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ABSTRACT OF DISSERTATION 

BIOECONOMIC MODELING OF LIVESTOCK PRODUCTION, RANGELAND 

MANAGEMENT AND FORAGE SYSTEMS IN A DYNAMIC CONTEXT 

This work focuses on optimal livestock management in a dynamic framework. 

The first essay utilizes linear programming to analyze proper herd management during 

periods of drought. It also examines the use of summer hay as an option to alleviate the 

negative impacts of drought on cattle producers. Findings show that while financial 

returns are greatly impacted by varying cattle prices, optimal management decisions are 

driven more by weather changes than price changes. Further analysis shows that 

although allowing summer feed improves long term returns to producers, the main 

benefit of such a strategy is the ability to carry increased inventories though drought, with 

the increased returns coming post-drought. 

The second essay utilizes dynamic programming to determine proper stocking 

rates when future forage production is related to current use of rangelands. The model 

maximizes the Bellman Equation using a Chebychev interpolation process. Results show 

that profit maximizing producers will leave just over half of total production as standing 

forage. Further analysis shows that while returns are impacted by both cattle and corn 

prices, optimal management decisions do not change with changes in either of these. 

Stocking decisions are mainly driven by animal efficiency and land productivity. 



The third essay adds the element of stochastic weather to the model utilized in the 

second essay. Specific attention is given to how producers make stocking decisions in 

the face of random weather events. Again, producers leave just over half of carrying 

capacity as standing forage when acting optimally. However, if growing season 

precipitation is unknown at the time the stocking decision is made actual standing forage 

may vary from this desired outcome, resulting in a decrease in future stocking rates. It is 

shown that a producer with knowledge of growing season precipitation will be more 

profitable than a producer without this knowledge on average by 21%. Again, stocking 

decisions are mainly driven by land productivity and animal efficiency as well as whether 

or not a producer has knowledge of current year precipitation. 

John Patrick Ritten 
Department of Agricultural and Resource Economics 

Colorado State University 
Fort Collins, CO 80523 

Summer 2008 
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INTRODUCTION 

Cattle producers are involved in complex decisions based not only on animal 

management, but must also include grazing and feeding strategies. Both livestock 

performance (herd and individual animal) and forage systems are dynamic in nature, 

requiring constant attention from cattle producers. These producers need an adaptive 

approach to management. What strategy works for one situation most likely will not 

translate to success in another situation. Just as the situations faced by cattle producers 

are rarely identical, the producers themselves are not homogenous entities. Producers 

range from mere hobbyists and part time ranchers to very large operations. Even for a 

given size of producer, objectives are likely to vary across long run or current year profit 

maximization, to guaranteeing a minimum yearly cash flow, or even just the enjoyment 

of the lifestyle associated with raising animals. Just as there are many sizes of producers, 

there are also many stages of producers in the cattle production chain including cow/calf 

operations, stocker operations, and feedlots. 

Strategies for managing similar situations will most likely be different according 

to the size and type of producer. For example, for a given weather and price outcome 

faced by producers, cow/calf producers must decide whether to market heifer calves, or 

retain them for breeding stock. If heifer calves are retained for breeding stock there is a 

time lag before production of calves occurs, as opposed to marketing of these animals, 

which results in instant returns. Yet stocker operations must decide how many animals to 

stock given current range productivity and prices. Overstocking can lead to degraded 
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range health, while under stocking may leave some of the range underutilized. 

Regardless of the type of operation, attention must be given to the dynamic aspect of both 

forage production and cattle prices. 

Just as cattle management entails a wide range of producers and situations, 

research involving cattle management has been very diverse in scope. For example 

studies have focused on cattle use of and impacts on riparian and wetland areas, (see for 

example Parsons, et al. (2003), Stillings, et al. (2003), and Kirby, et al. (2002)). Other 

research has examined the interaction of cattle and large game species (see for example 

Shwiff and Merrell (2004), and Bastian, et al. (1991)). Bonham (1987) focuses on the 

removal of forage on rangelands from herbivores other than cattle. Lecain, et al. (2000) 

give attention to carbon cycling on grazing pastures. 

However, much research has been conducted on the relationship between cattle 

and rangelands. Grings, et al. (1996) focus on cattle efficiency across differing 

rangelands, while Phillips, et al. (2003) examine animal performance given differing herd 

management strategies for a given range. Others have focused attention on the 

interaction of the animals and the range more specifically either by analyzing the stability 

of such systems (see for example Smith and Slatkin (1973) and Loehle (1985)), or by 

examining the long-run tradeoffs of grazing decisions (see for example Torrell, et al. 

(1991)). May, et al. (2002) examine the impacts of differing grazing leases on 

management decisions regarding these intertemporal tradeoffs. 

While research in the field of grazing management has provided some answers for 

cattle producers, response to drought has been a major concern in recent years (see for 

example Nagler, et al. (2006)). Weather can greatly impact annual forage production as 
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well as potential feed supplies. This decline in forage and available feed translates into 

lower production possibilities for cattle producers, requiring adaptations in management 

strategies. Clark and Annexstad (1988) analyzed this problem by focusing research on 

feeding strategies during drought while Parsch, et al. (1997) give attention to strategies 

for grazing animals during periods of drought. 

Cow/calf producers must decide if it is beneficial to destock during drought, with 

the implications of restocking costs post-drought, or whether it is better to carry larger 

inventories through drought conditions in order to continue to market calves over this 

period. Current cattle prices, as well as expectations of future prices, will play a role in 

this decision. Liquidating during low prices with expectations of restocking during high 

prices should not be a viable option for cow/calf producers. Stocker operations face a 

similar problem during drought conditions, but the inventory effect is not as exaggerated 

as a cow/calf producer. Yet, stocker producers must weigh the benefit of carrying 

animals during periods of poor forage production against the cost of degrading the 

rangeland. While changes in cattle prices across years is less important on decisions for 

stocker producers, seasonal differences during the year and across weight classes need to 

be considered when making these types of stocking decisions. 

This work will address decisions by both cow/calf (Chapter 1) and stocker 

producers (Chapters 2 and 3). In all three essays, cattle production is modeled for Central 

Wyoming, which has recently experienced a severe drought. The first chapter addresses 

strategies of a profit maximizing cow/calf producer in the face of varying weather and 

cattle prices over time. The second chapter addresses a stocker operation focusing on the 

evolution of rangelands by modeling forage systems and animal behavior simultaneously. 
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Attention is given to stocking strategies that returns to land. The third chapter expands 

on the results in the second chapter by adding the element of varying forage production 

due to variations in annual precipitation. 
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CHAPTER 1 

Introduction 

Recent droughts have had a major impact on cattle producers in the intermountain 

west. Although ranchers need not graze all available standing forage in any given year, 

their grazing decisions are limited to what standing forage will allow. Drought 

negatively affects forage production which is utilized by cattle producers as feed for 

animals. This decrease in forage production can alter management decisions by forcing 

ranchers to carry smaller herds or increase feed purchased or acreage grazed. Ranchers 

must make decisions regarding herd size and make up, as well as how to meet the 

nutritional requirements through stocking and feeding decisions. However ranchers also 

respond to market conditions. High prices can give producers the incentive to carry 

larger herds resulting in the ability to sell more calves. It is rancher response to these 

combinations of forces that is examined in this paper. 

Problem Statement 

If both the weather and market are favorable, producers will not need to alter herd 

management strategies much, if at all. However, what should a producer do if the 

weather is favorable but the market is down, or conversely if prices are up but poor 

precipitation has negatively affected range condition? The impact of both variable 

weather and cattle prices affect management decisions and ultimately profitability. Proper 
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producer responses to these varying weather and market conditions are examined. 

Holecheck (1994), in a drought study of New Mexico cattle producers, has shown that 

producers who respond to high prices without regard for poor forage production can 

extremely overgraze pastures, a result that can require pastures be completely destocked 

for recovery. 

It is obvious that producers must consider both weather and market forces when 

making grazing decisions. Yet often, these exogenous forces do not move together, so 

producers must consider the impacts both of these factors when making their decisions. 

However, some management strategies may be able to alleviate some of the limiting 

impacts of poor forage production during drought, allowing producers the ability to take 

advantage of high prices. Therefore, special attention is given to how altering 

management decisions may be able to improve the negative financial impact caused by 

adverse weather conditions. 

While the problem of proper herd management during drought situations is 

common for many cattle producers in the west, the focus of this paper will be Central 

Wyoming. Wyoming has over 5,800 cattle producers carrying over 1 million head of 

cattle, with 2,800 of these having at least 100 head of cattle. (Wyoming Ag Statistics, 

2007) Recently experiencing an extended drought, ranchers have faced reduced range 

and cattle productivity resulting in lower ranch incomes and reduced owner's equity 

(Nagler et al., 2006). 

Much work has been done analyzing the management implications of grazing in 

Wyoming covering topics ranging from cattle and game interactions (Bastian, et al., 

1991), costs of predation (Shwiff and Merrell, 2004), how cattle respond to different 
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grazing systems (Hepworth et al., 1991), costs of invasive species (Etchepare, 1985), and 

how grazing impacts carbon exchange rates (Lecain et al., 2000). While there has also 

been recent work regarding optimal herd management decisions in the face of weather 

and forage uncertainty, (see Parsch et al. (1997), Carande et al. (1995), Rodriguez and 

Taylor (1988), Garoian et al. (1990), Ogden (1987), and Clark and Annexstad, (1988)), 

there has yet to be much research directed specifically at cattle management in Wyoming 

in the face of drought situations. 

Objective 

The objective of this paper is to address the impacts of both price cycle and 

weather fluctuations, focusing specifically on interactions of weather and price on 

optimal management decisions over long planning horizons. Focus is given to how profit 

maximizing producers respond to fluctuations in both market forces as well as growing 

season precipitation. The paper also examines the possibility of counteracting poor 

forage production during drought by allowing substitute feed during summer months. 

Comparisons of present value of ranching incomes across an entire planning horizon are 

conducted. Specific attention is also given to specific periods of drought in order to 

determine if management decision can alleviate some of the negative consequences 

during these periods of poor forage production. 

Data and Methods 

The research employs a mathematical programming model aimed at modeling 

producer behavior in the face of fluctuating forage production and market prices. This 
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model represents a ranching operation where herd decisions are based on an explicit 

objective of profit maximization. As stated previously, poor forage production can limit 

grazing opportunities for cattle producers. When faced with drought situations, these 

physical constraints, specifically forage availability, are generally more binding than 

during normal weather conditions. The mathematical model incorporates the profit 

maximizing objective of producers while limiting decisions to those that fit the limited 

resources available to the producer. The model will also incorporate fluctuating cattle 

prices. Due to the constrained maximization nature of the problem, linear programming 

will be utilized. 

The linear programming model is parameterized for comparison of outcomes over 

differing management strategies. The production systems and strategies analyzed are 

obtained from survey results of Wyoming cattle producers conducted by Nagler, et al. 

(2006), which include partial and full liquidation, as well as supplemental feeding. The 

strategy referred to as supplemental feeding is not feeding of supplements specifically to 

address nutrition deficits; rather it is a strategy which hay is feed during summer months 

as a substitute for forage. The feeding of hay is seen to supplement the lacking forage 

production of range land. The model is used to evaluate management decisions in 

response to the negative affects of drought on forage productivity and consequently 

ranching incomes. 

The linear programming model follows previous modeling work done by Torell, 

et al. (2001). The model is formulated to maximize the present value rancher income 

over a given planning horizon in an iterative and sequential approach over time, subject 

to both physical and financial constraints. In order to account for variability in prices, the 
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model is solved using GAMS numerous times over the entire planning horizon beginning 

at different starting points in the price cycle. Choice variables include amount and type of 

land to graze, herd size/characteristics, as well as amount of additional feed purchased. 

Mathematically model is as follows: 

T 

MaximizePV = J ] ( l + r)~'(Netlncome,) (1.1) 
(=0 

Where: 

Netlncome t = (Gross, —LandCostt —HerdCostt —LoanCostt) (1-2) 

Gross, = YJ (AnimalsSoldt,AnimaiciaSS * Animal Pr icetmmalclass) 
AnimalClass 

+ ]T (CropSoldtCropClass * Crop Pr ice,CropClass) (1.3) 
CropClass 

LandCostt= £ Y^^ndUseduseaSonMndType*
 LCosttSeasonLandType) (1.4) 

Season LandType 

HerdCostt = ]T (AnimalsRaisedtAnimalclass * AnimalCosttAnimalclass) 
AnimalClass 

+ J ] (AnimalsPurchasedtAnimalclass * PurchaseWeightAnimalclass 
AnimalClass 

* Purchase Pr icetMimalclass) (1.5) 

LoanCost, = (1 + LoanRate) * ShortTermB arrowing M (1.6) 

AnimalsRaisedAnimalclasst+l = AnimalsRasied Animalclass t 

+ AnimalsPurchasedAnimalclasst+l - AnimalsSold Animalclasst 

+ AnimalsBornAnimalclasst+1 - DeathLoss Mimalclasst+l (1.7) 
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CropRaised CmpTypet = YjLandType 
Season, CropType, ( 

*CropYieldCwpType (1.8) 
Sea. 

AUMt= £ AnimahRasiedAmmaiams * AnimalUnitEquivalentAnimalclass 
AnimalClass 

* GrazingTime (1.9) 

Savings t+l = Savings t * (1 + SavingRate ) + Netlncome t + OffRanchln comet 

- FamilyExpenses, - FixedExpensest + ShortTermBorrowing t (1.10) 

Subject to: 

AUMt< Y,CropRaised'CropType, * CropConversionCropTupe (1.11) 
CropType 

CropsSoldCwpTypet < CropRaisedCropTypet - CropsGrazedCmpTypet (1.12) 

AnimalsSoldAnimalclasst < AnimalsRasiedAnimalclass t (1.13) 

LandUsedUmn.ypet<LhCmdm^t (1-14) 

Savingst > 500 (1.15) 

ShortTermBorrowing T =0 (1-16) 

Where: 

• PV is the present value of ranch income over planning horizon 

• Netlncome is yearly net income 

• Gross is gross revenues from animal and crop sales 

• LandCost is cost associated with land use, including cost for land use as well as 

cost of forage purchased 

• HerdCost is the cost of managing the entire herd 
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• LoanCost is cost of repaying loans 

• AnimalsSold is number of animals per class sold 

• AnimalPrice is price received per animal per class 

• CropSold is amount of crop sold 

• CropPrice is price received per unit of crop sold 

• LandUsed is amount of land used for grazing or crop production per type of 

land 

• LCost is cost of using land types, including grazing fees 

• AnimalCost is the cost of carrying a specific class of animal 

• AnimalsPurchased is the number a animals purchased for a given class 

• PurchaseWeight is the weight of each class when purchased 

• PurchasePrice is the per weight price of a given class of animals 

• LoanRate is the interest owed on short term loans 

• ShortTermBorrowing is the amount of short term loans 

• AnimalsBorn is amount of newborn calves 

• DeathLoss is the number of animals dead due to normal death loss 

• LandType differentiate different types of land, as well as public and private land 

• CropYield is amount of crop produced according to land type 

• AUM is Animal Unit Months required for the herd, based both amounts and 

class of animals raised 

• FixedExpenses include taxes, depreciation, insurance, and machinery costs 

• CropConversion converts crops into AUM equivalents 

• L represents total land in each land class available to producer 
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The model is parameterized for an operation typical of Fremont County, WY. 

Fremont County producers alone carry over 100,000 head of cattle per year (Wyoming 

Ag Statistics, 2007). The model assumes an annual off-ranch income of $24,000, which 

is offset by a family allowance of $24,000, so returns represent only those from the 

ranching operations. Based on these parameters, the model is designed to maximize total 

net present value of profits over the specified planning horizon. Terminal value for the 

ranch after the planning horizon is set at $1. 

Herd Management 

Producers are free to set herd size following equation 1.7. Parameters are set to 

keep herd characteristics (e.g. birth rates, minimum replacement rates, maximum 

percentage of heifers kept, and bull ratios) in line with observations from enterprise 

budgets, but the producer is free to buy or sell animals as long as they are inline with 

these parameters. Also under management control is the amount of land to be grazed and 

amount of feed to be purchased, again restricted by actual amount of land/feed available 

in the area (equation 1.8 and constraint 1.14). Land can be used for grazing or raising 

hay crops. Any unused crops can be sold. Land available to producers simulates a 

representative ranch for Fremont County, and includes privately owned land as well as 

the option to utilize public and private grazing leases. Producers are able to graze and/or 

feed as long as animal requirements, based on all animals reaching a required weight by, 

are met, but there is no minimum amount of feed required in any given year. Nutritional 

requirements are accounted for within each season as well as across years. Producers do 
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not determine weight gain of each animal, only how to get each animal to the required 

weight for their class of animal according to equation 1.9. 

Forage Production 

The model accounts for yearly variability in forage production due to weather 

impacts. This fluctuation was modeled altering the forage production possibly of each 

land type each year. Therefore in years experiencing poor precipitation, each land class 

produces lower amounts of forage and/or hay crops. The variable affecting forage 

production was estimated using a regression from Smith (2005). Smith ascertains that 

spring precipitation, specifically precipitation from March 5 through May 25, is a good 

predictor of yearly forage production for this region of Wyoming grasslands. 

Predicted Forage (kg/ha) = 241.972 + 54.3073*X (r squared = .32) (1.17) 

Where X is total precipitation (in inches) occurring from March 5 through May 25 

Since the model has been parameterized for Fremont County Wyoming, weather 

data from the Riverton Weather Station obtained from the National Climatic Data Center 

(NCDC, NOAA 6/6/2007) were used to feed the forage prediction regression equation. 

Data was available and used from 1921 through 2006 (86 years). These weather data 

were used to estimate forage production over this same time horizon for the study area. 

This predicted forage is used to generate yearly forage production as a percentage of 

mean production. The yearly predicted amount of forage as a percentage of mean 

predicted forage over this time horizon is used as a scalar to adjust the annual forage 

production in the model, specifically setting differing values for the CropYield parameter 
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across years in equation 1.8 for grazing land. Hay availability for purchase, however, 

was not adjusted as most hay production in the area is irrigated, and is therefore not 

highly impacted through drought years. In fact dry land hay production in the region has 

reached a maximum of only 1.27% of total annual hay production since 1959 (Wyoming 

Ag Statistics, 5/30/07). 

