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ABSTRACT 

Aerosol size distributions were measured during the 1995 Southeastern Aerosol and 

Visibility Study (SEA VS) in Great Smoky Mountains National Park using a PMS ASASP-X 

optical aerosol spectrometer. Ambient aerosol was conditioned in a relative humidity (RH) 

controlled inlet before sampling. 130 dry (RH ~ 15%) and 112 humidified aerosol size 

distributions, plus 24 distributions at ambient RH, were recorded during daylight hours for 

aerosol in the size range 0.1 < Dp < 2.5 f.Ull. Particle light scattering from the ASASP-X was 

inverted to particle sizes using Mie theory and applying a refractive index of either 1.530-0i 

or 1.501-0i for dry conditions, depending on the ambient aerosol chemical composition. A 

dry aerosol volume concentration time line from this work, when compared with a similar 

time line of aerosol mass concentration from IMPROVE samplers, indicates the ASASP-X 

provided a reliable representation of temporal trends in the ambient aerosol loading. The 

median dry aerosol geometric mass mean diameter measured during SEA VS was 0.28 f..UD., 

with a range from 0.24 to 0.38 f.Ull, and median geometric standard deviation of 1.64. 

Sequential dry and humidified aerosol size distributions were corrected for refractive index 

dependence on RH and used to derive ambient aerosol hygroscopicity as a function of RH. 

This work demonstrates that experimentally derived water absorption is equivalent to or less 

than predicted by theory, assuming ambient aerosol water uptake is dictated by ionic 

compounds that have a chemical composition consistent with the particle fine mass measured 

during SEA VS. In this work, special consideration is given to the uncertainty in derived 

aeros<.'l water contents and the degree to which this uncertainty propagates to estimates of 

light scattering. An ultimate goal of this project is to augment visibility and radiative 

transfer models through a better understanding of how RH affects the ambient aerosol size 

distribution in the southeastern U.S. 
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1. INTRODUCTION 

In the southeastern U.S., summertime air pollution and high humidity combine to 

produce some of the worst visibility conditions in the nation. However, the source of the 

region's air pollution, and the role this air pollution plays in visibility degradation, remain the 

focus of debate. Some point to the dense forest canopy that covers the rural landscape as the 

source of natural 'blue haze'. Others implicate anthropogenic emissions of sulfur dioxide 

from coal fired power plants as the main culprit in causing pollution that degrades visibility. 

Water associated with haze particles contributes significantly to visibility degradation in the 

southeastern U.S., although the apportionment of water to individual chemical components 

of the haze is not yet well understood. This work attempts to characterize the hygroscopic 

behavior of ambient airborne particles, and further to account for water uptake by individual 

chemical components of the aerosol fine mass. Results from this work indicate that sulfates 

can explain the majority, ifnot all, of the experimentally observed water uptake by ambient 

particles. If this thesis bears out, the conclusion can be drawn that organics playa minor, if 

not negligible, role in modifying water uptake by ambient particles in the southeastern U.S. 

Experimental data is also presented on ambient size distribution parameters for dry and 

humidified aerosol in the study area since these data are useful in visibility and radiative 

transfer models. 

The field portion of this project was part of the Southeastern Aerosol and Visibility 

Study (SEA VS) during July and August of 1995 in Great Smoky Mountains National Park 

(GRSM), Tennessee. Experiments conducted during SEAVS sought to resolve some of the 

complex relationships between pollutant emissions, secondary aerosols, and air quality, 

particularly visibility, that affect GRSM and the southeast U.S. Specific goals of SEA VS are 

to characterize aerosol fine mass, chemistry and hygroscopicity to improve the reliability of 

computer models that simulate visibility and aerosol properties (Saxena and McMurry, 
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1995). This work addresses a subset of SEA VS objectives, namely the quantification of 

aerosol hygroscopicity by a relatively straightforward optical method. 

To provide background information relevant to this particular project, Chapter Two 

introduces the visibility issue at GRSM and reviews other experimental methods currently 

being used to examine hygroscopic behavior of ambient particles. Particle light scattering 

and aerosol hygroscopicity are also discussed since these topics are fundamental to 

understanding the objectives and experimental results of this work. A discussion on the 

optical particle counter (OPC) used in this work is included as a preface to subsequent 

sections on OPC calibration and experimental uncertainty. The formulas used to calculate 

aerosol size distribution statistics in this work are also presented in Chapter Two. 

Experimental sections in Chapter Three describe the special study conducted by the 

National Park Service (NPS) and Colorado State University (CSU) during SEA VS. The 

objectives of the special study are to quantify the relative humidity (RH) dependence of 

ambient aerosol size distributions and the ambient light scattering coefficient. The primary 

instruments used in the special study were a PMS ASASP-X OCP and a Radiance Research 

nephelometer. The inlet used during the field project allowed for RH control of aerosol 

sampled by the two primary instruments. 

Results from this work are presented in Chapter Four. These results include size 

distribution statistics for dry ambient aerosol at GRSM, and estimates of water uptake by 

ambient aerosol in the humidified sampling environment. The size change of ambient 

particles are reported as wet-to-dry diameter ratios to quantify water uptake. These growth 

fi ctors are derived from experimental data in two ways. One approach is to take the ratio of 

humidified to dry aerosol distribution mass mean diameters. The other approach uses only 

the integrated volume concentrations of humidified and dry aerosol distributions to derive 

particle size change as a function of RH. Water uptake data are presented as wet to dry 
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particle diameter ratios for the entire SEA VS period as well as for time periods defined by 

unique meteorology and aerosol chemistry. Experimentally derived particle size changes are 

then compared to estimates of water uptake for pure sulfate particles available in the 

literature and also theoretical size change for internal mixtures of sulfate and organic carbon. 

A discussion of uncertainty in derived RH dependent size change factors, as well as 

examples of the propagation of this uncertainty in a visibility model, lend insight into the 

practicality of this experimental method and its potential success in addressing some of the 

larger SEA VS goals. 

Summaries of relevant meteorology, aerosol chemistry, and condensation nuclei 

concentration [CN] during SEA VS, are given in Appendix A. Appendix B includes the OPC 

calibration methods used in this work. The Mie theory inversion for converting raw data 

from the OPC to aerosol size distributions is given in Appendix C. Finally, Appendix D 

presents a discussion on the initial choices of refractive index used in the data inversion and 

whether they are appropriate for aerosol during SEA VS. 
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2. BACKGROUND 

The impetus for SEA VS was the 1977 Amendments to the Clean Air Act (CAA) 

(165(d)(2)(c)(ii)). The CAA mandates the Prevention of Significant Deterioration in Class 1 

Area federally managed lands, including National Parks. In a 1992 Preliminary Notice of 

adverse impact in GRSM, the Department of Interior moved to block any new permitting of 

major pollutant sources within 120 miles of the National Park. Only major pollutant sources 

that could demonstrate their emissions would not adversely impact air quality related values 

(e.g., visibility and acid deposition) at GRSM would be allowed to begin operation. 

The adverse impact of air pollution on visibility in GRSM has been substantiated by 

air quality monitoring in GRSM and surrounding areas that predate SEA VS (Sisler et ai., 

1993). Long term monitoring programs in the southeastern U.S. have implicated a sustained 

increase in anthropogenic sulfur emissions over the past 50 years in the degradation of air 

quality in GRSM. Spatial emissions trends indicate coal fired power plants are the primary 

source of fine sulfate mass observed in the southeastern U.S. (MaIm et ai., 1994). 

It is contingent in the current interpretation of the CAA by the Environmental 

Protection Agency that the impact of any new pollution source be demonstrated explicitly 

(Renfrow, 1995). However, due to the complex relationship between primary pollutants and 

formation of secondary particulate pollutants that have an adverse impact on air quality, 

quantifying the impact a specific source, or source reduction, will have is difficult. It is 

anticipated that SEA VS will augment the current knowledge in the scientific community, and 

the understanding held by policy makers, about relationships between pollutants and 

vi sib 'lity in the rural southeastern US. 

The primary chemical components in the aerosol fine mass in the southeastern U.S. 

are sulfate compounds, organic carbon, water and soil. Particulate sulfate exists 

predominantly as either fully neutralized ammonium sulfate, partially neutralized ammonium 
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bisulfate, or sulfuric acid. A trend towards more acidic sulfate particles exists as one goes 

from the northeastern to southeastern U.S. (MaIm et al., 1991). Data from the Interagency 

Monitoring of Protected Visual Environments (IMPROVE) samplers indicate the primary 

water soluble ionic species measured during SEA VS were ammonium sulfate complexes. 

During pollution episodes sulfate compounds had airborne particle concentrations that 

exceeded 20 Jlg mo3
, with peak concentrations during SEAVS in excess of 40 Jlg mo3

• Organic 

carbon was present in mass concentrations near those of sulfates during clean periods (3-4 

Jlg m-3
). Soil mass generally had lower mass concentrations and displayed more temporal 

variability than either sulfates or organic carbon. (See Figure 5.1.2 and Figures A.3.1 to 

A.3.4). 

Characterizing the composition and hygroscopic behavior of particulate organic 

carbon at GRSM is a focus of some research conducted during SEA VS. The source of 

organic carbon is typically either anthropogenic, via petroleum combustion, or biogenic, 

from plant volatile organic carbon (VOC) emissions, the latter predominant in the rural 

southeastern U.S. (Southern Oxidants Study, 1995). Data from urban field studies have 

shown that organic carbon can decrease water uptake by water soluble ionic species, while in 

more remote areas orgaincs often enhance aerosol water uptake (Saxena et al., 1995). Water 

uptake suppression can be explained by the observation that some water insoluble organic 

compounds form surfactant layers that impede water transfer to a particle's soluble core 

(Andrews and Larson, 1993). Alternatively, water soluble organics can associate with 

ambient water vapor and enhance mixed aerosol hygroscopicity. The water solubility of 

organics is hypothesized to increase with their atmospheric residence time as their structure 

and functionality are altered through oxidation processes (Mueller et al., 1982). 
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Other experimentalists have sought to resolve some of the same hygroscopicity 

issues as those addressed in this work, although their methods were more elaborate and 

ostensibly yielded more detailed results. In the South Coast Air Quality Study (1987) and 

the Navajo Generation Station Visibility Study (1990) a tandem differential mobility 

analyzer (TDMA) measured RH dependent water uptake of size classified ambient particles 

(Zhang et ai., 1993). During SEAVS both the TDMA (McMurry, 1996) and a differential 

mobility optical particle size spectrometer (DMOPSS, Kreisburg et ai., 1996) were used to 

measure ambient particle hygroscopicity. Both the TDMA and DMOPSS systems were 

designed to resolve the water uptake of size classified particles within the ambient aerosol 

size distribution. If particles of one size class exhibit different degrees of water uptake, that 

is, if the particles separate into more and less hygroscopic fractions, then one can infer that 

the aerosol population is externally mixed in terms of individual particle chemistry (Zhang et 

ai., 1993). In contrast, the experimental method in this work measured water uptake for a 

particle size range and was not designed to differentiate between internal and external 

aerosol mixtures. In short, we report the 'total' water uptake by accumulation mode aerosol. 

While the TDMA is capable of measuring total water uptake across the aerosol size 

spectrum, it is generally used to measure water uptake by discrete particle sizes. Size 

classified hygroscopicity data from the TDMA has been extended, for example, to total water 

content for humidified aerosol PM 1.8 (particles less than 1.8 J..LII1 in diameter) by inferring a 

size distribution function and integrating size classified water uptake across the aerosol size 

distribution (Saxena et aI., 1995). The DMOPSS system during SEA VS, on the other hand, 

measurt d both water uptake by size classified particles and total water uptake by ambient 

aerosol size distributions. Total water uptake measured by the DMOPSS for SEA VS aerosol 
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should be directly comparable to the water uptake results from this work, since the 

experiments differed only in the types of opes used to gather size distribution data. 

It is descriptive when presenting hygroscopicity results to compare experimental 

data to theoretical estimates of water uptake. Saxena et al. (1995) used a chemical 

thermodynamic approach to estimate water uptake by ionic species at RH > 80%, and 

estimated ambient organic carbon hygroscopicity from residual aerosol water content 

determined by experiment. An alternative method to estimate ionic species water uptake is 

to take pure solute water activities from the literature (Tang et al., 1981; Tang and 

Munkelwitz, 1994). In this work, empirical relationships for solute water activity, combined 

with a mixing rule (MaIm and Kreidenweis, 1996), are used to estimate water uptake by 

atmospheric particles. This work assumes that ionic (ammonium and sulfate ions) and 

organic compounds are internally mixed and confined to the aerosol accumulation mode, 

whereas soil mass is restricted to a separate large aerosol mode. 

2.1 Particle Light Scattering 

Under typical summertime meteorological conditions, the primary contribution to 

visibility degradation in the southeastern U.S. is diffuse light scattering along the viewer's 

line of sight. Particles, which can exist as haze drops under humid conditions, are 

responsible for most of this light scattering. The light extinction coefficient, which is 

described primarily by particle light scattering in the southeastern U.S., can be thought of as 

having four components: 

bext = bsp + bap + bsg +bag 2.2.1 

where bext (km-l) is the sum of scattering and absorption by particles, bsp and bap, and 

scattering and absorption by gas molecules, bsg and bag, respectively. Within the constrains 

7 



of reasonably applicable assumptions, bext has an inverse relationship to visible range, a 

more tangible measure of visibility given by the Koschmeider equation (Seinfeld, 1986). 

The light scattering coefficient can be calculated by integrating the single particle 

scattering efficiency, Qs, over a particle size distribution function, with the following 

expression; 

b sp = j ~ D ~ Q s ( n, D p , Iv )f( D p ) dD p 

o 4 
2.2.2 

where Dp is the particle diameter, Qs is given by Mie theory as a function of particle complex 

refractive index, n, Dp, and A, the wavelength of light, andf(Dp) is the aerosol size 

distribution function (Seinfeld, 1986). 

Figure 2.1.1 shows the effect of RH and particle size on bsp. In this figure, bsp is 

calculated as a function of RH and dry mass median diameter for lognormal distributions of 

ammonium sulfate with equivalent dry mass concentration (1 }lg m'!'3). The light scattering 

coefficient represents solutions to Equation 2.2.2. A relevant feature of Figure 2.1.1 is the 

increase in light scattering as RH increases, particularly at humidities over 80%. Note the 

maximum in the mass scattering efficiency for aerosols near 0.3 J.lm. For particle sizes below 

0.1 J.lm light scattering is inefficient and bsp drops sharply. 

During the summer in the southeastern U.S. high humidity is common. Also, 

results from this work and others researchers during SEA VS (Kreisburg et al., 1996) indicate 

that ambient particle size distributions with accumulation mode mass mean diameters near 

0.3 J.lm, with geometric standard deviation near 1.6, are common. The combination of 

available an'.bient water vapor and an aerosol size distribution that scatters light efficiently 

create ideal conditions for visibility degradation at GRSM. 
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Figure 2.1.1. Output from the Tsay and Stephens (1992) Physical/Optical Model 

for Atmospheric Aerosols. The graph represents the crystallization branch of 

condensed ammonium sulfate aerosol, distributed lognormally with a geometric 

standard deviation of 1.6 and airborne concentration of 1 f.lg m-3. 

It should be pointed out that in Figure 2.2.1 the MMD shown is for dry aerosol, and 

as RH increases, particles take up water and increase in size. In fact, it is the particle growth 

that is responsible for the increase in light scattering at high RH (the added water can equal 

or exceed the initial aerosol volume), since the light scattering coefficient is proportional to 

the integrated sW'face area of an aerosol dist ibution for geometrically similar particles 

(Hinds, 1982). Thus, bsp, as presented in the model simulation shown in Figure 2.1.1, is 

related to the RH dependent growth parameters within the visibility model itself. The 

particle size change parameters used in Figure 2.1.1 are taken from experimental 
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determinations of pure ammonium sulfate size change as a function ofRH from Tang and 

Munkelwitz (1994). 

2.2 Aerosol Hygroscopicity 

The water uptake, or hygroscopicity, of solute aerosol can be expressed as %0 ' 

the ratio of wet to dry particle diameter. This work considers water associated with haze 

particles, that is, particles that form aqueous solutions below saturation RH. 

Particle growth in a humid environment can be predicted from theory by calculating 

the solute particle water activity as a function of ambient RH. Chemical thermodynamics 

predicts that a particle will deliquesce, or change from a dry crystalline state to a saturated 

solution drop, when the ambient RH equals a specific water activity in the solute particle. At 

humidities greater than the deliquescence RH and below water vapor saturation, the water 

associated with a solute drop maintains an equilibrium with ambient water vapor. Equations 

2.2.1 and 2.2.2 are expressions for the relationship between RH, solute water activity, and 

the amount of condensed water associated with a solute particle. 

RH=~ex~~~) 2.2.1 

2.2.2 

In Equation 2.2.1, Mis the molecular weight of water, ¢Jis the surface tension of water above 

the particle, p is the condensed phase density, R the gas constant, T is temperature, and D is 

the diameter of the condensed particle (Tang et al., 1981). The exponential term is an 

enhancement in water vapor pressure over the condensed particle which arises due to 

spherical curvature. Curvature effects for particles larger than 0.1 J..Ull are assumed 

insignificant (Shettle and Fenn, 1979) and the exponential in Equation 2.2.1 can be 
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neglected. Equation 2.2.2 defines the particle water activity as the product of water mole 

fraction. Xw, and the water activity coefficient, Yw' 

The amount of water associated with a haze drop can be predicted by chemical 

thermodynamics above the relative humidity of deliquescence (RHD). However, at 

humidities below the RHD, experiments have shown that solute particles often exist in a 

meta-stable equilibrium with ambient water vapor (Tang et ai., 1981; Tang and Munkelwitz, 

1994). Due to the water hysteresis exhibited by some solutes, crystallization does not occur 

until a specific RH, often much lower than the RHD, is achieved (Tang et ai., 1981). Figure 

2.2.1 shows the size change for an ammonium sulfate particle as a function of RH. A 

separate deliquescence branch, for increasing the aerosol equilibrium RH starting from 

below the RHD, and crystallization branch. for decreasing equilibrium RH from above the 

RHD, are shown. 

PARTICLE SIZE CHANGE FOR (NH4)2S04 

2.4 AEROSOL SIN MOl ST ATMOSPHERE AT 25°C 
i i I 22/ - THEORETICAL 1 :} EXPERIMENTAL 

2.0, 
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Experimental data that predict the mass and density of condensed phase as a 

function of Aw for pure solutes at 25° C are available in the literature (Tang and Munkelwitz, 

1994). From experimental data, curves similar to Figure 2.2.1 can be reconstructed for the 

solute species of interest. %0 can be expressed in terms of Z(Aw), the weight percent of 

solute in a condensed particle, P(Aw ), the density of the condensed phase, and p~ the density 

of the dry particle, as follows: 

2.2.3 

Equation 2.2.3 assumes that the particles are spherical, that all added water is absorbed into 

the solute matrix, and that volume is conserved on mixing. An advantage of using known 

water activity expressions is that they are applicable to the broader humidity range of the 

crystallization branch of particle size change. A disadvantage is that they are not readily 

extended to a variety of mixed solutes where water activity data is not available. 

It is practical to estimate %0 for simple aerosol mixtures of constituents that 

exhibit different size change as a function of RH. In this work theoretical water uptake is 

estimated for the fraction of ionic species (ammonium and sulfate ions) present in the aerosol 

accumulation mode. The water uptake estimates assume the aerosol can be represented by a 

homogenous internal mixture of ionic species and organic carbon. Since it is desirable to 

estimate water uptake for accumulation mode aerosol (Dp approximately less than 1 J..l1l1), and 

currently available chemical data represent fine mass (Dp < 2.5 J..l1l1), only ionic, organic 

carbon and elemental carbon mass fractions are used represent the mixed accumulation mode 

aerosol. Soil mass is excluded to large mode aerosol and therefore not included in 

theoretical estimates of water uptake. Water uptake estimates are calculated using the 

mixing rule for an ideal binary mixture from MaIm and Kreidenweis (1996); 
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2.2.4 

where Pdry and Pwet are the wet and dry mixed aerosol densities. Similarly, mass fraction, Z, 

and wet and dry aerosol diameters are given by, D and Do, respectively, where the subscripts 

1 or 2 denote the respective pure phase. In Chapter 5 water uptake estimated by Equation 

2.2.4 is compared to experimentally derived water uptake derived from OPC data from this 

work. 

2.3 Optical Particle Counter 

The optical counter used in this work measures aerosol size and number 

concentration by detecting scattered light from individual particles. The OPC operates on the 

premise that light scattered from a particle and collected by the instrument's optical system is 

a function of the particle's size. The OPC is designed to count individual particles as they 

traverse the instrument's optics. A discussion of the OPC used in this work, as well as 

potential corrections to the instrument's measurements in an experimental setting, follows. 

The ASASP-X measures the intensity of scattered light from individual particles as 

they pass through the instrument's laser beam. A 632.8 nm He-Ne laser is the light source. 

A photodetector measures light intensity collected by a parabolic mirror over a 350 to 1200 

solid angle incident to the laser beam. Light collected in this geometry is assumed to be 

scattered from individual particles in the OPC sampling volume. A separate photodetector 

measures the intensity of the incident laser beam in order to calculate the relative intensity of 

light scattered from individual particles. A schem~tic of the ASASP-X optics is shown in 

Appendix B.1. 

