
Data and Donuts: Data Wrangling in R 
Based on the data carpentry ecology lessons:  
http://www.datacarpentry.org/R-ecology-lesson/03-dplyr.html 
 
Slide 1: Hi, and welcome to Coding and Cookies. I’m Tobin Magle, the 
cyberinfrastructure facilitator at the Morgan Library. Today we’re going to be covering 
data wrangling in R based on the Data Carpentry curriculum. 
 
Slide 2: In brief, we’ll  

1. Learn a new way to import data using the read_csv() funcion 
2. Demonstrate the 6 dplyr verbs for data manipulation 
3. Combine these verbs with an operator called the pipes 
4. Use 2 tidyr verbs to reshape your data 
5. Create a clean dataset to export to a file 

 
Slide 3: for these exercises, we’re assuming that you have a basic working knowledge 
of R and R studio. You’ll need to 

• Install both R and R Studio. See the setup instructions from Data Carpentry 
Linked on this slide if you need help.  

• Download and unzip the quickstart files from the bitly link on the slide. This file 
provides a premade working directory and file structure for this lesson.  

• If you want to know how to set up a directory for yourself or are unfamiliar with R 
and R studio, see the Basic data analysis in R lesson linked on this slide.  
 

Slide 4: In this lesson, we are going to move beyond the R base installation and install 
packages from the tidyverse, which is A set of packages that provides easy tools for 
data manipulation. 

• All the tidyverse packages are built around tidy data tables 
• You can do all the things that the tidyverse in base R but these new functions 

make data manipulation easier 
• These functions are designed to work with the pipe operator from the magrittr 

package, which allows you to make the output of one verb the input of another 
verb. This feature makes your code easier to edit and read. 

 
Slide 5:  

• Before you can use any of these features, you need to install the package using 
the install.packages function. You only need to do this once on each R 
installation 

• Then you need to load the package using the library function. You need to do this 
every time you start RStudio to use the functions it contains. 

Let’s load the data and the packages before we learn more about dplyr.  
 
Demo 1: Setting up 

• Open the R project 
• Point out the file structure:  

o Rproj file – save your place while you’re working 



o complete R script – follow along if you don’t like typing. But I recommend 
opening a new script and typing 

o Data folder with data file 
• Open a new script file 
• Load the tidyverse package 

 
• Read the data into a new variable called surveys 

 
Slide 6: Now let’s load the data into a variable called surveys: 

• We’re going to use read_csv instead of read.csv 
• Just like read.csv, it takes a file path as input 
• However, instead of outputting a standard data frame, it’s output is a data 

structure called a tibble. 
o When you print a tibble, it includes data type under column name 
o Also, it does not convert characters into factors by default 

 
Demo 2: Loading data 

• surveys<-read_csv(“data/portal_data_joined.csv”) 
• surveys – look at output 
• str(surveys) 

 
Slide 7: Now that we have the data loaded, let’s manipulate it with our first verb: select 

• Select picks columns from a data frame 
• It takes a tibble and a list of column names as input 
• And its output is a tibble with only the columns you selected 
• Let’s see an example of how select works 

 
Demo 3: select 

• Let’s say we have a collaborator who only wants the plot, species id and weight 
data 

• select(surveys, plot_id, species_id, weight)  
 
Slide 8: We’ve seen how to choose particular columns using select, now let’s look at 
how to pick rows using filter 

• Filter chooses rows based on specified criteria 
• It takes a tibble and relational expression as arguments 
• And it outputs a tibble with only the rows that meet the relational expression 
• For example, you can specify that you only want rows where the year is equal to 

1995 
• Let’s see select in action 

 
Demo 3: filter 

• Let’s say we only want to look at records taken in 1995 
• filter(surveys, year == 1995)  

 



Slide 9: At this point, you might be thinking that you can do these things in R without 
using dplyr  

• However, dplyr provides a convenient way to string verbs together 
• using the pipe operator (%>%), (percent sign)-(greater than)-(percent sign) 
• The operator goes at the end of each line that you want to string together.  
• Then the output of the previous line becomes the data frame input for the next 

line 
• This means that you don’t have to explicitly provide the data frame argument in 

each verb function 
• For example we could specify that we only want records that have weights of 

less than 5 g and only the species_id, sex and weight columns in one statement. 
• Let’s see how pipes work in a demo 

 
Demo 4: pipes 

• We can use the assignment operator to save the output in a data frame called 
surveys_sml 

 
surveys_sml<-surveys %>% 
                        filter(weight<5) %>% 
                        select(species_id, sex, weight) 

 
Slide 10: Now that you know about select, filters and pipes, let’s do an exercise 
involving these commands 
 
Exercise 1:  
 
Using pipes, subset the survey data to include individuals collected before 1995 
and retain only the columns year, sex, and weight. 
 
