows the result of the moderate time probability 

model for this ODE. All simulations behave well for small time steps, but if the 

equilibrium y* is not exactly reached (resulting in a zero probability for an event 

to occur), then there is some positive probability of an event (specifically a birth) 

occuring at some time. This probability is quite small, so it may seem that we are 

justified in increasing the time step and therefore decreasing the computation time. 

However, this also increases the probability of an event occuring, which causes the 

simulations to jump across the steady state and then diverge from the steady state. 

We see this transition begining to occur at about t = 400 in Fig. 1.11. Note that Fig. 
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1.1 shows the same contradictory behavior, though it was simulated using Gillespie's 

algorithm for variable time steps. Enough simulations have this significantly different 

behavior that the expected value also crosses the steady state. 

1000 Sims, of ydot=y(y-0.9755)2(y+0.9755)2, reseated with M = 1000 
1.05 

1.04 

1.03 

1.02 

1.01 

1 

0.99 

0.98 

0.97 

0.96 

0.95 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
yO = 0.01, time when p = 1 is 17.999 

Figure 1.11: Simulations for the birth-death process associated with (1.13) using the 
adjusted short time step model. Here we zoom in on the transition phase from one 
side of the steady state to the other. 

In the direction of R. Dolgoarshinnykh's paper, beginning with a stochastic model 

with this behavior, we could likely find an ODE whose solution matches the expected 

value of the stochastic model. However, such an expected value does not match any 

trajectory of the original ODE, (1.13). 

It does not make sense to compare statistics of solutions that cross the steady state 

to the ODE solution. We can, however, make meaningful comparisons for classes of 

solutions. For example, in Fig. 1.10, we see that simulations below y* = 0.9755 

converge to the steady state and have an expected value that follows the behavior of 

the ODE if we keep the time step sufficiently small. This is the first class of solutions 

that can reasonably be compared to the ODE. 
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The first class corresponds to those simulations which lie strictly below the steady 

state and can still be classified as transient behavior. We note here that our difference 

bounds are based on a Gronwall argument which is only valid for transient behavior. 

The expected value for these simulations can be compared to the solution of the ODE 

with initial condition yo = E(Y0) using our transient analysis. In the third class, we 

compare those simulations which are strictly above the steady state. These solutions 

may then be compared to the solution of the ODE with initial condition corresponding 

to the expected value of these simulations (above the steady state) using our analysis. 

The middle class describes long term behavior of the ODE for which our analysis does 

not hold. It is in this intermediate regime that the probability model has the potential 

to cross the steady state and it does not make sense to compare its expected value to 

the differential equation in this case. See Fig. 1.12. 

1.3.5.4 Discretization Implications 

Intuition suggests that there might be a connection between the evolution of the 

stochastic model and the numerical advance of the underlying ODE. The stochastic 

model is strongly reminiscent of a forward Euler approximation, suggesting that it 

might be worthwhile to consider the analogs of high order integration schemes and 

schemes that preserve dynamics. We investigated this intuition, but concluded that 

there is a relatively weak connection between the stochastic model based on categor­

ical random variable and time integration of ODEs. 
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Figure 1.12: We show an example of splitting up the comparison between an ODE 
solution and the expected value of the discrete stochastic model. The first and third 
plot show transient behavior for which the two models are comparable. Analysis 
should not be done on the intermediate time interval as the probability model jumps 
across the steady state, which is not possible for any trajectory of the ODE. 
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1.3.5.5 Observations on Scaling and Time Step Size 

We now take a closer look at how the scaling constant M and the size of the time step 

At relate to this probability that the stochastic model crosses a steady state. In the 

probability model, changes in the population occur in discrete increments. The size of 

M is related to At and the assumption that multiple events occur in the population 

with probability o(At). Maintaining this assumption requires the population to be 

relatively small for large At. It then follows that the discrete change in the population 

is relatively large compared to the total population size. Similarly, a small time step 

implies that one event is likely to occur much more often, meaning that the population 

must be larger and the population increment relatively smaller. 

Reducing At and increasing M increases the time for which this probability model 

is valid. Making these changes also reduces the variability in the simulations. We 

show a progression of four plots with increasing M and decreasing At in Fig. 1.13, 

which illustrate these effects. 

Furthermore, in simulating a probability model close to a steady state, larger 

values of M result in smaller population increments, which allows the stochastic 

simulations to get much closer to the steady state. This results in a smaller probability 

for an event to occur and thus a smaller probability that a simulation steps over the 

steady state. If the expected value of the probability model becomes closer than one 

increment of the steady state, we can no longer compare it to the solution of the 

ODE. This gives a natural time to split the comparison of the two models between 

transient and long time behavior, as discussed previously. This observation is also 
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+/- 1/M = +/- 1/125 , A t = 0.008 +/- 1/M = +/- 1/250 , A t = 0.004 
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prob>1 at t= 1.992 

+/- 1/M = +/- 1/500 , A t = 0.002 
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prob>1 at t = 2.516 

+/- 1/M = +/- 1/1000 , A t = 0.001 
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prob > 1 at t = 3.796 

Figure 1.13: From left to right and top to bottom, we show 2000 simulations of the 
logistic model for increasing M and decreasing At. This progression increases the 
time for which the model is valid and also decreases the variability in the stochastic 
simulations. 
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relevant when we consider system models where one population class may become 

extinct. 

31 



Chapter 2 

Scalar Difference Bounds 

2.1 Local Bounds 

We now turn to the major aim of this dissertation. We have described a general birth-

death process based on an ODE of a particular form, and we wish to determine if 

its expected value can be reasonably close to the solution of the differential equation. 

We first consider a local analysis using the general non-linear ODE with solutions 

defined on each time interval [t ,-!,^], j = 1,2, ...,n and initial conditions matching 

the expected value at tj-\. We consider the difference between these local trajectories, 

defined in (2.1), and the expected value at the end of each subinterval. 

The intuition of the literature has been that these birth-death processes behave 

like the differential equation, at least locally. In that respect, the minimum result one 

might be interested in is that the stochastic solutions stay 'close' to local solutions 

of the ODE on each small time interval. We derive such local bounds describing the 

potential difference between the expected value at the end of a time interval and the 

value of the local ODE solution at this same time, given that this local ODE starts 

at the expected value on the previous time step. 
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An assumption necessary for the derivation of these bounds is that we have com­

pact support within a particular basin of attraction. Compact support is necessary 

for Lipschitz continuity of the model and must hold for all families of the solutions, 

including stochastic simulations over the entire time interval as well as each subinter-

val, the expected value over the entire time interval, and solutions of the ODE over 

the entire time interval and subintervals. This assumption restricts blow-up behavior 

for the ODE as well as the variance in the stochastic simulations. 

We first define the local ODE solutions on the interval [tj-\,tj], 

yj = yjg(yj) = yj(gi(yj) - gi(yj)), fo-i,*,-] (2 n 

yt{tj-{) = y]_x = £(Y}_i), j = 1,2, ...,n 

where <?i(yJ) > 0, #2(?/J) > 0. We use the notational convention that the superscript 

gives the interval on which the local solution is defined and the subscript gives the 

specific time at which the function is evaluated. Note that y° is only defined at time to 

such that y° = E(Y0). Fig. 2.1 shows a picture of these local solutions, the expected 

value of the discrete stochastic model, and the solution of the ODE over the entire 

time. 

Now recall the total expected value of Yn, 

E(Yn) = E(Yn-X) + f " E (Yn-ig(Yn-i)) dt. (2.2) 
Jtn-\ 

We can describe the deterministic solution to (2.1) on the nth interval at time tn as 

Vn = J/"-i + r vng(yn)dt = E(Yn^) + T yng(yn)dt. (2.3) 
Jtn-\ Jtn-\ 

The first theorem bounds the degree to which the solution of a local ODE and 

the expected value of the discrete stochastic model can diverge on each small time 

interval. 
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Figure 2.1: Local solutions, yj, denned on [tj-i,tj] with yj(tj-i) = E(V}_i), which 
solve the ODE (2.1). 
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Theorem 2.1.1 Local Bound on One Time Step 

The difference on each time step [tn-i,tn] is bounded by 

\E(Yn)-ft\<I + II, n = 1,2,3,... 

with 

I = [rn_i<7(Vn_i)] = \E(Yn^g{Yn^)) - E{Yn^)g{E{Yn^))\ At, (2.4) 

and 

II = LfAt\E(Yn^) - %Z\\ + Lf fn \yn - yn
nZ\\dt, 

where y$ = E{Y0). 

Term I is an expression that measures the difference resulting from the fact that 

the expectation does not commute with nonlinear generators, i.e. it is the difference 

between the expectation of the forcing and the forcing of the expectation. If the 

expected value and the local solution on each time interval begin at the same value, 

E(V„_i), so that the local solution is truly local, then the bound measures only how 

the stochastic model and the ODE can diverge over one subinterval. We show later 

that this difference is bounded by the variance of the discrete probability model. 

Term II measures how much the solution of the ODE can diverge from its initial 

condition. This same expression arises in analysis of the explicit Euler finite difference 

scheme and reflects the stability properties of the ODE in the crudest terms. Based 

on two nearby trajectories of y, this term describes the maximum possible divergence 

between the trajectory on one subinterval compared to its initial value. 
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In the linear case of exponential growth, term I is zero so the two models only differ 

depending on the potential growth of the ODE solution from its initial condition. 

In the logistic case, whose bound is shown in Fig. 2.2, both the nonlinearity and 

[Yp(y)] increase with time, making the total bound increase on each time step. Fig. 

2.3 shows the corresponding growth of [Y<7(y)] for these simulations. Note that the 

computations of these bounds use unbiased estimators to calculate the expectation. 

See Appendix A for a discussion. 

1000 sims. of ydot = y (1 - y/0.5) with +/- 1/1000 popn changes, dt = 0.001 

• mean stoch 
ytilde 

• stoch sims 

1.5 

0.2 0.4 0.6 0.8 
prob > 1 at t = 1 or prob > 1 at y = 0.5, yO = (M/2)*rand 

x 10 4 Theorem 1 verification with logistic for 1000 simulations 
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Figure 2.2: The first plot shows the simulations and expected value for the small time 
step model, as well as the solution to the logistic ODE. The second plot shows the 
difference \E(Yn) — yn\ using an unbiased estimator for the expectation and numerical 
solution of y as well as the bound of Theorem 2.1.1. 

Proof of Theorem 2.1.1 
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Figure 2.3: This plot shows the nonlinear effects of the logistic model by plotting the 
difference [V^y)], which was calculated along with the simulations in Fig. 2.2. 

\E{Yn)-rn\ = fn {E(Yn^g(Yn^))-yn9(yn))dt 
Jt„-i 

Adding and subtracting the integral f£_t E(Yn-i)g(E(Yn_1))dt gives 

\E{Yn)-y
n
n\ = \S^_l(E(Yn.lg{Yn-i))-E(Yn.1)g(E(Yn.1)))dt 

+ /£_, {E{Yn_x)g(E(Yn^)) - y"g(y")) dt 

By Lipschitz continuity of / , the second integral is bounded by 

\E(Yn) - yn
n\ < |/£_, (EiYn.l9(Yn^)) - E(Yn^)g(E(Yn^))) dt 

+L,j£i\E(Yn-1)-jr\dt 

= I+ 11. 

(2.5) 

(2.6) 

Now, / is equivalent to I if we just notice that all the terms are constant on 

Term 77 describes how far the solution yn varies from its initial local value of 

E(Yn-i). We rewrite this term by adding and subtracting the previous local integral 

of yn~l at time £n_i, Vn-h 
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/ / < Lf ptlx \E{Yn.x) - yT-\\ dt + Lf / / ; , \jr - yn
n--\\dt 

= Ljte\E{Yn-x) - yT-\ I + Lf /£_, \vn - yn
nz\\dt 

The first term simply describes the difference between the ending point of the previous 

local solution, y"l | , and the starting point of the next solution, y*_x = E{Yn). 

Putting this back together with (2.6) and recalling the notation of (2.4) gives the 

result: 

\Eiyn)-rn\<[yn^9{Yn^)] + L}M\E{Yn^)-rn--\\^Lf fn \r-yn
n-\\dt. (2.7) 

Defining y° = E(Y0) implies this bound holds for n = 1,2,3,.... 

• 

Equation (2.7) holds for all n = 1,2,3,... and depends on the difference bound at 

the previous time step, |E(K„_i) — y^-l I- This previous difference appears on the right 

hand side of the current bound and hints at the potential for a Gronwall argument 

in the accumulation of these bounds. We use this to advantage in the next theorem, 

but note that this argument is only valid for transient behavior. 