13 



Individual particle scattering intensity is converted to an electrical current pulse by 

the photodetector. The current is then amplified by the programmable gain amplifier which 

has four settings on the ASASP-X. At each gain setting the amplified signal is fed into a 16 

channel pulse height analyzer (PHA). The PHA separates particle pulse height (or voltage) 

into channels based on a comparison of actual pulse voltage to pre-set voltage thresholds in 

15 comparators within the PHA' The comparator voltages are unique for each amplification 

range, giving the ASASP-X effectively 60 channels for all four amplification ranges. 

Immediately following a particle count, an electronic dead time is imposed to ensure that 

measured voltage pulse resulted from light scattered by an individual particle. 

The ASASP-X uses particle free sheath air in the inlet flow system to 

hydrodynamically 'focus' the sample flow to a narrow stream, approximately 200 J.Ull in 

diameter. The particle trajectories must pass through the center of the laser beam so that their 

scattering intensity, relative to the maximum beam intensity, is proportional to particle size 

in a reproducible manner. If the particle trajectory passes through the outer limits of the 

laser beam, a decrease in relative scattering intensity will cause the particle to be undersized 

by the OPC electronics. Monodisperse particles measured by the OPC when the sample 

stream is either out of 'focus' or not aligned through the center of the laser beam will appear 

as a broad distribution, with a tail towards smaller sized particles. 

The OPC cannot differentiate between scattering intensity from a single particle and 

the coincident detection of multiple particles. Also, the OPC does not detect particles during 

sampling dead time. A correction to the measured concentration, which accounts for these 

two loss mechanism j, and is based on the probability of finding a particle close to a 

neighboring particle in the sample flow, is presented by Baumgardner (1995): 

2.3.1 
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2.3.2 

In Equation 2.3.1, Na is the actual aerosol concentration, Nm is the concentration measured 

over a sampling time interval T, tt is the average particle transit time through the laser beam 

and A is the wavelength of laser light. t is the total dead time (Equation 2.3.2), where Q is 

sample flow rate and 'd is the electronic dead time. 

F or measured particle concentrations less than 2000 cm-3 corrections given by 2.3.1 

are small (Baumgardner, 1995). Since the ASASP-X sampling time period, given by Tin 

Equation 2.3.2, includes only time spent in a given amplification range, the correction 

applies to the total concentration in that range. The maximum particle concentration in any 

given range for this work rarely exceeded 1000 cm-3 and losses due to coincidence are 

negligible. 

2.4 Aerosol Size Distribution Statistics 

Formulas for computing geometric mean size and geometric standard deviation for 

the aerosol distribution are taken from Knutson and Lioy (1982). In the following equations, 

Dp,g is the geometric mean of the aerosol distribution and O'g is the geometric standard 

deviation. 

I 

Xi = (XIlXII+1)Z 

2.4.1 

2.4.2 

2.4.3 
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Ni is the number of counts in bin (i) and Xi the geometric mean diameter of bin (0. Xn is the 

lower particle diameter for the bin limit (n). These equations are independent of the shape of 

the distribution and can be applied to any distribution moment, such as number or volume. 

In most cases the particle size range detected by the ASASP-X only partially 

resolves the entire number distribution, whereas the volume distribution, for the same 

aerosol, is well defmed over the ASASP-X detection range. Transformation from a discrete 

number distribution to a discrete volume distribution is given by: 

V 
1tN. 3 = __ 1 X 

i 6 i 
2.4.4 

where Vi (~m3 cm-3) is the aerosol volume in bin (i). Aerosol volume distribution parameters 

obtained from the statistical equations given above are used to represent experimental data 

from this work. The geometric mean diameter of the volume distribution, or geometric mass 

mean diameter (MMD) assuming the particles are characterized by a single density, is 

referred to throughout this work. 

Number mean diameters can be inferred from the volume distribution statistics by 

assuming the particles are distributed lognormally. The transformation to number geometric 

mean size from volume parameters, assuming a lognormal aerosol distribution, is given by 

Seinfeld (1986) as: 

D p.g,no. = D p,g,vol exp( -1.51n 2 0' g) 2.4.5 

While Equation 2.4.5 represents a technique to derive aerosol number Dp,g from size 

distributions measured in this work, it is not used in the analyses presented herein, as no 

assumptions about the si~e distribution functions that apply to ambient aerosol distributions 

are made in this thesis. 
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3. NPS/CSU SPECIAL STUDY 

3.1 Objectives 

The NPS/CSU special study was defined by three experiments. 1.) Collection of a 

comprehensive local meteorology data set, 2.) determination of RH dependent ambient light 

scattering using nephelometer measurements, and 3.) determination of RH dependent 

ambient aerosol size distribution parameters, (Total number concentration, total volume 

concentration, Dp,g, O"g), from OPC measurements. 

This report focuses on results from experiment (3) although summaries of 

experiments (1) and (2) are included since these data are relevant to interpretation of the 

ASASP-X experimental results. Specific objectives for the OPC experiment include 

estimation of water uptake in the optically significant aerosol size range and quantifying 

aerosol size distribution parameters for the southeastern U.S. A discussion of aerosol 

loading and size distribution parameters taking into account prevailing meteorology is 

included. 

3.2 Local and Synoptic Meteorology During SEA VS 

Sherman et. al (1996) have defmed at least seven unique meteorological periods 

during SEAVS. These periods are summarized below in Table 3.2.1. 
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SEA VS Meteorological 

Period 

Beginning of Study 

Dust 

Pre-Hurricane 

Hurricane 

Post-Hurricane 

Transition 

Polluted 

Post-polluted 

Dates 

7/14/95 - 7/23/95 

7/24/95 - 7/26/95 

7/27/95 - 8/1/95 

8/2/95 - 8/5/95 

8/6/95 - 8/8/95 

8/9/95 - 8/13/95 

8/14/95 - 8/18/95 

8/19/95 - 8/25/95 

Table 3.2.1. Meteorological periods during SEA VS. 

Dates (JD) 

195 - 203 

204 - 207 

208 - 213 

214-217 

218 - 220 

221 - 225 

226 - 230 

231 - 237 

Unusually high hurricane activity along the southeastern seaboard and U.S. Gulf 

Coast was a prominent synoptic meteorological feature during the summer of 1995. On 

occasion, large scale tropical storm flow moved inland and influenced both the meteorology 

and air quality in the southeastern U.S. The most notable synoptic event during SEAVS was 

Hurricane Erin, which made landfall at Pensacola, Florida on August 3, 1995 (Figure A.4.1). 

When Erin dissipated over the southeastern states (Figure A.4.2) it carried with it an 

intrusion of clean maritime air to GRSM, providing exceptionally good visibility. The 

hurricane period is characterized by southeasterly flow and low particle concentrations. The 

chemical fingerprint of this maritime airmass is evident in the chloride fine mass record 

during SEAVS which peaks on JD 215 (Figure A.3.7). 

Stagnation episodes, characterized by low wind speeds and slow moving high 

pressure systems, are common in the GRSM region during summer months (Southern 

Oxidants Study, 1995). The geography of the field site, at an elevation of 800 meters, 

overlooking the Tennessee Valley and Cumberland Plateau, created unique local air flow 

patterns. During stagnation episodes, daytime inversions often preceded afternoon upslope 
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flow that brought an air mass from the Tennessee Valley to GRSM. This low-level flow 

probably originated in industrialized regions that are abundant in secondary pollutant 

precursors. When stagnation episodes persisted during SEA YS, particle concentrations 

increased progressively, resulting in high aerosol mass loading and severely degraded 

visibility . 

During SEA YS, the pre-hurricane period and the transition-polluted period 

represent two stagnation episodes of different magnitude. The pre-hurricane period was a 

relatively short stagnation episode, during which particle mass accumulated to 25 flg m-3 and 

visibility was good (bsp of 0.05 to 0.2 km-!). Synoptic flow from Hurricane Erin then 

brought clean air into the area and visibility conditions were exceptional (bsp < 0.05 km-!). 

The next stagnation episode occurred during the transition and polluted periods which saw 

an essentially undisturbed particle buildup that culminated in aerosol high mass loading (60 

to 80 J.lg m-3) and severe visibility impairment (bsp as high as 0.9 km-!). Often during 

SEA YS, stagnation episodes ended with brief periods of thunderstorm activity that would 

'wash out' airborne particulate mass. 

What is interesting about the two stagnation episodes discussed above is their 

differences in aerosol chemistry. During the pre-hurricane period sulfates and organic 

carbon were present at average mass fractions of 62 and 38%, respectively, relative to each 

other. During the transition and polluted periods the sulfate and organic carbon relative mass 

fraction were 81 to 19%, respectively. These chemical fractions, taken from IMPROVE 

data, have implications for aerosol properties, particularly hygroscopicity, during each 

period. 
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3.3 RH Controlled Experimental Design 

3.3.1 Aerosol Inlet 

The CSUINPS study used an inlet that allowed RH control of ambient aerosol. The 

inlet consisted of a bank of 23 Permapure driers that lead to a sampling plenum. The inlet 

could sample at flow rates to 23 liters per minute without compromising drier efficiency, 

based on evaluations of single units (Dick et ai., 1995). RH was set by mixing filtered air 

from saturated and dry air sources in the Permapure sheath flow to achieve the desired RH in 

the plenum. RH could typically be adjusted from 5 to 90%. A Campbell temperature and 

dew point sensor was fit inside the plenum to record temperature and RH. Sample residence 

time in the RH conditioned plenum was approximately 30 seconds, and approximately 0.8 

second inside the Permapure driers, based on a typical flow rate of 22 liters per minute. 

The inlet for the ASASP-X tapped into the RH conditioned inlet at the plenum. The 

ASASP-X inlet was 1 meter in total length and made of~ inch outer diameter stainless steel 

tubing. Two Swagelock three way valves allowed for inline sample flowrate checks. Based 

on typical ASASP-X inlet flow rates of 60 cm3 min-I, the sample residence time in this inlet 

was approximately 16 seconds. The residence time in the plenum and ASASP-X inlet 

provided sufficient time for the sampled aerosol to equilibrate with the conditioned RH. The 

only disadvantage of the sample residence time in the ASASP-X inlet was potential loss of 

particles due to gravitational settling. Losses due to particle diffusion to the tubing walls are 

assumed insignificant for particle sizes greater than 0.1 Jlnl (Willeke and Baron, 1995) and 

are ignored here. 

Depositional losses in the ASASP-X sample inlet due to gravitational settling can 

be calculated based on sample flow and inlet geometry. In calculations for gravitational loss 
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due to particle settling vertical sections of tubing can be ignored, provided sample flow is 

oriented downward. This was the case for the Permapure driers in the RH conditioned inlet, 

and therefore gravitational losses are ignored in the driers and in the plenum. The classic 

solution by Fuchs, (1964) for sampling efficiency in circular tubing with laminar flow is 

given in Equation 3.3.1.1 following the development in Willeke and Baron, (1993): 

3.3.1.1 

where 1] is the fractional penetration of a given size particle population through the tubing, or 

the inlet efficiency. In Equation 3.3 .1.1 K is given by: 

3LV, 
K = __ t._s cos(8) 

4dU 
3.3.1.2 

In Equation 3.3.1.2, L is the length of tubing (cm), d is the tubing inner diameter (cm), Vts 

(cm s-l) is the particle terminal settling velocity, U (cm s-l) is the average sampling velocity 

in the tubing, and e is the inclination of the tubing from horizontal in degrees. Equation 

3.3.1.2 reduces to 0 for e = 90°. The particle terminal settling velocity is given by: 

3.3.1.3 

where r is the particle relaxation time (s) and g is gravitational acceleration (cm s-2). r is 

given by: 

3.3.1.4 

where Pp is the particle density, Dp is the particle diameter, Cc is the Cunningham slip 

correction, and n is the gas viscosity constant of air (n = 1.827 x 1 0 -4 dyn; em) at 25° C. 

The slip correction in Equation 3.3 .1.4 is given by: 

3.3.1.5 
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where Kn is the particle Knudsen number and is given by: 

3.3.1.6 

In Equation 3.3.1.6, A. is the gas molecular mean free path, and the value used is for a 

pressure of 1 atmosphere and temperature of 25° C (A. = 6.65 x 10-10 em). The constants in 

Equation 3.3.1.5 are chosen to represent a solid particle in the slip correction term and have 

the values of a= 1.142, /3= 0.558, and y= 0.999. In this experiment, particles sampled at 

high humidities may not be entirely solid, however by assuming solid particles in the inlet 

efficiency corrections an upper limit in particle loss based on density variations is estimated. 

RH Conrtrolled Plenum 

ASASP-X Sample Inlet 

SEAVS Summer 1995 
Field Experiment 

NPS/CSU ASASP-X and 
Nephelometer Schematic 

Main 
ASASPPump 

Figure 3.3.1.1. Configuration of the ASASP-X sample inlet during SEAVS. 

The schematic in Figure 3.3.1.1 shows the geometry of the ASASP-X inlet. The 

inlet is oriented at 45° from the \ ,;!rtical for the first 40 cm of length following a 45° bend 
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from a vertical attachment to the plenum attachment. Another 45° bend leads to a vertical 

section followed by a wide 90° bend to a 10 cm horizontal section. This final horizontal 

section was attached to the ASASP-X itselfwith a 2.5 cm length oftlexible conductive 

tubing. Thus, the ASASP-X inlet efficiency is calculated for two tubing sections, one of 

40 cm at 45° to horizontal and another 10 cm horizontal section. The total inlet efficiency is 

given by: 

11 tot = 11 III 2 3.3.1.7 

Aerosol concentration, N, representative of the actual ambient particle concentration in a 

given bin is related to the measured concentration in that bin by: 

N = N measured / 
actual /11 tot 3.3.1.8 

The ASASP-X sample inlet efficiency as a function of particle size is shown in 

Figure 3.3.1.2. Inlet loss corrections are applied to particle counts in each ASASP-X bin 

assuming the geometric midpoint diameter represents the particle size in that bin. Losses 

from particle impaction in tubing bends are ignored due to the very low particle Stokes 

numbers in the ASASP-X inlet for sampling conditions in this experiment. 

Characterization of inlet efficiency in the field was not performed in any systematic 

manner. On JD 199 - 200 the ASASP-X was operated with an ambient inlet that bypassed 

the RH conditioned inlet, however the bypass made use of most of the OPC inlet for which 

the above efficiency calculations apply. OPC data from these days may be used as an 

indication of sampling efficiency in the RH conditioning portion of the inlet, provided 

tluctuations in ambient aerosol number concentrations were minimal for times that bracket 

use of the ambient RH inlet. Since the ambient particle number concentration was not 

constant over any two or three day period during SEA VS, no experimental determinations of 

sampling efficiency in the RH conditioned inlet were made. 
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Figure 3.3.1.2. Theoretical efficiency for the ASASP-X sample inlet as a 

function of particle diameter. Only particle losses due to gravitational 

settling are considered. 

3.3.2 PMS ASASP-X 

Specific modifications to the ASASP-X (Serial No. 805-0978-10) air flow 

configuration for the SEA VS field experiment are explained in this section. The ASASP-X 

optics and electronics were described in Section 2.3. 

For this field experiment. the ASASP-X was reconfigured to draw both its sample 

and sheath flows from the RH conditioned inlet plenum. The flow configuration for the 

ASASP-X during SEA VS is shown in F. gure 3.3.1.1. Since the particle free sheath air that 

focuses the sample stream in the optical cavity exceeds the sample flow by volume ratios of 

approximately 20: 1 it was important that the sheath air have the same temperature and RH as 
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the sample flow to ensure the water content of the RH conditioned aerosol was not altered 

upon sampling by the ope. The flow system in this experiment differs from the 

manufactures' design in that filtered sample air was used as sheath flow rather than 

recirculating sheath air. Air temperature and RH for the ASASP-X were recorded 

immediately downstream of the laser cavity by a Campbell temperature and dew point 

sensor. 

A comparison of plenum and ASASP-X temperature and RH is shown in 

Figure 3.4.1. Occasionally the temperature in the ASASP-X was slightly higher than in the 

plenum following prolonged operation of the OPC. This temperature differential caused the 

ASASP-X to operate at slightly lower humidities than those achieved in the plenum. 

Heating of the ope air flow likely resulted from heat generated by the instrument's 

electronics. It is unlikely that heating from the laser itself affected characteristics of 

individual particles. 

The ASASP-X sample flow rate was measured before and after acquiring data for a 

given aerosol distribution. At least three individual readings were taken for each flow 

measurement prior to and subsequent to sampling. Sample inlet flow rate for the ASASP-X 

was measured directly and in line using a Gilibrator primary calibration flow meter fitted 

with a 250 cm3 cell. Typical variance in the inlet flow rate was less than 5% of the total inlet 

flow. The ASASP-X sample flow rate was typically 60 cm3 min-I. Sample flow rate was 

set by differencing the total flow and sheath flow. A total flow rate of 1200 cm3 min-I and 

sheath flow rate of 1140 cm3 min-I were common although the sample flow rate was the 

only routinely measured quantity. 
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3.3.3 Associated Instrumentation 

A Radiance Research nephelometer tapped into the RH controlled inlet to measure 

the aerosol light scattering coefficient, bsp. Ambient aerosol concentration [CN] was 

measured with a Condensation Nuclei Counter (TSI-30 10 CNC) that was not connected to 

the RH controlled inlet. Aerosol number concentrations for Dp > 0.01 Jllll, (the 50% 

efficiency diameter for the 3010) were recorded during SEAVS (Appendix A.l.2). 

3.4 Sampling Protocol 

The RH controlled inlet conditioned aerosol from ambient RH to a given 

experimental RH. Thus, if the experimental RH was greater than ambient the aerosol were 

humidified, and if the experimental RH was less than ambient the aerosol were dried. The 

experimentally conditioned RH was cycled between low and high RH. The experimental RH 

and temperature are important to the interpretation of results from this experiment and were 

measured at different points in the inlet and instrumentation. Figure 3.4.1 shows plenum and 

ASASP-X temperature and RH for JD 207 and illustrates the manner in which the sample 

RH was controlled during the experiment. Aerosol distributions were collected by the OPC 

while RH was stable. A collection time of at least 15 minutes was allowed for the ASASP-X 

to gather statistically significant data (Section 4.4). Data collected while the RH ramped was 

not used to construct aerosol distributions. Sequential scans of dry and humidified aerosol 

size distributions were ultimately adopted as a sampling protocol in the field. 
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Figure 3.4.1. RH and temperature in the ASASP-X and RH controlled sample 

plenum. Hash marks indicate times when the OPC was collecting size distribution 

data. The RH in the OPC tracked closely with the plenum RH, the latter an indication 

of the nephelometer RH. Missing data indicates the data logging system was turned 

off. Initial ASASP-X scans~ indicated by their relatively short time intervals, were 

PSL instrument performance checks (Appendix B. I). 
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4. RESULTS 

This section focuses on experimental results from the ASASP-X data set. 

Timelines are shown for the entire study, in the form of daily averages, for aerosol number 

and volume concentration size distribution parameters. Water uptake results for ambient 

aerosol in GRSM are also presented. Examples of sequential dry and humidified aerosol size 

distributions are included to demonstrate the increase in aerosol volume following 

humidification. The majority of water uptake results are presented as wet to dry particle 

diameter ratios, or D1J (Section 4.3). 
ILo 

The interpretation of raw OPC data can be an arduous process. Data inversion 

techniques, explained in Appendix C, have been applied to the raw data prior to its 

presentation in this chapter. Dry aerosol distributions were processed using refractive 

indices based on ambient aerosol chemical composition (Appendix D). Water uptake 

determinations used RH dependent refractive indices explained in Appendix C. 

4.1 ASASP-X Dry Aerosol Characterization During SEAVS 

A time line of daily averaged dry (RH < 15%) aerosol number concentration (cm-3), 

obtained by integrating aerosol number concentration over the 0.1 < Dp < 2.5 J..lm size range, 

is presented in Figure 4.1.1. The SEA VS meteorological periods are superimposed on this 

figure to illustrate that these periods bracket trends of build up and depletion in the ambient 

aerosol number concentration. 

Daily averages for the volume distribution parameters, volume concentration 

(J..lg cm-3), MMD (J..lm) and O'g, are shown in Figures 4.1.2 to 4.1.4, respectively. These 

parameters of the aerosol volume distribution represent accumulation mode aerosol, 
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typically in the 0.1 < Dp < 0.9 J..Lm size range, although the upper diameter limit was adjusted 

with a floating cutoff parameter (Appendix C.3). 

Daily Averaged Dry Aerosol Number Concentration, D < 2.5 p,m 
2500r-------~~--~~--~--~--------------~------~~----~------~ 
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Figure 4.1.1. Total number concentration from the ASASP-X for aerosols in the 

size range 0.1 < Dp < 2.5 J..Lm. Vertical dashed lines demarcate SEAVS 

meteorological periods. 

As pointed out earlier~ the dry aerosol time lines display trends that correspond to 

SEAVS meteorological periods, described in Section 3.2. For example, during the pre-

hurricane period aerosol number and volume accumulated until the onset of synoptic flow 

from Hurricane Erin on JD 215. Throughout the hurricane period, particle number and 

volume concentrations were low. Following the hurricane period. aerosol accumulation was 

essentially undisturbed during the two weeks of the transition and polluted periods. During 

this time the distribution MMD increased from 0.28 to 0.38 J..Lm (Figure 4.1.3). Physical 

mechanisms that explain this size change are coagulation of small particles (Dp < 0.1 J..Lm) 

with larger accumulation mode particles and/or condensational growth on the surface of 

accumulation mode particles (Seinfeld. 1986: Willeke and Baron. 1993). Figure 4.1.4 shows 
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that the shape of the aerosol distribution, described by O'g, was stable during the pollution 

period (JD 226-230), while aerosol mean size and volume concentration increased. An 

increase in aerosol mean diameter will increase the mass (or volume) light scattering 

efficiency of ambient aerosols if the resulting distribution grows into a size regime where 

light scattering is more efficient relative to smaller mean diameters. 

