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ABSTRACT 

Automatic control of canal network is a key solution for modern water-saving 
irrigation, and it is also a vital technique puzzle of the Middle Routine of the 
South-to-North water transfer project of China. The design of the controller is 
based on a liner mathematical model deduced from Saint-Venant Equation system, 
but the S-V Equations are a system of first order partial differential equations. A 
state-space model of a cascaded canal system is used in this paper to analyze the 
uncertainty including the uncertainty of the system itself and the uncertainty 
introduced in the procedure of mode-building. This uncertainty will be a 
precondition for the design of a robust controller. Using the liner model as the 
nominal case, the uncertainty is measured by the largest singular value of the 
distance matrix of the models. At last a simulation case of six canals is given 
together with quantificational describe of uncertainty.  

INTRODUCTION 
 

A canal system is a complicated system built with water flow, controlling gates 
and corresponding measuring equipments. The signal is mainly carried by water 
wave. The main equation system that describes the dynamic procedure of open 
canal flow is the S-V Equation system, which is a first order partial differential 
equation system. Ordinarily this equation system could not be solved directly. The 
water wave in open canal is a gravity wave, and the wave velocity is proportional 
to the square root proportion of the equivalent water depth. So it is usually not 
large. So the system has a large time-lag and is highly nonlinear. Additionally, 
there are strong coupling effects among the reaches, and adding with the 
uncertainty disturbance such as wind wave and unscheduled water withdraw, this 
system may be very complicated. 
 
The design of the controller is based on the state-space linear mathematical model.  
One key limit of modern control theory is that the mathematical model must 
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describe the real system accurately.  In another words, the design of the 
controller relies on the accuracy of the mathematical model. The linear state-space 
model of the canal system is built by truncating the Taylor series and taking the 
first order term.  The ignored higher order items will bring uncertainty.  How to 
account for this uncertainty and introduce it into the controller design procedure 
so that the system can tolerant this difference is the main task of robust control. 
The final robust controller can limit the influence of this uncertainty within limits, 
so the model uncertainty measurement is very important.      

THEORY BACKGROUND 

An effective canal automatic control system must choose an appropriate operation 
method according to hydraulic characteristic and function of its own. The method 
of operation directly affects the canal regulation volume of water and has a great 
influence to the canal operation, stability. The basic methods of operation are 
constant downstream depth, constant upstream depth, constant volume and 
controlled volume operation method.  The main idea of the constant volume 
method is to keep the water volume in the canal pool constant by keeping the 
middle point of the water surface constant. In this way, the water volume of 
neighboring canal reaches can feed each other. The canal system can meet the 
water volume demand by itself, so it has a faster respone. The following model is 
based on this idea. 

 
Much work has been carried out for the canal network modeling and many 
models have been developed. But these models may not make good balance on 
the accuracy and the simplicity. Usually the S-V equations are solved by 
characteristic method or explicit difference method. According to our experience, 
the characteristic method has larger error when discharge is large; its calculation 
will lead to a flow imbalance. The explicit difference method is easier to program 
but inaccurate. In this paper, the Preismann implicit scheme is used because it has 
high accuracy and can reach unconditioned convergence. 

MATHEMATICAL MODEL 

The continuity equation and the momentum equation of S-V Equations can be 
discretized by Preissmann implicit scheme, and expanded at the target operating 
point with Taylor series into the following two matrixes: 
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The coefficients and the calculation procedure can be found in reference [1]. 
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The change of discharge is reflected by the change of water level, so accuracy of 
the discharge calculation is vital to the accuracy of discharge adjustment. Actually, 
the gates are vary in type, shapes and dimension, so there may be no unique 
discharge calculation formula. The most popular one is the discharge formula of 
large orifice outflow. But in this formula the discharge coefficient varies with the 
change of flow rate so it is hard to fix. In experimental study, Henry’s (1950) 
method for the calculation of discharge coefficient for free outflow and 
submerged outflow is widely accepted. So in this paper, Henry’s formula is used 
to calculate the gate discharge. The control matrix for gate node is: 
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Here the function f(x) is the conducted form Henry’s equations [1]. 
 