The model optimizes over an 86 year planning horizon. To evaluate how initial 

forage production impacts herd decisions, the model has also been parameterized 

featuring three different starting points along the forage production path as estimated 

using the precipitation data. The weather data were looped so that regardless of starting 

point the entire 86 year data set could be utilized. These three distinct beginning points 

along the forage production path were chosen by looking at 10 year moving averages of 

forage production, and represent the beginning of relatively good (Wet Start), poor (Dry 

Start), or average (Average Start) period of forage production. 

Cattle Prices 

Prices received for sold livestock, AnimalPrices in equation 1.3, are modeled to 

fluctuate over time as well. Actual prices paid at the Torrington, WY auction over the 

period of 1968 through 2006 formed the basis for the price parameters in the model. The 

majority of data was obtained from the Livestock Marketing Information Center (LMIC), 

(unpublished data supplied by Jim Robb, LMIC, Lakewood, Co., June 22, 2007), 

however some data was not available there. Bred cow prices were obtained from Cattle-

Fax (unpublished data, from Cattle-Fax Inc., Centennial, Co., accessed August 21, 2007), 

and were thus based on West-wide, not Wyoming specific, prices. Even with the 
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supplemental Cattle-Fax data, some months had missing observations. The series with 

missing values were Bull, Cull and Bred cow prices. As cattle prices tended to move 

together, the missing values were calculated based on the existing data available from the 

Torrington auction. Complete data sets for Steer calf, Heifer calf prices and Yearling 

prices were used to estimate the missing values for Bull, Cull and Bred cow prices. OLS 

was used to estimate the missing data. The estimation results are shown here (t stats in 

parenthesis): 

Bullprice = 13.5388 + 0.183325* SteerCalfprice - 0.112003* HeiferCalfprice 
(1.66) (-1.141) 

+ 0.380734* Yearlingprice ,.,. t . __ , ecA-*, n 1QN 
(4.007) (Adjusted R-Squared = .55471) (1-18) 

Cullprice = 9.07837 - 0.261142* Steerprice+ 0.019977* HeiferCaljprice 

+ 0.415433*Yearlingprice (Adjusted R-Squared = .32798) (1-19) 
(2.482) 

BredCowprke = -126.51+3.3585* SteerCalfprice+0.55196* HeiferCalhrice 
(8.14) (1.74) 

+ 6.01246* Yearlingprice (Adjusted R-Squared = .745) (1.20) 
(15.97) 

Since all the existing costs in the model were based on 1997 prices, all monthly 

price data were converted into 1997 prices using the PPI index. The model has a sale date 

of November 1, so average prices of October 1 through November 30 were used in the 

model. With all missing data calculated, the average November 1 prices were truncated 

to a data set of 1980-2006 (27 years). As price cycle is expected to perpetuate in a 

similar manner, these 27 years were then looped over time. The model was then 

reconstructed to have 27 iterations per weather start, each starting at a different year of 

the price cycle. The model then has 3 runs (Average, Wet and Dry starts) of 86 years, 

each with 27 iterations (different starting points on the price cycle). The result is a data 
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set including optimal decisions and resulting financial returns for all possible 

combinations of market and weather states for all three weather starting point runs, a total 

of 6,966 yearly observations. 

Results 

It is expected that droughts negatively affect ranch income; however management 

decisions may be able to alleviate some of this impact. Depending on both length and 

severity of drought, various management decisions should be able to reduce the negative 

impacts of extended periods of drought. Proper herd management decisions in the face of 

drought situations following both traditional and non-traditional management practices 

are examined. 

For comparison, the model was initially solved in the absence of weather impacts, 

or constant forage production in all years, (NO DROUGHT). This scenario uses the 

average forage production over the 86 year planning horizon for every year. The model 

was also solved under a baseline (BASE scenario) condition under existing, traditional 

management practices, with variable weather impacting yearly forage production. 

Specific attention was given to modifying herd size in response to these weather 

fluctuations, as local producers have stated they have engaged in partial and full 

liquidation during periods of drought (Nagler et al., 2006). As stated above, this scenario 

was solved utilizing three distinct starting points along the weather cycle. Therefore 

output was generated for BASE - Average Start Weather, BASE - Dry Start Weather, and 

BASE - Wet Start Weather scenarios. 

16 



As stated above, an objective of this paper was to determine if allowing 

supplemental feed could help alleviate some of the negative impacts associated with 

drought conditions. Therefore, the model was also solved after altering some constraints 

on producers. These additional solutions included (1) allowing supplemental feed (FEED 

scenario) during summer months as well as (2) requiring a minimum herd size (FLOOR 

scenario) throughout the horizon. The first was chosen as a strategy to potentially offset 

some of the reduced forage production caused by a drought situation, and the latter was 

chosen to show what additional cost would be imposed for producers to keep herd 

genetics intact over the drought period. The FLOOR scenario placed a lower limit of 500 

Animal Unit Years (AUY) so that a producer could quickly replenish his/her herd from 

their existing stock after forage production recovers. The FLOOR scenario, however, 

was not drastically different from the FEED scenario as the minimum herd size observed 

with the FEED scenario was 483 AUY. Output is also shown for the FEED scenario 

across the three different weather starting points, FEED - Average Start Weather, FEED 

- Dry Start Weather, and FEED - Wet Start Weather iterations. 

Financial Outcomes 

As expected, results reveal that drought unfavorably affects ranch income. Figure 

1.1 shows the comparison of total discounted profits over the 86 year planning horizon 

over the NO DROUGHT case, as well as the BASE and FEED scenarios for the three 

different starting points. The case with average forage production in all years (NO 

DROUGHT) outperforms any of the scenarios that impose forage production based on 

precipitation. If forage production is impacted by weather, for all three starting points the 
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ŝ 
& 

<f 
?>' 

<9 J> 

x Maximum 

x Quartile 3 

— Median 

x Quartile 1 

x Minimum 

Figure 1.1 - Distribution of Net Present Value of Ranch Income across Scenarios 
and Weather Starting Points 

ability to supplemental feed increased total discounted ranch income over the 86 year 

planning horizon when compared to the base model. The ability to feed had the greatest 

impact in the average and wet starting point runs. 

Decision Variables 

Results of the baseline drought model (BASE) show that it is in fact optimal to 

partially liquidate in the face of drought conditions, as seen in Figure 1.2. However, the 

model never resulted in a fully liquidated herd. In the FEED scenario, allowing 

producers the ability to purchase supplemental feed during these periods can help 

alleviate the negative impacts of drought over the entire planning horizon. As seen in 

Figure 1.3 for the average start scenario, average yearly summer feed allowed is greatest 

during dry years (graphs for the dry and wet start scenarios can be located in Appendix 

1). Producers who adjust both herd size and allow supplemental forage will generally 

have better long term financial results when faced with fluctuating forage production. 
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Figure 1.2 - Comparison of AUY and Forage Production as a Percentage of Mean 
Production across Weather Years for Base Scenario, Average Start (Black line 
represents forage production, other lines represent AUY for different price cycle 
iterations) 

However, the size of herd and amount of additional feed purchased also depends on 

where the producer is in the price cycle. Therefore, there is no single "right" decision for 

a manager when faced with drought situations. 

Whether or not supplemental feed is allowed, producers generally graze most of 

the land they have access to. However, when supplemental feed is allowed, the 

distribution of acres utilized is shifted upward. This implies allowing producers the 

ability to supplemental feed results in more thorough utilization of rangeland. It is 

interesting to note that as supplemental feeding is allowed, on average, producers will 

feed slightly less in years of favorable forage production, selling more than under the 

BASE scenario. However, during periods of poor forage production they tend to feed 

significantly more than they would have under the BASE scenario. Although average herd 

sizes are very similar whether or not supplemental feed is allowed, the ability to 

supplemental feed tends to slightly increase herd size. 
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Figure 1.3 - Average Summer Feed Allowed Compared to the Forage Production as 
a Percentage of Mean Production across Weather Years for Feed Scenario, Average 
Start 

Whether or not supplemental feed is allowed, producers generally graze most of 

the land they have access to. However, when supplemental feed is allowed, the 

distribution of acres utilized is shifted upward. This implies that allowing producers the 

ability to supplemental feed results in more thorough utilization of rangeland. It is 

interesting to note that as supplemental feeding is allowed, on average, producers will 

feed slightly less in years of favorable forage production, selling more than under the 

BASE scenario. However, during periods of poor forage production they tend to feed 

significantly more than they would have under the BASE scenario. Although average herd 

sizes are very similar whether or not supplemental feed is allowed, the ability to 

supplemental feed tends to slightly increase herd size. 
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Driving Factors 

When analyzing herd management decisions, timing of decisions are important. 

It seems many decision variables, such as herd sizes, follow, at least somewhat, weather 

patterns. However, many of the financial outcomes, such as yearly returns, seem to 

follow market years more closely. In Figure 1.4, the time paths represent total acres 

grazed using different market starting points for the BASE scenario. Each line depicts the 

time path of total acres grazed for given weather years, starting at a different year in the 

price cycle. Figure 1.5 shows the same data aligned across market years, with differing 

starting weather years. Figures 1.6 and 1.7 show the same comparison across weather 

and market years for yearly returns. As can be seen, total acres grazed seems to follow a 

pattern more closely aligned to weather year as opposed to market year, while the 

opposite is true for yearly returns 

As all combinations of weather and price realizations were modeled, data were 

available to determine how each of these factors affected management decisions and 

financial returns. The relationship between management decisions, as well as financial 

returns, and the variation in weather and market prices were of interest. With the large 

amount of data generated, an approach was formulated to most precisely estimate the 

impacts of these exogenous variables on management outcomes. 

Linear regression was utilized to estimate the impacts of both weather and price 

variability on decision and financial variables. As the regression was performed on mean 

values for all variables, the estimation output can be used as a measure of elasticity. 

These elasticities can be viewed as a measure of sensitivity of the optimal management 
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7000 

Figure 1.4 - Time paths of Total Acres Grazed across Weather Years given 
Differing Starting Market Years (Lines represent acres grazed for different price 
cycle iterations) 

Figure 1.5 - Time paths of Total Acres Grazed across Market Years given Differing 
Starting Weather Years (Lines represent acres grazed for a given market year over 
different iterations of weather years) 
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Weather Year 

Figure 1.6 - Time paths of Yearly Returns across Weather Years given Differing 
Starting Market Years (Lines represent yearly returns for different price cycle 
iterations) 

Figure 1.7 - Time paths of Yearly Returns across Market Years given Differing 
Starting Weather Years (Lines represent yearly returns for a given market year 
over different iterations of weather years) 
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and the financial outcomes to changes in exogenous variables representing fluctuations in 

market prices and forage production due to changes in precipitation. The following 

regression was estimated for the financial returns and management decision variables: 

Y, = J30 + ft * Market,+j32 *Weathert + e, (1.21) 

Where Y, is an outcome of the model in year t, Markett is steer calf price in year t, and 

Weathert is growing season precipitation in year t, and s is an error term. All of these 

variables are presented as a percent of their associated means. Weather data was already 

in terms of percentage of mean, so price data was converted likewise. Steer calf price 

was used as a proxy for market fluctuations and were likewise converted to a percentage 

of their mean. The decision and financial variables from the model were converted to a 

percentage of their mean as well. The coefficients therefore are an estimation of 

elasticity that the independent variables (price and precipitation) have on the dependent 

variable of interest; Net Yearly Returns, AC/F (Herd Size), Cull (both total number and as 

a percent of herd size), Acres Grazed (both total acres and acres per AUY), and Feed 

(both total feed and feed per AUY). 

Elasticities were estimated for all weather runs combined (the entire 6,966 year 

data set), as well as independently for each of the three starting points of weather years 

(2,322 yearly observations each). However since the independently calculated elasticities 

follow the same trends as the combined data, only the combined results are shown. Table 

1.1 displays the results of these regressions for the BASE scenario. 
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The coefficients are displayed in the "Market" and "Weather" columns, with 

associated t-statistics reported directly under the coefficients. These cells show 

corresponding elasticities of these variables on the related variable in the given row. 

"Comparison t-statistics" are based on a null hypothesis that the two elasticities across a 

row are equal. Therefore t-stats greater than 1.96 indicate significant difference in the 

coefficients. Highlighted cells show where there is a statistical difference between 

elasticities at the 95% level. The highlighted cell is the elasticity which has a greater 

absolute value. For example, under the BASE scenario, a 1% increase in "Market," or 

Steer Calf Price, will encourage producers to increase acres grazed 0.3%, however a 1% 

increase in "Weather," or growing season precipitation, will encourage producer to 

decrease total acres grazed by 0.674%. 

These elasticities show that yearly returns are heavily impacted by market 

variations, much more so than weather variation. In the BASE run, as expected, as 

producers face a better market year, they respond by increasing herd size, acres grazed 

and total feed. They also increase total culling activities, but culling percentage actually 

drops. However, in most cases decision variables are more responsive to weather than 

market fluctuations. If producers face a better weather year, they respond by increasing 

herd size and total feed. However producers are able to reduce both total acres grazed 

and acres per animal as the land is more productive during these wetter years. In fact, 

both total acres and acres per animal are more responsive to weather than market 

changes. With respect to an increase in weather, producers increase total feed, but less is 

offered to each animal. However, managers can partially liquidate a herd as a strategy to 

overcome unfavorable weather; yet it was never optimal to fully liquidate. Once the herd 
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Table 1.1 Market and Weather Elasticities of Production and 
Financial Returns for BASE Scenario 

Yearly Returns 

AUY 

Cull 

Acres Grazed 

Total Feed 

Feed/AUY 

Acres/AUY 

Cull/AUY 

Market Weather 

* & K H H i 1.009 
103.113 

0.254 
25.707 

0.202 
21.784 

0.300 
31.445 

0.233 
22.493 

-0.022 
-20.572 

0.069 
16.602 

-0.049 
-11.000 

36.226 

0.326 
46.133 

0.210 
31.648 

.* *0.674-
-98.684 

0.326 
44.157 

-0.002 
-2.273 

•t^-0.997" 
-334.394 

-0.102 
-32.067 

BASE 
R Squared 

0 632 

0.286 

0.175 

0.606 

0.261 

0.058 

0.942 

0.142 

Comparison t Statistic 

-51 213 

1.225 

0.133 

-6.357 

1.598 

0.349 

-15.791 

-0.904 

Values represent elasticities estimated using OLS. Values under coefficients are associate t statsagainst the null 
hypothesis that the coefficients are equal to zero. Also reported are associated R Square Values, as well as 
comparison t stats against the null hypothesis that the coefficients are equal. s i z e IS 

reduced, managers need less total feed, however culling will occur at a higher rate than 

when faced with favorable weather. Producers can also alleviate some of the effects of 

poor forage production by increasing total acres grazed, but more specifically increasing 

the allowable acreage per animal, accomplished by partial liquidation. 

Table 1.2 reports the elasticities for the scenario where supplemental feed is 

allowed in traditionally "off-season" months. Again, proper management in regards to 

weather fluctuations allows producers to take advantage of favorable market conditions. 

The main differences are that when examining market impacts more total feed and more 

feed per animal are allowed in response to favorable market years. Only the coefficient 

representing elasticity of "Market" on Acres/AUY in the FEED scenario was not 

statistically significant at the 95% confidence level. 



The major differences when looking at weather impacts are that the sign on total 

feed has switched, indicating producers will actually allow less total feed during good 

weather years. When producers are allowed to supplemental feed, the weather year is 

also the dominant driver in total herd size and both feed variables (total and per animal). 

This implies that as producers allow supplemental feeding management decisions are 

able to respond more to weather impacts than they do market movements, even though 

their yearly returns are in fact more heavily impacted by market prices than precipitation 

changes under this scenario. Also, under the FEED scenario, elasticities associated with 

herd size, total feed, feed/AUY with respect to weather impacts become statistically 

different (and greater in absolute value) than those with respect to market impacts. 

Allowing supplemental feed during summer months can place producers in a position to 

benefit greater from beneficial markets than relying solely on herd liquidation. 

More Detailed Examination of Yearly Outcomes within Period of Drought 

The model aims to maximize the net present value of all yearly incomes, 

and allowing supplemental feed during drought years will tend to increase this stream of 

discounted incomes. Analysis to this point has focused on total outcomes over the entire 

planning horizon, however a producer will be interested in how the decision to allow 

supplemental feed impacts the yearly returns during the period of drought specifically. 

Can proper management alleviate adverse weather conditions allowing producers to take 

advantage of favorable markets? The output was examined over a five-year drought in 

the beginning stages of the planning horizon to specifically analyze differences in yearly 

decisions and outcomes during a drought across the scenarios. The following analysis 
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Table 1.2 Market and Weather Elasticities of Production and 
Financial Returns for FEED Scenario 

Yearly Returns 

AUY 

Cull 

Acres Grazed 

Total Feed 

Feed/AUY 

Acres/AUY 

Cull/AUY 

Market 

.&$MH 40.378 

0.235 
15.534 

0.198 
14.031 

0.224 
27.840 

0.339 
8.882 

0.139 
6.764 

0.004 
0.461 

-0.037 
-8.319 

Feed 
Weather 

1.690 
21.441 

:":vro:405 •-
3,".34o 

0.271 
26.863 

•=-"£0.'559",-': 
•97 149 

*.:^0:608'~ 
•72 27? 

!--tr-=«|-.060~ 
- . '^ . l lb 

3 S - 3 0 . 9 1 7 ' •••••• 
-148.073 

-0.107 
-33.713 

R Squared 

0.231 

0.190 

0.117 

0.595 

0.076 

0.430 

0.759 

0.148 

Comparison T Stat 

-47.019 

2.882 

1.244 

-5.701 

-4.578 

-15.672 

-15.543 

-1.195 

Values represent elasticities estimated using OLS. Values under coefficients are associate t statsagainst the 
null hypothesis that the coefficients are equal to zero. Also reported are associated R Square Values, as well 
as comparison t stats against the null hypothesis that the coefficients are equal. 

shows how yearly returns are impacted during a drought when supplemental feed is 

allowed. In the "average start" scenario, a five-year drought occurred in the eleventh 

year of the planning horizon. Table 1.3 and Figure 1.8 show the distribution of returns 

for the different market iterations over this five-year span across the BASE and FEED 

scenarios. 

