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ABSTRACT

APPLICATION OF STATISTICAL AND DEEP LEARNING METHODS TO POWER GRIDS

The structure of power flows in transmission grids is evolving and is likely to change signifi-

cantly in the coming years due to the rapid growth of renewable energy generation that introduces

randomness and bidirectional power flows. Another transformative aspect is the increasing pen-

etration of various smart-meter technologies. Inexpensive measurement devices can be placed at

practically any component of the grid. As a result, traditional fault detection methods may no

longer be sufficient. Consequently, there is a growing interest in developing new methods to detect

power grid faults. Using model data, we first propose a two-stage procedure for detecting a fault

in a regional power grid. In the first stage, a fault is detected in real time. In the second stage,

the faulted line is identified with a negligible delay. The approach uses only the voltage modulus

measured at buses (nodes of the grid) as the input. Our method does not require prior knowl-

edge of the fault type. We futher explore fault detection based on high-frequency data streams

that are becoming available in modern power grids. Our approach can be treated as an online

(sequential) change point monitoring methodology. However, due to the mostly unexplored and

very nonstandard structure of high-frequency power grid streaming data, substantial new statisti-

cal development is required to make this methodology practically applicable. The work includes

development of scalar detectors based on multichannel data streams, determination of data-driven

alarm thresholds and investigation of the performance and robustness of the new tools. Due to a

reasonably large database of faults, we can calculate frequencies of false and correct fault signals,

and recommend implementations that optimize these empirical success rates. Next, we extend our

proposed method for fault localization in a regional grid for scenarios where partial observability

limits the available data. While classification methods have been proposed for fault localization,

their effectiveness depends on the availability of labeled data, which is often impractical in real-
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life situations. Our approach bridges the gap between partial and full observability of the power

grid. We develop efficient fault localization methods that can operate effectively even when only

a subset of power grid bus data is available. This work contributes to the research area of fault

diagnosis in scenarios where the number of available phasor measurement unit devices is smaller

than the number of buses in the grid. We propose using Graph Neural Networks in combination

with statistical fault localization methods to localize faults in a regional power grid with minimal

available data. Our contribution to the field of fault localization aims to enable the adoption of

effective fault localization methods for future power grids.
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Chapter 1

Introduction

This dissertation is divided into three primary sections. Chapter 2 develops a moving-window

change point statistics for the detection of faults in regional power grids. The statistics are then

utilized to propose a new two-stage procedure for fault detection in regional power grids. In Chap-

ter 3, the sequential change point monitoring methodology is employed in the context of modern

power grids. The main differences between Chapter 2 and Chapter 3 are the size of the power

grid and the availability of variables. Chapter 4 extends the methodology introduced in Chapter 2

to scenarios where only partial network information is available. To address this, a combination

of modern deep learning methods and statistical techniques is utilized to propose a fault localiza-

tion method for regional power grids without using fault location information during the training

process. Each chapter provides a detailed introduction to its specific topic. Before delving into

the specifics of each chapter, in the remainder of this chapter a general introduction is provided

regarding the Electrical Power System (EPS), the underlying concepts of statistical fault detection,

and the distinctions between statistical and deep learning approaches.

EPS represents a pinnacle of human engineering. They are characterized by their importance

and remarkable complexity. In today’s world, the reliability, flexibility, and accessibility of these

systems are absolutely essential for sustaining modern civilization. The true magnitude of its im-

portance becomes apparent to the public when a major blackout occurs, highlighting its profound

societal, economic, and national security implications. The structure of EPS primarily consists of

three interconnected components: generation, transmission, and distribution. Starting with genera-

tion, fuel or increasingly renewable energy, is converted into electricity, which is then sent into the

transmission system. Through an extensive network of transmission lines, the electricity is trans-

ported to various substations. Finally, consumers receive the electricity from these substations via

distribution networks. However, one of the most significant risks to this intricate network is the

occurrence of electrical faults. These faults manifest themselves as abnormal conditions within
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the EPS, causing deviations from the nominal values of voltages and currents. Faults within the

electric power system can arise from various factors, including but not limited to adverse weather

conditions, aging infrastructure, insulation failures, falling trees, structural deficiencies, and mali-

cious attacks.

Traditional protection devices have historically relied on local current measurements to make

decisions regarding circuit tripping (IEEE, 1986). However, the emergence and increasing inte-

gration of distributed energy resources (DERs) have introduced significant challenges for tradi-

tional distribution protection devices. These challenges include: i) bidirectional flow of power; ii)

changes in the fault current levels; and iii) changes in the system dynamic behavior under faulty

conditions. As a result, mal-trip and fail-to-trip may happen more frequently in traditional pro-

tection devices, (Häger et al., 2006). Fortunately, the implementation of smart grid infrastructure

offers a solution by providing access to extensive data sets for power system operation, control,

and protection. Leveraging fast communication systems and advanced processing tools, these data

can be utilized in real time to gain a comprehensive understanding of the smart grid’s operational

status systematically. Analyzing this data enables researchers to uncover the underlying mathe-

matical and statistical structures of the grid, which can be transformative in designing improved

systems.

Fault diagnosis in EPS networks encompasses three main components: fault detection, fault

classification, and fault localization. Fault detection involves identifying abnormal conditions

within the grid infrastructure. Fault classification entails categorizing different types of faults,

such as short circuits, line-to-ground faults, phase-to-phase faults, or transient faults, to determine

the specific nature of the fault. Lastly, fault localization aims to pinpoint the precise location of

the fault or anomaly within the grid infrastructure, enabling prompt and targeted repair or mainte-

nance actions. EPS researchers have devised various fault diagnosis methods tailored for distribu-

tion systems, often leveraging transmission system schemes. Consequently, both transmission and

distribution networks employ similar strategies for fault diagnosis.
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In the fault diagnosis and process monitoring literature, statistical fault detection methods are

commonly known as data-driven methods. A key advantage of data-driven methods over model-

based methods is their ease of implementation. Unlike model-based methods, data-driven methods

do not rely on precise system specifications, which may not always be available for various reasons.

This makes data-driven methods more accessible and practical in real-world applications.

Change point detection methods are one of the statistical approaches commonly employed for

fault detection. These methods focus on identifying abrupt changes in data, specifically when a

property of the time series experiences a noticeable alteration at a specific time point, denoted

as t0. A time series is a sequential arrangement of observations, represented as (x1,x2, . . .). One

application of change point detection methods involves comparing the joint distributions f (x1:t0)

and f (xt0+1:T ), where xi: j = (xi, . . . ,x j). By examining whether there are significant differences in

these two distributions, it is possible to infer the occurrence of a change in the data. In contrast to

two-sample tests, in change point test the time t0 is unknown, and it is not clear if a change has

occurred.

Another prominent use of statistical methods in fault diagnosis is the application of statistical

learning for fault classification. Methods like support vector machines or classification trees pro-

vide tools to differentiate between different types of faults in the power grid. Naturally, due to

ongoing methodological research and advancements in computational resources, researchers have

increasingly started applying machine learning and deep learning techniques to address the same

set of problems. These methods have demonstrated good performance when dealing with complex

power grid data (Li et al. (2019a), Zhao and Barati (2021)).

The main difference between statistical and deep learning methods lies in their underlying

approaches to data analysis and modeling. Statistical methods are based on mathematical and

probabilistic principles. They rely on predefined statistical models and assumptions. On the other

hand, deep learning methods are a subset of machine learning techniques that focus on training

artificial neural networks with multiple layers. Deep learning algorithms learn representations from

the data through a process known as feature learning or representation learning. This characteristic

3



makes deep learning particularly effective for tasks involving large and high-dimensional datasets

that are difficult to understand. However, deep learning approaches directly do not lead to better

understanding of complex systems and may fail when applied to data that is different from the data

in the training process.

Chapter 2 has been published as the following paper "P. Kokoszka, M. Rimkus, S. Hosur,

D. Duan and H. Wang. (2023). Detection and localization of faults in a regional power grid.

Austrian Journal of Statistics, 52, 143-162". Chapter 3 has been published as the following paper

"M. Rimkus, P. Kokoszka, K. Prabakar and H. Wang. (2023). Toward statistical real-time power

fault detection. Communications in Statistics – Case Studies and Data Analysis". Chapter 4 has

been submitted as the following manuscript "M. Rimkus, P. Kokoszka, D. Duan, X. Wang and H.

Wang. (2023). Graph neural networks for the localization of faults in partially observed regional

transmission systems".
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Chapter 2

Detection and Localization of Faults in a Regional

Power Grid

2.1 Introduction

Faults in power systems cause excessive currents and can pose safety threats to personnel and

property, and even cause major disasters, like widespread fires, as well as disruptions of economic

and social activities. Detection of power grid faults is therefore of paramount importance. As the

penetration of renewable energy sources, with pronounced stochastic components, increases, tra-

ditional fault detection methods can become insufficient. The objective of this work is to propose

a statistical methodology for detecting a fault in a regional power grid, with almost no delay, and

locating the faulted line. The faulted line is also determined almost immediately. The algorithm

we propose takes as inputs the moduli of voltage measured at high frequency at grid buses. Such

data are becoming increasing available due to the growing deployment of phasor measurement

units (PMUs) able to communicate power transmission measurements in real time and from prac-

tically any location where transmission lines connect, start or terminate (generators, transformers,

forks, loads etc.). Such nodes of the grid are referred to as buses. The algorithm is developed on a

training dataset and evaluated on a test data set that remains inaccessible to us until the algorithm

development is complete. This widely adopted approach is designed to ensure that new method-

ology generalizes well. The novelty of our approach relative to previous research is discussed in

greater detail in Section 2.4. We merely note here that we are not aware of any study that uses a

large database of faults and statistically evaluates performance of a fault detection and localization

methodology in terms of success rates.

The statistical methodology used in this paper falls into the general field of change point

detection and anomaly localization. The field of statistical change point detection is now well-
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established, and there are consequently many monographs on change point analysis, e.g. (Brodsky

and Darkhovsky, 1993; Csörgő and Horváth, 1997; Gustafsson, 2000; Chen and Gupta, 2011;

Basseville et al., 2012; Brodsky, 2017). The methods we consider are known as sequential- or

online detection or monitoring. Their objective is to raise an alarm if there is some departure from

the desired state. They focus on minimizing the Expected Detection Delay (EDD) and maximizing

the Average Run Length (ARL), i.e., the expected time until a false detection. The last two decades

have seen important advances in theoretical understanding of methods for sequential detection of

change-points which may occur in one of many channels or sensors. Research in (Dragalin et al.,

1999) is concerned risk optimality theory for multichannel log-likelihood ratio tests. There are

M channels, and a penalty is imposed if a change in density is detected in an incorrect channel;

stopping occurs as soon as a fault is detected in one of the channels. The work in (Mei, 2005) incor-

porates a decision center into the optimality considerations, while that in (Raghavan and Veeravalli,

2010) studies a situation where the change propagates across sensors. Reference (Xie and Sieg-

mund, 2013) is concerned with mathematical properties of sequential change point detection in an

idealized multi-sensor network with a change occurring in a subset of networks. Temporal and

spatial independence and normality of observations are assumed. A somewhat similar approach is

taken by (Zhang et al., 2010) who assume independence across i and t and Gaussian observations,

and propose a method of dealing with data that have a large cross-sectional dimension p, tens of

thousands, and a huge temporal size T , hundred of thousands. They study gene expression data. In

our setting, the value of p will be much smaller, and T will also have to be smaller to use a reason-

able moving window. There is also very extensive research on detecting anomalies in various types

networks networks. To illustrate different flavors of such research, we list, as subjectively selected

examples, (Huang et al., 2007), (Lévy-Leduc and Roueff, 2009), (Paschalidis and Smaragdakis,

2009), (Bartos et al., 2011), (Xie, 2012), (Rassam et al., 2013) and (Vaughan et al., 2013). The

methods developed in these and many other papers are designed to study networks and anomalies

different from the power grid anomalies.
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Power grid faults are very different from typical data that has motivated the development of

existing approaches and the theory that underlies them. They are typically based on the statistical

likelihood principle that leads to procedures based on the likelihood ratio. Such procedures enjoy

optimality properties, but only under specific assumptions, almost always involving independence

and often normal distribution. Power grid data satisfy none of these assumptions. All lines are

connected and a fault propagates almost immediately through an affected subgrid. As the figures

in Section 2.2 show, the fault data are very dependent. For the detection of a fault, this is a blessing,

but it makes the problem of the localization of a fault very hard (measurements at all buses look

similar). Our method is specific to a power grid and has no analog in existing network anomaly

detection methods.

The paper is organized as follows. Section 2.2 introduces the grid data we work with and

presents exploratory data analysis that motivates our approaches. In Section 2.3, we derive our

detection and localization algorithms, present them by means of mathematical formulas and pseu-

docode, and assess their performance. Section 2.4 is dedicated to the discussion of existing or

proposed engineering approaches and a comparison with another method. We conclude with a

brief summary and main conclusions in Section 2.5.

2.2 Data Description

Real power grid fault data are not publicly available mostly due to liability concerns of power

companies. Most studies use simulated data. Data used for the development of the statistical

methodology proposed in this paper were generated within the framework of the minniWECC , a

simulation system designed for the evaluations and testing potential system-wide damping control

technologies. The term minniWECC is used to reflect its utilization as a simplified model for the

US grid portion managed by Western Electricity Coordinating Council (WECC). The minniWECC

represents the overall inter-area modal properties and has enough complexity to reflect the relevant

properties of the full western interconnection’s bulk power system. This model is geographically

consistent, and it matches with properties of the actual system. Results derived on minniWECC
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are transferable to the real-world grid. The data generated from the minniWECC model have been

widely used to validate various power system mode estimation and event detection algorithms

which are now adopted for control room applications, see e.g. (Follum et al., 2017; Trudnowski et

al., 2013; Byrne et al., 2016). There are eight regional power grids covering the US and Canada.

Similar regional grids exist in Europe, e.g. the British grid, the Nordic regional grid and the Baltic

regional grid that are interconnected with the synchronous grid of Continental Europe.

A simplified one-line diagram of the minniWECC, following (Trudnowski et al., 2013), is

given in Figure 2.1. The minniWECC version we use consists of 171 lines and 122 buses. Each

line l ∈ {1, . . . ,171} has terminal buses (i, j) : i, j ∈ {1, . . . ,122}, i ̸= j. We consider only pairs

(i, j) for which there is a line l connecting buses i and j.

Figure 2.1: One-line diagram of minniWECC.
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We simulated a large number of faults within the minniWECC. At the end of minute 10 from

the beginning of each simulation, one of four fault types was applied to one of the 171 lines, and

the data were recorded up to the end of minute 15. This resulted in 684 different simulations. For

each simulation, the faulted line and the type of fault are known. The following fault types were

generated:

line to line (LL): two phases of a three phase circuit are short circuited.

line to ground (LG): one conductor comes in contact with the ground or the neutral con-

ductor.

line to line to ground (LLG): any two phases of the power circuit are short circuited to

ground or neutral.

three-phase (TP): all three phases of the power circuit are shorted.

The minniWECC data were generated using the Power System Toolbox (PST), (Cheung et al.,

2009), which is based on MATLAB. The input data files required to run the simulations were cre-

ated by Dr. D. Trudnowski. The details of how the simulations are carried out is well documented

in the PST manual. The faults were generated using the switching condition matrix, in which the

time of fault, time of clearing the fault, total duration of simulation and sampling rate were speci-

fied. The values of zero sequence (z0) impedance and negative sequence (zn) impedance were also

specified in the switching condition matrix. For the generated data the value z0 and zn were chosen

randomly. These values, in per unit (p.u), are z0 = 0.17 and zn = 0.4. The elements in the system

model are the same for all types of faults. The sequence networks and the fault impedance vary for

different types of faults. The equations used for calculating the impedance after different faults, in

the simulation are:

three phase fault: z f = 0

line to ground fault: z f = zn∗ z0
zn+z0

line to line to ground: z f = zn+ z0
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line to line: z f = zn

In the above formulas, z f is the impedence with respect to ground after a fault.

Cases where simulation terminated due to numerical instability, are not included in further anal-

ysis. This results in a total of 546 simulations, where 117 simulations are from the TP fault cases,

139 simulations are from LLG cases, 145 simulations are from LL cases, and 145 simulations are

from LG cases.

There are 116 out of 122 buses that have at least one line starting from it and can be considered

as start buses. The number of possible indexes i in the (i, j) pairs is 116. For 91 out of these 116 i

values, there exists only one unique j, i.e. there is only one line starting at i.

The simulated data consist of 120 measurements per second for 900 seconds (15 minutes).

They include voltage readings at all buses reported as complex numbers. We consider the modulus

of voltage at bus readings. The dimension of the dataset for each fault simulation is 122×108000.

A fault is applied in the time interval (600− 1
120

,600) in seconds, which is between observations

72000 and 72001 in each dataset. We set observation 72001 to be an exact fault time and so

assume that second 600 is the earliest moment when the fault can be detected. To illustrate, we

consider bus 105, which is the start bus of line 96. We gathered magnitude of voltage readings

at bus 105 from all available simulations and highlighted simulations where line 96 was faulted.

As different periods of the experiments have different variance of data, we represent the data by

splitting the records into several time intervals (in seconds): [0,600− 1
120

), [600− 1
120

,600+ 1
6
),

[600+ 1
6
,900]. These intervals reflect the data before the fault, just after the fault including one

point before the fault, and recovery after the fault. The beginning of the recovery phase is selected

based on exploratory analysis. The graphs are shown in Figure 2.2. Notice that during the period

[0,600) the data between simulation only differ by white noise. Bus 105 shows different responses

to faults of different types. TP fault at line 96 has the largest effect on the readings at bus 105. For

all fault types, most variability can be seen in the interval [600,6001
6
]s (second panel in Figure 2.2).

