
DISSERTATION 

RADIAL BASIS FUNCTIONS FOR COLOR CONVERSION 

Submitted by 

Yue Qiao 

Department of Mathematics 

In partial fulfillment of the requirements 

for the degree of Doctor of Philosophy 

Colorado State University 

Fort Collins, Colorado 

Spring 2008 



UMI Number: 3400387 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

UMT 
Dissertation Publishing 

UMI 3400387 
Copyright 2010 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



COLORADO STATE UNIVERSITY 

April 10, 2008 

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED 

UNDER OUR SUPERVISION BY YUE QIAO ENTITLED RADIAL BASIS FUNCTIONS FOR COLOR 

CONVERSION BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE 

OF DOCTOR OF PHILOSOPHY. 

Committee on Graduate Work 

Dr. Nenad Rijavec 

Advisor 

-nMchd &A, 
Sfei 7. 4/ftfr 

Department Head 

n 



ABSTRACT OF DISSERTATION 

RADIAL BASIS FUNCTIONS FOR COLOR CONVERSION 

The most difficult and challenging task in color printing is to reduce costs while maintaining supe­

rior quality. This dissertation proposes significant enhancements to printer color conversion techniques 

including accurate nonlinear models that incorporate perceptual color difference metrics, lossless gray 

component replacement (GCR) transformations, optimized toner saving algorithms and numerical/per­

ceptual based gamut mapping methods. 

Radial Basis Functions (RBFs) combined with the Lv norm approximation with emphasis on L\, 

Li, and L^ were developed for color conversion. The exchange algorithm was employed in the L^ 

and L\ approximations with RBFs that satisfy the Haar condition. Both the Barrodale and Phillips 

(BP) algorithm for solving the dual problem and the Bartels and Conn's (BC) algorithm for solving the 

primal were extended to multidimensional color conversion. 

A new approach for lossless GCR was achieved by finding one dimensional color manifolds in the 

CMYK color space using multidimensional optimization techniques. We proposed objective functions 

for toner savings, cost savings, etc., with no quality degradation. 

The color conversion with the toner/ink limitation problem was solved via both L\ and L^ ap­

proximation algorithms in the neutral and saturated color regions respectively. The L\ algorithm was 

a modified Barrodale and Roberts (BR) primal algorithm with an added constraint, while the L^ al­

gorithm was developed based on the BP dual algorithm which extended the three-stage algorithm to a 

four-stage algorithm. 

A novel gamut mapping algorithm was developed based on the numerical model guided by a per­

ceptual color difference model. The direction of the gamut mapping is not fixed as in other methods. 

The algorithm transformed a connected out-of-gamut colors to connected colors around the boundary 

of the device gamut. The out-of-gamut colors in a small neighborhood vary continuously and smoothly. 

Our results indicated that the color conversion quality was significantly improved. The lossless 

GCR algorithm is accurate and efficient. Both the BP and BC algorithms for solving the toner/ink 

in 



limitation are able to convert colors from CIELab to CMY with any given toner/ink limitation. We 

foresee this research will have significant impact on the color reproduction industry. 

Yue Qiao 

Department of Mathematics 
Colorado State University 
Fort Collins, Colorado 80523 
Spring 2008 
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Chapter 1 

PROBLEM DEFINITION 

In recent years, the technology of color reproduction methods has undergone a radical transforma­

tion from an analog to a digital base. There has also been a dramatic change in the consumer market, 

where digital devices including digital cameras, color scanners, color monitors, color printers, etc have 

become significantly less expensive and widely available in homes and offices. While people are excited 

about the opportunity of reproducing color photographs via digital editing in their own homes, they 

also have started to realize that obtaining accurate, consistent and predictable color reproduction with 

different color devices and software is very challenging. For example, when an image is captured by a 

digital camera, displayed on a monitor and printed on a color printer, "what you see is what you get" 

usually does not hold true. This is shown in Figure 1. The image displayed on the monitor is often 

darker and less detailed than the original scene. In addition to the quality degradation in the monitor 

image, colors in the printed image are less accurate and less vivid. 

Similar to biological species in nature, digital devices, operating systems, applications and device 

drivers all interpret and produce color differently. However, the human visual system (HVS) is highly 

discriminating when discerning quality in color reproductions. Therefore, there is a strong demand for 

the technology to ensure consistent and predictable color across peripheral devices and across operating-

system platforms. This technology is called the Color Management System (CMS) 

The most challenging task in the CMS process is to characterize each color device in the color repro­

duction system. There are many issues involved in building the characterization model, such as the color 

space, color data approximation, gamut mapping, color difference tolerance, etc.[I]. This dissertation 

proposes significant enhancements to color conversion techniques including accurate nonlinear mod­

els that incorporate perceptual color difference metrics, lossless gray component replacement (GCR) 

transformations, optimized toner saving algorithms and numerical/perceptual based gamut mapping 

methods. We foresee this research will have significant impact on the color reproduction industry. 



Original Scene 

Image on-Monitor Printed Image 

Figure 1.1: Color reproduction problems. 

1.1 Introduction to Color Science 

Color science studies the interactions of light with an object, including its background and surround, 

and the observer. This is illustrated in Figure 1.2. The light source is characterized by its relative 

spectral power distribution; the object is measured by spectral reflectance; the HVS has three receptors 

characterized by three spectral sensitivity functions. The Commission International De l'Eclairage (CIE) 

has standardized these functions to represent the standard observers, for example the CIE 1931 2 degree 

standard observer. The output of the product of light source, object, and CIE observer thus has three 

values (X, Y, Z), which are called tristimulus values. When the tristimulus values of two colors are 

equal, i.e., (X1,Y1,ZV) = (X2,Y2,Z2), these colors are said to match. Based on tristimulus values, 

CIE developed perceptual color spaces such as CIEXYZ and CIELab. The glossary of color science 

terminology is found in Appendix: "Color Science Terminology". 
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Light source Observer 

Light ' Reflected Light 

Object 

Figure 1.2: What color science studies. 