It appears as though the ability to supplemental feed during a drought has little, if 

any, impact on average yearly returns. It would be difficult to show any producer the 

benefit of such a plan based on these figures. However, during this window, a producer 

that allows supplemental feed is able to carry a larger herd, which will allow them the 

benefit of selling more animals immediately post drought, while a producer that does not 
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Table 1.3 Comparison of Distribution of Net Returns during 5 Year Drought 
Across BASE and FEED Scenarios (Both Individual Net Yearly Returns as well 
as Net Yearly Returns Summed over 5 Drought) 

BASE FEED 
Yearly Returns 

Minimum -$45,068 -$49,863 
Average $46,651 $46,932 
Maximum $136,012 $134,562 
Standard Deviation $42,447 $43,265 

Sum of Yearly Returns Over Drought 
Minimum $14,059 -$7,123 
Average $233,255 $234,659 
Maximum $431,373 $425,593 
Standard Deviation $128,365 $121,617 

Difference between Feed and Base 
Minimum -$25,693 
Average $1,404 
Maximum $27,902 

allow supplemental feed must rebuild their herd after more severe liquidation. This 

inventory effect of allowing summer feed is the main benefit of such a strategy. The 

producer that allows supplemental feed has higher costs throughout the drought; however 

these costs are at least partly off-set by having a more constant stream of calves to sell. A 

producer that does not allow supplemental feeding more aggressively liquidates their 

herd, reducing the costs of carrying animals during the drought while also benefiting in 

the short term by increasing sales through liquidation. However, immediately following 

a drought when conditions are again favorable, these producers must spend time 

rebuilding the herd in order to produce a similar number of calves, while producers that 

allow supplemental feed still have a larger herd intact. Table 1.4 and Figure 1.9 show the 

difference in returns over the 3 years immediately following the five year drought. 
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Figure 1.8 Graphical of Distribution of Net Yearly Returns Summed over 5 Year 
Drought across BASE and FEED Scenarios 

Table 1.4 Comparison of Distribution of Net Returns over 3 Years Immediately 
Following 5 Year Drought Across BASE and FEED Scenarios (Both Individual 
Net Yearly Returns as well as Net Yearly Returns Summed over 3 Years 
Immediately Post-Drought) 

Minimum 
Average 
Maximum 
Standard Deviation 

Minimum 
Average 
Maximum 
Standard Deviation 

Base 
Yearly 

-$30,095 
$83,612 
$161,212 
$48,937 

Feed 
Returns 

-$11,856 
$94,648 
$177,057 
$47,844 

Sum of Yearly Returns Post-Drought 
$16,321 

$250,837 
$417,947 
$127,556 

$58,776 
$283,944 
$444,627 
$121,702 

Difference between Feed and Base 
Minimum 
Average 
Maximum 

-$17,637 
$33,107 
$89,304 
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Figure 1.9 Graphical Comparison of Distribution of Summed Net Returns 3 Years 
Immediately Following 5 Year Drought across BASE and FEED Scenarios 

As stated above, the ability to supplemental feed can help a producer's financial 

standing, however the benefit usually comes post-drought. This is due to the fact that a 

producer must increase costs in order to allow additional feed, but the benefit is realized 

after the drought as they were able to carry a larger herd throughout the drought, resulting 

in more sales immediately following the drought. This inventory effect drives the 

difference in outcomes observed when summer feeding is allowed. Table 1.5 and Figure 

1.10 show the impact supplemental feeding can have on the time frame including the 

drought and planning horizon immediately following the drought. So, although 

supplemental feeding does impact producers' financial standing over the long run, when 

looking at individual drought occurrences, the true benefit of supplemental feed during a 

drought is realized after the event by having larger inventories intact instead of having to 

retain additional animals. 
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Table 1.5 Comparison of Distribution of Net Returns over 5 Year Drought 
and 3 Years Immediately Following Across BASE and FEED Scenarios 
(Both Individual Net Yearly Returns as well as Net Yearly Returns 
Summed over 5 Year Drought and 3 Years Immediately Following 
Drought 

BASE FEED 

Minimum 
Average 
Maximum 

Yearly Returns 
$305,576 
$484,092 
$709,791 

$325,074 
$518,603 
$737,590 
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Figure 1.10 Graphical Comparison of Distribution of Total Summed Net Yearly 
Returns over 5 Year Drought and 3 Years Immediately Following Drought across 
BASE and FEED Scenarios 

Conclusion 

Recent droughts have greatly impacted cattle producers through decreases in 

yearly forage production. Cattle prices also have a role in ranching outcomes. The 

objective of this paper has been to address the impacts that variations in price cycle and 

weather conditions have on ranching outcomes, giving attention to the possibility of 

alleviating some negative impacts of drought by allowing supplemental feeding. 
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As producers are expected to be driven by the motive of profit maximization, and 

are constrained both in terms of financial and physical resources, a linear programming 

model maximizing present value of ranch income over a predetermined planning horizon 

was utilized to determine these impacts. Analysis was focused on financial outcomes as 

well as management decisions compared across a drought scenario with traditional 

management decisions including herd liquidation as well as a scenario which allows the 

ability to allow supplemental feed in traditionally off-season months. The model was 

solved iteratively starting at each of 27 potential years over a loop of market prices. An 

86 year loop of weather data was used to estimate forage production, with the model 

being solved over three distinct starting weather patterns for each of the potential 27 

market iterations. 

Results show that financial outcomes and management decisions are in fact 

influenced by both the current state of the weather and the market. An interesting finding 

is that, independent of the state of the market, most management decisions are driven by 

growing season precipitation, and therefore forage production. In order to reduce the 

negative forage impacts of drought situations, ranchers, when faced with reduced forage 

production, should partially liquidate their herd, increase acreage (both in total and per 

animal), and increase feed (both total and per animal). The results also show that 

allowing the ability to supplemental feed during summer months will ultimately help 

ranchers' financial standing in the long run. 

The ability to supplemental feed will have a larger impact on financial status post 

drought than during drought, as the ability to carry larger inventories through the drought 

also requires additional costs as compared to a producer with a more aggressive 
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liquidation strategy. However, the additional costs also allow more animals to be sold 

during drought as compared to a more drastically liquidated herd, offsetting some of the 

higher costs. More importantly the strategy of allowing summer feeding allows more 

animals to be sold post-drought as opposed to requiring a period of herd build up 

associated with a producer that culled more aggressively. 

Ultimately there is no single right decision for ranchers when faced with 

fluctuating forage production. Proper strategies for producers must incorporate the 

current status of both weather and the market. The results show how movements in these 

two exogenous variables affect cattle management decisions. The modeling efforts of this 

paper focus mainly on how allowing supplemental feeding can alleviate some of the 

pressures of reduced forage production in the face of unfavorable weather conditions. 

Caution must be used however, as this model does not fully account for forage dynamics 

across years. The next step in this modeling process will be to link forage production 

across years based on prior use of rangelands. No effort has been made in this paper to 

address how much pressure should be allowed on grazing lands. There is no 

consequence modeled for overgrazing, it is modeled such that forage production is 

independent of prior range use. It is expected, however, that current cattle management 

decisions can affect future forage production, which implies even more caution needs to 

be used when stocking decisions are made. Therefore a dynamic model incorporating the 

impacts of current grazing on future forage production will be developed in chapter 2. 
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CHAPTER 2 

Introduction 

While chapter 1 was useful in examining how producers respond to fluctuating 

forage production due to stochastic weather, inter-year dynamics of rangeland 

productivity was ignored. Proper range management should account for long term effects 

of decisions concerning stocking rates. Vegetation evolves over time due to both weather 

impacts as well as prior use of the land. The viability of the rangeland at any point in 

time depends directly on prior management decisions. While chapter 1 focused on 

maximization of yearly returns of herd decisions over a fixed planning horizon, this 

chapter evaluates maximizing the discounted sum of returns to land from grazing 

operations across an infinite horizon. The physical relationships utilized in this essay 

follow a predator-prey model of rangeland evolution, specifically as analyzed by Noy-

Meir (1976). His analysis focused on the stability of such grazing systems. This 

research extends his idea by showing that a producer interested in maximizing the value 

of the land, not just short-term profits, will ensure the long-term productivity of the 

rangeland. 

Problem Statement 

Producers can degrade long term range productivity while trying to take 

advantage of short term opportunities. Manley, et al. (1997) have shown that individual 

producers, when acting to maximize profit, will stock at rates that can reduce the 

35 



condition of the range over time. He has shown this to be especially true when cattle 

prices are high. Likewise, in a dynamic framework, Pope and McBryde (1984) 

demonstrated that individual producers often stock public rangeland at a rate higher than 

socially optimal. This essay similarly focuses on management over time, however with 

special attention giving to dynamics of the rangeland due to management decisions. 

Dynamic analysis is not new to the study of cattle production. Chavas, et al. 

(1985), Meyer and Newett (1970), Glen (1980), and Apland (1985) studied optimal 

feeding strategies over time. These studies however focused mainly on how and what to 

feed cattle for finishing, rather than looking at rangeland viability over time. Tess and 

Kolstad (2000) modeled how forage quality affects animal performance, yet did not 

specifically address how the rangeland evolves over time, ignoring the impact grazing 

has on forage production. Vetter (2005) examined rangelands with a focus on the idea of 

equilibrium, but not necessarily optimal stocking decisions. Rodriguez and Roath (1987) 

analyzed optimal stocking decisions over time. They analyzed stocking decisions over 

the short-term focusing specifically on seasonal response, and concluded that stocking 

rates should decline over the grazing season as forage declines. However, they based 

their argument entirely on the decline in animal performance as forage production 

decreases rather than the impact an over utilized rangeland will have on future periods. 

Torell, et al. (1991) investigated interactions of stocking rates and range 

condition. Using a dynamic model calibrated for eastern Colorado, they found that 

ranchers do not have any incentive to continuously overgraze rangelands. They 

addressed random weather by treating each year as an averagely productive year in terms 

of weather impacts on forage grazing. They statde that current performance drives the 
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economic decisions and impacts on future productivity are not as important as current 

implications of stocking rates. They based this conclusion on a fixed (40 year) planning 

horizon. Although they did notice that optimal stocking rates are decreased slightly when 

future forage productivity is accounted for, the fixed planning with a fixed terminal value 

horizon is expected to have a different outcome than with an infinite planning horizon. 

Noy-Meir's study (1976) focused on stability of grazing systems. He modeled the 

grazing mechanism as a predator-prey relationship, with cattle being the predators of 

forage. His main assumptions (which are utilized in this essay) are as follows: (a) a 

single plant, or set of plant species, which have identical growth functions and are equally 

grazed, (b) a single herbivore species, (c) grazing is on green vegetation in the growing 

season, with constant plant growth, (d) herbivore requirements/reactions are constant 

over time. He also initially forced constant herd sizes in order to determine the stability 

of steady states in the grazing system. By using simple equations of motion, he is able to 

identify numerous outcomes based on plant growth functions and stocking density. He 

then went on to compare his results to actual grazing system data. It is assumed that if 

producers fully incorporate the long term costs of grazing decisions, they will desire a 

grazing system that ensures long term rangeland health and the associated value of the 

grazing of such as system. However, Noy-Meir's focus on simulation showed results of 

given actions and potential outcomes, but does not incorporate manager's decision 

behavior. 
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Objective 

The objective of this essay is to analyze the long-term trade offs of grazing 

management decisions. As stated above, much research has been done along similar 

lines with mixed results. Here, specific attention is given to management decisions given 

the knowledge that current grazing decision will impact future forage production. This 

essay generates an economic model that integrates the biophysical relationships outlined 

by Noy-Meir (1976). Noy-Meir was interested in the stability of such grazing systems, 

being able to determine what stocking rates were able to keep a tract of range in a stable 

condition, yet his study lacked economic focus. This essay expands the physical model 

analyzed by Noy-Meir in order to evaluate grazing decisions that maximize land values 

over time. 

Model Development 

In order to account for the dynamic nature of rangeland production, dynamic 

programming will be employed. A major benefit of dynamic programming is that it 

allows decisions to change over time. As the rangelands evolve over time, dynamic 

programming offers a convenient tool for analysis. Unlike some previous work in range 

economics, this paper recognizes that current forage production is influenced by past 

management decisions, as reflected in the ending state of the forage in the previous 

period. It is therefore clear that current decisions will directly impact future forage 

production and future profitability. Dynamic programming allows for the consideration 

of these effects when modeling management decisions. 
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The model presented here is based on the physical relationships presented by 

Noy-Meir in his analysis of the predator-prey relationship associated with rangelands. 

Emphasis is placed on equilibrium outcomes of both animal and rangeland performance, 

and the resulting economic consequences associated with those steady state values. The 

model encompasses not just animal performance over time, but also how stocking 

decisions affect the evolving condition of rangelands. As the model incorporates 

expectations of future forage production into current period stocking decisions, it is 

expected that stocking rates will be lower in current periods so as to not reduce future 

productivity. As long as property rights are assured, this forward looking view of 

rangeland health should better align individual producers' incentives with that of the 

socially desired outcome, especially where it concerns public land management. 

Huffaker and Wilen (1991) use a very similar model. They first evaluate the 

impact of forage deterioration on a single season model, ultimately adding the dimension 

of multiple seasons. Their objective is to compare season long stocking rates versus 

intensive early stocking rates. However they also model the decision as a decision to 

either graze animals on pasture or feed via dry lot. This is to "shift the attention away 

from the market dynamics of the overall animal investment decision and allows the 

model to focus on the complexities of optimal stocking under deteriorating forage 

nutrients (1991, pg 1214)." 

The model presented here however does not focus on whether to graze or not, 

rather it assumes a land's best use is grazing, and aims to determine the proper stocking 

rate when considering the impacts of such decisions on future forage growth. Producers 

are expected to maximize the value of land, an objective consistent with one who holds 
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title to the land, or is ensured continued transferable grazing rights to the land. The model 

infers that the producer is aware that future forage production is tied to the ending state of 

the range in the current period. The model will also assume that producers expect that 

animal consumption is tied to the current state of standing forage. Therefore, 

relationships are needed to tie future forage production to the current state of the range, as 

well as animal consumption to current forage production. Noy-Meir's model will be 

utilized to formulate these relationships. Following Noy-Meir's assumptions grazing is 

only allowed on this tract of land during the growing season. The general Noy-Meir 

model is specified as follows. Forage growth (G) is of the logistic growth form, 

specifically: 

G(Y) = JV(1~) (2-1) 
m 

Where y is maximum growth rate per unit of time, V is vegetation density per unit 

of land (standing pounds of forage/acre in the current study), and VM is the maximum 

plant biomass for a unit of land (carrying capacity). 

The logistic equation to model population dynamics can be traced back to work 

by Verhulst (1838), and Lotka (1928) and Volterra (as translated in Chapman 1931). 

Lotka and Volterra also tackled the idea of predator-prey relationships, leading to Holling 

(1959, 1966) to develop his "disk" theory of predation, which is in fact a Michaelis-

Menten type equation. (See Berrymman, 1992, for a more complete history of the 

evolution of predator-prey modeling) The use of the sigmoid equation to model forage 

growth in a grazing setting is not limited to the Noy-Meir study, however. Cacho (1993) 

argues that the sigmoid curve accurately reflects pasture growth in a grazing setting, and 

his argument applies directly to studies involving a steady state in that he shows that an 
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area "maintained at a steady state by continuous grazing exhibits a constant mass (pg. 

388)." Cooper and Huffaker (1997), likewise, utilize the logistic growth equation to 

model pasture growth in a pasture setting. 

Consumption of plant biomass is of the Michaelis-Menten form, with: 

C = cS = Cm{(V -VR)/[(V -VR) + VK]}S (2.2) 

Where C is total consumption per unit of land, c m is the level of daily 

consumption associated with satiation, c is consumption per animal per unit of land, S is 

stocking density per unit of land, Vr is any ungrazeable residual or mandatory carryover 

biomass, and V* is the plant biomass at which consumption equals half of satiation, also 

known as the "Michaelis Constant." This function has the properties over the relevant 

range of C'(V)X), and C"(V)<0. The Michaelis-Menten equation was first utilized by 

Michaelis and Menten (1913) in the research of kinetic enzymes. The equation has since 

been used in many different applications partly due to "definition of the growth rate as a 

function of the growth rate limiting substrate is very convenient in practice, as it is a 

continuous function with the properties u(0)=0 and jx(s)—•u™ when s—>oo (Holmberg, 

1981, pg. 24)." 

Allden and Whittaker (1970) studied consumption patterns by sheep and showed 

consumption per animal is closely related to herbage availability. Their study showed a 

relationship of the consumption and herbage available very similar to the Michaelis-

Menten form as seen in Figure 2.1. Although Allden and Whittaker did not specifically 

address this functional form in their study, the relationship did lead others such as Noy-

Meir to follow utilize such an equation. 
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The Michaelis Constant in a grazing setting can be interpreted a few ways. 

Cooper and Huffaker (1997) explain it as inversely related to the efficiency of a grazing 

animal, so a lower number translates into an animal that is able to achieve desired 

performance with less forage. However, in this model, it can also represent a measure of 

forage quality. Allden and Whittaker in fact show that the consumption relationship to 

herbage allowance can be shifted due to density of pastures. Although the overall 

relationship of increased consumption until satiation as herbage allowance is increased, 

the curvature of the relationship is affected by herbage density. Although not measured 

in the Allden and Whittaker study, it is assumed the same relationship would hold true for 

pasture of differing forage quality. As the forage in this model is assumed to be 

homogenous, a system with a lower Michaelis Constant is analogous to a system which 

has higher quality forage, in other words two identical animals will perform differently 

on pastures with different associated Michaelis Constants. Whichever interpretation is 

taken, both of these can be under a producer's control, either through altering herd 

genetics to get more efficient grazers, or by improving the quality of the pasture. 

By combining these two biological functions, plant biomass evolution over time 

can be formulated. The equation of motion for plant biomass becomes: 

V = G(V)-C(V,S) = G(V)-c(V)S (2.3) 

With vegetation biomass growth accounted for, an equation relating animal 

performance to consumption of biomass is needed. Huffaker and Wilen (1991) utilized a 

forage conversion coefficient to convert animal consumption to animal gain of 0.096. So 

total gain per animal is (0.096 * Consumption) over the grazing season. 
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Figure 2.1 Relationship of Consumption to Standing Forage using the Michaelis-
M enten Equation 

Gain per animal then becomes: 

Gainty) = 0.096* Consumption = 0.096* (cm{(V - VR)/[(V -VR) + VK]}) 

Animal weight at the end of the grazing season becomes: 

Wend=Winit+Gain(V) 

(2.4) 

(2.5) 

Where Wend is the weight of an animal coming off range and Winit is the weight of 

the animal when put on the range. 