Approximately 0.1s after the fault, the recovery of the system begins. Figure 2.2 shows that one

can expect to identify the start bus of the faulted line because it shows a special behavior. On
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the other hand, this special behavior is more pronounced for some fault types than for other fault

types, so the task requires careful consideration. Figure 2.2 also shows that localization of the

faults should be achievable within a second after a fault.

Figure 2.2: Modulus of voltage readings at bus 105 from all available (546) simulations. Faults at line 96

are highlighted (black) as bus 105 is the start bus of line 96. Readings resulting from faults at other lines (not

96) are plotted in gray. The three graphs represent different time stages of simulations. Notice the different

voltage scales and different lengths of time intervals at the different stages.

Figure 2.3 presents the data in the interval [600− 1
120

,600+ 1
6
) from a different angle. The

second panel of Figure 2.2 shows how a fixed bus “sees" the faults at all lines. Figure 2.3 shows

how all buses see faults at a fixed line within the critical time interval just after a fault. To illustrate

the differences in behavior between the buses, we consider faults at line 90. This line connects

buses 88 and 121. The response to a fault at a specific bus depends on its relative location relative

to the faulted line. For a given fault, the responses at all buses exhibit similar patterns; the size of

the response is generally the largest at busses where the faulted line starts and ends, but the pattern

is not obvious. Figure 2.3 shows that an almost instantaneous localization of a faulted line should
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be possible, but the task is clearly not trivial. The next section is devoted to a systematic study of

this problem.

Figure 2.3: Responses at all buses to four fault types at line 90: LG, LL, LLG, and TP, from top to bottom.

Responses at buses 88 and 121, which are connected by line 90, are highlighted in black; bus 88 in solid

black, bus 121 in dashed black.

2.3 Derivation of Fault Detection and Localization Algorithms

The goal of the fault detection algorithms is to estimate the time M when the fault occurs and

the goal of localization algorithms is to identify the faulted line. Localization is equivalent to

finding the pair of buses (i0, j0) such that i0 is the start bus and j0 is the end bus of the faulted

line l0. Since we have only readings at buses, it is not possible to identify the faulty line in cases

where there is more than one line that has the same start and end buses. In such cases, we can only

identify the pair (i0, j0).
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In order to describe our algorithms using mathematical formulas, it is convenient to introduce

simple notation. We denote by A the set of all pairs of buses that are connected by at least one

line, i.e.

A = {(i, j) : i, j ∈ 1, . . . ,122, i ̸= j , there is line

l ∈ {1, . . . ,171}, such that start bus of line l is i

and end bus is j}. (2.3.1)

Define B the set of buses that are start buses of some line, i.e. B = {i : there is j ∈ {1, . . . ,122},

(i, j) ∈ A}. For each i ∈ B, define set Bi by Bi = { j : (i, j) ∈ A}. For each i ∈ B, Bi contains all

possible end buses for lines that starts from bus i. The goal of a fault localization algorithm is to

predict (i0, j0) ∈ A, where i0 ∈ B and j0 ∈ Bi0 . The prediction is denoted as (î0, ĵ0).

We model the data as follows. In each simulation, we have a sample of random functions,

or fine resolution time series, xi(t), where i = 1 . . . ,N. In MinniWECC, we have N = 122 (the

number of buses). The value xi(t) is the modulus of the voltage at bus i at time t. Define δ as the

time difference, in seconds, between two consecutive time points. Then t = 0,δ ,2δ , . . . ,T is the

time domain. In this paper, δ = 1
120

and T = 60 · 15 = 900 (seconds). Define M as the time in

seconds when the fault occurs. In our simulations, a fault occurs at the beginning of second 600,

thus M = 600s at each simulation run. This value is known to us, but not to any algorithms. The

same applies to the location of the faulted line. The proposed procedure for fault detection consists

of three stages: 1) detect an event of a fault in the grid in real-time; 2) identify the start bus of the

faulted line; 3) identify the end bus of the faulted line.

The evaluation of algorithms on the entire data set might lead to procedures that fit the dataset

well, but do not lead to a preferred algorithm that generalizes well. Therefore, in this paper, the data

analysis and algorithm development are done on training data, and performance is evaluated using

test data. The training dataset has been created by randomly, uniformly sampling 436 simulations
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(80%) out of 546 available simulations, The remaining 110 simulations are set aside as the test

dataset. This is typically called a train-test split approach to algorithm development and evaluation.

2.3.1 Detection of the time a fault event

The goal is to identify the time point M when the fault occurs. In the proposed monitoring

procedure, we consider a moving window, [t − S0 − S1, t], where t is the current moment of time,

S0 ≥ δ is the length, in seconds, of the window ending at t−S1, and S1 ≥ 0 is the length, in second,

of the window ending at t. This is illustrated in Figure 2.4. The value S1 = 0 corresponds to the

case of taking only a single observation (at time t). A moving window ensures that a detection

statistic can be calculated in real-time, as it is based on only a limited number of observations, and

that it adjusts to the most recent state of the system. A slow evolution of system readings does not

indicate a fault of the type we are aiming to detect.

Figure 2.4: The moving window at t = 3 seconds with S0 = 1s and S1 = 0.24s. The light grey area represents

the window (t −S1, t] that is used to evaluate (2.3.4). The darker gray area represents the window [t −S0 −
S1, t −S1) that is used to evaluate (2.3.2) and (2.3.3).

To evaluate the state of the system up to time t−S1, we use statistics x̄i(t,S0,S1) and SDi(t,S0,S1)

defined for each bus i as follows:

x̄i(t,S0,S1) =
1

S0/δ

S0/δ

∑
k=1

xi(t −S1 − kδ ), (2.3.2)
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SDi(t,S0,S1) =

(
1

S0/δ −1

S0/δ

∑
k=1

(xi(t −S1 − kδ )− x̄i(t,S0,S1))
2

)1/2

. (2.3.3)

These are just the mean and the standard deviation of the magnitude of the voltage at each bus

in the moving window [t−S0−S1, t−S1) in their native resolution. To assess the most recent state

of the system, we calculate the averages in the window [t −S1, t], i.e.

mi(t,S1) =
1

1+S1/δ

S1/δ

∑
k=0

xi(t − kδ ), (2.3.4)

Notice that mi(t,S1 = 0) = xi(t). For each bus i, we define fault detector Di(t,S0) as

Di(t,S0,S1) =
|mi(t,S1)− x̄i(t,S0,S1)|

SDi(t,S0,S1)
. (2.3.5)

The detector Di(t,S0,S1) is the absolute difference between the means in S0 second before t − S1

and S1 seconds before t (including t) normalized by the standard deviation of the observations in

the moving window [t −S0 −S1, t −S1).

To check if a fault occurred at time t, we first compute

imax = argmax
i

Di(t,S0,S1). (2.3.6)

The index imax identifies the bus, which is the most "perturbed" at time point t. If the perturbation is

large enough, the algorithm should detect the fault. In order to evaluate the size of the perturbation,

we introduce a threshold parameter τ > 0. The algorithm detects a fault, if

Dimax(t,S0,S1) = max
i

Di(t,S0,S1)> τ. (2.3.7)

If condition (2.3.7) fails, we move on to the next time point and perform the calculations again.

The above procedure is summarized in Algorithm 1.
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Algorithm 1 Detection of a fault in a grid

Input: Tuning parameters τ , S0, and S1, input data X, time resolution δ , and upper time limit T ;

Output: tD The time where the fault is detected Initialization Fault = 0 and t = S0 + S1 Re-

quires at least S0 + S1 seconds of data before the fault Fault = 0 & t ≤ T Set t := t + δ Find

Di(t,S0,S1) for each i (2.3.5) Find imax = argmaxi Di(t,S0,S1) (2.3.6) Dimax(t,S0,S1) > τ Set

tD := t and Fault = 1

There are several tuning parameters in Algorithm 1: S0, S1 and τ . We want to determine the

tuning parameters that balance two criteria: 1) if there is no fault, false alarms should be rare, 2)

if there is a fault, it should be detected with a large probability and the delay of detection (time

of detection - time of fault) should be small. In traditional online monitoring problems, larger τ

ensures that criterion 1) is met, and smaller τ ensures that criterion 2) is met. In power grids, the

system is perturbed the most just after the fault happens, and the size of this perturbation is large;

an occurrence of a fault is generally easy to spot.

We consider the following quantities:

F1 - Fraction of simulation in which a fault is detected over the first 10 minutes. This quantity is

similar to the size of a test or type I error.

F2 - Fraction of simulations in which a fault is detected over the whole 15 minutes. This quantity

is similar to power under alternative or 1 minus type II error.

D - The first t (in seconds) such that maxi Di(t,S0,S1)> τ less 600s, averaged over all simulation

where a fault is detected. The quantity D is thus the average time of detection minus the time at

each the fault has occurred (600s in our experiments).

In traditional tests, we would like to have F1 ≈ 0.05. Since in a power grid, a false alarm may

be expensive, we may target a different value of F1. Even F1 = 0 might be reasonable. This is the

case for our simulated data. Once we determined S0,S1,τ that give the desired F1, we compute for

them the fraction F2 and select the values that give the largest F2. We could then further select the

tuning parameters such that D is the smallest possible. This general strategy can be applied to any

regional grid, as long as software for simulating faults at the grid of interest is available. Details of

its implementation are explained below, cf. the discussion around Tables 2.1 and 2.2.
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The parameter S0 determines how much prior data we need to detect a fault. In Algorithm

1, this parameter directly affects how accurate the estimates of the mean and standard deviation

are. Thus S0 should not be too small as a standard deviation estimate using just a few points

is not accurate. The parameter S1 is related to the detection delay, so it should be as small as

reasonable. To determine values of S0, S1, and τ , we need to examine the behavior of the detector

maxi Di(t,S0,S1) over the first 600 seconds and during the fault. To explain, we begin with two

pairs of parameters: S0 = 30δ ,S1 = 0 and S0 = 480δ ,S1 = 11δ . Since the time step δ is equal

to (1/120)s, these values correspond, respectively, to pairs of intervals of lengths (0.25s, (1/120)s)

and (4s, (1/12)s). Values of the detector are larger for smaller values of S0 and S1, as shown

in Figure 2.5. This means that useful values of τ must depend on S0 and S1, as illustrated in

Figure 2.5.

Figure 2.5: Values of the detector maxi Di(t,S0,S1) over the first 600 seconds in one of the training simula-

tions (no faults). Upper panel: S0 = 30δ ,S1 = 0, lower panel: S0 = 480δ ,S1 = 11δ .

As every simulation is conducted identically before the fault at second 600, there is no need to

examine the behavior of the detector for all simulations. However, after the fault, each simulation

exhibits a different behavior as the location and type of the fault differ from one simulation to

another. To understand the behavior of the detector in (2.3.7) at the time of the fault, one must

therefore examine the whole training data set. A fault is detected if the detector exceed a threshold
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Table 2.1: The maximum of the detector maxi Di(t,S0,S1) over a single simulation in the training sample

for t ≤ 600 (before a fault) for various parameters S0 and S1 (S1 = 0 corresponds to a single data point). For

fixed S0 and S1, the threshold τ should be larger than the values in the table.

S1 = 0 S1 = 4δ S1 = 11δ S1 = 19δ

S0 = 15δ 9.84 15.16 18.26 19.79

S0 = 30δ 8.13 10.27 12.75 12.97

S0 = 120δ 5.97 5.77 6.61 7.40

S0 = 240δ 5.58 5.24 5.61 5.31

S0 = 480δ 5.31 4.85 4.78 5.31

S0 = 960δ 5.17 4.86 4.64 4.21

S0 = 1920δ 5.22 4.75 4.59 4.16

S0 = 7200δ 5.37 4.95 4.70 4.19

τ , so we must determine the minimum values of the detector at the time of the fault. These are

presented in Table 2.2.

Table 2.2: The value of the detector maxi Di(t,S0,S1) at t = 600 (time of fault) over all simulations in the

training dataset.

S1 = 0 S1 = 4δ S1 = 11δ S1 = 19δ

S0 = 15δ 288.97 63.21 27.35 7.98

S0 = 30δ 244.72 36.22 15.18 10.58

S0 = 120δ 190.05 38.16 15.79 9.04

S0 = 240δ 133.16 26.57 11.31 6.75

S0 = 480δ 134.13 26.78 11.49 6.98

S0 = 960δ 157.24 31.64 13.66 8.29

S0 = 1920δ 175.12 35.30 15.25 9.26

S0 = 7200δ 178.11 35.91 15.51 9.44

During a fault, the values of maxi Di(t,S0,S1) given in Table 2.2 are noticeably larger than the

corresponding values given in Table 2.1. The quantity F2 (power of detection) can be maximized

using a threshold τ that does not exceed the values in Table 2.2. The specific choice of S0 and

S1 should be the one that maximizes the gap between corresponding values between S0 and S1 in

Tables 2.1 and 2.2. One can see that the values should be S0 = 30 and S1 = 0, even though all other

values would be acceptable. Focusing on S0 = 30δ and S1 = 0, we see that we can take τ = 15,

but many other values will work too. Taking S0 = 30δ ,S1 = 0,τ = 15 gives F1 = 0 and F2 = 1 and

D = 0 on the training data set.
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We summarize the general procedure for selecting the window lengths S1,S0 and the threshold

τ .

1. Consider several potential values of S0 and several values of S1.

2. For each pair (S0,S1) in step 1, compute τmax,0 = maxt∈T0
maxi Di(t,S0,S1), where T0 is the

time interval with no faults.

3. For each pair (S0,S1) in step 1, compute τmin,F = mint∈TF
maxi Di(t,S0,S1), where TF is a short

time interval containing the time of the faults. (The simulations must be synchronized so that all

faults occur at the same time; we used TF to be a single point set equal to the time of the fault.)

4. Select the pair (S0,S1) maximizing τmin,F − τmax,0.

5. Set τ = (τmin,F + τmax,0)/2.

As this is our final methodology for the detection of the time of the fault (derived from the

training dataset), we tested it on the test dataset as well. Using S0 = 30,S1 = 0,τ = 15 leads to

F1 = 0, F2 = 1, and D = 0 on the test dataset. We conclude that there is no room for improvement

in terms of performance.

The investigations reported in this section show that it is relatively easy to detect a fault in a

regional grid if measurements at all buses are available. The parameters of the detector can be

chosen in such a way that the detection is instantaneous, there are no false alarms and each fault is

detected. One might be concerned that false alarms may occur due to the system evolution, e.g.,

load shedding or demand re-dispatch. To address this issue with confidence, one would need to

simulate a large number of normal changes in the power system. Intuitively, the faults that we have

in mind are sudden and large, as demonstrated in the figures shown above. The thresholds in our

algorithms are trained for such large faults and they are unlikely to relatively small (in terms of the

whole system), normal load changes.

2.3.2 Identification the faulted line

Once a fault has been detected, we want to determine the line at which it had occurred. This

means that we must identify the pair (i0, j0) of terminal buses of the faulted line l0. Our algorithm
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does it in a sequential manner. We first identify a bus that exhibits the “most anomalous" behavior

is a sense that will be quantified. We call such a bus the start bus of the faulted line. Then, we

identify the end bus from among those that are connected to the start bus by a single line.

Denote by tD the time of detection, i.e. the first t such that maxi Di(t,S0,S1) > τ . A natural

choice for the prediction of the start bus of the faulted line would be the bus imax defined in (2.3.6)

with t replaced by tD. This approach indeed works reasonably well, but it can be improved. We

obtained more accurate identification of the start bus by simply comparing the averages, i.e. by

setting

î0 = argmax
i∈B

|mi(tD,S1)− x̄i(tD,S0,S1)| (2.3.8)

Restricting the index i to the set B simply means that we consider only buses which are start buses

of some line. If we use the values S1 = 0 and S0 = 30δ arising from the investigations reported in

Section 2.3.1, we are looking at the difference between a single observation at the time of detection

and the average of observations over the prior 0.25s. Using equation (2.3.8) with S0 = 30δ , and

S1 = 0, the start bus i0 of the faulted line l0 was identified correctly in 422 out of 436 simulations

(422 cases where î0 = i0). This gives a 97% success rate.

Additional analysis shows that the 14 incorrectly identified instances (î0 ̸= i0) relate to only

three buses: 121, 122, and 89. The potential reason for failure in these cases could be that the

magnitudes of the voltage at buses 121 and 89 correlate perfectly before the fault (correlation is

equal exactly to 1). This could be due to a simulation setup. Our proposed methodology tends to

favor the wrong bus. For example, in cases where bus 89 is the start bus of the faulted line, relation

(2.3.8) tends to select Bus 122. More complete results are given in Table 2.3.

Table 2.3: Prediction of the start bus of the faulted line over all training simulations for buses 89, 121 and

122.

Predicted

Bus 89 Bus 121 Bus 122

A
ct

u
al Bus 89 4 0 10

Bus 121 3 0 0

Bus 122 1 0 0
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Once the start bus of the faulted line l0 is predicted as î0, we need to predict the end bus of the

faulted line. We denote this prediction by ĵ0. Notice that once we have î0, the prediction ĵ0 must be

from Bî0
. Otherwise, the l0 prediction would not make sense as î0 and ĵ0 would not define a line.

This greatly narrows the potential options for ĵ0. If there is only one line originating at î0, then

ĵ0 is its end bus. However there are cases, where multiple lines originate at î0. Thus, if there are

indexes ja and jb, such that ja ̸= jb and ja, jb ∈ Bî0
, an approach is needed to choose ĵ0 from Bî0

.

To find a prediction of the end bus of the faulted line, we propose and test two different procedures.

The main difference between them is the time between the fault detection and the time when the

prediction of j0 is made. One may expect that an additional time delay in the identification of the

end bus may increase the accuracy of the predictions, as the algorithm can utilize more information.