1.1.1 Perceptual Color Spaces 

The perceptual color spaces, both CIEXYZ and CIELab, are visualized as three dimensional color 

spaces, where every color that human can see is uniquely located. The location of any color in the space 

is determined by its color coordinates. In the CIEXYZ color space, the components are X,Y, and Z; Y is 

luminance, X and Z do not correlate to color appearances. In the CIELab color space: the components 

are L*, a*, and b*; L* is lightness of the color (L* = 0 yields black and L* = 100 indicates white), a* 

is the value between red and green (negative values indicate green while positive values indicate red) 

and b* is the value between yellow and blue (negative values indicate blue and positive values indicate 

yellow). The CIELab color space can also be described using cylindrical coordinates: the L*C*h color 

space where C*b is the chroma coordinate, and h is the hue coordinate. Below are the mathematical 

expressions to convert a* and b* into C*b and h: 

C*ab = y/a** + &*2 

6* 
h = tan( —) 

Figure 1.3 shows the CIELab color space, while Figure 1.4 shows the CIELCh color space. Note 

that the asterisk (*) are normally left out of the color space name. 
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Figure 1.3: Illustration of CIELab color space. 
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Figure 1.4: Illustration of CIELCh color space. 
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The relationship between CIEXYZ and CIELab is described using the following equations: 

L* = 1 1 6 / ( £ ) - 16, 

a* = 500(/(^)-/(£)), 
•A-n * n 

6* = 2 0 0 ( / ( £ ) - / ( | - ) ) , 

where Xn,Yn,Zn are the tristimulus values of a reference white. It is also referred as the white point. 

x > 0.008856 

1 1 6 ' • ^ *> 7.787x + ^ , x< 0.008856 

1.1.2 Perceptual Color Difference Tolerances 

The color difference in either CIEXYZ or CIELab is calculated using the Euclidean distance. 

Though the CIEXYZ and CIELab color space are perceptual color spaces, they are not perceptually 

uniform color spaces as the Euclidean distance in the space does not correspond to perceptual distance. 

For example, all the colors that have the same Euclidean distance with respect to an anchor color are 

on a circle. However, these circles are transformed to ellipsoids when the human perceptual distances 

are measured. The major axis of the ellipsoid represents the higher tolerance of the color difference, and 

the minor axis of the ellipsoid represents the lower tolerance for the color difference. The CIELab color 

space is a perceptually more uniform color space than the CIEXYZ color space. Thus, the CIELab color 

space is the color space used most often for color-difference evaluations. 

Studies have shown that in the CIELab color space, the magnitude of the perceptual color difference 

depends upon the color location and the changing direction in chroma and hue [4]. CIELab is believed to 

increasingly overstate the magnitudes of perceived chroma differences. For example, the human visual 

system (HVS) is very sensitive to the change of chroma in the neutral color area, and is insensitive to 

the change of the chroma in a highly saturated color area. Figure 1.51 shows the size of the ellipsoid 

increases with the increase of the chroma value [5]. A few experimental hue supra-threshold data sets 

were generated independently by different research institutes. They all indicated that the CIELab color 

space is also non-uniform regarding hue angle, i.e., the thresholds of visual tolerances are a function of 

hue angle. These data sets were plotted in Figure 1.62. It shows that human perception is very sensitive 

to the hue change around hue angle 60 (Orangeish red color), and 300(blueish purple color) [5]. 

Reprinted with permission of John Wiley & sons, inc. 

2Reprinted with permission of John Wiley & sons, inc. 
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If we examine the non-uniformity of the CIELab color space in chroma and hue from another 

perspective, it means that CIELab colors have different characteristics at different locations. We believe 

the change of these characteristics is continuous. Understanding the local and global characteristics of 

colors is very important in color space modeling, and will be discussed further in later chapters. 

Color difference models are developed to correlate the perceptual distance with the Euclidean 

distance in the CIElab color space based on vast amounts of color difference experimental data [4, 6, 7]. 

The experiments provided the visual tolerance thresholds which define the visually approved matches 

based on the tolerance of observer's acceptability for pairs of colors. There are several CIE perceptual-

based color difference models [8, 9, 10, 11]. The most recent one is CIEDE2000, which calculates 

the perceptual difference by weighted lightness difference, chroma difference, hue difference, and the 

interaction between the chroma and the hue difference. However, the CIEDE2000 was developed for 

small color differences (industrial size), and it does not work well for large color differences [5]. The 

empirical weighted color differences of lightness, chroma, and hue are often used for this case, with higher 

weighting factors for hue and lightness differences, and a lower weighting factor for chroma differences. 

The color difference calculated using the Euclidean distance in the CIELab is called deltaE, also referred 

as AE, or dE^. CIEQQ represents the color difference calculated using the CIEDE2000. 

1.2 Introduction to Color Management Systems 

A typical imaging system consists of a source device (e.g., scanner, digital camera, etc), a display 

device (e.g., monitor) and an destination device (e.g.,printer). Each of these devices produces and 

interprets colors differently. This creates a significant problem in terms of color accuracy and consistency 

in color reproduction. For example, a customer's banking statement contains several object contents 

that originated from different devices and software: a personal photo taken by a digital camera, a car 

advertisement scanned from a picture, the background graphics created by a graphic package, etc. It 

is very hard to predict what these colors look like when it is displayed on different monitor or printed 

from different printers. It's not hard to believe that colors will be inconsistent and inaccurate. 

1.2.1 What Does Color Management Do? 

The goals of all color management systems are to: 

• Establish consistent and predictable colors throughout all parts of the color reproduction chain. 

• Establish standard operating procedures for color reproduction to reduce color deviation caused 

by variation in techniques. 
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A color management system comprises three major components: 

• A device-independent color space either CIEXYZ or CIELab is used as the reference space com­

municating color information across different devices and systems [2]. The CIELab color space is 

the reference color space most often used for printers. 

• Device profiles which provide color conversions between the device-dependent color space and the 

reference color space. The reference color space is also called the profile connection space (PCS). 

• A Color Matching Module (CMM) that interprets colors using the color conversion model contained 

in a profile. 

Figure 1.7 illustrates a color reproduction system: a scanner, a display, and a printer. All have 

their own profiles converting from/to a PCS. 
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Figure 1.7: Illustration of a color management system. 

1.2.2 Additive Color Systems and Subtractive Color Systems 

In general, there are two types of systems among color devices: additive systems and subtractive 

systems. In additive systems, such as video monitors and televisions, colors are transmitted lights. 

Red, green and blue lights are referred as the additive primary colors. When used in various degrees 

of intensity and variation, they create all other colors of light; when superimposed equally, they create 

gray. Color printers are subtractive systems. The primary colors are cyan, magenta, yellow, and black. 

They are used together to effectively create a multitude of other colors based on the subtractive color 

theory. 



The color conversions for an additive system are normally between the RGB color space and 

CIEXYZ color space. The conversions are relatively easy and straightforward since for most devices, the 

gamma corrected RGB primaries are linearly related to XYZ values in the CIEXYZ space. An example 

of such conversion is the conversion for the sRGB colors described as follows: 

/X\ /0.4124 0.3576 0.1805\ /g(Rsrgb)\ 
\Y = 0.2126 0.7152 0.0722 g{Gsrgb) 
\Z) \0.0193 0.1192 0.9505/ \g{Bsrgb)J 

where 
f ( f S ? ) 7 . ^ > 0.4045 

9{K) = I 
v 12 92' otherwise 

and 

7 = 2.2 

a = 0.055 

Among all the device color conversions, the printer color conversion is most challenging and com­

plicated. Issues regarding building printer color conversion profiles are described in detail in the next 

section. 