As Noy-Meir focused on stability of grazing systems, his study lacked economic 

focus. In this paper, producers are assumed to be concerned with profit maximization 

when they make their stocking rate decision. Therefore, the producers will optimally 

make decisions based on profitability of stocking rate decisions, not just stability of the 
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grazing system. The single season herd return to land equation will then be a function of 

forage, stocking rate and prices. 

TW&P^Q^PSW^-PSW^-CCFS-FC (2.6) 

Where Pe is price per pound of the animal at Wend, and Pi is weight per pound at 

the Winu, CC is carrying costs per animal, and FC is the fixed cost associated with grazing 

a tract of land. 

Output Prices 

A shortcoming of some previous dynamic modeling in this area take constant 

price per weight over differing weight classes when evaluating optimal decisions. Prices 

per hundred weight (cwt) however do not exhibit constant prices. Producers are faced 

with declining prices per cwt as weight per animal is increased. Cooper and Huffaker 

(1997) acknowledged this price slide effect, and modeled a system where animals were 

purchased at 272.16 kg at $1.74/kg, and sold at the end of the season for only $1.43/kg. 

In order to account for the price slide effect in the current model, an equation forecasting 

prices was generated from data available for the Torrington, WY auction. This allowed 

for a continuous slide over the relevant range of potential weight gain. The data was 

received from the Livestock Marketing Information Center (LMIC), (unpublished data 

supplied by Jim Robb, LMIC, Lakewood, Co., June 22, 2007). Weekly prices were 

available from 1992 through 2006. The prices were deflated to base year 1982 prices 

using PPL It was hypothesized that grain prices would affect the prices slide so corn 

prices were obtained from LMIC and were likewise deflated using Producer Price Index. 
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Ordinary Least Squares was conducted to estimate price per cwt as a function of weight 

and corn price. The resulting equation is: 

PWend ' "corn ) = A) + A *̂ end + A " ^ + Pi " end + HA "com + A ™end "corn 

(2.7) 

Table 2.1 Price Slide Regression Output 
Variable Name Coefficients 

(t statistics) 

Intercept 293.9348 
1.619 

End Weight -0.7396 
-0.929 

End Weight Squared 0.0010 
0.829 

End Weight Cubed 0.0000 
-0.801 

Corn Price -32.2459 
-2.872 

Corn Price * Weight 0.0227 
1.437 (R Square 0.4717) 

As expected, the output shows a declining price per weight as weight is increased. 

This decline is less drastic when corn prices are high. When the corn price is relatively 

low, feedlots prefer to purchase lightweight animals and add weight themselves. 

However, as corn prices rise, the cost of gain for feedlots also rises, so they are less likely 

to pay a premium for lighter animals. Regardless of corn prices, marginal value per 

pound received by cattle producers is maximized between 650-750 pound animals as seen 

in Figure 2.2. Figure 2.2 shows how price per hundred weight decreases as animal 

weight is increased, while Figure 2.3 shows the marginal value per pound as animal 

weight is increased. As seen in Figure 2.3, even as price per weight decreases as animal 

increase weight, initially the marginal value per pound increases. 
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Model parameterization 

The model used in this process is: 

i 

Max \/3' * {[ Pe * Wmd - Pt * Winit - CC ] * S * (1 - Deathless )} dt 
s 

0 

(2.8) 

s.t.\ = G(V) - C(V, S) = G(V) - c(V)S (2.9) 

With: 

G(V) = )¥(1-^-) (2.10) 
m 

c(V) = cm
 ( y ~ V f i ) (2.11) 
(y-v^)+w 

Gain(V) = 0.096 *c(V) (2.12) 

W f l -=WM+G a«i(V) (2.13) 

P(Wmd,Pcorn)=A + A *wenrf + A * w ^ 2 +/?3 *wenrf
3 + pA *pcorn +j35 *wend *pcom 

(2.14) 

The model is representative of a stocker operation in central Wyoming. 

Producers determine their stocking rate in early summer, and sell all animals in the fall. 

Estimated parameters are for an acre of land, and are given in Table 2.2. The growth rate 

of forage parameter (y) used (0.1) is from Noy-Meir (1976) and represents a rangeland of 

high productivity. As Noy-Meir relates this rate to that of "highly productive" rangeland, 

so the model was also solved for growth rates of 0.5, 0.4, and 0.3 for sensitivity analysis. 

Following the work of Torell, et al. (1991), weather is not explicitly stochastic, and the 

growth parameter is used to represent average productivity each year. This will allow a 
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true steady state to emerge, and initial sensitivity analysis to be performed. This 

assumption is relaxed in the following chapter. The parameter representing the 

maximum plant biomass for this area (Vm) is based on Bastian et al. (2005) estimate of 

0.39 AUM per acre productivity for Fremont County Wyoming with an AUM 

representing 800 pounds of grazeable forage. Huffaker and Wilen (1991) represent daily 

animal consumption of 15.6 pounds of dry matter per day over a grazing season taking an 

animal from 587 to 770 pounds. Over a 120 grazing season, this translated into 1872 

pounds of dry forage consumption per animal. Huffaker and Wilen (1991), based on 

Noy-Meir (1976), also utilizes a 20% of carrying capacity for the Michaelis constant for 

consumption, translating here into 62.4. Without a better estimate for the Michaelis 

Constant, the model was also solved with values of 30 and 100 to determine how 

sensitive the outcomes are to this parameter. 

Producers are generally aware of market prices when making stocking decisions, 

so the model was solved for differing market conditions. Cattle prices (both initial and 

final) are based on equation 2.33. However, the model was solved with cattle prices 

(both initial and final) increased, and likewise decreased, by 20% for comparison to the 

baseline outcome. The price of corn is based on mean values ($1.65/bu) from the LMIC 

data over the time period used in estimating the price function. The model was also 

solved for differing corn prices, specifically over the maximum ($2.25/bu) and minimum 

($1.65/bu) prices observed in the LMIC data. Initial Weight (550 lbs.), and days on 

pasture (120), are in line with a study done for the Wyoming Red Desert by Bastian et al. 

(1991). Van Tassell et al. (1997) calculate animal costs per AUM in a study including 

Wyoming. The sum of association fees, veterinary, moving, herding, miscellaneous labor 
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and mileage, salt and feed, water, horse and improvement maintenance costs from his 

study are $9.08 per AUM. Deflating these animal costs to 1982 dollars result in animal 

costs of $7.69 per AUM. This translates to animal carrying costs of $21.67 per head 

($7.69*4 months*0.7 AU equivalent) based on average animal weights over the season in 

this study. The discount rate used initial was 10%, but results were generated for 

discount rates of 0.1%, 5%, and 20% for comparison. 

Table 2.2 Parameters used in Dynamic Model 

Parameter Value 

Y (Relative Growth Rate of Forage) 

Vm (Maximum Standing Vegetation) 

Cm (Maximum Daily Consumption) 

Vr (Mandatory Forage Residual) 

Vk (Michaelis Constant) 

Winit (Initial Weight) 

Pc (Price of Corn) 

P (Discount Factor) 

FC (Fixed Acre Cost) 

CC (Carrying Cost per Animal) 

Days on Pasture 

Death loss 

(Alternative Vales Used in Sensitivity Analysis) 

.1 day" 
(.05, .04, .03) 

312 lb/acre 

15.6 lb/animal/day 

0 lb/ acre 

62.4 lb/ acre 
(30, 100) 

550 lb. 

1.65 
(1.10,2.25) 

0.909091 
(.833333..952381 ,.990099) 

$10.18/acre 

$21.62/ animal 

120 

0.02 
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Mechanism for Solving the Model 

Optimization Technique - Bellman Approach 

The model is designed to be dynamic in nature, so the producer will not make 

decisions strictly to maximize single season returns. Producers will account for forage 

dynamics when making stocking rate decisions, so the intertemporal profit function is 

represented as: 

T 

Max j ft' * {[ Pe * Wend - P, * Winit - CC ] * S * (1 - Deathloss )} dt (2.15) 

0 

s.t.V = G(V) - C(V) = G(V) - c(V)S (2.16) 

Where ft is the discount factor. 

In order to solve this maximization problem, the model utilizes the Bellman 

equation. The equation becomes: 

Ut(V) = max{f(v,s) + ]3*Ut+1(g(v,s))},veV,t = l,2,....T (2.17) 
seS(v) 

Where Ut is value function, namely the maximum of current and future returns, 

J{v,s) is the per season return function, g(v,s) is the forage dynamic equation. This 

function then represents the trade-offs of current returns, f(v,s) and all future returns Ut+\. 

It is expected that a private producer will aim to maximize the present value of their 

ranch, including the terminal value, or that of a public land manager who aims to ensure 

land values across generations, therefore the model assumes T=co. This outlook will 

place a value on the tract of land used in cattle production, rather than just the value of 

current livestock production. Therefore, by maximizing the Bellman equation, overall 

value of the land (as long as cattle production is the best use for the tract of land) will be 



maximized. Rational producers are expected to find the most profitably long run steady 

state, as well as the best way to reach that state in the short run. 

Since this is a continuous state problem, finding an optimal policy rule at each 

state is impossible. The fact that there are infinite possible states adds much complexity 

to the issue. Often this is overcome by discretizing the state space; however this 

approach results in less precision. Mathematical techniques are now available to 

overcome the hurdle of continuous state problems by allowing the optimal policy 

function to be approximated. The approximation technique allows for an optimal policy 

rule for any possible state, while leaving little error from the true unknown policy 

function. When the time horizon is infinite, meaning the problem is time-separable, and 

the problem is autonomous, Judd (1998) defines the value functions (using variable 

definitions as used in the current model) as: 

£/(v) = supf>' ;zr(v ( , s () |v0=v (2.18) 
* ( v ) (=0 

Where *P(v) is the set of possible actions given a stock v, and this value function 

then satisfies the Bellman equation: 

U(v)= sup 7U(v,s) + /3{U(v+)\v,s} = (TV)(v) (2.19) 

veD(v) 

This will translate into an optimal policy function which solves: 

S(v) e arg max n(v, s) + J3{U(V+) | v, s} (2.20) 
. 9 G D ( V ) 

Where v+ is defined as the state in the subsequent period resulting from current 

period actions. Judd's theorem 12.1.1 (pg 402) states that if S is compact, P<1, and n is 

bounded above and below, the map TV is monotone in U, is a contraction mapping with 

modulus p in the space of bounded functions, and has a fixed point. This existence of a 
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fixed point ensures both the existence and uniqueness of the value function, while also 

suggesting how to find the optimal decision rule with associated optimal value. 

Approximation of Value Function - Chebychev Approach 

It is impossible to calculate the value function for every possible state given a 

continuous state function. However, many mathematical techniques have been devised 

for approximating the value function. "[T]he Bellman equation that characterizes the 

solution of an infinite horizon dynamic optimization model is a function fixed-point 

equation (Miranda and Fackler, 2002, pg 115)." According to Miranda and Fackler 

(2002), we can approximate this value function through contraction mapping, basically 

finding a map Tthat satisfies V=TV. Howitt et al. (2002) have formulated a numerical 

approximation to this technique for infinite time horizon problems. The idea of mapping, 

namely V=TV, can be accomplished by the following two propositions; (1) any function 

can be approximated by a polynomial of sufficient order, and (2) such a function can be 

found within some finite number of iterations (pg. 4). With these holding, they show an 

approach to approximate a function which in fact maximizes the total value function as 

stated above. They prescribe the use of Chebychev polynomials for their orthogonal 

nature, as seen in Figure 2.4. This orthogonality is due to the terms of the Chebychev 

polynomials being sinusoidal in nature, where: 

A A 

6> (x) = cos(n * cos-1 (x)) (2.21) 



Which numerically becomes: 

0l(x) = l 
A A 

02(x)= X 
A A A 

03(x) = 2*02(x)-0l(x) 

A A A 

0n(x) = 2*0n_](x)-0n_2(x) 

Figure 2.4 Chebychev Polynomials over the [-1,1] Interval 

Approximating the value function utilizes the interpolation process. Miranda and Fackler 

(2002) approximate this intractable real-valued function / with the tractable function / . 

They suggest an interpolation scheme utilizing a function form as a linear combination of 

n linearly independent basis functions ®i, <&i, On, 

/ (*) = 2>;<9j(x) 
j=i 

(2.22) 
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With basis coefficient c\, C2, cn to be determined throughout the interpolation process. 

The approximation technique utilizes these polynomials in Chebychev regression over 

the interval [a,b] at n number of interpolation nodes, x\, X2, • •••xn. With n nodes and n 

basis functions the solution of the coefficients reduces to solving a linear equation. In 

order to solve for the coefficients by solving the interpolation conditions: 

YjcJ0j(xj) = f(xj),\/i = lX...,n (2.23) 
;=i 

Using linear algebra, this can be written in matrix form as: 

<Dc = y (2.24) 

Letting yi=J{xi) be the function value at the ith node, then 

®0=®](x,) (2-25) 

is the typical element of the interpolation matrix representing the j'th basis function 

evaluated at the ith node. We then can choose the coefficients that minimize the sum of 

squared errors, basically least-squares approximation, namely: 

e,=/(*,)-5>;©A) (2-26> 
7=1 

With estimation of the coefficients of: 

c = (a>'0)-10'y (2.27) 

When choosing the n nodes over the [a,b\ interval, one may be tempted to choose them at 

even spaces. However, often the errors are greatest towards the ends of the interval. 

Chebychev nodes correct for this by placing nodes more closely spaced towards the 

endpoints of the interval, leaving more space between nodes in the center of the interval. 

"Chebychev-node polynomial interpolants are very nearly optimal polynomial 

approximants. Specifically, the approximation error associated with the nth-degree 
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Chebychev-node polynomial interpolant cannot be larger than 2 n log(n)+2 times the 

lowest error attainable with any other polynomial approximant of the same order 

(Miranda and Fackler, 2002, pg. 119-120)." These nodes are chosen in the following 

fashion: 

a + b b-a ,n-i + 0.5 s w . „ „ 
xl = + cos( ;r),Vi = l,2,....,/i (2.28) 

2 2 n 

In order for better coverage of the state space, it is recommended to fit the state variable 

to the interval [-1,1], by defining 

z = 2 ^ ^ - l (2.29) 
b-a 

Where z is the map of the Chebychev coefficients over the [-1,1] interval. 

Figure 2.5 Spacing of Chebychev Nodes over the [-1,1] Interval 

Howitt et al. (2002) describe this iterative process by using the following regression to 

update the polynomial coefficients for the Mi iteration as (using current notation): 

5X(xy)0,(iy) 
cW = _M ( 2 3 0 ) 

7=1 
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Then updating the value function using the coefficients: 

£/<*>(*) = £ c , ( * ) 0 , ( 2 ^ - l ) (2.31) 
i b-a 

Again, this process is continued until convergence, as Howitt et al. (2002) define until the 

error sum of squares (ck-ck_1)2 is less than a predetermined tolerance. Once convergence 

is obtained, we have the approximation of the value function at all possible states. The 

approach used in this analysis is that of policy iteration. Of interest is the best stocking 

rate to apply given any stock forage level. Miranda and Fackler (2002) use Newton's 

method to approximate this function. They begin by defining the rewards / (in this case 

the return equation), transition probabilities P (unneeded in this case as all info is 

deterministic), discount factor 8, and some initial value guess v. Here is where the policy 

iteration begins. First is to update x (the policy) given initial guess for v: 

x <- argmax{/(;t) + Sv} (2.32) 
X 

Then the value is updated in the following fashion: 

v < - [ / - ( ? T 7 ( * ) (2-33) 

The new v is compared to the initial guess for v. If there is a significant difference, the 

new value for v is used, and the process is repeated. This process will find an 

improvement in the value function for at least one state until there is no change in v. 

Once this occurs, the optimal policy has been found. Because this is evaluated at the 

finite number of Chebychev nodes, as long as there is a finite number of admissible 

policies the policy iteration will find an optimal in a finite number of iterations (Miranda 

and Fackler, 2002). When looking at optimal decisions for broiler production, Kennedy 
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et al. (1976) state policy iteration "is preferred because convergence is rapid and the 

exact solution is obtained (pg. 25)." 

Results 

The model was solved using GAMS utilizing the Chebychev collocation process 

maximizing the Bellman equation. The model was initially solved using the baseline 

parameters. For an acre of land given the initial parameters, the policy function 

converges to the long run equilibrium of 173.9 pounds of forage per acre with an 

associated stocking rate of 0.67 per acre, or 1.5 acres per head. The policy function will 

show optimal convergence to this amount of forage from starting points either above or 

below this amount. The model was also solved for the other parameter values for growth 

rate, discount rate, corn price, and Michaelis Constant as shown in Table 2.2. The model 

was also solved across differing values for cattle prices. Table 2.3 compares outcomes 

across these differing parameter values. 

With respect to all parameters except the Michaelis Constant and output price, 

ending forage values are around 174 pounds of standing vegetation. This implies it is 

optimal for producers to leave just over half of standing vegetation when considering 

future forage impacts due to current grazing. This would imply a lack of motivation for 

producers to overgraze rangelands as long as previous assumptions about maximizing 

land value and guaranteed property rights exist. The outcome is line with the traditional 

view of land manager to "take half, leave half as a general rule for range management. 

Even with a lower Michaelis Constant, it is not optimal to leave less than half of potential 

standing forage at seasons end. Again, if the Michaelis Constant is interpreted as 
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Table 2.3 Results for Steady State Values from Dynamic Optimization 
Steady State Values 

1.10 
Corn Price 1.65 

2.25 

Michaelis 
Constant 

30 
64.2 
100 

-. t Decreased 20% 
Ouput _ 

Base 
P n c e s Increased 20% 

Growth 
Rate 

0.1 

0.03 
0.06 

0.1 

0.1 

0.1 

Discount 
Rate 
0.01 
0.05 
0.1 
0.2 

0.1 

0.1 

0.1 

0.1 

State 
Value 

175 
175 
174 
173 

172 
173 

173 
174 
175 

164 
174 
185 

179 
174 
171 

Stocking 
Rate 

0.6734 
0.6742 
0.6753 
0.6773 

0.2040 
0.4061 

0.6774 
0.6753 
0.6726 

0.5896 
0.6753 
0.7448 

0.6644 
0.6753 
0.6807 

End 
Weight 

682 
681 
681 
681 

681 
681 

681 
681 
682 

702 
681 
667 

682 
681 
681 

Returns 
per acre 
$24.37 
$24.37 
$24.37 
$24.37 

$7.31 
$14.62 

$25.60 
$24.37 
$23.04 

$28.20 
$24.37 
$20.76 

$16.61 
$24.37 
$32.17 

(Unless otherwise noted, Michaelis constant 64.2, Corn Price 1.65, growth rate . 1 , discount rate .1) 

previously mentioned, a producer can improve returns to land significantly through either 

carrying more efficient grazers, or improving the quality of the forage on the range. 