Given the local bound in Theorem 2.1.1, we naturally ask if this means the ex­

pected value of the discrete stochastic model remains close to the ODE solution for 

some number of steps. The next result shows a bound between the expected value 

and a set of local solutions. Note, however, that this set of local solutions can not be 

expected to remain close to a global solution of the ODE. Hence it does not provide 

the desired bound. 
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Theorem 2.1.2 Accumulated Local Bound 

For any time tn > to, 

\E(Yn)-yZ\ < EiLf^r-nYj-idiYj-i)} 
j=1 „ (2.8) 
+ L!Y.{LJMr-i%_i\yi-%:\\ 

Proof of Theorem 2.1.2 

We begin with (2.7) and use a discrete Gronwall argument. In the first step, 

substitute the difference at time tn-\ to obtain 

\E(Yn)-y»(tn)\ < [Yn_lg{Yn_l)\ + Lfte\E(yn_1)-y
n
n--\\ 

+LfJt
t:jyn-yn

n--l\dt 

< lYn_l9(Yn-i)) + Lf / / ; i \yn - yn
n--\\dt 

+ LfAt[Yn_2g(Yn^)} 
+L}(At)2\E(Yn_2) - yn

nZl\ + LjAtf^ l y - 1 - y£*\dt. 

Substituting the difference at tn-2 gives 

\E(Yn)-y
n
n\ < [Yn-ig(Yn-i)] + LfAt[Yn^g(Yn^)} + L}(Aty[Yn^g(Yn^)} 

+Lf &. \yn ~ ynn-Wdt + L'At tn'l \yn'1 - yT-lW 
+L%Atyj^\y«-i-yn

n--$\dt 
+L}(At)3\E(Yn-3)-y::$\. 

Continuing in this manner gives the result, 

\E(Yn)-y»(tn)\ < tiYi-MYj^iLfAtr^ 

+ht£!_l\v
i-vjzl\dt{L/to)»-t1 

where the last term \E(Y0) — y®\ is zero since we define y§ = E(Y0). 

(2.9) 

D 

We next investigate each term in this cumulative bound further. This focuses on 

different sources for the size of the bound and may potentially improve or at least get 
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more information about the bound, depending on the nature of the ODE. We look 

at the first sum in (2.8) and expand [>j_1^(y}_1)]. This yields a very interesting and 

intuitive bound in terms of variance and the second moment of Y. 

Theorem 2.1.3 [VgCK)] Bounded by Variance and Second Moment 

The unbiased estimator for [Yg(Y)] is bounded on each time step by 

i/2 / N \ 1 / 2 

»=i / 

(2.10) 

where {V}_i}i is the ith simulation at time step tj-\. 

Note that this bound is precisely the square root of the unbiased estimator for 

variance of Vj_i multiplied by the square root of the unbiased estimator of its second 

moment, which has small variance for large N [32]. The multiplication of these two 

gives a nice intuitive relationship. If the variance is large, but the magnitude of |Vj-i| 

is small, the impact of non-linearity is relatively small on the difference between 

the stochastic model's expected value and the solution of the ODE. Similarly, if the 

magnitude of |Vj-i| is large, but the variance is small, the impact may also be small. 

On the other hand, if both the magnitude and variance are large, the stochastic model 

may behave quite differently from the solution of the differential equation. Note, in 

the logistic case, the variance is relatively small for the scaling constant M = 1000 

and time step At = 0.001. 

In Fig. 2.4, we show the bound and actual difference, [Yj-ig(Yj-.i)], for the logistic 

model in 1.10 with a single initial value. In Fig. 2.5 we show the bound for random 
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initial conditions. Note that the actual difference as well as the bound in this figure 

are similar to Fig. 2.4, except for early time values where the bound is higher. 

This follows as a range of initial conditions give our probability model higher initial 

variance and an increased potential for a large difference between the expected value 

and the deterministic solution. 

x 1 0 5 Theorem 3 bound of logistic for 1000 simulations 
2.51 . 1 . —-i 

bound1 
actual 

prob > 1 at t = 3.17 , yO = M/10, M = 1000, dt = 0.001 

Figure 2.4: This plot shows the actual difference [^(V)] and the bound from Theo­
rem 2.1.3 for the same initial value in each simulation. 

Proof of Theorem 2.1.3 

Recall the definition of (2.4) 

[y„-i5(y„-i)] = \E{Yn-Xg{Yn^)) - E(Yn^)g(E(Yn^))\ At. 

Now since E(Yj_i) is a deterministic value, we can write 

£(^--i)<7(£(V}-i)) = £(y;--i<K£(y;-i)))-

Substituting this into the difference equation gives 

[Y^giYj-J] = lEiYj^giYj^-EiYj-MEiYj-iM&t ,9 m 

= lEiYj-MYj^-giEiY^MAt. ^ i I j 
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Figure 2.5: We plot the difference [V}_i0(Yj_i)] and the bound from Theorem 2.1.4 
for yoe£/([0.11,0.21]). 

Using an unbiased estimator to approximate the expectation 

[Yj-igiYj^)] (2.12) 7? j£M-i}i foOT-iM " 9(E({Yj-i}i))) At 
= EstllYj^giYj^)}), 

for N simulations. See Appendix A for more on unbiased estimators. 

Bringing the absolute value and 1/JV inside the sum, we use Holder's inequality 

to obtain 

N 

EstdY^giYj^)}) < E ^ ( 5 ( f t - i W - M > ; - i } i ) ) ) ' ^ y H ^ 
1/2 

< ( £ jnWYj-iW-giEdYj-xh)))2 

\ t = i 
' N 2 \ 1 / 2 

£ TRiYj-ih 1 At. 

Simplifying and using the Lipschitz continuity of g, we have 
/ N \ 1/2 

EstdYj-MYj-i)}) < IjrEWiYj-ih-Em-fry2 

N \ 1/2 

JrE\{Yi-ih\a) At, 

At 

(2.13) 
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or 
/ " , \ V 2 

EstdY^giY^)}) < LaAt\JjJ:\{Yi-1}i-E{{Yi-1}i)\
2) 

^ElM-iM2) • 
»=i / 

Multiplying by (#5±)1/2 and rearranging gives the result with unbiased estimators 

for variance and the second moment of V}_i, 

JMM-rfO'j-i)]) < i^)1'2 LgAHihT,\{Yj-i}i- EdY^y2 

j?i:\{Yj-i}i\2) 
»=i / 

i=l 
1/2 

D 

Another interesting relationship to observe is the bound that results if we choose 

not to use the Lipschitz constant of g on equation (2.13). Using the same argument 

as in the proof, we arrive at the following bound 

, / N \ V 2 

EstdYj-MYj-i)}) < ( W 1 / 2 ^ E K ^ - i } i l a ) 

which gives another perspective of the bound and the degree to which the function 

g(E(Yj-i)) varies from E(g(Yj^i)). Writing the bound in this way allows one to use 

known behavior of g(y) (such as nonlinearity or stability properties) to analyze the 

bound, instead of the properties of y or /(;«/), which may or may not be more easily 

determined. 

Next, observe that we can also use f(y) with Lipschitz constant L/ instead yg(y) 

for this analysis. The following theorem shows that using f(y) gives a bound just in 

terms of variance, absorbing the second moment in the Lipschitz constant, Lf. 
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Theorem 2.1.4 [Y^Y)] Bounded by Variance 

The unbiased estimator for [Yg(Y)] is bounded on each time step by 

EstM-MYj-i))) < (^f'LfAtf^Zliyj-ih-Em-iM2) 
1/2 

(2.14) 

The bound in Fig. 2.7 for the logistic case has a larger initial value than the bound 

in Fig. 2.6, due to the variance already present in the initial YQ values. Also notice 

that the bound and [Y#(y)] in this figure increases as the variance of the stochastic 

model increases, then reaches a relatively stable value. 

x 10~5 Theorem 4 bound of logistic for 1000 simulations 
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/ 
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/ 
/ 

v ' " 

/*' 
' - - • • ' • ' • • 

•"• 
bound 

• 

• 

• 

Figure 2.6: This plot shows the actual difference [Y<?(Y)] and the bound from Theo­
rem 2.1.4 for the same initial value in each simulation. 

Proof of Theorem 2.1.4 

Writing (2.4) in terms of / gives 

K-tfOS-i)] = W(y,-i)) - f(E(Y^))\ At 
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yO = (1 + rand)*M/10, M = 1000, dt = 0.001, prob > 1 at t = 2.2 

Figure 2.7: Here we show the actual difference [Y<7(V)] and the bound from Theorem 
2.1.4 for the logistic model with initial values chosen from [/([0.11,0.21]). 

Again realizing that f(E(Yj-i)) is a deterministic value, we substitute /(£(V}_i)) — 

E(f(E(Yj-\))) into the above equation. This gives 

M-MY^)] = |£;(/(yJ_1)-/(£?(y}-i)))|A«. 

Writing this using an unbiased estimator for expected value gives 

EstiiYj^giYj^)}) = 
N 

ifi:(f{{Yi-ih)-f{E({yi-ih))) 
i = l 

At 
AT 

< E|^(/({^-iW-/(^({n-i}i))) |A« 

= E ^(/({V5-i}i)-/(^({n-iW))-^7 
i = l 

At. 

Using Holder's inequality again gives 

N 

Esm-tfiYj-!))) < ( E ^7(/({>i-i}i)-/(S({>S-i}i))) 
,2X V2 

i-1 
N 

£ 
t= i 

1/2 

VN 

(2.15) 

At, 

or, equivalently, 

/ AT \ V 2 

jE?<K- i f l (y j - i ) ] )<(^Ei /« y i - iW- / (^w- iW)N At-
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Using the Lipschitz continuity of / and multiplying by the constant (jfz\) gives 

the result 

/N--\\1/2 ( 1 N V/2 

EstdY^MYj-i)}) < [-j^j is & [j^T,\{y^h- E({y^h)\2) • 

• 

Again, observe that if we choose not to use the Lipschitz condition on / , we arrive 

at a bound that gives a sort of variance of f(E(Y)) from the expected value E(f(Y)), 

due to nonlinearity. Equation (2.15) is precisely this relation. 

As with the yg(y) form, the bound in the above theorem is a function of the vari­

ance of the stochastic model. Using either Lg or L/ in the bound of Est([Yj-ig(Yj-i)]), 

we may use the second moment and variance bounds to advantage. For example, 

knowing the variance a priori may indicate where the model is most sensitive to 

changes or an instability occurs. Given this information, we may be able to devote 

more resources to a particular time and use more coarse time steps in areas where 

the variance is small. In general, increasing the time step will increase the efficiency 

of the implementation. For some models, such as 1.13, this creates more problems. 

Next, we combine these results into a single bound and observe that it is O(At). 

Theorem 2.1.5 Total Local Bound 

For[t0,tn], 

Est(\E(Yn) - yn(tn)\) 

< (^)1/2 LfAt±(LfAty-j ( i ^ g l { ^ - i } i - ^ ( { ^ - i } 0 | 2 ) ( 2 . 1 6 ) 

+ Lft(LfAtr^Jt
t;i\^-yjZl\dt 

and 
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\E(Y*)-fi\ = 0(At). 

This bound is useful in its description of the differences between these two models, 

but it remains relatively constant over the time interval. This follows as the bound is 

the same as Theorem 2.1.2, though slightly larger with the variance bound included. 

We show this in Fig. 2.8. 

x 10"4 Theorem 5 bound of logistic for 100 simulations 

bound 
actual J 

Figure 2.8: This plot shows the actual difference and the bound from Theorem 2.1.4 
for the logistic model with initial values chosen from on t/([0.11,0.21]). 

Proof of Theorem 2.1.5 

The bound in (2.16) follows by substituting bounds from Theorem 2.1.2 and The­

orem 2.1.4. 

Next, we show the difference bound to be O(At). We consider each term in (2.16) 

and the conditions for it to be less than or equal to some constant C times At. 

Starting with the first term, we need to satisfy the inequality: 
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1/2 
/ / v - i x 1 / 2 n ( i N A 

^ ' j = l \ i=l / 

(2.17) 

The variance of V-7-1 is assumed to be finite, so we define the variance on the j t h 

time step to be 
i i i — » . . . . . ,o \ 

^ ^ ( A ^ I E K ^ 1 ^ - ^ ^ " 1 ^ ) ! 2 ) 

Substituting gives 

1/2 / M _ 1 \ V2 i 

(-JV-J LfteY^LjteY-iK} < CM. 