1.3 Printer Color Conversions 

Color printers can be toner-based or ink-based. Most of the printers are only able to produce a 

limited numbers of gray levels, e.g., a binary printer can only produce two levels, i.e., 0 and 1; 2-bit 

printers produce level of 0 1, 2, and 3. In order to produce continuous tone imagery that contains an 

infinite range of colors or greys, a reprographic technique called halftoning needs to be applied to create 

the illusion of continuous tone images through the use of dot arrangements and dots of varying size 

[12]. The combination of the printer halftone design and the specific toner/ink selection determine the 

number of colors that a printer is physically able to produce which is called its gamut. The gamut is 

measured in the CIELab color space. 

It's easy to see that the printer color conversions depend on the printer technology, the toner/ink 

selections, and the halftone design. It is performed between a device-dependent color space (CMYK) 

and a device-independent color space (CIELab). Not required but most common, the format of the 

color conversion is an equally spaced lookup table (LUT). The values in the LUT are either 1-byte or 

2-byte integers. 

The first step in generating a printer color conversion is to print many CMYK color patches whose 

values span the CMYK color space. Each component value of CMYK is normally 1-byte integer. The 

9 
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printed patches are measured using a spectral photometer which measures the spectral reflectance of each 

patch under a standard illuminant. The software in the spectral photometer calculates the tristimulus 

values, and then converts these values to the CIELab values. The CIELab values are floating point 

numbers. Followed by the implementation of a data modeling algorithm and a gamut mapping algorithm, 

the color conversions LUTs are generated using this set of data. All the CMYK and the CIELab values 

are normalized to the range of 0 — 1 for these calculations. 

Both CMYK to CIELab and CIELab to CMYK conversions need to be generated for a color printer. 

The CMYK to CIELab color conversion is used when an image generated in this CMYK color space 

is to display on a monitor or to print on a different color printer. In other words, this conversion is 

used when the printer CMYK color space is used as a source color space. The CIELab to CMYK color 

conversion is used when the CIELab color space is the source color space or this CMYK color space is 

used as a destination color space. 

In this section, we discuss the facts, issues, and current methodologies in the printer color conversions 

including: 

• The characteristics of printer color conversions. 

• The analysis of color conversion source errors. 

• Interpolation algorithms. 

• The Gray Component Replacement algorithm. 

• The toner saver algorithm. 

• The gamut mapping algorithm. 

1.3.1 The Nature of Printer Color Conversions 

For most color printers, the relationship between CMYK color space and the CIELab color space 

is highly nonlinear due to the interactions of cyan, magenta, yellow, and black planes in the printer 

subtractive system. No trivial functions can describe the behavior. Another complication to the printer 

color conversion is due to the halftone design. Most of halftone techniques are capable of creating 

color gray levels continuously. However, an abrupt change of two adjacent levels is a weakness in many 

halftone designs. Therefore, the color conversion between CMYK and CIELab is continuous but may 

not be differentiable. 

The CMYK to CIELab color conversion is neither injective nor surjective: 

10 



• Every color in the CMYK color space can be mapped to a color in the CIELab color space. 

However, different CMYK values can be mapped to the same CIELab value. So the CMYK to 

CIELab color conversion is not injective. 

• The range of CIELab color space is much bigger than the range of CMYK color space, i.e., for 

many CIELab values, there do not exist CMYK values such that f(C,M,Y,K) —> (L,a,b). Thus 

the CMYK to CIELab color conversion is not surjective. 

The CIELab to CMYK conversion is from R3 to K4. There exists one degree of freedom in this 

conversion. One CIELab value could be mapped to several CMYK values. On the other hand, because 

of the smaller gamut of the color printer, not every CIELab value can be mapped to a CMYK value. 

Thus, there does not exist a function for the CIELab to CMYK color conversion. The CIELab to CMYK 

conversion is normally achieved by converting the CIELab values to CMY values first. Then a special 

rule is created for adding the black toner to each CMY value. 

• The CIELab to CMY color conversion within a printer gamut is both injective and surjective. 

- Every CIELab value inside the printer color gamut can be mapped to a unique color in the 

CMY color space. So the CIELab to CMY color conversion is injective within color gamut. 

- For every CMY value, there exists a CIELab value such that g(L,a,b) —• (C,M,Y). Thus 

the CIELab to CMY color conversion is surjective. 

• The out-of gamut CIELab values can not be mapped to a CMY value. Therefore, there does not 

exist a function for the CIELab to CMY conversion outside the printer gamut. 

Thus the color conversion between CMYK color space and CIELab color space can be only achieved 

by approximation. 

1.3.2 Source of Errors 

Understanding the sources of error is critical for the design of an approximation model. In addition, 

it's important to understand how these errors interfere with human perceptions for the design of the 

printer color conversion model. 

There are four significant sources of error in the color conversion process. These errors are normally 

measured with the Euclidean distance in the CIELab color space, AE: 

• Measurement errors from the instrument. These errors are normally smaller than 1 AE. 

11 



• Errors due to the machine reliability and repeatability. For a well-calibrated printer, these errors 

could be smaller than 2 units of AE. 

• Errors due to paper roughness and non-uniform fibers and fillers formation. These errors are 

typically smaller than 1 unit of AE. 

• Errors from the model of the color conversion. For inside gamut color conversion, the average 

interpolation error is around 3-4 units of AE, and the maximum error can be anywhere from 10 

to 20 units of AE. 

Because human perceptual tolerance varies from location to location in the CIELab color space, 

care must be taken in the approximation algorithms in different color areas. 

• For colors in the neutral areas, the visual color difference tolerance is low (around 1 AE). The 

interpolation errors in these regions thus need to be small. If the accumulated errors from the first 

three categories are added to the modeling data, the effect of the outliers in the modeling set has 

to be minimized. 

• For the medium colors, with the increase of the chroma values in these areas, the perceptual 

tolerance increases. Though the outliers still exist, they play a much less important role in the 

color conversion. It's appropriate to design an approximation model to minimize the least squares 

error. 

• For colors in the highly saturated color regions, although the visual color difference tolerance is 

much higher, the interpolation errors are also high. The effect of errors from the first three sources 

do not contribute to much of output color differences. The goal of the approximation algorithm 

thus is to minimize the maximum error in the interpolation. 