Notice that if the start bus prediction î0 is incorrect, the prediction of l0 will be automatically

incorrect. Thus for the end bus prediction, we only consider simulations, where i0 was identified

correctly. Using equation (2.3.8), we identified the start bus correctly in 422 out of 436 training

simulations. Also, in 222 out of 422 simulations with correctly identified î0, Bî0
has only one

element, so the determination of ĵ0 is trivial. The following algorithms are designed to identify the

j0 in the 200 training simulations, where the start bus was predicted correctly and there is more

than one element in Bî0
.

In the first approach, j0 is predicted at time tD. This algorithm predicts the end bus of the

faulted line similarly to equation (2.3.8), where the potential end buses must be in Bî0
, i.e.

ĵ0 = argmax
j∈Bî0

|m j(tD,S1)− x̄ j(tD,S0,S1)| (2.3.9)

This algorithm thus predicts (i0, j0) at time tD, the time of the fault detection. Using equation

(2.3.9) with S0 = 30δ and S1 = 0, the end bus was correctly identified in 71 out of 200 simulations.

This gives only 35% accuracy.
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To describe the second approach, we need to introduce additional notation. We define the

recovery process of bus i as

D∗
i (t, tD,S0,S1) = mi(t,S1)− x̄i(tD,S0,S1), t > tD. (2.3.10)

Compared to (2.3.9), in (2.3.10) we use the interval ending at tD to evaluate the state of the system

before the fault, but push the current time forward after the fault. To illustrate, we show in Fig-

ure 2.6 the process (2.3.10) over the period of 0.25s after the fault (with S0 = 30δ , S1 = 0). We

do so for three training simulations. Notice that for each simulation, D∗
i (t, tD,S0,S1) undergoes a

visible change approximately after 0.1s. This remains true for the remaining training simulations

with the magnitude of change varying from simulation to simulation.

Figure 2.6: The recovery process (2.3.10) for three different training simulations (S0 = 30δ , S1 = 0).

To determine the moment when recovery begins, we compute the absolute value of relative

change and test the condition

∣∣∣∣∣
D∗

î0
(t, tD,S0,S1)−D∗

î0
(t −δ , tD,S0,S1)

D∗
î0
(t −δ , tD,S0,S1)

∣∣∣∣∣> τ1. (2.3.11)

Examples illustrating the behavior of the left-hand side of (2.3.11) are shown in Figure 2.7.

The time of the recovery, tR, is defined as the smallest t > tD such that condition (2.3.11) is met.

Its computation requires a selection of the value of τ1. This threshold must be chosen sufficiently

small to ensure that condition (2.3.11) is met for all simulations in the training dataset over a

reasonably short time interval after a fault has been detected. Evaluating all potential τ1 ∈ (0.01,1)

22



in increments of 0.01, shows that we need τ1 ≤ 0.17 if we require tR ∈ (tD + δ ,ctD + 1) (the δ

refers to (1/120)s and the 1 to 1s). The value τ1 = 0.1 is one of several values that maximize the

performance of the algorithm we now describe on the training dataset, and this is the value we use

in the following.

Figure 2.7: The left-hand side of (2.3.11) for three predicted start buses (S0 = 30δ , S1 = 0).

Figure 2.8: The absolute value of recovery process (2.3.10) for end buses in Bî0
for three different training

simulations (S0 = 30δ , S1 = 0). In each of the three panels, the absolute value of recovery process corre-

sponding to the correct end bus is highlighted (black). The vertical dotted line indicates the time tR where

τ1 = 0.1 is used.

We now describe an algorithm that identifies j0 at time tR. For each bus j ∈Bî0
, we consider the

recovery process D∗
j(t, tD,S0,S1) defined by (2.3.10). Examples illustrating its behavior are shown
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in Figure 2.8. Approximately 0.1s after the fault, the buses in Bî0
exhibit differing behaviors. The

recovery process of the end bus of the faulted line shows somewhat different behavior compared to

other buses in Bî0
. It generally undergoes the most pronounced change between 0.09s and 0.1s after

the fault. To distinguish the end point of the faulted line from other end points, we use differences

in absolute values of recovery process formula, i.e.

|D∗
j(t, tD,S0,S1)|− |D∗

j(t −δ , tD,S0,S1)|, t > tD, (2.3.12)

Examples illustrating the behavior of differences (2.3.12) are shown in Figure 2.9. Notice that the

value of (2.3.12) for the end bus of the faulted line 0.1s after the fault is the largest compared to

other buses in Bî0
. Our algorithm thus predicts j0 as

ĵ0 = argmax
j∈Bî0

(|D∗
j(t, tD,S0,S1)|− |D∗

j(t −δ , tD,S0,S1)|). (2.3.13)

Figure 2.9: Differences in absolute value of recovery process (2.3.12) for end buses in Bî0
for three different

training simulations (S1 = 0). The line for the correct end bus is highlighted (black). The vertical dotted line

indicates time tR where τ1 = 0.1 is used.
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The above algorithm correctly identified the end bus in 179 out of 200 applicable simulations,

89% accuracy. Using (2.3.9), we only got 35% accuracy. We see that by delaying the identification

of the end bus by 1s at most (in training simulations such value did not exceed 0.11s), we increased

the performance by 54% on the training simulations. We thus recommend the algorithm based

on (2.3.11). If we include the identification of the bus of the faulted line, we conclude that our

methodology correctly identifies the faulted line in 401 simulations out of 436 training simulations.

To summarize, our final methodology is defined by relations (2.3.8) and (2.3.13) with S0 = 30δ ,

S1 = 0 and τ1 = 0.1. The procedure is summarized in Algorithm 2.

On the test dataset, our methodology correctly identifies the faulted line in 92% of simulations

(102 simulations out of 110). The start bus of the faulted line was identified correctly in 95%

validation simulations (104 cases out of 110). In simulations where the start bus i0 was identified

correctly and where was more than one eligible choice for j0, the end bus was correctly identified

in 97% of instances (56 simulations out of 58).

Algorithm 2 (i0, j0) prediction using time points tD and tR

Input: Tuning parameters τ1, S0, and S1, input data X, time resolution δ , network description data

Y, the fault moment tD
Output: î0, ĵ0 Find î0 using (2.3.8) |Bî0

|= 1 Set ĵ0 = j0, where j0 ∈ Bî0
Find tR using (2.3.11)

1: Find ĵ0 using (2.3.13)

2.4 Discussion of Other Approaches

Faults in power grids have been the subject of intense research. In general, existing fault detec-

tion schemes in power systems can be categorized into the following three approaches: quantitative

model-based, qualitative model-based, and data-driven approaches (Jiang et al., 2011). Quantita-

tive model-based approaches and qualitative model-based approaches could achieve good detec-

tion performance in simulations. However, when implemented in real-world applications, they

are quite sensitive to the noise in the voltage and current measurements. Moreover, they assume

that the system models are accurately given and their detection performance would be greatly af-
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fected by the inaccuracy in the system models. Recently, data-driven approaches begin to receive

considerable attentions from the researchers due to the following reasons: 1) various intelligent

electronic devices (IEDs) have been widely adopted and installed in the power grid (Moghaddass

and Wang, 2017; Ghosal and Conti, 2019; Chen et al., 2020), which collect large amount of dif-

ferent data at many nodes across the entire grid; and 2) compared to the traditional model-based

approaches, the data-driven approaches are more resilient against measurement errors and system

model inaccuracy. Meanwhile, they have more flexibility in their implementations and adapt bet-

ter to the variations in system components and/or topology (Chen et al., 2018; Chen et al., 2019;

Tripathi and De, 2018; Yin et al., 2014). Following (Zhou et al., 2019), we note that event de-

tection was studied using moving averages, (Chow et al., 2007), principal components, (Xie et

al., 2014), geographical visualization, (Kaci et al., 2014), wavelets, (Kim et al., 2017), dynamic

programming, (Cui et al., 2019) and energy similarities, (Yadav et al., 2019). Past work has con-

sidered fault classification, (Nguyen et al., 2015), cascading events, (Rafferty et al., 2016), and

cyber events, (Pan et al., 2015), (Giani et al., 2013), (Liao and Chakrabortty, 2019). The above list

of citations is only meant to illustrate the scope of the research and is not exhaustive.

Several papers are closely related to our research. Before discussing them, we note that the

chief and novel feature of our work is that we consider a large grid (122 buses) that mimics a

real regional grid and a large number of faults. Existing research focuses on small test grids and

methods are often illustrated on a single fault. Our work thus has important practical and statistical

dimensions. In certain aspects, our approach is less sophisticated than many other approaches,

but simplicity may be of advantage in practical applications. The complex structure of existing

methods makes them difficult to implement on our grid data. Moreover, their descriptions generally

omit the details of the implementation and no publicly available code is available. The papers

discussed below make profound contributions, but the approaches they propose are difficult to

implement using the information they provide. Another novel aspect of our approach is that it

can identify the faulted line with high probability, not just an affected bus (which may have many

connecting lines) or its neighborhood.
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We now discuss selected papers to justify the points made above. Using the magnitude of

the voltage, (Gholami et al., 2019) develop advanced fault detection methods based on multiple

detectors and likelihood computed from an ensemble model. The approach of (Hannon et al.,

2019) requires more data than our approach - current, frequency, voltages, and the application is

concerned with one bus. The focus of (Ardakanian et al., 2016) is the estimation of the admittance

matrix. A change in this matrix and its localization provide information on the timing and the

localization of a fault. The algorithm is evaluated on a 13 bus grid and one fault. In (Pandey et

al., 2020) the authors provide a method to find the bus (PMU) and the subgraph where the fault

occurred. This is similar to finding the start bus of the faulted line in our approach. Similarly, (Li

et al., 2019b) develop methodology to detect the bus that is close (in a small neighborhood) to the

faulted line.

To provide some idea on the advance our method makes relative to existing statistical ap-

proaches to change point detection, we implemented the standard moving window CUSUM ap-

proach which is described in many textbooks, see e.g. (Brodsky and Darkhovsky, 1993). We

consider a moving window, (t −Kδ , t]. The lag K is similar to (S0 + S1)/δ and corresponds to

the number of points in a window. The algorithm is the same for each t, so it is easier to think

about the beginning and the end of the window. We compute the averages before and after the

potential change point (fault): µ̂i(k) =
1
k ∑

k
l=1 xi(t −K + lδ ); µ̃i(k) =

1
K−k ∑

K
l=k+1 xi(t −K + lδ ),

where k ∈ {1, . . . ,K −1}. Next, we compute the normalized difference of these averages,

Pi(t,k) =
k(K − k)

K
[µ̂i(k)− µ̃i(k)]

and the detector for a single bus

Di(t,K) =
1

K −1

K−1

∑
k=1

Pi(t,k)
2.
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The detector for the whole grid is

D(t,K) =
1

N

N

∑
i=1

Di(t,K). (2.4.1)

We signal a fault if D(t,K)> τ . The value of τ would be determined by a procedure we employed

in Section 2.3, but we can illustrate more convincingly that our method works much better by the

examination of Figure 2.10 which shows that the detector (2.4.1) reacts to a fault much slower than

our detector.

Figure 2.10: Comparison of the proposed method and the traditional moving window CUSUM approach.

Curves in black show our detector calculated using (2.3.7) with S0 = 30δ and S1 = 0. Curves in gray are

calculated using (2.4.1) with K = 30. The vertical dashed line represents the time of the fault. Both detectors

have two spikes. For our proposed detector the first spike occurs almost simultaneously with the fault and

is so high that it crosses the upper boundary of the display. The second, not relevant, spike of our detector

coincides with the first spike of the traditional detector.

Intuitively, the detector based on equation (2.3.7) works better because instead of calculating

statistics for each point of a moving window, we only calculate them at the windows [t − S0 −

S1, t −S1) and [t −S1; t]. This also make our method much faster. We introduce the normalization

with the SD, as this helps to standardize the signals from each bus and tune up the τ properly. This

is useful because the SDs at different buses are not necessarily the same. The identification of an
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appropriate threshold τ is more difficult in case of detector (2.4.1), but we do not discuss the details

because our proposed detector works much better with a clear cut threshold.

2.5 Summary

We have proposed a two-stage procedure for fault monitoring in a regional power grid. In the

first stage, a fault is detected. In the second stage, the faulted line is identified. Our methods are

fully data-driven and require only knowing the start and end buses of each line. Our procedure

assumes that a fault occurred on a line, which corresponds to most practical scenarios. If a fault

occurs on a bus, the identification of the faulted bus can follow the algorithm for finding the start

bus i0 of the faulted line. While some faults are easier to detect than others, our method does not

require prior knowledge of the fault type. The approach uses only the voltage modulus measured

at buses as the input. The general framework can be extended to different inputs, e.g. current or

power. The chief contribution of this work is to develop a general statistical approach to anomaly

detection and localization suited to regional power grids. These grids can be viewed as networks

or graphs, but methods developed for such data structures in different context are not applicable

due to a very special form of power transmission networks and anomalies that can occur in them.

Our approach can be adapted and fine-tuned to work with somewhat different regional grids, but

the general paradigm could be followed.

We emphasize that the approach we presented assumes that PMUs are placed at all buses. As

pointed out by a reviewer, so far, power grids in the real world are only partially covered by PMUs.

While a complete coverage may be expected in the future, it is important to extend the method to

grids with incomplete PMU coverage. Partial insights in this direction are reported in (Rimkus et

al., 2023) who focus on fault detection (no localization) in a smaller distribution grid.

It may be of interest to compare our method to other approaches that may be developed in the

future. To facilitate such comparisons, we placed our commented code at

https://github.com/MantautasRimkus/DetLocRegionalGrid. The code is written in R (R Core Team,

2022). We are not aware of an existing method that can be readily applied to detect and localize a
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fault in a regional power grid to which our method can be compared. Several sound and promising

approaches exist that could potentially be generalized to a regional grid, but they are not imple-

mented in publicly available software.
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Chapter 3

Toward statistical real-time power fault detection

3.1 Introduction

Faults in power systems cause excessive currents and pose safety threats to people and prop-

erty, and even cause major fires with substantial economic and social impacts. Fast and reliable

detection of faults is therefore of paramount importance. Traditional methods use high fault cur-

rent magnitude and power flow direction to differentiate between normal operating conditions and

faulted conditions. Integration of inverter based (solar, wind) distributed energy resources (DERs)

in the distribution system has created bi-directional current flows under normal operation and re-

duced the effectiveness of the traditional methods based on current direction. This challenge has

created great interest in new methods of detecting faults in power grids. Our objective is to con-

tribute to the recent intensive research in this area by proposing a relatively simple, but effective,

way to detect power grid faults. Our approach is different from existing engineering approaches

and points toward possibilities of using high-frequency measurements generated by modern mea-

surement units. It is anchored in statistical sequential change point monitoring methodology that

goes back to the work of Page (1954) and has been developed in many directions, see Lorden

(1971), Lai (1998) and the book of Tartakovsky et al. (2015), among hundreds of significant

contributions. However, due to the mostly unexplored and very nonstandard structure of high-

frequency power grid data, a great deal of exploration and many adjustments need to be made to

make the approach practically applicable. The objective of this paper is to propose a general statis-

tical paradigm for power grid fault detection using the type of data that are becoming available in

real time. In addition to the new statistical methodology, an advance over very extensive engineer-

ing literature is the computation of success rates, similar to type I and II errors, and incorporation

of incomplete data (some measurements may be unavailable).
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Existing fault detection methods in power systems fall into the following three categories: qual-

itative model-based, quantitative model-based, and data-driven approaches, see Jiang et al. (2011).

Data-driven approaches have recently been receiving considerable attention for the following rea-

sons: (1) Various intelligent electronic devices (IEDs) have been widely adopted and installed in

the power grid (Moghaddass and Wang, 2017; Ghosal and Conti, 2019; Chen et al., 2020). These

devices collect large amounts of different data at many nodes across the grid. (2) Compared to the

traditional model-based approaches, the data-driven approaches are more resilient against system

model misspecification and adapt better to the variations in system components and/or topology

(Chen et al., 2018; Chen et al., 2019; Tripathi and De, 2018; Yin et al., 2014). To illustrate the

scope of research on power grid fault detection, without aiming at a complete list of references, we

also cite (Zhou et al., 2019; Chow et al., 2007; Xie et al., 2014; Kaci et al., 2014; Kim et al., 2017;

Cui et al., 2019; Nguyen et al., 2015; Rafferty et al., 2016).

Recent new approaches generally test a proposed method to a single fault. For example, using

the magnitude of the voltage, Gholami et al. (2019) develop advanced fault detection methods

based on multiple detectors. The approach of Hannon et al. (2019), based on machine learning,

is very promising, but the application uses only one bus. The focus of Ardakanian et al. (2016)

is the estimation of the admittance matrix. A change in this matrix and its localization provide

information on the timing and the localization of a fault. The algorithm is evaluated on a 13 bus

grid, similar to the one we use, but only on a single fault. Recent methods for fault localization, e.g.

Li et al. (2019b) and Khushwant et al. (2021), require the knowledge of the time the fault occurs,

the issue we address. The importance of incorporating PMU measurement before, during and after

a fault was emphasized by Chen et al. (2016) who proposed a method to detect and identify faults

in near real-time by exploiting the statistical properties of voltage phase-angle measurements. We

take a similar view. Our work has a statistical dimension because we apply many versions of our

method to a relatively large database of 55 faults, and report success and failure rates, similar to

size and power of a significance test, to identify the best methods. As we explain in Section 3.2,

the 55 faults we consider are basically all possible faults in a 13 bus system we use as a test bed.
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To summarize, we develop a basically complete statistical methodology to detect a fault in a

small grid based on high-frequency measurements at selected notes of the grid. Since the temporal

resolution of data streams is very high, the detection is almost immediate. Such an immediate

detection can be expected of many other methods, if a fault in fact did occur. We therefore fo-

cus on the correct decision. It is important to avoid false alarms because cutting off power has

serious consequences. On the other hand, failing to detect a fault may have even more serious

consequences. We therefore focus on frequencies of correct and incorrect decisions, similarly as

in the Neyman–Pearson testing paradigm. For this, reasonably many different faults are needed.