Canceling A< from both sides and absorbing the constants on the left hand side into 

C such that C = ,Cj^_x gives the equivalent condition to be satisfied, 

n 

J2(L/At)n~jKJ ^ £• (2-18) 

Factoring out Kmax = max,- Kj from the LHS of (2.18) gives 

LHS < Kmax (J^L. + Msz lAt + ... + ^ L ^ n - i ^ . — m a x \ JS ' TV- » i . . . i j ^ , 
*» max *» max ** n 

We now divide both sides by Kmax and note that j ^ - < 1 for all j , by definition. 

Absorbing Kmax into the constant C gives the geometric series 

LHS < 1 + LfAt + (LfAt)2 + ... + (LfAt)n-2< 1 ~ ( L /
r

A ^ " • 
1 — Lf/Xt 

If L/A£ < 1, then this is bounded uniformly in n. 

For the second term in (2.16), we need to satisfy the inequality 

Lf £ (L ,AO n - ' T |yJ' - yjZl\dt < CM. (2.19) 
j = i Jtj-\ 
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In the next step, we assume the expected value, initial conditions, and solutions of 

the ODE remain in a compact set. Given this assumption, we can bound the integral 

and set it equal to KmaxAt, 

f' |jp - tfr\\dt < max |y>' - y*r\\&t = KmaxAt. 

Making this substitution gives the revision of (2.19), 

n 

LfJ2(Lf&t)n-iKmax&t<CAt. 
i=\ 

Again, we define C to absorb the constants such that C — -r—k— and cancel At from 

both sides. 

As before, we can bound the sum 

n - l 

3=1 ; 

For L/At < 1, this sum is bounded uniformly in n and condition (2.19) is satisfied. 

Note that L/At can always be made less than 1 if we choose At < •£- and when 

Lf is large, we require small time steps. 

• 
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2.2 Global Difference Bounds 

We now derive a global estimate for the difference of the expected values of the 

discrete stochastic model and the solution of the ODE continuum model. This is a 

so-called transient or short time result that uses the simplest notion of stability. In 

this analysis, we consider any end time T = tn > t0 and compare the expected value 

of the discrete stochastic model at this time with the solution of the ODE starting 

with initial condition yo = E(Yo). 

Using the integral solution of yn and E(Yn), we consider the absolute distance 

between the expected value and the ODE solution at time tn and obtain a bound 

using only knowledge from the previous time step. 

Theorem 2.2.1 Global Difference Bound Over One Time Step 

For any time tn > to, 

\E{Yn)-yn\ < (l + L / A O I ^ - O - y n - i l + ^ - i sOVi) ] ,9 9 m 

+L/|;y'|So(At)2, [2-20) 

where |;v'!So indicates the infinity norm on the nth interval, [tn-i,tn]. 

.In the linear case, each of the [yn-i5(^n-i)] terms are zero, so the bound is only 

dependent on the stability of the ODE at that time and its accumulation from the 

previous time. 

Fig. 2.9 shows the bound of Theorem 2.2.1 in the logistic case for M = 1000, 

At = 0.001. This global bound is much larger than the local bounds and grows 

exponentially from the compounding of the previous difference over a large time 

interval. 
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Figure 2.9: Plotting the bound of Theorem 2.2.1 and the actual difference \E{Yn) — yn\ 
for the logistic model. 

An interesting thing to note is that the bulk of the true difference between the two 

models is attributed to the [V^(y)] terms, which are of the same order of magnitude 

of \E(Yn) — yn\. The stability terms involving the infinity norm over this interval are 

an order of magnitude smaller than \E(Yn) — yn\. The difference on the previous time 

step is also an order of magnitude smaller than the true difference if we ignore the 

effect of the [Vg(y)] and stability terms. This gives a better idea of the importance 

of these nonlinearity terms in the difference between the two models. 

Proof of Theorem 2.2.1 

We consider the difference of integral equations for yn and E(Yn) and use the 

triangle inequality to obtain 

| ^ ( ^ n ) - y n | < | ^ ( ^ n - l ) - y n - l | + r (E(Yn_l9(Yn-i))-yg(y))dt 
Jtn-\ 

Adding and subtracting the integral /t"_ E(Yn-i)g(E(Yn-i))dt gives 
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\E(Yn)-yn\ < \E(Yn^)-yn^\ 

+ fc_x (E(Yn_ig(Yn-i)) ~ E(Yn^)g(E(Yn^))) dt (2.21) 

+ //;_, (E(Yn^)g(E(Yn^)) - yg(y)) dt 

By Lipschitz continuity of / , the second integral is bounded by 

\E(Yn)-yn\ < |£7(KTV_1)-y„_1| 

+ j ^ (EiYn-rtiYn-J) - E(Yn^)g(E(Yn^)))dt 

+L/'jZ_l\E(Yn-1)-y\dt ( 2 2 2 ) 
= lEiY^-yn^ + iY^giYn^)} 

+Lf£i\E{Yn-i)-y\dt 
= A + B + C. 

Term C describes how far the solution y varies from the local value of E(Yn-i). We 

rewrite this term by adding and subtracting the integral of y at time £n_i to give 

C < LfJ^lEiYn-J-yn-^dt+Lf fcjyit) -y^ldt 
= LfAt\E{Yn^) - y„_x| + Lj /£_, \y{t) - y^dt. 

Putting this back together with (2.22) gives 

\E(Yn)-yn\ < (l + LfAt^EiY^-y^l + lYn^giYn^)} 
+Lf!t

t:_l\y{t)-yn^\dt. 

We can bound the last integral using the infinity norm on the interval [tn-i, tn], where 

|y|oo = supt-y(£) and i e [tn-i,tn]. 

This gives a simplified version of the difference bound on the interval [£„-i, tn], 

\E(Yn)-yn\ < (l + LfAt)\E(Yn^)-yn^\ + [Yn^g(yn-x)} 
+ Lf\yT0O(At)\ 

D 

Now (2.20) holds for n = 1,2,3,... with the desired bound on the previous time 

step appearing on the right hand side. Using a discrete Gronwall argument, again, 

we show several results from the accumulation of these bounds. To make sense of 

52 



these global bounds, we state each in succession and then show the proof as stages 

in a single derivation. 

Theorem 2.2.2 Global Bound - Stage 1 

\E(Yn) - yn\ < (1 + L/At)"-1 Jh \E(Yg(Y)) - E(Y)g(E{Y))\dt 
+(1 + LfAtr~*fl2 \E(Yg(Y)) - E(Y)g(E(Y))\dt 
+ ... + fIn\E(Yg(Y)) - E(Y)g(E(Y))\dt 
+(1 + LfAtr~'Lf\y'UAt)2 + (1 + LfAty-'LjWUAtf 
+ ... + Ls\y'UAt)\ 

(2.23) 

where we \E(Y g(Y)) — E(Y)g(E(Y))\ is piecewise constant on each subinterval 7i, 72, •••, In-

This bounds the difference between the expected value of the discrete stochastic 

model and the solution of the differential equation in a way that shows the potential 

effect of early differences, which accumulate over time. In general, this formulation 

is the closest equivalent to the true bound of global errors as it allows the difference 

to vary widely on some intervals though not on every one. Also note that this bound 

is almost identical to the global bound on a single time step. See Fig. 2.10 and Fig. 

2.9. In this bound, we have simply written the accumulation of the bound term by 

term. In the following bounds, we simplify but also increase the bound by considering 

the maximum difference attained over each subinterval and assume it holds for all 

subintervals. 

The weighting of (2.23) places a higher penalty on initial nonlinearities since poor 

approximations at early intervals may continue to have an effect at every interval 

afterward. As discussed previously, these nonlinearities correspond to the variance of 

the discrete probability model. A large initial variance causes simulations to imme­

diately diverge from the expected value and behave similarly to other trajectories of 
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the ODE. Recall the effect of a range of initial values on the behavior of the logistic 

model, as shown in Fig. 1.3. (This result is similar to the effect of approximating an 

ODE solution with the forward Euler numerical method. In the case of exponential 

growth, approximations that fail to capture the nonlinearity of the initial trajectory 

fall to lower trajectories and track that behavior.) 

Note that in the exponential growth example, we have only the accumulation of 

growth from the previous term as the nonlinearity terms are zero. Since the ODE is 

exponentially growing, however, the bound is still relatively large. 

In the logistic case, the difference [Yg(y)] is on the order of 10~7 with a small 

increase over the initial stage of nonlinearity and increased variance. This is orders 

of magnitude smaller than the constant multipliers (1 + LfAt)k, for the appropriate 

value of k, so it is difficult to see the direct effect of the nonlinear behavior. However, 

it is the accumulation of these differences that give the exponential growth we see in 

Fig. 2.10. 

Theorem 2.2.3 Global Bound - Stage 2 

\E(Yn) - yn\ < eL'T f \E(Yg(Y)) - E(Y)g(E(Y))\dt + eL'T|y'l<x>At (2.24) 
Jo 

Assuming maximum nonlinearity and growth on each subinterval, we can see at 

most exponential behavior in the difference between the expected value of the discrete 

stochastic model and the solution of the differential equation. 

In the linear case, the nonlinearity term is again zero, but we do obtain an expo­

nential upper bound that is O(At) for short time T and finite |y'|oo. 
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Figure 2.10: This plot shows the bound of Theorem 2.2.2 and the true difference 
\E{Yn) - yn\ for the logistic ODE. 

We plot this bound for the logistic case in Fig. 2.11. By using the maximum 

differences and growth on each interval, we have increased the bound by over three 

orders of magnitude from Stage 1. 

Alternatively, we may consider the nonlinear effects of the model in terms of an 

average value, given in the following bound. 

Theorem 2.2.4 Global Bound - Stage 3 

\E(Yn)-yn\<^mzx±- I \E(Yg(Y))- E(Y)g(E(Y))\dt + eLfT\y'\0OAt (2.25) 

or, equivalently, 

\E(Yn) - yn\ < T^r-eL'T max[yj_l5(Vj_1)] + e^y' looAt (2.26) 
LfL\t 3 

Writing the bound this way shows the effect of the nonlinearity in terms of an 

average value on each subinterval. Recall from the local analysis that these terms are 
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Figure 2.11: This plot shows the bound of Theorem 2.2.3 and the difference \E(Yn) — 
yn\, which is now four orders of magnitude smaller than the bound, for the logistic 
model. 

bounded by the variance of the stochastic model. Taking only the maximum average 

value over the subintervals instead of the sum as in Theorem 2.2.3, the bound and 

the true difference are again of the same order of magnitude for a short time. See 

Fig. 2.12. 

Note that in the linear case, E(Yn-ig(Yn-i)) is exactly equal to E(Yn-i)g(E(Yn-i)), 

so the term [Y^giY^)} = \E{Yn.ig{Yn-i)) - E{Yn^)g{E{Yn-{))\ is zero and the 

bound of Theorem 2.2.4 is just O(At) for finite T. This follows our intuition and 

matches the results obtained in [28]. 

We show the bound for the logistic case in Fig. 2.12. Since the nonlinear [Y<?(F)] 

terms are relatively small and not being accumulated as a function of the previous 

time step, the true difference of the logistic is also O(At). 

Proof of Stages 1 and 2 

For the first accumulated global result of Theorem 2.2.2, we recall Theorem 2.2.1 
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Figure 2.12: This plot shows the bound of Theorem 2.2.4 and the difference \E(Yn) -
yn\ for the logistic model. 

in integral form: 

\E(Yn)-yn\ < (l + L/AtJlEO^O-j /n- i l 
+ J^ \E(Yg(Y)) - E(Y)g(E(Y))\dt + LjWU&tf 

We make the first substitution at the previous time step, \E(Yn-i) — y„_i|, into 

(2.20). This yields 

\E(Yn)-yn\ < (l + LfAt)2\E(Yn.2)-yn-2\ 
+(1 + LfAt) JIn i \E(Yg(Y)) - E(Y)g(E(Y))\dt 
+ Jln \E(Yg(Y)) - E(Y)g(E(Y))\dt ^Zl) 

+(1 + LfAt)Lf\y'\^\Atf + Lfly'UAtf. 