30 



__ 40 

"'E 
u 30 :;.... 
E 
3: 20 

<1> 

E 10 ::J 

"0 
> 

0 
195 

0.40 

o 
~ 0.35 

........... 
E 3 0.30 
0' 
a.. 
o 0.25 

195 

2.4 
2.2 
2.0 

0' 
b 

1.8 

1.6 
1.4 
1.2 
1.0 

195 

Daily Averaged Dry Aerosol 
Figure 4.1.2. Accumulation Mode Volume Concentration 

200 

200 

205 210 215 
Julian Day 

220 225 

Figure 4.1.3. Accumulation Mode MMD 

205 210 215 
Julian Day 

220 225 

230 

230 

Figure 4.1.4. Accumulation Mode Geometric Standard Deviation 

200 205 210 215 
Julian Day 

220 225 230 

Figures 4.1.2 to 4.1.4. Dry aerosol volume distribution statistics measured by the 

ASASP-X for accumulation mode aerosol. Size distribution data was processed 

with a refractive index of 1.520 for JD 195 to 221 and 1.50 I for JD 221 to 223. 
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Dry aerosol size distribution parameters form this study are given in Table 4.1.1. 

The figures shown previously (Figures 4.1.1 to 4.1.4) reflect data processed with a dry 

refractive index of 1.520-0i for JD 195 to 221 and 1.501-Oi for JD 222 to 233, based on 

reconstruction of ambient aerosol refractive index for those time periods during SEA VS 

(Appendix D). Distributions statistics for the entire study for data processed with a 

refractive index of 1.530-0i, as well as the two refractive indices that represent a best 

estimate of the ambient dry accumulation mode aerosol refractive index during SEA VS (the 

refractive indices used to create graphs in this section), are included below to illustrate the 

sensitivity of distribution parameters derived from ope data to the refractive index 

inversion. 

Median Median 

Volume MMD Median 

n (J..lIIl3 cm-3) Max. Min. (J..lIIl) Max. Min. O'g 

1.530-0i 5.4 27.6 1.10 0.273 .344 .235 1.602 

1.520-0i 6.1 34.9 1.14 0.279 .383 .239 1.640 
1.501-0i 

Table 4.1.1. Dry aerosol volume distribution parameter study median and 

maximum and minimum values during SEA VS for two separate refractive index 

(n) inversions of the ASASP-X data from this work. Values reflect accumulation 

mode aerosol recorded under dry RH conditions. Note that lower refractive 

indices result in larger aerosol volumes and increased distribution MMD. 

Accurate field measurements of ambient aerosol size distribution parameters are 

important in the reliable implementation of visibility and climate models (Boucher and 

Anderson, 1995; Pilinis et ai, 1995). Aerosol size distribution parameter time lines, such as 

those in Figures 4.1.1 to 4.1.4 can also be used to estimate rates of change in particle 
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concentration during SEAVS stagnation episodes. For example, Figure 4.1.2 suggests that 

aerosol volume concentration increased at a maximum rate of 1.0 f.llll3 cm-3 day-l during the 

pre-hurricane period, while aerosol volume increased at over twice this rate, or 2.4 f.llll3 cm-3 

day-I, during the transition period. The aerosol M1v.ID and number concentration also 

increased during the stagnation episodes. Aerosol volume (or mass) accumulation rates are 

potentially useful in the prediction of visibility degradation and acidic deposition for specific 

regions, meteorological conditions, and pollutant mass emission rates. In principle, the 

accumulation rate of ambient particulate mass should be related to emissions provided 

meteorological variables and removal terms can be constrained. 

The experimental RH of dry aerosol size distributions represented by plots in this 

section was less than 10%, as shown by the grand average of daily averaged dry RH given in 

Table 4.1.1. On Julian Days 199-201 and 233 the ASASP-X sampled aerosol only at 

ambient RH. The size distribution parameters shown in Figures 4.1.1 to 4.1.4 for these days 

represent aerosol at RHs listed in Table 4.1.1, often the lowest available ambient RH 

distributions recorded on that day. Ambient RH size distribution data are included to make 

more continuous time lines, although data from these days are not used in derived quantities 

presented in this work. Julian days 117, 118 and 231 have no ASASP-X data and are 

therefore not included in the plots in this section. Error bars in Figures 4.1.1 to 4.1.4 

represent ± one standard deviation in the daily averaged quantity. Deviation in the daily 

averages is largely due to temporal fluctuations in the measured quantity. For example, 

aerosol volume was often observed to increase over a sampling day during a stagnation 

episode. A lack of error bars indicates the reported value for that day is based on one size 

distribution. 
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JD 

195-198,202-232 

199-201 

233 

* Represents a grand average 

Average 

RH 

8.7* 

44* 

52* 

Average 

Standard 

Deviation 

1.92 

2.13 

4.1 

n 

130 

16 

2 

Table 4.1.2. RH statistics for dry aerosol timeline. During JD 199 - 201 

and 233 the RH values shown are averages of ambient values in the 

ASASP-X sampling chamber. Exceptions to the RH < 15% criterion occur 

only during the beginning and post-polluted periods. n is the number of 

distributions the averaged quantities represent. 

4.2 Aerosol Water Uptake 

Figures 4.2.1 to 4.2.6 are examples of sequential dry and humidified aerosol size 

distributions measured by the ASASP-X during SEAVS. The first column of plots in any of 

these figures show aerosol number distributions, and the second column in the same row 

shows the number distributions converted to volume. Moving from top to bottom in any of 

these figures portrays a series of sequential dry-humidified-dry distributions. The initial dry 

distribution is superimposed on the subsequent plots as a dotted line to indicate size shifts 

due to associated water. The ordinate units in these plots are explained in Appendix C3. 

The refractive index against which the OPC data was processed is included, as is RH to 

which the inversion refractive index specifically applies. These plots include the distribution 

run number, experimental RH, integrated distribution number or volume concentration, and 

distribution statistics, which apply to accumulation mode aerosol. 
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Figure 4.2.1 shows sequential dry and humidified aerosol distributions from JD 

206, during the 'dust episode' meteorological period. An obvious large aerosol mode is 

present in these volume distribution plots. The large mode probably contains most of the 

crustal material associated with the particle fine mass during this period. The accumulation 

mode (demarcated by the dot-dash line) is defined here as aerosol with diameters less than 

the cutoff parameter shown on the volume plots. The first and last distributions in Figure 

4.2.1 are for 'dry aerosol' (runs 4 and 8). Both the shape (indicated by the dotted line) and 

integrated volume of the accumulation mode are preserved from initial to final dry size 

distributions (e.g., volumes of 3.8 and 4.1 J.IDl3 cm-3, respectively. The accumulation mode 

volume at 73 and 64% RH are 7.3 and 6.8 J.IDl3 cm-3, respectively. Note that the large mode 

aerosol volume appears to increase from run 4 to run 8, possibly due to ambient fluctuations 

in the large aerosol mode. 

Analogous examples of sequential dry and humidified aerosol number and volume 

distributions for JD 207 to 229 are included in Figures 4.2.2 to 4.2.6. On JD 207 a large 

aerosol mode indicative of crustal material is still evident. Subsequent plots correspond to 

the transition and polluted periods when the large aerosol mode is noticeably absent. Figure 

4.2.3, for JD 223, shows that over the period of one RH cycle the dry aerosol volume 

increased by approximately 25%. These distributions were taken during an afternoon 

upslope flow event which coincided with variable ambient [CN]. In the example shown in 

Figure 4.2.3 the best estimate of dry aerosol volume for a water uptake derivation based on 

the humidified run is the average of the two adjacent dry 'aerosol volumes. During the 

polluted period, the mean size of the accumu 'ation mode increased. Figure 4.2.4 indicates a 

well defined accumulation mode in the number distribution plots that was not present during 

some earlier periods of the study. This feature is observed throughout the polluted period. 
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All dry and humidified aerosol distributions statistics measured during this work, as 

well as some derived quantities explained later in this chapter, are included in Table 4.2.1. 

36 



1400f 

'E 1200~ 
~ 1000~ 
g- 800r 

:6 600 ~ 
£ 400t 
1J 

200 

Aerosol Number Distribution 
~-1.5!O, RH-O~ 

\ 
,~un No. 0<4 
RH ,. 8~ 
1: No. 835 
xI 0.177875 
a, ' . .37196 

o~~ ________ ~~ ____ ~~ __________ ~ 
0.1 ~.O 

Dp (urn) 
Run dote = 072595 Run time = 11: 1 to 11: 50 

Aerosol Number Distribution 
2000 ,,-1.501, H-70 

f' 
t 

1., 
Run No. as 

~ RH - 7.3~ 
E 1500 1: No • 1190 
~ ... ~ ., 0.189680 
a. 1000 a, 1.41795 

0 
c " 

U Run No. 0<4 
........ 

500 z 
1J 

o~~ ________ ~~ ____ ~ ____________ ~ 
0.1 LO 

Dp (urn) 
Run dote = 072595 Run time = 11: 52 to 12: 27 

~ 
f' 1500~ 
E r 
:: 1000~ 

! 500~ 
1J ~ 

Aerosol Number Distribution 
~=1. 1, H- 0 

Run No. 06 
RH ,. 6<4" 
1: No. 1192 
x, 0.188379 
a, 1.4103. 

Run No. 0<4 

O~~ ________ ~~ __________________ ~ 

0.1 1.0 
Op (urn) 

Run dote = 072595 Run time = 12: 36 to 12: 58 

1400 E­
f' 1200~ 
§ 1000~ 
:: 800~ 
~ 600~ 
£ 400~ 
1J 200~ 

Aerosol Number Distribution 
.,.1. ,H-O" 

Run No. 08 
RH .. 8" 
1: No. 886 
", 0.180965 a, 1.<40110 

Run No. 0<4 

O~~ __________ -= ____________________ ~ 
0.1 1.0 

Dp (urn) 
Run dote = 072595 Run time = 13: 19 to 14: 26 

Aerosol Volume Distribution 

O~~ ____________ ~ ____ ~ __________ ~ 

0.1 1.0 
Dp {um} 

Run dote = 072595 Run time = 11: 1 to 11: 50 

Aerosol Volume Distribution 

10 
~E - 05 
u 8 >-
E 

6 
x, 

2- a, 
a. 

0 4 A o. c 
U . . .' '. : I 
........ 2 > .. ' 
1J 

0 
0.1 1.0 

Dp {urn} 
Run dote = 072595 Run time = 11: 52 to 12: 27 

Aerosol Volume Distribution 

~ 12 
u 10 >-c 

8 2-
a. S 

0 0<4 c 4 U 
........ 

2 > 
1J a 

0.1 1.0 
Op (urn) 

Run dote = 072595 Run time = 12: 36 to 12: 58 

Aerosol Volume Distribution 

15 
08 E 

u 

~ 10 2-
a. 
~ 5 

0<4 

U 
........ 
> 
1J 

0 
0,1 1.0 

Op (urn) 
Run dote = 072595 Run time = 13: 19 to 14: 26 

Figure 4.2.1. Sequential dry-humidified-humidiiied-dry aerosol distributions from ill 206 are 

shown in the right hand column with their corresponding volume distributions in the left hand 

column. Size shifts are indicated by deviations from the dotted 'dry distribution' line. 
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Figure 4.2.2. Sequential dry-humidifIed-dry aerosol distributions from 10 207, during the 

SEA VS dust period. Presence of the large aerosol mode seen here corresponds to crustal 

elements detected in the chemical tine mass during SEA VS. 
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Figure 4.2.3. Sequential dry-humidified-dry distributions from JD 223, during the SEA VS 

transition period. Note the increase in dry aerosol volume from run 5 to run 7, typifying the 

temporal fluctuations in [eN] observed during this period. 
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Figure 4.2.4. Sequential dry-humidified-dry distributions from JD 226, during the SEA VS 

polluted period. Note the well defined accumulation mode in the number distribution, an 

indication that the aerosol mean size has increased relative to earlier periods during SEA VS. 
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Figure 4.2.5. Sequential dry-humidified distributions from JD 227. In some cases dry 

distribution data were available only before or after a humidified run. 
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Figure 4.2.6. Sequential dry-humidified-dry distributions from JD 229. The sharp drop in 

the distribution near 0.5 !J.m Dp is indicative of skew often observed in ope aerosol size 

distributions. 
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4.3 Derived Wet-to-Dry Aerosol Diameter Ratios 

Particle size change as a function of RH can be expressed as a wet to dry particle 

diameter ratio, 

4.3.1 

where D is the particle diameter at a given RH and Do is the dry particle diameter. In this 

expression for %0 ' hereinafter referred to as R, Vand Vo are wet and dry integrated aerosol 

volume concentrations, respectively, from sequential dry and humidified size distributions. 

Alternatively, R can be expressed as the volume geometric mean diameter, Dp,g (MMD), 

ratio of the humidified and dry aerosol volume distributions, provided that water uptake 

across the aerosol size distribution is homogenous. 

D Dp,g(WET) 
4.3.2 

McMurry et aI., (1996) reported size classified particles measured during SEA VS exhibited 

similar hygroscopic growth characteristics between diameters of 0.1 and 0.4 J.I.Il1, suggesting 

particle hygroscopicity across the aerosol accumulation mode is homogenous. Table 4.2.1 

includes values of R for accumulation mode aerosol calculated by Equation 4.3.1 and 

Equation 4.3.2. Values of R for aerosol in the entire ASASP-X detection range calculated by 

Equation 4.3.1 are also included in Table 4.2.1. Generally, R calculated by Equation 4.3.1 

for the accumulation mode, and R calculated for the entire ASASP-X size range, are 

consistent. However, during periods with significant lar&~ mode aerosol, R calculated for 

accumulation mode aerosol alone typically exceeds R calculated by including the large mode 

aerosol into the integrated volumes used in Equation 4.3.1. This apparent preferential water 
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uptake by accumulation mode aerosol may be an artifact of the manner in which RH 

dependent refractive index was applied to particles larger than 1 JlID. (see Appendix C), 

although it may also reflect preferential aerosol hygroscopicity, and therefore differences in 

chemical composition, between the accumulation and large mode particles. 

Figure 4.3.1 shows values of R from this work calculated by the volume ratio 

method (Equation 4.3.1). Figure 4.3.2 shows R calculated as the:MMD ratio for the same sets 

of dry and humidified aerosol distributions as shown in Figure 4.3.1. Comparison of the two 

figures suggests that calculating R from the distribution :MMD produces less scatter in the 

data when R is plotted as a function of RH for the whole study. This is reasonable since R as 

calculated by Equation 4.3.1 can change if the dry ambient aerosol volume is not constant 

over a experimental RH cycle. The aerosol distribution :MMD, on the other hand, is 

probably less sensitive to ambient fluctuations in aerosol volume, provided the actual aerosol 

accumulation mode :MMD does not change during a given RH cycle. The additional scatter 

in the R values in Figure 4.3.1 relative to Figure 4.3.2 may reflect additional uncertainty in R 

when aerosol size change is derived by the integrated volume method. 

Examples of R for some of the SEA VS meteorological periods are shown in Figures 

4.3.3 and 4.3.4. Figure 4.3.3 shows values of R measured during the pre-hurricane period 

and Figure 4.3.4 shows R for the transition and polluted periods. Superimposed on the 

experimental R values are empirical growth curves, expressed as R, for ammonium sulfate 

and ammonium bisulfate crystallization (Tang and Munkelwitz, 1994), as discussed in 

Section 2.3. 

The aerosol chemical composition, particularly the sulfate, organic carbon and soil 

mass fractions, varied during SEAVS. Comparison of Figures 4.3.3 and 4.3.4 suggests 

increased aerosol hygroscopicity from a period that averaged 62% sulfate (pre-hurricane) to a 
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period that averaged 81 % sulfate by mass (transition and polluted). The relative increase in 

R may be attributed to the higher sulfate mass fraction if sulfate species are more 

hygroscopic than ambient particulate organic carbon during SEA VS. Curves showing size 

change as a function of RH for internal mixtures of sulfate compounds with mass percents 

corresponding to the respective periods are also included in Figures 4.3.3 and 4.4.4. 

Figure 4.35 is a correlation of R by the two methods (Equation 4.3.1 vs. Equation 

4.3.2) and indicates that the latter technique results in lower overall experimental water 

uptake based on dry and humidified size distribution data from this work. 
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Figure 4.3.1. Aerosol size change, %" ' as a function of RH calculated from 

sequential dry and humidified integrated aerosol volume distributions. 
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Figure 4.3.2. rD" for the same aerosol distributions as Figure 4.3.1 but calculated 

as the wet to dry MMD ratio. 

46 



1.7 

1.6 

1.5 

1.4 
0 
C 1.3 
C 

1.2 

1.1 

1 

0.9 
0 

--(NH4)2S04 
• • • • • . 62% (NH4)2S04 

X JD 208 

• • 
:c 
+ 
e 

JD209 
JD 210 
JD 211 
JD212 
JD 213 

- - ... « .~. - - _. ~- .. - • 

............... , ............... , ................................. ·········;V:····· .. ···· 
#: 

. ............. -: ............... ,.................... . ........•... ~;:.~ ................ . 

············· .. i················:.·· ...••................... ;.;.1·············1 .. ·········· ... . 
,,~ ... 

......;..................... ........... ~.~.~:~ .. ~:~.~.~··:·:I~:.·~~:~··+··························· 
e +: + e·· 

10 20 30 40 50 60 70 80 90 100 

RH (0/0) 

Figure 4.3.3. rD" for the pre-hurricane period calculated as the wet to dry MMD ratio. 

Estimated R for pure and 62% ammonium sulfate particles are superimposed. 

1.7 

1.6 

1.5 

1.4 
0 
C 1.3 ....... 
C 

1.2 

1.1 

1 

0.9 
0 

--(NH4)HS04 
~ - - - ... 81% NH4HS04 

+ JD 221 
x JD 222 
X JD 223 
o JD 224 
• JD 225 
• JD 226 
e JD 227 

• JD 228 
c JD 229 

. 
f: 

I : 

.. ~ .. ~)~ ... ~ ......... . 
. .. ; 

..... L ............... : ................ i ................ [ .................... .I.~ ••••••• .L ............. . 

...... -: ............................. J ................... :;.~;:.: ...... -: .. :.:.::: ............. .. 
:' ~.>(;.". 

~ ....... Jl. ... : 
~. . : ~ 

....................................... -:-:-:-: .... ,-:-:-:-: ........ -:-:-:-: .. -:-:-:;-: .... -: .. -:-:.; .... -: .. -:-:-:-:-:-:-:-:-:.-:-:-:-:-:-:-:.-:.-:-: 

10 20 30 40 50 

RH (0/0) 

60 70 80 90 100 

Figure 4.3.... rD(} for the transition and polluted periods calculated as the wet to dry 

MMD ratio. Estimated R for pure and 62% ammonium sulfate particles are superimposed 

47 



tn 
0 ... 
ftS 
a: 
CD 
E 
:l 
'0 
> 

1.7 

• 
1.6 

1.5 

• • • 1.4 Volume ratio 
one to one line 

1.3 • • 
1.2 

1.1 

0.9 ~---+------+-----+----+-----+-----f 

1 1.1 1.2 1.3 

MMD Ratios 

1.4 1.5 1.6 
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respective values plotted in Figures 4.3.1 and 4.3.2 . 

..+.4 Uncertainty Analysis 

A variety of factors can contribute to uncertainty in derived water content and 

ambient aerosol hygroscopic growth factors when these quantities are measured by an ope 

in the field. Uncertainties inherent to the experimental design, such as tlow rate, ambient 

aerosol number and volume stability, and in this experIment. the accuracy of RH control, can 

potentially propagate to the derived growth factors. The ope itself has uncertamty in its 

particle sizing, a result of experimental limitations in the width of the ope response 

channels (Herring and McMurry 1991; Garvey and Pinnick, 1983). Further uncertainty in 

derived water uptake results from correcting the ope data for changes in aerosol index of 

refraction at high humidities. Table 4.4.1 summarizes sources of uncertainty and their 
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approximate magnitude for experimental data and theoretical corrections applied in this 

work. 

Sources of Uncertainty Estimated % Uncertainty 

RH control 1 to 5% 

Ambient Volume Stability 1 to 5% 

Flow Rate <5% 

Particle Concentration ay~ 

Instrument uncertainty in OPC, aexp 0.02 J.1m inDp 

Refractive Index Correction, am o to 0.08 J.1m, depending on RH 

Table 4.4.1. Sources of uncertainty in derived quantities from ASASP-X 

data. The variable C equals the accumulated counts in a given size channel. 

As a first step in calculating uncertainty in R, the uncertainty in the particle number 

concentration is calculated. The approach used to propagation uncertainty, up to Equation 

4.4.2 in this section, is adopted from Willeke and Baron, (1993). Uncertainty in the number 

concentration in each OPC bin can be expressed in terms of the ASASP-X sample flow rate, 

Q, and flow rate standard deviation, DQ, taken from experimental measurements. The 

particle count in each bin, c;, and the count standard deviation, DC;, are related by Poisson 

statistics by: 

DC = Jc'" 4.4.1 

The propagated uncertainty in number concentration, N, where N = clQt and t is the 

sampling time period in bin i, is obtained by taking the partial derivative of N with respect its 

independent variables. The variance in N is assumed to be equal to the sum of the of the 

variances in the individual independent variables multiplied by the square of their respective 
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partial derivatives. The resulting standard deviation in N is given by Equation 4.4.2 where 

the variance in t has been neglected: 

4.4.2 

The standard deviation in aerosol volume concentration for a given OPC bin is 

obtained in a similar manner to the number concentration standard deviation, where the 

aerosol number has been converted to volume based on the midpoint diameter of bin i, D pm,;. 

