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ABSTRACT

SYSTEMS AND OPERATIONAL MODELING AND SIMULATION TO ADDRESS
RESEARCH GAPS IN TRANSPORTATION ELECTRIFICATION

Transportation electrification is increasingly thought of as a necessity in order to mitigate the
negative effects of climate change and this has recently resulted in large investments, within the
US and globally, into green transportation technology. In order to ensure that the electrification
transition of the transportation sector is carried out in an efficient and effective manner, it is
important to address key research gaps. The proposed research involves addressing 4 important
research gaps related to electrification in the transportation sector. The four research gaps
addressed are quantifying the energetic benefits which may be achieved via the use of Connected
Autonomous Vehicle (CAV) technology to enable optimal operational and dynamic control in
Electric Vehicles (EVs), the quantification of the operational inconvenience experienced by Battery
Electric Vehicle (BEV) users compared to Internal Combustion Vehicle (ICV) users for given
infrastructural parameters, and quantification of the potential economic competitiveness of BEV's
for Heavy Duty (HD) Less Than Truckload (LTL) fleets. The identified research gaps are addressed
via quantitative, data-based, and transparent modeling and simulation. In the first two cases,
comprehensive simulation experiments are conducted which show both the potential energetic
improvements available as well as the best methods to achieve these improvements. In the second
case, a novel method is developed for the quantification of operational inconvenience due to
energizing a vehicle and an empirical equation is derived for estimating said inconvenience based
on vehicular and infrastructural parameters. The empirical equation can be deployed on a geo-
spatial basis in order to provide quantitative measures of BEV inequity of experience. In the last
case a novel, data-driven simulation based Total Cost of Ownership (TCO) model for class 8 BEV

tractors is developed and used to project economic competitiveness in the near and medium term

il



future. Findings from the proposed research will provide critical information for industry and

policy-makers in their mission to enable an efficient and equitable transportation future.
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Chapter 1

Introduction

1.1 Motivation

Electrification in the transportation sector is an increasing priority in the US and across the
globe. In the US, 27% of Green-House Gas (GHG) emissions originate from the transportation
sector [1] and these GHGs contribute to global climate change and various human health impacts
[2]. Simply reducing the output of the transportation sector is not an economically viable option.
The transportation sector is the backbone of the modern economy and thus it is critical to develop
a high capacity, sustainable, and equitable transportation sector for the future.

Vehicular electrification contributes a potential solution to this problem (in cooperation with
de-carbonization in power generation) but, as of yet, the vast majority of vehicles on the roads in
the US and the vast majority of new vehicle sales remain Internal Combustion Vehicles (ICVs) [3].
Recently, the US government and prominent US Original Equipment Manufacturers (OEMs) have
announced ambitious plans to see 50% of new Light Duty (LD) vehicle sales be Electric Vehicles
(EVs) by 2030 [4]. The US government plan includes $174 billion of investment in vehicle
electrification as well as $7.5 billion in direct and indirect investment into Electric Vehicle Support
Infrastructure (EVSE) infrastructure [S]. These funds will have a positive impact, but significant
research gaps remain in the field of vehicular electrification, and until these are addressed, planners
can only work with incomplete information.

A second potential solution is presented by connected autonomy. Modern and near future
technologies in the areas of sensing, communications, and processing increasingly enable the
practical deployment of highly optimized intelligent transportation components. Connected
Autonomous Vehicles (CAVs), intelligent infrastructure, and optimal logistics provide the potential

for significant reductions in energy consumption and emissions while maintaining or improving



system capacity [6—8]. Questions remain as to how best leverage the opportunities given by
connected autonomy in order to meet broader transportation system goals.

Knowledge gaps that exist at the intersection of electrification, connectivity, and automation
provide roadblocks towards continued progress. Fortunately, much can be learned through
application of modeling and simulation and data analysis in order help fill the gaps. To maximize
the benefits of electrified transportation, this dissertation research improves the efficiency of
individual vehicles using optimal control, accelerates adoption of Battery Electric Vehicles (BEVs)
by improving the ownership experience, and demonstrating the improved economics of Medium

Duty (MD) fleet vehicle ownership.

1.2 Identification of Research Gaps

The following research gaps were identified as critical for the mission of this research.

1.2.1 Research Gap 1

Hybrid Electric Vehicle (HEV) Optimal Operational Control with Real Velocity Predictions

Connected vehicular autonomy may play an important role in increasing vehicular efficiency,
especially in the context of urban driving. Advanced Driver Assistance System (ADAS) technology
has seen rapid market penetration due to its potential to bring safety and convenience benefits
to customers [9-11]. Further developments in connectivity and autonomy may lead to the
commercialization of CAV's which will, in turn, enable the application of optimal control on a real-
time basis. Vehicular optimal control is a well studied subject but generally treated in a scholastic
manner as an application case for optimal control theory. Information on the effectiveness and
practicality of vehicular optimal operational (relating to the operation of the powertrain for a given
motion trace) and dynamic (relating to the motion of the vehicle) control remains at a shortage.
CAV technology can be used to improve the efficiency of an individual vehicle in two principle

ways.



One way in which CAV technology can improve vehicular efficiency is through the optimal
operational control of HEVs and Plug-in Hybrid Electric Vehicles (PHEVs) through the application
of Velocity Prediction enabled Optimal Energy Management Strategies (VP-OEMS). VP-OEMSs
use predictions of future vehicle velocity to inform an optimal solver which generates an optimal
operational strategy. This process has been the subject of active research since the first publication
in 2001 [12]. Note that in the current transportation environment, perfect future velocity prediction
is not possible. To address this issue, researchers have used Model Predictive Control (MPC)
which, in this context, is the application of Dynamic Programming (DP) optimization to fixed
length prediction windows. Research on this topic has demonstrated that perfect velocity prediction
is not required [13], and that even heuristic approaches which rely on acceleration event prediction
can be used [14, 15] to achieve improvements in FE. High-fidelity prediction of future vehicle
velocity is presently achievable through the employment of Machine Learning (ML) and Artificial
Neural Network (ANN) methods and CAV technology [16-24]. In order to facilitate real world
implementation, certain specific research gaps must be addressed. One such research gap,
as defined in [25] is the quantification of the performance of VP-OEMS with actual velocity
predictions. To the author’s knowledge, no comprehensive study addressing this research gap
exists to date. This research gap will be addressed by collecting a real-world Advanced Driver
Assistance System (ADAS) and Vehicle to Everything (V2X) dataset for an urban CAV, using
this dataset to evaluate methods of generating velocity predictions, using these velocity predictions
to define optimal operational controls, and, finally, evaluating the efficiency gains attained using

Autonomie simulations.

1.2.2 Research Gap 2

Comprehensive Comparative Study of Eco-Driving Trace Solver Methodology
The second way in which CAV technology can be used to improve vehicular efficiency is via
optimal dynamic control. Eco-Driving, which is a strategy designed to reduce fuel consumption by

minimizing accelerations has been well known and has been shown to be effective when employed



by human drivers [26]. Eco-Driving is taught as a part of drivers’ education in Singapore and has
resulted in a Energy Economy (EE) improvement of 11% to 15% there [27]. Differences in culture,
infrastructure, and available technology will play a major role in determining the effectiveness of
efforts to promote Eco-Driving. For example, vehicular autonomy and CAV technology provide an
increased opportunity for the application of Eco-Driving strategies because they circumvent driver
acceptance/training issues. When compared to a human driver (i.e. manual Eco-Driving), a CAV
has the ability to follow optimal trajectories more precisely and can take into account information
which is beyond line-of-sight.

Compared to manual Eco-Driving, autonomous Eco-Driving yields the following potential

benefits:

* Ability to precisely follow optimal energy traces;

* Ability to account for traffic information which is beyond line-of-sight;

» Ease and scalability of implementation;

When developing and applying an autonomous Eco-Driving system, the manner in which an
Eco-Driving algorithm generates the trace for the vehicle to follow will have a major impact on the
effectiveness of the algorithm. Much research has been conducted in this space in recent years and
a great variety of solutions have been put forward in the literature. The reason for this diversity is
the complicated nature of the problem and the many dimensional design space which results from
it. To the author’s knowledge, no comprehensive, comparative study exists. This research gap will
be addressed by summarizing and subdividing Eco-Driving Control (EDC) strategies, defining a
framework for practical implementation of solver methods, implementing a selection of common
methods, and evaluating these methods in terms of performance and practicality using real-world

data [28].



1.2.3 Research Gap 3

Quantification of BEV Operational Inconvenience and Sensitivity Analysis for Contributing
Factors

The US government and US OEMs have recently set ambitious goals for BEV market
penetration [4]. These targeted efforts should help accelerate the growth of the BEV market
share which remains small [3]. Although economic factors are important in individual car buying
decisions, evidence suggests that consumers also strongly weight inconvenience in their decision
making process. Several studies from around the world [29-31] have found that inconvenience,
or perception of inconvenience, related to BEV range and charging play a large part in individuals
deciding whether or not to purchase BEVs. Concerns about BEV operational inconvenience are
founded in several realities related to vehicular energizing (charging or fueling) namely BEV range
and charging times.