Continuing in this manner gives (2.23) of Theorem 2.2.2: 

\E(Yn)-yn\ < (l + LfAtr-iJh\E(Yg(Y))-E(Y)g(E(Y))\dt 
+(1 + LfAt)^ Jl2 \E(Yg(Y)) - E(Y)g(E(Y))\dt . 
+... + (1 + LfAt) Jln t \E(Yg(Y)) - E(Y)g(E(Y))\dt 
+ fln\E(Yg(Y))-E(Y)g(E(Y))\dt 
+(1 + LfAtr-'hWUAt)2 + (* + LfAtr->Lf\y'\l(Aty 
+... + (1 + L /At)L /|y'|Sr1(At)2 + LfWM&t)* 

since the last term |£7(Vb) — yo\ is zero. 
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For the second global bound, we note that the coefficient in each term of the above 

equation is less than or equal to (1 4- L/A£)n_1. Similarly, the infinity norm on each 

interval is less than or equal to the infinity norm over the entire interval. This gives 

the simplification 

\E{Yn)-yn\ < (l + LfAtr-'£\E(Yg(Y))-E(Y)g(E(Y))\dt 

+Lf\y>UAtynf;(i + LfAty. ( 2-28) 

i=0 

The sum of coefficients from the last n terms form a geometric series of (1 + L/At). 

Using the formula 
1 _ ~ n + l 

l + x + ... + xn= \ , 
1 — x 

this gives 

((1 + LfAtr~l + ... + 1) Lf\y'UAtf = \Z%\L^LfWUAt)2-

We use the exponential approximation for L/At < 1 given in Appendix A to obtain 

1 - PL/T 

RHS < LJL^LjWUito)* = {eL'T - 1) \y'UAt 

or 

RHS < eliT\y'\^At, 

where nAt = T. We keep this term in our bound, but note that since y' is bounded, 

this term goes to zero as At goes to zero, for finite T. 

Using this approximation on the first term of (2.28), we achieve the bound (2.24) of 

Theorem 2.2.3: 

\E(Yn) - yn\ < eLfT f \E(Yg(Y)) - E{Y)g{E{Y))\dt + e^ly'^At. 
Jo 
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• 

Proof of Stage 3 

Again, we recall Equation (2.23) of Theorem 2.2.2 combined with the exponential 

bound of the sum of L/\y''^At terms: 

\E(Yn)-yn\ < (1 + LfAtf'1 !h\E{Yg{Y))- E(Y)g(E(Y))\dt 
+(1 + L ;Ai ) - 2 fh \E(Yg(Y)) - E(Y)g(E(Y))\dt 
+ ... + (1 + LfAt) fJn i \E(Yg(Y)) - E(Y)g(E(Y))\dt 
+ !In \E(Yg(Y)) - E~(Y)g(E(Y))\dt + e^y'^At. 

Bounding each of the integrals by the maximum, we have 

\E(Yn)-yn\ < (l + LfAtr'imaxjJJ.\E(Yg(Y))~E(Y)g(E(Y))\dt 
+ (1 + ^ A ^ m a x / / , . \E(Yg(Y)) - E(Y)g(E(Y))\dt 
+ ... + (1 + LfAt) max,- jT,. \E(Yg(Y)) - E(Y)g(E(Y))\dt 
+ max, /,. \E(Yg(Y)) - E(Y)g(E(Y))\dt + e^y'^At. 

Again using the sum of the geometric series of (1 + LfAt) and assuming LfAt < 1, 

we have the bound 

| E ( y „ ) - y „ | < - ^ 4 - m a x / \E(Yg(Y)) - E(Y)g(E(Y))\dt + e^y'^At. 
Lf/\t 3 J^ 

Rewriting this gives the bound in terms of the maximum average value of \E(Yg(Y)) — 

E(Y)g(E(Y))\ over each interval 

\E(Yn)-yn\ < f ^ m a x ^ y \E(Yg(Y)) - E(Y)g(E(Y))\dt + e^y'^At. 

Simply noting that \E(Yg(Y)) — E(Y)g(E(Y))\ is constant over each interval gives 

Equation (2.26). 

• 
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Chapter 3 

Extension to Higher Dimensions 

We now consider the model of a vector of populations y, where each component 

represents a particular class of the total population, e.g. Kermack-McKendrick mod­

els. After understanding the formulation of the scalar discrete probability model, 

we find the analysis for systems proceeds in a straight forward way if we consider 

component-wise probabilities. 

As before, the probabilities for the discrete stochastic model are determined from 

an ODE model, 

y = /(y) f 3 n 

y(0) = yo ' (3-1} 

where y = (y1, y2,..., ym)T E W1. We define the solution of the kth dimension at time 

tn as y£ to keep notation as consistent as possible with the scalar case. 

Recall that for the formulation in one dimension, the assumption that / has the 

form f(y) = yg(y), where g is interpreted as a probability, is essential. In higher 

dimensions, the analygous assumption is 

/ (y ) = G(y)y, 

where G is a diagonal m,xm. matrix with entries gu(y) = gti{y)~9u{y) f°r 9u (y)> 9u(y) > 
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0. The diagonal form of G is necessary if we assume component-wise event proba­

bilities as we discuss shortly. Note that this assumption implies the homogeneity 

condition wherein 

fk(y\...,yk-\0,yk+\...,ym) = 0 V y\ ...,yk-\yk+\ ...,ym V A: = 1,2, ...,m. 

Before defining the associated probability model, we state a few more assumptions. 

3.0.1 Assumptions for the System Model 

We assume the time step At is small enough so that only one event in each population 

may occur on the interval (t,t + At]. Note that there are other possible ways to 

consider events for a system model. For example, a net zero change in the population 

over a time interval of length At, may result if no event occurs or if more than one 

event are allowed to occur in the same time interval and the same number of births 

and deaths occur in [tj-i,tj]. 

We assume Lipschitz continuity, where 

| | / ( x ) - / ( y ) | | < L / | | x - y | | , (3.2) 

for some constant Lj > 0, x, y € Rm. For the remainder of the thesis, it is understood 

that || • || refers the £2 norm and || • H^ is the £°° norm. We also assume each gti is 

Lipschitz continuous with constant L9ii, i = 1,2, ...,m. 

In our analysis, we also need gu(y) to be finite over the domain of / . If this is not 

the case, we impose an artificial bound similar to that described in the scalar case. 

If any of these probabilities become larger than 1, the probability model is no longer 

valid beyond that point. 
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3.1 The System Probability Model 

We first consider the conditional probability of an event (birth or death) occurring 

in the kth class for a single individual on the small time interval (t,t + At}. By the 

assumption that G is diagonal, the probability of an increase in Yk is given by 

P(Yk(t + At) = Yk_, + l\Yk(t) = Yk_,) = ak(YB_i)A«. 

Similarly, we have the probability of a death or no event occuring for an individual 

in the kth class in a small time interval (t, t + At]: 

P(Yk(t + At) = Yk_x - l\Yk(t) = Yk_,) = g^Y^At, 

P(Yk(t + At) = Yk_,\Yk{t) = Yk_x) = 1 - ( ^ ( Y ^ O +fe(Yn_1)) At. 

Each of the individuals in a particular class, Yk, k = 1,2, ...,m are categorical 

random variables with three event probabilities, as described above. As explained 

in the scalar case, the categorical distribution is a generalization of the Bernoulli 

random variable which has only two possible outcomes. An extension of the binomial 

theorem, we have the following probability for 1 birth, 0 deaths, and for the remaining 

Yk_x — 1 individuals, neither event occurs. 

P(Yk(t + At) = Yk_x + l\Yk(t) = Yk_,) 

= m^y(9^t)\9^t)° (1 " (tik + g^At)^'1'0 

= tf-ifo&At) (1 " (<4 + ̂ )A«)y""1_1 

= ^ (^ (Yn-OAO + oCAt), 

assuming finite g£fc(Yn_i) and g^.(Yn_1). 

Note that the diagonal form of G, in particular, motivates this definition of a 

population of categorical random variables. The kth row gives the probability for 
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an event to occur in the kth class, but it is unclear how we choose an individual for 

which that event occurred. Componentwise probabilities make it possible to choose 

an individual specifically from the Yk population where the change is given by a 

vector of zeros with a 1 in the kth component. A non-diagonal probability matrix G 

means we have to multiply the row of probabilities by the vector Y. This process, 

though, somehow indicates an increase in the population as an increase of +1 for each 

component in the entire vector. What exactly this means is unclear for a birth-death 

process. 

Additionally, we must be wary of this impact on the assumption that only one 

event may occur on the small time interval of length At. If a change of +1 in the 

population is described by a vector of ones, we can no longer claim the probability of 

more than one event occuring to be o(At). 

For a system of ODEs with non-diagonal matrix G of probabilities, it is unclear 

that a birth-death process of categorical random variables is the correct discrete 

probability model to use. Some other stochastic model may be better suited to this 

type of system ODE. 

Assuming diagonal G and categorical random variables, we have the following 

probabilities for one death or no events for the entire Yk population, k — 1,2, ...,m, 

P(Yk(t + At) = Yk_, - l\Yk(t) = Yk_x) = Yk_ig-kk{Yn^)At + o(At) 

and 

P(Yk(t + At) = Yl^Y'it) = Yk_x) = 1 - Y*_x (^(Yn-!) + g^Y^)) At + o(At) 
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These event probabilities hold for each A: = 1,2,..., m. We define the vector of event 

probabilities where o(At) is an mxl vector with each entry o(At): 

P(Y(t + At) = Yn_j + l|Y(t) = Yn_x) = G+(Yn_1)Yn_1Ai + o(At) 

P(Y(t + At) = Yn_! - l|Y(f) = Y„_i) = G-(Yn_1)Yn_iAt + o(At) 

P(Y(t + At) = Yn_!|Y(t) = Yn_!) = / - (G+(Yn_!) + G-(Yn_j)) Yn_jA* + o(At) 

3.2 Expected Value 

With this formulation and using component-wise probabilities, we follow the scalar 

model formulation and determine the expected value of the change (of +1) in each of 

the m populations over a small time interval (t, t + At]. This is then used to define 

the expected value of the population at time tn. We first consider the kth class then 

extend to the full vector Y. Also recall that expectation is component-wise for total 

and conditional expectation of vectors, e.g. E(Y) = (^(y1), E{Y2),..., E(Ym))T. 

(
yk yfc 

JT(+l)Cat(g+kAt) + J£(-l)Cat(^At) 
»=i i=i 

The terms in each sum are independent of i, so we remove the sum and multiply by 

Yf-v 

E(Yn
k - Y^Y^) = E (Yt, (Cat(g+kAt) - Cat(<foAt))) 

The conditional value Y^_1 is treated as a constant that we can pull outside the 

expected value. 

E(Yn
k - y^lYn-O = Yl,E (CMigUY^At) - C^g^Y^At)) 
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Linearity of expectation and using the fact that the expected value of a categorical 

variable is its probability of success, we have 

E(Y* - y ^ l Y n - 0 = Yt, (^(Yn-OAt - ^ (Y„- i )At ) 

or 

E(Y* - Y^Yn-i) = Yn
k_l9kk(Yn^)At. 

Solving for E(Y£\Yn-i) gives 

E(Y* |Yn_x) = E{Y^\Yn.{) + yn*_i(fc<fe(Yn-i)At 

or 

E(Y^\Yn^) = E(yn
fc_i) + y„fc-i5fcfc(Y„-i)At. 

To remove the condition on Yn_i, we now treat Yn_j as a random variable (abus­

ing notation) and use the law of total expectation, taking the expected value again. 

E(Y*) = E{Yt,) + E {Yn
k_igkk(Yn^)) At (3.3) 

This expectation holds for each component of Y, k = 1,2,..., m, giving the matrix 

equation 

E(Yn) = E(Yn_i) + E (G(Y„_1)Yn_1) At. (3.4) 
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3.3 System Examples 

3.3.1 SI Model of Fox Rabies 

In the following example, we consider an SI model for fox rabies, originally described 

by R. M. Anderson, et. al. [1]. The differential equation describing this system 

is given in (3.5) and may also be used to describe a predator-prey interaction such 

as the Lotka-Volterra model. The motivation of parameters is slightly different for a 

predator-prey model, but we omit this example and consider analysis of the fox rabies 

example and pneumonic plague. Fox rabies dynamics are described by 

f = -pSI + rS-fiS 

% = pSI-(fi + a)I (3.5) 
5(0) = S0 1(0) = /„, 

where (3 is the contact parameter between susceptible and infected, foxes, r is the 

birth rate, fj, is the natural death rate, and a is the death rate due to the disease with 

1/a the mean infective period. 