Generally, water intake in canal network is in the vertical direction to flow. With 
the scheduled increase or decrease of discharge, the water level at the intake point 
will rise or drop. This is called lateral flow. For canals at the size of the 
South-to-North water transfer project (China), while the water intake flow is 20 or 
50m3/s, the intake point will have a drop of 1mm and 3mm separately. Because 
this drop is relatively small, we ignore it in modeling. So the water level 
relationship at intake node is continuous. 
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To simplify the model, in the control of multiple-canals, we assume that upstream 
and downstream ends of the canal system are large reservoirs which insure that 
the first and last node can remain constant. Because the state variable that we take 
is the deviations value of water depth and flow rate from the operating point, the 
water depth variables at the up and down border point equal zero. 
 
Putting the coefficients about the δz and δQ at ordinary node, the gate node and 
the water intake point node together into the corresponding position at the AL and 
AR matrixes, the coefficient of δu into the matrix B and coefficient of δq into 
matrix C, we can get: 
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)()()1()1( tqCtuBtxAtxA RL δδδδ ∆+++=+                     (4) 

Multiply both sides with 1)( −
LA , then 

)()()()1( tqtutxtx δδδδ Ψ+Γ+Φ=+                          (5) 

Here RL AA ∗=Φ −1)( , it is the feedback matrix of the system, BAL ∗=Γ −1)( , the 
control matrix, CAL ∗=Ψ −1)( , the system disturbance matrix. )(txδ  is the state 
vector, )(tuδ  is control vector and )(tqδ  is disturbance vector. 

We define the output equation as )()( txHty δδ = , where H is the output matrix. 

MODEL UNCERTAINTY  

Because the nonlinear model is “waving” around the linear nominal model, we 
can use corresponding “amplitude” to describe this range. If we can calculate the 
maximum value of difference inform the target, it can serve as a measurement of 
this uncertainty. Robust controller designed from this maximum uncertainty can 
stabilize the system in this series of uncertainty.  
 
There are many ways to describe uncertainty: multiplication uncertainty, addition 
uncertainty, and coprime factor uncertainty, among these the first two ones are 
more popular. 
 
(1) multiplication uncertainty 

))(1)(()(~ psWspsp ∆+= , 1<∆
∞

p                   (6) 

Here p(s) is the nominal model, p∆ is the unknown disturbance, W(s) is the 
border function of p∆ , it is also called weight function. 
 
(2) addition uncertainty 

psWspsp ∆+= )()()(~ , 1<∆
∞

p                  (7) 

Ordinarily, most uncertainty measurement of robust control uses multiplication 
uncertainty, because it is easier to deal in math. Using multiplication uncertainty, 
the relations between nominal model and original model can be described as: 

[ ] )()()( ωωω jGjLIjG A+=                    (8) 

The matrix )( ωjL  bounds G around GA, it describes the uncertainty in the form 
of multiplication. 
When G and GA are known, we can get )( ωjL  from equation (8), usually largest 
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singular value [ ])( ωσ jL  is taken as the norm of )( ωjL . 

UNCERTAINTY SOURCES 

In the modeling procedure of this paper, the non-structural uncertainty comes 
from two aspects. First the physical model is a dynamic model, the geometry 
parameter has errors and operating point varies with time. The second kind of 
uncertainty comes from the model-building procedure, the discrete and 
liberalizing all can introduce uncertainty.  
 
The uncertainty of the physical model itself  
 
(1) Uncertainty introduced in construction 

 
Geometry parameters include length of canal, bottom width, side slope, vertical 
slope, canal depth and so on. Ordinarily, when a project is designed and 
constructed, the canal geometry parameters fit some Chinese design and 
construction codes or standards. According to these codes and standards, the 
construction dimension error must not exceed 10mm. In such condition, the 
construction error is limited in 0.5%. For the canal length, we always get this data 
by measuring after construction, and the measuring error is also within 0.5%. So 
for large canal system like in the South-to North water transfer project of China, 
the geometry parameter error is small. 
 
(2) Outside disturbance in operating  

 
Real canal systems operate in natural conditions, so there are many natural and 
man-made disturbances in its operation process. 
 
First we discuss the natural disturbance. One main natural disturbance is wind 
waves. Here we take a wave as a kind of stochastic disturbance like white noise.  
It is described by a sine function of time (t): 

KtAhdis sin=∆                                       (9) 

Here A is the amplitude, K is the wave frequency. We will do simulations to 
demonstrate its influence later. 
 