Historically, low BEV adoption rates have rendered the energizing inconvenience issue a low
priority as most BEV owners primarily charged at home [32]. Public and private supercharging
networks have also made long distance BEV travel increasingly feasible in recent years [33].
However, as adoption increases, and BEVs penetrate non-luxury car markets, the model of BEV
owners living in single unit dwellings will become less relevant and public infrastructure will
become increasingly important.

The importance of public infrastructure for various potential BEV market segments has been
recognized and funding for rapid development of said infrastructure has been approved [34] but

several key questions remain to be answered:

1. What are the ultimate relative operational inconveniences for BEVs vs ICVs for those who

can charge at home and those who cannot?

2. What are the relative merits of DC Fast Charging (DCFC) infrastructure vs DC Level 2
(LVL 2) charging infrastructure help reduce the inconvenience of BEV operation, especially

for vehicle operators who cannot charge at home?



3. What level of EVSE infrastructure rollout, if any, is sufficient to achieve convenience parity

for BEV operators?

4. What are the implications of EVSE infrastructure on BEV equity and energy justice?

In order to answer these questions, a fundamental research gap must be addressed, namely how
to evaluate the inconvenience associated with BEV operation. This gap is addressed via a flexible
data-based method for evaluating energizing inconvenience which is applicable to any vehicle
regardless of powertrain type and thus allows for direct comparisons between different vehicles and
different conditions of operation. The method uses longituidnal itinerary data and DP energizing
scheduling to produce optimal (least inconvenient) energizing traces for a set of vehicles given
assumptions about energizing infrastructure. Using national datasets, an empirical equation is then
fitted which relates contributing factors such as vehicle design and EVSE infrastructure access to
inconvenience experienced. Finally this equation is applied on a geo-spatial basis using publicly
available data in a scalable manner. The resulting information is used to answer the enumerated

questions.

1.2.4 Research Gap 4

Class 8 Less Than Truckload (LTL) Fleet BEV Replacement Potential Assessment and
Sensitivity Analysis

Our modern economy could not exist without the heavy LTL trucking sector. The US economy
relies on a fleet of nearly 40 million commercial trucks which move more than 70% of the nation’s
freight tonnage [35] and are responsible for 17.2% of US GHG emissions [36]. About 4 million
of these trucks are class 8 tractors [37] which haul the most freight per vehicle and have the
highest energy consumption rates. In order to mitigate the impact that this sector has on the global
environment, new technologies and infrastructure investments must be explored. One possible
solution is the partial or full electrification of the sector.

As EV technology progresses, the opportunity to electrify larger and heavier duty vehicles

has and will continue to grow. Compared to LD electrification, Heavy Duty (HD) electrification



presents many additional difficulties. The additional difficulties relate to battery technology and
economics. Although LD BEVs often have shorter ranges, higher purchase prices, and weigh
more than equivalent ICVs the differences are comparatively small. BEV range, purchase price,
and weight are driven by battery capacity. Battery technology has progressed majorly in the past
15 years which has resulted in greater specific energies and lower prices on the cell and pack
level. There is evidence that Lithium-Ion (Li-Ion) battery technology may be approaching maturity
and that further gains will be achieved more in manufacturing and recycling than fundamental
technological advancements. At the same time, raw materials needed for battery production may
become more scarce as production increases. Benefits of high scale manufacturing will accrue for
high volume production battery packs such as those used in LD vehicles to a greater degree than
for low volume battery packs such as those used in HD vehicles. Economic factors of production
indicate that purchase prices for HD BEVs will remain high compared to equivalent ICVs.

However, BEVs are cheaper to operate than ICV and thus are more competitive in Total
Cost of Ownership (TCO) than in purchase price. For class 8 tractors, around 90% of TCO is
from operational costs. Because LTL fleets are large businesses they will be more sensitive to
periodical costs and TCO than to purchase price. The opportunity, thus, exists for BEV's to become
competitive in certain market niches. It is not trivial to predict what or how numerous these niches
will be, comprehensive modeling is needed in order to identify them.

Existing analysis is overly simplistic in the evaluation of BEV manufacturing and operational
costs in several ways. First, existing research often bases battery cost modeling for HD vehicles on
pricing data for LD vehicles [38—42]. Battery packs for HD vehicles are specialist equipment
and will be produced in much lower volume. Thus it is not reasonable to assume that price
per unit storage will scale linearly. Second, current analysis fails to model charging dynamics
with sufficient detail [38]. BEV operations are more heavily impacted by energizing than ICV
operations due to the longer times required for charging and the incentives to charge at low rates.
The cost of charging will also be effected by the time-of-day in which the charge occurs. It is

common for BEV replacement literature to assume that all charging must occur during long dwells



and that certain long itineraries are infeasible [43—45]. However, fast charging is increasingly
available and thus these long itineraries are feasible if more expensive and time consuming. More

detailed modeling and data driven analysis is required to address these gaps.

1.3 Research Questions and Tasks

The thrust of this research is to gain a greater understanding of the potential for future EVs
in terms of capabilities of the individual vehicles, the market for said vehicles, and the equity
impacts of an electric transition. EV technology presents a solution to many issues in relation to
the transportation sector but also potential drawbacks. Dissertation research will advance the state

of the art by answering the following research questions.

1.3.1 Research Question 1

What energetic benefits can be attained for CAV EVs through the application of
infrastructure communication-enabled real-time optimal control?

The future vehicle fleet is expected to be characterized by both an increasing proportion of EVs
and of CAVs. The presence of automotive connectivity and increasing on-board computational
capabilities allow for dynamic (relating to the motion of the vehicle) as well as operational
(relating to the operation of the powertrain for a given motion trace) optimization to be carried
out and applied in real-time. Dynamic and operational optimal control present the opportunity to
meaningfully improve the efficiency of EVs if these can be carried out in real-time. The following

are research tasks associated with RQ1:

* RQ1.T1 - Assessment of performance and real-time control feasibility of operational
optimal control for HEVs using experimentally derived (real-world) driving data
Operational optimal control of HEV has been well studied in academia as a case study for
various optimal control methods. Implementation of prediction-enabled Optimal Energy
Management Strategies (OEMS) require high fidelity prediction of vehicle motion and

the efficient evaluation of the control. Research gaps towards implementation identified



in [25] include evaluating the performance of Predictive Optimal Energy Management
Strategies (POEMS) with real velocity predictions. Identifying methods which allow for the
performance and run-time of prediction enabled OEMS for HEV's with real predictions to
meet acceptable levels for real-time implementation will allow for development to progress

to the prototype phase.

* RQ1.T2 - Assessment of performance and real-time control feasibility of dynamic
optimal control for EVs. Like operational control of HEVs, dynamic optimal control has
been extensively studied as an optimal control problem with a variety of optimal controls,
heuristics, and metaheuristics applied to the problem. The diversity of approaches is
combined with a corresponding diversity in problem framing. In order to evaluate which
way to proceed for prototyping and, ultimately, implementation, a comprehensive framing
of the problem must be realized and, along with real-world data, used to evaluate the various

controls proposed in literature.

The results of these tasks will define the optimal cost functions, real time capabilities and
optimal performance of all of the proposed algorithms available in literature. These types of results
will have value to the research community and industry in guiding their implementation of POEMS

in the novel application of CAV EVs.

1.3.2 Research Question 2

What effects do factors such as vehicle range and the availability of various charging options
have on BEV operational inconvenience?

Short, medium, and long terms goals to increase BEV sales in the US face the issue of the
inconvenience, or perception of inconvenience, associated with operating a BEV. Underlying
realities of energy storage and the physics of charging batteries dictate that BEVs will have less
range and require longer to energize than equivalent ICVs. As the US government embarks on an

ambitious program to increase the penetration of EV charging networks, questions remain as to



how best invest the capital in terms of increasing BEV market share and minimizing inequity of

experience. The following research tasks are associated with RQ2:

* RQ2.T1 - Definition of a quantitative metric for inconvenience associated with
operating a BEV. Deriving an applicable definition of inconvenience is the first step in
quantifying and calculating it. Much research has been conducted in the transportation field
into minimizing inconvenience for large groups down to individual agents. A survey of

literature must be conducted and a quantitative metric for inconvenience defined.

* RQ2.T2 - Definition of a method for calculating the inconvenience associate with
operating a BEV. A method must be derived for calculating inconvenience experienced
given vehicular itinerary information for an individual BEV operator. Such a method
should be sufficiently flexible as to allow for evaluation of theoretical inconvenience
values for the same itinerary with different vehicular and energizing conditions. Should
a robust and flexible method be derived, experiments on the effects of various vehicular and

infrastructural parameters can be performed.

* RQ2.T3 - Determination of the effects of vehicular parameters and the availability
or unavailability of various charging options on BEV operational inconvenience.
Variations in vehicle particulars and charging availability will dictate that different people
will experience different levels of inconvenience for the same driving behavior. BEVs will
have various full-charge ranges and certain people will have the ability to charge at home
reliably while others will not. Additionally, the availability of LVL 2 chargers at common
destinations such as shopping centers, supermarkets, gyms, large workplaces, and others
and proximity to dedicated DCFC stations will vary geographically. Geographic and socio-
economic differences may lead to significant inequity of experience for BEV operators and
it is imperative to understand what the effects of underlying factors are in order to be able to

effectively minimize the issue.
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* RQ2.T4 - Scalable application of quantitative inconvenience metric on a geo-spatial
basis. In order to understand the impacts of vehicular technology and EVSE infrastructure
on BEV operational inconvenience an method of quickly computing expected inconvenience
score for geometric units should be developed. This geo-spatial application will allow
individuals to understand how home location will impact their experience, planners
to directly evaluate proposed EVSE infrastructure, and interest groups to identify and

understand resulting inequities.