When the forage growth parameter is 0.1, optimal long run stocking rates are 

around 0.67 head/acre, or equivalently 1.5 acre/head. With a growth parameter of 0.1, 

this number fluctuates only with changes to the Michaelis Constant, and varies between 

0.59 and 0.75 head/acre, or 1.25 and 1.75 acre/head for the parameters used. This is due 

to the fact that per animal consumption is determined by standing forage, and altering the 

Michaelis Constant ultimately alters the consumption per animal. Once consumption per 

animal is determined the only way to remain at a steady state is to find the stocking rate 

that equates total consumption to total growth. 
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If the forage growth parameter used is 0.06, the stocking rate drops to 0.4 

head/acre or 3 acre/head, and if the growth parameter is only 0.03, this falls to 0.2 

head/acre or 5 acre/head. Therefore stocking rate is very dependent upon potential forage 

production, and optimal stocking rates should be aligned with this forage growth 

parameter. 

End weight for cattle in all cases except varying Michaelis Constant are around 

680 lbs. at sale date. However, due to declining prices for higher sale weights, this 

lighter weight animal optimizes returns over heavier animals. Even with different 

Michaelis Constants, optimal sale weight does not exceed 702 pound animals going to 

auction. Again, this is due to the fact that stocking rate is determined by setting total 

consumption equal to total growth, and per animal consumption is in part determined by 

the Michaelis Constant. Therefore, since the Michaelis Constant alters per animal 

consumption and stocking rates at the steady state, it is not surprising that ending weights 

will also very with the Michaelis Constant. 

Returns per acre are most responsive to changes in the forage growth parameter. 

Land with more forage production potential can carry more animals over the season to 

the same ending weights resulting in much higher returns. The Michaelis Constant also 

has a large impact in return per acre as well. Again, a producer with more efficient 

grazers or higher quality forage can produce more weight gain per acre of land, resulting 

in higher returns to the land base. This is not only due to the ability to produce more gain 

per area of land, but the ability to do so with a lower stocking rate, resulting in lower 

variable costs per acre. 
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Producers are also often aware of fluctuating prices. Indeed, cattle prices have a 

large impact on returns per acre; however management decisions vary little across 

different cattle price levels. Similarly, corn prices have an impact, although less so than 

cattle prices, on financial returns per acre, but optimal decisions vary little in respect to 

either cattle or corn price levels. Unfortunately, this implies there is little a producer can 

do by means of herd management to alleviate the impact of either low cattle or high corn 

prices. 

These results of the model are consistent with Noy-Meir's (1976) analysis. 

Ignoring economic consequences, he says the "safe carrying capacity (pg. 93)" is defined 

as 

H,=^- (2.34) 

Cm 

which is .4 with the given base parameters. 

He says that the maximum carrying capacity can be defined as 

4c V 
m m 

which is .72 given above base parameters. Given the above parameters, the maximum 

carrying capacity is approached but never realized, consistent with Noy-Meir's statement 

that a stocking rate just below this maximum capacity "may be a reasonable choice of 

'normal' stocking in a commercial pasture (1976, pg. 9)." 

Optimal Stocking Rate 

A convenient outcome available with dynamic programming is the ability to 

determine the optimal policy function, which prescribes stocking rate in this case. In the 
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beginning of the grazing season, a producer must make stocking decisions. Given that 

initial standing forage is observable, the approach utilized allows a producer to make the 

stocking decision that will maximize total returns to land over the infinite horizon based 

solely on that standing forage level. Figure 2.6 shows what stocking rate should be set 

for various levels of initial standing forage across the different scenarios. As seen in 

Figures 2.6, 2.7 and 2.8 , discount rate, corn price levels, nor output price levels alter the 

optimal stocking rate for a given standing forage level. However, as seen in Figures 2.9 

and 2.10 growth rate, or plant productivity, has a major impact on optimal stocking rate, 

and the Michaelis Constant also alters optimal stocking patterns greatly for a given 

standing forage level. This implies that regardless of a producer's personal discount rate, 

the price level of corn, or the output price level, the stocking rate is determined 

predominantly on standing forage for given biological response parameters. The 

difference in optimal stocking rate in terms of varying growth rate or Michaelis Constant 

is greatest in the middle of the state space, and less drastic towards either carrying 

capacity or extremely overstock range. 

Obviously, a producer with more productive rangeland should set a higher 

stocking rate. It is interesting, however, that as a producer has a situation relating to a 

higher Michaelis Constant, whether through less productive grazers or lower quality 

forage, they should in fact stock at a higher rate and end with lower weight animals. 

Producers who are faced with a situation that relates to a lower Michaelis Constant, 

whether having more efficient grazers or higher quality forage, should stock at a lower 

rate and end up putting more weight on their animals. Again, this ultimately is due to the 
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Optimal Stocking Rate Across Discount Rate 

Standing Forag 

head/acre 

Discount 
Rate 

D 0.6-0.8 

• 0.4-0.6 

• 0.2-0.4 

a 0-0.2 

Figure 2.6 Optimal Stocking Rate for given Standing Forage Levels across Discount 
Rates 

Optimal Stocking Rate Across Corn Price 

Standing Forage 

0.4 head/acre 

Corn 
Price 

0.6-0.8 

0.4-0.6 

0.2-0.4 

0-0.2 

Figure 2.7 Optimal Stocking Rate for given Standing Forage Levels across Corn 
Prices 
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Optimal Stocking Rate Across Output Prices 

Standing Forage 

Figure 2.8 Optimal Stocking Rate for given Standing Forage Levels across Output 
Prices 

Optimal Stocking Rate Across Growth Rate 

Standing Forage 

• 0.6-0.8 

• 0.4-0.6 

• 0.2-0.4 

• 0-0.2 

Growth 
Rate 

Figure 2.9 Optimal Stocking Rate for given Standing Forage Levels across Forage 
Growth Rates 
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Optimal Stocking Rate Across Michaelis Constant 

head/acre 

• 0.8-1 

• 0.6-0.8 

D 0.4-0.6 

• 0.2-0.4 

• 0-0.2 

Standing Forage 

Figure 2.10 Optimal Stocking Rate for given Standing Forage Levels across 
Michaelis Constant 

ability to allow more gain per animal while maintaining lower carrying costs associated 

with lower animal numbers. 

Conclusion 

A dynamic model of rangeland evolution was evaluated for optimal stocking 

decisions. The model is representative of a stocker operation located in central Wyoming 

with a goal of maximizing the value of the land. As expected, with an infinite time 

horizon, it is optimal for producers to incur lower returns initially in order to improve 

rangeland health as opposed to a producer interested in maximizing current year profits 

only. Although optimal levels of standing forage are reliant on growth rates of forage 

and consumption characteristics of animals which can be hard to quantify, the idea of 

"take half, leave half is fairly consistent with optimal stocking decisions. In fact in most 

cases, the optimal standing forage at season end is 55% of potential production. For a 
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private producer whose goal is to sell his land at the end of his ranching horizon, the 

approach of this model will ensure that the land is at its most valuable state when the end 

of their planning horizon is reached. Likewise, if the tract of land in question is owned 

by the public, the appropriate manager can evaluate the individual rancher's decisions to 

see if actions are in line with socially desired result, namely keeping the public land in its 

most valuable state. However, in order for individual producers to act in a manner 

consistent with this approach, the public land manager must somehow enforce the 

optimal decisions. The easiest way would be to guarantee the transferable right to private 

access on public grazing lands as long as this approach is used. 

A producer must be aware of current conditions of the range in order to make 

optimal decisions. Although selecting the proper stocking rate is vital to maintaining 

long-term range health, one of the largest impacts a producer can have is to carry efficient 

grazers, or have high quality forage. Also, both cattle and corn price levels will have a 

major impact on financial returns; however a producer should not alter their management 

strategy based on variation in either of these price levels. Regardless of price levels, 

producers never had an incentive to overgraze the range in any of the scenarios evaluated. 

Although the model utilized sheds some insight into how optimal stocking rates 

depend on both current and future productivity, the model lacks the realism of fluctuation 

forage production across years. A model linking future forage production to current 

decisions and stochastic weather realizations will be helpful in determining how 

producers should respond to natural fluctuations in forage production. Such a model is 

developed and analyzed in Chapter 3. 
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CHAPTER 3 

Introduction 

The second essay showed that if a producer accounts for the impact current 

decisions have on future productivity, they will not have an incentive to overgraze. In 

fact, they will manage towards the optimal amount of standing forage even if it means 

forgoing more current period rents. This essay extends the analysis to include the effects 

stochastic weather has on forage production as well. Relaxing the assumption that a tract 

of land has a constant productivity allows for analysis of how producers should make 

grazing decisions when faced with uncertainty in grazing season precipitation. 

Problem Statement 

Proper range management is crucial to long-term sustainable forage production. 

As seen in the previous chapter, when concerned with the long run, a producer should 

forgo short term profits to ensure future productivity. However, forage production is 

dependent not only on the current state of range viability, but also on current year 

growing season precipitation. While the dynamic programming model utilized in the 

previous section demonstrated how long term costs can outweigh short term gains of 

overstocking rangeland, if forage production does vary with precipitation, the previous 

model has limited usefulness for yearly decision making. 

While Stochastic Dynamic Programming (SDP) has gained popularity in 

agricultural scenarios, not much attention has been given to rangeland applications. 
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Recent work often has focused on forest management strategies (see for example Couture 

(2008), and Moore and Conroy (2006)) or optimal water reservoir strategies (see for 

example Abolpour (2007), Mujumdar (2007), and Mousavi (2004)). Recent range studies 

have focused on optimal improvement strategies to preserve range condition (see 

Bernardo (1989), and Pope and McBryde (1984), for example) rather than optimal herd 

management to control range productivity. Likewise Carande, et al. (1995) understand 

the need for dynamic analysis, but limit themselves to analyzing optimal sale dates across 

a fixed number of stocking rates and precipitation outcomes. Kobayashi, et al. (2007) 

analyze the impacts of limited capital on sheep stocking strategies in Kazakhstan, mainly 

in the vein of showing a need for improving localized capital markets. 

But, if in fact "(m)anagement of the forage base, as well as the livestock, is the 

key to improved livestock performance" (Manley, et al., 1997, pg. 644) a producer must 

be aware of variability of precipitation, as it will most assuredly have an impact on forage 

production. Indeed, as stated by Hart, et al. (1998), increases in the stocking rate may 

increase short-term livestock gain, a producer must understand the potential long-term 

decrease in range productivity, and this can only be more dramatic during times of low 

precipitation. Westoby, et al. (1989) liken this ongoing decision to a "continuing game, 

the object of which is to seize the opportunities and evade the hazards, so far as possible 

(pg. 266)." In fact, "(i)n grazing systems with very high climatic variability, forage 

availability varies to such a great degree with rainfall that herbivore population dynamics 

are driven by rainfall via its direct effect on forage availability in any given 

year.. .(r)ainfall and stocking rate interact, with low rainfall exacerbating the effects of 

high stocking rate, and high rainfall mitigating them (Vetter, 2005, pg. 324)." 
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In the previous chapter, forage production was assumed to be constant across 

years, just as Torell, et al. (1991) accounted for varying weather by using the average 

forage production for all years. However as Smith (2007) states, "the better years are 

often remembered as normal. The reality is half or more years are below average (pg. 

1)." If a producer makes stocking decision based on average precipitation, and ignores 

the fact that many years are below "average," they will overstock the range, and 

ultimately drive down both forage production and the value of the land. 

Similar to the approach presented in this paper, Passmore and Brown (1991) 

evaluate the idea of proper rangeland management in a stochastic setting, looking 

specifically at biomass as the best proxy for range condition, and as stocking rate being 

the most likely decision to impact this condition. They incorporated variable weather and 

analyzed optimal sheep stocking an arid rangelands in Australia. They stress that 

although producers often lack the technical expertise needed to fully take advantage of 

such models, dynamic programming in this stochastic setting is valuable in providing 

useful insights into the "intertemporal nature of the rangeland setting (pg. 154)" and 

highlighting what information is necessary to make better decisions. 

Objective 

The objective of this essay is to examine how producers make grazing decisions 

in the face of stochastic weather, with the understanding that future forage productivity 

will be directly impacted by the ending state of the range. Attention is given to decisions 

with knowledge only of the probabilities of potential weather outcomes each year as 

producers often must make stocking decisions before growing season precipitation can be 
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fully observed. This essay addresses how a tract of land will evolve over time given 

these management decisions. Analysis of how these decisions would be altered with 

knowledge of current year precipitation is also examined. 

Model Development 

Obviously, stochastic forage production must be represented in a model aiming to 

describe optimal range management. Loehle (1985) analyzed the Noy-Meir in order to 

analyze equilibrium state in a catastrophe theory based model. He incorporated random 

weather effects through altering the carrying capacity variable (Vm in equation 2.1). He 

ascertains that the carrying capacity of the land will vary year to year based on 

fluctuations in forage production as driven by precipitation. However, if carrying 

capacity is in fact the amount of plant biomass an ecosystem can support, this variable 

should not change based solely on precipitation. 

The model utilized in this chapter will incorporate variable forage production 

through equation 2.1 as well, but the parameter affected by precipitation is the relative 

growth rate, y. An area is expected to be capable of sustaining a given amount of plant 

biomass in any given year, but precipitation may limit the biomass from reaching that 

level in any given year. Also, in high precipitation years, a land area cannot produce 

beyond carrying capacity, but that threshold may be reached quicker than in drier years. 

Therefore, the model utilized in chapter 2 is updated to account for variable weather by 

making the growth parameter, y, stochastic. This chapter follows the work of the 

previous chapter, with specific attention given to the effect of stochastic weather patterns 

on optimal grazing management. Rangeland productivity responds to both grazing 
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pressure and natural fluctuations in weather. A producer therefore must make grazing 

decisions in response to current state of the range and expectations about nature. A 

producer makes decisions before current year precipitation is realized based on 

expectations of possible weather realizations. 

The model presented in this chapter is directly related to the model utilized in 

chapter 2 based on previous work by Noy-Meir (1976). The model maximizes the value 

of rangeland, subject to the physical relationship outlined by Noy-Meir. The model has 

been updated to account for changes in forage growth due to stochastic weather. It is 

assumed that the carrying capacity (Vm) of a given tract of land is fixed, yet yearly 

growth is also dependent upon growing season precipitation. Often, stochastic events 

such as this are represented in the equation of motion by simply adding a random term, 

often some sort of Brownian motion. However, in the instance of forage growth it may 

be reasonable to assume that the rate of growth of forage is directly impacted by 

precipitation. In order to reflect this connection, equation 2.1 remains as: 

G(v,a)) = 7<G»V<X~) (3.1) 
m 

However, in this chapter y is taken to vary among years, resulting in differing actual 

growth across years with differing precipitation even with identical beginning standing 

forage. Consumption is the same as equation 2.2, and the equation of motion remains the 

same as equation 2.3, however the change in forage is now dependent on precipitation. 

So the growth equation and actual equation of motion are now: 

C(V,S) = cS = cm{(V-VR)/[(V-VR) + VK]}S (3.2) 

V = G(V,<w)-C(V,S) = G(V,<y)-c(V)S (3.3) 
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With co denoting that the growth rate, and ultimately seasonal growth, depend on random 

weather events. The equations for animal gain, ending weight, and return to area of land 

remain the same as equations 2.4, 2.5, and 2.6 respectively. Prices are still calculated 

according to equation 2.7. This model is also solved using the Bellman approach. The 

objective is identical to maximize the return to land, 

Max \fi'*{[Pe* Wend - P, * Winit - C]* S * (1 - DeathLoss )}dt (3.4) 
o 

however, equation 2.9 is altered to update the dependence on weather. 

si.V = G(V, co) - C(V,S) = G(V, co) - c(V)S (3.5) 

Optimization Technique - Bellman Approach 

As with Chapter 2, the model will be solved utilizing the Bellman equation. However, 

equation 2.18 has been updated to account for stochastic weather events. With the 

implication that weather will impact the growth function, the goal now is to maximize the 

discounted expected returns, which is represented by: 

U(v) = s u p / d j [ > ' t f ( v , , 0 1 v0 = vl (3.6) 

This value function is such that the Bellman equation (3.7) is satisfied over the 

expectations and leads to the policy function which solves (3.8) (From Judd, 1998 and 

Miranda and Fackler, 2002) 

U(y)= supa(v,S) + j3EJU(v+)\v,s} = (TV)(v) (3.7) 
veD(v) 

5(v)e argmaa.x(y,s) + 0Ea{U(v+)\v,s} (3.8) 
reD(v) 
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Again, as in Chapter 2, the value function is again approximated using the Chebychev 

interpolation process to estimate the basis coefficients, c ; . 

UW^cftV) (3.9) 
j=i 

This is done by replacing the Bellman equation with the following system of n equations 

and n unknowns, which allows to computation of the coefficients, based on the 

expectations of weather events. 

Ycj0i(xi)=m^\f(vi,S) + j3E(Ofjcj0j(g(xi,S,a)))\ (3.10) 

In this case, however, the problem is stochastic and attention must be given computing 

the expectations. Miranda and Fackler (2002) state "the continuous random variable (co) 

in the state transition function is replaced with a discrete approximant, say, one that 

assumes values o»i, o»2, ..., (»k with probabilities pi, p2, ..., pk, respectively.(pg. 229)" 

This alters the collocation function for the Bellman equation thusly: 

K,(C)= max\f(v i,S) + j3fdfdpkcj&j(g(vi,s,cok))\ (3.11) 

However, here we have /?k which represents the probabilities associated with each distinct 

weather outcome. Therefore, the interpolation process solves for the coefficients that 

maximize the expectation of the value function. The producer is assumed to have a 

constant expected forage production for any given state across years without regard to 

any previous realized forage production. The model therefore has the same forage 

production probabilities, /?k, regardless of prior year weather outcomes. 
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Weather Parameterization 

As stated above, in order to utilize this approach, the weather impact on growth 

must be in discrete form. As in chapter 2, the model is parameterized for central 

Wyoming. Weather data is available for Riverton, WY from NOAA from 1928. Using 

equation 1.7, predicted forage for Fremont County, Wyoming using Smith's "Casper 

Equation" was calculated. 