Uncertainties in Dpm,; and N; are propagated through Equation 2.4.4 in a manner analogous 

to that used for the uncertainty calculations in N;. resulting in: 

1 

o V, = [(; Dp.: N,r (0 Dpm, )' + (: (D,..,'Xo N,),) r 4.4.3 

In Equation 4.4.3 the uncertainty in particle diameter, 8Dpm,;, is given by the uncertainty in 

experimental measurements of particle diameter, aexp, and the uncertainty in particle 

diameter due to applied refractive index correction, am. 

I 
{, 2 2" 

cS Dpm; = ~ exp +0' m f 4.4.4 

Since refractive index corrections are greater at higher humidities, am becomes greater as 

refractive index decreases. For this work, aexp is assumed to be 0.02 f.1m. am is assumed to 

vary with the inversion refractive index as indicated in Table 4.4.2. 

n 1.530 1.520 1.501 1.469 1.443 1.420 

am 0 0.01 f.1m 0.03 J.1m 0.05 J.1m 0.07 f.1m 0.08 J.1m 

Table 4.4.2. am as a function of the OPC data inversion refractive index. 
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The uncertainties in the integrated number and volume concentrations can be 

expressed in terms of the respective individual bin uncertainties: 

4.4.5 

4.4.6 

The expression for the total number and volume concentration uncertainties would be true if 

all the bin uncertainties are independent and therefore additive, although this is not 

necessarily true for ope data (Stolzenburg, personal communication). 

The propagation of the uncertainties in aerosol wet to dry volume concentrations 

ratios can be expressed by taking the natural log of Equation 4.3.1, to give: 

1 
In R = -(In V w - In V D ) 

3 
4.4.7 

If we assume the uncertainty in the wet and dry volumes can both add to uncertainty in R, 

and express uncertainty as a percent, the following expression results: 

4.4.8 

where the integrated volume concentration uncertainty is given by Equation 4.4.6. 

Using this approach the uncertainty in derived RH dependent aerosol size change 

(R) for accumulation mode aerosol measured in this work ranged from 6%, when aerosol 

number concentrations were high, to approximately 25%, when the aerosol number 

concentrations were low. Uncertainties in R for high experimental RH were somewhat 

greater than the uncertainties in R for lower RH. 
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4.5 Uncertainty Propagation in a Light Scattering Model 

Estimates of uncertainty in experimental R were used for a sensitivity analysis in an 

optical aerosol model (Tsay and Stephens, 1990). The RH dependent aerosol growth 

parameters in the light scattering model were perturbed by fixed amounts. The resulting 

change in the wet to dry light scattering ratio for the perturbed case, expressed as a percent 

of the initial unperturbed scattering ratio, is shown in Table 4.5.1. A lognormal particle 

distribution with MMD of 0.3 f.Lm and O'g of 1.6 was used in the simulations. RH dependent 

size change along the solute crystallization branch of ammonium sulfate (Tang and 

Munkelwitz, 1994) was parameterized in the model prior to the sensitivity test. Table 4.5.1 

summarizes the results from the sensitivity study, and indicates that modeled estimates of 

light scattering are not unduly susceptible to uncertainties in experimentally derived R 

parameterizations, provided the experimental aerosol size change uncertainty does not 

exceed 10%. 

Positive 

R Perturbation 

5% 

10% 

20% 

30% 

bsp(wet) 
% Change in ~--­

bsp(dry) 

3% 

18% 

50% 

220% 

Table 4.5.1. Uncertainty propagation in the aerosol visibility model. The change in 

wet-to-dry scattering ratios shown are averages over all RH values above the solute 

RHC. 
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5. DISCUSSION 

In this Chapter the ASASP-X data is compared with other data sets from SEA VS to 

determine if they are consistent. One comparison is that of daily averaged dry aerosol volume 

(Section 4.1) to chemical fine mass (particles below 2.5 J.Ull in diameter) measured by the 

IMPROVE samplers. This discussion leads to estimates of dry aerosol density during SEA VS. 

Second, experimentally derived aerosol hygroscopicity is compared to theoretical estimates of 

RH dependent aerosol size change based on daily fine mass chemical composition from 

IMPROVE samplers. 

5.1 Dry Aerosol Volume and Density 

Figure 5.1.1 shows aerosol mass concentration from the IMPROVE samplers and 

aerosol volume concentration from the ASASP-X. Chemical fine mass is represented as sulfate, 

organic and elemental carbon, and soil, the significant constituents of fine mass during SEA VS 

(Appendix A.3). Similar trends in particle loading are seen with the ASASP-X volume 

concentration time line (Dp < 2.5 J.Ull) and a time line of 12 hour averaged daytime fine mass (Dp 

< 2.5 J.1Ill) from IMPROVE samplers. The similar trends in aerosol loading indicate the ASASP­

X size range can account for most of the ambient dry aerosol volume. However, the OPC 

measurements provide much greater time resolution than chemical sampling techniques. 

Figure 5.1.2 shows a time line of sulfate, ammonium, organic carbon, elemental carbon, 

and soil mass (12 hour daytime averages, except for organic carbon, elemental carbon and soil 

which are taken from 24 hour averages) as a percent of the total mass, defined as the sum of the 

mass concentrations of sulfate, organic plus elemental carbon, and soil. These are the chemical 

mass fractions used to reconstruct fine mass concentration in Figure 5.1.1. The predominance of 

sulfates and organics in GRSM is evident from Figure 5.1.2, with sulfate comprising nearly 80% 
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of the fme mass during the transition and polluted periods and approximately 60% during periods 

of low total mass if the contribution from soil is ignored. Soil episodes are evident from the 

dashed line in Figure 5.1.2. the sum of sulfate, ammonium, organic and elemental carbon fine 

mass, which is essentially the inverse of the soil mass time line (see Figure A.3.4). 

Figure 5.1.1. IMPROVE Daytime Fine Mass and ASASP-X Volume 
60 

IMPROVE Day Time Fine Moss, Dp < 2.5~ 

ASA5P- X Volume, Dp < 2.5~m 

~---l 
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, I 

r .1 
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La.f""· 
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Figure 5.1.2. IMPROVE %OC + %EC and %S04 + %NH4 
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Figure 5.1.1. Daytime averages of ASASP-X dry aerosol volume vs. daytime averages of 

IMPROVE fine mass for sulfates. organic plus elemental carbon, and soil mass. 

Figure 5.1.2. Daytime averages of sulfate + ammonium and organic + elemental carbon 

mass percent as a percent of total mass (sulfate + ammonium + organic and elemental 

carbon + soil). 
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The chemical mass and aerosol volume concentrations shown in Figure 5.1.1 do not 

include contributions from water, and therefore can be used to estimate dry aerosol density. 

The aerosol density (g cm-3) is simply the ratio of the mass to volume concentrations. 

Figure 5.1.3 is a scatter plot of daytime IMPROVE mass concentration versus 

ASASP-X volume concentration (0.1 < Dp < 2.5) for JD 196 to 233, and includes only 

aerosol volume concentrations measured by the ASASP-X under dry conditions when both 

ASASP-X and daily IMPROVE data were available. The dry aerosol volumes result from 

processing the ope data at two separate refractive indices, 1.520 and 1.501 (See Section 4.1 

and Appendix D). A statistical T-test to determine outlying data points was used on the set 

of available density values and data from JD 197 and 203 were rejected this basis. 

A least squares linear regression to these data has a slope of 1.63, which is close to 

the median density (1.67 g cm-3), calculated from the final set of 30 mass to volume ratios 

shown in Figure 5.1.3. It should be pointed out that the regressions shown in Figures 5.1.3 

and 5.1.4 assume there is no error in the independent variable, which is not true. More 

appropriate techniques that consider uncertainty in aerosol volume could be applied to 

estimate error in the regression slope and correlation coefficient. However, the regression 

equation is not used to derive aerosol density in this analysis, but merely applied as a first 

approximation of data correlation. 
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Figure 5.1.3. Correlation of Th1PROVE daytime fine mass VS. ASASP-X fine 

volume for JD 196 to 233. Fine mass includes sulfate, ammonium, organic carbon, 

elemental carbon and soil. The median aerosol density, calculated as the mass to 

volume concentration ratio. is 1.67 g cm-3. The dotted line is the least squares best 

fit to the data. 

Dry aerosol density was next calculated for two time periods corresponding to lo\v 

and high aerosol mass concentration. The low mass period, JD 204 to 221, had an average 

mass concentration of 8.1 J..1g m-3, and the high mass period, JD 222 to 230, had an average 

mass concentration of 30.4 J..1g m-3. These data are correlated in Figure 5.1.4. For the high 

mass days the median aerosol density is 1.65 g cm-3, and for the low mass days the median 

density is also 1.65 g cm-3• The y intercepts of the linear best fits shown in Figure 5.1.4 have 

been forced through zero. The slope of the low mass period suggests somewhat lower dry 

aerosol density during the low mass period. although the significance of this observation has 

not been determined. 
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Figure 5.1.4. Correlation of IMPROVE daytime fine mass vs. ASASP-X fine 

volume for a low mass period (JD 204 - 221) and a high mass period (JD 222-230). 

Median aerosol densities are 1.65 g cm-3 for both periods. The dotted lines are least 

squares fits to the two data sets. 

Quantities derived from OPC data. such as aerosol density, depend on the inversion 

refractive index applied to the dry aerosol. The dependence of density on the data inversion 

is examined here. The reconstructed dry aerosol refractive index shown in Appendix D 

suggests appropriate values that may be applied to SEA VS data. In order to simplify data 

processing, two refractive indices were applied to the OPC as a best estimate of ambient 

values. Results from this data inversion. and three other refractive index inversions, are 

sho"n in Table 5.1.1. and show a strong dependence of density on the assumed dry refractive 

index. The ambient aerosol composition during SEA VS varied and it is theretore reasonable 
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to conclude that the dry aerosol density was not entirely constant over time. This is reflected 

in the rather high standard deviations in derived densities shown below. 

P g cm-3 PL g cm-3 PHgcm-3 

median s median s median s 

nl=1.520 1.67 .337 1.65 .420 1.65 .215 

n2=1.501 

n=1.530 1.87 .385 1.69 .441 2.00 .264 

n=1.520 1.81 .363 1.65 .420 1.91 .251 

n=1.501 1.61 .303 1.53 .356 1.65 .215 

Table 5.1.1. Dry aerosol densities derived from OPC data in this report and 

IMPROVE chemical data. n is the inversion refractive index applied to SEA VS data 

for JD 196 to 233 except for nl, which applies to JD 196 to 221, and n2, which 

applies to JD 222 to 233. P are median density values for the entire study. PL are 

median densities for the low mass period JD 204 to 221. PH are median densities for 

the high mass period, m 222 to 230. s is the standard deviation in the respective 

density value to its left. 

Some estimates of dry solute densities are listed in Table 5.1.2 for comparison to 

the experimentally derived aerosol densities. Mixed phase densities were computed 

assuming volume conservation of the respective pure phases (see Equation D.1.6). The 

mixtures of organic carbon and sulfate compounds are intended to represent the mass 

fraction range for these compounds observed during SEA VS. Since the OPC data used in 

this analysis is for Dp < 2.5 J.Ull, soil mass, with density perhaps greater than that of 

compounds in Table 5.1.2, may contribute to the aerosol density derived from experiment. 

Since the soil mass over the whole study period is small, the contribution of soil to aerosol 
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density over the entire SEA VS period should also be small. Choices of refractive index for 

the data inversion that are based on the changing aerosol composition bring the derived 

densities into better agreement with those expected for a mixture of sulfates and organics. 

Compound Density (g cm-3) 

Ambient Dry Aerosol 1.67 n = 1.520 

Study median, this work n = 1.501 

Ammonium sulfate 1.769 a 

Ammonium bisulfate 1.78 a 

Sulfuric acid (98%) 1.841 a 

Organic carbon 1.40 b 

85% ammonium bisulfate, 15% 1.67 c 

organics, by mass 

60% ammonium sulfate, 40% 1.63 c 

organics, by mass 

n = Refractive indices used to process dry aerosol size distributions. 

a CRC, 46
th 

edition. 

b Stelson (1990). 

c Calculated by volume conservation. 

Table 5.1.2. Dry aerosol density averaged for the entire SEA VS period 

assuming dry aerosol refractive index, n. Also shown are dry densities 

of common atmospheric aerosols and the calculated densities for some 

mixtures of these compounds. 
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5.2 Derived Aerosol Hygroscopicity 

Aerosol water uptake derived from experimental measurements in this work is 

compared to estimated aerosol water uptake based on the ambient ionic chemical mass 

fraction determined from IMPROVE data. Aerosol hygroscopicity is estimated by adding 

water to the ionic mass according to empirical formulas that express pure solute water 

uptake. This comparison allows determination of the presence or lack of excess water in the 

ambient aerosol beyond the contribution from ionic compounds. Since organic carbon is the 

other predominant mass fraction in the accumulation mode, deviations from the estimated 

water uptake can be attributed to organics species. 

The method used to estimate water uptake in this work assumes that all particles 

follow the crystallization branch of aerosol size change as a function of RH. Owing to the 

experimental design this may not necessarily be a valid assumption if the ambient aerosol 

were not deliquesced prior to humidification. Also, the theoretical aerosol hygroscopicity 

estimates assume all particles have the same internally mixed composition. 

The mixing rule from MaIm and Kreidenweis (1996), Equation 2.3.4, is used to 

estimate aerosol hygroscopicity based on daytime chemical mass fractions. Sulfate and 

ammonium ions and organic and elemental carbon are assumed to be the only components in 

the accumulation mode aerosol. Respective mass fractions of these species are taken from 

daytime IMPROVE data. In the mixing equation (Equation 2.3.4), sulfate and ammonium 

ionic mass are treated as the only hygroscopic fractions and are characterized as ammonium 

bisulfate with RH dependent water content, expressed as R, adopted from Tang and 

Munkelwitz (1994). Representing water uptake with ammonium bisulfate is justified by the 

fact that the average ammonium to sulfate molar ratio during SEA VS was approximately 

equal that of ammonium bisulfate (see Figure A.3.8). Also, for particle sulfate acidity 
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between that of ammonium bisulfate and ammonium sulfate, there is little difference in the 

RH dependent size change over the range of humidities applied in this experiment. 

Correlations of experimental to estimated R are shown in Figure 5.2.1 and Figure 5.2.2. 

Experimental R values in Figure 5.2.1 are derived from the volume ratio method and those in 

Figure 5.2.2 are derived from shifts in the aerosol:MMD, as discussed in Section 4.3. Only 

experimental data points measured at RH above 36 % are included. Values representing 

RH > 80% are denoted by open circles. 

The data shown in Figures 5.2.1 and 5.2.2 suggest the estimated water uptake by 

ionic species overpredicts actual measured aerosol water uptake. For all derived R values 

above 36% RH, the estimated water uptake overpredicts R calculated by the volume ratio 

method (Equation 4.3.1) by an average of9%, while estimates overpredict water uptake 

calculated by :MMD ratio method (Equation 4.3.2) by an average of 11 %. Since the 

theoretical estimates of R correspond to the crystallization branch of particle size change, the 

assumption that all soluble aerosol have deliquesced is inherent. If, for example, only some 

fraction of the particles in the size distribution have deliquesced at a given RH then estimates 

of R would overpredict water uptake at that RH. The theoretical estimates of ionic species 

hygroscopicity represents an upper limit in R below the solute RHD, provided particle 

acidity does not exceed that of ammonium bisulfate. 
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A more reliable comparison is to see if the experimental R values above 80% RH 

are significantly different than the estimated water uptake. Above 80% RH all sulfate and 

most organics that exhibit deliquescence should have associated water and estimated water 

uptake should be comparable to experimental values. With this criterion applied, estimated 

water uptake overpredicts experimental water uptake by 7% and 6% for the volume and 

MMD ratio methods, respectively. Since the uncertainty in experimentally derived R from 

this work is was shown to be at least 6%, these experimental data cannot be concluded as 

significantly different than the estimates of water uptake for ionic species alone. However, 

these results suggest ambient sulfate complexes can explain measured aerosol water uptake 

above the ammonium sulfate RHD. 

A shortcoming of the theoretical R estimates is the lack of detailed chemical 

information for accumulation mode aerosol. If some fraction of the accumulation mode 

particulate mass is soil, or other insoluble species, then the estimated water uptake would 

decrease in an amount proportional to the soil mass fraction in that size range. Another 

shortcoming in the aerosol water uptake estimates used above is that they were based on 

experimental observations at 25° C, whereas most of the experimental water uptake 

measurements in this work were made near 30° C. However, water activity is not expected to 

change significantly for this small of a temperature change. 

An alternative approach to estimating particle growth, rather than using the 

crystallization branch of particle size change, is to use an approximation of R at humidities 

below the solute RHD. MaIm et al. (1994) used a growth curve that smoothed through the 

ammonium sulfate hysteresis region to reconstruct ambient light extinction. This type of 

water uptake parameterization would decrease the water uptake estimated for ionic species 

below the solute RHD. However, there is no compelling theoretical basis for making such an 
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approximation to theory and then using this approximation in comparison to experimental 

data. On the other hand, the aerosol size change parameters obtained in this work may very 

well reflect the hygroscopic behavior of ambient aerosol in a natural setting since all 

experimental RH values are direct shifts from ambient RH. Indeed, the RH dependent 

aerosol size change, such as those shown in Figures 4.3.1 and 4.3.2, may serve as useful 

water uptake parameterizations in light scattering models when these models are applied to 

low level atmosphere typical of the rural southeastern u.s. 
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6. CONCLUSION 

This study indicates the ASASP-X provided a reliable measurement of ambient dry 

aerosol size distribution parameters during SEA VS. A median accumulation mode volume 

concentration of 6.1 J..lII13 cm-3, with a median MMD of 0.28 J..lII1 and median volume 

distribution erg of 1.64 are reported for the aerosol distributions measured during SEAVS in 

this work. 

When the OPC volume concentrations (Dp < 2.5 J..lII1) are compared to chemical fine 

mass concentration from IMPROVE samplers, reasonable estimates of dry aerosol density 

for the aerosol during SEA VS are obtained, although the results are sensitive to the choice of 

refractive index. Aerosol mass concentrations can be derived from OPC data with additional 

measurements of aerosol chemistry, although a less rigorous chemical sampling protocol 

than was used with the IMPROVE samplers during SEA VS would suffice. Current visibility 

and climate models can benefit from accurate ambient aerosol size distribution parameters 

that are both regionally specific and provide detailed temporal resolution. 

The results from the hygroscopicity study indicate that the ASASP-X, coupled with 

a RH controlled sample inlet, was able to resolve trends in water uptake by accumulation 

mode aerosol, and that those trends were consistent with theory. This work suggests that the 

upper limit of experimentally derived aerosol water uptake as a function of RH is bounded 

by estimates of aerosol size change for a deliquesced mixed phase of ammonium bisulfate 

weighted to the ionic mass fraction observed during SEA VS. The experimental wet to dry 

diameter ratio about 10% less than that estimated by theory for ionic sulfate compounds 

present in the aerosol during SEA VS. Since the uncertainty in derived water uptake from 

this work was found to average approximately 14%, it cannot firmly be concluded that 

organic carbon in SEA VS aerosol either inhibit or enhance ambient aerosol water uptake. 
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There is obvious scatter in the experimentally derived aerosol size change as a 

function ofRH. Some possible sources of this scatter, which may not contribute to 

uncertainty in R directly, though may add to scatter in the comparisons of experimental 

versus estimated water uptake presented in Figures 5.2.1 and 5.2.2, are considered as 

follows. More detailed chemical data for the accumulation mode aerosol would help to 

improve the water uptake estimates. It is likely, for example, that some soil mass, which 

would decrease estimated water uptake since crustal material is typically water insoluble, 

was present in the accumulation mode aerosol during SEA VS. Temporal changes in organic 

carbon composition, and perhaps water solubility, could cause variability in the modification 

of ambient aerosol hygroscopic behavior by organic carbon. These effects also contribute to 

uncertainty in the choice of refractive index, to which the derived results are shown to be 

sensitive. Finally, the fact that this experiment was not designed to resolve particle size 

change hysteresis could contribute to scatter in the experimentally derived water uptake 

results below 800/0 RH, as well as the observation that experimentally derived water uptake 

were less than theoretical estimates of water uptake below 80% RH. 

Some uncertainty results from variations in ambient aerosol population over the 

time required for RH cycling. The experimental set up required a time delay between 

sampling under dry and humidified conditions while the inlet equilibrated to new RH 

settings. Efforts were made to cycle RH as quickly as possible and to choose sequential dry 

and humidified aerosol distributions during times when changes in the ambient particle 

concentration were small. Both the [eN] time line and ambient bsp time line were used in a 

qualitative manner to determine stability in the aerosol size range of interest to the 

ASASP-X. However, the variability in ambient dry aerosol volume concentration could not 

be avoided entirely in derivations of water uptake results. It appears that, of the two 
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parameters used to determine total water uptake in this work (See Equations 4.3.1 and 4.3.2), 

the aerosol distribution geometric MMD is least sensitive to ambient fluctuations in the dry 

aerosol volume concentration. In terms of quantifying total accumulation mode water 

uptake, the MMD ratio method may be applicable to this study since the accumulation mode 

aerosol during SEA VS appeared to be internally mixed with homogenous chemistry. In a 

urban setting, where the aerosol chemistry tends to be more heterogeneous, estimating total 

water uptake by Equation 4.3.1 may prove to be more reliable. 