Having completed this research, a significantly greater understanding of the experiences of
BEV operators in the present and future and what factors underlie these experiences will be gained.
The knowledge gained can be used in order to gain a quantitative understanding of infrastructural
impacts on BEV equity and energy justice and make way for a green and equitable transportation

future.

1.3.3 Research Question 3

In what market niches will future class 8 BEV semi-tractors be competitive with ICV
equivalents and what impacts will design and operational factors have?

The Medium Duty / Heavy Duty (MD/HD) fleet represents only 4% of US vehicle registrations
but accounts for a quarter of yearly fuel use [46] . Within this group, the most efficient on a per-ton-
mile basis are class 8 tractors. Class 8 tractors are also consider to be relatively difficult to electrify
due to energy and power requirements. This research asks the question: what are potential market

niches in which class 8 BEV tractors can be competitive and what factors underlie this.

* RQ3.T1 - Development and validation of class 8 tractor BEV and ICV TCO model.
In order to perform comparative evaluations validated models for class 8 tractors with
combustion and electric powertrains must be developed. The current state-of-the-art model
for vehicle TCO is National Renewable Energy Laboratory (NREL)’s TEMPO. TEMPO
contains flawed assumptions but provides a good comparison point. The developed model’s

results should match TEMPO results when the same assumptions are used.
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* RQ3.T2 - Development of realistic battery pricing models for class 8 BEV tractors.
Rather than relying on LD pricing data alternative sources of pricing information will be
found. These sources which may derive from fundamental modeling, OEM data, or a
combination of the two will inform a realistic battery pricing model for the low volume

class 8 battery packs.

* RQ3.T3 - Development of data-based, intelligent charging pricing and timing model
for class 8 BEV tractors. In order to truly understand what BEV operators will pay for
electricity it is necessary to perform data-based modeling. Prices of electricity vary by
location, time, and rate. A flat price will not sufficiently capture the dynamics and may
under or over state BEV competitiveness. The developed model will use real-world class
8 truck itineraries and optimal charging simulation to understand the real prices paid for

electricity.

* RQ3.T4 - Identification of competitive market niches for future class 8 BEV tractors
and analysis of contributing factors. With the new models developed in the previous
research tasks an analysis will be performed to identify where future class 8 BEV tractors
may become competitive with ICV equivalents. Because the cost modeling developed will
necessarily be subject to assumptions a sensitivity analysis with respect to these will be

conducted.

The results of the outlined research tasks will be a novel and comprehensive new understanding
of the potential for electrification which exists in the HD fleet. This new knowledge can be used to

inform fleet operators, OEMs, and utilities on directions for future development.

1.4 Organization of Chapters

The research conducted towards this dissertation is presented in 5 chapters. Chapter 2 describes
work conducted towards addressing Research Gap 1 and contains research task RQ1.T1. Chapter 3

describes work conducted towards addressing Research Gap 2 and includes research task RQ1.T2.
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Chapters 4 and 5 describe work conducted towards addressing Research Gap 3 and comprise of
research tasks RQ2.T1, RQ2.T2, RQ2.T3, and RQ2.T4. Chapter 6 describes work conducted
towards addressing Research Gap 4 and in made up of research tasks RQ3.T1, RQ3.T2, RQ3.T3,

and RQ3.T4. These chapters are followed by a summary conclusion in Chapter 7.
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Chapter 2
Development and Evaluation of Velocity Predictive
Optimal Energy Management Strategies in and

Connected Hybrid Electric Vehicles

2.1 Preface

This chapter is derived from [47] which was primarily authored by this dissertation’s author.
Significant contribution was provided by Tushar Gaikwad in the prediction method analysis [48]
and by Dr. Zach Asher in conceptualization and presentation. Important material support for data
collection was provided by the EcCoOCAR Mobility Challenge. The content of the paper addresses
RQ1.T1. RQI focuses on determining what energetic benefits can be attained for Connected
Autonomous Vehicles (CAVs) through the application of infrastructure connected optimal control.
In this chapter the focus is on velocity-prediction enabled optimal energy management strategies
for Hybrid Electric Vehicles (HEVs). Predictive optimal control has been long studied but recent
advances in machine learning have made the framework more feasible as high fidelity predictions
have become increasingly possible. The work in this chapter is a comprehensive study which
serves to evaluate how high-fidelity velocity predictions can best be attained and what information
is needed to attain them and follows with what energetic benefits can be attained by using these

predictions for optimal control.

2.2 Overview

In this study, a thorough and definitive evaluation of Predictive Optimal Energy Management
Strategies (POEMS) applications in connected vehicles using 10 to 20-second predicted velocity
is conducted for a HEV. The presented methodology includes synchronous data-sets gathered in

Fort Collins, Colorado using a test vehicle equipped with sensors to measure ego vehicle position
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and motion and that of surrounding objects as well as receive Infrastructure to Vehicle (I2V)
information. These data-sets are utilized to compare the effect of different signal categories
on prediction fidelity for different prediction horizons within a POEMS framework. Multiple
Artificial Intelligence (AI) and Machine Learning (ML) algorithms use the collected data to output
future vehicle velocity prediction models. The effects of different combinations of signals and
different models on prediction fidelity in various prediction windows are explored. All of these
combinations are ultimately addressed where the rubber meets the road: Fuel Economy (FE)
enabled from POEMS. FE optimization is done using Model Predictive Control (MPC) with a
Dynamic Programming (DP) optimizer. FE improvements from MPC control at various prediction
time horizons are compared to that of Full Cycle Dynamic Programming (FC-DP). All FE results
are determined using high-fidelity simulations of an Autonomie 2010 Toyota Prius model. The FC-
DP POEMS provides the theoretical upper limit on FE improvement achievable with POEMS but is
not currently practical for real world implementation. Perfect Prediction Model Predictive Control
(PP-MPC) represents the upper limit of FE improvement practically achievable with POEMS. Real
Prediction Model Predictive Control (RP-MPC) can provide nearly equivalent FE improvement
when used with high-fidelity predictions. Constant Velocity Model Predictive Control (CV-MPC)
uses a constant speed prediction and serves as a "null" POEMS. Results showed that RP-MPC,
enabled by high-fidelity ego future speed prediction, led to significant FE improvement over

baseline nearly matching that of PP-MPC.

2.3 Introduction

Improving FE is a critical goal to reducing climate change and air pollution. The transportation
sector is responsible for 27% of all greenhouse gas emissions produced globally and more than
50% of nitrogen oxide emissions [1]. Recent studies show that greenhouse gas emissions are a
significant contributor to global climate change [2] and lowered life expectancy in many countries

[49]. Greenhouse gas emission levels are directly related to the FE of vehicles; reducing total
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miles driven is a difficult-to-implement and politically controversial goal, thus much research into
methods to improve vehicle FE has been performed [50].

A critical component of improving FE is vehicle electrification. Recently, HEV and Plug-in
Hybrid Electric Vehicle (PHEV) have been widely researched because of their greater potential to
increase FE and emissions over that of conventional Internal Combustion Engine (ICE) vehicles
[51]. However, currently available HEVs do not operate optimally [52].

In addition to advancements in powertrain technology, recent developments in the automotive
industry have led to huge advancements in CAV technology. Advanced Driver Assistance System
(ADAS) technology has seen rapid market penetration due to its potential to bring safety and
convenience benefits to customers [9-11]. Automation (i.e. ADAS) and connectivity (i.e. CAV)
technology are critical technologies not only for safety and commercialization of autonomous
vehicles but also for energy efficiency through implementation of POEMS on HEVs and PHEV's
which can increase their FE and reduce their emissions [12, 15, 53-55].