- In general, color conversion approximation algorithms aim at minimizing least square errors [16, 

22, 23, 24]. Due to the sources of error described above, we are motivated to consider the Lp error 

criteria, in particular the L\ and L^ error for a robust neutral area color conversion and the reduction 

of maximum error in the saturated color regions. The color conversion techniques we developed with 

the considerations of printer sources of error and human perceptual tolerance are described in Chapters 

2-4. 

12 



1.3.3 Approximation Technique 

The core component in the printer color conversion is the design of the approximation algorithm. 

Over the last twenty years, there has been much research in this area. Today it is still an active area of 

research. 

The techniques are divided into two categories: data interpolation and data fitting [24]. Most of 

the research in color conversion has been concentrated on the interpolation algorithms, while very little 

research has been done on the data fitting techniques. The major difference of these two approaches is 

if the approximation function passes through or passes by all the data points. The common belief is 

that, although the color data could have a little noise from the printer and the measurements, the data 

is considered to be accurate enough. Therefore, the interpolation techniques are desirable. 

In this subsection, we first discuss the popular interpolation techniques used in the printer color 

conversion, and the pros and cons of each algorithm. We then briefly discuss the advantages of the data 

fitting algorithm for the color conversion problem. 

The interpolation algorithms may be classified as local and global approaches. Because of the dif­

ficulties in finding the nonlinear model of the printer color conversion, the most popular interpolation 

techniques are local interpolation. There are two types of local interpolation methods based on the ge­

ometry structure: triangulation and Voronoi tesselation [24]. The local interpolation techniques include 

linear interpolation, quadratic spline, cubic spline, polynomials, etc. The following is the example of 

triangular linear interpolation, also called tetrahedral linear interpolation. 

Triangulation based interpolation divides the CMY color space evenly into fine regions, and further 

triangulates these regions. Each of the color components cyan, magenta, yellow in the CMY color 

space is divided into N segments. The color combination of the ith node point of cyan, magenta and 

yellow Pi(c,m,y) is printed and measured with the CIELab value Vt(L,a,b), where 0 < i < iV3; and 

Vi is measured CIELab value of Pi. Tetrahedral linear interpolation is then applied to a cube which is 

divided into 5 or 6 tetrahedra [31], Figure 1.&3 illustrates the division of a cube into five tetrahedra. 

We have the following equations: 

3 

p = p0 + Y/u3(pJ-Po) 
3 = 1 

3 

V = V0 + 52uj(Vj-V0) 

3Reprinted with permission of SPIE and author Dr. Henry Kang. 
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Figure 1.8: Illustration of the five tetrahedra in a cube [31]. 

where Uj = Vj/V and V is the volume of the tetrahedron defined by the four points at which the function 

value is known, and Vj is the volume of the tetrahedron defined by the points if P is substituted for the 

point Pi. To solve for P for a given V, one solves the second equation for the Uj and substitutes the 

values into the first equation [32]. 

The converted CMY values are transformed to CMYK values using gray component replacement 

(GCR), which is discussed in detail in the following subsection. The drawbacks of this approach are 

• One has to generate a large data set that evenly spans the gamut of the device. 

• Data which are not on the grid of evenly spaced data are wasted. 

• The local linear assumption is only an approximate model of the data. It is not accurate in the 

regions which are highly nonlinear. 

• The linear approximation model is C° continuous, and is not C1 continuous. It may create a 

non-smooth change at the boundary between adjacent tetrahedra. 

The quadratic spline, cubic spline, and polynomials are the improvements over the linear inter­

polation method [16, 25, 26]. These approximation functions are not only C° continuous but also C1 

continuous. Even though all three methods give much smoother results, they may not give accurate 

results for some colors due to the the quality of the underlying triangulation [24]. The predetermined 

triangulations may not suit the best of the underlying nonlinear phenomena of the printer subtractive 
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system. In addition, the color gamut of some color printers is not convex. Some tetrahedra may be par­

tially outside the printer gamut. Thus the interpolation within these regions gives meaningless results 

[24]. 

Another local interpolation algorithm is the natural neighbor interpolation method, which is based 

on the Voronoi region [29]. 

Definition 1.3.1 [46] A Voronoi region Vj associated with the center a is the set of points for which 

c, is the nearest center vector, i.e., 

Vi = {x 6 R" : i = arg mirij^i || x — Cj | | } , 

where I is the set of center indices.4 

This interpolation method is a local region-based weighting method. It is believed that the Voronoi 

region fits the underlying printer characteristics better than the triangulation. 

The examples of global interpolation methods include the inverse distance weighting method and 

the RBF method [16, 17, 18, 19, 24, 27, 28]. For the inverse distance weighting method, all the data 

points are used to interpolate a value. It assumes that the interpolated values are affected more by 

nearby points and less by the more distant points [24]. The assumption is too simple and not accurate 

for colors in many regions. Thus, this method in general gives poor color conversion results. 

There have been relatively few attempts to apply the RBF method to the conversion problem. 

Artusi and Wilkie were the first to implement Radial Basis Function Networks (RBFNs) for the printer 

color conversion problem [16]. They attempted to demonstrate that the RBFNs were superior to polyno­

mial and triangular-based interpolations. They used a small data set and a very basic RBFN algorithm 

to solve the color conversion problems. Their experimental results indicated that the RBFN method 

performed equally well or better than the polynomial based network method and the tetrahedral in­

terpolation method for all their testing data sets. Isaac Amidror conducted a survey on commonly 

used scattered data interpolation algorithms for color conversion [24]. He reached a similar conclusion 

as Artusi and Wilkie, that the RBF based interpolation performed better than all algorithms that we 

reviewed in this subsection. We remark that all previous applications of RBFs to the color conversion 

problem employ the standard least square error criterion and do not employ perceptual color models. 

A detailed discussion of the RBFs algorithms is given in Chapters 2-4. 

4 Sometimes this is referred to as a first order Voronoi region since only one center is used in its definition. 
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We propose to establish that the RBF data fitting algorithm equipped with an Lp error-criterion 

works very well for the color conversion problem. Even though color data are considered to be accurate 

enough for building the color conversion model, we provide evidence that the perceptual color difference 

tolerance should be taken into account. As discussed in the previous subsection, the perceptual color 

difference tolerances vary over different CIELab color regions. Taking this into account, the data fitting 

technique has the advantage of minimizing color differences in different areas with respect to human 

perceptions and give much smoother results. We propose to use a RBFs data fitting technique that 

incorporates the perceptual color difference tolerances to solve the color conversion problem. 