Solution 1: 

• Start with the surveys data frame, followed by the pipe operator 
• Filter on year ==1995 
• Select year, sex, and weight 
• Could we reverse select and filter? 

o Yes, but only in cases where the select statement contains the variable 
being evaluated in the filter statement 

 
Slide 11: dplyr also allows you to create new columns using the mutate function 

• Which creates a new column as defined by the input 
• Mutate takes a tibble and an expression that names and defines the value of the 

new column 
• This function outputs a tibble that includes the new column as defined in the input 
• For example, the weight is currently in grams. We could create a new column 

called weight_kg that stores the weight in kilograms 
• Let’s see how this works in practice 



 
Demo 5:  

mutate(surveys, weight_kg = weight/1000) 
same as surveys %>%  
                    mutate(weight_kg = weight/1000) 
surveys %>% 
             mutate(weight_kg = weight / 1000, 
                          weight_kg2 = weight_kg *2) 
 
surveys %>% 
       mutate(weight_kg = weight / 1000) %>% 
       head 

 
Slide 12: Here’s a slide with the syntax we went over above 
 
Slide 13: Another useful function for data cleaning is is.na() 

• Which takes a column as input 
• And returns a T/F vector of the same length that has the value true where there 

is a missing value and false where the input vector has a value 
• This T/F vector can be used as input to a filter statement and the not operator (!) 

to remove 
 
Demo 6:  
 
Show the T/F vector 
!is.na(weight) 
 
Use it as input to filter -> all weight values are NA 
surveys %>% 
       filter(is.na(weight)) 
 
Add the not operator -> no weight values are NA 
surveys %>% 
       filter(!is.na(weight)) 
 
Can be strung together with other functions 
surveys %>% 
       filter(!is.na(weight)) %>% 
       mutate(weight_kg = weight / 1000)%>% 
       head 
 
Slide 14: Let’s do another exercise combining the 3 verbs with pipes 
Exercise 2:  
Create a new data frame from the survey data that meets the following criteria:  

1. contains only the species_id column and a new column called hindfoot_half 
2. hindfood_half contains values that are half the hindfoot_length values. 



3. Only include records from 1990 and after 
Hint: think about how the commands should be ordered to produce this data frame! 
 
Solution 2:  

• Start with the surveys data frame 
• First, let’s filter the rows: filter(year>=1990) 
• Then create hindfoot half: mutate(hindfoot_half = hindfoot_length/2) 
• Finally, select the columns:  
• Why did I do this in this order? 

o Have to do select last because the other 2 depend on year and hindfoot 
length, which aren’t included in the output of the select statement 

o Mutate and filter could be switched, but reducing the number of rows first 
makes the computation a bit more efficient.  

 
Slide 13: Next, we’re going to look at the group and summarize by functions.  

• Group_by groups data in the table by an attribute 
o It takes a tibble and a column with a categorical variable to group by  
o and outputs a tibble that looks a lot like the original, but indicates which 

rows are part of each attribute 
•  summarize applies a summary statistic to grouped data  

o It takes a grouped tibble and a definition of a summary statistic as input 
o And outputs another tibble with the groups as rows, and the summary 

stats as columns 
Let’s look at how this works 
 
Demo 6:  
 
#Overall mean weight 
surveys %>%  
           summarize(mean_weight = mean(weight)) 
 
#remove NAs 
surveys %>%  
           summarize(mean_weight = mean(weight, na.rm = TRUE)) 
 
#Mean weight by sex 
surveys %>%  
           group_by(sex) %>% 
           summarize(mean_weight = mean(weight, na.rm = TRUE)) 
 
Slide 16: You can also group by multiple attributes, for example, sex and species id 

• To do this, add multiple columns as input to group_by 
• The output will then include a column for each attribute and the summary statistic 

Let’s see how this works.  
 
Demo 8: 



 
surveys %>% 
              group_by(sex, species_id) %>% 
              summarize(mean_weight = mean(weight,  
                                                                       na.rm = TRUE)) 
  
Slide 17: Let’s look at a couple of other things you can do. Instead of using the na.rm 
argument to summarize, you can filter out the NAs ahead of time.  
 
Demo 9: 
surveys %>%  
                filter(!is.na(weight)) %>% 
                group_by(sex, species_id) %>% 
                summarize(mean_weight = mean(weight)) 
 
Slide 18: You can also choose how many lines to print with the n argument to the print 
function 
 
Demo 10: 
 
surveys %>%  
    filter(!is.na(weight)) %>%  
    group_by(sex, species_id) %>% 
    summarize(mean_weight = mean(weight)) %>% 
    print(n = 15) 
 
Slide 19: And finally, you can calculate multiple summary statistics 
 
Demo 11: 
 
surveys %>%  
   filter(!is.na(weight)) %>% 
   group_by(sex, species_id) %>% 
   summarize(mean_weight = mean(weight),  
         min_weight = min(weight) 
        ) 
 
Slide 20: Let’s look at another function that works well with group by: tally 

• Tally counts the number of observations in a group 
• Grouped tibble as input 
• And returns a tibble with a column for each grouped variable, and one for the 

count of each row in that category 
Let’s see how this works 
 
Demo 12: Tally 
surveys %>%  



                      group_by(sex) %>%  
                      tally 
 
Slide 21: Let’s pull this all together in an exercise 
 
Exercise 3:  

• How many individuals were caught in each plot_type surveyed? 
o Start with surveys 
o Group by plot type 
o tally 