POEMS use predicted vehicle velocity (enabled through ADAS [56] and connectivity) as an
input to optimal control. The optimal solution output is then used as an input to the vehicle plant,
ideally an HEV or PHEV due to the additional operational degrees of freedom [25]. This process
has been the subject of active research since the first publication in 2001 [12]. Note that in the
current transportation environment, perfect future velocity prediction is not possible. To address
this issue, researchers have used MPC which, in this context, is the application of DP optimization
to fixed length prediction windows. Research in this space has demonstrated that perfect velocity
prediction is not required [13], and that even heuristic approaches which rely on acceleration
event prediction can be used [14, 15] to achieve improvements in FE. Although it is worth noting
that these FE improvements are modest compared to those theoretically achievable with prefect
prediction of vehicle velocity. High-fidelity prediction of future vehicle velocity is presently
achievable through the employment of ML and Artificial Neural Network (ANN) methods and
CAV technology [16-24]. Despite all of this research, a thorough investigation of the datasets

and prediction models’ effect on vehicle FE (the full system) has not been conducted. The latest
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research has explored the effect on velocity prediction error metrics rather than resultant vehicle
FE [24, 48].In order to facilitate real world implementation, certain specific research gaps must be

addressed; these research gaps are defined in [25] as:

1. Performance of Optimal EMS with Actual Velocity Predictions

2. Performance of Optimal EMS when Subjected to Disturbances

3. Performance of Optimal EMS in Real Vehicles

To the author’s knowledge, this paper represents the first comprehensive study fully addressing
Research Gap 1. Previous research in the area of POEMS has focused on select aspects of Research
Gap 1 but no comprehensive study has been performed which concerns the use of real-world data
and real-time prediction methods in POEMS. This study, being such a comprehensive analysis,
allows for research to progress towards other aspects of implementation namely Research Gaps 2
and 3. Previous research in this area is summarized as follows. The efficacy of predictive Optimal
EMS for improving efficiency in HEVs was first shown in 2001 in [12] utilizing perfect prediction.
In 2008 velocity prediction was introduced to the literature in [57] which used an analytical traffic
based velocity prediction model. In 2015, the advantages of ANN prediction were shown in [18,
19]. In 2017 and 2018 a series of studies [13, 56, 58, 59] experimented with different data streams
to optimize prediction with a shallow ANN. In 2019 more modern machine learning techniques
were introduced into the field in [60] where reinforcement learning was used along with traffic
data to train an ANN to produce optimal controls for a power-split hybrid. Also in 2019, [24,
61] showed that high fidelity predictions were possible through the use of deep Long Short-Term
Memory (LSTM) ANNs. Finally, in 2020, a thorough analysis of various combinations of real
world data streams and machine learning techniques [24, 48, 62] showed that the highest degree of
prediction fidelity could be attained through the use of LSTM ANNSs with the use of Signal Phase
and Timing (SPaT) and Lead Vehicle data.
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Thus, in order to close the gap, this paper outlines a comprehensive system-level study
addressing the interactions between groups of available real-world data, velocity prediction
methods, and Optimal EMS methods with respect to the overall system output: FE.

This paper rigorously evaluates the dataset and perception model for POEMS and evaluates
performance using the FE for a validated HEV to enable full system performance insight, which
to-date is missing from the literature. Cutting-edge Al technology is leveraged to generate high-
fidelity future vehicle velocity predictions in 10 to 20 second windows. The predictions are fed into
an MPC control method in order to determine the optimal instantaneous torque split for a power-
split HEV. The FE achievable with the proposed POEMS will be compared to that achievable with
perfect prediction Full drive-Cycle DP (FC-DP), Perfect Prediction MPC (PP-MPC), Constant
Velocity-prediction MPC (CV-MPC), and Autonomie baseline control. This paper will further
show that the proposed method is implementable on current vehicles with current technology and

has the potential to provide significant FE improvements within the HEV fleet if implemented.

2.4 POEMS Methodology

2.4.1 Opverall System

HEV POEMS uses predictions of future vehicle velocity to inform an optimal powertrain
control strategy, thus achieving greater energy efficiency. Powertrain controls include torque split
and gear shifting based on powertrain states such as battery State of Charge (SOC) and current gear
in the case of a parallel power-train configuration or only torque split in the case of a paralleled

configuration.
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Figure 2.1: POEMS logic flow schematic

As shown in Figure 2.1, a POEMS consists of three major subsystems. The first is the
perception system which predicts vehicle motion using information about previous and current
vehicle motion, powertrain states, driver inputs, ADAS, and Vehicle to Everything (V2X) data
as inputs. The second is the planning subsystem which computes optimal controls based on the
predicted vehicle velocity. And finally the third subsystem is the vehicle plant which can be either
the physical vehicle or high-fidelity simulation model of the vehicle. The final system outputs are
the actual vehicle velocity and powertrain states.

POEMS achieve greater FE by ensuring that the engine is used in regions of maximum
efficiency as often as possible. This concept is shown in Figure 2.2 which includes a brake
specific fuel consumption map for an example engine and different combinations of engine speed
and torque which produce different engine efficiencies. Thus, most engine controllers attempt to
operate the engine along its Ideal Operating Line (IOL) [63] which contains the most efficient
torque for a given engine speed. POEMS use information about future vehicle velocity to ensure
that the engine only operates in the most efficient segment of the IOL, what can be though of as an

IOL Segment.
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Figure 2.2: Example brake specific fuel consumption plot with IOL and operating points with and without
POEMS

As shown in Figure 2.2, simply operating along the IOL (yellow dots) does not guarantee
efficient operation. POEMS increase FE by guaranteeing operation within the IOL Segment (green
dots).

Although this paper only concerns vehicle motion, the POEMS method can be extended to
account for additional exogenous inputs such as cabin heating and cooling requirements [64—66]

without fundamentally changing the method.

2.4.2 System Inputs
Data-Set Development

The first step in the development of practical and high-fidelity real world future vehicle
speed prediction was to collect a sample generic data-set which would represent all data sources
potentially available to a given CAV. All data sources selected are currently available to CAVs or
will be available in the near future [67]. In this section a taxonomy for such a data-set is defined.
This taxonomy defines data both in terms of its source form and its processed form and defines the

process of transformation.
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The first step in defining the data-set is to define the sources of the data. Three distinct source

categories are proposed:

1. VEH: Vehicle operational data such as vehicle motion, performance, and driver inputs. This

data concerns only the ego vehicle itself and its driver.

2. ADAS: Advanced Driver Assistance System (ADAS) data [68]. This consists of the data
generated by external object sensors on the vehicle and concerns objects within the vehicle’s

line of sight.

3. V2I: Data which the vehicle receives through connectivity to infrastructure and other

vehicles.

In order to be considered an CAV, a vehicle must receive information from all three of the
above sources. Most modern vehicles receive data from the VEH and ADAS sources [69] and V2I
is available in some regions [70]. These signals were obtained from the ego vehicle CAN bus and
the City of Fort Collins, Colorado.

Within these source categories, signals of use in vehicle future velocity prediction are shown

in Table 2.1.
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Table 2.1: Data sources and associated signals

Data Source Signal Description

Signals such as speed, acceleration, throttle
General Vehicle

VEH position, and steered angle which can be
Signals
found via CAN on any vehicle
Historical Speeds Historical speed data for the vehicle at the
VEH
(HS) current location
Lead Vehicle Track Relative location of confirmed lead vehicle
ADAS
(LV) from ADAS system
Signal Phase and
V2I Signal phase and timing of next traffic signal
Timing (SPaT)
V2I Segment Speed (SS) Traffic speed through current road segment

All VEH signals should be available on all modern vehicle CAN networks while ADAS enabled
vehicles will produce a lead vehicle track for safety and autonomous cruise control purposes. The
information for SPaT and SS comes form the SAE J2735 SPaT/Map message. Thus all signals
used in this study are available to a generic CAV while traveling on a connected infrastructure.
Most modern vehicles will have access to the VEH and ADAS sourced signals. A total of 13
drive-cycles worth of data were collected along the data drive-cycle by one driver over two days.

Details about data collection and availability can be found in the team’s previous work [62].

Data Drive-Cycle Selection

In order to gauge the effects of real-world data-based predictions on the performance of
POEMS, a real-world dataset was required. It was desired to gather data in conditions which
would allow for optimal POEMS performance such that the relative differences between various

POEMS methods would be as great as possible. A secondary consideration was that, in order to
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allow for optimal ML and ANN prediction performance, the data collection should be conducted
along a repeating drive-cycle and that this cycle should be short enough that more than 10 cycles
could be collected in a single day. The drive cycle which was selected was a 4 mile long drive-cycle

along urban arterial roads in downtown Fort Collins, Colorado which is shown in Figure 2.3.
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Figure 2.3: Selected data drive-cycle; drive order was purple, yellow, blue, then green, red circles represent
traffic signals

In order to assess the characteristics of the data drive-cycle, it was determined that the data
drive-cycle and the EPA dynamometer drive cycles should be characterized by their distributions
of speeds and accelerations. These basic statistical measures were chosen in order to allow for
easy comparison between the drive-cycles. The drive cycle characteristics data is shown in Table

2.2.
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Table 2.2: Drive-cycle characteristics for data drive-cycle and EPA drive cycles

Standard
Standard
Mean Absolute Deviation of
Mean Non-Zero Deviation of
Drive-Cycle Acceleration Absolute
Speed (MNZS) Non-Zero
(MAA) Accelerations
Speeds (SNZS)
(SAA)
Data 18.6988 8.5699 1.1557 1.1432
UDDS 10.7923 5.5850 0.4723 0.4859
USo06 23.1791 9.5014 0.6538 0.7851
HWFET 21.7191 4.1752 0.1713 0.2443

Based on these characteristics, the similarity of the data drive-cycle and the EPA dynamometer
drive-cycles was calculated using the multivariate normal distribution. The relative similarities

between the EPA cycles and the data drive-cycle are shown in Table 2.3.

Table 2.3: Relative similarities between EPA dynamometer drive-cycles and the data drive-cycle

UDDS US06 HWEFET

0.5885 0.2394 0.1721

It must be stressed that the comparison between a data drive-cyle and the EPA dynamometer
drive cycles could only be calculated after data collection was done and the data drive-cycle was
known. Of the candidate data drive-cycles tried, the drive-cycle shown in Figure 2.3 resulted in the
most favorable comparison to EPA dynamometer drive cycles.