Rabies is a viral infection that affects many animals, including bats, foxes, coyotes, 

wolves, and rats. Human infection is rare, but is usually fatal in both humans and 

some animals, including foxes but excluding bats, which are probably the ancestral 

host for this disease. The above model is specific to foxes, so we assume no recovered 

class. Because of the relatively quick death rate (high a), there is assumed to be 

no birth rate associated with infected individuals. In 1981, Anderson modeled the 

epidemic of fox rabies which spread throughout Europe in 1939 [1]. In [8], F. Brauer 

and C. Castillo-Chavez simplified this model to the system of ODEs given above. We 

show the details of this probability model below, given that the total population at 

time t is the sum N(t) = S(t) + /(<)• 
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In matrix notation, /(y) = G(y)y, we let yi(t) = S(t) and 3/2(2) = I(t) and define 

the matrix G by 

r - \ ~@[ + r _ A* ° 
[ 0 PS - (n + a) _ ' 

This gives the following probabilities for the stochastic model: 

P((S(t + &t)}I(t + At) = (Sn-1 + l,In.1)\(S(t), I(t))) = rSAt 

P((S(t + At),I(t + At) = {Sn.1-l,In.1)\{S(t),I(t))) = (pi + fjL)SAt 

P((S(t + At)J(t + At) = (Sn^Jn^ + l)\(S(t)J(t))) = PSIAt 

P((S(t + At)J(t + At) = (Sn-UIn_1-l)\(S(t)J(t))) = (n + a)IAt 

and 

P((S(t + At), I(t + At) = (Sn.u In-i)\(S(t), I(t)) 
= l-{(r + !3I + n)S +{pS + n + a)I) At. 

Note that the parameter values in (3.5) are given in terms of total numbers of pop­

ulation, so we do not need to rescale the model. The result of this, however, is that 

we must use a time step at least as small as 1 x 10"6 to maintain a total proba­

bility less than one. In Fig. 3.1, we plot the stochastic simulations, the expected 

value, and the solution to (3.5) using parameter values from the epidemic of 1939, 

P = 80, r = 1.0, // = 0.5, a = 73 [1], We use initial conditions to simulate the 

potential for an epidemic given one infected individual in a wholly susceptible pop­

ulation (Ro)- S(0) = 50 and 1(0) = 1. According to the R0 formula given in [8], 

Ro = PSj(fx + a), these parameters and initial conditions give RQ > 1 and should 

result in the epidemic that we see in Fig. 3.1. 

Within the first few time steps, most of the susceptible population has become 

extinct while the infection persists in the rest of the population. For a few simula­

tions, though, the infection immediately dies out and the susceptible class remains 
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1000 Sims, of SI model of fox rabies, popn changes + / - 1 /M = 1 / I , d t = 1 e-006 

0 0.005 0.01 0.015 0.02 
prob > 1 at t = 0.02, Y0(1) = 50, Y0(2) = 1 

Figure 3.1: Simulations for fox rabies with At = 1 x 10"6 and 5(0) = 50, 1(0) = 1. 

relatively stable with zero probability of infection. This gives an expected value for 

the susceptible population just above zero. As discussed in Section 2.1, the discrete 

probability model is no longer valid once the distance between a simulation and a 

steady state becomes less then one increment of the discrete probability model. In 

this case, a distance less than 1 between simulations and the steady state y* = 0 

somehow implies that less than one individual has survived. 

3.3.2 SI Model of pneumonic plague 

Also from [8], we now consider a simplified Kermack-McKendrick model of the pneu­

monic form of the bubonic plague. The bubonic plague is a vector borne disease 

passed between rats via fleas. The pneumonic form, however, is passed via direct 

contact and is modeled by the system below. In this model, we assume an infection 

rate /?, equal natural birth and death rates in the absence of the disease, and death 

68 



rate 7 specific to the disease. 

« = ~PSI (3 6) 
g = (0S-7)/S(O) = So /(0) = /0

 V ' ' 

For parameter values consistent with the data from the Eyam plague epidemic in 

1665 [8], we plot 1000 simulations in Fig. 3.2. The vertical line gives the separation 

between short and long time behavior after which the expected value of the infected 

population is less than one individual and the two models should not be compared. 

1000 sims of SI model for plague, popn changes +/- 1/M = 1/1, dt = 0.001 

0 2 4 6 8 10 
prob > 1 at t = 10, Y0(1) = 254, Y0(2) = 7 

Figure 3.2: Simulations for bubonic plague using parameter values /? = 0.0178, 7 = 
2.73, 5(0) = 254, 1(0) = 7. The vertical line indicates the separation between short 
and long time behavior. 

As with the fox rabies example, the infection dies out immediately for some simu­

lations. As a result, the corresponding susceptible population cannot become infected 

and is only subject to natural birth and death events. The difference between the 

expected value and deterministic solution of the susceptible population, in particu­

lar, is large due to this increasing variance among simulations. Again, this potential 
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difference is reflected by the moment and variance bounds proven in Chapter 4. 
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Chapter 4 

System Difference Bounds 

4.1 Local Difference Bounds 

As with the scalar formulation, we are interested in the local and global difference 

bounds between the expected value of the stochastic model and the solution to the 

associated differential equation. These bounds are quite similar to the scalar case, 

but require norms on the differences. While the proofs are similar, we give most of 

the details for clarification and completeness. 

Beginning with local bounds for a system of ODEs, we first define the set of 

local solutions, yJ, on each time interval (tj-i,tj\, j = 1,2,..., n. Following the same 

notational conventions as in the scalar case, yJ solves the system, 

(4.1) 
Yj = G&)yi = G+&) - G"(y>) [«J-_1> tj] 

[yl-^EiYj-J, j = l,2,...,n, 

where G+(yj),G~(yj) > 0 and G is a diagonal matrix in Rmxm. 

We utilize the component-wise attributes of our system and the expected value 

to consider the kth dimension in our analysis. Since G is diagonal, we may also 

describe the deterministic solution as a vector of integrals for each k = 1, 2, ...,m. In 

the description of this vector of integrals, we abuse notation and describe, for any 

71 



xeim, 

/ xdt=l xldt, / x2dt, ... , / xmdt) . 
Jtn-i \Jtn-i J tn-\ Jtn~i J 

From Section 3.2, the total expected value of Y„ in integral form is given by 

E(Yn) = £?(YB_!) + f " E {G{Yn-X)Yn.x) dt. (4.2) 

The deterministic solution for y-7 of (4.1) at tj for j = n is given by 

Yn = Yn-i + / " G(yn)yndt = £(Yn_0 + f " G(yn)yndt. (4.3) 

Theorem 4.1.1 Local Bound on One Time Step 

The difference on each time step [tn-i,tn\ is given by 

\\E(Yn)-ft\\<r + ri 

with 

I = [GfYn-OYn-!] = ||E(G(Yn_1)Yn_1) - G(E(Yn_1))E(Yn_1)ll At, (4.4) 

and 

If = LfAt\\E(Yn^) - rnZ\\\ + Lj r ||yB - y»l\\\dtt 
Jtn-\ 

where yg = E(Y0). 

In Fig. 4.1, we show the bound of Theorem 4.1.1 and the difference ||E(Yn) — yn|| 

on each time step. The true difference is orders of magnitude smaller than the bound, 

so it appears as a line at zero. We show a plot of ||£7(Yn) — y„|| in Fig. 4.2. 

Proof of Theorem 4.1.1 
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X1Q4 Theorem 1 bound of fox rabies ODE for 100 simulations 
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0 0.002 0.004 0.006 0.008 0.01 
M=1,dt=1e-006, prob>l at t = 0.01 

Figure 4.1: The plot gives the bound of Theorem 4.1.1 for the fox rabies example as 
well as the true difference of ||E(Yn) — yn|| at each time step. 

True difference of fox rabies models for 1000 simulations 

Figure 4.2: This plot zooms in on the true difference .||£(Yn) — yn | | between the 
discrete probability model and the ODE solution for the fox rabies at each time step. 
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\\E(Yn)-y^\ fn (£7(G(Yn_1)Yn_1)-G(yn)yB) 
Jtn~\ 

dt 

Adding and subtracting the integral Jt
n_ G(E(Yn-i))E(Yn-i)dt gives 

\\E(Yn) - ftl = ptlx {E{G{yn.{)Yn.x) - G{E{Yn^))E{Yn^)) dt 

+ Hlx (G(E(Yn_1))£;(Yn_1) - G(y»)y») dt ( 4 ' 5 ) 

The first integral listed above consists of only constants, which simplifies to term I in 

the theorem. The second integral is bounded by the Lipschitz constant of / to give 

| |£(Y")-y„J | < ||E(G(Yn_1)Yn_1)-G(£;(Yn_1))E(Yn_1)||A^ 
+Lf]t;i\\E{Yn-l)-r\\dt (4.6) 

= / + //. 

We rewrite term 77 by adding and subtracting the previous local integral of y n _ 1 

at time tn-i-

Tl < L / /^ i | |E(YB_ 1)-yS: 1
1 | | cf t + L / / ^ i | | y » - y S : } P 

= LfAt\\E(Yn^) - y»:l|| + Lf £ _ , ||y" - y»l\\\dt 

Putting this back together with (4.6) gives the result: 

\\E(Yn)-rn\\ < [G(Yn_1)Y„_1] + L /At||E(Yn_1)-y^:1
1 | | 

+LfJt
t
n\\\yn-rnz{\\dt. [ ' 

Again, defining y$ = E(Y0) implies this bound holds for n = 1,2,3,.... 

• 

Again, the assumption of /(y) = G(y)y is vital in the formulation of this proof. As 

with the scalar case, the difference between the expected value and the deterministic 

solution over a small time interval is due to a combination of non-linear effects given 

by term I, which we show is bounded by the variance of the stochastic model, and the 
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stability of the solution of the ODE on each interval based on two nearby trajectories 

of y, shown in term II of Theorem 4.1.1. 

As before, since the bound at time tn depends on the bound at the previous time 

step, we use Gronwall's inequality to define the accumulation of these local differences. 

Theorem 4.1.2 Accumulated Local Bound 

For any time tn > to, 

\\E(Yn)-rn\\ < E(^/AOn-J '[G'(Y j-1)Y j_1] 
(4.8) 

x 1 o
 4 Theorem 2 bound of fox rabies ODE for 100 simulations 

- - bound 
mmmt actual 

0 0.002 0.004 0.006 0.008 0.01 
M=l,dt=1e-006, prob> 1 at t = 0.01 

Figure 4.3: This plot gives the bound of Theorem 4.1.2 for the fox rabies example as 
well as the true difference of ||£(Yn) — yn | | at each time step. 

Proof of Theorem 4.1.2 

We begin with (4.7) and implement the first step in the Gronwall argument to 

obtain 
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\\E(Yn)-y-\\ < [GiY^Y^ + LfAtWEiY^-rnZll 
+LfIt1\\y

n-ynnZl\\dt 

< [G(Y„_1)Yn_1] + LS//; i \\r - yn
n--\\\dt 

+L/At[G(Yn_2)Yn_2] 
+L2

/(A/)2||£:(Yri_2)-y-2
2|| 

+L}Mf;^\\r-1-rn--i\\dt 

With another substitution of the difference at time tn_2, we have 
\\E(Yn) - y«|| < [GCYn-OY,^] + L/Ai[G(Y„_2)Yn_2] 

+L2(Ai)2[G(Yn_3)Yn_3] 
+LfItl\\y

n-rnzl\\dt 
+L}Atjt

t:::\\r-1-yn
nzi\\dt 

+L}(&t)*ft
t;-3

2\\r->-rnzi\\dt 
+L 3

/(Ai) 3 | |E(Y n_3)-y^| | . 

Continuing in this manner gives 

\\E(Yn) - y»|| < UGiYj-jYj-iKLfAty-i 

+htf:;j\yj-yjf-[\\dt(LfAtr-^ 

where the last term is zero since y§ = E(Y0). 

(4.9) 

D 

As in the scalar case, we next consider an expansion of the term [G(Yj_i)Yj_!] 

and observe how the behavior of the probability model effects the bound in terms of 

its variance and second moment. 