 
• Use group_by() and summarize() to find the mean, min, and max hindfoot length 

for each species (using species_id). 
o Start with surveys 
o Filter(!is.na(weight)) 
o Group by species id 
o Summarize 

§ Mean_hf = mean(hindfood_length) 
§ Min_hf = mean(hindfood_length) 
§ Min_hf = mean(hindfood_length) 

 
• What was the heaviest animal measured in each year? Return the 

columns year, genus, species_id, and weight. 
o Start with surveys 
o Filter(!is.na(weight)) 
o Group by year 
o Filter(weight == max(weight)) %>% 
o Select year, genus, species_id, weight 
o Arrange(year) 

 
Slide 22: Now let’s talk about how to reshape data with tidyr 

• Reshaping data is important because what you can do with your data depends 
on how its formatted 

• For example, if you want to make a table that shows mean weight by plot, you 
need to reshape the sata so that the rows are plot 

• To do this, we’re going to use two tidyr verbs: 
o Spread, which makes your table wider and 
o Gather, which makes your table longer 

 
Slide 23: Let’s look at the spread function 

• Spread makes the table wide by turning values in cells into column headers 
• Spread takes a tibble, a key column, and a value column as input 

o The key column is the column whose values you want to be column 
headers 

o And the value column is the column that holds the values to fill out the 
output table 



• The output is a tibble with the key column converted to column headers and the 
value column filling out the table.  

 
Slide 24: Let’s see how this works. 
Demo 13: 
surveys_gw <- surveys %>% 
                                   filter(!is.na(weight)) %>% 
                                   group_by(genus, plot_id) %>% 
                                   summarize(mean_weight = mean(weight)) 
 
surveys_spread <- surveys_gw %>% 
                                spread(key = genus, value = mean_weight) 
 
surveys_gw %>%  
                  spread(genus, mean_weight, fill = 0) %>%  
                  head() 
 
Slide 25: now let’s talk about gather 

• Gather makes a long table by converting column headers to values in a table 
• It takes a tibble, a key column, and a value column, and a specification of the 

columns to gather as input 
o The key column is the column that you want to create from column names 
o The value column is the column you want to put table values into 

 
Slide 26: Let’s see how this works 
 
Demo 14: 
surveys_spread %>%  
                         gather(key = genus,  
                                     value = mean_weight, 
                                     Baiomys:Spermophilus) %>%  
                          head() 
 
surveys_spread %>% 
                           gather(key = genus,  
                                       value = mean_weight,  
                                       Baiomys:Spermophilus) %>%  
                            head() 
 
Slide 27: Let’s look at an exercise doing gather and spread 
Exercise 4 
Goal: look at the relationship between mean values of weight and hindfoot length per 
year in different plot types.  
Step 1: Use gather() to create a dataset where we have a key column 
called measurement and a value column that takes on the value of 
either hindfoot_length or weight.  



Step 2: Calculate the average of each measurement in each year for each 
different plot_type.  
Step 3: spread() them into a data set with a column for hindfoot_length and weight.  
 
Solution:  
Step 1: 
long_data<-surveys%>% 
       gather(key = measurement, #new col from col headers 
              value = value,     #values 
              hindfoot_length, weight) #columns to gather 
 
Step 2:  
mean_values<-long_data %>% 
       filter(!is.na(value))%>% 
       group_by(measurement, plot_type, year)%>% 
       summarise(mean = mean(value)) 
        
Step 3:  
mean_values%>% 
       spread(key = measurement,  
              value = mean) 
 
Slide 28: Since the next data and donuts session is about graphing with ggplot, we 
want to get ready by cleaning up this dataset. First we’re going to remove all of the rows 
with missing values.  
 
Demo 10: remove missing values 
surveys_complete <- surveys %>% 
 filter(species_id != "", # remove missing species_id          
          !is.na(weight), # remove missing weight 
          !is.na(hindfoot_length), # remove missing hindfoot_length 
          sex != "") # remove missing sex 
 
Slide 29: We can also eliminate rare species from the dataset. 
 
Demo 11: eliminate rare species 
 
## Extract the most common species_id  
species_counts <- surveys_complete %>% 
  group_by(species_id) %>%  
  tally %>%  
  filter(n >= 50)  
## Only keep the most common species  
surveys_complete <- surveys_complete %>%  
  filter(species_id %in% species_counts$species_id) 
 



Slide 30: Now that we have a clean dataset, we’re going to write surveys complete to a 
file using the write_csv function 

• write.csv takes a data frame, the name of an output file at minimum as 
arguments 

•  you can also specify other parameters, like whether or not to include row names 
in the file 

• The content of a data frame is then output to the specified file 
 
Demo 12: write data 
write_csv(surveys_complete,  
                                 path = “data/surveys_complete.csv") 
 
Slide 31: Thanks for listening. As always, email me at the address on the slide if you 
need help with these or any other data management topics. See out web site for a list of 
the topics I can help with. Additionally, see the data carpentry lessons for the full source 
material for this lesson. Finally, the data wrangling cheat sheet is a good resource for 
dplyr as you’re coding.  