We address the following items: (1) preprocessing of irregularly recorded data streams, (2) de-

velopment of scalar detectors based on multichannel data streams, (3) determination of dynamic

alarm thresholds, (4) investigation of the performance and robustness of our methodology. In the

end, we are able to recommend specific implementations that work very well in our test-bed grid.

However, our process of statistical methodology development can be even more valuable, as it can

be viewed as a recipe that could be applied in similar, but different, settings.

The remainder of the paper is organized as follows. Section 3.2 is dedicated to the description

of the data we study, Section 3.3 to the development of the methodology and Section 3.4 to the

examination of its performance. We summarize and provide an illustrative algorithm in Section 3.5.

3.2 IEEE 13 bus feeder: structure and data generation

Real power grid fault data are generally not publicly available; power companies do not share

them, chiefly for legal reasons. However, the mechanisms and types of faults that occur in real

power grids are well understood. National Renewable Energy Laboratory (NREL) has hardware

and software to generate faults of any type at specified times and locations within a grid that can

be designed to correspond to a problem to be studied. In this paper, we use a fairly standard grid

design, the IEEE 13 bus feeder, to generate streaming data and faults. The small grid we consider

is the usual test bed in power grid research that can be identified with a small subgrid within which
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a fault can occur. We now proceed to describe it and the data that have been generated at NREL to

develop a statistical fault detections technique.

Figure 3.1: IEEE 13 bus feeder representation.

The general structure of the IEEE 13 bus feeder, PES (2020), is shown in Figure 3.1; it is a

connected graph with 13 nodes. In power grid research a node is called a bus. For example, we

refer to node 650 as Bus 650. Measurement devices are placed at buses. They cannot be placed at

transmission lines that connect the buses. We use only data from 6 buses, similarly to Onaolapo et

al. (2019) and Hu et al. (2013). We assume that each of these 6 buses represents a different part

of the system:

1. Bus 650 (the substation)

2. Bus 632 (includes buses 645, 646, 633)

3. Bus 634

4. Bus 671 (includes buses 684, 611, 652, 692)

5. Bus 675

6. Bus 680
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The above partition of the grid is dictated by the way the buses are connected and power trans-

mitted. For example, there is only a circuit breaker between Bus 671 and Bus 692, so they are

identical buses when the circuit breaker is closed. The data at Bus 611 and Bus 652 can be as-

sumed to be identical to the data at Bus 671 because the lines connecting Bus 671 to Bus 611 and

Bus 652 are short. Similar arguments hold for Bus 632 with the surrounding buses; voltage drops

are insignificant from the perspective of the target application.

To explain what data are available at each of the six buses, we must briefly describe how power

is generated and transmitted. We provide only the most essential facts that are well-known to

power grid engineers and researchers, but may be less known to statisticians. Detailed background

is available in dozens of textbooks, Glover et al. (2022) is a recent edition of a popular textbook.

Alternating current (AC) is generated by a generator that has a large electromagnet spinning inside

stationary coils of wire (windings). Industrial generators have three separate windings, each pro-

ducing its own current. These separate currents are referred to as A, B and C phases. Measurement

devices at buses can measure each phase separately and all three phases combined. If there are no

faults, the voltage and current of the phases are shifted exactly by π/3 radians. This corresponds to

the equi-spaced locations of the three windings inside which the electromagnet rotates at a constant

speed, generating currents of constant frequency (nominally 60 Hz in the United States). At each

bus, we thus have measurements of 12 variables: voltage (in kilovolts), current (in kiloamperes)

and frequency (in hertz) for phases A, B, C, and three-phase. From these measurements, volt-

age and current Root Mean Square (RMS) can be computed, which is the peak voltage or current

divided by
√

2. This convention is routinely used in sinusoidal AC power transmission systems

because then the transmitted power can be calculated as the product of the RMS current and RMS

voltage. If there is a fault, the measured current, voltage and frequency will be impacted, but they

also exhibit small fluctuations in the absence of any faults.

This IEEE 13 bus systems is simulated in a digital real time simulator (DRTS) in electromag-

netic transients (EMT) domain. The RMS of voltage and current are calculated in real-time. The

35



frequency measurements are calculated using phase locked loop (PLL) approach. The measure-

ments are stored as csv files through UDP (User Datagram Protocol) streaming from DRTS.

For this study, 55 different simulations of faults were conducted. These include all possible bus

faults in this test grid. We used a fault model from the RSCAD library which uses an impedance in

the path to the ground. We used the value of 0.1 Ohms for the impedance value. In each simulation,

different types of faults were applied to buses 632, 634, 646, 650, 671, 675, 680, 684. Additionally,

faults were applied at the middle of the line between buses 632 and 671. In each simulation, the

fault was applied at the beginning of second 10 and the simulation was running for another 5

seconds. The total length of each simulation is thus 15 seconds. It is assumed that the earliest time

when a fault can be detected is the start of second 10. If a fault is detected earlier, it is treated as a

false detection. Depending on the type of the faulted bus (two-phase or three-phase), up to seven

different types of faults are possible. These types are (1) Phase A fault (2) Phase B fault (3) Phase

C fault (4) Phases A and B fault (5) Phases A and C fault (6) Phases B and C fault (7) Three-phase

fault. Also, additionally, one 35 second long simulation without a fault was conducted. It is used

for training certain aspects of our algorithm, as elaborated on in Section 3.4.1.
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Figure 3.2: Measurements at Bus 675 with phase A fault applied at Bus 632. The fault is applied at the

beginning of second 10. From Top to Bottom - phases A, B, C, and Three-phase measurements. From Right

to Left - voltage, current, and frequency measurements.

Figure 3.2 presents a part of the data for Phase A fault at Bus 632. The presented data contains

the measurements at Bus 675. Each time series goes through noticeable perturbations after the

fault. Figure 3.3 presents the same data, but focuses on the first 0.3 seconds after the start of

second 10, i.e. after the fault. Notice that the first visible reaction can be seen only around 0.25

seconds later.
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Figure 3.3: Close-ups of the data shown in Figure 3.2, the first 0.3 seconds after the fault.

If we take all simulations and all buses into account, we would end up with 6× 55 = 330

Figures analogous to Figure 3.3. Visual examination of some of them reveals that while delays are

similar, the shapes of responses differ. A relationship between the location of a fault and a location

of the bus at which it is measured, as well as the responses of the 12 measured variables and the

type of the fault, are not easy to establish. In the next section, we describe a general approach that

uses all available information and work out the details of specific, most effective approaches. The

effectiveness is measured by a low rate of false alarms and a high rate of correct fault detections.

3.3 Methodology

The goal of statistical change-point detection is to determine if a change in the structure of data

has occurred and to estimate the time of the change. The context of the streaming power grid data

we consider falls into the field of on-line, real-time or sequential change-point detection, or change

point monitoring. All these terms are almost synonymous. There are now many monographs on

change point detection, e.g. Brodsky and Darkhovsky (1993), Gustafsson (2000), Chen and Gupta
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(2011), Basseville et al. (2012) and Brodsky (2017). There is a continuous stream of publications

within this field that focus on specific aspects, models and applications. With the awareness of

listing a subjectively selected small sample, we cite Aminikhanghahi et al. (2019), Horváth et

al. (2021), Zhang et al. (2021), Estrada Gómez et al. (2022), who also provide many references

specific to the directions they advance.

Our purpose is to develop an effective method of detecting a fault in power grid streaming data.

We will explain the relevant statistical concepts as we progress with the methodology development.

In our approach, we use a moving window change-point detection technique.

This section is organized as follows. First, in Section 3.3.1, we focus on the irregular structure

of the data and present our regularization approach. In Section 3.3.2, we describe the derivation of

the methodology leading to change-point detection. We explore a few different approaches. The

proposed methodology requires a suitable normalization of the data streams, which is described in

Section 3.3.3. In Section 3.3.4, we describe the derivation of the threshold for decision-making,

the approach for determining the final form of our fault detection methodology, and criteria for

parameter tuning.

3.3.1 Regularization

The data capturing mechanism used by the NREL hardware and software provides unevenly

spaced time series, so a regularization approach is needed. The 55 simulations share an almost

identical data capture mechanism. Within a simulation, all 12 variables, like phase A current or

three-phase voltage, are recorded at the same time. Thus, at any moment, if the value of one vari-

able is recorded, the values of for the remaining 11 variables are recorded as well. The recording

times are however not identical for the 55 simulations. Moreover, if different devices are used

in a monitoring of a power grid, the assumption of the identical recording times for all variables

might not hold. The regularization approach proposed below would work even in this more general

setting.
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To illustrate the irregularity of the measurement time points, we use a simulation with A phase

fault at Bus 632 and analyze differences between subsequent time points. The histogram is pre-

sented in Figure 3.4. The minimum of differences is 0.00096s, the maximum is 0.00798s (more

than a 700% difference). Most of the values group around 0.001, 0.002 and 0.003 seconds. For

other simulations, the broad picture is similar, but the distributions of the time points are slightly

different.

Figure 3.4: The unit area histogram of differences between subsequent time points of A phase fault at Bus

632 simulation.

The proposed regularization procedure consists of dividing the total time of a simulation into

a set of fixed length subintervals. Each second is divided into D equal intervals of length d = 1/D

seconds. If D is too large, the intervals will be too small, some would contain no data points,

eventually leading to additional noise in the data. If D is too small, intervals would contain many

data points, leading to a loss of valuable information. In our analysis, we used D = 500, to reflect

the most typical time points separations described above.

Denote by t1, t2, . . . the end points of the intervals, where ti+1 − ti = d. Denote by Xt a variable,

e.g phase A voltage, observed at time t. The value Xt j
is calculated as the average of the Xt with

t j − d < t ≤ t j. If such Xt do not exist (there are no observations in the interval (t j − d; t j]), we

assign Xt j
:= Xt j−d . Recall that each simulation with a fault is 15 seconds long and starts at second

0, thus this procedure leads to a maximum of 7,500 (with D = 500) different equally spaced time

points, and our time series are defined at times {0.002,0.0004, . . .} seconds. If a fault is detected,

we no longer need to continue to calculate the regularized Xt j
.
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3.3.2 Moving window detection algorithm

We begin by introducing a convenient notation. Fix a simulation and consider all-time series

X(b′,k′, f ′). We use the primers to distinguish the indexes identifying the available data steams from

parameters of a statistical fault detection procedure. The index b′ refers to a bus number, so b′ ∈

{650,632,634,671,675,680}. The index k′ refers to a type of variable and k′ can be either Voltage,

Current, or Frequency. The index f ′ refers to a type of phase and can be either A, B, C, or three-

phase. For example, X(650,Voltage,A) refers to A-phase voltage measurements at Bus 650. and

X(650,Voltage,A)(t) is to A-phase voltage measurement at Bus 650 at time t. As described before, we

have six buses, three types of variables and four types of phases. Our purpose is to determine the

time of a fault using a suitable change-point detection technique based on a moving window. A

moving window ensures that a detection statistic can be calculated in real-time, as it is based on

only a limited number of observations, and that it adjusts to the most recent state of the system.

The slow evolution of system readings does not indicate a fault of the type we are aiming to detect.

Denote by l the length of the moving window in seconds. We split the moving window into two

intervals of lengths pl and (1− p)l seconds. The first interval is used to evaluate the prior state. The

second interval is used to evaluate the current state. It is natural to choose p > 0.5, as it provides

a more stable evaluation of the prior state. This leads to (1− p) < 0.5. The shorter interval helps

better capture the current state and respond to a fault quickly. However, the interval that is too

short might put too much emphasis on noisy observations, thus one needs to find optimal values.

We explain in the following how this is done. Assume that ti is the current time point. Notice

that if ti < l, the moving window intervals cannot be built. Without loss of generality, we assume

that ti ≥ l, because we do not expect a fault within a fraction of a second after the monitoring has

begun. The moving window with the two subintervals is shown in Figure 3.5.

We now turn to the description of a general class of tests statistics, often referred to as detectors,

that are based on the two subintervals of the moving window. Set

V(b′,k′, f ′)(ti) =
[

f (X(b′,k′, f ′))(ti)− f̃ (X(b′,k′, f ′))(ti)
]
, (3.3.1)
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Figure 3.5: An example of the moving window using l = 0.25 seconds and p = 0.7. Here, the current time

is ti = 9.4 seconds. Dark grey area represents the interval of length pl and light grey - the interval of length

(1− p)l.

where f (X(b′,k′, f ′))(ti) is some function f computed from the trajectory X(b′,k′, f ′) using the points

t j, such that ti− l ≤ t j < ti− (1− p)l (the first interval) and f̃ (X (b′,k′, f ′))(ti) is the same function on

ti − (1− p)l ≤ t j ≤ ti (the second interval). Thus, for each combination of indexes, (b′,k′, f ′), we

acquire a statistics V(b′,k′, f ′)(ti) at the current time point ti.

The next step is to specify the functions f that can capture differences between the two intervals

well and propose a method to combine the V(b′,k′, f ′) over all indexes. One should notice that the

pool of choices is wide, and considering all of them is not practical. We considered several options

for f and several ways to combine the V(b′,k′, f ′)(ti) across the indexes. The performance of these

different approaches is evaluated in Section 3.4. The choices of f we considered are listed in Table

3.1.

Table 3.1: The functions f considered in this study. The time ti is the end point of the moving window. The

specified functions are computed over the two intervals shown in Figure 3.5.

Name f (X(b′,k′, f ′))(ti) Definition

Mean X̄(b′,k′, f ′) The average of observations

SQMean X2
(b′,k′, f ′) The average of the squared observations

Range max(X(b′,k′, f ′))− min(X(b′,k′, f ′)) The range of observations

Median median(X(b′,k′, f ′)) The median of observations
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The potential functions f in (3.3.2) can be viewed as features computed from the data on each

of the two subintervals of the moving window. One can clearly come up with many functions,

which could also be combined in various ways, e.g. by addition or multiplication. The functions

listed in Table 3.1 are just the most commonly used statistics and, as we shall see, already lead

to reliable detection. As illustrated in Figure 3.2, a fault is “seen" by different measurements at

different buses differently, and it is not clear what differences between the two intervals one should

look for. Generally, it is some sort of level shift, but the direction of the shift is unclear, and it

may consist of several “sub-shifts". However, if a moving window starts to cover the fault, the

differences between the two intervals should become visible for suitable functions f that must be

determined empirically. For the streaming data, we think of the window as a filter through which

that data stream passes. This filter must be tuned to detect a fault most effectively.

To combine the differences V(b′,k′, f ′)(ti) into suitable real-valued statistics, we considered three

methods, which result in statistics we denote as Vmean, Vmedian, and Vtrunc. They are defined as

follows. The detector Vmean is the average of the squared differences:

Vmean(ti) =
∑(b′,k′, f ′)

{
V(b′,k′, f ′)(ti)

}2

#(b′,k′, f ′)
. (3.3.2)

Formula (3.3.2) shows that if one or more of the differences V(b′,k′, f ′)(ti) between the two subinter-

vals of the moving window is large, then Vmean(ti) will be large. On the other hand, one unusually

large value of V(b′,k′, f ′)(ti), that can be due, for example, to the instrument failure, can lead to a false

detection. It can be argued that in smaller systems like the IEEE 13, if a fault happens, at least half

of the measurements (collected variables) should react to it. Thus, alternatively, we considered the

median:

Vmedian(ti) = median(b′,k′, f ′)
{

V(b′,k′, f ′)(ti)
}2

. (3.3.3)

A statistics that combines the characteristics of the mean and median is the truncated mean:

Vtrunc(ti) =
∑(b′,k′, f ′)∈Q

{
V(b′,k′, f ′)(ti)

}2

#(b′,k′, f ′) ∈ Q
. (3.3.4)
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The set Q in (3.3.4) consists of the indexes (b′,k′, f ′) such that the values (V(b′,k′, f ′)(ti))
2 are be-

tween the q/2th and the (1− q/2)th quantiles. Here, q can be considered as a tuning parameter.

Figure 3.6 illustrates the concept of truncated mean. In the following, all three methods Vtrunc,Vmean

and Vmedian are generically denoted as Vstats, if the same considerations apply to all of them.

Figure 3.6: Histogram of (V(b′,k′, f ′)(ti))
2 at ti = 0.5 seconds using Mean for f with l = 0.25 and p = 0.95.

The data is from the simulation without a fault and were normalized as described Section 3.3.3 before

computing the V(b′,k′, f ′)(ti) values. The shaded area shows the central 60% of the (V(b′,k′, f ′)(ti))
2 values,

corresponding to q = 0.4. The truncated mean is the average of observations in the shaded area. The solid

line represents Vmean(ti), the dashed line Vmedian(ti), and the dotted line Vtrunc(ti).

It is natural to set the value ti at which V (ti) exceeds a suitable threshold τ as the estimated time

of the fault. In principle, a slightly earlier time could be used, e.g. (1− p)l seconds earlier, but this

is a minor point and a delay of a small fraction of a second may be inconsequential. One could

shift the detection time even more because there is a delay of about 0.25 s in the reaction of the test

grid to a fault. Such a delay may however be different in a different grid and would generally be

unknown. Adjustments of this type are easy to add to our procedure and do not affect the correct

and false detection rates. Thus, we define the time of the fault as

t f = min
{

t j : Vstats(t j)> τ(t j)
}
, (3.3.5)
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where τ(t j) is a threshold that is adjusted in real time. The methodology for the derivation of such

a threshold is described in Section 3.3.4. First, we explain the normalization of the data streams in

Section 3.3.3.

The performance of detection procedures based on different choices of Vstats(ti) as well as

different options for f (X)(b′,k′, f ′)(ti) is discussed in Section 3.4.