1.3.4 Gray Component Replacement (GCR) in Color Printing 

Although black toner/ink is one of the primaries in a color printer, the black toner/ink actually 

serves as a "secondary" toner in color printing. Because the mix of cyan, magenta, and yellow toner/ink 

can only produce muddy brown instead of black, the black toner/ink is added in to make a rich black, 

and to make color richer and darker. Black toner/ink also costs less than cyan, magenta, and yellow 

toner/ink, a fact that will occupy our attention in Chapter 5. 

Printer CIELab to CMYK color conversion is a map from R3 to R4. First, CIELab is mapped to 

CMY color space using an interpolation technique, then black toner/ink denoted by K, is added in. The 

amount of cyan, magenta, yellow toner/ink may be adjusted by applying the under color removal (UCR) 

and the under color addition (UCA) corrections. The typical way of applying UCR is to remove equal 

amounts of yellow, magenta, and cyan and replace them with the same amount of black. GCR is the 

result of UCR followed by UCA. However, colors resulting from UCR are dark, less saturated, and hue 

shifted. UCA is applied to improve the weakness of UCR. Small portions of the three colors of cyan, 

magenta, and yellow are added back to these areas. The UCA process is empirical and labor intensive 

due to the mapping from a lower dimensional space to a higher dimensional space, i.e., R3 to R4, and the 

lack of a high fidelity model describing the nonlinear behavior of each toner. It is normally achieved by 

printing many patches and choosing the best results. In practice, the UCR and UCA correction schemes 

introduce errors in the color conversion process. For example, one set of data we investigated indicated 

that the maximum color difference due to the GCR process only was above 14 AE in the CIELab color 

space. The quality of color conversions will be dramatically improved if techniques are developed for 

the GCR process with theoretically zero color difference. 

Because the CIELab to CMYK conversion is a map from R3 to R4, there should exist a set of 

CMYK values corresponding to the same CIELab value. Let g denote a mapping from the CIELab 

values to the CMYK values, then 3{(C,M,Y,K)^\ i = l ,2 , . . . fc}, s.t., g~l(C,M,Y,K)^ = {L,a,b), 
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discrete only in practice, i = 1,2,.. . , k. In practice, we show these level sets of CMYK values can 

be found through an optimization process if good approximation models are developed for the CMYK 

to CIELab conversion and the CIELab to CMY conversion. The detailed discussion on lossless gray 

component replacement is presented in Chapter 5. 

1.3.5 Toner Savings in Color Printing 

In the highly competitive printing industry, technology to help manage and reduce the cost of 

printing is one of the key ingredients for success. Hence, reducing toner coverage, while obtaining good 

printing quality is an ongoing effort for color scientists and engineers. Traditionally, toner savings are 

achieved by UCR. In four-color (or more) printing , UCR is the process of eliminating amounts of 

yellow, magenta, and cyan that would have added to a dark neutral (black) and replacing them with 

black toner/ink during the color separation process. However, as mentioned before, the black ink by 

itself in a shadow may not be dark enough, and it tends to produce dull-looking images. The UCA is 

applied to add some amount of cyan, magenta, and yellow back. Thus, toner saving is achieved at the 

cost of sacrificing the quality of color conversion. 

Another application relates to the limitation of the amount of toner/ink coverage on a page to 

avoid excessive bleed-through. This application is particularly needed for inkjet printing. If the color 

conversion is performed from CIELab to printer CMYK color space, there often exists some constraints 

for the amount of cyan, magenta, yellow, and black toner/ink. For example: 

C + M + Y + K <L 

where L is the total amount of the toner/ink. 

This constraint is most likely to affect the colors in highly saturated or dark neutral regions. The 

typical way of solving the toner/ink coverage problem is to linearly scale or clip the toner/ink percentage 

to meet the toner limit. The toner/ink coverage problem could be solved via an optimization problem 

with constraints if a good approximation technique were available and an algorithm proposed. Color 

conversion with the toner/ink limitation problem is discussed in Chapter 6. 

1.3.6 Gamut Mapping Algorithms 

Gamut mismatch is a common problem in color reproduction systems since each device has different 

gamuts, in practice the number of colors in each gamut is generally different. In general input devices 
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such as digital cameras, scanners, etc., generate more colors than the output devices such as color 

printers. An example of gamut comparison for an input and an output device are shown in Figure 1.9s. 

Figure 1.9: Gamut comparison of a monitor (represented by the wire frame) and a printer (represented 
by the solid shape). 

As the result of the gamut mismatch, there are many colors in an image which originated from a 

RBG system that can not be physically produced by the printer. Figure 1.10 shows that the colors in 

the Google image6 that are outside a specific printer gamut. The outside-gamut colors are marked as 

white in the lower Google image. 

When the input color space is bigger than the gamut of the output color device, gamut-mapping 

algorithms are applied. The gamut mapping process transforms a point in the source gamut to a 

realizable color inside the gamut of the output device, also is called destination gamut. 

The form of this transformation can dramatically impact the quality of the reproduced images, 

especially print images. For high-end digital printers, the gamut is relatively small. The maximum error 

of color conversions normally comes from mapping an outside-gamut color to a inside-gamut color. As 

such, care needs to be used in the design and implementation of gamut mapping transformations. 

5This image was downloaded from the Munsell Color Science Lab web site. Reprinted with permission of Musell Color 
Science Lab. 

6 Google is the trademark of Google. 
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Figure 1.10: Colors of Google image outside a printer device gamut. 

The first step in the gamut mapping process is to identify a device color gamut boundary. The 

calculated boundaries are normally connected lines, because they are obtained by either local linear 

interpolation or by convex hull methods. As we discussed in the previous subsection, none of these 

methods gives sufficiently accurate results. Evidence strongly suggests that nonlinear approximation 

techniques are needed to accurately identify the gamut boundaries. 

The current gamut-mapping algorithms [33] map all out-of-gamut points directly to the destination 

gamut. The most typical gamut mappings are clipping and scaling algorithms. 

• Clipping algorithms clip out-of-gamut points to the destination gamut boundary. 

• Scaling algorithms scale the input color gamut to output color gamut, i.e., some out-of-gamut 

points are mapped to inside of the destination gamut, some out-of-gamut points are mapped to 

the boundary of the destination gamut. 

The direction of the mapping is the choice of lines along which the mapping is applied. For example, 

the mapping direction can be a line changing in chroma only at constant lightness and hue. Selecting 

mapping directions is an active area of research [34]. The mapping directions are decided based on 

visual experiments. The examples of directions are described as following [35], and illustrated in Figure 

l . l l 7 . 