Theorem 4.1.3 Local [G(Y)Y] Bounded by Variance and Second Moment 

The unbiased estimator for [G(Y)Y] is bounded on each time step by 

/ N \ i / 2 

EstdGiYj-JYj-i}) < ( ^ i ) 1 / 2 L g A^^EI{Y J - 1 } i - J B({Y J - 1 } i ) | 2 J 

i=i / 

(4.10) 
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We show this bound for the fox rabies example in Fig. 4.4. Here, we notice that 

the bound has the same behavior as the true difference of [G(Y)Y]. This correlation 

makes the connection between nonlinear effects and the variance and second moment 

quite clear. Both quantities increase with the nonlinearity of the model as well as the 

increased variance as the simulations spread between extinct and sustained simula­

tions. Fig. 4.5 shows similar behavior, though it uses the Lipschitz constant of / and 

only variance. 

Theorem 3 bound of fox rabies ODE for 1000 simulations 
0.05 
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0.005 

0 
0 0.002 0.004 0.006 0.008 0.01 

M = 1, dt = 1e-006, prob > 1 at t = 0.01 

Figure 4.4: The plot gives the bound of Theorem 4.1.3 for the fox rabies example as 
well as the true difference of the [G(Y) Y] terms at each time step. 

Proof of Theorem 4.1.3 

Recall the definition of (4.4) 

[GiYj.jYj-.r] = ||£;(G(Yj_1)Yj_1) - G(£?(YJ-_1))£;(YJ-_1)|| At. 

Since E(Yj-i) is a deterministic value, we can write 

G(E(Yj_1))E(Yj_1) = E(G(^(Y j_1))Y j_1). 
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This substitution gives 

• [GiYj^Yj^] = ||E(G(Y,-_1)Y,--1)-S(G(E(Yj_1))Y,-_1)||Af 
= ||£?((G(Y j_1)-G(E(Y i_1)))Y i_1)||A«. l 4 ' U j 

Again, we use an unbiased estimator for the expectation over N simulations and write 

EstdGtYj-jYj^]) = 1 JT (GdYj^h) - G(E({Y,_1}i))) {Y^}, At. (4.12) 

Bringing the norm inside the sum and rewriting the vector Y as the matrix Y T • Im 

gives the inequality 

EstdGiYj^Y^}) < g | | -^(G({Y j_ 1} i ) -G(E({Y J_ 1} i ) ) ) 

^{Y^fl^At. 

Since ^L (GdY^}*) - G(E({Yj_1}i))) and ^{Y,-_i}f/m are both contained 

in £2(Rma:m), we use Holder's inequality in the next step. First recall that the d.2 norm 

of the vector Yj_! is given by 

iiY.-iii^fEiiY^in 
1/2 

and induces the matrix norm 

||G||2 = max 
" " ||Y||a#0 

HG(Y)Y||S 

Assuming these norms, Holder's inequality gives 

^([GOO-OYj-!]) < (Z:\JR(G{{Yj-1}i)-G(E({YJ-1}i))) 
1/2 

i = l 

(4.13) 

At. 

The Lipschitz continuity of G then gives 

Est{[G{Y^)Y^}) < ^ELlHYj^-EdY^h)^ 

•^EII{Yi-i}i | |2J At 

1/2 
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or 

^([G(Yj_1)YJ_1]) < L^tf^ZHY^ih-EdYj^}^ 
1/2 

N \ 1/2 

^ElKYj-i},!12 

i=l 

A f - n i / 2 Multiplying by (7^1) gives the result 

• 

Again, note that if we do not to use the Lipschitz constant of G in equation (4.13), 

we may also observe the non-linear term to be bounded by 

1/2 

( N \ ' 

7^rgl|G!({Yi_1}i)-G(£?({Yj_1}i))||
2J 

•(^ElKYj-iMfJ At. 

Again, we use /(y) and the Lipschitz constant Lf to absorb the second moment, 

giving a bound in terms of variance only. 

Theorem 4.1.4 Local [G(Y)Y] Bounded by Variance 

EstdGiY^Yj^]) < (^l)1/2LfAt 
( , N o\1 / 2 (4-14) 

^l^ZMYj-ih-EttY^Ml2) 

Proof of Theorem 4.1.4 

Writing (4.4) in terms of / gives 

[GCY^OY^x] = WEUiYj^)) - KEiY^M At. 

Using the fact that E(Yj_i) is a deterministic value, we substitute /(E(Yj_i)) = 

E (/(E(Yj_i))) into the above equation to give 
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Theorem 4 bound of fox rabies ODE for 1000 simulations 

"0 0.002 0.004 0.006 0.008 0.01 
M = 1, dt = 1e-006, prob > 1 at t = 0.01 

Figure 4.5: The plot gives the bound of Theorem 4.1.4 for the fox rabies example as 
well as the true difference of the [G(Y)Y] terms at each time step. 

[CiYj^Y^} = \\E (/(Yj-0 - /(EtY.-O))!! At. 

Using the unbiased estimator for expectation gives 

EstdGiYj^Yj^}) 
N 

jfi:(f({Vj-ih)-f(E({Yi-ih))) 
t=l 

At 

N 
< ZB{f({Vj-ih)-f{E{{Yj-i}i)))\\to 

i=l 

= £ ^ ( / ( { Y i - i } i ) - / ( f i ( { Y i _ 1 } i ) ) ) / m . ^ 7 / m 

Holder's inequality then implies the following: 

At 

N 

EstdGiY^Yj-x]) < (J!?:\m{Vj-ih)-f(E({Yi-ih)))In 
i = l 

(±r\\i u2) 
1/2 

1/2 

At 

or, equivalently, 

EstdGiYj^Y^}) < ( ̂  E U/COO-iM - /(E({Yj-i}i))|N • (4.15) 
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Using the Lipschitz continuity of / and multiplying by (jfzj) gives the result. 

• 

Again, if we choose not to use the Lipschitz condition on / , Equation (4.15) gives 

a bound in terms of f(E(Y)) from the expected value E(f(Y)), due to nonlinearity. 

Putting the results of Theorem 4.1.2 and Theorem 4.1.4 together for accumulated 

local bounds, we have the final difference bound below. 

Theorem 4.1.5 Total Local Bound 

For[t0,tn], 

Est(\\E(Yn)-K\\) 
n / N \ 1/2 

3 = 1 \ i=l J 

3 = 1 ' 
(4.16) 

and 

\\E{Yn)-rn\\ = 0{M). 

The proof for this theorem follows just as in the scalar case. 
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4.2 Global Difference Bounds 

We now consider the short time global bound for the difference between the two 

models, considering only knowledge gained on the immmediate previous time step. 

Theorem 4.2.1 Global Difference Bound Over One Time Step 

For any time tn > to, 

\\E(Yn)-yn\\ < (l + L /At)||£?(Yn_1)-y„-1 | | + [G(Yn_1)Yn_1] 
+ L/||y'||00(At)2. 

(4.17) 

For the bound of Theorem 4.2.1 and the true difference ||E(Yn) — yn||, see Fig. 

4.6. Notice the exponential growth of the bound compared to the true difference 

which increases over the time of highest nonlinearity and variance of the stochastic 

model. In the following theorem, we compare the bound to the size of [G(Y)Y]. 

Theorem 1 bound of fox rabies for 1000 simulations 
100 
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20 h 

io H 

o 

- bound 
- actual 

1 2 3 
M=1,dt= le-006, prob> 1 at t = 0.005 

Figure 4.6: This plot shows the bound from Theorem 4.2.1 as well as the true differ­
ence ||£7(Yn) — yn|| for the fox rabies model. 

Proof of Theorem 4.2.1 
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As before, we use the triangle inequality along with integral forms of yn and 

E(Yn) to obtain the difference 

| | £ ( Y n ) - y n | | < | | £ ( Y n _ 1 ) - y n _ i | | + f" (E(G(Y„_1)Yn_1)-G(y)y) 
Jtn-i 

dt 

Adding and subtracting the integral ft
n_ G(E(Yn-i))E(Yn-i)dt gives 

| |£(Yn)-y„| | < HECYn-xJ-y^iH 
+ | pt

n
ni (f?(G(Yn_1)Yn_1) - G(E(Yn^))E(Yn^))dt 

+ J^ (G(E(Yn_1))JB(Yn_1) - G(y)y) dt\ . 
(4.18) 

By Lipschitz continuity of / , the second integral is bounded by 

| |£ (Yn)-y„ | | < ||£7(Yri_1)-yn_1|| 

+ 1 / ^ (E(G(Yn^)Yn^) - G(E(Yn^))E(Yn^))dt 

+ L/jj.i||E(YB_1)-y||(ft 
= | | E ( Y n _ i ) - yn-xH + [ G l Y n - O Y n - ! ] 

+ Lf£i\\E(Yn-1)-y\\dt 
= A + B + C. 

(4.19) 

As in the scalar case, term C describes how far the solution y varies from the local 

value of E(Yn_i). We rewrite this term by adding and subtracting the integral of y 

at time in_i to give 

C < L//1J'i||£?(YB_1)-yB_1||cft + L//i_x||y(0-y„-i||cft 
= LfAtilEiY^-y^W + Lfj^Wy^-y^Wdt. 

Putting this back together with (4.19) gives 

| |E (Y n ) -y n | | < (l + L /AO||£(YB_1)-yn_i | | + [G(Yn_1)Y„_i] 

+i//i,_1lly(*)-yn-ill*. 

We can bound the last integral as well using the infinity norm where ||y||oo = 

supt- ||y(i)||, in this case for i G [£„_i,£n]. The details follow similarly as in the 

scalar case. 
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This gives a simplified version of the difference bound on the interval [£„_i, tn] and 

the bound in the theorem 

| | £ (Y„) -y n | | < (l + L /At)||£?(Y»-1)-yn_1 | | + [G(Yn_1)YB_1] 
+L/||y'||00(A*)2. 

D 

Now (4.17) holds for n = 1,2,3,... with the desired bound on the previous time 

step appearing on the right hand side. Using a discrete Gronwall argument, again, 

we show several results from the accumulation of these bounds. To make sense of 

these global bounds, we state each in succession and then show the proof as stages 

in a single derivation. 

Theorem 4.2.2 Global Bound - Stage 1 

\\E(Yn)-yn\\ < (l + LfAtr-iJh\\E(G(Y)Y)-G(E(Y))E(Y)\\dt 
+(1 + Lf&tr~* Jh ||£?(G(Y)Y) - G(E(Y))E(Y)\\dt 
-f... + f \\E(G(Y)Y) - G(E(Y))E(Y)\\dt 

+(1 + L/A0"-1L/||y/||Jo(A02 + (1 + L/A0"-2 W H ^ A O 2 

+... + L/||y'||2o(A02, 
(4.20) 

where \\E(G(Y)Y) — G(E(Y))E(Y)\\ is piecewise constant on m-dimensions for each 

subinterval I\, 1%, •••, In-

For Stage 1 of Theorem 4.2.2 and the true difference ||E(Y„) — y„||, see Fig. 4.7. 

Notice the exponential growth of the bound compared to the true difference. The 

true difference increases over the time of highest nonlinearity and variance of the 

stochastic model. We also plot this bound with the terms [G(Y)Y] in Fig. 4.8 and 

observe that these terms have a significant effect on this bound. 
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M = 1, dt = 1 e-006, prob > 1 at t = 0.005 

Figure 4.7: This plot shows the bound from Theorem 4.2.2 as well as the true differ­
ence ||E(Yn) — y„|| for the fox rabies model. 

x ! 0
 4 Stage 1 bound of fox rabies for 1000 simulations 

- bound 
-[G(Y)Y1 

1 2 3 
M = 1, dt = 1 e-006, prob > 1 at t = 0.005 

Figure 4.8: This plot shows the bound from Theorem 4.2.2 as well as the difference 
[G(Y)Y]. 
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Theorem 4.2.3 Global Bound - Stage 2 

\\E(Yn) - yn | | < eLfT f ||£(C(Y)Y) - G(E(Y))E(Y)\\dt + e ^ H y ' l ^ A i (4.21) 
Jo 

We show this bound for the fox rabies model in Fig. 4.9. Notice that the price 

of bounding the coefficients of Theorem 4.2.2 results in a much higher bound, orders 

of magnitude larger than the true difference. In the next stage, we reconsider an 

alternative bound derived from (4.20). 

x T o s Stage 2 bound of fox rabies ODE for 1000 simulations 

I 
I 
I 
1 
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1 
1 

- - - bound 

• 

1 2 3 4 
M = 1, dt = 1e-006, prob > 1 at t = 0.005 

Figure 4.9: This plot shows the bound from Theorem 4.2.3 as well as the true differ­
ence ||£(Yn) — yn|| for the fox rabies model. 