3.3.3 Normalization

The method described in Subsection 3.2 compares the two parts of the moving window (Figure

3.5) by evaluating Vstats. Thus for each variable included in the data, e.g. phase A voltage RMS,

three-phase current RMS, etc., we compute separate V(b′,k′, f ′)(ti) at time point ti. Notice that each

V(b′,k′, f ′)(ti) has an equal weight in the formula for computing Vstats(ti). Figure 3.2 shows that dif-

ferent variables have different ranges, averages and variances. Thus, without further adjustments,

our proposed methodology would favor some variables merely based on units of measurement and

other irrelevant scale factors. Additionally, if units of measurements or other aspects of data col-

lection are changed, this can lead to completely different different performance of our method. For

example, instead of measuring a current using the RMS, one could decide using the peak to peak

range, but leave voltage and frequency measures unadjusted, possibly getting very different results

in Vstats. Using amperes instead of kiloamperes would basically eliminate all variables except the

current. At this point, we do not know which variables are important for fault detection, and we

see that they all react to a fault, so it is judicious to give them equal weight in some suitable sense.

To ensure that each bus, type of variable (voltage, current, and frequency), and phase has an

equal weight in the equations of Section 3.3.2, we use normalization. Traditionally, normalization

uses an estimate of standard deviation and of the mean to calculate a Z score. In the case of

streaming data, one cannot take the mean and standard deviation estimates of the whole data.

Moreover, the potential for a fault implies that measurements over a period considered fault-free

should be used. There is no perfect and widely accepted solution. After initial exploration, we

propose using the following moving window technique.
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We have observations X(b′,k′, f ′)(ti) at time point ti. We compute the sample mean and the sample

standard deviation over the time period ti− l ≤ t j < ti−(1− p)l and denote them as m(X(b′,k′, f ′)(ti))

and SD(X(b′,k′, f ′)(ti)). The interval over which these statistics are computed is the same as the first

interval in (3.3.2). The normalized value Z(b′,k′, f ′)(ti) at the point ti is calculated as:

Z(b′,k′, f ′)(ti) =
X(b′,k′, f ′)(ti)−m(X(b′,k′, f ′)(ti))

SD(X(b′,k′, f ′)(ti))
. (3.3.6)

The normalized values Z(b′,k′, f ′)(ti) depend on the choice of p and l. Figures 3.7 contain examples

of normalization applied to Bus 632 voltage trajectories with l = 0.25 s and p = 0.9. In the

methodology of fault detection, we use the Zb′,k′, f ′ as input (instead of the Xb′,k′, f ′).

Figure 3.7: Illustration of the normalization procedure applied to Bus 632 voltage data (no fault). The right

four panels contain the regularized data (original data with irregularity removed) and the left four panels

show the corresponding normalized values using l = 0.25 second and p = 0.9. Note the different vertical

scales between the left and right columns.
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3.3.4 Threshold determination methodology

The performance of the method described in Section 3.3.2 depends on how well we can acquire

the dynamic threshold τ . We want to determine the τ that balances two criteria: 1) if there is no

fault, false alarms should be rare, 2) if there is a fault, it should be detected with a large probability

and the delay of detection (time of detection - time of fault) should be small. A larger τ ensures

that criterion 1) is met, and a smaller τ ensures that criterion 2) is met. There is no guidance on

how to balance these two criteria for power grid streaming data. In this section, we explain our

approach to the determination of τ . Our method relies on several tuning parameters, and it is a

priori not clear which of them will work best for our data. The winners are determined after the

application of our approach in Section 3.4.1.

First, we explored how different tuning parameters affect the Vstats(ti) values. The properties

we are looking for are small variance and moderate percentage change between Vstats(ti − 1) and

Vstats(ti) if there is no fault. Such properties would lead to a robust threshold calculation based on

a moving window. The tuning parameters are:

• the length of the moving window l,

• the proportion parameter p,

• in case of Vtrunc - cut off parameter q.

Also, we separately discuss the differences between the Vtrunc,Vmean, Vmedian values. (The me-

dian appears in two different contexts: in Equation (3.3.3) and in the definition of the statistic

f (X)(b′,k′, f ′)(ti) = median(X(b′,k′, f ′)(ti)).) For each combination of tuning parameters, we explore

for different statistics - Mean, SQMean, Range, Median, cf. Table 3.1. The properties we are

looking for are small variance and moderate percentage change difference between Vstats(ti−1) and

Vstats(ti) if there is no fault at time point ti. On the other hand, some variability in Vstats should

be expected, as otherwise, the detector would not respond to changes and the detection of a fault

would be practically impossible.
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While many threshold formulas are reasonable, to narrow down our choices, we considered 3

different ways to calculate τ . To display the formulas, we first introduce the interval

I1(ti) = {t j : ti − l ≤ t j ≤ ti−1}.

The above interval resembles the interval considered in the Vstats(ti) calculations, but it does not

contain the final time point ti; if a fault happens, its effects should be noticed comparing current

Vstats(ti) value to a threshold based on previous values. We considered:

1. τ1(ti) = 3maxt j∈I1(ti)Vstats(t j);

2. τ2(ti) = maxt j∈I1(ti)Vstats(t j)+3ranget j∈I1(ti)
Vstats(t j);

3. τ3(ti) = maxt j∈I1(ti)Vstats(t j)+3SDt j∈I1(ti)Vstats(t j).

Using the coefficient 3 is motivated heuristically by the 99.7% quantile of the normal distri-

bution. In the following, all three thresholds τ1,τ2,τ3 are referred to as τ . After choosing tuning

parameters, Vstats, and a procedure for computing τ , the fault is signaled at the first time point t j

such that Vstats(t j)> τ(t j), as expressed in equation (3.3.5).

3.4 Results

In Section 3.4.1, we explore the performance of the methodology derived in Section 3.3 assum-

ing all data streams are available. Based on the observed performance, we select the final form of

the method. In Section 3.4.2, we investigate to what extend our method is robust to the elimination

of certain data streams or buses at which they are measured. The first consideration may be viewed

as a further tuning of our method because there may be sufficient information only in one of two

data stream, and it may not be necessary to use all streams. This is however not clear a priori.

The second consideration is very practical because if all buses react to a fault, it may be enough to

place measurement devices only at some of them. Again, the answer is not clear a priori and the

question must be investigated.

We use the following quantities for the assessment:
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F1 - Fraction of simulations in which a fault is detected over the first 10 seconds. This quantity is

similar to the size of a statistical significance test or type I error.

F2 - Fraction of simulations in which a fault is detected over the whole 15 seconds. This quantity

is similar to power under an alternative or 1 minus type II error.

In statistical significance tests, F1 equal to 5 or 1 percent would generally be acceptable. Since

in power grids a false alarm may be expensive to investigate, we may target a different value of F1.

Even F1 = 0 might be reasonable. We proceed analogously as in the traditional Neyman–Pearson

paradigm. We first determine method parameters that give satisfactory F1. From those, we select

those that give the best F2.

3.4.1 Detection based on complete data

In accordance with the plan outlined above, we first applied our method to a simulation that

does not contain a fault. We tested different combinations of tuning parameters and different

choices of Vstats and f . We noticed that different values l do not have a large impact on F1. One

should not choose the value that is too small, as it increases variance in Vstats and leads to false

detections. The value we propose to use is l = 0.25 s, but one can choose relatively close values

and get basically identical results. Regarding the selection of p, our statistical experiments showed

that p should be close to 1. We have observed better properties of Vstats when the first interval of

the moving window is longer, and the second interval is relatively short. The value we propose to

use is p = 0.95, but one can choose relatively close values, like 0.9, and similar results. Notice

that with l = 0.25 and p = 0.95, the effective interval used to detect the faults has the length of

(1− p)l = 0.0125 s. The explorations regarding Vstats revealed that using Vmean leads to many

false-detection cases. Random variability in the data combined with the sensitivity of the standard

error to large and small values leads to high volatility in Vmean values, thus resulting high percentage

change from Vstats(ti−1) to Vstats(ti). On the other hand, Vmedian solves the aforementioned problems,

but introduces some other issues; it is too conservative, as it is calculated using the middle of input

values. It is basically not sensitive to a change in 50% of the largest input values. This method
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had little variation and values proved to be insensitive even if there are some changes in the data.

This leads to undetected faults. The best results were obtained using Vtrunc. This statistic proved to

be less volatile than Vmean, but more flexible than Vmedian. The value we propose to use is q = 0.1

(90% of the "middle" data). To summarize, we recommend

l = 0.25 s, p = 0.95, and Vstats =Vtrunc with q = 0.1. (3.4.1)

All tables that follow are produced using these settings.

The above settings produced the best overall results for the faults we considered. With addi-

tional knowledge of the type of fault, it is possible that slightly different settings might be optimal.

Next, for each proposed threshold τ , and each statistic f in the Table 3.1, we evaluated how

many times the detector was triggered over the course of the simulation without a fault (Table 3.2).

The best results (0 false detections) were achieved by using Mean and Range for f (X(b′,k′, f ′)) and

either τ1 or τ2. We observed no false detections in either of these four cases. However, even in the

worst cases we observed only 21 false alarms out of potential 17,500 time points where they could

be signaled. As note above, in power grids false alarms are expensive, and we have found methods

that basically do not produce them.

Table 3.2: Counts of false detections over the simulation with no fault using settings (3.4.1). The last

column shows the count of false detections over the whole length of the interval (35s) which contains

35 ·500 = 17,500 regularized time points.

f τ Count f τ Count

Mean τ1 0 Range τ1 0

Mean τ2 0 Range τ2 0

Mean τ3 4 Range τ3 5

Median τ1 3 SQMean τ1 3

Median τ2 3 SQMean τ2 2

Median τ3 21 SQMean τ3 21

50



We now show how the methods with the best parameters perform over the simulations with

faults (55 simulations). The results are presented in Table 3.3. Notice that three of four combi-

nations showed perfect results in terms of fault detection (F1 = 0 and F2 = 1). The combination

of τ2 and Mean gave results of F2 = 0.98 (in one of the simulations, the fault were missed). The

fractions F1 of false detections were computed using the first 10 seconds because we know that

there were no faults in the initial 10 s.

Table 3.3: Fault detection evaluation over 55 simulations with a fault using setting (3.4.1). Results are

presented for the combinations of f and τ that showed the best results in Table 3.2.

f τ F1 F2

Mean τ1 0 1.00

Mean τ2 0 0.98

Range τ1 0 1.00

Range τ2 0 1.00

Allowing for uncertainty associated with using a database of 55 faults, our results show that any

of the four combinations in Table 3.3 can be used. For additional certainty, One can choose to use

these four combinations simultaneously. Additionally, we tested the timing of the fault detection

to see if there exist any differences between these four combinations. The results show that τ1

and τ2 have no effect on the detection timing and are identical for both f choices. With additional

information about the type of fault, e.g. its impedance or path, it might be possible to recommend

an optimal τ most suitable for the specific faults. In 29% of the simulations, Range led to a faster

fault detection than Mean, but only by 0.002s. In the other 71% simulations, both statistics gave

identical time of the fault.
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3.4.2 Detection with partial data streams

In this Section, we explore how robust our methodology is to the reduction of the available

data streams. We consider only the best parameters settings, those defined by (3.4.1) and Table

3.3. Recall that the data streams are indexed by the triples (b′,k′, f ′), where b′ is the bus number,

k′ is the variable (voltage, current, frequency) and f ′ is the phase (A, B, C, 3 phase). There are a

large number of ways in which data streams could be restricted. To provide information in some

systematic way, we restrict each of the three coordinates separately and investigate what the impact

of such a data reduction is. In Section 3.4.2, we consider the practically most important setting

of measurement devices placed only at some buses. In Sections 3.4.2 and 3.4.2 we investigate,

respectively, what happens if only some variables or some phases are used. Information of this

type is also relevant because it might, for example, be the case that it is enough to use only voltage.

Since the data streams we use have not be explored from such angles, the answers are not a priori

clear. As a byproduct of the investigations in this section, we may be able to give preference to

some of the methods in Table 3.3.

Limited buses

In Table 3.3 data from all buses were used. In this section, we investigate what happens if data

from subsets of cardinality K of the set {650,632,634,671,675,680} are used. If K = 6, there

is only one subset, if K = 5, there are 6 subsets, if K = 4, there are 15 subsets, etc. (number

of combinations). For example if K = 2, a possible combination is {650,632}, and we have 15

combinations in total for K = 2. Thus for K = 2, we can compute F1 and F2 using 15 · 55 = 825

cases. The results are displayed in Table 3.4. Notice that for smaller K, the F1 values are higher

and F2 values are smaller. With K ≥ 3, the F1 stays at 0, while F2 varies from 0.97 to 0.99. For

low K values Mean gives better results in terms of F1 than Range. For K ≥ 3, Range gives better

results than Mean with F1 = 0 and larger values of F2. The main conclusion is that to ensure no

false alarms, it is enough to use any three of the six buses, but to ensure that each fault is detected

all six buses must be used.
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Table 3.4: Faults detection evaluation using complete data streams from K buses.

f τ K F1 F2 K F1 F2

Mean τ1 1 0.07 0.93 4 0.00 0.97

Mean τ2 1 0.00 0.88 4 0.00 0.96

Range τ1 1 0.08 0.95 4 0.00 0.98

Range τ2 1 0.12 0.95 4 0.00 0.98

Mean τ1 2 0.00 0.94 5 0.00 0.98

Mean τ2 2 0.00 0.92 5 0.00 0.98

Range τ1 2 0.12 0.96 5 0.00 0.99

Range τ2 2 0.22 0.96 5 0.00 0.99

Mean τ1 3 0.00 0.95 6 0.00 1.00

Mean τ2 3 0.00 0.94 6 0.00 0.98

Range τ1 3 0.00 0.97 6 0.00 1.00

Range τ2 3 0.00 0.97 6 0.00 1.00

Limited variables

We now explore if it is necessary to consider all three variables. Table 3.5 shows the results of

our procedure based on only one of the three available variables. We see that using only current

gives perfect results, even slightly better than using all three variables, cf. Table 3.3.
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Table 3.5: Performance of procedures based on single variables

f τ Variable F1 F2

Mean τ1 Frequency 0.00 0.96

Mean τ2 Frequency 0.00 0.93

Range τ1 Frequency 0.00 0.96

Range τ2 Frequency 0.00 0.96

Mean τ1 Current 0.00 1.00

Mean τ2 Current 0.00 1.00

Range τ1 Current 0.00 1.00

Range τ2 Current 0.00 1.00

Mean τ1 Voltage 0.00 0.91

Mean τ2 Voltage 0.00 0.87

Range τ1 Voltage 0.02 1.00

Range τ2 Voltage 0.04 1.00

Limited phases

We finally explore how our procedure performs if only one phase measurement is used. The

phases are A, B, C and 3 (three-phase measurement). The last case revers to a single value derived

from all three phases, for example the sum of currents flowing in phases A, B, C at a given time.

The results displayed in Table 3.6 are not clear-cut. The performance is perfect for f =Mean and

phase=3, but replacing f =Mean with f =Range gives a lot of false alarms. Using a truly single

phase, A, B or C gives practically no false alarms but can miss up to 10% of faults.
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Table 3.6: Performance of procedures based on single phase measurements. Phase 3 refers to the simulta-

neous measurement of all three phases reported as a single number.

f τ Phase F1 F2 Phase F1 F2

Mean τ1 A 0.00 0.91 C 0.00 0.91

Mean τ2 A 0.00 0.91 C 0.00 0.91

Range τ1 A 0.00 0.93 C 0.04 0.95

Range τ2 A 0.00 0.93 C 0.04 0.95

Mean τ1 B 0.00 0.93 3 0.00 1.00

Mean τ2 B 0.00 0.91 3 0.00 1.00

Range τ1 B 0.00 0.93 3 0.38 1.00

Range τ2 B 0.00 0.93 3 0.24 1.00

3.5 Summary and an algorithm

Algorithm 3 Detection procedure using f =Mean, threshold τ1 and 3 phase current

Input: Trajectories X(b′,k′, f ′) with k′ =current and f ′ =3 phase

Output: Fault = 1 or 0 (1 if fault detected); t f (time of fault) Initialization

1: Set l = 0.25 s, p = 0.95, and Vstats =Vtrunc (3.3.4) with q = 0.1,d = 1/500. Fault= 0 Set ti :=

ti +d Apply regularization to each X(b′,k′, f ′)(t), t ∈ [t −2l, ti] (Section 3.3.1) Find Z(b′,k′, f ′)(t j)

(3.3.6) for t j ∈ [ti − l, ti] using regularized X(b′,k′, f ′)(t j) Find Vtrunc(t j) (3.3.4) for t j ∈ [ti −

l, ti] using Z(b′,k′, f ′)(t j) and f =Mean Calculate τ1(ti) = 3maxt j∈I1(ti)Vtrunc(t j) (Section 3.3.4)

Vtrunc(ti)> τ1(ti) Set Fault= 1 and t f := ti

We have proposed a methodology for fault detection in a small power distribution system based

on a suitably developed moving window change-point analysis technique. We investigated the

properties of our technique and determined optimal parameter and other settings, including data

stream regularization and normalization as well as dynamic threshold selection. Investigations

reported in Section 3.4, indicate that three phase current is the most important variable. In fact, a

simple version of our procedure that uses only three phase current at all six buses produces perfect

results; there are no false alarms and all faults are detected. This is true for both f =Mean and

f =Range and for thresholds τ1 and τ2. Other options also produce perfect or nearly perfect results
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for our data set of 55 faults, showing that the general approach is sound. Algorithm 3 summarizes

the whole procedure with f =Mean, threshold τ1 and three phase current. It is possible that some

false alarms and missed faults might occur if a grid with a different topology is used, but our

methodology shows how to find a nearly perfect algorithm for any grid.