This work suggests that propagation of uncertainty in experimentally derived R to 

bsp in a light scattering model is less than 18% for an uncertainty in R less than 10%. 

However, it is important to recall that uncertainty propagation is a function of the initial 

aerosol distribution parameters, O"g and Dp,g. Thus, the reported propagation of uncertainty 

in R to simulated bsp may be influenced by the initial aerosol size distribution parameters 

used in this sensitivity study. The application ofRH dependent aerosol size change 

parameters from this work to light scattering models requires an awareness of the 

experimental uncertainty in these derived quantities and the degree to which this uncertainty 

may influence model results. 
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7. FUTURE WORK 

With hindsight, some of aspects of this project's experimental design could be 

modified to improve results in future field studies of this kind. The time required to properly 

operate the ope and RH controlled plenum system were limiting factors in amount of data 

collected in this experiment. The nephelometer, for example, collected data on a time scale 

much shorter than the ASASP-X. Therefore the nephelometer was limited in its data 

acquisition by the relatively slow ope and plenum RH equilibration time. A solution would 

be to have two inlet systems, one continuously running at dry RH and the other adjustable to 

intermediate RH values below water vapor saturation. The ope and nephelometer could 

sample alternatively from the two inlets, thereby obtaining better time resolution, while 

sampling more sequential dry and humidified aerosol, yet still maintaining single instrument 

integrity in the experiment. This type of inlet would also allow the aerosol to be dried prior 

to humidification (or vice versa), for a more consistent measurement approach. 

Both dry and humidified aerosol volumes reported in this work depend on the initial 

choices of refractive index used to process the data. Preliminary estimates of dry aerosol 

refractive indices during SEA VS range from 1.51 to 1.47 (McMurry, personal 

communication). The partial molar refractive index reconstruction in this work indicates a 

range of dry aerosol refractive indices during SEAVS of 1.53 to 1.47. Two mean refractive 

index values for SEA VS were applied to the dry ope aerosol size distributions in this work, 

although daily fluctuations in refractive index could be applied to the data. 

Preliminary estimates of refractive indices for humidified aerosol during SEA VS 

were found to be somewhat lower thar those used to process humidified aerosol distributions 

from the ASASP-X data. However, since water uptake is reported here as a ratio of wet to 

dry diameter, and both wet and dry aerosol sizes would be adjusted upwards upon 
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reprocessing the distribution data at lower humidities, the actual affect on derived R in this 

work could be small. Water uptake estimates from this work can be revised based on 

inversion refractive indices that match temporal variations in the ambient aerosol RH 

dependent refractive index when a final version of these data become available. An efficient 

approach to reprocessing the OPC data may be to apply scaling factors to the derived 

quantities, such as particle diameter or integrated distribution volume, as a function of 

aerosol refractive index. 

In terms of calculating aerosol size distribution statistics, the OPC data could be fit 

with a distribution function using an appropriate curve fitting algorithm. Size parameters of 

lognormal distributions, for example, could be used to present both the dry aerosol 

distribution statistics and water uptake parameterizations. In this report discrete bin data is 

used to calculate aerosol size distribution parameters. 

A main goal of the NPS/CSU special study is to initialize a light scattering model 

with size distribution data from the ASASP-X and with aerosol chemistry measured during 

SEA VS. Estimating bsp in this way will allow for a direct comparison of modeled light 

scattering to experimentally measured RH dependent light scattering from the nephelometer, 

and will serve as a means to optimize RH dependent model parameterizations that determine 

light scattering. It is anticipated that aerosol RH dependent size distribution parameters 

derived from this study can be used to improve the reliability of models currently used to 

predict optical properties, such as visibility, in the rural southeastern U.S. 
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APPENDIX A 

Summary of Meteorological and Condensation Nuclei Concentration [CN] Data. 

A.I [CN] Data 

Figure A.I.l is a time line of [CN] data from the CSU operated TSI 3010 CN 

Counter (Section 3.3.3). The raw data were recorded as instantaneous readings every 40 

seconds. The data as plotted are 10 minute averages of the raw data. Note the diurnal 

patterns in [CN] present in the pre-hurricane period (JD 208 ~ 213). The diurnal [CN] 

pattern is interrupted by Hurricane Erin, evident on JD 215. A well defined diurnal [CN] 

pattern is reestablished during the polluted period (JD 226 - 230). 

A.2 Selected Meteorological Data 

Figure A.2.t is a time line of wind direction during SEA VS. The raw 

meteorological data are 2 minute averages of continuous data and are plotted as 2 minute 

averages. Notice the diurnal shifts in wind direction during certain meteorological periods. 

Often, wind is from the south west during the evening and early morning hours, indicating 

down slope or drainage flow from the Smoky Mountains. In the early afternoon the wind 

direction often shifts abruptly and is directed from the north, indicative of upslope flow from 

the Tennessee Valley. Comparison of Figures A.I.l and A.2.1 show the diurnal [CN] peak 

is correlated to the upslope flow. The diurnal patterns in both [CN] and wind direction occur 

when high pressure systems persist over the GRSM area (Shennan et al., 1996). During the 

hurricane period winds are constant from the sou"hwest and the local meteorology is 

influenced by large scale synoptic flow. Figure A.2.2 is the ambient RH during SEAVS. 
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These data are important to the hygroscopicity experiment in this work as it indicates the 

initial RH of aerosol prior to conditioning in the RH controlled inlet. 
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same instrument shed as the [eN] data and are shown as two minute averages. 
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A.3 Selected Chemical Data 

Plots shown in section A.3 show 12 hour averaged data from the IMPROVE filter 

samplers during SEA VS. Details on the respective analytical methods mentioned in this 

Section are available in Sisler et al. (1993) and MaIm et al., (1994). 

Figure A.3.1 is the gravimetric fine mass concentration measured during SEA VS. 

Superimposed on this figure is the sum of sulfate, organic and soil fine mass, the 

predominant chemical fractions observed during SEA VS, measured by chemical techniques 

described below. The excess gravimetric mass over chemical mass is presumed to be 

associated water, since the gravimetric measurements were made in a laboratory with 

ambient RH near 50%. 

Figure A.3.2 shows the combined airborne mass concentration (Jlg m-3 air) of 

sulfate and ammonium ions as measured by ion chromatography (IC). The sum of the 12 

hour average mass concentrations of sulfate and ammonium ions during SEA VS is 913 

Jlg m-3, which is comparable to the mass of reconstructed ammonium bisulfate, or S04 x 

1.19, which gives a similar sum of 12 hour averaged mass concentration of 915 Jlg m-3. 

Figure A.3.3 shows organic carbon fine mass concentration as measured by thermal 

optical reflectance (TOR). The reported mass concentration is the sum of five thermal 

gradient CO2 evolution steps and is expressed in terms of equivalent hydrocarbon mass by 

applying the mass conversion factor shown in Table A.3.1. A blank correction of 

0.597 Jlg m-3 has been added to the organic carbon mass concentrations (Day, personal 

communication). 

Figure A.3.4 shows the airborne mass concentration of selected lithophilic 

compounds, or the soil mass fraction. Soil is represented here as the combined mass of AI, 

Si, Fe, Ca, and Mg converted to their common oxides. Elemental concentrations are from 
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particle-induced x-ray emissions spectroscopy (PIXE). The soil components, their 

representative oxides, and equivalent mass conversion factors are given in Table A.3 .1. 

Measured Compound Representative 

Complex 

S042- S042-

NH4+ NH4+ 

Al AI20 3 

Si Si02 

Fe Fe304 

Ca CaO 

Mg MgO 

0}+02+0 3+04+0 p average organic 

hydrocarbon 

EC elemental carbon 

Equivalent 

Mass Factor 

1 

1 

1.90 

2.14 

1.38 

1.40 

1.60 

1.40 

I 

Table A.3.t. Chemical compounds and equivalent mass conversion 

factors used to calculate dry chemical mass and chemical mass fractions 

for this work. Chemical data is from the IMPROVE samplers. 

Figure A.3.5 is the elemental carbon measured by TOR. This figure is included to 

illustrate that while the contribution of light absorbing species to the particle mass 

concentration during SEA VS small, it cannot be neglected. However, the small amount of 

elemental carbon serves to justify in part the omission of the imaginary component of 

refractive index in the data analysis used in this work. It s~lould be pointed out that soils can 

contribute to light absorption, although to a lesser degree than elemental carbon. 
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Figure A.3.6 shows the combined mass of nitrate and nitrite anions measured by IC. 

Nitrate complexes, such as ammonium nitrate, are commonly observed in atmospheric 

aerosols, although more typically in urban settings. The unimportance of nitrate compounds 

during SEA VS is clearly illustrated by their low mass concentrations, as compared with 

those in Figures A.3.2 through A.3.4. 

Figure A.3.7 shows the chloride anion mass concentration, the likely chemical 

signature of an maritime air mass. The chloride peak near JD 215 is associated with synoptic 

flow from Hurricane Erin which began to influence the SEA VS site at that time. The 

contribution of chloride to total mass concentration during SEA VS is insignificant. 

Figure A.3.8 is the molar ratio of ammonium to sulfate ions. This figure can be 

interpreted as sulfate aerosol acidity, provided available sulfate anions are associated only 

with ammonium or hydrogen, which is a good assumption for rural southeastern aerosol 

where sulfate dominates the ionic mass fraction. Figure A.3.8 indicates an average particle 

acidity corresponding to ammonium bisulfate, or a 1: 1 ammonium to sulfate molar ratio. 

During the polluted period the aerosol appears more acidic, with sulfate acidity between that 

of ammonium bisulfate and sulfuric acid. However, if chemical species other than sulfate 

and ammonium dominate the aerosol chemistry, interpreting Figure A.3.8 as particle acidity 

is not necessarily correct. For example, on JD 215 particle acidity appears to increase 

abruptly. This trend is coincident with the onset of an air mass strongly influenced by 

Hurricane Erin. If ammonia was limited during the hurricane flow, available sulfate ions 

may have combined with maritime cations, resulting in an ion balance that may have been 

not acidic. 
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Figure A.3.1. SEAVS IMPROVE Gravimetric Fine Mass 
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Figure A.3.2. SEAVS IMPROVE Sulfate plus Ammonium Fine Mass 
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Figure A.3.3. SEAVS IMPROVE Organic Carbon Fine Mass 
8 

6 .. 
E 4 
0'1 
:::t 

2 
O~ ____ ~ ____________________________ ~ ______________ ~ __________ ~ 

.. 
8 

6 

200 210 220 230 
Julian Day 

Figure A.3.4. SEAVS IMPROVE Soil Fine Mass 
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Figures A.3.1 to A.3.4. Data from the IMPROVE samplers during SEA VS for gravimetric 

tine mass. and combined sulfate and ammonium fine mass averaged over 12 hour intervals. 

Organic carbon and soil fine mass are shown as 24 hour averages. 
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Figure A.3.S. SEAVS IMPROVE Elemental Carbon 
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Figure A.3.7. SEAVS IMPROVE [CI-] 
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Figure A.3.B. SEAVS IMPROVE Ion Balance 
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Figures A.3.5 to A.3.S. Data from the IMPROVE samplers during SEA VS for elemental 

carbon tine mass as 24 hour averages. Combined nitrate and nitrite. and chloride ion fine 

mass are shown as 12 hour averages. Molar ratios of ammonium to sulfate ions are shown as 

an index of particle acidity wirh the one to one dotted line corresponding to ammonium 

bisulfate. 

83 



A.4 Hurricane Erin Images 

Figures in Section A.4 are satellite images of Hurricane Erin in visible spectral 

bands. These figures show storm bands and high level cumulus associated with this large 

scale synoptic feature. The first image, Figure A.4.1, is from JD 215, the first day that 

Hurricane Erin strongly influenced meteorology during SEA VS. The second image, Figure 

A.4.2, from JD 216, shows Hurricane Erin dissipating over the southeastern U.S., although 

still having a strong influencing on the region's meteorology. 
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Figure A.4.1. Land fall of Hurricane Erin at Pensacola Florida, 08/03/95, JD 215. This 
and the following figure illustrate the influence of this large scale synoptic system on the 
southeast U.S. during SEAVS. 

Figure A.4.2. Dissipation of Hurricane Erin over the Southeastern US, 08/04/95, JD 216. 
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APPENDIXB 

Optical Particle Counter Calibration 

B 1. Field Calibration 

Monodisperse polystyrene latex (PSL) spheres were sampled daily to check OPC 

sizing performance and to ensure proper aerodynamic focusing and alignment of the sample 

stream in the OPC laser cavity. Generally, PSL spheres with Dp of 0.41 fJ.m were measured 

and size distributions for these calibration particles recorded. PSL spheres with Dp of 0.19 

and 0.25 fJ.m were also measured in the field. 

Figure B.1.1 is a schematic of the ASASP-X optics and sample inlet flow across the 

laser beam. Proper alignment of the sample stream is fundamental to particle sizing 

performance of the OPC. The sample inlet on the ASASP-X that connects to the laser cavity 

is fitted with spring loaded horizontal and axial adjustment screws which allow the sample 

stream to be positioned in the center of the laser beam to optimize the intensity of scattered 

light from sampled particles. Since the nature of the experiment required the ASASP-X inlet 

to be attached to a plenum, particular care was taken to set up an inlet for the OPC that could 

be easily adjusted yet remain undisturbed while switching flows from calibration particles to 

the aerosol inlet. 

Sample flow was focused by setting an initial sheath to sample flow ratio of 

approximately 20: 1. Further refinement of the sample to sheath flow balance was made 

while sampling PSL spheres by adjusting the respective flows until a sharp peak was 

observed. Some representative field calibration PSL size distributions and their distribution 

statistics are included in Figure B.l.l Table B.l gives grand averages of the field PSL 

distribution statistics. 
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PSL Diameter Dpg(J,lm) std. deviation 8Dpg n 

(J,lm) 

0.41 0.423 0.0223 5% 27 

0.25 0.222 0.0074 3% 3 

0.19 0.203 0.0063 3% 4 

Table B.I.I. Averaged field PSL number distribution statistics measured 

by the ASASP-X during SEAVS. 8Dpg represents the percent uncertainty 

in the measured PSL size based on one standard deviation. 
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B.2. ASASP-X Post Experiment Calibration 

The electronics which the instrument uses to classify particles into size channels 

were tested in the lab after the SEA VS experiment. Instrument response curves were 

determined in terms of voltage versus channel number, and experimentally determined 

response values were compared to calibrations given by the manufacturer. Two methods of 

determining instrument response were investigated, and results from these experiments are 

presented in this section. 

In the fIrst method (Experiment I) the PHA voltages were measured directly on the 

channel voltage comparators with an applied -1 OV reference voltage. In the second method 

(Experiment IT) an AC square wave was fed into the OPC after the photodiode module. In 

this experiment, 'mock counts' were generated by regulating current frequency, and particles 

of different sizes were simulated by varying the amplitude of the input square wave. 

Channel voltages obtained from Experiment IT were ultimately used in the ASASP-X 

calibration. In both experiments voltages were normalized relative to an instrument 

reference voltage of -1 OV. 

I. Pulse Height Analyzer (PHA) Boards PMS-402 Voltage Measurement (10/04/95). 

The ASASP-X has four PMS-402 boards corresponding to channels 1-4,5-8,9-12, 

and 13-16, respectively. In this test, an external-10V DC reference voltage was supplied 

with all four PHA boards in place. Voltage input and measuring devices were grounded to 

the ASASP-X common at pin 22 on slot 1 (PMS-415). The instrument reference voltage was 

bypassed. Individual PHA boards were placed on an extender card and the voltage across the 

resistor bank for each PHA channel was read at pin 2A of the MC 14066 voltage comparator 

for each channel, Al to A4, on the respective PMS-402 boards. Channel voltages 

corresponding to the four amplification ranges were measured, giving 16 voltage readings 

per board, or 64 discrete voltage thresholds overall. The PHA board for channels 13 to 16 
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has no range selector for bin 16 and the voltage measured at this channel comparator is the 

reference voltage. 

PHA threshold voltages obtained from this experiment agreed closely those 

determined by the manufacturer. The only significant deviation was a + 13% discrepancy in 

the upper voltage threshold for channel 8 in range 3. 

II. Mock Photo Detector Input to PHA Boards (12/18/95) 

Output from the ASASP-X photodetector module feeds into board PMS-415 at pin 

6. With the baseline restoration module removed, a 100 Hz square wave from a HP 3300A 

Function Generator was substituted for the photodetector input. A potentiometer in line 

allowed fine tuning of the square wave amplitude, although was set at its maximum opening 

(least resistance) except while measuring the lower channel voltages in amplification range 

3. Input voltage was determined by measuring the negative peak amplitude from the function 

generator at pin 6 on slot 1 (PMS-415) with a referencing oscilloscope. The ASASP-X 

optics were cleaned prior to this experiment and the instrument reference voltage was -7 .6V, 

as measured at pin 19 on board PMS-430. Input and measuring devices were grounded to the 

ASASP-X common at pin 22 on slot 1 (PMS-415). 

Channel threshold voltages were recorded by gradually increasing peak amplitude 

on the function generator until the mock counts displayed by the Spec 1D interface appeared 

in the adjacent channel. For example, with the ASASP-X set to amplification range 3, with 

an input peak amplitude of 1.4 V, counts appeared in channel 7. As peak amplitude was 

increased, counts remained in channel 7 until a peak amplitude of 1.77 V, at which point 

counts appeared in channel 8. Therefore, 1.77 V is the lower threshold voltage for channel 8. 

All measured voltages were normalized to the instrument reference voltage, measured 

continuously throughout the experiment by a Fluke volt meter (and periodically on a separate 

oscilloscope channel) to ensure the instrument reference voltage did not drift during the 

experiment. Threshold voltages were also measured by gradually decreasing the input 
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voltage to ensure reproducibility of the experiment. PHA curves from experiment II are 

included as Figures B.2.1 to B.2.4. Voltage thresholds obtained while increasing the input 

voltage are shown as the increasing voltage curve, whereas threshold voltages obtained while 

decreasing the input voltage are shown as the decreasing voltage curve. Channel threshold 

voltages given in the instrument manual are shown as the dotted line. 

Generally, this experiment reproduced the manufacturer's channel threshold 

voltages closely and the experimentally determined channel voltages themselves were 

reproducible. Some discrepancies from the manufacture's values were observed, however. 

Most notably, channell threshold voltages in range 3 could not be measured at all due to 

significant electronic noise. Often, data from the ASASP-X had anomalously high counts in 

this high amplification channel. Based on the post calibration results, channels 1 and 2 in 

amplification range 3 were discarded from the data. Also observed in this experiment, the 

upper threshold voltage for channel lOin amplification range 3 was 9% lower than the 

manufacturer's reported voltage when the channel transition was approached from lower 

voltages, although when the channel transition was approached from higher voltages, the 

threshold voltage was within 2% of the manufacturer's reported voltage. A similar effect 

was observed for the upper threshold voltage of channelS in amplification range 2. This 

'mush' in two of the threshold voltage readings may have been related to apparently high 

counts observed in channel 10 of amplification range 3 in the data. In the final analysis of 

the data, channels in ranges 3 and 2 were lumped together in groups or two or three channels 

to accommodate experimental uncertainty in the true threshold voltages. The lumping 

scheme is described in detail in Appendix C. ASASP-X channel transition voltages obtained 

from this experiment, while increasing from lower to higher input peak amplitude, were used 

for the channel threshold voltages and subsequent determinations of channel threshold 

response in the final instrument calibration. 
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Figures B.2.t and B.2.2. ASASP-X Channel threshold voltages for PHA an;.plification 

ranges 3 and 2. Experimental values obtained while increasing the input voltage and while 

decreasing input voltage are shown with the voltages listed in the instrument operating 

manual. 
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Figure B.2.4. ASASP-X channel Threshold Voltages; range 0 
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Figures B.2.3 and B.2.4. ASASP-X Channel threshold voltages for PHA amplification 

ranges 1 and O. Experimental values obtained while increasing the input voltage and while 

decreasing input voltage are shown with the voltages listed in the instrument operating 

manual. 
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B.3 Establishing Unique Instrument Calibration Constants 

With the relationship between channel and voltage established, the next step was to 

determine the relationship between particle scattering intensity and channel threshold 

voltage. This is the same as the particle size and voltage relationship if the particle refractive 

index is known. Therefore, calibration of an OPC requires a source of nearly monodisperse 

particles of known size and refractive index. 

Six different PSL sphere sizes, 0.19 Jlm, 0.25 Jlm, 0.30 Jlm, 0.41 J.1m, 0.47 Jlm and 

0.87 Jlm, supplied by Interfacial Dynamics Corporation, were used to calibrate the ASASP-X 

in this work. PSL spheres were atomized from a dilute aqueous suspension and were passed 

through a drier and Differential Mobility Analyzer (DMA) prior to sampling by the 

ASASP-X. PSL spheres passed through a DMA were found to have a sharper peak than 

spheres directly from the atomizer, although the ASASP-X channel with maximum counts 

did not change provided the DMA was set to the appropriate mobility corresponding to PSL 

size. 

By observing the channel in which the maximum counts for a given PSL size 

occurred, a relationship between particle diameter and channel threshold voltages was 

obtained. Since and upper and lower threshold voltage span a given PHA channel, the 

relationship between channel voltage and PSL size channel is the range from lower to upper 

channel threshold voltages. Figure B.3.1 shows data from the ASASP-X for some 

calibration PSLs and the channel with maximum counts is apparent. 