Man-made disturbance is mainly caused by unscheduled water inflows, and 
unexpected offtakes downstream. It generally leads to the change of flow rate in 
canals, and departure from designed operating point. So the next section focuses 
on the uncertainty caused by the unscheduled water intake and the change of 
operating point.  
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The uncertainty introduced in the modeling procedure 
 
The gap between the nonlinear model and the linear model is the truncation error 
of Taylor series. It is an extreme-value problem and in real operating practices the 
independent variables alter in a very limited zone. If we seek for the extreme 
value without any precondition, the result model uncertainty will be much larger 
than necessary and it is almost impossible to design a controller which can 
‘endure’ such a large uncertainty. So we linearize the nonlinear system at many 
operating points, measure the difference between these models and the original 
one, and take this as a measure of the truncation error of Taylor series. Of course, 
this method is quite conservative, but it can reach acceptable result for the desired 
limited changes. So the uncertainty problem becomes: 

[ ] [ ]IjGjGjL Aii
−= − )()(max)( 1 ωωσωσ                (10) 

CASE STUDY 

In order to study the uncertainty of the canal system model in quantity, we are to 
build model of a given case. It is a multi-reach canal system made of six reaches, 
the geometric parameters come from the design material of South-to North water 
transfer project, as shown in Figure 1 and the canal dimensions can be found in 
Table1. 

Figure 1. Profile of test case 
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Table 1.Canal parameters 

Canal number 
parameter 

1 2 3 4 5 6 

upstream 4.8 4.0 3.2 2.4 1.6 0.8 Bottom 
height(m) downstream 4.0 3.2 2.4 1.6 0.8 0.0 

length (m) 2000 2000 2000 2000 2000 2000 
Initial downstream 

water level (m) 4.0 3.8 3.6 3.4 3.2 3.0 

Roughness  0.015 0.015 0.015 0.015 0.015 0.015 
Bottom width (m) 15 15 15 15 15 15 

Side slope 2.0 2.0 2.0 2.0 2.0 2.0 
Bottom slope i 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 

Width of control 
gate(m) 15 15 15 15 15 15 

Initial discharge(m3/s) 60 55 50 45 40 35 
 
The whole system is made up of six reaches, and 32 nodes. The size of the 
state-space equation: AL is a matrix of 55×55, AR  is 55×55, B is 55×7, C is 55×12. 
The parameter matrix Φ  is 55×55, Γ  is 55×4, disturbance matrix Ψ  is 
55×12. 
 
(1) Influence of geometric parameter uncertainty 

 
Construction error is within 10mm, the length error of reaches is within 5%, so 
here we give the variability of canal geometric parameters in Table 2. 

Table 2. Variability in canal geometric parameters 

 Length of reach 
(m) Bottom width(m) Width of control 

gates(m) 
Nominal system 2000 15 15 

Case1 2010 15.01 15.01 
Case2 1990 14.99 14.99 

 
Now we get three groups of linear system models. If we measure the uncertainty 
of case1 and case2 from the nominal one by method above, we can get the result 
of Table 3. 
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Table 3. Measurement for uncertainty form turbulence in canal geometric 
parameter 

 Uncertainty for matrix Φ  
(%) 

Uncertainty for matrix Γ 
(%) 

Case1 0.088 0.28 
Case2 0.09 0.27 

 
From the above results we can see that the influence of variability in canal 
geometric parameters is making Φ  matrix has ±0.1% uncertainty, and Γ matrix 
has ±0.3% uncertainty. 
 
(2) Wave disturbance analysis  

 
We simulate two kinds of operating condition. First we assume A=0.15 and 
K= 40π ( it is inverse solution of a cycle of 80s), the gate discharge line is in Fig. 
2. 

 

Figure 2. Gate discharge in waving disturbance (K＝ 40π ) 

The second condition, A=0.15 and K= 30π  (a cycle of 60s), the gate discharge 
line is in Fig 3. 
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Figure 3. Gate discharge in waving disturbance (K＝ 30π ) 

Comparisons and analyzes of the two simulation results show that, K＝ 40π  is 
the worst condition. If the wave cycle is not an integer multiple of the system time 
step, the wave influence is quite limited. If K＝ 30π , the discharge can have very 
good dynamic performance, the wave only influences the water level error visibly. 
If amplitude was made 2 times of original, the system also has acceptable 
dynamic performance, which will not be listed here. 