Our research proposes a general, data-driven, statistical approach to instantaneous and correct

detection of faults in a subgrid of a distribution system that is based on high-frequency measure-

ments, like those generated by PMUs. This approach looks ahead to the increasing penetration

of renewable energy sources that generate more random variability and bidirectional power flows.

Our methodology is obviously not a definite engineering solution, but it shows a potential of data-

driven, statistical approaches to fault detection and develops a scalable paradigm.

Extensions of this work might provide further useful insights. More complex grid topologies

could be explored. Fault behavior can vary based on the fault path impedance and the source

impedance. For this work, we did not vary the source impedance and we did not vary the fault

impedance either. Events such as a direct on line (DOL) motor start can cause under voltage for

more than a second. Learning on a more extensive data base of faults and various transient but

normal events can refine our approach.
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Chapter 4

Graph neural networks for the localization of faults

in a partially observed regional transmission system

4.1 Introduction

Electric power systems are one of the most crucial infrastructures of any nation or economic

area. The functioning of any modern economy and society depends on an efficient power trans-

mission system. Cyberattacks that make information about parts of the power system unavailable

or corrupted are a distinct possibility even if these parts are not physically damaged. Natural dis-

asters, like floods or hurricanes, military action or terrorist acts can damage parts of the power grid

and cut off information from affected sensors.

Our objective is to show that Graph Neural Networks (GNNs) can be employed to recover

enough information to ensure that fault detection diagnostics can be performed even if no informa-

tion is streamed from parts of a regional transmission system. We show how these deep learning

networks must be constructed and explain which forms of GNNs work well and which do not. Our

conclusions are based on statistical analysis of an exceptionally large database of faults simulated

in a realistic model of a regional transmission system. Before presenting the details in the follow-

ing sections, we review related statistical and engineering work and place our contribution within

this large body of very active research.

Faults in power systems cause excessive currents and pose safety threats to people and prop-

erty, and may cause major fires with substantial economic and social impacts. Therefore, there

is an increasing interest in fault detection and localization to reduce the damage to the system

and inconvenience to customers. This motivates the development of new methods to complement,

or potentially replace, traditional methods. Data-driven methods can now be easily implemented

due to the installation of phasor measurement units (PMUs), (Zhang et al., 2012; Xu et al., 2014;
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Kokoszka et al., 2023), among many others. In principle, the entire power system can be measured

and monitored by using PMUs on each electric grid bus. However, such placement could be costly

and prone to increased device failure rates as shown by Shafiullah et al. (2022). Thus, the research

on fault detection and localization without the assumption of full network observability has prin-

cipal importance. This paper concentrates on the issue of locating a faulted line in a transmission

network under partial network observability.

Fault detection and localization under partial observability of the power grid using machine

learning have been the subject of study in recent years. Li et al. (2019a) proposed a method-

ology to detect a faulted line employing classification based on Convolution Neural Networks

(CNN) using bus voltages and discussed the optimal PMUs placement. The study by Afonin and

Chertkov (2021) primarily focuses on using deep learning classification methods to locate faults

in a network under partial observability. They adopt a similar setting as (Li et al., 2019a), but

investigate a wider range of models: linear regression (one-layer Neural Network), feed-forward

Neural Networks, AlexNet, and Graph Convolutional Neural Networks. All of these models are

tuned in to predict the location of the faulted line. The performance of the models depends upon

the location of PMU devices. Zhao and Barati (2021) proposed a methodology for fault localiza-

tion in distribution networks based on a novel feature vector design and CNN classification. The

feature vector is built using the the differences in voltage and current before and after the fault, the

phase angle’s difference of each phase before and after the fault, and zero, negative and positive

sequences for phase voltages and currents. Results were tested on a real power distribution feeder

with 25 possible locations for the fault. Han et al. (2022) proposed to locate the faults by con-

verting multichannel electrical signals to similarity images. Using CNNs, which are traditionally

used for image classification, the authors apply algebraic operations to power signals and convert

them to images. The model was tested on a fully observed 24-bus system. The authors argued

that the model they proposed was robust to changes in the topology of the power grid. (Devi et

al., 2018) and Zainab et al. (2019) proposed a similar method as (Li et al., 2019a) but with

additional utilization of electrical area information. As the above review shows, the work done so
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Figure 4.1: The principal diagram illustrates the proposed approach to combine reconstruction and some

fault localization that effectively works under full grid observability in order to achieve fault localization

under partial observability.

far considers the limited availability of measuring devices (PMUs) to build classification models

for fault localization. Some work considers the approach where one trains the model on limited

PMUs and examines its performance (Devi et al., 2018; Li et al., 2019a; Afonin and Chertkov,

2021). There are several limitations to the above classification based approaches. First, if a par-

ticular measuring device fails, the model needs to be re-trained. Second, classification models

provide only 0-1 answers without additional information about the unobserved readings. Third,

these models do not incorporate the fact that with full PMU data availability, the current fault

detection/localization methods work with high accuracy (Salehi-Dobakhshari and Ranjbar, 2014;

Furse et al., 2021). We emphasize that classification based methods perform very well when trained

on rich and appropriately selected data. However, during training, they must know the location of

the fault, even if the fault occurs in an area of the grid that is not covered by measuring devices.

Rather than proposing a new fault localization method applicable under partial network observ-

ability, this study aims to bridge the gap between limited PMU availability and fault localization

methods that are highly accurate under the assumption of the full PMU coverage of the power grid.

We propose deep learning networks that can reconstruct data at locations where data are missing.

With such an approach, any method that works well under full grid observability can be applied.

Our approach is thus akin to data imputation, but with a specific focus on fault localization. It is

summarized by the following flow diagram:

The topic of missing data imputation in power grids has gained attention in recent years. Zhu

and Lin (2021) propose a method that utilizes spatio-temporal correlations for imputing missing

PMU data. This method is applied in situations where device malfunctions and communication
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failures lead to poor PMU measurements and data loss. The approach utilizes not only past in-

formation but also a global and local spatial perspective in order to achieve a higher accuracy

of data imputation. Foggo and Yu (2022) fill in missing values through the use of two compo-

nents: a non-dynamic component that is predicted using past data and a dynamic component that

is inferred from all other available PMUs. The proposed model corrects past data and incorporates

events data that can be inferred from all available PMUs data for the modulus of voltage. However,

these methods only address the missing data scenarios after the failure of the PMUs and assumes

that the past data is available. Dynamic state estimation is another area where significant progress

has been made (Jakir and Rahnamay–Naeini, 2021; Park et al., 2023). These authors used deep

learning methods and a large amount of diverse data to learn the relationship between power grid

nodes under normal operating conditions. Our work has a different focus. We use as little data as

possible, namely the modulus of voltage, to reconstruct trajectories during a fault with a focus of

using them in statistical fault localization methods. Our data are described in Section 2.2.

We are aware of only one study in the field of power grids that concentrates on employing

reconstructed trajectories in certain fault detection techniques, namely Li and Deka (2021) who

developed a physics-informed learning approach for detecting high impedance faults. They em-

ployed auto-encoders for feature learning and utilized unlabeled data for training, which is similar

to our methodology. Our research focuses on utilizing Graph Neural Networks for reconstruct-

ing missing trajectories, with specific applications in fault localization. We offer techniques for

enhancing the accuracy of the reconstruction process and propose models that can be utilized in

various data availability scenarios. Most research in this area has relied on labeled data (fault

locations are known). Our work addresses the challenge of localizing faults in situations where

obtaining labeled data is difficult or expensive. We propose employing GNNs to impute data tra-

jectories at buses without PMU devices during a fault in a power grid, and using this data in an

existing fault detection technique proposed in Kokoszka et al. (2023). Different techniques could

be used, but they are difficult to employ in our experimental test bed of the Western Regional grid

due to the lack of deployable code. We explore the capabilities and limitations of GNNs by us-
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ing two different scenarios, one where we assume access to full PMU data during training of the

GNN model and another where only limited PMU data is available during training. We consider

good results under the first scenario as our baseline, and aim to achieve even better results under

the second scenario, where data at buses without PMU devices is not available at all, even during

training. We explore different feature transformations, loss functions, strategies for optimal PMU

placement, and data availability scenarios using only unlabeled data. We present our results and

discuss the means to implement our methods. Moreover, our PMU data reconstruction methodol-

ogy contributes to the initiatives to mitigate cyberattacks on power grids, as we show that corrupted

PMU readings can be replaced by imputed readings from our model. Broadly speaking, our work

falls under the category of artificial intelligence techniques in power grids.

The paper is organized as follows. Section 4.2 introduces the the transmission system and

the grid data we work with. In Section 4.3, we formulate the problem and focus of the paper in

greater detail. In Section 4.4, we describe the methods we propose for data reconstruction using

GNNs. We examine various of loss functions, optimal PMUs placement, and success rates for fault

localization. Section 4.5 reports the performance of various versions of our method, while Section

4.6 summarizes our contribution and main conclusions.

4.2 Data Description

As in Chapter 2, we work with data generated using the miniWECC system that is a reduced-

order dynamic model of the Western Electricity Coordinating Council system. The minniWECC

has enough complexity to reflect the relevant properties of the full Western Interconnection’s

bulk power system, which serves over 80 million customers in 14 U.S. states and two Canadian

provinces. The simulations conducted with the minniWECC model have been used to work on

various power system mode estimation and event detection algorithms which are now adopted for

control room applications, see e.g. (Follum et al., 2017; Trudnowski et al., 2013; Byrne et al.,

2016). A more detailed description of the miniWECC can be found Trudnowski et al. (2013). A

simplified one-line diagram of the minniWECC is given in Figure 4.4 in Section 4.5. Only high
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voltage lines are shown to make the graph readable. We use a version of the minniWECC that

consists of 158 lines between 122 buses (nodes). Some buses can be physically connected by more

than one line, but we treat all these lines as a single connecting line because measurements at end

buses cannot distinguish between them. Thus, each connection l ∈ {1, . . . ,158} has two buses

(i, j) : i, j ∈ {1, . . . ,122}, i ̸= j. We consider only pairs (i, j) for which there is a line between

buses i and j.

We simulated a large number of faults in the minniWECC using the Power System Toolbox

(PST), Cheung et al. (2009), which is based on MATLAB. The description of the fault generating

mechanism in the next paragraph is technical and requires some background in power systems.

The essence is that we generated a very large number of faults that can realistically occur in a

regional transmission system. Our statistical approach does not require the knowledge of the fault

type or its characteristics. If the fault occurs closer to bus i, we call i the near end bus and j the

far end bus.

The faults were generated using the switching condition matrix. The values of the zero se-

quence impedance, z0, and the negative sequence impedance, zn, were generated randomly for

each simulation. System characteristics imply that they can be generated as random variables uni-

formly distributed on the interval [0.0004, 0.189] ohms. Using the random values of z0 and zn, four

types of line faults can be generated: line-to-line (LL), line-to-ground (LG), line-to-line-to-ground

(LLG), and three-phase (TP) faults. Furthermore, the location of the fault on a line between buses

i and j can also be randomly simulated. Ignoring the randomness of z0 and zn, 1,264 unique faults

(158 lines × 4 types × 2 ends). For each random pair (z0,zn), each of the 1,264 options is chosen

randomly. We added ambient noise to each simulation using MinniWECC parameters described in

Trudnowski et al. (2013), which also increases the randomness, but not crucially, as will become

apparent in the following. The total number of distinct faults that can be simulated is practically

unlimited.

The simulated data consists of 120 measurements per second for 10 seconds. Define the time

resolution as δ = 1/120. For this paper, we only consider 32
120

s before the fault and 32
120

after

62



Figure 4.2: Randomly selected modulus of voltage readings at bus 105. The three graphs represent different

time stages of simulations. The upper panel represents the whole trajectories, while the lower two represent

trajectories before the fault, and after the fault. Notice the different voltage scales at the different stages.

(in total, 64 time stamps). We assume that each simulation starts at t = 0, the fault is applied

at t = 32
120

s, and data is recorded up to t = 64
120

s. We set the time of the fault as t f =
32

120
. The

considered length of simulation is equal approximately equal to 0.5 seconds. We use only the

modulus of voltage, which is sufficient to localize faults.

Figure 4.2 shows 500 randomly chosen readings at bus 105. Figure 4.3 shows responses at

all buses to three faults applied between bus 97 and bus 66, with bus 97 being a near end bus. It

shows how all buses see the faults. The responses at all buses exhibit similar patterns, but there

is a possibility to identify the faulted line, at least the near end bus. More detailed visual analysis

reveals that faults of certain types are more difficult to localize. The three phase faults show much

less variability between the lines that would allow to identify the faulted line. Our methods are

applied without assuming any knowledge of the fault type.

4.3 Problem Formulation

In this section, we introduce suitable notation, define the problem, describe the tasks, and

explain the challenges that arise. We model the system as a graph G = (A,L), where A =
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Figure 4.3: Responses at all buses to three faults between bus 97 (near end) and bus 66. Responses at bus

66 are highlighted in solid black and those at bus 97 in dashed black. The three panels represent different

types of faults with different parameters.

{1,2, . . . ,122} is the set of buses, including both those with PMU devices and those without them,

and L is the set of lines connecting the buses. Notice that if (i, j) ∈ L, then ( j, i) ∈ L. The neigh-

borhood of bus i is defined as the set Bi = { j : (i, j) ∈ L} of buses that are connected to i by a line.

We assume that the power grid G = (A,L) is fixed.

We assume that a fault occurs at an unknown line l0 ∈ L. We consider a prediction l̂0 of the

faulted line to be correct if l̂0 = l0. Additionally, we consider a localization to be partly correct if

î0 = i0, where î0 is the predicted near end bus of the faulted line l̂0. The localization failure ratio is

defined by the ratio of incorrect predictions and the total number of simulations.

Our framework assumes that PMUs are available only at a certain subset of buses, which we

denote by K ⊂ A. The count of buses in K is denoted by K := |K|. At buses in K, we have records

of modulus of voltage during a fault, with m data points before the known fault time t f and m

points after. This leads to a feature matrix XK ∈R
2m×K . The set of unobserved buses is denoted as

the U = A\K with |U| =U . The trajectories at these buses are denoted as XU ∈ R
2m×U . Denote

by X ∈ R
2m×(U+K) the dataset under full availability of measuring devices.
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The objective is to find a function fθ (XK) = X̂U that satisfies two conditions:

1. minimizes a suitable loss function ℓ(XU , X̂U);

2. minimizes the difference in fault localization accuracy based on X̂ = XK ∪ X̂U (the available

and reconstructed values) relative to the same method based on X (the full dataset).

Objective 2 can be seen as applying a discrete, problem focused loss function. The optimal

reconstruction should produce trajectories that lead to fault localization that is a close as possible

to the localization based on the completely observed system. To our knowledge, no previous

work has addressed the task of training the model for imputing trajectories during a fault without

using information of the fault location with the intention to employ the trained model for fault

localization. We use the method of Kokoszka et al. (2023), but any other method for which code

applicable to minniWECC is available could be used. Our statistical evaluation approach could

also be used in different testbeds.

We consider two scenarios to obtain fθ : (1) The training process of fθ uses XU , (2) The

training process of fθ does not use XU . These two scenarios differ in the amount of information

used during the training process, and can be applied to different real-world situations. As we

emphasized before, in either scenario, during the training process, the information about which

line is faulted is not included. We refer to it as working with unlabeled data.

We also explore the following options to potentially improve trajectories reconstruction and

fault detection:

1. investigate if different choices of the loss function ℓ increase the accuracy of fault localiza-

tion;

2. examine feature transformation techniques that could help increase the accuracy;

3. investigate selecting an optimal set of K (optimal PMU placement).

In the next section, we only describe the methods that are used to obtain the final, tabulated

or displayed, results. However, in Section 4.5, we also discuss some other techniques and options

that we experimented with.
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4.4 Methods

In this section, we describe the proposed methodology. We begin with a brief account in Sec-

tion 4.4.1 of Graph Neural Networks (GNNs) focusing on aspects relevant to the methods we

propose. In Section 4.4.2, we explain the details of the proposed development of GNNs to make

them the applicable to PMU data reconstruction with the ultimate objective of fault localization.

The remaining subsections discuss the loss functions, selection of an optimal set K, a fault local-

ization scheme used after trajectories in U have been reconstructed and a benchmark model against

which the performance of our method is judged.

The development of the methodology in this section is analogous to the development of tra-

ditional statistical methodology. We work with data objects that have the form of structured

K +U × (2m) matrices, and we basically want to solve a missing data problem with a specific

objective in mind. For this, we need to propose a model for the data and show how it can be es-

timated and used for purpose focused data imputation. The model is formulated in terms of the

layers of a deep learning network. There are no explicit formulas for estimating the parameters

of the layers, they must be estimated through a training process that must be specified. Details of

such approaches are presented e.g. in Goodfellow et al. (2016) and Zhang et al. (2023), where

terminology used in the remainder of this paper is also explained

4.4.1 Graph Neural networks

Graph Neural Networks (GNNs) utilize graph data structures as inputs to learn and make pre-

dictions. They have seen a rise in popularity due to their ability to generalize the convolution

operator to graph structures, see Kipf and Welling (2017). These networks have proven to be ef-

fective in many applications, such as drug discovery, recommendation systems, social networks,

molecular structures, and electrical grids, see (Li et al., 2018; Yu et al., 2018; Wu et al., 2019),

among many others.

One of the key components of GNNs is the use of graph convolutional layers designed to

capture the local and global structure of the input graph. The computation is driven by the input
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graph topology, which is described by its adjacency matrix. The adjacency matrix La of a graph

G with n nodes is an n× n matrix such that La(i, j) = 1 if there is an edge between nodes i and

j, and La(i, j) = 0 otherwise. In our setting, nodes are buses and edges the lines connecting

them. The first layer of a GNN typically encodes the graph structure and the initial node features,

while subsequent layers aggregate information from the node’s neighbors and update the node’s

representation. The final layer of a GNN produces the output, which can be used for tasks such as

node classification, link prediction, or recommendation. These layers use the adjacency matrix of

the graph and a trainable weight matrix to compute the convolution according to the equation

H(l+1) = σ(La,H
(l),Θ(l)),

where H(l) and H(l+1) represent the input and output of the convolutional layer, respectively, La is

the adjacency matrix, Θ(l) is the weight matrix for the layer l, and σ is an activation function.