The selected data drive-cycle was most similar to the UDDS EPA dynamometer drive-cycle

because higher numbers imply that the real-world drive cycle from Figure 3 is more similar.
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2.4.3 Subsystem 1: Perception

Having collected an extensive real-world CAV dataset, a comprehensive study on prediction
methods was conducted. The initial analysis of the prediction study can be found in [24] and is
summarized below:

A wide field of potential prediction algorithms including classical ML and ANN methods were

considered. The candidate methods are listed in Table 2.4

Table 2.4: Candidate Prediction Methods

Method Method Type
Long Short Term Memory (LSTM) Deep Neural Network
ANN
(DNN)
Convolutional Neural Network (CNN) ANN
CNN-LSTM ANN
Decision Trees ML
Bagged Trees ML
Random Forest ML
Extra Trees ML
Ridge ML
K-Nearest-Neighbors (KNN) ML
Linear Regression without Interactions (LR) Statistical
Linear Regression with Interactions (LRI) Statistical
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All methods were trained, tested, and validated on a 9/2/2 data-split basis respectively. The
training and evaluation metric was Mean Absolute Error (MAE), where X is the predicted velocity

value, Y is the actual velocity value, and # is the total number of timesteps.

1 1Xi — Y|

MAE(X,Y) =
n

2.1

An extensive study was conducted on different combinations of the signals in Table 2.1 as well
as different combinations of macro-parameters for the methods. From this general study, the best
results for each method for 10, 15, and 30 second time horizon speed predictions in terms of MAE

are listed in Table 2.5.

Table 2.5: The candidate prediction methods results organized from best performing to worst performing.

Method MAE - 10s MAE - 15s MAE - 20s
LSTM 1.78 2.55 3.09
CNN 1.84 2.77 3.50
CNN-LSTM 1.97 2.7 3.26
Decision Trees 2.69 3.60 4.12
Bagged Trees 2.23 3.09 3.67
Random Forest 2.30 3.15 3.72
Extra Trees 1.99 2.73 3.30
Ridge 2.67 3.84 4.67
KNN 2.67 3.84 4.67
LR 2.65 3.82 4.65
LRI 2.57 3.60 4.28
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The results of the general study showed that the LSTM had the best performance at 10, 15, and
20 seconds.

Based on this collected evidence, it was concluded that an LSTM should be used withing the
POEMS system. For further discussions and details, the reader is referred to the team’s previous

publications [24, 48].

2.4.4 Subsystem 2: Planning

HEV POEMS planning subsystems generally fall into two groups: (1) those based on
Pontryagin’s Maximum Principle such as ECMS [71], a-ECMS [53], as well as their derivatives,
and (2) those based on DP. The advantages of Minimum Principle methods is that these are "real-
time" strategies since they are relatively computationally cheap. But this method is typically non-
optimal and recent research suggests that the equivalence factor prediction is analogous to velocity
prediction [72]. The advantages of DP based methods is that they guarantee discovery of the
globally optimal solutions assuming that the vehicle velocity prediction is accurate. The research
team discovered the critical importance of this aspect through documenting that even if significant
and real world velocity mispredictions are present, the solution is still near optimal [73] which has
lead to new method of real world practical implementation [14, 15]. Additionally, the rise in the
use of Al within the CAV space has led to deployments of vehicles with high-performance GPUs
on-board the vehicle which potentially enables real-time computation of DP [74], which has been
a common criticism for eventual DP implementation. For these reasons, DP methods were selected
for this study.

DP is a numerical method based on Bellman’s principle of Optimality, which solves multistage
decision-making problems and finds the global optimal solution by operating recursively
backwards through time and storing only the optimal controls at each step [75, 76]. DP and its
derivative strategies have been applied to the problem of FE optimization for HEVs previously

[12, 52,77, 78] for full and partial drive cycles as well as for perfect and real predictions.
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DP can be thought of as a recursive equation solver with memory. A recursive solution
to a problem is to evaluate all possible paths by evaluating every possible combination of
decisions independently. While a recursive solution will find a global optimum it will require
an exponentially increasing number of function evaluations for each additional time-step. DP
solves this run-time problem by iterating backwards through time and storing the optimal controls
for each discreet state value at each time-step then evaluating the same controls from the same
discreet state values until the first time-step. The result of the backward iteration is an optimal
control matrix which can be used to find optimal controls at each time-step based on the current
state values when iterating forwards. The backwards iteration step is referred to as the optimization
step while the forward iteration step is referred to as the evaluation step. The DP method is shown

schematically in Figure 2.4.
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Figure 2.4: Schematic of DP Method

The optimization step of the DP method, as shown in Figure 2.4, creates an optimal
matrix which can be used to compute optimal controls at each step by combining current and
"remembered" costs. The optimization step iterates backwards from the last time-step (N) to the
first which is not shown. The state values (represented by solid-outlined circles) show discreet
state values. At time-step N — 1, the model is evaluated for each of the discreet state values at
each discreet control value which results in a series of new "intermediate" state values (represented

by dashed-outlined circles) and associated control costs. Following this, the lowest cost (optimal)
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control is selected for each discreet state value. At time-step N — 2 the same process is repeated
but in addition to the control cost, the cost-to-go is calculated and added. The cost-to-go from a
given intermediate state value is calculated by interpolating from the stored optimal control costs
from state N — 1. This process repeats itself until the first time-step is reached. The DP method
shown in Figure 2.4 is constrained in two ways: (1) a large penalty is applied for distance from
the desired end state value at time-step N which forces the optimal controls for all state values
at time-step N — 1 to produce the same state value at time-step N and (2) controls which lead to
intermediate states which are above or below the maximum and minimum value lines (represented
by red dashed-outlined circles) respectively are not considered. The output of the Optimization
step is a optimal control matrix which stores the optimal controls for each discreet starting state
value at each time-step.

The evaluation step of the DP method, also shown in Figure 2.4, iterates forward from the
first time-step through the last time-step from a given starting state value. At each time-step,
interpolation is done using the starting state value (represented by blue solid-outlined circles) and
the optimal control matrix values for the current time-step to determine the optimal control for the
current time-step. The optimal control is then applied and the starting state value for the subsequent

time-step is calculated. This process is repeated until the penultimate time-step is reached.

High-Fidelity DP Solution for the HEV Optimization Problem

The formulation of the DP problem for the 2010 Toyota Prius is as follows:

The powertrain state x is the battery SOC

The powertrain control « is the engine power

* The exogenous input for the powertrain w is the vehicle speed

The time index k denotes the current time-step
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The general form of the dynamic equation is shown below. It uses a high-fidelity model of the
vehicle to generate the SOC at time-step k£ + 1 based on the SOC at time-step k, the engine power

at time-step k, and the vehicle speed at time-step k as:

x(k+1) =x(k)+ f(x(k),u(k),wk))A(?) (2.2)

Where f(x(k),u(k),w(k)) is the charging/discharging rate for the battery dSOC/dt. The

charging/discharging rate function f(x(k),u(k),w(k)) can be written out as:

dSoC _ Pbattgchg _ (Pbatt,mat + Pbatt,gen)gchg
dt VOCC VOCC

(2.3)

Where V,. and C are the battery open-circuit voltage and charge capacity respectively. The

charging/discharging efficiency is defined as:

Cchg Ppary 20
Echg = 2.4)

Cdchg Pball <0

Where C.,, and Cyee are constants reflecting the battery’s efficiency in charging and

discharging respectively. The powers Pyt mor and Pysz gen are calculated as follows:

Tinot Opmor
Pbatt,mot S (2.5)
Emot
Toen®
genWgen
Pbamgen = (26)
Egen

The efficiencies &;,,; and &, are the efficiencies of the motor and generator respectively. Note
that the efficiencies are in the denominator as the terms Py mor and Pyyr gen are the power that the
battery must provide to each to produce the required output powers Fyor = Tinor Wpnor and Pyep, =

T4en@qen The following process is followed:
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Starting with the current vehicle speed w(k) and acceleration w(k) the vehicle power can be

calculated using the road loads power equation.

Py = (mv(k) +A + Bw(k) + Cw(k)?)w(k) (2.7)

Where m is the vehicle mass and A, B, and C are vehicle specific constants. For a given engine

power u;, the electric power required is:

Perec = Poen — (2.8)

For the given u;, the engine torque and speed can be interpolated from the engine IOL and
the combination of engine speed (@,,g) and torque (7,,¢) along with electric power can be used to
determine the torques and speeds of the motor and generator from the planetary gearset dimensions.

The torques are calculated as follows:

PrenRywni
T, = e Wit 2.9
T,
Ty = (2.10)
p
Prd
—p
Tgen = mTeng (211)
Tring = _p(Tgen - Teng) (212)
Tnot = Tpt - Tring (213)

Where T,,;,; and R,,;,; are the torque applied at and the radius of the driven wheels respectively,
Ty is the output torque of the power-train (before the differential) and pyy is the final drive ratio,
p is the gear ratio of the sun gear to the ring gear for the planetary gearset, T, is the torque of the
ring gear, Ty, is the torque of the generator, T, is the torque of the engine, and T, is the torque

of the motor.
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And the speeds are calculated as follows:

w(k
(OWES # (2.14)
whi
Omot = Wring = P fd Wwhi (2.15)
+1 Wy
oo = P g — 18 (2.16)

P

Where Ry, Ryun, and R,jne are the radii of the wheel, sun gear, and ring gear respectively, T},
is the torque produced by the powertrain before the differential, and py, is the final drive ratio.