Calibration constants derived for each of the four amplification ranges are shown in 

Table B.3.1 with corresponding constants from Garvey and Pinnick (1983) derived for a 

similar OPC. Our calibration constants were obtained by dividing respective bin threshold 

voltages by the Mie scattering cross section, obtained from Mie scattering calculations for 
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the respective PSL sphere diameter and refractive index of 1.580 - Oi. Since more than one 

calibration constant was derived for each amplification range, the values shown in Table 

B.3.1 represent averages of all experimentally derived constants for a given range. 

The calibration constants in Table B.3.1 allow the ASASP-X channels to be 

defined in terms of theoretical scattering response (TR) rather than voltage. In order to 

determine the particle size that corresponds to each channel threshold TR one need only 

generate a Mie scattering curve for the component refractive index of interest and match TR 

to particle diameter. 

ASASP-X Calibration Constants Garvey and Pinnick, 1983 

Range (V cm-2) (V cm-2) 

0 1.65 x 108 1.9 X 108 

1 6.63 X 108 1.2 X 109 

2 8.45 X 109 1.3 X 1010 

3 5.64 X 1010 8.4 X 1010 

Table B.3.l A comparison of ASASP-X calibration constants from this study to 

similar constants based on the calibration constant and relative gains from Garvey 

and Pinnick (1983). 
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Figure B.3.l a-c. :-.lumber distributions for some PSL calibrations used in this work. The 

left- hand column is plotted as bins described in Table C.l.2. The right hand column shows 

distributions using the PHA channels. Note the separate lines corresponding to adjacent 

amplification ranges in the right hand column. The first row (a) shows 0.3 J.1ffi PSLs. The 

second row (b) shows 0.19 !J.m PSLs. The third row (c) are 0.19 !J.ffi PSL which have been 

passed through a DMA. 
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APPENDIXC 

Optical Particle Counter Data Reduction 

C.l ASASP-X Data Inversion Using Scattering Response Functions from Mie Theory 

The ASASP-X channels were defined in terms of theoretical scattering cross section 

by the method explained in Appendix B. At this point it is possible to defme the ASASP-X 

channels in terms of particle size for aerosol with refractive indices different than the 

calibration PSLs. It is important to apply size corrections to the ASASP-X data since the 

refractive index of ambient aerosols is generally different than the refractive index used in 

the calibration. Furthermore, the refractive indices of a hygroscopic aerosol will approach a 

limit of n = 1.33, the refractive index of water, as saturation ambient RH is approached. 

Since the nature of this experiment was to determine the RH dependence of ambient aerosol 

size distribution parameters, RH dependent refractive index corrections are applied to the 

data. 

The ambient aerosol indices of refraction used to process the ASASP-X data set are 

shown in Table C.l.l. These values are adopted from light scattering model 

parameterizations for rural aerosol with chemical composition similar to that encountered 

during SEAVS (Shettle and Fenn, 1979). For the purposes of this work only the real 

component of the complex index of refraction is considered. The imaginary component, 

which accounts for light absorption, is ignored based on the relatively low amounts of light 

absorbing compounds measured during SEA VS (See Appendix A.l). Refractive index 

values denoted with asterisks in Table C.l.l were derived from a linear interpolation of real 

refractive index values from Shettle and Fenn rural aerosol model for particle refractive 

indices corresponding to 70, 80, 90, and 99% RH. 
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Relative n n(Re) Application of n to 
Humidity Rural Aerosol This Study experimental data 

Model asj{RH) 
Dry 1.530-.00660i 1.530 40%>RH 

RH=50% 1.520-.00626i 1.520 40% <RH<60% 
RH=70% 1.501-.00560i 1.501 60% <RH<73% 
RH=75% 1.469 * 73%<RH<77% 
RH=80% 1.443-.00370i 1.443 77%<RH<83% 
RH=85% 1.420 * 83%<RH 

Table C.I.I RH dependent refractive index, n, from the Rural Aerosol 

Model (Shettle and Fenn, 1979) and real component of refractive indices 

used to process ASASP-X data in this study. Asterisks indicate interpolated 

values. Also shown are the criteria used for applying a given refractive 

index to experimental data as a function ofRH. 

Figure C.l.l shows the ASASP-X calibrated channels for two refractive indices, 

corresponding to 'dry' and RH of 85%. Note that the theoretical Mie scattering intensity 

generally increases with particle diameter. As was mentioned in Section 2.3, the dependence 

of scattering intensity on particle size represents the basic theory for OPC operation. 

However, as can be seen from Figure C.l.l, the Mie scattering curves becomes a multi-

valued function of particle diameter above Dp of approximately 0.4 J.1Ill. 

There are several approaches to calibrate an OPC in the multi-valued region of the 

Mie curve. A common method is to fit the Mie curve corresponding to a given index of 

refraction with a polynomial function, thereby obtaining a relation that gives Dp as function 

of instrument response (Kim and Boatman, 1990). Alternatively, channel diameter limits can 

be taken directly from the Mie curve where the calibrated channel threshold response 

matches the theoretical response, or a Mie to Mie curve fit. (Hand and Kreidenweis, 1996). 
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of instrument response (Kim and Boatman, 1990). Alternatively, channel diameter limits 

can be taken directly from the Mie curve where the calibrated channel threshold response 

matches the theoretical response, or a Mie to Mie curve fit. (Hand and Kreidenweis, 1996). 

However, the latter approach cannot be applied rigorously in multi-valued regions of the Mie 

curve. The index of refraction corrections in this work use a Mie to Mie curve fit in the 

linear portion of the scattering curve (below approximately 0.4 J..lm) and smooth through the 

multi-valued regions. Note the magnitude of diameter shift for one particle size after the 

refractive index correction is applied (Figure C.l.l). 

Table C.l.2 shows the index of refraction corrected bin diameters used in this 

study. For Dp > 1.0 J..lm the bin diameter limits revert to the manufacturer's diameter limits 

(ASASP-X operating manual), based on the assumption that particles larger than 1 J..lm do 

not necessarily have the same hygroscopicity, and therefore the same RH dependence in 

refractive index, as accumulation mode aerosol. Also, the Mie resonances at larger particle 

sizes make it difficult to define refractive index based corrections for those sizes. In any 

case, the data interpretation in this work has been restricted largely to accumulation mode 

aerosol, rendering size corrections to particles larger than the accumulation mode cut off 

unimportant. 

99 



u 

<IJ 
(f) 

c 
o 
0... 

ASASP-X Bin Limits ~ ~o T~eoretical Mie Curves 
10-7~=----------~----~--~--~--~~~I~I~I----------~----~a 

':'''''*~ 
,-

<> .34 

4-,+ ,<>0 
<> 

0" 
..... . (j 

.43 

+ 

+ 

n= 1.530 

1 
j 
i 

-j 

ASASP-X Bin iimits ~ 

RH = 0% ~ 
(f) :- j ~ I 
o 10-10~ 
u 
'-' 
<IJ 
I-

o 
<IJ 

...c 
I-

,-

-
I 

-11 i 
10 ::-

I 

t. (;)0 

.0 
/ ," 

o 

° 
n= 1.420 ~ 
ASASP-X Bin limits ~ 
RH = 85% ~ 

-J 
- ;' ~ 

E/~'~ j 
7 .. J 

i ~I 
10-12!~ ________ ~ ______ ~ __ ~ ______ ~~~~~ __________ ~ ____ ~, 

Diameter (f.-Lm) 
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Dry RH =50% 70% 75% 
Bin # Response n=1.530 n=1.520 n=1.501 n=1.469 

cm2/particle Dp (J-lm): 

5.845E-12 0.116 0.117 0.118 0.121 
2 1.171E-11 0.13 0.131 0.133 0.135 
3 2.174E-11 0.145 0.146 0.147 0.15 
4 4.269E-11 0.162 0.163 0.165 0.169 
5 5.998E-11 0.172 0.173 0.175 0.179 
6 1.162E-10 0.193 0.195 0.197 0.202 
7 2.053E-10 0.215 0.216 0.219 0.225 
8 3.323E-10 0.236 0.238 0.241 0.248 
9 5.545E-10 0.263 0.266 0.27 0.278 
10 1.035E-09 0.306 0.31 0.316 0.326 
11 1.608E-09 0.338 0.344 0.36 0.38 
12 2.336E-09 0.38 0.39 0.44 0.47 
13 3. 142E-09 0.45 0.46 0.50 0.53 
14 3.993E-09 0.51 0.52 0.57 0.61 
15 4.880E-09 0.58 0.59 0.63 0.66 
16 5.360E-09 0.62 0.63 0.68 0.72 
17 8.270E-09 0.73 0.74 0.81 0.84 
18 1.260E-08 0.92 0.93 0.95 0.96 
19 1.600E-08 1.08 1.08 1.08 1.08 
20 1.970E-08 1.24 1.24 1.24 1.24 
21 2.500E-08 1.40 1.40 1.40 1.40 
22 2.830E-08 1.56 1.56 1.56 1.56 
23 3. 160E-08 1.72 1.72 1.72 1.72 
24 3.540E-08 1.88 1.88 1.88 1.88 
25 3.910E-08 2.04 2.04 2.04 2.04 
26 4.250E-08 2.20 2.20 2.20 2.20 
27 4.660E-08 2.36 2.36 2.36 2.36 
28 5.040E-08 2.52 2.52 2.52 2.52 
29 5.330E-08 2.68 2.68 2.68 2.68 
30 5.560E-08 2.84 2.84 2.84 2.84 

6.060E-08 3.00 3.00 3.00 3.00 

Plain text: Direct fit to Mie curve 
Bold text: Smooth fit through Mie curve multi-valued region 
Italics: Bin diameters taken from PMS calibration 

80% 85% 
n=1.443 n=1.420 

0.123 0.125 
0.138 0.14 
0.153 0.156 
0.172 0.175 
0.183 0.186 
0.206 0.21 

0.23 0.235 
0.254 0.26 
0.286 0.294 
0.338 0.348 

0.41 0.44 
0.51 0.55 
0.57 0.61 
0.65 0.69 
0.70 0.74 
0.76 0.80 
0.87 0.90 
0.97 0.98 
1.08 1.08 
1.24 1.24 
1.40 1.40 
1.56 1.56 
1.72 1.72 
1.88 1.88 
2.04 2.04 
2.20 2.20 
2.36 2.36 
2.52 2.52 
2.68 2.68 
2.84 2.84 
3.00 3.00 

Table C.l.2. ASASP-X channel threshold response as scattering cross section and 
equivalent RH dependent refractive index bin diameters in J..Ull. 
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C.2 Transformation of Bin Data to Aerosol Distributions 

The bin diameter limits given in Table C.1.2 represent, in some cases, combinations 

of the 60 channels defined by the ASASP-X PHA. The 30 channels used in this work result 

from discarding channel one and two in amplification range 3, from lumping together counts 

in either two or three adjacent channels in amplification ranges 2 and 3, and from employing 

an overlapping scheme in regions of equivalent response in adjacent amplification ranges. 

Table C.2.1 illustrates how the 60 original PHA channels are boiled down to 30 

bins for presentation of size distributions in this work. The channel number corresponds to 

the PHA channel for a respective amplification range. The bin number corresponds to the 

lumped bins shown in Table C.I.2. The overlap column is described later, as are the scale 

factors for the overlap regions. Note that the bin which precedes the first overlap region in a 

given amplification range must be scaled since all overlapping plotting bins are scaled to the 

threshold response range of the next lower (numerically) amplification range. Bin limits for 

refractive index of 1.58, as well as the manufacturer's bin limits (ASASP-X operation 

manual) are included in Table C.2.1. The PSL size(s) used to calibrate the ASASP-X in each 

amplification range are shown, with the PHA channel in which maximum counts were 

observed. Relative amplification range gains are also shown, and are simply the respective 

amplification range calibration constants divided by the calibration constant for range O. 

The data reduction scheme used in this work averages counts in amplification range 

overlap regions where counts in equivalent response regions are redundant. PHA channels 

with the nearest matching calibrated response are used to define overlap regions. In the 

event that overlap in adjacent ranges does not match precisely, the closest overlapping 

channels are multiplied by the ratio of ~ (log of threshold response) for the overlap regions. 

Once the response range of respective overlap regions are equated, the counts in the 

matching overlap regions are averaged for use in some of the final 30 ASASP-X bins. 

Comparison of total counts in the overlap regions allows a confidence check in the 

overlapping scheme since respective overlapping regions should have nearly equivalent 
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counts. An example of particle counts in overlapped bins is given in Table C.2.2 for a 

representative aerosol size distribution using the OPC calibration constants and field data 

from this work. As an example of one overlap region, Upper range 3 overlap region one, or 

Upper R3 OL 1 in Table C.2.2, corresponds to PHA channels 14 and 15 for amplification 

range 3. Lower R2 OL 1 corresponds to PHA channels 1 and 2 from amplification range 2. 

The TR spanned by each of these overlap regions is given in the second column of Table 

C.2.2, and indeed the response ranges overlap, although not precisely. As indicated in the ~ 

log TR column, the Upper R3 OL 1 spans a slightly greater response range than Lower R2 

OL 1. Thus, in order to equate the particle counts contained in each overlap region, the 

Upper R3 OL 1 is scaled by 0.15/0.21 to give the resulting particle number concentration 

shown in the right most column. The upper overlap regions are always scaled to the TR 

range of the lower (numerically) amplification range overlap region. Finally, the particle 

counts in the upper and lower overlap regions are averaged to give the particle counts in the 

respective overlap region for adjacent amplification ranges. In the example described here, 

the overlap region corresponds to bin 4 in Table C.l.2. If all this seems like it was a pain in 

the neck to figure out, you're right, it was. 
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ASASP-X calibration using observed PSL channel(s) 
and CSU derived relative channel threshold voltages. 

Calibration Scale n = 1.58 PMS 

Range 3 Channel Voltase Reseonse Bin Overlae Factor De De 
Gain 341.82 1 0.00 0 0.09 

2 0.20 3.596E-12 0 0.11 0.10 

PSL Calibration size(s) 3 0.33 5.854E-12 0.12 0.10 

channel 14, .19um 4 0.46 8.196E-12 1 0.12 0.11 

5 0.66 1.171 E-11 2 0.13 0.12 

V/crn"2 5.64E+10 6 0.92 1.631 E-11 2 0.14 0.13 
7 1.23 2.174E-11 3 .30/.34 0.14 0.13 
8 1.59 2.823E-11 3 0.15 0.14 
9 2.09 3.701 E-11 3 0.16 0.15 
10 2.64 4.684E-11 4 UR30L1 .15/.21 0.16 0.15 
11 3.29 5.834E-11 4 UR30L1 0.17 0.16 
12 4.29 7.611 E-11 5 UR30L2 .28/.36 0.18 0.17 
13 5.26 9.325E-11 5 UR30L2 0.19 0.17 
14 6.46 1.146E-10 5 UR30L2 0.19 0.18 
15 7.92 1.405E-10 5 UR30L2 0.20 0.19 

9.72 1. 723E-1 0 0.21 0.20 

Calibration n = 1.58 PMS 

Range 2 Channel Voltase Reseonse Bin Overlae QE De 
Gain 51.27 1 0.36 4.264E-11 4 LR2OL1 0.16 0.15 

2 0.51 5.991 E-11 5 L02OL2 0.17 0.16 

PSL Calibration size(s) 3 0.70 8.258E-11 5 L02OL2 0.18 0.17 

channel 7/8, .25um 4 0.98 1.160E-10 6 0.19 0.18 

channel 5, .19um 5 1.30 1.533E-10 6 0.20 0.19 

channel 15, .30um 6 1.74 2.051 E-10 7 0.21 0.20 

7 2.25 2.658E-10 7 0.23 0.21 

V/cm"2 8.46E+09 8 2.81 3.319E-10 8 .221.19 0.24 0.22 
9 3.58 4.237E-10 8 0.25 0.23 
10 4.32 5.101 E-1 0 9 UR2Ol1 .28/.31 0.26 0.24 
11 5.11 6.045E-10 9 UR2OL1 0.27 0.25 
12 5.80 6.855E-10 9 UR2OL1 0.28 0.26 
13 6.85 8.096E-10 9 UR20L1 0.29 0.27 
14 7.76 9.176E-10 9 UR2OL1 0.30 0.28 
15 8.77 1.036E-09 10 not used 0.30 0.29 

9.68 1.144E-09 0.31 0.30 

Table C.2.I. This table describes how the 60 PHA channels were reduced to the 30 plotting 

bins shown in Table C.I.I. Channels that are scaled to a response region corresponding to 

the next (lower) amplification range are offset by solid lines. 
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ASASP-X calibration using observed PSL channel(s) 
and CSU derived relative channel threshold voltages. 

Calibration Scale n = 1.5B PMS 

Channel Volta2e Reseonse Bin Overlae Factor De De 
Range 1 1 0.37 5.545E-10 9 LR10L1 1 0.26 0.24 

Gain 4.02 2 0.69 1.035E-09 10 0.30 0.2B 

3 1.07 1.60BE-09 11 0.34 0.32 

PSL Calibration size(s) 4 1.57 2.366E-09 12 0.3B 0.36 

channelS, .41 urn 5 2.0B 3.142E-09 13 0.45 0.40 

channelS, .47um 6 2.65 3.993E-09 14 0.51 0.44 

channel 2, .30um 7 3.24 4.BBOE-09 15 0.57 O.4B 

B 3.90 5.B7BE-09 16 UR10L1 0.62 0.52 

9 4.61 6.950E-09 16 UR10L1 0.66 0.56 

V/cm"2 6.63E+OB 10 5.32 8.022E-09 16 UR10L1 0.70 0.60 
11 6.10 9.205E-09 17 UR10L1 0.73 0.64 
12 6.84 1.031 E-OB 17 UR10L2 o.n 0.6B 
13 7.55 1.139E-OB 17 UR10l2 0.B1 0.72 
14 8.28 1.250E-OB 17 UR10l2 0.B5 0.76 
15 9.02 1.360E-OB 17 UR10l2 O.BB O.BO 

9.61 1.449E-OB 0.92 0.B4 

Calibration Scale n = 1.5B PMS 

Channel Volta2e Response Bin Overlae Factor De De 
Range 0 1 0.88 5.35BE-09 16 LROOL1 1 0.60 0.60 

Gain 2 1.36 8.271 E-09 17 LROOl2 0.76 0.76 

3 2.08 1.259E-08 1B 0.92 0.92 

PSL Calibration size(s) 4 2.64 1.603E-08 19 1.0B LOB 

channel 2, .87um 5 3.25 1.969E-OB 20 1.24 1.24 

6 4.13 2.503E-OB 21 1.40 1.40 

V/cmA2 1.65E+08 7 4.66 2.B25E-OB 22 1.56 1.56 
8 5.22 3.162E-OB 23 1.72 1.72 
9 5.85 3.S43E-OB 24 1.BB 1.BB 
10 6.45 3.909E-OB 25 2.04 2.04 
11 7.00 4.245E-OB 26 2.20 2.20 
12 7.6B 4.655E-OB 27 2.36 2.36 
13 B.31 S.036E-OB 2B 2.52 2.52 
14 8.79 5.329E-OB 29 2.6B 2.6B 
15 9.1B 5.S63E-OB 30 2.B4 2.B4 

10.00 6.061 E-OB 3.00 3.00 

Table C.2.! (continued). This table describes how the 60 PHA channels were reduced to 

the 30 plotting bins shown in Table C.l.l. Channels that are scaled to a response region 

corresponding to the next (lower) amplification range are offset by solid lines. 
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PHA Channel 

Overlap Region Threshold Response ~ 10gTR Counts cm-3 

(cm2/particle) 
081195 Run #3 

Upper R3 OL I 4.68E-l1 to 7.61E-ll 0.21 58.8 
LowerR2 OL 1 4.27E-l1 to 5.99E-l1 0.15 56.3 

UpperR3 OL 2 7.61 E-l1 to 1. 72E-l 0 0.36 98.6 
Lower R2 OL 2 5.99E-l1 to 1.16E-I0 0.28 98.9 

Upper R2 OL 1 5.10E-I0to 1.04E-9 0.28 70.6 
Lower Rl OL I 5.55E-I0 to 1.04E-9 0.31 65.6 

Upper Rl OL 1 5.88E-9 to 9.21E-9 0.19 1.2 
LowerROOL 1 5.36E-9 to 8.27E-9 0.19 0.6 

Upper Rl OL 2 9.21 E-9 to 1.45E-8 0.20 0.6 
LowerROOL2 8.27E-9 to 1.26E-8 0.18 0.2 

Table C.2.2. An example of particle counts in overlap regions of the four 

ASASP-X amplification ranges for one aerosol size distribution using the 

calibration in this work. Counts in corresponding overlap regions should be 

about the same. Counts in the upper overlap region are scaled to the TR range of 

the corresponding lower overlap region. 

106 



C.3 Presentation of Aerosol Size Distributions 

Aerosol size distributions in Section 4 are plotted as the appropriate density 

function, obtained by dividing the aerosol number or volume concentration in each bin, L\N 

or L\ V, by the width of the respective bin, L\ In Dpm versus the log of the bin midpoint 

diameter, log Dpm. This type of presentation ensures that the area under the size distribution 

curve is proportional to the integrated number or volume concentration for that size 

distribution. 