5 600 

^ 500 

0 I I I "I I I I I I I I IT l l l l ' l l I'TI I I I I I I I I I1 I I I I I I I I I I I I I I I I I H I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

o i n o m o m o L O O i n o m o i n o i n o i r ) c M c a c o c o ^ - ' ^ L o i o c D C D N . r ^ o o o o o o i O O 
0 ) 0 ) 0 0 5 0 > 0 ) 0 5 0 ) C 5 0 > 0 > 0 5 0 ) 0 ) 0 ) 0 > 0 0 
1 - 1 - 1 - 1 - 1 - 1 - 1 - T - 1 - 1 - 1 - 1 - 1 - 1 - T - 1 - C M C V I 

Figure 3.1 Predicted Forage Growth for Fremont County Wyoming 

However, in order for the Bellman equation to optimize over the random weather, 

this stochastic variable needs to be discrete. The predicted forage production outcomes 

were discretized into 7 equal range outcomes over the relevant range, as reported in Table 

3.1. As can be seen, as Smith (2007) state, more than half of the years see less than 

average precipitation, and less than average forage production, reinforcing the need to 

incorporate variable weather in any decision making process. 
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Table 3.1 Frequency of Forage Production (in lbs/acre) 
Range 
[250,315) 
[315,380) 
[380,445) 
[445,510) 
[510,575) 
[575,640) 
[640,704) 

Median Value 
282.43 
347.30 
412.18 
477.06 
541.93 
606.81 
671.69 

Frequency 
9 

28 
28 
15 
3 
3 
1 

Cumulative 
10.34% 
42.53% 
74.71% 
91.95% 
95.40% 
98.85% 
100.00% 

Figure 3.2 Frequency of Forage Production 

In order to calibrate forage production for this area, the value of gamma from 

equation 3.12 was found that corresponded to forage production observed with each of 

the bins. This gamma was estimated assuming the observed forage production from 

equation 1.7 occurred when standing forage was at the state that maximized forage 

production, or Vi of carrying capacity. The equation was then solved for the y that 

satisfied: 

G(y,d)) = r<0V(X~) (3.12) 
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WithV=156, Vm=312. 

Table 3.2 shows these gammas and the associated probabilities of observation over this 

86 year horizon: 

Table 3.2 Calculated Growth Rates and Associated Probabilities of Occurrence 
gamma 
0.0302 
0.0371 
0.0440 
0.0510 
0.0579 

Probability 
10.34% 
32.18% 
32.18% 
17.24% 
3.45% 

Table 3.3 Parameters used in Stochastic Dynamic Model 
Parameter Value 

(Alternative Vales Used in Sensitivity Analysis) 

y (Relative Growth Rate of Forage) Stochastic 

Vm (Maximum Standing Vegetation) 

Cm (Maximum Daily Consumption) 

Vr (Mandatory Forage Residual) 

Vk (Michaelis Constant) 

W ^ (Initial Weight) 

Pc (Price of Corn) 

P (Discount Factor) 

CC (Carrying Cost per Animal) 
Days on Pasture 
Death loss 

312 lb/acre 

15.6 Vol animal/ day 

0 Vol acre 

62.4 lb/ acre 
(30,100) 

550 lb. 

1.65 
(1.10,2.25) 

0.909091 
(.833333..952381,. 990099) 

$21.62/ animal 
120 
0.02 

Results 

Model Simulation 

The model was solved for using GAMS utilizing the Chebychev collocation 

method. This value function collocation method described above is able to determine the 



state value that maximizes the Bellman equation. This solution procedure determines the 

optimal decision rule for any given state value. However, as weather is stochastic, the 

forage level will not converge to a single value over time, so in order to determine 

optimal behavior a time path was simulated. Outcomes can be mapped over a select time 

path though using a simulation method. A hundred year horizon was run where the 

precipitation was determined using a random number generator. A simulated time path 

of outcomes based on the already determined decisions rules was over this predetermined 

time path of weather outcomes to map optimal decisions when faced with these realized 

weather impacts. 

Given initial forage, the control is set according to the policy function in order to 

reach a desired expected state in the subsequent period. After the management decision 

is made based on the expected weather outcome the system is shocked with a realized 

weather impact which ultimately determines the ending state of forage. In the next 

period the decision is again made according to the policy function at the realized new 

forage state and the process is continued over the planning horizon. 

The model was first simulated for a scenario of deterministic weather using the 

expected value of the stochastic weather in all periods. Then the model was solved using 

stochastic weather for the initial parameter values as state in Table 3.3. Of interest is the 

fact that when a producer accounts for expected forage production they will make 

decisions differently than that based on a deterministic view using average weather 

events. When producers account for variable weather, they will in fact stock at a more 

conservative rate. Producers will also realize lower returns to the land as a result, but 
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again the long term cost of potentially driving down forage production outweighs the 

short term benefit of increased returns associated with higher stocking rates. 

Although the ending state of the forage (average values reported under "Actual 

State" in Table 3.4) is often observed to be lower under the stochastic case, the desired 

ending state (Desired State in Table 3.4) is in fact higher than in the deterministic case. 

As producers are unaware of current year weather realizations when decisions are made, 

they can only make decision based on expected outcomes of weather. Producers try to 

leave more standing forage to ensure future productivity, yet often poor weather 

outcomes force the ending state below the desired state. Although, in years with 

favorable weather outcomes, producers leave more forage than desirable. 

Table 3.4 Results from Dynamic Optimization 
Desired Stocking 

Actual State State Rate Returns Ending Weights 

173 173 0.2903 $10.44 681 

162 
161 
160 
158 

159 
160 
161 

150 
160 
171 

163 
157 
154 

176 
176 
175 
173 

174 
175 
176 

164 
175 
186 

181 
175 
172 

0.2523 
0.2525 
0.2528 
0.2534 

0.2533 
0.2528 
0.2523 

0.2128 
0.2528 
0.2878 

0.2501 
0.2525 
0.2537 

$8.29 
$8.28 
$8.26 
$8.23 

$8.68 
$8.26 
$7.81 

$9.67 
$8.26 
$6.96 

$5.57 
$8.21 
$10.88 

675 
675 
675 
674 

674 
675 
675 

696 
675 
660 

675 
674 
673 

(Unless otherwise noted, Michaelis constant 64.2, Corn Price 1.65, discount rate .1) 

The model was also solved for the other parameter values as listed in Table 3.3 

for sensitivity analysis. As seen in chapter 2, the parameter with the largest impact on 

Deterministic 
Outcome 

Discount 
Rate 

1% 
5% 

10% 
20% 

Corn Price 

Michaelis 
Constant 

low 
med 
high 

30 
64.2 
100 

Cattle 
Prices 

Decreased 20% 
Base 

Increased 20% 
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optimal decisions was the Michaelis Constant. Although corn and cattle price levels do 

impact returns to land, like chapter 2, the decisions made by a producer are not heavily 

influenced by price levels. An interesting difference from chapter 2 however, is that 

actual average ending state is less than observed in the deterministic model, although the 

desired state is in fact slightly higher. Another major difference from the output of 

chapter 2 is that returns to land are significantly lower for the model when weather 

deviation is observed. The outcome was also run deterministically for the average 

gamma (0.042837746) based on associated probabilities. When there is no deviation, 

returns to land are much higher every year, standing forage is consistently higher, and 

stocking rates are higher compared to any of the other scenarios. Again, the fact that 

weather is stochastic implies this will never reach a true "steady state," however 

frequency of outcomes can be determined by simulation. 

Comparison across Discount Rates 

The discount rate used had little or no impact on model results. As this is an 

infinite time horizon, producers will generally respond to variable weather in the same 

regard. Figure 3.3 shows that regardless of discount rate used, the percent of time that 

standing forage observed is each of the following categories is identical. Figure 3.4 

shows that the discount rate did not heavily impact the amount of animals per acre. As 

seen in Figures 3.5 and 3.6 there is slight variation in the occurrence of different ending 

weights for each animal as well as yearly returns to land, but the overall pattern remains 

steady for different discount rates. 
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Figure 3.3 Comparisons of Standing Forage across Discount Rates 
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Figure 3.4 Comparisons of Stocking Rates across Discount Rates 
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Figure 3.5 Comparisons of Ending Weights across Discount Rates 

Returns - Comparison Across Disount Rates 
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Figure 3.6 Comparisons of Yearly Returns across Discount Rates 

Comparison across Corn Price Levels 

As can be seen in Figures 3.7, 3.8, and 3.9, as in the comparison across discount 

rates, the decision variables across corn price levels are fairly consistent. The biggest 
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difference is that lower corn prices see higher returns to land more frequently than either 

average or high corn prices, as can be seen in Figure 3.10. This implies that although 

high corn prices do negatively impact cattle producers, they should not alter decisions 

based solely on high corn prices. 

Standing Forage - Comparison Across Corn Price 
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Figure 3.7 Comparisons of Standing Forage across Corn Price Levels 

Stocking Rate - Comaprison Across Corn Price 
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Figure 3.8 Comparisons of Stocking Rate across Corn Price Levels 
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Ending Weights - Comparison Across Corn Price 
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Figure 3.9 Comparisons of Ending Weights across Corn Price Levels 
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Figure 3.10 Comparisons of Yearly Returns across Corn Price Level 
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Comparison across Michaelis Constant 

The Michaelis Constant proves to be the most important parameter when 

determining decisions. A lower Michaelis Constant, meaning animals are able to 

consume more with less standing forage. The outcome associated with cattle that are 

more efficient result in leaving less standing forage a seen in Figure 3.11, stocking at 

lower rates as seen in Figure 3.12, producing heavier cattle as seen in Figure 3.13, and 

having higher yearly returns as seen in Figure 3.14. In fact, the scenario with a Michaelis 

Constant of 30 is the only scenario in which standing forage was allowed to drop below 

fifty pounds, and also the only scenario in which yearly returns topped $12/acre. On the 

other hand, the scenario where the Michaelis Constant was set at 100, meaning more 

standing forage was required as the animals are less efficient, was the only scenario that 

saw a stocking rate over .3, and never encountered ending weights over 700 pounds. This 

scenario was also the most likely to see standing forage exceed 250 pounds/acre. This 

scenario realized the lowest returns per acre, never seeing yearly returns reach $12/acre. 

This result has two major implications. First, in order to properly determine optimal 

management decisions, this biological response parameter must be accurately 

determined. Secondly, if this is somehow in a producer's control, it would be very 

valuable to lower this parameter, whether through increasing forage quality or through 

better herd genetics. 
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Standing Forage - Comparison Across Michaelis 
Constant 
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Ending Weights - Comparison Across Michaelis 
Constant 
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Returns - Comparison Across Michaelis Constant 
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Figure 3.14 Comparisons of Yearly Returns across Michaelis Constants 

Comparison across Cattle Price Levels 

As in the comparison across corn price levels and discount rates, the decision 

variables across cattle price levels are fairly consistent. As seen in Figure 3.15, the 
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stocking rate is fairly consistent, ranging from 0.2501 to 0.2537 head per acre from low 

to high cattle prices. As seen in Figures 3.15, 3.16 and 3.17, when output prices are high, 

producers will tend to stock slightly higher, leave slightly less forage, and end with 

slightly heavier cattle. However, the difference in decisions is not near as great as that 

observed across varying Michaelis Constants. The biggest impact varying cattle price 

levels have are on returns per acre, a seen in Figure 3.18. Producers will feel the impact 

of varying cattle price levels greatly, but should not change their decisions much due to 

the changes. 
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Stocking Rates - Comparison Across Ouput Price 
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Figure 3.18 Comparisons of Yearly Returns across Cattle Price Levels 

Optimal Stocking Rate 

The previous outcomes were based on a producer who only has knowledge of 

long-term expected outcomes of random weather events. But what should a producer do 

if they are able to observe, or accurately predict, precipitation before the stocking rate is 

set? The value function is able to help determine the optimal policy function as well. 

Figure 3.19 shows what stocking rate should be according to observed standing forage 

and observed (or predicted) current year growing season weather. The graph is based on 

the base scenario of a 10% discount rate, average corn prices, and a Michaelis Constant 

of 64.2. 

As expected, as precipitation increases, optimal stocking rate also increases. As 

observed standing forage reaches the desired standing forage level from either direction, 

optimal stocking rates also increase. What impact would knowledge of weather have for 

a producer? A simulation was run using desired standing forage levels given the 
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Figure 3.19 Optimal Stocking Rates across Standing Forage and Weather 
Realizations 

stochastic dynamic programming model. The simulation was run under a scenario where 

a producer must make decisions without knowledge of current year growing season 

precipitation, and a scenario where the producer was given knowledge of current season 

weather before stocking rates were determined. As seen in Figure 3.20, if the producer 

was aware of current weather realizations, the producer sets stocking rate that tracked 

seasonal weather, as opposed to the scenario where decisions must be made prior to 

weather realization, where often stocking rates followed actual weather patterns with a 

one year lag. The producer who is aware of weather realizations at the time of stocking 

rate decisions is able to keep standing forage at the desired level, while a producer who 

makes decisions based solely on expectations of weather outcomes allows standing 

forage to fluctuate around desired levels as seen in Figure 3.21. This shows that a 

producer who is unaware of weather realizations allows standing forage to fluctuate, 
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forcing them to alter future stocking rates to account for the state of the forage to be in 

other than the desired state. The biggest impact this will have on a producer is that yearly 

returns will be affected by these decisions. Figure 3.22 shows the differences in yearly 

returns for producers with and without knowledge of weather realizations. Table 3.5 

shows that on average, a producer with knowledge of weather realizations can stock at a 

higher rate, leaves more standing forage, and has better average yearly returns, as well as 

receiving 21% total returns over a 100 year horizon. 

- Stocking Rate - Known Weather 
- Stocking Rate - Unknown Weather 
• Weather Realization 

Figure 3.20 Stocking Rates over Time Compared for Known and Unknown Weather 
against Weather Realizations 

•Standing Forage -
Known Weather 

• Standing Forage -
Unknown Weather 

Figure 3.21 Standing Forage over Time Compared for Known and Unknown 
Weather Realizations 
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Figure 3.22 Yearly Returns over Time Compared for Known and Unknown 
Weather Realizations 

Table 3.5 Comparison of Outcomes with Known and Unknown Weather 
Relizations 

Deterministic Scenario Stochastic Scenario 
Average Stocking Rate 

Average Standing Forage 

Average Yearly Returns 

Total Yearly Returns over 100 
Year Horizon 

0.2800 

175 

$10.05 

$1,005 

0.2528 

160 

$8.26 

$826 

Without prior knowledge of weather, a producer can only make decisions based 

on expected outcomes, which leaves ending forage other than the desired state in most 

cases. Therefore, if a dry year occurred, the forage base was depleted due to higher than 

desirable stocking rates and the producer must respond by stocking at a lower rate the 

following year in order to rebuild the forage base. If a producer is aware of weather 

before the decision is made, they are able to stock the range to ensure the desired ending 

forage value is reached. In this scenario, over 100 year time span, the knowledge of 

weather increased total returns to land by $178, or an average of $1.78 per year. This 
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follows Vetter's (2005) conclusion that basing herd numbers conservatively in the idea 

diat maintaining a constant herd size is important is inappropriate, and that "(d)rought 

risks are minimized not by maintaining conservative stocking rates, but rather by 

allowing livestock numbers to increase in wet years (pg. 330)." Optimal management 

includes increasing stocking rates in response to favorable conditions and reducing 

stocking rates in poor years. Management decisions must account for current conditions 

and expected outcomes to ensure future productivity of rangeland. 

Conclusion 

A dynamic model maximizing land values over stochastic weather events was 

evaluated in terms of optimal stocking decisions. As in the previous chapter, the 

parameter with the largest impact on decisions was the Michaelis Constant. Producers 

who can procure either animals that are efficient grazers or better quality forage can 

increase returns to land. The individual's discount rate will not alter management 

decisions, nor will the price level of cattle or corn, although the latter two will impact 

financial returns realized. 

The dynamic model optimized over expected outcomes, as compared to a model 

that uses average forage production, ends with usually less forage, a more conservative 

stocking rate, and lower financial returns. However, if a producer has knowledge of 

current year weather realizations, they can make more precise stocking rate determination 

to take advantage of increased forage in wet years without depleting the forage base in 

dry years. Even with this knowledge however, a producer will still stock at a lower rate 

on average than a producer without variable weather impacts (0.27 acre/head as 
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compared to 0.29 acre/head). Regardless of whether a producer has knowledge of current 

weather or not, they must constantly monitor the state of the range and make 

corresponding changes to stocking rates if they are to maximize financial returns. 

93 



Literature Cited 

Abolpour, B. (2007) "Optimization model for allocating water in a river basin during a 
drought." Journal of irrigation and Drainage Engineering, 133, 559-572. 

Allden, W. G., and I. A. McD. Whittaker. (1970) "The Determinants of Herbage Intake 
by Grazing Sheep: The Interrelationship of Factors Influencing Herbage Intake and 
Availability." Australian Journal of Agricultural Research, 21, 755-766. 

Apland, Jeffrey. (1985) "The Dynamics of Beef Cattle Production: Model Formulation, 
Application and an Example." North Central Journal of Agricultural Economics, 7(2), 
21-32. 

Bastian, Chris T., James J. Jacobs, Larry J. Held, and Michael A. Smith. (1991) "Multiple 
Use of Public Rangeland: Antelope and Stocker Cattle in Wyoming." Journal of Range 
Management, 44 (4), 390-394. 

Bastian, Chris, Shannon L. Freeburn and John P. Hewlett. (2005) "Wyoming Farm, 
Ranch and Rural Land Market: 2002-2004." Bulletin 1168. Agric. Exp. Sta., 
College of Agriculture, University of Wyoming, Laramie. November 2005. 

Bernardo, Daniel J. (1989) "A Dynamic Model for Determining Optimal Range 
Improvement Programs." Western Journal of Agricultural Economics, 14(2), 223-234. 