GNNs have been extensively studied in recent years, with significant progress in the develop-

ment of various architectures and techniques for improving their performance, e.g. (Zhou et al.,

2020; Hamilton, 2020). Under some assumptions, a GNN model can be approximate in proba-

bility all functions on graphs with any required precision Scarselli et al. (2009). A review of the

capabilities of GNN is given by Xu et al. (2018). Liao et al. (2022) discuss their applications in

power systems. Recently, models that combine kriging convolution networks and GNNs have been

proposed (Hamilton et al., 2017; Wu et al., 2020; Appleby et al., 2020). Our approach is based on

networks of this type.

In the original framework, GNNs are inductively trained, adapting their parameters based on a

supervised learning environment. Inductive GNNs, in particular, are designed to generalize to new,

unseen nodes in a graph. In this paper, we assume that the graph G = (A,L) is fixed, which does

not fully align with the definition of inductive learning. However, our model needs to generalize

to buses that are in G, but their trajectories are unseen. To incorporate different data availability

scenarios listed in Section 4.3, we consider two approaches:
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(1) the training process of fθ can use both known and unknown trajectories XK and XU , respec-

tively. In this approach, the whole information about L is used, and the training set patterns and

their targets are used for training. This approach is similar to traditional regression models. We

call it Regression Graph Neural Network (RGGN);

(2) the training process of fθ cannot use unknown trajectories XU and thus needs to learn from the

known trajectories XK with a knowledge of fixed edges L. We call this approach Semi-Inductive

Graph Neural Network (SIGGN).

We need to predict the trajectories at unseen nodes, but the training can use the information

about these buses’ existence. Such information is crucial for letting the network properly learn

the message passing mechanism. The work of Hamilton et al. (2017) showed that our considered

approaches are a reasonable attempt to tackle the challenges listed in Section 4.3. Although there

are more methods to tackle the problem under scenario (1) than under scenario (2), we chose to

use the same model concept for both to better understand the challenges that need to be addressed

when moving from (1) to (2). Moreover, efficient results under scenario (1) can demonstrate the

proof of concept and provide a foundation for addressing the challenges of scenario (2). By using

the same model for both scenarios, we can also investigate how the model’s performance changes

with respect to the availability of data.

4.4.2 GNNs for PMU data reconstruction

In this section, we describe how we propose to use the RGNN and the SIGNN for the purpose of

PMU data reconstruction. We use the GNN architecture proposed by Wu et al. (2020) as the basis

of our work and develop it to fit our needs. The initial architecture uses an M-layer Diffusion Graph

Convolution Network (DGCN), Li et al. (2018). The DGCN performs the following operations:

Hl+1 =
K

∑
k=0

Tk(La)HlΘ
k
l ,

where Hl is the input feature matrix at layer l and Hl+1 is the output feature matrix, La is the

transition matrix calculated from the adjacency matrix La, K is the maximal order of diffusion
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convolution, Tk(x) = xk (pointwise). We denote by Θ the set of all weight matrizes Θk
l . In the

following, we use the term learning to describe finding the set Θ such that some loss function ℓ is

minimized. The dimension of matrices Θk
l can be determined by the user by specifying the width

of the network, z. Specifically,

Θk
1 ∈ R

2m×z, Θk
l ∈ R

z×z, 2 ≤ l ≤ M−1, Θk
M ∈ R

z×2m. (4.4.1)

Based on many numerical experiments, we determined that, in our context, better results are

obtained by using the network

Hl = σ

(
K

∑
k=0

Tk(La)Hl−1Θk
l

)
+Hl−1, 1 ≤ l ≤ M, (4.4.2)

where σ the scaled exponential linear unit (SELU) activation function, Klambauer et al. (2017),

with standard parameters. The initial input is the matrix H0 ∈R
n×2m, where n = 122 is the number

of buses and m= 32 is the count of time points before and after the fault used in our algorithms. We

thus use only 64 measurements corresponding to the interval of about 0.53 s centered at the time

of the fault. the input H0 has the unobserved trajectories masked, as described in Algorithms 1 and

2 below. The masked buses only pass 0 to their neighbors in the first layer, while the remaining

M−1 layers are responsible for more generalized representations. The Mth layer is used to output

the reconstructed trajectories for each bus. Thus, HM ∈ R
n×2m is the reconstruction results that

we use to calculate the loss and update weights Θ. In our experiments, we explored different

structures and building pieces (GAT, Chebynet, different activation functions) that would bring the

gain in fault localization accuracy without loss in efficiency. Through the series of experiments we

found that the proposed structure is the most efficient for the specific problem we aim to solve. In

many applications M = 3 is sufficient, however, for power grid data, deeper networks may be more

effective, as demonstrated in a different context by Ringsquandl et al. (2021). The parameters

K , the order of convolution, and z, the number of hidden channels of the weight matrix Θk
l , may

also play an important role. Using small K values allows us to keep the diffusion process more
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localized in a power grid, while the parameter z controls the number of parameters for each filter

Tk(La)Hl−1. It is not practical to find the optimal values of M, K , and z for each model and setup.

We performed a limited grid search to find the optimal settings for M, K and z. We discuss the

results in Section 4.5. Other issues that must be addressed are: implementing a validation scheme

in order to choose the best model and getting reconstruction results from HM. We proceed with

detailed descriptions of all steps.

Detailed description of the SIGNN implementation. For each training iteration, we randomly

divide buses from K into K0 (prediction buses) and K1 (target buses). The size of these sets is K0

and K1, respectively. The training process utilizes information from K0 to learn the trajectories of

modulus of voltage in K1 and records the results of the loss function. The loss function is used to

update parameters Θ. We utilize a mask matrix, denoted Msample, to keep buses in K0 as observed

and buses in K1 as unobserved, see Algorithm 4. The size K1 is randomly selected as a number

between 2 to 7 for each iteration. During this process, the adjacency matrix La remains fixed.

The information about the existence of U is contained only in La, no measurements in U are used.

The resampling of K0 and K1, in principle, allows the model to learn the relationships between

different trajectories, and generalize results over the nodes in U.

To ensure that the validation error is measured uniformly for each epoch, it is necessary to

determine sets KVal
0 and KVal

1 before the training procedure. To better understand the validation

error over nodes that are not seen during training, we randomly select 3 nodes from K to create

KVal
1 . During training, we effectively have U to include KVal

1 and subtract it from K (i.e., U := U∪

KVal
1 and K := K\KVal

1 ). As a result, the model cannot access trajectories at KVal
1 during training,

but uses them to compute the validation error. This helps us to understand the generalization power

of the model, and choose settings that give optimal results for the test error.

The learning procedure is summarized in Algorithm 4. Recall that we denote by X the n×

(2m) matrix obtained from a single fault simulation. In Algorithm 4 we denote by XTr the set

of simulations used in training (we use 10,000 of them) and by XVal the simulations used for

validation (we use 2,000). We emphasize that Step 8 in Algorithm 4 guarantees that we preserve
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fixed graph structure G, but ensure that the training process has no access to trajectories of buses

without PMU devices. Due to the structure of the model, it is suggested to set high number of

iterations.

Algorithm 4 Random mask generation and model learning for SIGNN

Input: Training data XTr, validation data XVal, graph structure G, length of each simulation 2m,

observed buses K and unobserved buses U; Parameters: size of each batch S, maximum itera-

tion Imax, maximum epoch Emax, loss function ℓ, fixed KVal
1 set for validation.

1: for epoch = 1 : Emax do

2: for iteration=1 : Imax do

3: Generate random integer k1 ∈ {2, . . . ,7}.

4: Randomly sample k1 buses from K\KVal
1 to form K1.

5: Set K0 = K\ (K1 ∪KVal
1 ).

6: for sample = 1 : S do

7: Randomly choose a simulation Xsample from XTr.

8: Set rows of Xsample corresponding to buses in U and KVal
1 to 0.

9: end for

10: Generate a mask matrix Msample of the same size as Xsample,

Msample[i, :] =

{
1 if i ∈ K0

0 otherwise

11: Use sets {X1:S}⊗M1:S and ℓ to train GNNs (update weights matrix Θ)

12: end for

13: Calculate validation error Errepoch using ℓ, XVal with a predictor/response split KVal
0 and

KVal
1 , and obtained weight matrix Θ. Corresponding buses in U and KVal

1 of XVal are equal 0.

14: end for

15: Final learned model is GNN with weight matrix Θ = Θargminepoch∈{1,...,Emax} Errepoch

Detailed description of the RGNN implementation We simplify Algorithm 4 to employ the data

in XU . The procedure is summarized in Algorithm 5.

Reconstruction We explain the process of reconstructing the trajectories in the unseen nodes U

for each simulation (sample) using both SIGNN and RGNN. Assume we have trained the model

and obtained the weight set Θ. First, we form masked signals XM
sample = [XK,XU ] with XU = 0

and set H0 := XM
sample. We input obtained Θ and H0 to the GNN described architecture and ob-

tain HM. Set X̂M
sample := HM. The X̂M

sample can be further split into X̂M
sample = [X̂K, X̂U ]. The
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Algorithm 5 Random mask generation and model learning for RGNN

Input: Training data XTr, validation data XVal, graph structure G, length of each simulation 2m,

observed buses K and unobserved buses U; Parameters: size of each iteration S, maximum

iteration Imax, maximum epoch Emax, loss function ℓ.
1: for epoch = 1 : Emax do

2: for iteration=1 : Imax do

3: for sample = 1 : S do

4: Randomly choose a simulation Xsample from XTr.

5: Generate a mask matrix Msample of the same size as Xsample,

Msample[i, :] =

{
1 if i ∈ U

0 otherwise

6: end for

7: Use sets {X1:S}⊗M1:S and ℓ to train GNNs (update weights matrix Θ)

8: end for

9: Calculate validation error Errepoch using ℓ and XVal with a predictor/response split K and

U.

10: end for

11: Final learned model is GNN with weight matrix Θ = Θargminepoch∈{1,...,Emax} Errepoch

GNN architecture outputs the fit of the trajectories at all buses, but the final product of recon-

struction is only X̂U . During the training process of RGNN, the intermediate results have the

same structure as the final reconstruction, but that is not the case for SIGNN. In SIGNN, a similar

structure is used to obtain reconstruction results within each iteration, but XM
sample is replaced with

XM
sample,K0,K1

= [XK0
,XK1

,XU ], where XK1
= 0 and XU = 0.

4.4.3 Loss functions

In addressing the problem formulated in Section 4.3, a typical approach would be to use the

mean squared error (MSE) loss function. However, this may not always be the best approach. Most

deep learning methods rely on the MSE or its variants (such as MAE and quantile loss). In our

case, the primary goal is to accurately predict the fault location, which may not be best achieved

through the MSE alone. To address this, we have explored alternative loss functions, including

bias-weighted MSE, normalized soft time warping, and others (Cuturi and Blondel, 2017; Guen

72



and Thome, 2022). We only discuss the MSE and the Bias-weighted MSE, as they are used to

report results. The methods are additionally evaluated by their ability to minimize fault detection

failure rate, see Section 4.4.5, which can also be seen as a loss function, even though it is not used

in training, but is used to arrive at final recommendations.

To simplify the explanation, let us consider the case of evaluating the loss function for a single

simulation. This can be easily extended to multiple simulations by taking the average. In this

section, we define the matrix of reconstructed trajectories as Ŷ = (ŷ1, . . . , ŷr), and the true matrix

is defined as Y = (y1, . . . ,yr), where r is the number of reconstructed trajectories. Further, define

each reconstructed trajectory ŷi = (ŷi,1, . . . , ŷi,2m) in terms of 2m data points. Similarly, set yi =

(yi,1, . . . ,yi,2m).

The MSE loss function is defined as:

ℓMSE(Ŷ,Y) =
1

r

r

∑
i=1

||ŷi −yi||2 =
1

r

r

∑
i=1

2m

∑
j=1

(ŷi, j − yi, j)
2.

For the bias-weighted MSE, we propose to decompose the MSE into two components: the

difference in means (bias) and the difference in variance. This is motivated by the statistical fault

localization technique employed in this paper, where a significant bias in the reconstruction has a

lesser impact on the fault localization accuracy compared to a large difference in shape, approx-

imated by the variance. The bias of prediction for each i ∈ {1, . . . ,r} is defined as bi = ȳi − ¯̂yi,

where the averages are taken of the 2m data points. We then define the bias adjusted reconstruction

matrix as Ŷba = (ŷ1 −b1, . . . , ŷr −br). With a few simple steps, it can be shown that

ℓMSE(Ŷ,Y) = ℓMSE(Ŷba,Y)+
2m

r

r

∑
i=1

b2
i .

We propose weighting these two parts of ℓMSE(Ŷ,Y), putting more emphasis on the first part.

Using this notation and including a tuning parameter α ∈ (0,1), we define the bias-weighted MSE
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as

ℓBMSE(Ŷ,Y) = αℓMSE(Ŷba,Y)+(1−α)
2m

r

r

∑
i=1

b2
i .

The hyperparameter α is determined during the training process. Notice that if α = 0.5, ℓBMSE =

1
2
ℓMSE.

4.4.4 Optimal PMU placement

Our framework assumes that PMUs are available only at a subset of buses K ⊂ A. A question

of interest is what the locations K should be to minimize aggregated loss functions and the fault

localization failure rate, given that K = |K| is fixed. A brute-force search for the optimal K by

testing every possible configuration given K is infeasible due to the astronomical number of pos-

sibilities. With K = 70 and 122 possible locations for PMUs, there are approximately 1.02E+35

possible combinations for different placement of PMU’s.

PMU placement algorithms discussed in the literature, e.g. (Aminifar et al., 2010; Enshaee et

al., 2012; Abiri et al., 2014; Abiri et al., 2015; Shafiullah et al., 2022) do not necessarily ensure

optimal results for reconstruction and fault localization accuracy, which are the criteria we use in

our work. To address this issue, we propose optimizing the PMU placement set K using one of

the proposed loss functions ℓ. We propose a version a regression technique called the Backward

Stepwise procedure, specified in Algorithm 6. Starting with K equal to the set of all buses (K =

122, the algorithm progressively removes buses from the set Kopp of optional buses and adds them

to the set Uopp of used buses until |Kopp|= K. The decision of which bus to move is based on the

loss function ℓ. We consider moving each possible bus from the set Kopp and evaluate the cost of

the decision using ℓ. For simplifications, we employed this algorithm with simpler model (RGNN)

using the MSE loss function and without features transformation (Algorithm 5). As Algorithm 6

requires running Algorithm 5 many times, we reduced computational burden by lowering settings

(reducing dimension for graph convolution, using fewer iterations, and fewer epochs).
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Algorithm 6 Optimal PMU placement strategy

Input: Training data XTr, validation data XVal, graph structure G, length of each simulation 2m;

Parameters: sample size each iteration S, maximum iteration Imax, maximum epoch Emax,

desired K size K.

Output: Optimal set Kopp of size K

1: Set Kopp = {1, . . . ,122} and Uopp = {}

2: while |Kopp|> K do

3: for b in Kopp do

4: Run Algorithm 5 with U := {Uopp,b} and K := Kopp \{b}

5: Record validation error Errb

6: end for

7: Set b̂ = argminb∈Kopp
Errb

8: Set Kopp := Kopp \{b̂} and Uopp := {Uopp, b̂}

9: end while

4.4.5 Fault Localization Scheme

The overall structure of the proposed fault localization method under partial observability in-

volves two modules: 1) reconstructing the modulus of voltages at unobserved buses, and 2) using

existing methods, which require full grid observability, to predict the buses (i0, j0) connected by

the faulted line l0. Module 1) has already been described. In this subsection, we focus on module

2), assuming possession of the full data set X. In practice, this requires replacing X by X̂.

In principle, any fault localization method can be used, but we use a slightly revised method

of Kokoszka et al. (2023) because we have code for it that works in the minniWECC setting,

and we have been unable to gain access to code for other methods. We assume that the time of

the fault, t f , is estimated using one of the available methods, e.g. (Shafiullah and Abido, 2018;

Li and Deka, 2021; Kokoszka et al., 2023; Rimkus et al., 2023). In the following, t f is treated as

known.
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We have X = x1, . . . ,x122, where xk = xk(0),xk(δ ), . . . ,xk(2m ·δ ) is a trajectory of the modulus

of voltage at bus k, and δ is the time separation of the consecutive data points (δ = 1
120

in this

paper). We denote by S0 and S1 the time windows (in seconds) used to extract information from

trajectories around fault time t f . For each bus k, we set

x̄k(t,S0) =
1

S0/δ

S0/δ

∑
l=1

xk(t − lδ ), (4.4.3)

mk(t,S1) =
1

1+S1/δ

S1/δ

∑
l=0

xk(t + lδ ). (4.4.4)

We obtain the prediction of the near end bus by setting:

î0 = argmax
k∈{1,...,122}

|mk(t f ,S1)− x̄k(t f ,S0)|. (4.4.5)

Once we have predicted the near end bus î0 of the faulted line l0, we predict the far end bus by

employing the properties of fault clearance. Notice that the prediction ĵ0 must be one of the buses

to which î0 is connected by a direct line, so there are only a few (or no) choices. For each bus k,

we set

D∗
i (t, t f ,S0) = mk(t,0)− x̄k(t f ,S0), t > t f . (4.4.6)

The time of the recovery, tR, is defined as the smallest t > t f such that

∣∣∣∣∣
D∗

î0
(t, t f ,S0)−D∗

î0
(t −δ , t f ,S0)

D∗
î0
(t −δ , t f ,S0)

∣∣∣∣∣> τ1. (4.4.7)

The parameter τ1 was determined Kokoszka et al. (2023) who also explained that its choice is not

critical, as long as it remains in a reasonable range. We obtain the prediction of the remote end bus

by setting

ĵ0 = argmax
k

(|D∗
k(t, t f ,S0)|− |D∗

k(t −δ , t f ,S0)|), (4.4.8)
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where the maximum is taken over busses k that connect directly to î0.