7Reprinted with permission of IS&T: The Society for Imaging Science and Technology sole copyright owners of The 
Journal of Imaging Science and Technology 
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In summary: 

• The mapping directions may be along the lines of constant perceptual attribute predictors (e.g., 

constant lightness and hue, constant saturation and hue). The mapping directions of constant 

lightness and constant saturation are shown in Figure 1.11. 

• The mapping directions may be along the lines towards single center-of-gravity (e.g., center is the 

compression towards L*=50 on lightness axis). The mapping direction of Center is also shown in 

Figure 1.11. 

• The mapping directions may be along the lines towards variable center-of-gravity (e.g., cusp is 

the compression towards lightness of cusp on lightness axis). See the mapping direction of Cusp 

shown in Figure 1.11. 

• The mapping directions may be along the lines towards the nearest. color in the reproduction 

gamut (e.g. as is the case with minimum AE clipping). 

cusp 

cusp 
centre 
constant lightness 
minimum AE 
constant saturation 

original gamut 
reproduction gamut 

40 60 80 100 
chroma 

Figure 1.11: Gamut mapping directions [35] 

The large variability in past color gamut mapping studies suggests that there is no universal gamut 

mapping algorithm that works for every device and image. Ideal gamut mapping depends on image 

content, preservation of perceived hue throughout color space, and the extent of the gamut mismatch in 

various regions of color space. Image dependent and regional-dependent gamut mappings are preferred. 

However, image dependent gamut mapping algorithms suffer a performance penalty [44]. 
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It is very clear that current gamut mapping algorithms are more art than science. Relationships 

among color data developed by a numerical model are not being considered in the gamut mapping 

process. We believe that the underlying relationship among color data needs to be more accurately 

retained or transformed rationally after gamut mapping. Thus the best gamut mapping algorithm should 

be based on the numerical model with guidance from the perceptual model. A detailed discussion on 

the gamut mapping algorithm based on both numerical and perceptual model is given in Chapter 7. 

1.3.7 Printer Color Conversion Quality Assessment 

There are two evaluation methods for the color conversion quality: the numerical method and the 

psychophysics method. 

The numerical method consists of quantitatively comparing the color difference between the original 

color and the printed color. The original colors are the CIELab colors. These colors are converted with 

the printer color conversion to the CMYK colors. The CMYK colors are then sent to the printer to 

print, and measured by spectral photometers. The test data are selected in three major areas: inside the 

printer gamut, near the boundary of the gamut, and outside the printer gamut. The numerical method 

tests the approximation errors inside color gamut and gamut mapping results out-side the color gamut. 

The mean error and the maximum error are calculated using either dEab or dE00 for the color conversion 

inside the printer gamut. The maximum conversion error is often weighted more than the mean error 

in the evaluation because the significant color difference is more objectionable than the average color 

difference. 8 

The psychophysics experiments correlate the human perceptions with physical stimuli. A set of test 

images including pictorial images, vector graphics, and text samples are printed from the printer. The 

colors in the images include highlight colors, low-light colors, saturated colors, and out-of-gamut colors. 

Observers look at these images and make perceptual judgements based on the selected psychophysics 

method. The most used method is paired comparison [15]. Some 10-20 observers are selected to partic­

ipate in the experiment. Observers are then, for example, asked to compare an image pair converted by 

different color conversion methods. The original photos are normally presented as the reference. Typical 

questions are "Which one do you like better?", "Which one is more similar to the original image?", etc. 

The observers' data are then analyzed and converted to the perceptual values using the Thurstone's law 

of comparative judgment [13, 14]. 

8This approach to qualify assessment is suggestive of the impact of the use of a uniform approximation criteria in gamut 
mapping. 
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The results from both numerical tests and psychophysical experiments provide the comprehensive 

evaluation for the printer color conversions. 

1.4 Goals of the Research 

It is believed that the key problem of the current color conversion techniques is the lack of high 

fidelity nonlinear C1 smooth approximation functions to describe the nonlinear behavior of toner/ink 

interactions. 

Current approaches for the empirical nonlinear modeling are essentially based on minimizing the 

mean-square error. While this is satisfactory, indeed appropriate, for many applications, based on the 

discussions above, we propose that this is not optimal for the printer color conversion problem. Thus, 

the primary goal of this research is to implement a nonlinear function approximator for scattered data 

that is better suited to the sensitivity of the HVS. Given our application, we are particularly interested 

in developing efficient algorithms for uniform approximation as well as the problem of mixed norms, i.e., 

where we employ different error norms in different color regions. 

The main contributions of this dissertation include: 

• Novel implementation of Radial Basis Functions (RBFs) using the exchange algorithm for L ^ 

approximation in the over-determined least squares setting. 

• Extension of the algorithm for Lp norms with an emphasis on L\. 

• Extension of both Barrodale and Phillips (BP) algorithm for solving dual problem and Bartels 

and Conn's (BC) algorithm for solving primal Problem to account for printer (toner) related side 

constraints in saturated color regions. 

• Extension of primal algorithms to account for printer (toner) related side constraints in neutral 

color area. 

• The introduction of "mixed" RBFs that satisfy the Haar condition, i.e., approximations that are 

based on an array of RBFs such as Gaussian, thin plate splines, for a given data set. 

• A new approach for lossless GCR process via the implementation of multidimensional optimization 

techniques, and to find a level set of CMYK values for each given color. 

• A new approach for placement of basis functions dictated by the needs of the gamut mapping 

problem. 
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The overall goal of this work is an improved algorithm for color conversion that exploits nonlin­

ear approximation methods that incorporate perceptual color differences. The practical objective is to 

improve color conversion accuracy, efficiency and to optimize the color conversion quality with consid­

eration of ink limitations. We foresee that this work will have significant impact on the color printing 

industry. 
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Chapter 2 

FITTING NONLINEAR SCATTERED DATA 

As discussed in Chapter 1, the printer color conversion problem has been approached mostly by 

using interpolation techniques [16, 20, 21, 23, 24, 30, 31, 32]. Research results on color conversion 

indicate that the Voronoi-based algorithm performs better than the triangular-based interpolation al­

gorithm [24]. Most related to our work are the investigations on color conversion via RBFs using 

interpolation [16, 24]. In [24], Amidror conducted a comprehensive survey on several popular scattered 

data interpolation techniques used in color conversion. The interpolation techniques described there 

include triangulation based methods, inverse distance weighed methods, radial basis function methods 

and natural neighbor methods. One data fitting algorithm was also compared with these interpolation 

algorithms. He concluded that the radial basis functions (RBFs), in particular Hardy's original multi-

quadric interpolation method, were among the most promising methods in terms of fitting ability and 

visual smoothness. Also, the least squares data fitting algorithm gave much smoother results than the 

interpolation algorithm [17, 24]. Artusi also applied the RBFs interpolation technique to the printer 

color conversion [16]. A small data set was used for training. The method was compared with the poly­

nomial interpolation method. His results indicate that the RBFs algorithm outperforms the polynomial 

based algorithm. 