Theorem 4.2.4 Global Bound - Stage 3 

| | E ( Y B ) - y n | | < — max— / \\E(G(Y)Y)-G(E(Y))E(Y)\\dt + eLfT\\y'\\00At 
Lf j At J!. 

(4.22) 

or, equivalently, 

\E{Yn) - yn|| < -^ e
L / T max[G(Y J _ 1 )Y i _ 1 ] + e ^ H y ' l ^ A t (4.23) 
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We show this bound in Fig. 4.10. Notice the exponential behavior drives the size 

of the bound, while the effects of nonlinearity and variance of the discrete stochastic 

model are evident in the true difference ||E(Y„) — y„||. 

Stage 3 bound of fox rabies ODE for 1000 simulations 

- - bound 
actual 

1 2 3 4 5 
M= l ,dt= le-006,prob> 1 att = 0.005 xlO~J 

Figure 4.10: This plot shows the bound from Theorem 4.2.4 as well as the true 
difference ||E(Yn) - y„||. 

Proof of Stages 1 and 2 

For the first accumulated global result of Theorem 4.2.2, we recall Theorem 4.2.1 

in integral form: 

\\E(Yn) - yn|| < (1 + L / A O U ^ Y ^ ) - y ^ U + / £ x ||£,(G(Y)Y) - G(E(Y))E(Y)\dt 

•+L/||y# | |i(A0a 

We make the first substitution at the previous time step, ||£(Yn_i) — yn-i | | , into 

(4.17). This yields 

| | £ ( Y n ) - y n | | < (l + L /Ai)2 | |E(Yn_2)-yn_2 | | 
+ (1 + LfAt) JJn i\\E(G(Y)Y) - G(E(Y))E(Y)\\dt 
+ JJn \\E(G(Y)Y) - G(E(Y))E(Y)\\dt [ ^ } 

+ (1 + LfAt)Lf\\yToo-lm> + L/lly'HiCAO2 

Continuing in this manner gives (4.20) of Theorem 4.2.2: 
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l | £ (Y n ) -y„ | | < (l + LfAtr-iJIi\\E(G(Y)Y)-G(E(Y))E(Y)\\dt 
+(1 + LfAt)^ Jh \\E(G(Y)Y) - G(E(Y))E(Y)\\dt 
+ JIn\\E(G(Y)Y)-G(E(Y))E(Y)\\dt 
+(l + LfAtr-iLf\\y>\\lm> + (l + LfAtr->Lf\\y'\\im> 
+ - + Lf\\yToo(^)2 

where the last term ||E(Y0) — yo|| is zero. 

For the second global bound, we note that the coefficient in each term of the above 

equation is less than or equal to (1 + LfAt)n~l. Similarly, the infinity norm on each 

interval is less than or equal to the infinity norm over the entire interval. This gives 

the simplification 

| |E (Y n ) -y n | | < (l + LfAtr^fi\\E(G(Y)Y)-G(E(Y))E(Y)\\dt 

+Lf\\y'\UAt)*nf:(l + LfAty. (4"25) 

i=0 

Using the formula for the sum of a geometric sequence and the exponential ap­

proximation in Appendix A, we can bound (4.25) to give (4.21) of Theorem 4.2.3: 

\\E(Yn) - y„|| < eLfT F ||£?(G(Y)Y) - G(E(Y))E(Y)\\dt + eL'T||y'llooA*. 
Jo 

• 

Proof of Stage 3 

Again, we recall Equation (4.20) of Theorem 4.2.2 combined with the exponential 

bound of the sum of L/Hy'HooAt terms: 

l |E(YB)-y„| | < (l + LfAtr^Jh\\E(G(Y)Y)-G(E(Y))E(Y)\\dt 
+(l + LfAt)»~* / /2 \\E(G(Y)Y) - G(E(Y))E(Y)\\dt 
+... + (1 + LfAt) !In i \\E(G(Y)Y) - G(E(Y))E(Y)\\dt 
+ Ju ||£7(G(Y)Y) - G(E(Y))E(Y)\\dt + e

i/T | |y' | |00Ai. 

Bounding each of the integrals by the maximum, we have 



| | £ (Y n ) -y„ | | < (l + LfM)n-1taaxjfI.\\E(G(Y)Y)-G(E(Y))E(Y)\\dt 
+ (1 + LfAty-* m a x / 4 H E ( G ( Y ) Y ) " G(E(Y))E(Y)\\dt 
+ ... + (1 + L,A*) max, /,. ||E(G(Y)Y) - G(E(Y))E(Y)\\dt 
+ max,- /,. ||E(G(Y)Y) - G(E(Y))E(Y)\\dt + e^Hy' l^A*. 

Again using the sum of the geometric series of (1 + LfAt) and assuming L/At < 1, 

we have the bound 

\\E(Yn)-yn\\ < f^im^jJIj\\E(G(Y)Y)-G(E(Y))E(Y)\\dt 
+eLfT\y'\00At. 

Rewriting this gives the bound in terms of the maximum average value of ||E(G(Y)Y) — 

G(E(Y))£(Y)|| over each interval 

| |E (Y n ) -y n | | < 4 f m^j^tJIj\\E(G(Y)Y)-G(E(Y))E(Y)\\dt 
+eLfT\y'\00At. 

Recall that the integral of a vector is taken to be component-wise. Noting that 

||£(G(Y)Y) - G(E{Y))E(Y)\\ is constant over each interval gives Equation (4.23). 

D 
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Chapter 5 

Conclusions 

There is a standard way to construct a discrete birth-death probability model for an 

evolution system, in which a continuum ODE model of the system is used to define the 

probabilities governing the evolution of the stochastic model. Given the significant 

differences in the dynamical behavior of ODE solutions which are inherently smooth, 

and stochastic models which are subject to random variation, the question naturally 

arises about the connection between the two models. In particular, we investigate the 

validity of using a continuum model to define the evolution of a stochastic model. 

We show a consistent way of defining the probabilities for the stochastic model if 

the ODE has the form y = f(y) = yg(y) in Section 1.2. The deterministic model can 

then be compared to the expected value of the discrete probability model. For an 

ODE of this form describing population dynamics, we describe each individual of the 

population as a categorical random variable. In this formulation, the probability for 

an event to occur in a population of size y over a time interval of length At is then 

given by yg(y)At + o(At), where the type of event (birth or death) depends on the 

sign of g(y). This model is extended to higher dimensions in Chapter 3. 

This stochastic model is valid as long as its expected value stays close to the 
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solution of the differential equation. In Chapters 2 and 4, we analyze and quantify 

difference bounds for transient behavior, which suggest the models are close locally, 

but the global difference may be at most exponential in nature. Such a large bound 

must account for the possibility that the associated probability model may jump 

across a steady state of the ODE and exhibit divergent behavior while the ODE 

remains stable. 

We explore our results for a number of models, including the illustrative saddle 

point example given by Equation (1.13). These examples show there can be fun­

damental differences in the dynamical behavior of the stochastic and ODE model 

solutions, even when they are close over any given step. 

Applying this process of modeling using categorical random variables with prob­

abilities taken from an ODE of the form y = yg{y), we see that it may be necessary 

to pursue other types of stochastic models whose expected value may stay closer to 

the solution of the ODE. Theorems 2.1.3, 2.1.4, 4.1.3, and 4.1.4 indicate that decreas­

ing the variance of a particular stochastic model may be important in keeping the 

expected value and deterministic solution close. 

Our results represent a different approach from another view, which derives some 

ODE that governs the expected value of the stochastic system. That ODE and the 

original ODE are not the same in general. 
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Appendix A 

Mathematical Background 

Theorem A.0.5 Left-hand Rectangular Rule [2] 

Consider the ODE y = f(t,y{t)), where f is continuous and differentiable on 

the interval [tn_lt tn], then / ^ f{t, y(t))dt = /(*„_!, y(t„_i))Ai + ^f-f'{i, y{i)), for 

some t e [tn-i,tn]. 

Proof 

Using calculus, we have Jt
 n_ f(t, y(t))dt — y(tn) — y(tn-\). 

Now consider the Taylor expansion of y{tn) about the point tn-\, 

(At)2 ~ 
y(«n) = y(tn-i) + Atj/(tn_i) + ^ - y ( t ) , 

for some i € [tn-i,tn]. Writing this in terms of the ODE gives 

y(tn) = y{tn.x) + Atfitn-^yitn-J) + ^-f\t,y(t)), 

for some i € [/.n-i, tn]. Substituting this expansion for y(tn) gives the result. 

• 

Theorem A.0.6 Exponential approximation 
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For an integer m, emx = (1 + x)m + o(x), where 

fc=0 x ' 

forx « 1 and£ £ [0,1]. 

-x + | -e 
k * I —^ 

i-k k 

j = o 

(A.l) 

Proof 

We consider the Taylor series expansion of emx = l + m s + ^ - + ™ - + 0((mx)4) 

and subtract the binomial expansion of (1 + x)m — Y1T=\ (T)x<-

e T O - ( l + i f = [l + mx + &$• + £ f £ + 0((mx)4)] 

- [l + mx + ^ r ^ x 2 + m ( m-g ( m-2 )x3 + 0((mx)4) 

= -f,T2 + o (H 3 ) , 

which is 0(x2) if x << 1. 

D 

Theorem A.0.7 Gronwall's Inequality (Differentiable Form) [18] 

(i) Let r](-) be a nonnegative, absolutely continuous function on [0,T], which sat­

isfies for a.e. t the differential inequality 

V'(t) < <t>(t)ri(t) + '0(0, 

where (j){t) andijj(t) are nonnegative, summable functions on [0, T], Then 

r fl 

r)(t)<eti*{s)ds 77(0)+ / iP{s)ds , 
L Jo J 

for allO<t<T. 

(ii) In particular, if 

rj'{t) < <p{t)r]{t) on [0, T] and r?(0) = 0, 

(A.2) 

(A.3) 
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then 

r){t) = 0 on[0,T}. 

Proof 

We first consider 

j - s (r/(.s)e-/o *M*) = v{s)£ f- J* <p(r)dr\ e~/o *W* + r/'(s)e-/o *M* 

By the fundamental theorem of calculus, 

d_ 
ds 

- ^'<j>(r)dA e-'o*M*- = (-0(s))e-/o*('-)*) 

which gives 

^- (77(s)e-/o *W*^ = e-/o *(»•)*(^'(s) - <P{s)r){s)). 

Rearranging Equation (A.2), we see that 

d 4- (Vs)e-'o *('>*) < e-/o *(«-)*^(s) 

for a.e. 0 < s < T. Integrating both sides of the above equation from 0 to t gives 

r){t)e-ti^r)dr -r]{Q)< I e~ ti*{r)dri>(s)ds 
Jo 

or 

Since 0(t) > 0 on [0,T], we have e~ /o>(»•)*• < 1, which gives 

r1{t)e-ti'i>{r)dr < ry(0) + / ^(s)<i.s. 

Multiplying by ê o *(r'dr gives the result 

77(t) < e ^ 0 ( r ) d r ?7(0)+ / ^{s)ds 
L vo 
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• 

Theorem A.0.8 Gronwall's Inequality (Integral Form) [18] 

(i) Let ((t) be a nonnegative, summable function on [0, T] which satisfies for a.e. 

t the integral inequality 

Z(t) <C1 f. £(s)ds + C2 (A.4) 
Jo 

for constants C\,C2 > 0. Then 

S(t) < C2(l + C1tec") (A.5) 

for a.e. 0<t<T. 

(ii) In particular, if 

m <cx f z(s)ds 
Jo 

for a.e. 0 < t < T, then 

i{t) = 0 a.e. 

Proof 

We first let n(t) = J0 £(s)ds. Taking the derivative of both sides and using the 

fundamental theorem of calculus gives rj'(t) = £{t)— £(0). Substituting the assumption 

of Equation (A.4) and relabeling constant C2 + r/(0) as C2 gives 

V'(s) <Ci [ $(s)ds + C2 = ClV(t) + C2. 
Jo 

Notice, that this is the assumption needed for the differential form of Gronwall's 

inequality A.2. With cp{t) = C\ and ifj(t) = C2, we have its conclusion 
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r](t)<etiClds 7/(0)+ / C2ds 
L Jo 

Simplifying and noting that r/(0) = J0 £(s)ds = 0 gives 

rj{t) < C2te
Clt. 

Using this equation and assumption (A.4) gives the result 

m < dv(t) + C2 < C2(l + dteClt). 