Berryman, Alan, A. (1992) "The Origins and Evolution of Predator-Prey Theory." 
Ecology, 73(5), 1530-1535. 

Bonham, C. D. (1987) "Estimation of Forage Removal by Rangeland Pests," in 
Integrated Pest Management on Rangeland, edited by John L. Capinera. Pp. 69-80. 
Westview Press, Boulder, 1987. 

Cacho, O. J. "A Practical Equation for Pasture Growth under Grazing." Grass and 
Forage Science, 48, 387-394. 

Carande, Vilma G., E. T. Bartlett, and Paul H. Gutierrez. (1995) "Optimization of 
Rangeland management Strategies under Rainfall and Price Risks." Journal of Range 
Management, 48(1), 68-72. 

Chavas, Jean-Paul, James Kliebenstein, and Thomas D. Crenshaw. (1985) "Modeling 
Dynamic Production Response: The Case of Swine Production." American Journal of 
Agricultural Economics, August, 636-646. 

Clark, Edward, and Jean Annexstad. (1988) "Drought Scrambles Feed Plans." Dairy 
Herd Management, September 1988, 16-22. 

94 



Cooper, Kevin and Ray Huffaker. (1997) "The Long-term Bioeconomic Impacts of 
Grazing on Plant Succession in a Rangeland Ecosystem." Ecological Modeling, 97, 59-
73. 

Couture, S. (2008) "Multi-stand Forest Management under a Climatic Risk: Do Time and 
Risk Preferences Matter?" Environmental Modeling & Assessment, 13,181-193. 

Etchepare, John. (1985) "Cattle and Sheep in the Intermountain Region." Proceedings of 
a conference on multispecies grazing : June 25-28, 1985, Winrock International, 
Morrilton, Arkansas / edited by Frank H. Baker, R. Katherine Jones, p. 178-183., 
Morrilton, Ark. : Winrock International Institute for Agricultural Development, 1985. 

Garoian, Lee, James W. Mjelde, and J. Richard Conner. (1990) "Optimal Strategies for 
Marketing Calves and Yearlings from Rangeland." American Journal of Agricultural 
Economics, August 1990, 604-613. 

Glen, John J. (1980) "A Mathematical Programming Approach to Beef Feedlot 
Optimization." Management Science, 26(5), 524-535. 

Grings, E. E., R. E. Short, M. D. Macneil, M. R. Haferkamp and D. C. Adams. (1996) 
"Efficiency of Production in Cattle of Two Growth Potentials on Northern Great Plains 
Rangelands During Spring-Summer Grazing." Journal of Animal Science, 74, 2317-2326. 

Hart, Richard, Marilyn J. Samuel, Peter S. Test, and Michael A. Smith. (1988) "Cattle, 
Vegetation, and Economic Reponses to Grazing Systems and Grazing Pressure." Journal 
of Range Management, 41(4), 282-286. 

Hepworth, K. W., P. S. Test, R. H. Hart, J. W. Waggoner, Jr., and M. A. Smith. (1991) 
"Grazing Systems, Stocking Rates, and Cattle Behavior in Southeastern Wyoming." 
Journal of Range Management, 44 (3), 259-262. 

Holecheck, Jerry L. (1994) "Financial Returns from Grazing Different Management 
Systems in New Mexico." Rangelands, B16 (6), 237-240. 

Holling, C. S. (1959) "The Components of Predation as Revealed by a Study of Small 
Mammal Predation of the European Pine Sawfly." Canadian Entomologist, 91, 293-320. 

Holling, C. S. (1966) "The Functional Response of Invertebrate Predators to Prey 
Density." Memoirs of the Entomological Society of Canada, 48, 421-425. 

Holmberg, Andrea. (1982) "On the Practical Indentifiability of Microbial Growth Models 
Incorporating Michaelis-Menten Type Nonlinearities." Mathematical Biosciences, 62, 
23-43. 

95 



Howitt, R., Reynaud, A., Msangi, S., and Knapp, K. (2002). "Using Polynomial 
Approximations to Solve Stochastic Dynamic Programming Problems: or A 'Betty 
Crocker' Approach to SDP." Working Paper, Department of Agricultural & Resource 
Economics, University of California, Davis. 

Huffaker, Ray G., and James E. Wilen. (1991) "Animal Stocking Under Conditions of 
Declining Forage Nutrients." American Journal of Agricultural Economics, 73(4), 1212-
1223. 

Judd, Kenneth L. (1989) "Numerical Methods of Economics." The MIT Press, 
Cambridge, Mass., 1989. 

Kennedy, J. O. S., B. H. Rofe, I. D. Greig, and J. B. Hardaker (1976) "Optimal Feeding 
Policies for Broiler Production: An Application of Dynamic Programming." Australian 
Journal of Agricultural Economics, 20(1), 19-32. 

Kirby, Donald R., Kelly D. Krabbenhoft, Kevin K. Sedivec, and Edward S. DeKeyser. 
(2002) "Wetlands in Northern Plains Prairies: Benefiting Wildlife & Livestock." 
Rangelands, 24(2), 22-25. 

Kobayashi, Mimako, Emilio A. Laca, Lovell S. Jarvis, and Richard E. Howitt. (2007) 
"Stochastic Rangeland Use under Capital Constraints." American Journal of Agricultural 
Economics, 89(3), 805-817. 

Lecain, Daniel R., Jack A. Morgan, Gerald E. Schuman, Jean D. Reeder, and Richard H. 
Hart. (2000) "Carbon Exchange Rates in Grazed and Ungrazed Pastures of Wyoming." 
Journal of Range Management, 53 (2), 199-206. 

Loehle, Craig. (1985) "Optimal Stocking for Semi-Desert Range: A Catastrophe Theory 
Model." Ecological Modeling, 27, 285-297. 

Lotka, A. J. (1925) "Elements of Physical Biology." Williams & Wilkins, Baltimore, 
MD. 

Manley, W. A., R. H. Hart, M. J. Samuel, M. A. Smith, J.W. Wagoner, jr., and J. T. 
Manley. (1997) "Vegetation, Cattle, and Economic Responses to Grazing Strategies and 
Pressure." Journal of Range Management, 50(6), 638-646. 

May, Gary J., Rodney D. Jones, Micahel R. Langemeier, and Kevin C. Dhuyvetter. 
(2002) "Influence of Grazing Lease Terms on Economic Optimal Stocking Rates." 
Journal of Range Management, 55(5), 461-468. 

Meyer, C. F., and R. J. Newett. (1970) "Dynamic Programming for Feedlot 
Optimization." Management Science, 16(6), B-410-B-426. 

96 



Michaelis, L. and M. L. Menten. (1913) "Die Kinetik der Invertinwirkung." Biochem. 
Ze., 49, 334-369. 

Miranda, Mario J., and Paul L. Fackler. (2002) "Applied Computational Economics and 
Finance." The MIT Press, Cambridge, Mass., 2002. 

Moore, C. T., M. J. Conroy. (2006) "Optimal Regeneration Planning for Old-Growth 
Forest: Addressing Scientific Uncertainty in Endangered Species Recovery through 
Adaptive Management." Forest Science, 52,155-172. 

Mousavi, S.J. (2004) "A Stochastic Dynamic Programming Model with Fuzzy Storage 
States for Reservoir Operations." Advances in Water Resources, 27, 1105-1110. 

Mujumdar, P. (2007) "A Bayesian Stochastic Optimization Model for a Multi-Reservoir 
Hydropower System." Water Resources Management, 21, 1465-1485. 

Nagler, A., S. Mooney, C. Bastian, J. P. Hewlett, B. Aldridge, B. A. Sarchet, W. 
Umberger, M. Frasier, S. I. Paisley, M. A. Smith, P. Ponnameneni, D. T. Taylor, 
and T. Foulke. (2006) Wyoming Beef Cattle Producers Survey - Final Report. 
Published by Department of Agricultural and Applied Economics, University of 
Wyoming, Laramie. June 2006. pp: 1-142. (also available at: 
http://agecon.uwyo.edu/WYLivestock/FINALReport.pdf). 

NCDC,NOAA, http://www.ncdc.noaa.gov/oa/ncdc.html 

Noy-Meir, I. (1976) "Rotational Grazing in a Continuously Growing Pasture: A Simple 
Model." Agricultural Systems, 1, 87-112. 

Ogden, Phil R. (1987) "Simulation Model to Test Economic Consequences of 
Management Decisions for a Steer Operation on Pinyon-Juniper Woodlands." General 
technical report INT - U.S. Department of Agriculture, Forest Service, Intermountain 
Research Station, 215, 183-187. 

Parsch, Lucas D., Michael P. Popp, and Otto J. Loewer. (1997) "Stocking Rate Risk for 
Pasture-Fed Steers Under Weather Uncertainty." Journal of Range Management, 50, 
541-549. 

Parsons, Cory T., Patrick A. Momont, Timothy Delcurto, Michael Mclnnis, and Marni L. 
Porath. (2003) "Cattle Distribution Patterns and Vegetation Use in Mountain Riparian 
Areas." Journal of Range Management, 56, 334-341. 

Passmore, G, and C. Brown. (1991) "Analysis of Rangeland Degradation using 
Stochastic Dynamic Programming." The Australian Journal of Agricultural Economics, 
35(2), 131-157. 

97 

http://agecon.uwyo.edu/WYLivestock/FINALReport.pdf
http://www.ncdc.noaa.gov/oa/ncdc.html


Phillips, W. A., Pas, B. K. Northup, H. S. Mayeux, and J. A. Daniel. (2003) 
"Performance and Economic Returns of Stocker Cattle on Tallgrass Prairie Under 
Different Grazing Management Strategies." The Professional Animal Scientist, 19, 416-
423. 

Pope, C. Arden, III, Gary L. McBryde. (1984) "Optimal Stocking of Rangeland for 
Livestock Production within a Dynamic Framework." Western Journal of Agricultural 
Economics, 9(1), 160-169. 

Rodriguez, Abelardo, and L. Roy Roath. (1987) "A Dynamic Programming Application 
for Short-Term Grazing Management Decisions." Journal of Range Management, 40(4), 
294-298. 

Rodriguez, Abelardo, and R. G. Taylor. (1988) "Stochastic Modeling of Short-Term 
Cattle Operations." American Journal of Agricultural Economics, February 1988, 121-
132. 

Shwiff, Stephanie A., and Rod J. Merrell. (2004) "Coyote Predation Management: An 
Economic Analysis of Increased Antelope Recruitment and Cattle Production in South 
Central Wyoming." Sheep & Goat Research Journal, 19, 29-33. 

Smith, J. Maynard, and M. Slatkin. (1973) "The Stability of Predator-Prey Systems." 
Ecology, 54(2), 384-391. 

Smith, Michael A. (2005) "Report for 2002WY7B: Drought prediction model 
development and dissemination in Wyoming." (Available at: 
http://water.usgs.gov/wrri/04grants/Progress%20Completion%20Reports/2002WY7B.pdf 
) • 

Smith, Michael A. (2007) "Recognizing and Responding to Drought on Rangelands." 
Wyo Range Facts, University of Wyoming, CES Publication, MP-111.09, April, 
(available at: http://ces.uwvo.edu/PUBS/MPl 11-09.PDF). 

Stillings, Amy M., John A. Tanaka, Neil R. Rimby, Timothy Delcurto, Patrick A. 
Momont, and Marni L. Porath. (2003) "Economic Implications of Off-Stream Water 
Developments to Improve Riparian Grazing." Journal of Range Management, 56, 418-
424. 

Tess, M. W., and B. W. Kolstad. (2000) "Simulation of Cow-Calf Production Systems in 
a Range Environment: I. Model Development." Journal of Animal Science, 78, 1159-
1169. 

Torell, L. Allen, Kenneth S. Lyon, and E. Bruce Godfrey. (1991) "Long-Run versus 
Short-Run Planning Horizons and the Rangeland Stocking Rate Decision." American 
Journal of Agricultural Economics 73(3): 795-807. 

98 

http://water.usgs.gov/wrri/04grants/Progress%20Completion%20Reports/2002WY7B.pdf
http://ces.uwvo.edu/PUBS/MPl


Torell, L. A., J. A. Tanaka, N. Rimbey, T. Darden, L. Van Tassell, and 
A. Harp. (2001) "Ranch-Level Impacts of Changing Grazing Policies on BLM 
Land to Protect the Greater Sage-Grouse: Evidence from Idaho, Nevada and 
Oregon." Policy Analysis Center for Western Public Lands, Caldwell, ID. 
PACWPL Policy Paper SG-01-02. 

Van Tassell, Larry W., L. Allen Torell, Neil R. Rimby, and E. Tom Bartlett. (1997) 
"Comparison of Forage Value on Private and Public Grazing Leases." Journal of Range 
Management 50(3):300-306. 

Verhulst, P. F. (1838) "Notice Sur la loi que la Population Suite dans son 
Accroissement." Correspondence Mathematique et Physique, 10, 113-121. 

Vetter, S. (2005) "Rangelands at Equilibrium and Non-Equilibrium: Recent 
Developments in the Debate." Journal of Arid Environments, 62, 321-341. 

Volterra, V. (1931) "Variations and Fluctuations of the Number of Individuals in Animal 
Species Living Together." Translated from 1928 edition by R. N. Chapman. Animal 
Ecology, Arno, New York, New York. 

Westoby, Mark, Brian Walker, and Imanuel Noy-Meir. (1989). "Opportunistic 
Management for Rangelands not at Equilibrium." Journal of Range Management, 42(4), 
266-274. 

Wyoming Agricultural Statistics, 
http://www.nass.usda.gov/Statistics_by_StateAVyoming/index.asp 

http://www.nass.usda.gov/Statistics_by_StateAVyoming/index.asp


Appendix 1 

Supplemental Tables and Figures Supporting Results of Chapter 1 

100 



Table Al . l Market and Weather Elasticities of Production and Financial Returns across All Starts, 
Including FLOOR Scenario 

Base Feed Floor 

Yearly Returns 

AUY 

Cull 

Acres Grazed 

Total Feed 

Feed/AUY 

Acres/AUY 

Cull/AUY 

Market Weather R Squared 

• P 1.009 
-51.213 

0.254 0.326 
1.225 

0.202 0.210 
0.133 

0.300 E a U 
•6.357 

0.233 0.326 
1.598 

-0.022 -0.002 
0.349 

0.069 liWaotaWM 
-15.791 

-0.049 -0.102 
-0.904 

0.632 

0.286 

0.175 

0.606 

0.261 

0.058 

0.942 

0.142 

iPi 
Market Weather R squared 

1.690 
-47.019 

0.235 
2.882 

0.198 0.271 
1.244 

0.224 F 5 
-5.701 

0.339 B 
-4.578 

0.139 K J M W f l B 

-15.672 

0 . 0 0 4 * 
-15.543 

-0.037 -0.107 
-1.195 

0.231 

0.190 

0.117 

0.595 

0.076 

0.430 

0.759 

0.148 

Market Weather R Squared 

1.691 
46.980 

0.234 
-2.903 

0.197 0.271 

-1.253 

0.224 
-5.701 

0.336 I -0:610-•! 
-4.651 

0.137 
-15.738 

-0.005 

15.372 

-0.037 -0.108 

0.231 

0.191 

0.117 

0.597 

0.076 

0.430 

0.859 

0.149 

Values represent elasticities estimated using OLS. Values under coefficients are comparison t stats against the null hypothesis that the coefficients are equal. Also reported 
are associated R Square Values. 

Table A1.2 Market and Weather Elasticities of Production and Financial Returns across Average Starts, Including 

FLOOR Scenario 

Base Drought 

Yearly Returns 

AUY 

Cull 

Acres Grazed 

Total Feed 

Feed/AUY 

Acres/AUY 

Cull/AUY 

Market Weather R Squared 

Supplemental Feed Herd Floor 

-47.166 

0.268 0.259 
-0.149 

0.213 0.157 

0.056 

0.316 [ 
-7.133 

0.244 0.257 

0.208 

-0.024 -0.003 
0.3S4 

0.073 
-15.917 

-0.051 -0 .096 
-0.761 

0.759 

0.263 

0.148 

0.678 

0.233 

0.066 

0.945 

0.122 

Market Weather R Squared 

" " t i l l 2AV6 
-30.402 

0.250 0.304 
0.920 

0.210 0.184 
-0.442 

0.237 I M t e O l M l l I 
-5.982 

o.358 wmMim 
-7.827 

0.140 
-16.400 

-0.003 

-15.257 

-0.039 -0.106 
-1.139 

0.395 

0.198 

0.093 

0.642 

0.153 

0.479 

0.857 

0.132 

Market Weather R Squared 

2 .417 
30.361 

0.249 0.305 
-0.944 

0.209 0.184 

0.430 

0.237 
-5.982 

0 .356 

0.138 
-16.457 

-0 .002 
15.253 

-0.038 -0.106 
1.152 

0.395 

0.198 

0.092 

0.643 

0.153 

0.479 

0.857 

0.134 

Values represent elasticities estimated using OLS. Values under coefficients are comparison t stats against the null hypothesis that the coefficients are equal. Also reported are 
associated R Square Values. 



Table A1.3 Market and Weather Elasticities of Production and Financial Returns across Dry Starts, Including 

FLOOR Scenario 

Yearly Returns 

AUY 

Cull 

Acres Grazed 

Total Feed 

Feed/AUY 

Acres/AUY 

Cull/AUY 

Base Drought 
Market Weather 

M » n i 0.646 
-58.638 

0.254 mfamisMN 
2.698 

0.203 0.266 
0.058 

0.300 mRLfttCM 
-5.256 

o.232 \gyg@mtm 
3.105 

-0.023 -0.002 
0.353 

0.069 WK9IP1J1 
-15.540 

-0.049 -0.117 
-1.166 

R Squared 

0.481 

0.344 

0.236 

0.537 

0.319 

0.059 

0.935 

0.184 

Supplemental Feed 
Market Weather R 

I 7 M M H 0.868 
-63.474 

o.23o mrnmm 
5.098 

0.193 W H t t f l 
2.701 

0.215 in jgwr t 
-4.967 

0.344 BBKSOfflli 
-2.779 

0.146 mm^m 
-16.107 

-0.010 W W S M i 
-14.861 

-0.037 -0.120 
-1.411 

Squared 

0.131 

0.235 

0.176 

0.532 

0.053 

0.414 

0.863 

0.184 

Herd Floor 
Market Weather R 

| — | 0.870 
63.446 

0.229 M H H 

o.i92' m m 
-2.705 

0.215 — I 
-4.966 

o.34i mmm 
-2.872 

0.143 M i -16.192 

-0.009 I:-0:884,1 
14.867 

-0.037 -0.121 
1.422 

Squared 

0.235 

0.537 

0.054 

0.415 

0.864 

0.186 

Values represent elasticities estimated using OLS. Values under coefficients are comparison t stats against the null hypothesis that the coefficients are equal. Also reported are associated 

R Square Values. 