In this research, we are interested in solving the printer color conversion problems with RBFs 

using data fitting techniques adapted to L^ and L\ error criteria. In addition, we employ a perceptual 

color model to guide our implementation of the RBFs. We chose this approach based on the following 

considerations: 

• Scattered data versus data on a grid. 

• Interpolation versus over-determined systems. 

• Noise presented in the neutral color regions. 

• Smoothness of the color conversion model. 



All these considerations are related to the perceptual color difference tolerance which are now 

described. 

Theoretically, a color printer is capable of producing up to 4 bytes of colors (1 byte of cyan, magenta, 

yellow, and black). A subset of these CMYK colors and their associated CIELab values are selected for 

generating the color conversion model. Because of the underlying complicated characteristics of a color 

printer, a large CMYK data set and their associated CIELab values (often above 2000 data points) are 

selected to generate the color conversion model. The data selection does not only depend on the halftone 

design which sometimes gives a nonlinear response, but also depends on the perceptual color difference 

tolerance as the perceptual color difference tolerances vary over different CIELab color regions. More 

data must be selected in these perceptual sensitive regions. Therefore, when these "clouds" of data are 

selected, the Voronoi-based algorithm is more suitable than the triangular-based algorithm. The RBF 

approach is suitable for this problem as the clustering algorithms used in the implementation of RBFs 

can be Voronoi-based. 

We also believe that different color conversion models should be generated for different regions based 

on the perceptual color difference tolerance. The continuity and smoothness of these color conversion 

models are critical to the overall quality of the color conversion. In addition, the human vision system 

(HVS) is more forgiving for the color difference presented in a pictorial image (the tolerance threshold 

could be above 10 AE)\ but is more very sensitive to the smoothness and contrast. 

Although the noise from the printer, paper, and measurements is small, as discussed in Chapter 

1, it is significant for some color areas, e.g., the neutral color region as the perceptual color difference 

tolerance is small. RBFs provide the flexibility of applying to both the interpolation and approximation 

data fitting problems. Further, when noise is present, it makes sense to solve over-determined systems. 

We will provide evidence that this approach is practical and superior for any device color conversion 

which have nonlinear behavior such as color printers. 

In this chapter, we first give an overview of RBFs, and then discuss in detail the data selection 

algorithm, clustering/center selection algorithm, norm selections, function and parameter selections, and 

cross validation. 

2.1 RBFs Overview 

RBFs are popular for interpolating scattered data as the associated system of linear equations is 

guaranteed to be invertible under very mild conditions on the locations of the data points. Originally, 

RBFs were introduced as an approximating tool in Broomhead and Lowe [45]. 
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The RBFs are useful for approximating an unknown function from the data in the form 

f(x) =Ax + a0 + J2wi4>(\\x - a\\) (2.1) 

where generally, we assume f(x) to be continuous and differentiable over a compact domain, x 6 Rn, and 

f(x) 6 R. The term Ax represents the linear component of the mapping and the offset ao allows for the 

mean of the data to be non-zero. The nonlinear portion of the map is represented by the superposition 

of the nonlinear function tft weighted by vectors Wi. 

As we can see, the RBF-type network has a few attractive features [46]: 

• The weight parameters may be determined using linear models (not the Ci though). 

• The RBFs can be either local or global. 

• The locations of the basis functions may be adapted using different clustering routines. For the 

color conversion problem, we believe that the Voronoi region, for example, is a good choice as 

the clustering routine because it can incorporate the color difference model to characterize each 

cluster with its unique characteristics. 

• RBFs do not require that the data lie on any sort of regular grid. 

• The function f(x) is continuous and differentiable. These function properties are important for 

the color conversion problem as we discussed in Chapter 1. 

We explore the RBF approach in the context of the printer color conversion problem. Traditionally, 

the weights Wi are determined by minimizing the mean-square error. However, due to the unique error 

characteristics in the color conversion problem, this research extends the algorithms for solving RBFs' 

weights using Lp norm with emphasis on L^ norm, Li norm, and L\ norm. 

Our approach includes: 

• Choosing a unique training/testing data set for the color conversion problem. 

• Clustering color data, determining the centers, and optimizing the number of centers. 

• Optimizing RBFs and parameter selections. 

• Optimizing the Lp norm selections, specifically, L^ norm, L2 norm, and L\ norm. 

• Combining RBFs with linear programming for L^ norm and L\ norm approximations, and em­

ploying the duality theorem. 

• Employing the perceptual color model to improve the qualitative result. 
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2.2 Training Set Selection 

The color conversion model is built based on the availability of a data set of input-output pairs, 

i.e., CMYK vs. CIELab. There are many ways to select the training data set. Some select the CMYK 

colors in regular grids and some select the CMYK colors based on the halftone curves. Almost all of 

them are determined solely by the modeling techniques. The CMYK data are printed on a color printer, 

and measured in the CIELab color space. These CIELab values are random within the printer gamut. 

These data are expressed in the following form: 

For the CMYK to CIELab conversion, / : R4 -+ R3 

{x(i) = (C, M, Y, K){i) e R4, i = 1, 2 , . . . , m} 

{j/« = (L,a,b)(i) e l 3 , i = 1,2,...,m} 

where m is the number of color pairs in the data set. 

For the CIELab to CMYK conversion: g : R3 -> R4 

{a:(i) = {L, a, b)(l) € R3, i = 1,2,..., m} 

{y(i) = (C, M, Y, K){i) e R4, i = 1,2,..., m} 

Besides these selected color data, care needs to be taken for the color areas where human perceptions 

are sensitive to the color changes. For example, the neutral color regions, blue/purple color regions, etc. 

There is a great chance for poor color conversion in these areas if there are not enough data selected 

and used in the training process. For the printers we experimented on, we found that problems with 

these selection methods were due to low sampling density in some perceptual sensitive color regions. 

Figure 2.1 shows that the blue region colors, hue angles from 265-310 degree, are not populated enough 

when compared to other color regions i n a 9 x 9 x 9 x 9 CMYK data set, while human perception is 

very sensitive to the hue angle changes in these regions. 

2.2.1 Ideal Data Description 

The printer color conversions include both CMYK to CIELab and the CIELab to CMYK color 

conversions. The CIELab to CMYK conversion is achieved by converting the CIELab values to the CMY 

values first, and then adding black to each CMY value via the GCR process. Therefore, the CMYK set 

should have enough CMY and K values. It's preferable that the grid points of cyan, magenta, yellow, 

and black components represent the curve change of each component created by the halftone process. 