The cost function for the DP problem for control ; at time-step k can be formulated as either
a FE maximization or a fuel consumption minimization. Since fuel consumption minimization is

more intuitive and widely used in previous studies and, thus, will be utilized in this study.

Jetg k>N
Ji(k) = Jim+ (2.17)

Jpen = (xp —x(k+ 1))2Cpen k=N
Where J;,,,; is the cost of fuel consumed to reach the intermediate state value which is calculated
using the engine speed and torque and the engine FC map, J, is the cost-to-go to the next
state which is calculated through integration, and J),, is the manually assigned penalty function

associated with not arriving at the desired final SOC at the final time-step k = N.

Model Predictive Control (MPC) Methods

MPC is a framework to implement prediction-based optimal control. It utilizes a model of
the system and a fixed time horizon to generate operational decisions. The DP model discussed
in the previous section can be directly utilized in a fixed-horizon MPC framework with a few
modifications.

The FC-DP and a generic MPC method are shown schematically in Figure 2.5.
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Figure 2.5: Schematic comparison between FC-DP and MPC methods

In effect, MPC performs the DP method on a shortened drive-cycle at each step of the actual

drive-cycle. Naturally, MPC should take significantly longer to run on a per time-step basis as full

drive-cycle DP. A more detailed explanation can be found in [24].

2.4.5 Subsystem 3: Vehicle Plant

This study was conducted using a validated Autonomie model of a 2010 Toyota Prius. The

2010 Prius is equipped with a Toyota e-CVT gearbox which utilizes two electric motors (motor

and generator) connected to the engine and the differential through a planetary gearset to create

33



a Continuously Variable Transmission (CVT) [79]. Because of the e-CVT architecture, the Prius
driveline is controlled entirely by torque commands without having distinct gear states, thus the
only powertrain control for the Prius is torque split and the only powertrain state is battery SOC.
Due to the lack of a publicly available FE model specific to the 2010 Toyota Prius, the model
used was a generic Autonomie power-split HEV model which was modified to represent a 2010
Toyota Prius by setting the following parameters to the publicly available values shown in Table

2.6.

Table 2.6: Parameters and values for Autonomie 2010 Toyota Prius Model

Parameter Value
Overall Vehicle Mass 1530.87 kg
Frontal Area 2.6005 m?
Coefficient of Drag 0.259
Coefficient of Rolling Resistance 0.008
Wheel Radius 0.317m
Final Drive Ratio 3.267
Sun Gear Number of Teeth 30
Ring Gear Number of Teeth 78
Battery Open-Circuit Voltage 219.7V
Battery Internal Resistance 0.373 Q
Battery Charge Capacity 6.5 Ah

Validation of the Autonomie 2010 Prius model was conducted based on publicly available test

results from Argonne National Laboratory’s (ANL) Downloadable Dynamometer Database (D)
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[80]. The FE results obtained via the model for three EPA dynamometer drive-cycles are compared

to those found in D3 in Table 2.7.

Table 2.7: EPA dynamometer drive-cycle FE (km/L) results from Autonomie 2010 Toyota Prius model and

ANL D?
Percentage
Drive-Cycle Data Model
Difference
UDDS 32.14 31.79 1.09 %
US06 29.72 30.30 1.95 %
HWEFET 19.26 18.98 1.45 %

With all modeled FE values within 2% of those found in the ANL D? database, the Autonomie
2010 Toyota Prius model was considered validated for further research. It should be noted that, in
accorance with physical testing procedure, the initial SOC for the vehicle model was set to fully
charged for validation purposes but was set to 50% for further research. Thus, FE results for the
same EPA dynamometer drive-cycles later in the paper with baseline control will be slightly lower

than those listed in table 2.7.

2.4.6 System Outputs

In addition to FC-DP and PP-MPC, the CV-MPC method was implemented. The CV-MPC
method is functionally identical to PP-MPC except that the prediction vector is replaced with
a speed vector where all speeds are the current vehicle speed. The CV-MPC method acts as a
"null" predictive method which can serve as a point of comparison. The value of a given level
of prediction fidelity can be gauged by its performance relative to PP-MPC and CV-MPC. A

comparison of the DP derived methods for a sample drive cycle is shown in Figure 2.6.
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Figure 2.6: Comparison of DP derived methods and Autonomie baseline control on sample drive cycle

For the sample drive cycle in Figure 2.6, the FC-DP method outperformed the PP-MPC method
which outperformed the CV-MPC method and all outperformed the Autonomie baseline control
method. Because of the double-sided charge-sustaining penalty, all SOC traces started and ended
at exactly 50% which means that fuel consumption can be compared directly without electrical
equivalence. For the sample drive-cycle, FC-DP was able to outperform PP-MPC because it has
more freedom to deviate from the start and finish SOC constraints. Generally, the longer the time
horizon, the more effective PP-MPC should become. A study was conducted on the UDDS, US06,
and HWFET EPA dynamometer drive-cycles to demonstrate this. Results for the study are shown

in Table 2.8.
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Table 2.8: Fuel Economy km/L for 2010 Toyota Prius model with DP derived methods and Autonomie
baseline on EPA dynamometer drive cycles (Time Horizon only effects the PP-MPC and CV-MPC methods)

Time
Drive-Cycle Baseline FC-DP PP-MPC CV-MPC
Horizon
UDDS 10 28.28 40.32 39.11 35.10
UDDS 15 28.28 40.32 39.45 35.13
UDDS 20 28.28 40.32 39.71 35.00
US06 10 17.57 20.05 18.20 17.50
US06 15 17.57 20.05 18.44 17.20
US06 20 17.57 20.05 18.76 17.21
HWEFET 10 28.13 28.59 26.30 24.24
HWEFET 15 28.13 28.59 26.56 24.90
HWEFET 20 28.13 28.59 26.64 24.37

An immediately noticeable trend is that increases in time horizon resulted in better FE for
PP-MPC which allowed the PP-MPC FE to approach but not reach the FE produced by the FC-
DP method. Another noticeable effect is that the relative efficacy of the methods varied between
the drive-cycles with the DP derived methods showing massive improvement over baseline in the
stop-and-go UDDS drive-cycle, while the PP-MPC and CV-MPC methods did not result in FE
improvements for the relatively static HWFET drive cycle.

That DP derived methods present the greatest potential for FE improvement in low speed stop-
and-go conditions is not a surprise. Low speed stop-and-go conditions are where traditional control
methods perform worst as they are unable to operate the IC engine in its most efficient areas. DP
methods use knowledge of the future speeds of the vehicle to continue to operate the IC engine

efficiently in stop-and-go conditions. An interesting result is that, even with inaccurate information
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about future vehicle velocity, the CV-MPC method significantly outperformed Autonomie baseline

by a significant amount on the UDDS drive-cycle.

2.5 Results

2.5.1 Direct Analysis of Velocity Prediction Accuracy using MAE

Based on the results of the general study documented in Section 2.4.3, a second, specific, study
was carried out in order to optimize prediction fidelity from LSTMDeep Neural Network (DNN)s.

Long Short-Term Memory (LSTM) ANNSs are a special case of Recurrent Neural Network
(RNN)s developed by Hochreiter and Schmidhuber [81] which utilize LSTM neurons in hidden
layers. While classical recurrent neurons use a single gate to establish the relationship between
inputs and outputs, LSTM neurons contain multiple gates which determine how much information
should be remembered and forgotten within the neuron as well as the weighting of old and new
information. The presence of the remember and forget gates allows LSTM neurons to utilize
information from multiple time steps in the past [82]. For this reason, LSTM networks are ideally
suited for problems where immediate and relayed reactions to inputs are present.

Because of its demonstrated feasibility, the LSTM is the prediction model which will be

focused on. The following optimal architecture was arrived at:
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Table 2.9: Structure of Optimal LSTMDNN

Layer Composition
1 Input layer - 72,5 fully connected
2 64 LSTM neurons
3 Dropout - 10%
4 Batch normalization
5 32 LSTM neurons
6 12 LSTM neurons
7 Output layer - 1oy purs fully connected

The LSTMDNN described in Table 2.9 was selected for its high performance and reasonable
training time. Adding more complexity to the network past the optimal network failed to generate

significant performance gains. The LSTMDNN was trained on the following groups of signals:

Table 2.10: Data Groups for LSTMDNN

Group Label Composition

Speed, Acceleration, Engine Speed, Gear,

A Steered Angle, Throttle Position, Brake
Pressure

B A+HS+LV

C A+ HS + LV + SPaT + SS

The data groups were selected to reflect the data available to different categories of vehicle. A

vehicle with neither ADAS nor connectivity only has access to A. Vehicles with ADAS and GPS
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navigation but no infrastructure connectivity have access to A and B. CAVs have access to all data
groups. For groups A, B, and C a cross-validation study was run wherein the LSTMDNN was
trained on 9 random laps, validated on 2 random laps, and tested on 2 random laps 30 times. The
average MAE:s for the cross-validation study are shown in Figure 2.7. The standard deviations of

MAESs were all less than 5% of the mean values.
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Figure 2.7: MAEs for LSTMDNN trained on data groups A, B, and C for 10, 15, and 20 second horizons