Table A1.4 Market and Weather Elasticities of Production and Financial Returns across Wet Starts, Including FLOOR 

Scenario 

Yearly Returns 

AUY 

Cull 

Acres Grazed 

Total Feed 

Feed/AUY 

Acres/AUY 

Cull/AUY 

Market 

0.241 

0.191 

0.285 

0.222 

-0.020 

0.066 

-0.047 

Base Drought 
Weather 

f f l 1.140 
-48.157 

0.306 
1.115 

0 . 2 0 7 
0.062 

R 9 ' * « f R i 
-6.693 

0.308 
1.472 

0.000 
0.342 

wmmim -15.921 

-0.093 
-0.786 

R Squared 

0.725 

0.261 

0.153 

0.608 

0.238 

0.050 

0.945 

0.124 

Supplemental Feed 
Market Weather R Squared 

-49.249 

o.226 wmatam 
2.607 

0.191 0.277 
1.461 

0.220 -0.581 
-6.163 

0.316 mrnmm 
-3.201 

o.i3o ttmmm 
-14.494 

0.023 t K M M 
-16.895 

-0.035 -0.096 
-1.035 

0.281 

0.158 

0.097 

0.612 

0.050 

0.401 

0.855 

0.131 

Herd Floor 
Market Weather 

l - ^ t e i f e l 1.691 
49.204 

0.225 K B H i 
-2.630 

0.190 0.277 
-1.473 

0.219 H H N M d 
-6.163 

0.313 I H R I I 
-3.263 

o.i28 i^waaw 
-14.552 

-0.002 B H 
16.009 

-0.035 -0.096 
1.048 

R Squared 

0.281 

0.158 

0.097 

0.612 

0.051 

0.857 

0.132 

Values represent elasticities estimated using OLS. Values under coefficients are comparison t stats against the null hypothesis tiiat the coefficients are equal. Also reported are associated R Square 
Values. 
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Figure A1.2 Quartile Graphs for Herd Size across Scenarios, Including FLOOR 
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Figure A1.5 Quartile Graphs for Net Yearly Returns across Scenarios, Including 
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Figure A1.7 Herd Size over Market Year and Average Start 
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Figure A1.8 Total Acres Grazed over Market Year and Average Start 
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Figure A1.9 Total Feed Allowed over Market Year and Average Start 
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Figure A1.12 Herd Size over Weather Year and Average Start 
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Figure A1.13 Total Acres Grazed over Weather Year and Average Start 

Figure A1.14 Total Feed Allowed over Weather Year and Average Start 
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Figure A1.15 Total Culling Activities over Weather Year and Average Start 
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Figure A1.17 - Average Summer Feed Allowed Compared to the Forage Production 
as a Percentage of Mean Production across Weather Years for Feed Scenario, Wet 
Start 
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Figure A1.18 - Average Summer Feed Allowed Compared to the Forage Production 
as a Percentage of Mean Production across Weather Years for Feed Scenario, Dry 
Start 
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Figure A2.1 Time paths of Standing Forage across Corn Prices 
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Figure A2.2 Time paths of Stocking Rate across Corn Prices 
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Figure A2.3 Time paths of Ending Weights across Corn Prices 
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Figure A2.4 Time paths of Yearly Returns across Corn Prices 
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Standing Forage Across Time Comparing 
Michaelis Constant 
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Figure A2.5 Time paths of Standing Forage across Michaelis Constant 
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Figure A2.6 Time paths of Stocking Rate across Michaelis Constant 
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Ending Weights Over Time Across Michaelis 
Constant 
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Figure A2.7 Time paths of Ending Weights across Michaelis Constant 

^n 

£ 25-

*- 20 -
a 
w 15-

| 10-

> 5 

o o -

Returns Over Time Across Michaelis Constant 

w w w w w w w w w 

I f. K IK K K W M )K K 

in 
*i 

41 

• Low 

_»_Low 

Medium 

n Medium 

—*— High 

-•—High 

Figure A2.8 Time paths of Yearly Returns across Michaelis Constant 
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î
 

O
)
 

IV
)

|V
)

*
.-

J
-

N
)

N
)

C
O

-
'I

V
)

IV
) 

O
O

S
N

|
*

O
O

O
)

0
)

0
0

I
>

I 
00

 C
D

 
ro

-^
o

ir
a

o
c

n
c

o
c

o
c

o
ro

c
o

c
o 

-i
-C

0
C

D
C

0
a

>
N

>
0

1
-&

.|
V

>
-&

.O
ll

V
> 

O
O

O
O

O
O

O
O

O
O

O
O

 
CO

 
IV

) 
•>

•-
»

• 
N

>
 I

V
) 

IV
) 

O
 

0
0

 ^
1

 ©
 

CO
 0

0
 

CO
 

-J
 

IV
) 

0
1

 I
V

) 
-

O
 

O
 

0
1

 -
J

 

-^
 

iv
) 
ro

 c
o 

c
o 

_ 
. 

_
 

O
 

-s
i 

C
O

 O
 

O
 

*
>

.^
IC

O
IV

)
C

O
O

O
C

O
 

-
•

.
C

O
-

L
-

L
-

k
U

l
O

J
I

U
 

O
O

O
O

O
O

O
O

O
O

O
O

 
c

o
iv

)i
>

.^
N

)i
v

)^
b

iv
)r

o
iv

)i
v

) 
0

0
)

C
O

O
)

0
0

0
0

-
'

0
)

0
)

C
B

C
O

(
0 

y
ij

s
.^

.o
ir

o
iV

J
C

o
-'

-v
ir

o
-'

c
o 

O
B

O
C

O
C

D
C

O
O

l
-

'
-

'
O

O
C

D
v

l 

O
O

O
O

O
O

O
O

O
O

O
O
 

jv
jr

o
c

o
^

r
o

r
o

b
b

r
o

r
o

r
o

r
o 

o
o

c
o

c
s

a
jo

ic
n

ro
-'

-.
&

.o
io

-s
i 

t
n

w
o

o
o

o
)

-
'-

*
*

o
i

c
o

s
*

>
 

(
O

-
l
0

0
O

l
O

l
^

l
C

0
-

'-
-

'-
I

V
>

C
0

*
-

O
O

O
O

O
O

O
O

O
O

O
O
 

2570 i o
 

223 
1940 6
 

153 
2929 i o
 

215 
1500 o

 

136 
2220 6

 

184 
2311 b

 

196 
0382 o

 

068 
0196 i o

 

032 
2142 b

 

179 
2268 t o

 

190 
2341 •

 o
 

197 
2404 i o

 

202 

o
o

o
o

c
o

o
ic

o
io

c
o

a
io

o
-

i-
j 

O
O

O
O

O
O

O
O

O
O

O
O
 

0
0

-J
-^

IV
>

*
.C

»
-v

ll
V

)^
.O

1
O

)C
J

> 
S

U
*

O
S

O
O

)
(

0
^

*
0

(
J

1 
O

O
O

O
^

O
O

O
lO

O
C

O
r

O
-

J
O

T
r

O
O

 

CO
 

CO
 

CD
 

Q
. 

O
 

C
T

 
B

) 

337 1645 0
)
 

6498 
173 4558 •

^
 4498 

216 2817 a>
 

4270 
296 2285 *

•
 

0909 241 1199 0
1
 

4327 
267 9984 O

l
 

6792 
152 9657 O

l
 6602 -s

i 

0
)
 

3459 *
>

•
 

9236 
133 2653 O

l
 

5373 
255 1153 Ol

 

5617 
498 8742 O

l
 

5762 
2449 0474 O

l
 

5891 

O
l-

s
IC

O
C

O
O

h
O

^
IC

O
-

'-
-

'-
-

'-
-

'-

ro
 

CO
 

ro
 

©
 

0
0
 

*.
 

*.
 

0
0
 

O
)
 

O
!
 

C
O
 

CO
 

*.
 

•
&

. *.
 

0
0
 

C
O
 

—
1
- ro
 

o
 

_
k
 

-
j
 

-
j
 

o
 CO

 
-P
>.
 

-t
>
 

ro
 C
O
 

0
0
 

.̂
 

O
l
 

O
l
 

•p
*.
 

CO
 

Ol
 

-•
j
 

ro
 

—
*

• 

O
l
 

0
0
 

C
O
 

A
 

o>
 

o
 

•
&

. 

a>
 

I
V

l
-

'
M

O
-

'
-

'
O

O
-

'
-

'
-

'
-

' 
b

^
b

o
b

o
c

o
c

o
^

r
o

c
o

c
o

c
o

c
o 

c
o

^
ic

o
c

o
o

o
-f

c
.-

t'
.c

n
c

o
-'

-o
 

o
o

i
t

o
o

u
i

o
x

o
a

c
n

i
n

s
i

v
) 

o
io

a
>

r
o

o
ic

o
o

a
>

a
>

c
o

o
io

 

-
•

•
O

-
'

O
-

'
-

J
-

O
O

-
'

-
'

-
'

O
 

^
i

o
t

*
.

b
b

N
J

i
b

b
b

b 
-

'c
o

o
i(

o
o

*
.

-
'0

o
o

ir
o

-
i(

o 
r

o
o

o
ir

o
c

o
c

o
-

^
-

i-
v

i^
jo

o
i 

0
)

-
i

v
J

4
i

C
0

O
)

O
)

O
l

!
O

N
|

a
i

O
l 

o 
o

 
o

 
o

 
o

 
o

i 
co

 b
i 

ro
 '*

. 
o 

o
 

o
 

o
 

o
 

o
 

o
 

'^
 

o
i 

*
.

*
•

*
• 

^
 

^
. 

O
C

O
O

o
r

O
U

O
O

U
N

t
D

C
D

^
U

 
a

>
o

o
ro

o
o

ro
o

ic
o

-s
ic

o
o

-P
>

o 
c

o
c

o
c

o
c

n
o

c
o

c
o

o
i-

s
io

o
io

i 

O
O

O
O

O
O

O
O

O
O

O
O
 

'-L
 b

 
b

 
b

 
b

 
'->

• 
a>

 r
o

 ^
 

^ 
b

 
b

 
C

O
-J

O
lO

lO
O

W
C

O
O

lC
O

-'
-C

O
O

O
 

o
i-

^
r

o
o

o
o

io
io

r
o

-
v

ir
o

^
i^

-
o

-
'

-
'

U
O

o
c

o
o

i
e

o
o

N
U

 

O
 

O
 

O
 

O
 

O
 

O
 

O
 

b 
'->

• 
ro

 b
 

^ 
b

 b
>

 
C

O
M

 
U

l 
^

-
»

 
v

l 
O

 
oo

 r
o

 o
 

co
 a

) 
co

 -
vi

 o 
o

 
o

 
o

 
o

 
b 

b
 

b
 

^ 
'-*

• 
-s

i 
-s

i 
co

 
-^

 
ro

 
O

U
 

0
)

O
 

M
 

-'
O

ir
o

ro
-v

ir
o

-'
c

o
-^

.o
o

c
o

-'
 

ro
 

O
 

3
-

<D
 

C
T 

«<
 

O
 ar
 

%
 

o
 

o
 

ID
 =c
 

o 5'
 

co
l 

o>
| 

0
0

1 



Figure A2.9 Comparison of Value Function across Discount Rates 
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Figure A2.10 Comparison of Value Function across Forage Growth Rates 
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Value Function Across Corn Prices 
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Figure A2.ll Comparison of Value Function across Corn Price Levels 

Value Function Across Michaelis Constant 

150 

100 
50 

i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — r 

o o o o o o o o o o o o o o o o 
• ! - c o L o r ^ a > T - c o m r - ~ 0 ) T - c o i n h - a > i -

T - I - I - T - - I - C \ ] ( M C M < N C \ 1 C O 

Standing Forage 

•30 

•64.2 

•100 

Figure A2.12 Comparison of Value Function across Michaelis Constant 
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Value Function Across Cattle Prices 
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Figure A2.13 Comparison of Value Function across Output Price Levels 
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Value Function Comparions Across Discount 
Rates 
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Figure A3.1 Value Function Comparisons across Discount Rates 

Figure A3.2 Value Function Comparisons across Corn Price Levels 



Value Function Comparison across Cattle Prices 
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Figure A3.3 Value Function Comparisons across Output Price Levels 
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Table A3.1. Chebychev Coefficients 

a 
b 
c 
d 
e 
f 

g 
h 
i 

J 
k 

a 
b 
c 
d 
e 
f 

g 
h 
i 

J 
k 

1 
1054.6809 
214.7035 
109.7657 

57.3415 
127.4277 
93.0898 

115.3146 
103.7297 
109.0499 

74.6389 
145.0392 

9 
-0.2781 
-0.2677 
-0.2592 
-0.2444 
-0.2635 
-0.2097 
-0.2742 
-0.2424 
-0.2258 
-0.1789 
-0.3332 

2 
5.1155 
5.0553 
4.9903 
4.8791 
5.0370 
4.8480 
5.1738 
4.7892 
5.1196 
3.6243 
6.3426 

10 
0.1093 
0.1095 
0.1073 
0.1033 
0.1538 
0.0240 
0.1200 
0.0930 
0.0722 
0.0506 
0.1575 

3 
-5.5676 
-5.5050 
-5.4377 
-5.3204 
-6.3060 
-4.5771 
-5.7174 
-5.1328 
-5.5262 
-3.6900 
-7.1871 

11 
0.0125 
0.0056 
0.0040 
0.0012 

-0.0631 
0.0918 

-0.0050 
0.0140 
0.0327 
0.0364 

-0.0236 

4 
0.1152 
0.0558 

-0.0058 
-0.1136 
0.2862 

-0.2387 
0.0209 

-0.0342 
0.0910 

-0.0922 
0.0890 

12 
-0.0796 
-0.0714 
-0.0680 
-0.0620 
-0.0023 
-0.1376 
-0.0633 
-0.0732 
-0.0856 
-0.0782 
-0.0599 

5 
-0.5783 
-0.5247 
-0.4733 
-0.3830 
-0.4787 
-0.5104 
-0.4835 
-0.4626 
-0.5364 
-0.3594 
-0.5953 

13 
0.0978 
0.0935 
0.0898 
0.0834 
0.0412 
0.1300 
0.0890 
0.0905 
0.0948 
0.0824 
0.0964 

6 
0.7055 
0.6600 
0.6204 
0.5510 
0.5236 
0.7256 
0.6303 
0.6097 
0.6495 
0.4996 
0.7457 

14 
-0.0810 
-0.0842 
-0.0812 
-0.0759 
-0.0568 
-0.0920 
-0.0834 
-0.0786 
-0.0753 
-0.0623 
-0.0967 

7 
-0.6351 
-0.6000 
-0.5723 
-0.5238 
-0.4757 
-0.6465 
-0.5854 
-0.5578 
-0.5718 
-0.4573 
-0.6870 

15 
0.0464 
0.0580 
0.0560 
0.0527 
0.0547 
0.0456 
0.0598 
0.0517 
0.0433 
0.0327 
0.0747 

a 
b 
c 
d 
e 
f 

g 
h 
i 

J 
k 

17 
-0.0145 
0.0025 
0.0025 
0.0026 
0.0228 

-0.0184 
0.0055 

-0.0009 
-0.0095 
-0.0118 
0.0137 

18 
0.0232 
0.0132 
0.0127 
0.0119 

-0.0044 
0.0281 
0.0114 
0.0143 
0.0190 
0.0177 
0.0088 

19 
-0.0162 
-0.0193 
-0.0186 
-0.0175 
-0.0102 
-0.0268 
-0.0190 
-0.0181 
-0.0182 
-0.0143 
-0.0217 

20 
0.0000 
0.0181 
0.0176 
0.0166 
0.0190 
0.0194 
0.0194 
0.0154 
0.0115 
0.0063 
0.0258 

21 
0.0000 

-0.0133 
-0.0130 
-0.0123 
-0.0213 
-0.0099 
-0.0155 
-0.0100 
-0.0039 
0.0013 

-0.0233 

22 
0.0000 
0.0079 
0.0077 
0.0074 
0.0178 
0.0000 
0.0100 
0.0050 

-0.0009 
-0.0050 
0.0169 

23 
0.0000 

-0.0035 
-0.0034 
-0.0033 
-0.0101 
0.0000 

-0.0048 
-0.0018 
0.0018 
0.0040 

-0.0088 
(a. 1% discount rate, average corn price, 64.2 Michaelis constant, b. 5% discount rate, average corn price, 64.2 Michaelis 
constant, c. 10% discount rate, average corn price, 64.2 Michaelis constant, d. 20% discount rate, average corn price, 64.2 
Michaeli 



Standing Forage Over Time Across Corn Price 
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Figure A3.5 Time paths of Standing Forage comparing Corn Prices 
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Figure A3.6 Time paths of Stocking Rate comparing Corn Prices 
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Figure A3.7 Time paths of Ending Weights comparing Corn Prices 

Figure A3.8 Time paths of Yearly Returns comparing Corn Prices 



Standing Forage Over Time Across Michaelis 
Constant 
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Figure A3.9 Time paths of Standing Forage across Michaelis Constant 

Stocking Rate Over Time Across Michaelis 
Constant 
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Figure A3.10 Time paths of Stocking Rate across Michaelis Constant 



Ending Weights Over Time Across Michaelis 
Constant 
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Figure A3.11 Time paths of Ending Weights across Michaelis Constant 

Returns Over Time Across Michaelis Constant 
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Figure A3.12 Time paths of Yearly Returns across Michaelis Constant 
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Standing Forage Over Time Across Output Prices 
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Figure A3.13 Time paths of Standing Forage across Output Prices 
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Figure A3.14 Time paths of Stocking Rate across Output Prices 
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Ending Weight Over Time Across Ouput Prices 
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Figure A3.15 Time paths of Ending Weights across Output Prices 
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Figure A3.16 Time paths of Yearly Returns across Output Prices 
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