Figure 4. Illustration of wave cycle and system time step 
 

Figure 4 illustrates the wave height when the wave cycle differs from the system 
time step, the real sinusoid line is the water level wave near the gate, and the dash 
line is the system time step. The cross point is the water level height at measure 
time.  We can read from the plot that this height reaches only one max in one 
cycle. Mostly it is far smaller than amplitude A, so the influence of wave is cut 
down greatly. 
 
This means that while considering the influence of wave, the cycle is the key 
factor. To stabilize the canal system in some range of frequency, the discrete time 

t 

A 

-A 
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step should be chosen carefully. Since, the S-V equation is solved in the 
mathematical model using the Preissmann implicit scheme, the choosing of time 
step can ignore the restriction of the so-called Courant-Friederichs-Levy condition. 
In reality, a natural wave is not just simple sinusoid, so the cycle is a series of 
cycles ranging in a certain field instead of a fixed one, so the choice of time step 
should go beyond this field. 
 
(3) Uncertainty of operating point change  

 
In the test cases of this paper, the change of operating point can be realized by 
changing the flow rate of each water intakes. Since there are six water intakes. If 
we increase and decrease each water intake’s flow rate by 50% separately, and 
assume this to be the ranging filed of possible operating point change, we can get 
Table 4. 

Table 4. Operating point change 

Gate discharge QG1 QG2 QG3 QG4 QG5 QG6 QG7 
Nominal point 60 55 50 45 40 35 30 

case1 60 52.5 47.5 42.5 37.5 32.5 27.5 
case2 60 55 47.5 42.5 37.5 32.5 27.5 
case3 60 55 50 42.5 37.5 32.5 27.5 
case4 60 55 50 45 37.5 32.5 27.5 
case5 60 55 50 45 40 32.5 27.5 

Flow 
rate 

increase 
50% 

case6 60 55 50 45 40 35 27.5 
 

case7 60 57.5 52.5 47.5 42.5 37.5 32.5 
case8 60 55 52.5 47.5 42.5 37.5 32.5 
case9 60 55 50 47.5 42.5 37.5 32.5 
case10 60 55 50 45 42.5 37.5 32.5 
case11 60 55 50 45 40 37.5 32.5 

Flow 
rate 

decrease 
50% 

case12 60 55 50 45 40 35 32.5 
No 

water 
intake 

case13 60 60 60 60 60 60 60 

 
From calculating we get 13 groups of linear model. Measuring the uncertainty of 
all cases by the method above separately, the result is in Table 5. 
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Table 5. Measurement for operating point change  

 Uncertainty for matrixΦ  
(%) 

Uncertainty for matrix Γ  
(%) 

case1 2.04 2.33 

case2 6.51 6.23 

case3 6.72 6.48 

case4 6.75 6.72 

case5 6.75 6.96 

Flow rate 
increase 

50% 

case6 6.75 7.19 

case7 1.94 2.22 

case8 5.91 5.64 

case9 6.07 5.82 

case10 6.08 5.98 

case11 6.08 5.90 

Flow rate 
decrease 

50% 

case12 6.08 6.26 

No water 
intake case13 298.45 327.49 

 
From the above results we can see, the uncertainty brought by the changing of 
operating point is within 8%. We then calculate a extreme condition for shutting 
down all water intake, giving ±300% of uncertainty. So if the change of discharge 
is bounded in a certain range, it will introduce little uncertainty, larger flow rate 
change will lead to larger uncertainty. So if the change is in a small field, we can 
use a single mathematic model and the controller will stabilize the system. If the 
change is large, it should be broken down into n sub-procedures, modeling should 
be done in n steps, and controller should be solved separately to cut down the 
oscillation.   

SUMMARY 

The uncertainty of the system model impacts the design of a controller.  The 
flaw of modern control theory is it relies too much on the accuracy of model. As a 
highly nonlinear system, the canal control system will loose high-order terms 
through linearization, leading to an inaccurate mathematic model. In this paper, 
we try to discuss this uncertainty introduced in modeling and the uncertainty of 
the physical model. The multiple uncertainty (2 norm) is used to describe this. If 
we consider this uncertainty in the design of a robust controller, we will be able to 
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stabilize the system while it switches in a certain field. At last a test case is 
simulated and the results show that the ignored high-order items bring the main 
uncertainty.    
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