D 

A.l Unbiased Estimators and Statistical Proper­
ties 

The unbiased estimator for the expected value of the population Y,_i at time i,_i, 

j = 1,2, ...,n is given by 

where {Vj-i}i is the population V}_i for the ith simulation, i = 1,2,..., AT. 

Similarly, the unbiased estimator for the variance of Yj-\ is given by 

, N 2 

^ ( Vi) = ATZT E ((Vil. - E(YJ-I)) • 

(A.6) 

(A.7) 
i = l 

By definition, the unbiased estimator for the second moment is 

(A.8) 
i=\ 

The proof that these estimators are in fact unbiased can be found in most texts 

on simulations. See [32]. 
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A few statistical properties we consider in the analysis are 

Var{aX + b) = a2Var(X) 

Var{X + Y) = Var{X) + Var{Y) + 2Cov(X, Y) 

Var(X)= f X2p{X)dX~ ( f Xp{X)dXj 

If Xi are uncorrelated, then Kar(Y^Xj) = ^ Var(Xj) 
i i 

Cov{X,Y) = E(X,Y) - E{X)E{Y) 
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Appendix B 

Review of Discrete, Continuous, 
and Stochastic Models 

B.l Chemical Kinetics and the Gillespie Algorithm 

Perhaps the most well-known method for simulating stochastic birth-death processes 

is the Gillespie algorithm. In 1976 [19] and 1977 [20], Gillespie used physical proper­

ties of atoms and mass action assumptions to arrive at a probabilistic model describ­

ing chemical systems. Gillespie began using Monte-Carlo techniques and estimated 

the probability an event (such as a product formed from reactants in a chemical 

equation) occured in a small time interval. This was in contrast to the commonly ac­

cepted method of the time ([31], [33]) of solving a probabilistic differential-difference 

equation, called the 'master equation'. This master equation is equivalent to the 

Chapman-Kolmogorov equations which describe the probability each product was of 

a certain size at any time t, given all the possible ways to arrive at that particular 

state and the probabilities of getting there. Gillespie describes the evolution of these 

probabilities in a way similar to that which is done today in probability models [28], 

[34]. 
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Given some set of n chemical reactants, there is a finite list of possible products 

that can be formed. The probabilities each of these events occur in a small time 

interval, At, were found using the physical dimensions of the molecules to determine 

the probability two molecules come within reacting distance of the molecule of inter­

est. Assuming hard spheres and uniform mixing, he describes a small volume, AV, 

wherein two molecules may touch and a reaction may occur. This uniform mixing is a 

common assumption made in modeling, particularly for large numbers of individuals. 

The product formed from an interaction depends on the proportion of each atom and 

a characteristic value associated with each reaction. In the case of chemical kinetics, 

this is given by the level of inertness. (For something like predator-prey models, this 

value may describe the nutritional benefit achieved by the predator from consuming 

the prey. The correlation being that a more healthy individual gives birth with a 

higher probability.) Gillespie considers proportional volumes in the interactions of 

these molecules to avoid the zero probability of an interaction as the volume of each 

molecule goes to zero. 

Since analytically solving a 'master equation' or the associated Chapman-Kolmogorov 

equations was and is a non-trivial matter, Gillespie sought to find a method for which 

the process of simulating the statistical events and calculating their moments could be 

done on a computer. In [20], Gillespie describes a Monte-Carlo technique for drawing 

random event times from an exponential distribution with parameters based on the 

event probabilities over small time steps, as At approaches zero. This Monte-Carlo 

simulation with exponentially distributed waiting times (for the next event) is now 

refered to as the Gillespie algorithm. At the time, Gillespie's methods met with some 
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resistance [33]. However, it finally caught on and was applied to stochastic modeling 

in many disciplines [6]. 

Gillespie references methods used in [33] and [17], which show that in the thermo­

dynamic limit (the numbers of molecules of each species and the containing volume 

all approach infinity in such a way that the molecular concentrations approach finite 

values), this stochastic formulation approaches the deterministic form of the Liou-

ville (transport) equation from molecular dynamics. R. Dolgoarshinnykh [13] also 

uses the method in [17] to show convergence of an SIR probability model to a de­

terministic counterpart. This method involves a Gronwall argument and the law of 

large numbers, which we discuss further in reference to Dolgoarshinnykh's current 

analysis. Note that we are not contesting this direction of convergence. Instead, we 

are concerned with the use of rates from particular deterministic models to form a 

stochastic model whose expected value does not converge to the solution of the origi­

nal differential equation. Gillespie notes this inconsistency near chemical instabilities 

and suggests the stochastic model be used in this case. We explore the reasons for 

this discrepancy and what to do about it. 

B.2 Evolutions and biological applications of Gille­
spie's algorithm 

In current books by Kot [28] and Renshaw [34], Gillespie's algorithm is applied to 

several ecological population examples, including the simple linear birth process in­

troduced by Yule and Furry, which is extended to a simple birth-death process. 

As random number generators and statistics advanced, Gillespie's algorithm be-
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came more easily simulated using built-in exponential distribution functions for the 

random event times and a uniform probability for which event occurred. Kot shows 

this derivation by assuming event probabilities in a small time step At and taking the 

limit as At goes to zero. Using the same assumption from Delbriick [31], this process 

requires the probability of more than one event occurring in At to be first order At. 

Using these probabilities, Kot determines a differential equation whose solution is the 

probability m events occur at any time t. Through induction, it is shown that this 

probability is given by a negative binomial distribution with probability of success 

being a negative exponential. Using the law of total probability and independence 

of events, this gives rise to the waiting time for any future event, given the current 

population. 

Kot relates the probability model back to the solution of a differential equation 

using the expected value. For the simple linear case, the expected value matches 

the solution to the differential equation quite well. We use this stochastic value as a 

measure of comparison as well, but explore non-linear models for which the difference 

is significantly larger than zero. Kot and Renshaw also consider non-linear predator-

prey models with and without spatial variability [28], [34], though not of the specific 

form we explore. Renshaw also analyzes these birth-death processes for long-time 

equilibria and how they relate to differential equations. We are most interested in 

these non-linear models, but for short to intermediate times and of a particular form, 

which is discussed in section 1.2. 
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B.3 Modeling prior to 1970's in chemical kinetics 
and biology 

Next, we take a step back and consider the modeling techniques and applications 

being used prior Gillespie's algorithm. Among other references, we cite works from 

McQuarrie [31] and Barucha-Reid [6] which provide reviews of early probability-based 

modeling in chemical kinetics and biological applications, respectively. 

Sydney Chapman and Andrey Kolmogorov independently developed the equations 

which relate the joint probability distribution function of different sets of coordinates 

(or states) on a stochastic process [10]. The total probability of moving from state i 

to state j can be found by summing up all probabilities of moving from state i to some 

intermediate state k, multiplied by the probability of moving from this state k to state 

j . This idea is very powerful in probability models. Gillespie uses this formulation 

in his discussion of the master equation, which is highly descriptive of probabilities 

for any time (, but is inherently very difficult to solve. This is partly what motivated 

him to derive a new method of stochastically simulating these probability models that 

does not rely on numerically solutions. With a slight change in notation, the concept 

is also used in the formulation of the basic model for birth-death processes as seen in 

[28] and [34]. 

Yule (1924) and Furry (1937) are credited with the first development of a simple 

linear birth process, which was expanded by Feller and Arley to include deaths in 

a systematic stochastic Markovian model using probababilities of simple events in a 

small time step At [28], [6]. Kendall [25] continued the simple birth-death model 
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to include cumulative events - still only one event occuring in a single time step 

At, but considered a new random variable for the number of births (absolute change) 

occuring up to time t in addition to the population random variable. Once this frame­

work was laid for these birth-death processes, many applications and extensions were 

contributed to the biological community in the 1950's, including the logistic model 

[25], immigration [25], a two-sex model, and the Lotka-Volterra predator-prey model 

[6]. Non-Markovian time-dependent models were then described by the Bellman-

Harris process in 1952 [7]. Kermack and McKendrick published the SIR (susceptible-

infected-resistant) disease model in 1927 [27], which was analyzed in the stochastic 

sense in varying degrees beginning with Bartlett and Kendall in 1956, [5] and [26], 

respectively. Other applications include mutation processes, the theory of gene fre­

quencies, and radiation effects in biological systems [6]. For a complete review and 

description of disease models and epidemics, see the text by Brauer and Castillo-

Chavez [8]. 

At about the same time biology was developing these probabilistic models, birth-

death processes were being explored in the field of chemical kinetics. In 1940, Kramers 

described the diffusion of chemical particles using continuous Brownian motion [29]. 

Delbriick (also in 1940) looked at the rate of a chemical reaction (A —> B), whose rates 

depended on both reactant and product and could catalyze itself [12]. He assumed 

that the concentration of A was so large throughout the reaction that it remained 

constant, thus making the reaction first order (otherwise it is second order if the 

rate was proportional to two chemicals in the reaction). Contributions by Singer 

(1953) and Renyi (1954) illustrated the necessity of stochastic models [31]. For small 
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systems, Singer showed that the fluctuations in the number of reactant species could 

be the cause of the irreproducibility of some reactions (in addition to the impurities 

in the chemicals). Soon after, Renyi showed that mass action (the assumption that 

all particles have the same behavior and are randomly mixed) is only approximately 

valid and doesn't hold for small systems. 

In 1958, Bartholomay published a paper on a unimolecular chemical reaction 

(A —> B) as a pure death process [3], including details of the derviation involving 

the Chapman-Kolmogorov equations. In 1959, K. Ishida published a paper on uni­

molecular reactions as well, but using time dependent rate parameters [23]. In 1958, 

Bartholomay also published a paper discussing the full details of a general birth-

death process with specific application to biological models as Markov chains [4]. 

This consolidated the ideas of birth-death processes for probability models and likely 

connected the chemical and biological fields, contributing to the communication be­

tween the chemical and biological fields and the use of Gillespie's algorithm in both. 

B.4 Convergence from Probability to Determinis­
tic Model - R. G. Dolgoarshinnykh 

Disease modeling has been and is currently a very hot topic around the world as new 

or re-emerging epidemics threaten populations of humans as well as animals [8]. The 

question of whether or not these birth-death processes are an accurate representation 

of reality is a very pressing issue. R. G. Dolgoarshinnykh explores the direction of 

convergence from an SI stochastic model to a deterministic counterpart. 

In [13], R. G. Dolgoarshinnykh looks at SIRS epidemic models and shows that the 
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event when all the infected individuals recover without introducing new infections into 

the population (related to the deterministic value, Ro < 1) is a large deviations event 

for a given probability model. In other words, the probability of this event occurring 

exponentially decays as N gets large. In [14], she follows the method described in 

[17] using the Law of Large Numbers (LLN) to show that for large populations of size 

N and, under certain conditions, the population proportions of SIRS models are well 

approximated by trajectories of a deterministic system. 

Dolgoarshinnykh assumes a birth-death process typical of Kermack McKendrick 

compartment models [27], where the portion of population susceptible to a disease 

is given by S, the infected individuals by J, and those resistant to the disease given 

by R, where S + / + R = N. The Markov process for the stochastic model uses 

population densities, st = St/N, it = h/N, and rt = Rt/N — 1 — st — it, and is 

defined by the probabilities: 

PN(St+h, It+h) = (5 - 1, / + l)|(5 t, It) = (5, /) = NQsih + o(h) 

PN(St+h, It+h) = (SJ- l)|(5 t, It) = (S, I) = Npih + o(h) 

PN(St+h, It+h) = (S + 1,1)\(St, It) - (5, /) = Nrh + o(h), 

for positive constants 6 and p. This model assumes independent events and uses the 

binomial (called categorical variables for more than two possible outcomes) theorem 

to define first order event probabilities for each state transition between 5, /, and R. 

We use these same assumptions in our model, but begin with an ODE of a specific 

form and consider using its rates to define a birth-death process. At this point, 

Dolgoarshinnykh does not assume any connection with an ODE. 
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Ethier and Kurtz describe the random variable X(t) of a jump Markov process as 

initial conditions plus the sum of Poisson random variables. Under certain conditions, 

this defines a martingale (a stochastic process such that the conditional expected 

value of an observation at some time t, given all the observations up to some earlier 

time s, is equal to the observation at earlier times), which is a function of a general 

Markov process. The LLN and Gronwall inequality is then used to show that such 

a stochastic Markov process converges to a solution of some differential equation, for 

large populations. Dolgoarshinnykh uses this method to show convergence of the SIR 

model to a solution of an associated ODE. 
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