As is evident in Figure 2.7, the difference in prediction performance between LSTMDNNs
trained on the different data groups was minimal if slightly favoring group B over A and C. A

visual comparison of the predictions for all groups at 10 and 20 seconds is shown in Figure 2.8.
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Figure 2.8: Predicted (black) vs. actual vehicle velocity (blue) for LSTMDNN trained on all data groups at
10 and 20 seconds prediction horizon

As the prediction window increases, the LSTMDNN predictions are still able to rougly hold
the shape of the velocity trace but produce a greater volume of mis-predictions. The predictions
generated using LSTMDNNS trained on the different groups look slightly differently and produce

slightly different MAEs but the time horizon length has, by far, the greater impact.
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2.5.2 Overall System FE Output

Using the predictions from the cross validation study mentioned in Section 2.5.1, FE
simulations were conducted using the DP derived methods and Autonomie baseline controls. The
mean FE results for the study are listed in Table 2.11 and percentage improvements over baseline

for the DP derived methods with all data groups and at 10, 15, and 20 seconds are shown in Figure

2.9.
Table 2.11: FE (km/L) simulation results based on cross-validation study predictions
Group Prediction
Baseline FC-DP PP-MPC RP-MPC CV-MPC
Label Horizon (s)
A 10 18.33 24.10 21.78 20.73 20.07
B 10 18.33 24.10 21.78 20.85 20.07
C 10 18.33 24.10 21.78 20.83 20.07
A 15 18.33 24.10 21.87 21.24 20.01
B 15 18.33 24.10 21.87 20.45 20.01
C 15 18.33 24.10 21.87 20.15 20.01
A 20 18.33 24.10 2222 20.80 20.00
B 20 18.33 24.10 2222 20.75 20.00
C 20 18.33 24.10 22.22 21.05 20.00
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Figure 2.9: Percentage FE improvements for DP derived methods for all data groups and time horizons

2.5.3 Results Summary

The FE results for the DP derived methods, when taken in conjunction with the results of the

LSTM prediction illustrate several trends:

1. With perfect predictions MPC methods will produce better FE results for longer prediction

horizons.
2. A greater volume of mis-predictions will result in worse FE results for MPC methods

3. The small differences in prediction MAE observed between the data groups at all three
time horizons are insufficient to explain the large differences observed in FE percentage
improvement over baseline for the RP-MPC method between the data groups for the 15 and

20 second horizons.

It is illustrative that, for all cases, the average performance of the RP-MPC method came in

between that of the CV-MPC and PP-MPC methods. The PP-MPC method, by definition, produces
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no mis-predictions while the CV-MPC method, by definition, produces only mis-predictions when
the vehicle is moving. It would be logical for the RP-MPC method which produces some degree
of mis-prediction to produce FE improvements which are somewhere between those produced
by the CV-MPC and RP-MPC methods. The differences in vehicle future velocity prediction
MAE between the data groups shown in Figure 2.7 were relatively small where the differences
in FE improvement performance based on those predictions shown in Figure 2.9 were significant.
Furthermore, no consistent trend links the prediction MAE with the percentage FE improvement
which leads to the conclusion that MAE is an insufficient metric to describe mis-prediction levels
with respect to the RP-MPC method. Further research should be conducted to investigate whether
other metrics serve better in this role.

The robustness of DP to velcity prediction error is directly demonstrated in the CV-MPC
method which uses a "null" prediction of constant current speed over the entire prediction horizon.
It showed significant improvements over baseline while the RP-MPC method showed significant
improvements over CV-MPC. An examination of the data trace for all methods using predictions

based on group A data for a 10 second prediction horizon are shown in Figure 2.10.
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Figure 2.10: FE simulation data trace for all methods
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It can be clearly seen that the MPC methods discover similar local optima, and produce similar
optimal state trajectories while the FC-DP method, with much more freedom to deviate from the

final SOC constraint, takes a substantially different path and ends up using less fuel.

2.6 Conclusions

In order to to demonstrate the function of various implementations, the data available to
different types of vehicle were classified, an extensive real-world driving dataset was collected
which incorporated said data, ML and ANN methods were used to predict the ego vehicle future
speed using different groups of data, and the best predictions were used in FE simulation to
determine the effectiveness of practically implementable POEMS. The results of the velocity
prediction study showed that when using a LSTMDNN, high-fidelity velocity prediction was
possible using only data which is available to conventional vehicles without ADAS or V2X
connectivity and that the addition of ADAS and V2X connectivity resulted in modest fidelity gains.

The results of the FE study showed the following:

* FE improvement achievable with RP-MPC approaches that achievable with PP-MPC.
* RP-MPC consistently outperformed CV-MPC.

* Predictions made with ADAS and V2X resulted in greater FE improvement in the 20 second

window.

An unavoidable conclusion is that the relationship between prediction fidelity and FE
improvement using DP-derived methods cannot be explained by differences in prediction MAE.

This study shows that POEMS implementation on HEVs and PHE Vs is feasible with causal and
implementable prediction and control technologies and would lead to significant improvements in
HEV and PHEV fleet efficiency if implemented. The same system architecture as autonomous
vehicles (perception, planning, control, plant) can be applied to energy efficiency through the

deployment of POEMS enabled vehicles. The FE improvement which would result is significant
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and the technology can be implemented currently. The results of this study thus serve as a step

towards real world implementation and commercialization.

2.7 Summary

The purpose of research directed towards RQ1 was to determine what energetic benefits could
be attained through connected vehicle optimal control. The work in this chapter focused on
POEMS for HEVs. There are two main questions surrounding POEMS. The first of which is what
effect prediction accuracy has on control effectiveness and the second is how to produce sufficiently
accurate predictions. The study on which this chapter was based built on previous work by the
author [48, 62] which used real world data to perform an investigation into velocity prediction
methods. The results of the previous work showed that LSTM DNNs were well suited to the
velocity prediction task and were able to produce high fidelity results with various combinations of
signals. This work was extended to include an analysis of what energetic benefits could be attained
when using the LSTM velocity predictions to inform optimal energy management strategies.
Results indicated that gains in the 10% to 15% range could be attained in urban driving conditions
and that predictions could be made with sufficient accuracy without the benefit of infrastructure
communication. Overall the results of the study indicated that large benefits could be expected

from commercial implementation.
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Chapter 3
Real Time Implementation Comparison of Urban

Eco-Driving Controls

3.1 Preface

This chapter is derived from [83] which was primarily authored by this dissertation’s author.
Important help was provided by Chon Chia Ang in code development, Dr. Zach Asher, Dr.
Richard Meyer, and Dr. Ilya Kolmanovsky in conceptualization and presentation. The content
of the paper addresses RQ1.T2. RQI focuses on determining what energetic benefits can be
attained for Connected Autonomous Vehicles (CAVs) through the application of infrastructure
connected optimal control. In this chapter the focus is on using optimal Eco-Driving control to
improve the energy efficiency of Battery Electric Vehicles (BEVs) in urban driving conditions.
Urban driving provides a highly complex set of constraints which define possible trajectories for
individual vehicles deriving from traffic and, ultimately, traffic signals. With knowledge of future
traffic signals it is possible to implement optimal control and attain substantial energy savings
without reducing average speed. This chapter summarizes and categorizes the existing literature
on the subject then implements selected methods to evaluate their potential energy savings and

feasibility as real-time controls.

3.2 Overview

CAV technology has the potential to enable significant gains in Energy Economy (EE). Much
research attention has been focused on autonomous Eco-Driving control enabled by various
methods. In this study, the state of the literature on autonomous Eco-Driving control is reviewed,
an overall systems description of Eco-Driving control for a CAV is provided, and representative

methods are evaluated comparatively against each-other in simulation. Simulations are conducted
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using real-world traffic signal data and a validated Future Automotive Systems Technology
Simulator (FASTSim) model. Results indicate that an EE improvement in the range of 5% to
15% is attainable depending on the method and cost function used. In this paper it is shown that
Dynamic Programming (DP) methods are most effective in improving EE but are significantly
more computationally expensive than other methods. Genetic Algorithm (GA) methods are shown
to present the most potential in terms of EE improvement and run-time. Results also indicate
that velocity sensitive cost functions allow all methods to perform better than pure acceleration

minimization.

3.3 Introduction

In response to rising concerns over climate change and energy costs, a significant portion of
automotive development effort has gone into the reduction of energy use and Green-House Gas
(GHG) emissions from road vehicles. Over time, vehicles have become significantly more efficient
in terms of both EE and GHG emissions per mile [84, 85] under pressure from environmental
regulations from the U.S. Environmental Protection Agency (EPA) and its global equivalents which
exert ongoing pressure on Original Equipment Manufacturers (OEMs) to continue this effort [86].
In order to improve vehicular energy efficiency, traditional Internal Combustion Engine (ICE)
powertrains have incorporated electric motors and evolved into hybrid electric vehicles and BEVs
[87] which promise further greenhouse gas reductions per vehicle [88]. Regardless of powertrain
technology and regardless of methods of power generation, the pressure to reduce vehicular energy
consumption will continue to be present.