The predicted faulted line l̂0 is the line between buses î0 and ĵ0. Under the assumption of PMUs

at every possible bus, this methodology produces results with around 4% failure rate. To report

fault localization results under partial observability, we also use the failure rate - the percentage of

simulations where the faulted line/near-end bus was predicted incorrectly.

4.4.6 Benchmark method

To assess the results of the proposed deep learning methodology, we use a relatively simple

and intuitive benchmark method (BM). To the best of our knowledge, there is no other work that

focuses on fault localization in a regional power grid without using labeled data, so we cannot use

an existing benchmark. Recall that U is the set of buses where trajectories need to be predicted and

K is the set of the available buses. The BM is implemented for each trajectory yk with k ∈ U. It

takes the trajectories of directly connected buses and averages them to estimate the missing trajec-

tory. If some of the buses connecting directly to bus k ∈ U are themselves in U, their reconstructed

trajectories are used, which are obtained through an iterative process. The iterations continue until

each bus in U has all neighbors with available trajectories The process can be formalized by setting

ŷk =
1

|Bk| ∑
j∈Bk

y∗j ,

where Bk is set of buses connecting directly to bus k. Some of the y∗j can be real trajectories, if

j ∈ K, some can be reconstructed trajectories, if j ∈ U.

4.5 Application to the Western Interconnection

In this section, we apply the methods of Section 4.4 to the data described in Section 4.2. We

implement them with 10,000 training simulations, 2,500 validation simulations, and 9,068 testing

simulations. As in all deep learning approaches, the performance of the methods is evaluated on

the testing simulations that were not used during the training and validation process. The selection

of the simulations to the three groups was random. The models were implemented using the
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Figure 4.4: The squares indicate recommended locations, according to Algorithm 6, of monitoring devices.

Only buses connecting high voltage lines are shown. Left: results for K = 27, Right: results for K = 57.

Torch framework Collobert et al. (2011). We utilized the Adam optimization algorithm Kingma

and Ba (2014), which includes the learning rate parameter determining the size of the step for

updating the GNN parameters. We conducted experiments with various learning rates (ranging

from 0.001 to 0.00005) to update the weight matrix represented as Θ for different-sized models

with various hyperparameters M, z, and K described in Section 4.4.2, cf. (4.4.1) and (4.4.2). We

implemented our methods on the CUDA platform with an NVIDIA GeForce GTX 1080 Ti with

11 GB GDDR5X.

We first implemented the optimal PMU placement algorithm, Algorithm 6, using a small

RGNN (M = 3, z = 150, K = 2), and obtained a sequence of the U sets (the buses without data)

used to present the results. Starting with U = 12 buses in U, we obtained the sets U up to U = 77.

Recall that the total number of buses is 122. By construction, a set U with a smaller cardinality is

always a subset of a set U with a larger cardinality. Algorithm 6 is a useful tool in its own right.

It might allow grid operators to determine where monitoring devices should be placed if only a

limited number of them can be monitored. This is illustrated in Figure 4.4.
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Second, we implemented a grid search to find optimal hyperparameters. Choosing the appropri-

ate hyperparameters for neural networks is crucial, as poorly chosen ones can result in suboptimal

performance such as slow convergence, overfitting, or underfitting Bengio et al. (2013). There

are several hyperparameters that can affect the results, including batch size, learning rate, network

depth, the size of inner layers, diffusion localization level, and number of epochs. In our grid

search, we focused on network depth M, the size of inner layers z, and diffusion localization level

K . Due to the resources required to train each model, it is not feasible to conduct such a search

for every U, so we only performed the grid search for RGNN and SIGNN with U = 17. The grid

search was implemented solely using validation results, leaving the test data untouched to avoid

data leakage. We recommend a similar search to determine the settings that works best for any

specific application. This issue is elaborated on in Section 4.5.3.

We evaluated the accuracy of trajectory reconstruction using the loss functions and localization

failure rate explained in Section 4.4.3. We compared these results to the Benchmark method of

Section 4.4.6. Our results are reported for two testing data splits:

(1) all testing simulations;

(2) testing simulations where the near-end bus of a faulted line is in the set U.

Finding the bus closest to the fault, the near-end bus, is the most important aspect of the local-

ization algorithm.

Finally, to better understand the mechanics of the models, we used two sets of data: the unmod-

ified data and the rescaled data. The rescaled data was generated by dividing each bus’s trajectory

by its average value prior to the fault, which was determined through the system parameters given

in Trudnowski et al. (2013). Such a normalization is feasible in a real system because the average

voltages of the lines under normal operations are either known or can be easily measured. The

assessment of the models on both the unmodified data and the rescaled data facilitates the identi-

fication of their strengths and weaknesses and reveals important distinctions between them. Using

the unmodified data, the BM and the SIGNN give results influenced by the differences between

the trajectories at different buses before the fault happens, the differences in average voltages of
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Figure 4.5: Comparison of reconstruction results in terms of the MSE for the RGNN and the benchmark

models BM and BM-R, with varying sizes of U. The expected trend of decreasing MSE as U increases is

observed in the second panel due to more trajectories being included in U.

the lines. As the focus of the paper is the reconstruction of the trajectories during a fault, using

rescaled data that eliminate this bias is justified. In the following, we use the abbreviations BM

or SIGNN to refer to these models trained on the unmodified data, by BM-R and SIGNN-R to

these models trained on the rescaled data. More precisely, the application of the BM-R and the

SIGNN-R involves the following steps: 1. use rescaled data to train the SIGNN (BM does not

need training), 2. use rescaled data to reconstruct missing trajectories, 3. rescale reconstructed

trajectories back to the unmodified data space, 4. calculate the MSE and fault localization results

as for other methods.

4.5.1 RGNN results

During a grid search for optimal hyperparameters, we observed that for RGNN we do not need

to use large z, M, and K values. This suggests, that the learning is more local and the trajectories’

reconstruction is performed mostly using trajectories that are close in the grid. The results below

are presented using the model with z = 200, M = 4, and K = 2 for U ≤ 42. For U > 42, we used

M = 6.
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Figure 4.6: Comparison of fault localization results in terms of failure rate for RGNN and the benchmark

model (BM and BM-R), with varying sizes of U.

Figures 4.5 and 4.6 demonstrate that the RGNN exhibits strong performance in terms of trajec-

tory reconstruction and fault localization. We compared the performance of the RGNN to that of

BM and BM-R, it outperforms both of them. With only 36% of the power grid observed (U = 77),

the RGNN correctly detects the faulted line 3 times out of 4. Looking at the bottom two panels

of Figure 4.6, one can see that the RGNN localizes a fault with 60% success rate, even if the fault

occurs at a bus not measured by a PMU. That suggests that it can successfully infer where the fault

is and reconstruct the trajectories with high success. In Figure 4.7 we illustrate the accuracy of the

fit. We present results for U = 17 with a testing simulation in which the line between buses 30 and

31 is faulted, with bus 30 being the near-end bus of the faulted line. Bus 30 is included in U with

U = 17. The relative performance of the RGNN remains better than that of BM and BM-R if a

different loss functions are used, and there is not much change in the localization success rates.
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Figure 4.7: Trajectory reconstruction at bus 30 in U for U = 17. Bus 30 is the near end bus of the fault. The

RGGN reconstruction visually almost coincides with the true.

4.5.2 SIGNN results

We now present the results for the second scenario described in Section 4.3 (the SIGNN), in

which the training process cannot use trajectories in U, and thus needs to learn only from the

trajectories in K, with the knowledge of all edges L. The RGNN can use the trajectories in U

during training. The SIGNN must thus solve a much more challenging task. This corresponds to a

situation where no PMUs have ever been placed in U. The RGNN is trained on the actual data in

U that may become unavailable due to, say, a natural disaster or a cyberattack.

We first discuss the performance of the SIGNN using ℓMSE and highlight the need for improve-

ments. We later show the results for SIGNN with ℓBMSE and SIGNN-R. During a grid search for

the optimal hyperparameters for SIGNN, we found that the hyperparameters did not significantly

change the validation error. However, we found that the best validation MSE results were achieved

using M = 4, K = 2, and z = 200, which we used to present the results below. The values of M

and K are the same as for the RGNN, the network with z is smaller. We observed that the default

version of SIGNN failed to generalize over the original data, as shown in Figures 4.8 and 4.9, and

did not outperform the benchmark models.

We observed a bias in the SIGNN predictions for all trajectories, indicating that it failed to gen-

eralize the overall levels of the unknown trajectories, resulting in a shift in the predicted values that

impeded effective learning. This explains the large MSE and reasonable fault localization results
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Figure 4.8: Comparison of reconstruction results for SIGNN and the benchmark models BM and BM-R,

with varying sizes of U.

Figure 4.9: Comparison of fault localization results in terms of failure rate for SIGNN and the benchmark

models BM and BM-R.

83



Figure 4.10: Comparison of reconstruction results for SIGNN-R with varying sizes of U.

that use mostly the shape of the trajectories during a fault. Because of this bias, the SIGNN trained

using the ℓMSE does not effectively learn the level of trajectories. To gain a better understanding of

the capabilities of the SIGNN, we have experimented with various approaches. We first examined

the SIGNN-R. We repeated the grid search for the SIGNN-R, and obtained very different behavior

from the SIGNN. We discovered that larger depth of SIGNN-R lowers the validation error. We

found that the best validation MSE results were achieved using the model with z = 200, M = 6,

and K = 2 for U ≤ 42. For U > 42, we used M = 8 and K = 1.

The reconstruction and fault localization results are shown in Figures 4.10 and 4.11, respec-

tively. The SIGNN-R does not bring much improvement when all simulations are used for eval-

uation. However, it does perform better than the benchmark methods if the near end bus is in U.

This means that the SIGNN-R can locate a bus near a fault better than the benchmarks without ever

seeing a fault at that bus. Using ℓBMSE with α = 0.99 on the unmodified data produces similar,

only slightly worse, results than SIGNN-R. Recall that ℓBMSE was designed to reduce the impact of

the level of the trajectories. A broad conclusion from these experiments is that the typical voltage,

in the absence of faults, at buses in U must either be made available to a GNN during a learning
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Figure 4.11: Comparison of fault localization results in terms of localization failure rate for SIGNN-R with

different sizes of U.

process, or all the features must be adjusted for these levels (rescaling), or the loss function must

be made basically independent of them.

4.5.3 Additional information on hyperparameters and feature selection

We conducted a grid search for SIGNN, SIGNN-R and RGNN with U = 17 and U = 52 using

the validation error. We observed that the parameter K had minimal impact on the results, and

we found that setting K = 1;2 produced reasonable results. We reported all results with K = 2,

except for models trained with M = 8. In these cases, due to GPU limitations, we used K = 1

instead. Our findings also showed that there was no significant improvement in increasing z beyond

200. Therefore, we reported all results using z= 200. Additionally, we observed that the parameter

M (the depth of the network) had an impact on the results, with larger M working better for more

complex problems that the network needed to solve. For smaller values of U (e.g.,U = 17), the

SIGNN-R performed best with M = 6, while the RGNN with M = 4. However, for higher values

of U , the SIGNN-R performed the best with M = 8, while the RGNN with M = 6. This difference

85



can be attributed to the amount of time required for the network to distill the masked trajectories

in H0.

Examination of Figures 4.2 and 4.3 suggests that using the Haar (rectangular) wavelet trans-

form might lead to better reconstruction results, as this transform is effective in decomposing

signals with “rectangular blocks" into sparse representations. Interested readers are referred to

Percival and Walden (2000). We conducted experiments involving the application of the Haar

wavelet transform. The inputs and outputs of the GNNs are represented as the wavelet coefficients.

From the outputs the trajectories in time domain can be reconstructed exactly and diagnostics can

be applied to the reconstructed trajectories. Although the final results were comparable to those

for the raw trajectories, we observed that the application of the Haar wavelet transform facilitated

convergence to the solution for RGNN and SIGNN-R, necessitating fewer iterations for model

training. In many cases, the time needed to properly train these models decreases by half when

Haar wavelets were used.

4.6 Summary and discussion

We proposed Graph Neural Networks that can be effectively applied to reconstruct PMU tra-

jectories with the aim of power grid fault localization. Compare to previous methods employed

for fault localization, our learning networks do not use labeled data, they do not be given the exact

fault location to learn to find it in the future. We studied two scenarios for data availability and im-

plemented the RGNN and SIGNN methods. Firstly, we showed that assuming full data availability

during the learning process (RGNN) results in strong trajectory reconstruction and fault localiza-

tion. With this in mind, we relaxed this assumption and showed that the SIGNN fails to generalize

to unobserved trajectories, primarily due to the difference between the levels of the trajectories be-

fore the fault. We then tested the SIGNN with a different loss function and with rescaled data. Both

approaches showed similar improvements in the fault localization results, mainly the localization

of the near-end bus of the faulted line. As noted abobe, to the best of our knowledge, other deep

learning methods proposed for fault localization rely on labeled data - information on where the
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fault has occurred - during the training process. However, in our SIGNN implementation, we did

not even use data from the unobserved part of the power grid. We consider this a significant step

toward fault localization when labeled data is not possible or practical to obtain. We showed the

potential that one could use the partially observed network and map it a fully observed network,

and then use fault localization methods that are proven to work if measurements over the whole

network are available. We also note that our benchmark methods, BM and BM-R, originally de-

vised as simple standards, are actually quite effective in the second scenario when faults in a large

part of the grid have never been observed.

For future research, it could be beneficial to explore modifying the neural network architec-

ture to more accurately reflect the underlying physical laws governing the system. As observed

from the reconstructed trajectories of the RGNN, there is a higher variability of the predicted tra-

jectories than what actually exists in the power system. A possible solution to improve results

could be to incorporate a better understanding of the system’s trajectories or introducing additional

penalization for any violations of the physical rules. It could be useful to investigate the use of

physics-informed neural networks to address these issues. It is important to note that our study

only utilized purely data-based approaches. Another potential direction for future research is to

explore the use of additional variables from the PMU data. In this study, we focused solely on

the modulus of voltage, but including other types of data from the power grid could potentially

improve the performance of the SIGNN model. For example, incorporating data on phase angles,

line currents, or other relevant variables could provide additional insights and help us to train more

accurate models.
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Chapter 5

Summary and Future Research

Statistical fault diagnosis provides methods to detect, classify, and localize faults in electrical

power grids. It is effective and simple enough to be implemented in real systems.

In Chapter 2, we proposed a data-driven, two-stage procedure for fault monitoring in regional

power grids. In the first stage, a fault is detected, and in the second stage, the faulted line is

identified. Our method only requires knowledge of the start and end buses of each line. It assumes

that faults occur on lines, which is a typical situation. If a fault occurs on a bus, the faulted bus

can be identified using an algorithm for finding the start bus of the faulted line. Our approach is

not dependent on prior knowledge of the fault type and utilizes voltage modulus measurements

at buses as input. It offers a general statistical approach for anomaly detection and localization in

regional power grids, which have unique characteristics that require specialized statistical methods.

In Chapter 3, we proposed a methodology for fault detection in a small power distribution sys-

tem based on a suitably developed moving window change-point analysis technique. Our investi-

gations showed that three-phase current is the most important variable, and a simplified version of

our procedure using only three-phase current at all buses achieved perfect fault detection without

false alarms. We also explored other options that yielded near-perfect results for our dataset of 55

faults, demonstrating the soundness of the general approach. Our algorithm summarizes the entire

procedure and can be adapted to different grid topologies with some potential for false alarms or

missed faults. While not an engineering solution, the methodology demonstrates the potential of

data-driven approaches and establishes a scalable paradigm.

In Chapter 4, we extended the work done in Chapter 2. The approach described in Chapter

2 assumes that PMUs are placed at all buses. So far, power grids are only partially covered by

PMUs. To address it, we proposed the use of Graph Neural Networks (GNNs) to reconstruct PMU

trajectories for fault localization in power grids. Unlike approaches suggested by other researchers,

our network do not require labeled data or knowledge of the exact fault location during training. We
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examined two scenarios for data availability and demonstrated that assuming full data availability

during training leads to accurate trajectory reconstruction and fault localization. However, when

we relaxed this assumption, the second scenario failed to generalize to unobserved trajectories due

to differences in trajectory levels before the fault. To address this, we experimented with a different

loss function and rescaled data, and showed the improvements in fault localization, particularly in

identifying the near-end bus of the faulted line.

Possible extensions and future work on the topics covered by this dissertation include the fol-

lowing directions. Firstly, it is important to note that the work presented in this dissertation is based

on theoretical work and simulations and has not been implemented in real-world electrical power

grids. The implementation could allow to better understand the proposed methods, and further

develop them. Also, the methodology developed in Chapter 3 could be evaluated and potentially

improved on more complex grid topologies. Additionally, considering the current technological

limitations, the study was limited to smaller grids. To broaden the scope, it would be valuable to

explore fault behavior variations resulting from factors such as fault path impedance and source

impedance, which were not varied in this particular study. Therefore, future analysis could en-

compass a wider range of these parameters. Moving on to Chapter 4, it was observed that the

reconstructed trajectories in both scenarios exhibited a higher variability than what actually ex-

ists in the power system. One potential approach to address this issue could involve introducing

different network architectures and signal transformations that enable better control of such dis-

crepancies. Furthermore, the current work focused solely on the modulus of voltage. In the future,

it would be beneficial to incorporate other data provided by PMUs to assess whether increased

accuracy can be achieved.
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