The aerosol volume concentration time line shown in Figure 4.1.2, and the Dpg and 

O'g time lines in Figures 4.1.3 and 4.1.4, are intended to represent accumulation mode 

aerosol. The upper size limit of the accumulation mode changed throughout the course of 

the study due to fluctuations in ambient aerosol size distribution characteristics, and the 

cutoff diameter was adjusted accordingly. A section of the data processing code used for 

this work to adjust the floating cutoff parameter is included below. The cutoff parameter 

was set by looking at all the aerosol size distributions from this study and setting the upper 

limit of the accumulation mode with the variable 'xgend', corresponding to the upper size 

bin used to calculate statistics for a given aerosol size distribution. The cutoff parameter 

changes for a given day or group of days and is occasionally adjusted as a function of RH. 
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if startdate ge 195 then begin 
xgend = 15 
if rh ge 40 then xgend 16 
if rh ge 60 then xgend = 17 
endif 
if startdate ge 199 then xgend = 14 
if startdate ge 200 then xgend = 15 
ifstartdate ge 201 then xgend = 16 
if startdate ge 202 then xgend = 14 
if startdate ge 203 then begin 
xgend= 14 
if rh ge 65 then xgend = 16 
endif 
if startdate ge 205 then xgend = 12 
if startdate ge 208 then begin 
xgend = 13 
ifrh ge 65 then xgend = 16 
endif 
if startdate ge 210 then xgend = 13 
if startdate ge 211 then xgend = 14 
if startdate ge 212 then xgend = 13 
if startdate ge 215 then xgend = 12 
if startdate ge 216 then xgend = II 
if startdate ge 219 then begin 
xgend = 14 
if rh ge 40 then xgend = 16 
endif 
if startdate ge 221 then begin 
xgend = 15 
if rh ge 40 then xgend = 16 
if rh ge 60 then xgend = 17 
endif 
if startdate ge 224 then xgend = 16 
if startdate ge 225 then xgend = 15 
if startdate ge 229 then xgend = 16 
ifstartdate ge 232 then xgend = 15 

Figure C.3.t. Section of code from data processing 
program 'asasp.pro' that determines the floating cutoff 
parameter with respect to JD and RH. 

The floating accumulation mode cutoff is important since aerosol distribution 

parameters, as calculated by Equations 2.4.1 and 2.4.2 for accumulation mode aerosol, are 

sensitive to tht presence of large mode aerosol that may be present in the upper size tail of 

the accumulation mode. Chemical signatures consistent with large mode aerosol occur 

during the dust period, at the onset of synoptic flow from Hurricane Erin on JD 215, and 
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during the transition period. During these times, a large mode is clearly observed in the OPC 

size distributions. The presence of significant amounts of large mode aerosol will skew the 

integrated aerosol volume concentration, MMD and crg towards larger values if the 

accumulation mode cutoff is overestimated. 

C.4 Data Acquisition and Processing Programs 

The ASASP-X used software, written in C, and an interface card from the Spec ID 

company to transfer signals from the PHA to corresponding particle counts on a personal 

computer (PC). The data acquisition program was set to gather raw particle counts 

accumulated by the ASASP-X every second. Data files were written every minute in 

hexadecimal format. The raw data from this study therefore resides in one minute files with 

one second time resolution. However, the ASASP-X only collects data in one of its four 

amplification ranges at a given time requiring that data files be combined, as described in 

section C.2, to construct a size distribution. 

An intermediate program, written by Dr. Dave Rogers in C, converted the Spec ID 

program hexadecimal output to more conventional Arabic format. This intermediate 

program allowed for combination of any number of specified raw data files into one file 

containing data for a specified time period. Also, this program provided the option of 

averaging the data so that output was reduced to one line of data for each minute of raw data, 

reducing the size of the working OPC data base. In this averaged form particle counts in a 

given channel had units of #/sec., and represented a one minute average. 

The Spec ID program introduced some quirks in the stored files, however. For 

example, if the amplification range was changed while a data file was being written, only 

data subsequent to the range change was saved, and any previous data in that file would be 
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overwritten by zeros. Also, following a change in the ASASP-X amplification range a large 

number of spurious particle counts occurred in the data, presumably due to electronic noise. 

For this reason, only data files, or their averages, subsequent to the files where the 

amplification range was changed were used in data processing for this work. Unfortunately, 

some good data is excluded by this approach. Since the aberrations in data acquisition were 

not systematic, the highest quality of processed data is ensured by this method. 

To process the ASASP-X data to its final form, a third program, written by myself 

in the IDL language, reads the one minute averaged data files and performs the remainder of 

the data processing tasks necessary for this work with respect to the OPC data set. A 

description of this program, called 'asasp.pro', follows. 

The program 'asasp.pro' is set up to read from three separate data files (or sets of 

data files) while it runs. One set of data files contain the ASASP-X data, which resides in 

one file for each day the OPC operated. These files are named with the sampling date as a 

prefix, such as 072595av.dat, which stands for July 25, 1995 one minute averaged data. 

Another set of files 'asasp.pro' reads contain daily descriptions of the size distribution scans, 

including the run number, the start and stop times for each scan, experimentally conditioned 

RH, flow rate data, indexes to plotting routines, and a string descriptor. These files are also 

named with a date prefix followed by run.file, such as 072595run.file. Another single file 

'asasp.pro' reads contains the RH dependent bin limits and is named 'rudplist.txt', which 

more or less stands for rural aerosol model bin diameter list and is essentially Table C.l.2. If 

at some point different n(RH) parameters are applied to ASASP-X data then this file should 

be changed accordingly. 

The program 'asasp.pro' forms size distributions by accumulating all the data 

between the start and stop times given in the run. file file. The distribution data is sorted by 
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amplification range and channel number to the 30 plotting bins described in Table C.I.2. At 

this point, corrections for depositional loss are applied (Section 3.3.1), the accumulation 

mode is defined (Section C.3), statistical calculations for number and volume accumulation 

mode distributions are performed (Section 2.4), and number and volume concentration 

uncertainties are calculated (Section 4.4). A large portion of 'asasp.pro' is devoted to 

plotting aerosol size distributions and writing to files that contain size distribution data. The 

main data output files are prefixed by date, such as 072595summary.dat, which contains 

about 30 variables pertinent to each size distribution recorded on that day. These data 

summary files are conveniently read by other programs, such as 'volumeav.pro' that 

generated the plots for dry aerosol distribution statistics in Chapter 4. 

Other IDL programs used in this work to process data sets from SEA VS are: 

'chem.pro' which reads the IMPROVE and HEADS chemical data sets and is used to 

reconstruct aerosol fine mass during SEAVS (Figures in Section A.3) as well as produce 

some of the plots in Chapter 5. 'cnc.pro' and its analogues read the [CN] data set taken by 

CSU during SEA VS (Figure A.I.l). One version of the cnc.pro program reads the size 

distribution run.files and computes the average ambient [CN] over the period ASASP-X size 

distribution data were collected. Plenum data from the CSUINPS special study, which 

contains the plenum and ASASP-X temperature and RH data, is read by 'plenum.pro'. 

'plenum.pro' calculates RH and temperature averaged over the time period ASASP-X size 

distribution data were collected (for example, Figure 3.4.1), and these averaged data are 

included in Table 4.2.1. 'met.pro' and its analogues read the meteorological data set from 

the CSUINPS special study (Figures A.2.1 and A.2.2). 
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APPENDIXD 

Partial Molar Refractive Index Calculations 

Aerosol water contents derived in this work are used to calculate the ambient 

aerosol refractive index as a function of RH. The extra trouble of reconstructing refractive 

index may seem unnecessary, since RH dependent refractive indices from the literature was 

used in the to process the ASASP-X data initially. The reconstructed refractive indices 

presented here are useful as a check the appropriateness of the initial refractive index choices 

used in the ope data inversion. Also, the partial molar refractive index approach allows for 

assessment of the effect solute composition has on particle refractive index. The possibility 

that this technique may somehow be used in conjunction with the OPC data set to arrive at 

the actual RH dependent refractive index for ambient aerosol is considered. 

D.I Partial Molar Refractive Index Calculations for Dry and Humidified Aerosol 

The partial molar refractive index is used to reconstruct ambient particle refractive 

index by assuming internal aerosol mixtures and applying the partial molar refractive index 

of each primary chemical component. Chemical data from the IMPROVE samplers was used 

to reconstruct daily averages of the dry aerosol composition during SEA VS. The 

calculations in this section assume the ambient particles are composed of sulfate and 

ammonium ions, organic and elemental carbon, and water. The soil fraction is ignored since 

only accumulation mode aerosol are used to determine water uptake. This rationale is in part 

substantiated by the presence of a large mode is the aerosol volume distributions recorded by 

the ASASP-X during times when a significant soil chemical mass fraction is also present. 
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The partial molar refractive index used for sulfate ions is 13.45 cm3 mole-I, for 

ammonium ions, 4.89 cm3 mole- l (Tang and Munkelwitz, 1994), for organic carbon 19.11 

cm3 mole-I, and for water 3.71 cm3 mole- l (Stelson, 1990). The ionic fraction density is 

taken as that of dry ammonium sulfate, 1.76 g cm-3, corresponding to refractive indices of n 

= 1.53 for ammonium sulfate and n = 1.47 for ammonium bisulfate. The partial molar 

refractive index for organic and elemental carbon corresponds to a density of 1.4 g cm-3, 

MW of 84 g mole- l and n = 1.55. Water is assumed to have unit density with a MW of 18 g 

mole-1 and n = 1.33. Rj, the partial molar refractive index, is given by equation D.l.l where 

nj is the refractive index and Pi the density for component i. 

R. = v.(~n/ -IJ 
' , 2 2 n i + 

D.1.1 

v. = MW i , D.l.2 
Pi 

The partial molar volume of component i is given by Vi in equation D.l.2. 

The real component of refractive index for the composite mixed phase aerosol was 

calculated following equations DJ.3 and D.1.4 as presented in Stelson (1990). 

Yv 
1 

n = ( (1 + 2 Yv )) 2" 

(1 - Yv) 

Sj (J.lg m-3) is the aerosol mass concentration for component i, and Av (J.lm3 cm-3) is the 

D.l.3 

D.1.4 

integrated aerosol volume. In equation D.l.4, n is the composite solute refractive index. 

When Sf is taken directly from chemical data, equations D.l.l to D.l.4 make n independent 

of particle density. This approach is subject to uncel tainty introduced, for example, by 

organic and elemental carbon mass reconstruction and their optical properties during SEA VS 

since these quantities are not yet well characterized. Also, this method is used to reconstruct 
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the refractive index of accumulation mode aerosol for which size resolved chemistry is not 

yet available from SEAVS data sets. 

Figure 0.1.1 shows the reconstructed aerosol refractive index during SEA VS on a daily 

basis. Chemical mass concentrations are apportioned to the components described above, 

with the notable exception being the soil fraction. as this reconstruction is intended to 

represent accumulation mode aerosol. The mean aerosol refractive index for SEA VS is 1.51 

(JD 196 to 233) with a range from 1.53 to 1.47. Note that the refractive index approaches 

that of ammonium bisulfate during the polluted SEA VS period when the aerosol were more 

acidic. and the refractive index approaches that of ammonium sulfate when the aerosol were 

more neutralized. Mean refractive indices for a early SEA VS (JD 196 to 219) and late 

SEA VS (JD 220 to 233) were 1.52 and 1.50, respectively. 

1.55 

1.54 

-1.53 • • 
1.52 II--~ •• ••• • 
1.51 • .- - ••• • • • • 

• • • • c: 1.5 • - •• 
1.49 • 

• 
1.48 I---- • Daytime n • • 
1.47 

-- Study Ave. n 1.51 -f-
- JD 196-219 n 1.52 

1.46 - - JD 220-233 n 1.50 

1.45 
196 201 206 211 216 221 226 231 236 

Julian Day 

Figure D.l.1. Refractive index reconstructed for accumulation mode aerosol during 

SEA VS. A study mean refractive index of n = 1.51 is indicated, with higher refractive index 

values in the early part of SEA VS and lower values towards the end of the study. 
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In application of the partial molar refractive index approach to humidified aerosol, 

Av was taken from the dry aerosol volumes used in the water uptake determinations 

(presented in Section 4.3). For this reason, component chemical mass, S;, was calculated 

from the dry aerosol volume recorded by the ASASP-X, and not daily averages from 

chemical data, since daily fluctuations in dry aerosol mass were considered. S;, therefore, 

was calculated by multiplying the ASASP-X dry aerosol volume by the component mass 

fraction, obtained from chemical data, and an average mixed phase density. Dry sulfate mass 

concentration, for example, is given by: 

S =pA~ Xsa 
S04 ~ 

p = 1 

l.L + ..!.-.L 
PIP 2 

D.1.S 

D.1.6 

The volume conserved mixture density, p, was calculated from equation D.I.3 using sulfate 

and organic carbon mass fractions, and respective pure component densities given in the 

beginning of this Appendix. For humidified aerosol, the added water mass fraction and 

density were added to Equation 0.1.6. The mass of added water (f.1g m-3), needed to 

calculate component mass fractions, is given by: 

M H
2
0 = (PwVw - PoVo) 0.1.7 

Figure D.l.2 shows reconstructed n following the procedure outlined above for the 

pre-hurricane period. Included in Figure 0.1.1 are the initial refractive index values used to 

process the ASASP-X data. Also included is an empirical curve for pure ammonium sulfate 

refractive index. Figure D.I.3 is a similar graph for the transition and polluted periods. 
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Figures D.1.2 and D.1.3. Refractive index as a function of RH reconstructed for 

the pre-hurricane and polluted periods. Curves for pure ammonium sulfate and 

ammonium bisulfate n(RH) are included as are the OPC data inversion n(RH) for 

reference. 
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0.2 Conclusions 

Figure 0.1.2 indicates that the initial refractive indices are reconstructed fairly well 

during the pre-hurricane period using observed water uptake and the partial molar volume 

approach. However, Figure 0.2.2 shows that during the transition and polluted periods the 

reconstructed indices of refraction are significantly lower than the initial choices of 

refractive index. This is a somewhat comforting result in that it suggests the initial choice of 

refractive index used to process the OPC data do not entirely constrain water uptake 

estimated by the ASASP-X. On the other hand, it implies the inversion refractive indices 

used in the water uptake analyses were inappropriate for the ambient aerosol during this 

period of SEA VS. Figures 0.1.2 and 0.1.3 suggest consistent trends in refractive index as a 

function of RH, and moreover that the trends are unique to meteorological periods during 

SEAVS. 

An interesting question is whether the RH dependence of the actual refractive index 

for ambient aerosol sampled during SEA VS is in some way alluded to by Figures 0.1.2 and 

0.1.3. In order to answer this question an iterative procedure might be employed, in which 

the n(RH) values determined using experimental aerosol water content are used to reprocess 

the OPC data, leading to new estimates of water content. Ultimately, these iterations should 

converge to yield a self consistent set of n(RH) and water contents. 

Upon initial mental inspection it appears that using reconstructed refractive indices 

to reprocess the OPC data could add successively more water to the aerosol size distributions 

until the reconstructed refractive indices simply approach a lower allowable limit. If the 

reconstructed refractive indices converge to the refractive index of water, the lower 

theoretical limit, then clearly the iteration hypothesis is unreasonable. If, in application of 

this iteration technique, the shape of the aerosol distributions become discontinuous then a 

reasonable lower limit on the set of refractive indices that can be applied to the data would 

result. 
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It should be pointed out that uncertainty in water uptake based on experimental 

considerations alone will produce uncertainty in any set of refractive indices obtained 

through partial molar reconstruction. It is possible that the uncertainty in reconstructed 

refractive indices based on uncertainty in water uptake would exceed the reasonable range of 

refractive indices obtained from iteration. If the iteration technique is of any use, a set of 

refractive indices obtained by iteration can only approximate the actual refractive indices for 

ambient aerosol during SEAVS within the range of experimental uncertainty in water uptake. 

Another simpler, and perhaps more direct approach would be to process the ope 

data with the best estimate of n(RH) from other researchers during SEA VS. Then, the partial 

molar refractive index approach could be used to reconstruct an experimental n(RH). One 

would then check whether the initial refractive index values are returned by the refractive 

index reconstruction. If they were, then initial choices of refractive index are supported. If 

the initial refractive index values are not returned by the partial molar refractive index 

reconstruction, then microphysical and optical parameters of the constituent chemical 

species, such as organic carbon density and refractive index, could be adjusted within 

reasonable ranges to return the experimental estimates of refractive index. 

It is practically unreasonable to derive experimental n(RH) from ope size 

distribution data alone since the RH dependent ope size distributions depend on some initial 

choices of RH dependent refractive index. Nonetheless, such reconstructions of refractive 

index using ope data are useful consistency checks. 
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Oversized Table 4.2.1 

Mid JD: The midpoint time of the size distribution, in Julian Day. 

Run #: The sequential run number of the size distribution. 

RH: The experimentally conditioned RH measured just downstream of the ASASP-X laser 

cavity. This represents an average during the size distribution scan. 

Volume: 

Dp < 2.5 Jlm: The integrated aerosol volume concentration for aerosols measured by the 

ASASP-X below 2.5 Jlm. 

Ace. Mode: Integrated aerosol volume for the ASAP-X accumulation mode. 

Uncertainty: The accumulation mode volume concentration percent uncertainty as 

calculated by Equation 4.4.6. 

Dp,g: The accumulation mode MMD. 

O'g: The accumulation mode geometric standard deviation. 

Dry Run #(s): The run number(s) of the dry aerosol size distribution from that ill used to 

calculate R. If two run are present, the dry volume concentration used in the water 

uptake calculation is the average of the two dry aerosol volume concentrations. 

j{RH) Run #: The humidified run number used to calculate R. 

Total DIDo: R calculated by Equation 4.3.1 for particles below 2.5 Jlm. 

Ace. Mode DIDo: R calculated by Equation 4.3.1 for accumulation mode particles. 

0100 Uncertainty: Percent uncertainty in R calculated by Equation 4.4.8. 

MMD 0100: R calculated for accumulation mode aerosol by Equation 4.3.2. 
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Table 4.2.1 Aerosol Distribution Statistics and Water Uptake 

Volume: Total Ace. Mode DIDo 
MidJD run # RH Dp < 2.5J..lm Ace. Mode Uncertainty Dp,g og Dry f(RH) (VNo)"1/3 (V/Vo)"1/3 Uncertainty MMD 

(%) (J.1m3/cm3) (flm3/cm3) (%) (J.1m) Run #(s) Run # DIDo DIDo (%) DIDo 

195.474 3 14 20.88 19.88 9.5 0.324 1.66 
195.497 4 67 31.48 30.42 9.6 0.372 1.78 3,6 4 1.16 1.17 6.4 1.14 
195.538 5 67 30.04 29.21 9.8 0.373 1.76 3,6 5 1.14 1.15 6.5 1.15 
195.561 6 7.6 19.79 18.54 9.8 0.327 1.67 
196.353 1 18 16.36 15.59 9.5 0.338 1.68 
196.371 2 84 28.18 27.66 12.1 0.484 2.02 1,3 2 1.22 1.23 7.3 1.44 
196.392 3 16 14.88 14.35 9.9 0.334 1.66 
196.414 4 69 24.20 23.85 10.4 0.385 1.78 3,5 4 1.18 1.20 7.0 1.16 
196.438 5 11 14.29 13.47 11.0 0.333 1.67 
196.453 6 63 24.33 23.70 10.5 0.382 1.81 5,7 6 1.20 1.21 7.2 1.15 
196.478 7 11 13.85 13.07 11.2 0.333 1.68 
196.641 8 14 15.01 14.45 11.3 0.327 1.67 
196.683 9 12 15.74 14.88 10.9 0.326 1.67 
196.701 10 66 26.41 25.78 10.4 0.378 1.77 9,11 10 1.22 1.23 7.2 1.16 
196.726 11 11 13.52 12.67 11.8 0.326 1.67 
196.744 12 59 17.50 16.88 10.6 0.341 1.68 11,13 12 1.18 1.19 8.1 1.06 
196.767 13 11 7.77 7.39 15.8 0.315 1.65 
196.790 14 58 6.93 6.71 16.9 0.341 1.65 13 14 0.96 0.97 10.9 1.08 
197.331 1 56 14.34 14.00 10.5 0.352 1.66 
197.361 2 10 9.69 9.07 14.0 0.334 1.63 
197.396 3 23 10.54 10.08 13.2 0.335 1.66 2 3 1.03 1.04 9.0 1.00 
197.413 4 35 13.38 12.59 11.6 0.330 1.65 
197.435 5 48 15.10 14.77 11.1 0.341 1.70 
197.452 6 50 15.53 14.83 11.2 0.340 1.67 
197.562 10 17 15.50 14.84 10.7 0.329 1.68 
197.579 11 38 18.44 17.49 10.3 0.335 1.67 10 11 1.06 1.06 7.0 1.02 
197.624 12 60 23.15 22.47 8.9 0.358 1.69 
197.646 13 56 21.22 20.55 9.7 0.351 1.71 
197.732 14 65 27.74 26.80 10.0 0.387 1.82 
198.372 1 75 31.05 31.05 0.417 1.83 
198.393 3 68 17.79 17.79 0.369 1.77 



Table 4.2.1 Aerosol Distribution Statistics and Water Uptake 
Volume: Total Acc. Mode DIDo 

MidJD run # RH Dp < 2.5J.lm Acc. Mode Uncertainty Dp,g 09 Dry f(RH) (V/Vo)"1/3 (V/Vo)A1/3 Uncertainty MMD 
~%l ~~m3/cm3l {~m3/cm3} ~%l ~~ml Run #~s} Run # DIDo DIDo ~%l DIDo 