Vehicle energy efficiency is also subject to modes of operation. Eco-Driving is a strategy
designed to reduce fuel consumption by minimizing accelerations and unnecessary braking events.
Eco-Driving is well known and has been shown to be effective when employed by human
drivers [26]. As an example, Eco-Driving is taught as a part of drivers’ education in Singapore
and has resulted in a EE improvement of 11% to 15% there [27]. Differences in culture,

infrastructure, and available technology will play a major role in determining the effectiveness
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of efforts to promote manual Eco-Driving. Vehicular autonomy and CAV technology provide a
more general opportunity for the application of Eco-Driving strategies because they circumvent
driver acceptance/training issues. When compared to a human driver (i.e. manual Eco-Driving), a
CAV has the ability to follow optimal trajectories precisely and can take into account information
which is beyond line-of-sight.

Compared to manual Eco-Driving, autonomous Eco-Driving yields the following potential

benefits:

Ability to precisely follow optimal energy traces;

Ability to account for traffic information which is beyond line-of-sight;

 Ease and scalability of implementation;

Improved driver/passenger acceptance.

A great variety of solutions for autonomous Eco-Driving control have been put forward in the
literature. This diversity is due to the complicated nature of the problem and the many dimensional
design space which results from it. To the author’s knowledge, no comprehensive, comparative
study exists. This study attempts to address this research gap by summarizing and subdividing
Eco-Driving control strategies, defining a framework for comparative implementation of solver
methods, implementing a selection of common methods, and evaluating these methods in terms
of performance and practicality using real-world data [28]. The current state of the literature is
discussed in Section 3.4, a system and subsystems overview for an assumed Eco-Driving CAV is
provided in Sections 3.5, 3.6, 3.7, and 3.8, results are presented in Section 3.9, and conclusions are

presented in Section 3.11.

3.4 Literature Review

Much research exists in the area of autonomous Eco-Driving controls. In conducting the

literature review, the authors were particularly interested in publications which proposed methods
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which might be implemented in real-time. A real-time control was defined as a control which was
explicitly or could be implemented in a receding horizon context. Such a control should be able to
execute multiple times per second.

The authors propose that the methods reviewed may be categorized by purpose and structure as
follows. First, a division can be made into the categories of rules-based and optimal. Rules-based
methods serve the purpose of providing simple and computationally light algorithms for computing
target speed on an instantaneous basis. Rules-based methods often mimic the heuristics that human
drivers follow when attempting to minimize energy consumption such as lighter accelerations
and longer following distances. By contrast optimal methods attempt to find a minimum energy
consumption trace for a given time or distance horizon. Optimal methods, thus, require information
about future conditions even if this is done purely with assumptions. Within the set of optimal
methods one can further subdivide into globally optimal methods and locally optimal methods.
Globally optimal methods serve the purpose of finding the control which results in the global
minimum energy consumption. For globally optimal methods function dictates form and all
methods proposed are variations of DP. Locally optimal methods serve the purpose of finding a
control trace which is more efficient than one which could be attained by a rules-based method but
require less computational time than globally-optimal methods. Locally optimal methods often
involve transcribing the problem into the time domain and performing trajectory optimization.
As will be seen in Section 3.9, local optima will often resemble the global optimum far more
closely than they do a rules-based method’s solution. The authors propose a taxonomy based
on groupings in form and function which divides methods into the following categories: Rules-
Based Eco-Driving (RBED), Discretized Control Optimization (DCO), and Polynomial Trajectory

Optimization (PTO).

3.4.1 Rules-Based Eco-Driving (RBED)

RBED is a subset of autonomous Eco-Driving control wherein a vehicle reduces its energy

consumption through a set of predefined rules which are functions of vehicle states. Due to
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their feed-forward nature, RBED methods are relatively simple to implement. Compared to
normal human driving behavior, RBED methods capable of yielding considerable fuel economy
improvement [89, 90]. A common RBED algorithm is Intelligent Driver Model (IDM) [91] with
several works presenting modified versions of the method in Eco-Driving simulations [92-95].
Although non-IDM RBED methods appear in the literature [96-98], IDM and its derivatives
dominate RBED literature and are often used as a comparison point in optimal Eco-Driving
literature. When implemented on a sufficient percentage of vehicles, RBED methods have shown
promise in traffic calming [92, 99]. RBED control has also been extended to cooperative and

centralized fleet control schemes [93, 94].

3.4.2 Discretized Control Optimization (DCO)

The purpose of a DCO method is to compute optimal controls for a vehicle at a set of
discreet points in time or distance. DCO methods require a state transition model and information
about future exogenous inputs. The DCO category consists, primarily, of DP and Reinforcement
Learning (RL) methods.

DP [76, 100], is a well known mathematical optimization method which will produce globally
optimal solutions to control problems subject to a chosen discretization. A realization of the DP
derived optimal solution depends on whether the chosen discretization and the model appropriately
matches the real world application. In order to account for constraints in position and speed
inherent to autonomous Eco-Driving control, both must be problem states. The control in the
autonomous Eco-Driving problem is acceleration or a related control such as throttle. Such a 2
state 1 control DP algorithm is presented in [101, 102] which minimizes fuel consumption while
navigating around traffic signals. [103] presents a 2 state 1 control DP algorithm for heavy duty
trucks in highway conditions. Both methods must execute at a low rate and serve to set targets
for a lower level controller. The primary issue with DP methods for real-time implementation is
that run-times scale exponentially with the number of states and controls. This scaling issue is

often referred to as the "curse of dimensionality". In the autonomous Eco-Driving literature DP
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solutions proposed as real-time controls use sub-optimal implementations of DP to avoid the issue.
DP methods are also often proposed as a high level control algorithm, executing at low frequency,
which serves to set targets for low a level controller. It is most common to see DP implemented as
a comparison point for the performance of another proposed solution with the caveat that the DP
solution is not a candidate for real-time implementation.

Sub-optimal implementations of DP are found in [104—107]. [104, 105] overcome the run-time
scaling issues by removing position as a problem state. This is accomplished by adding a tunable
constant cost to the running cost to ensure that the correct final distance is reached at the correct
time. This tunable parameter must be found via numerical root-finding. Overall this method,
which can be thought of as a pseudo 2 state DP method. The pseudo 2 state method was found
to execute in less time than an equivalent 2 state DP method which emphasizes the importance
of the run-time scaling effects inherent to DP. A major limitation with [104, 105] is that, having
removed the position state, it is not possible for the optimization to account for traffic signals
in fixed positions making the method less applicable for urban Eco-Driving. [106], proposes an
Approximate Dynamic Programming (ADP) solver for traffic-signal constrained driving which
uses a non-optimal rollout method to approximate the cost-to-go. [106] accounts for traffic signals
by determining if it is feasible to pass in a "go" phase or, if not, implementing eco-approach and
eco-departure. [107] proposes a method by which pre-computed DP solutions may be adjusted
to account for perturbations in external inputs without having to re-compute the DP solution thus
reducing the required frequency of DP method evaluations for real-time control. In all cases, global
optimality is traded for reductions in run-time.

[108—113] propose DP based method where the DP solution is computed at a low frequency
and is used as a target by a lower level controller. Exemplary of the type is [114] which uses Vehicle
to Infrastructure (V2I) information and DP to set velocity targets for a cruise control system for
urban driving. This method was tested both in Hardware In Loop (HIL) simulation and on-road

and was shown to produce a 30% EE improvement at a cost of an 8% increase to travel time.
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RL based methods are proposed in [115-117]. [115] uses RL for optimizing motor power
control for an electric vehicle subject to road grade but not traffic. The RL control was found
to perform nearly as well as DP for the same problem. The algorithms seen in [116] and [117]
are focused on comfort (reduction of jerk) and collision avoidance rather than Eco-Driving and
also found similar performance to equivalent DP solutions with lower run-time. Ultimately
reinforcement learning suffers from the same disadvantages that DP does for the application,

namely the long run-time required to compute the strategy but not to the same extent.

3.4.3 Polynomial Trajectory Optimization (PTO)

The optimal Eco-Driving optimal control problem can also be solved as a trajectory
optimization problem by transcribing into the time domain. Direct transcription transforms the
problem into a n dimensional optimization with the number of dimensions set by the level of
discretization. but at lower levels of discretization. Run-time for the trajectory optimization will
scale with dimensionality depending on the solver used. At very high levels of discretization
linear interpolation can be used between trajectory points. In order to reduce run-time a
lower discretization may be used but this will necessitate polynomial interpolation between
the optimization points. Because every segment of an interpolation polynomial is a function
of multiple knot points, using an interpolation polynomial comes at the cost of introducing
nonlinearity into the problem. PTO methods may use bounded nonlinear solvers such as
Interior-Point Optimization (IPOPT) or Sequential Least Squares Programming (SLSQP) or
metaheuristics.

PTO is commonly used for motion planning in robotics [118]. Nonlinear bounded solvers are
used to perform PTO for autonomous Eco-Driving in [119-121]. A comparison to DP is provided
in [122] for the related optimal energy management problem where the PTO method, using a
nonlinear bounded solver was shown to be able to approximate the globally optimal solution and
to produce a solution in orders of magnitude less time than DP. The particularities of the optimal

Eco-Driving problem are difficult for bounded nonlinear solvers to deal with. The issue is that
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vehicle motion is subject to time varying constraints in position caused by other vehicles and
by traffic signals as well as in speed by other vehicles and speed limits. These constraints will be
discussed in Section 3.6. The combination of nonlinearity caused by interpolation polynomials and