199.549 1 12.96 7.46 18.6 0.280 1.78 
199.628 2 12.33 8.48 17.6 0.268 1.63 
199.652 3 9.79 9.16 17.2 0.261 1.59 
199.705 4 10.71 10.05 16.3 0.263 1.61 
199.724 5 10.91 10.26 15.4 0.265 1.60 
199.741 6 9.96 9.15 16.3 0.265 1.60 
200.358 1 63 9.57 7.90 23.3 0.250 1.79 
200.420 4 52 6.00 5.74 22.1 0.228 1.60 
200.444 5 52 7.24 6.40 20.6 0.236 1.67 
200.491 6 52 6.40 5.83 22.0 0.226 1.59 
200.529 7 49 8.73 5.86 21.7 0.232 1.65 
200.601 8 48 8.45 7.68 15.8 0.226 1.61 
200.618 9 50 7.19 7.16 18.5 0.223 1.58 
201.410 2 60 17.97 17.09 11.3 0.293 1.75 
201.432 3 61 21.55 20.47 12.9 0.307 1.85 
201.457 4 64 21.29 20.37 13.1 0.302 1.85 
201.501 5 57 17.46 16.64 12.0 0.273 1.74 
201.644 6 51 16.74 16.74 11.8 0.273 1.71 
201.704 8 40 13.37 13.37 12.5 0.260 1.69 
201.736 9 35 12.02 10.97 14.2 0.266 1.73 
201.762 10 1')'" 

-.;.J 12.29 11.50 14.0 0.263 1.70 
201.786 11 35 10.30 9.86 15.7 0.260 1.70 
202.438 2 12 11.35 10.91 13.8 0.257 1.59 
202.454 4 67 14.51 13.67 17.0 0.285 1.63 2,5 4 1.09 1.09 10.3 1.11 
202.481 5 11.7 10.83 10.43 14.3 0.257 1.60 
202.520 7 77.1 21.65 20.34 15.9 0.303 1.66 7 5 1.26 1.25 10.1 1.18 
202.530 8 77.3 18.78 17.91 18.2 0.298 1.64 8 5 1.20 1.20 10.8 1.16 
202.556 9 67 9.62 8.77 19.3 0.284 1.63 
202.569 10 67 9.87 8.81 19.4 0.290 1.64 
202.587 11 57 8.18 7.70 17.0 0.273 1.57 
202.598 12 57 8.98 8.04 16.7 0.212 1.57 
202.613 13 47 8.79 8.28 16.5 0.274 1.59 



Table 4.2.1 Aerosol Distribution Statistics and Water Uptake 

Volume: Total Acc. Mode DIDo 
MidJD run # RH Dp < 2.5Jlm Acc. Mode Uncertainty Dp,g og Dry f(RH) (V/VO)"1/3 (V/Vo)"1/3 Uncertainty MMD 

{%} {l:!m3/cm3} {l:!m3/cm3} {%} ~I:!m} Run #{s} Run # DIDo DIDo {%} DIDo 
202.659 17 24 6.70 6.33 17.6 0.268 1.60 18 17 0.99 0.99 11.7 1.00 
202.680 18 10 6.97 6.48 17.6 0.267 1.61 
203.475 3 13 2.80 2.79 31.2 0.220 1.43 
203.497 5 77 4.60 4.48 37.3 0.278 1.77 3,6 5 1.21 1.21 23.2 1.14 
203.531 6 8.5 2.41 2.22 33.6 0.270 1.65 
203.554 7 41 3.09 2.76 30.4 0.278 1.66 6,8 7 1.07 1.06 20.9 1.03 
203.577 8 10 2.68 2.44 31.0 0.271 1.67 
203.604 10 77 5.99 5.99 29.1 0.346 1.94 8,12 10 1.27 1.32 19.9 1.31 
203.649 12 10 3.12 2.71 30.1 0.258 1.65 
203.676 14 69 5.88 5.58 26.0 0.298 1.79 12 14 1.23 1.27 18.7 1.16 
203.745 16 E~ 9.56 9.39 25.4 0.359 1.99 17 16 1.34 1.37 1.37 
203.766 17 13 4.01 3.69 24.9 0.262 1.65 
204.439 3 13 6.28 5.32 19.2 0.265 1.65 
204.455 4 60 7.42 6.88 18.0 0.263 1.64 3,5 4 1.11 1.13 12.9 1.01 
204.480 5 11 4.72 4.30 22.0 0.254 1.64 
204.495 6 79 6.97 6.97 30.6 0.314 1.86 5 6 1.14 1.17 1.24 
204.504 7 79 6.93 6.50 32.0 0.308 1.85 8 7 1.30 1.31 19.8 1.25 
204.539 8 24 3.16 2.90 27.5 0.246 1.62 9 8 1.00 0.99 18.4 0.99 
204.565 9 7 3.17 2.96 27.7 0.248 1.65 
204.583 10 45 4.67 4.19 24.8 0.252 1.64 10 9 1.14 1.12 17.5 1.02 
204.603 11 77 6.76 6.34 30.5 0.285 1.77 9 11 1.29 1.29 19.4 1.15 
204.849 12 74 6.66 6.20 27.9 0.289 1.74 13 12 1.14 1.19 17.7 1.17 
204.885 13 10 4.46 3.70 25.1 0.247 1.60 
205.493 5 7 7.09 4.79 21.7 0.245 1.61 
205.525 6 15 5.21 3.02 26.2 0.241 1.58 5,7 6 0.93 0.92 16.7 0.99 
205.549 7 10 5.75 3.05 26.0 0.243 1.60 
205.566 8 30 5.82 3.17 28.3 0.241 1.58 7 8 1.00 1.01 18.1 0.99 
205.740 9 7 2.92 2.79 29.7 0.228 1.59 
205.764 10 50 5.12 3.85 26.4 0.235 1.55 9 10 1.21 1.11 1.03 
205.800 11 7 2.62 1.75 38.3 0.224 1.59 
205.825 12 43 3.23 2.28 33.5 0.231 1.58 11,13 12 1.06 1.07 23.5 1.02 
205.860 13 7 2.83 1.98 35.9 0.228 1.60 



Table 4.2.1 Aerosol Distribution Statistics and Water Uptake 

Volume: Total Ace. Mode DIDo 
MidJD run # RH Dp < 2.5flm Ace. Mode Uncertainty Dp,g og Dry f(RH) (V/Vo)"1/3 (V/Vo)"1/3 Uncertainty MMD 

,%} 'I!m3/cm3} 'I!m3/cm3} {%} 'I!m} Run #'sl Run # DIDo DIDo ,%} DIDo 
206.533 6 64 14.01 6.81 23.3 0.269 1.65 6 8 1.05 1.18 15.3 1.09 
206.578 8 8 12.11 4.12 22.5 0.246 1.58 
206.619 9 73 14.90 5.66 26.9 0.274 1.62 10,8 9 1.09 1.10 16.5 1.13 
206.658 10 7 11.12 4.46 22.9 0.240 1.56 
206.694 11 65 17.97 7.65 22.2 0.271 1.59 10 11 1.17 1.20 15.0 1.13 
206.776 13 73 20.49 8.84 20.6 0.277 1.59 14 13 1.15 1.28 14.7 1.11 
206.815 14 8 13.35 4.24 26.2 0.250 1.61 
207.417 5 45 8.63 4.26 26.0 0.244 1.59 
207.438 6 75 13.86 8.36 25.0 0.288 1.67 7 6 1.12 1.28 16.6 1.17 
207.473 7 9 9.89 4.01 24.8 0.247 1.60 
207.496 8 69 14.22 7.68 22.2 0.279 1.63 7,9 8 1.08 1.20 15.3 1.11 
207.525 9 10 12.84 4.88 22.7 0.254 1.61 
207.551 10 67 15.52 7.37 23.3 0.280 1.65 9,11 10 1.11 1.19 15.7 1.10 
207.583 11 9 10.10 3.91 24.9 0.256 1.61 
207.611 12 69 10.45 5.84 25.9 0.286 1.65 11 12 1.07 1.17 16.9 1.15 
207.659 13 11 7.14 3.34 28.3 0.241 1.60 
207.755 15 10.88 6.25 21.0 0.257 1.53 
207.781 16 10.32 5.31 22.5 0.244 1.54 
207.810 17 55 11.11 6.96 20.6 0.257 1.52 18 17 1.07 1.10 14.3 1.06 
207.837 18 10 8.95 5.24 22.2 0.243 1.55 
207.861 19 50 10.35 6.14 21.3 0.253 1.55 18 19 1.05 1.05 14.5 1.04 
208.508 2 88 17.24 15.58 21.6 0.390 1.97 2 5 1.42 1.51 15.1 1.54 
208.519 3 88 15.16 13.89 22.9 0.376 1.94 5 3 1.36 1.45 15.5 1.48 
208.555 5 9 5.98 4.52 23.7 0.253 1.58 
208.570 6 8 5.32 4.31 24.0 0.254 1.58 
208.595 7 73 8.96 7.88 21.9 0.300 1.73 6 7 1.19 1.22 15.3 1.18 
209.396 2 12 2.82 2.09 33.8 0.261 1.59 
209.417 3 45 2.88 2.17 37.1 0.266 1.61 2,4 3 1.06 1.06 25.1 1.04 
209.445 4 9 2.07 1.52 42.7 0.251 1.61 
209.474 5 9 1.33 1.19 44.5 0.288 1.59 
210.352 1 18 7.35 2.41 33.3 0.236 1.54 
210.422 5 5 3.06 1.54 41.9 0.226 1.58 



Table 4.2.1 Aerosol Distribution Statistics and Water Uptake 
Volume: Total Ace. Mode DIDo 

MidJD run # RH Dp < 2.51lm Ace. Mode Uncertainty Dp,g og Dry f(RH) (V/Vo)"1/3 (V/Vo)"1/3 Uncertainty MMD 
{%} {l:!m3/cm3} {l:!m3/cm3} {%} {l:!m} Run #{s} Run # DIDo DIDo {%} DIDo 

210.536 9 8 3.86 2.80 30.8 0.241 1.63 
210.577 10 81 6.89 5.47 40.0 0.297 1.80 9,11 10 1.22 1.24 23.9 1.25 
210.695 11 6 3.80 2.90 32.7 0.234 1.63 
210.718 12 67 5.53 4.51 31.5 0.259 1.70 11 12 1.13 1.16 21.4 1.10 
211.436 3 10 2.72 2.49 30.1 0.247 1.63 
211.454 4 63 4.21 3.54 35.4 0.271 1.70 3,6 4 1.15 1.11 22.3 1.09 
211.479 6 10 2.78 2.74 32.6 0.249 1.64 
211.499 8 84 9.07 8.20 31.1 0.333 1.89 6,10 8 1.35 1.33 19.5 1.35 
211.540 10 8 4.60 4.25 22.2 0.245 1.64 
211.562 11 7 5.39 4.58 23.9 0.247 1.64 
212.401 3 6 4.78 4.07 25.2 0.246 1.60 
212.433 4 7;- 9.06 8.09 27.4 0.288 1.67 3,6 4 1.20 1.22 17.0 1.16 
212.465 6 9 5.62 4.81 22.2 0.251 1.59 
212.502 7 47 6.95 6.20 20.6 0.257 1.59 6,8 7 1.06 1.07 14.4 1.02 
212.528 8 9 6.08 5.32 22.8 0.253 1.59 
212.543 9 8 5.80 5.09 22.0 0.250 1.60 
212.646 10 9 5.38 4.90 22.2 0.251 1.59 
212.656 11 6 5.78 5.21 21.8 0.254 1.60 
212.678 12 56 7.78 7.03 19.4 0.262 1.58 11,13 12 1.09 1.11 13.7 1.03 
212.708 13 7 6.07 5.15 21.6 0.255 1.60 
213.417 3 5 5.34 4.32 23.9 0.261 1.56 
213.444 4 69 8.66 7.87 22.7 0.291 1.60 3,6 4 1.17 1.18 14.6 1.12 
213.481 6 10 5.56 5.15 18.4 0.258 1.58 
213.499 7 6 5.97 5.21 21.5 0.260 1.59 
213.525 8 42 7.97 7.24 17.8 0.268 1.61 7,9 8 1.06 1.06 12.8 1.04 
213.566 9 5 7.35 6.83 19.6 0.255 1.61 
213.578 10 5 7.68 6.88 18.9 0.263 1.63 
213.594 11 30 8.81 8.00 17.6 0.256 1.62 10 11 1.05 1.05 12.2 0.97 a 
213.604 12 30 8.42 7.98 16.5 0.257 1.61 12 13 0.98 0.97 11.1 1.00 
213.625 13 10 8.99 8.62 16.7 0.257 1.64 
214.414 3 47 6.62 5.88 22.2 0.268 1.55 4 3 1.05 1.05 14.7 1.02 
214.440 4 10 5.73 5.04 21.8 0.261 1.59 



Table 4.2.1 Aerosol Distribution Statistics and Water Uptake 

Volume: Total Acc. Mode 0100 
MidJD run # RH Dp < 2.5J.lm Acc. Mode Uncertainty Dp,g O'g Dry f(RH) (V/Vo)"1/3 (VNO)"1/3 Uncertainty MMD 

{%} ~~m3/cm3} ~~m3/cm3} ~%l ~I:!m} Run #{s} Run # 0100 0100 {%} 0100 
214.555 9 38 8.03 6.71 19.3 0.267 1.59 8 9 1.12 1.10 13.7 1.02 
214.570 10 39 8.43 7.54 17.9 0.263 1.59 11 10 1.09 1.10 12.9 1.00 
214.595 11 8 6.48 5.70 20.8 0.263 1.62 
214.628 13 52 5.41 4.89 23.8 0.267 1.61 11 13 0.94 0.95 14.9 1.01 a 
214.643 14 52 5.68 4.95 22.7 0.269 1.58 15 14 1.22 1.18 18.1 1.17 a 
214.793 15 5 3.16 3.01 31.6 0.230 1.49 
214.803 16 5 2.96 2.93 32.4 0.226 1.49 
214.826 18 86 11.42 10.69 27.9 0.322 1.67 16 18 1.57 1.54 20.1 1.42 
214.839 19 87 13.08 11.95 25.4 0.325 1.66 21 19 1.56 1.59 19.0 1.45 
214.871 21 12 3.43 2.98 31.7 0.224 1.52 16 21 1.05 1.00 21.4 0.99 
215.424 4 43 4.19 1.10 52.2 0.252 1.48 5 4 1.10 1.12 36.0 1.02 
215.465 5 7 3.14 0.79 55.7 0.246 1.51 
215.501 7 78 4.85 2.13 58.1 0.330 1.60 5,9 7 1.11 1.24 35.9 1.31 
215.539 9 9 4.02 1.42 43.4 0.259 1.54 5 9 1.08 1.22 33.0 1.05 a 
216.375 1 7 2.14 1.13 47.8 0.270 1.43 ] 
216.395 2 7 2.44 1.07 48.6 0.272 1.44 1 2 1.05 0.98 32.1 1.01 
216.413 3 42 2.38 1.30 44.4 0.284 1.42 2 3 0.99 1.07 31.0 1.05 
219.439 3 10 3.08 2.57 29.5 0.277 1.59 
219.469 5 80 7.16 6.82 31.6 0.369 1.99 3,7 5 1.31 1.36 20.1 1.33 
219.516 7 12 3.27 2.88 27.9 0.276 1.61 3 7 1.02 1.04 1.00 
220.418 4 45 2.69 2.69 31.7 0.274 1.60 4 5 0.96 1.03 19.9 1.01 
220.439 5 12 3.03 2.47 29.9 0.270 1.60 
220.470 6 81 7.73 7.56 30.1 0.395 2.06 5,7 6 1.33 1.40 19.5 1.42 
220.512 7 -:0 3.48 3.02 27.0 0.286 1.67 
220.551 8 46 2.41 2.21 33.5 0.291 1.77 7,9 8 0.96 0.98 21.9 1.07 
220.591 9 10 1.96 1.73 37.7 0.258 1.64 
221.488 3 5 2.82 2.66 37.7 0.284 1.80 
221.518 4 6 5.13 4.26 23.7 0.304 1.77 
221.577 5 84 16.90 16.37 18.9 0.505 2.44 4,7 5 1.43 1.48 13.5 1.64 
221.643 7 7 6.48 5.91 19.2 0.312 1.87 
222.316 2 7 6.18 6.06 21.4 0.306 1.73 
222.346 3 7 5.88 5.77 19.4 0.306 1.74 



Table 4.2.1 Aerosol Distribution Statistics and Water Uptake 

Volume: Total Acc. Mode 0100 
MidJD run # RH Dp < 2.5~m Acc. Mode Uncertainty Dp,g og Dry f(RH) (V/Vo)"1/3 (V/Vo)"1/3 Uncertainty MMD 

{%} {~m3/cm3} {~m3/cm3} {%} {~m} Run #{s} Run # DIDo DIDo {%} DIDo 
222.453 7 7 6.79 6.68 18.3 0.301 1.75 
222.480 8 7 7.04 6.94 17.9 0.293 1.70 
222.702 9 7 5.05 4.80 22.2 0.287 1.67 
222.739 10 73 15.39 14.76 15.0 0.366 1.87 9,11 10 1.43 1.44 12.2 1.27 
222.794 11 8 5.49 5.14 21.2 0.289 1.69 9 11 1.03 1.02 14.5 1.01 
223.421 3 7 6.31 5.73 19.8 0.292 1.74 
223.462 4 75 17.07 16.35 16.7 0.386 2.05 3,5 4 1.36 1.40 12.1 1.35 
223.512 5 7 7.21 6.06 19.2 0.281 1.78 
223.553 6 79 19.34 18.65 18.6 0.369 2.08 5,7 6 1.33 1.37 12.3 1.34 
223.604 7 7 9.27 8.30 17.1 0.271 1.74 
223.643 8 6 8.24 7.62 17.9 0.273 1.72 
223.681 9 7 8.43 7.59 18.6 0.273 1.70 
223.723 11 6 9.17 8.55 17.0 0.265 1.69 
223.785 12 10 8.78 8.30 17.1 0.270 1.73 
224.467 3 6 9.99 8.95 16.3 0.275 1.67 
224.523 4 6 9.94 9.47 15.6 0.271 1.61 
224.551 5 6 10.58 9.98 15.0 0.275 1.59 
224.605 6 6 10.73 9.99 15.1 0.278 1.61 
224.673 7 74 20.24 19.38 16.0 0.349 1.69 6 7 1.24 1.25 10.4 1.26 
225.413 2 11 17.74 15.61 12.0 0.285 1.52 
225.445 4 73 37.05 34.13 11.9 0.362 1.67 2,6 4 1.30 1.33 8.1 1.26 
225.492 6 7 15.72 13.31 12.6 0.287 1.52 
225.530 7 7 17.28 15.26 12.2 0.289 1.52 
225.564 8 7 15.66 15.54 11.9 0.292 1.50 
225.608 9 8 16.68 14.44 12.2 0.293 1.51 
226.406 2 8 17.28 14.96 12.0 0.297 1.53 
226.429 4 84 59.05 54.79 9.7 0.475 1.82 2,6 4 1.51 1.54 7.3 1.59 
226.504 6 8 17.35 14.83 12.1 0.300 1.54 
226.529 7 7 18.18 15.19 11.9 0.302 1.54 
226.551 8 7 17.67 15.35 11.8 0.302 1.54 
226.586 9 7 19.17 16.57 11.2 0.306 1.56 
226.624 11 6 19.70 16.55 11.4 0.303 1.56 



Table 4.2.1 Aerosol Distribution Statistics and Water Uptake 

Volume: Total Acc. Mode DIDo 
MidJD run # RH Dp < 2.5flm Acc. Mode Uncertainty Dp,g O'g Dry f(RH) (V/VO)1\1/3 (V/Vo)1\1/3 Uncertainty MMD 

{%} {~m3/cm3} {~m3/cm3} {%} {~m} Run #{s} Run # DIDo DIDo {%} DIDo 
227.559 5 7 16.39 13.57 12.5 0.305 1.55 
227.600 6 7 15.19 13.60 12.5 0.307 1.55 
227.622 7 7 14.71 12.69 12.9 0.308 1.54 
227.646 8 46 17.30 15.68 11.9 0.321 1.53 7 8 1.06 1.07 8.3 1.04 
227.667 9 61 22.13 20.47 12.7 0.351 f60 10 9 1.07 1.10 1.17 
227.714 10 9 18.17 15.21 11.7 0.302 1.57 
227.747 11 77 41.31 38.69 11.8 0.424 1.80 10 11 1.31 1.37 7.8 1.41 
228.472 3 8 16.37 14.53 11.9 0.310 1.58 
228.526 4 14 15.86 14.00 12.1 0.311 1.57 3 4 0.99 0.99 8.0 1.00 
228.562 5 11 16.70 14.44 11.8 0.311 1.55 
228.603 6 7 16.71 14.57 11.8 0.313 1.58 
228.652 7 77 30.92 28.79 12.2 0.401 1.78 6 7 1.23 1.25 8.0 1.28 
229.405 2 7 21.08 19.52 10.1 0.321 1.63 
229.436 3 73 38.47 36.51 10.7 0.404 1.76 2,4 3 1.22 1.23 6.9 1.26 
229.488 4 ts 21.73 19.78 10.0 0.320 1.60 2 4 1.01 1.00 6.7 1.00 
229.523 5 6 24.74 22.82 9.2 0.330 1.61 
229.566 6 6 22.44 20.74 9.7 0.328 1.61 
229.605 7 6 21.29 20.27 9.7 0.330 1.62 
229.648 8 69 37.03 35.37 8.9 0.402 1.73 7 8 1.20 1.20 6.2 1.22 
230.380 2 8 28.97 27.37 8.2 0.343 1.60 
230.396 3 7 28.44 27.37 8.2 0.344 1.60 
230.417 4 7 29.26 27.98 8.1 0.345 1.60 
232.522 2 8 8.32 6.02 18.8 0.323 1.80 
232.613 4 8 6.04 5.58 19.9 0.313 1.74 
233.476 2 49 7.81 6.28 19.0 0.326 1.77 
233.492 3 55 7.80 6.04 19.7 0.324 1.76 

a Data coincide with rapid change in ambient [eN] 
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