This means that the grids point may not be equally spaced. 
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Figure 2.1: A hue angle histogram f o r a 9 x 9 x 9 x 9 regular-spaced CMYK data. 

To summarize, for the color conversion problem, a training set should contain scattered data such 

as: 

• The CMY colors. 

• The CMYK colors. 

• Additional CMY colors in the blue region. 

• CMY colors in the neutral color region. 

• K ramp. 

2.2.2 Data Used in This Thesis 

Due to limited printer availability, the data available to this research was not selected by the 

criteria we described above. Two sets of data from two different printers were collected. Set I contains 

an equally-spaced 5 x 5 x 5 x 5 CMYK modeling data and an equally-spaced 9 x 9 x 9 x CMYK testing 

data. We used this data set for our pilot experiment. We describe the experiment in the next subsection. 

Set II is used for the main experiments in this research. There are 1410 data points in this set include: 

• 866 non-equally spaced CMY values. 

• 20 non-equally spaced K values. 
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• 524 non-equally spaced CMYK values. 

• 99 data points with hue angles from 265-310. 

• 144 data points in the neutral color area. 

These data are used for training and validation only. The testing data are collected independently 

after the models are generated. Therefore, all 1410 data points are used in the CMYK to CIELab 

conversion, and all 866 CMY data points were used in the CIELab to CMY conversion. 

2.3 Cluster/Center Selection 

The purpose of data clustering is to identify the locations where basis functions should be placed 

in the model. In general, RBF algorithms focus on placing functions such that the mean square error 

is minimized. Due to the uniqueness of perceptual color characteristics, we believe the location of the 

basis function should be placed in the local regions which have similar properties in terms of human 

visual tolerances. As discussed before, the CMYK values are device-specific values, and do not directly 

relate to human perception. So, specifically in our construction of the mapping g : R3 —> R4 and 

/ : R4 —> R3, although traditionally, clustering is performed on the domain of the data, we recommend 

always performing clustering on the CIELab data so the characteristics of the color data can be best 

described by each cluster. The visual tolerances of color data can be determined using a color difference 

model. In this research, the most recent color difference model CIEDE2000 is used as the distance 

metric for each color relative to the center color because the distances are designed to be small. 

Before conducting clustering algorithms on the main data (Set II), we conducted a preliminary 

experiment on a small set of data (Set I) to understand how the number of clusters affects the color 

conversion accuracy, in other words, we would like to check if there exists an upper bound limit for the 

number of clusters, i.e., after which the conversion accuracy decreases with the increase of the cluster 

number. 

There are 625 data points in Set I. In this preliminary example, the least squares approximation 

was applied. The number of centers selected are {N — 10, 20,30, . . . ,400}. The LBG algorithm was 

used to find the centers and clusters [48]. Gaussian, multiquadratic, cubic, inverse multiquadratic, and 

thin spline functions were also used. The results of our preliminary experiment indicated that RBFs 

approximation errors on the test data are a function of the number of cluster centers independent of what 

function was used [51]. The results are shown in Figures 2.2 and 2.3 using the multiquadratic function 

as the example. In Figure 2.2, the maximum error in the testing data decreases as the number of centers 
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increase until about 90 — 100. At that point, the error flattens out and actually begins to increase 

about 250 — 300 centers. A similar behavior is seen in the Figure 2.3 showing the average approximation 

error for the radial basis function model. For a range of cluster numbers, the color conversion performs 

equally well. 

100 150 200 250 300 
Number of Cluster Centers 

400 

Figure 2.2: Number of cluster centers vs. maximum errors. 

14r— 

50 100 150 200 250 300 350 400 
Number of Cluster Centers 

Figure 2.3: Number of cluster centers vs. mean errors. 
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The determination of the appropriate number of radial basis functions for a given data set is clearly 

an important problem. In particular, one has to be careful to not retain too many basis functions or 

the error of the representation will actually degrade on the testing set, even though it may improve on 

the training set. 

Based on the preliminary results, we designed our clustering algorithm by combining a Voronoi-

based clustering algorithm with a subset selection algorithm. Because the CIELab data are random, a 

random center selection algorithm is used as the first step for clustering/center selections. The number 

of random centers was chosen larger than necessary. Clustering algorithms are then used to identify 

the clusters, and to refine the center of each cluster. There are several efficient clustering algorithms 

available including /c-means, LBG, and topology-preserving mappings [48, 49]. For our case, they all 

performed equally well. The LBG clustering algorithm was arbitrarily selected. We remark that this 

phase of the algorithm is off-line, so we may seek topologically expensive solutions with little penalty. 

The number of centers is then optimized using subset selection techniques such as the popular orthogonal 

least squares (OLS) algorithm [52]. 

In this research, a subset selection algorithm was also developed based on the covariance matrix 

which out-performed the OLS algorithm. The LBG clustering algorithm and the subset selection algo­

rithms of OLS and covariance matrix are discussed in following subsections. 

2.3.1 Clustering Algorithm 

The LBG algorithm we use for determining centers in this research is practically the same as that 

employed by [48, 47]. In general, the domain of the data is clustered into Voronoi regions (Definition 

1.3.1) using a global competitive learning algorithm [48]. 

The algorithm proceeds as follows: 

• Select an initial number Nc of centers randomly from the m data points in the training set. 

• For each center, compute the Voronoi set, i.e., all points in the data closest in the perceptual color 

space to this center relative to all other centers. 

• Update the centers as the mean of the points in the Voronoi set. 

• Repeat until the CIELab values of these centers do not change anymore. 

The initial number of centers Nc is determined as M/A. We implemented several clustering algo­

rithms including fc-means, LBG, and topology-preserving mappings. For this research, they produced 

very similar results. 
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2.3.2 Subset Selection Algorithms 

The clustering algorithm described above can be effectively combined with a subset selection al­

gorithm to eliminate unnecessary clusters. Two subset selection algorithms were implemented: the 

standard orthogonal least squares algorithm [52] and a novel covariance matrix algorithm. 

Orthogonal Least Squares (OLS) Algorithm 

The OLS method for center optimization was originally proposed in [52]. The OLS method serves 

to identify which of the N centers are most useful in the RBF model and indicates which centers may 

be deleted from the model and at what expense to accuracy expressed in color difference. 

We present here the theory behind this refinement technique in a general setting [46]. The compu­

tation of the weight parameters in Equation (2.1) is an over-determined least squares problem. Thus, 

we seek a solution to the set of inconsistent equations 

y = <3>u; 

where each column of the matrix <1? is associated with a single center and / does not actually reside 

in the column space of <&. The question then becomes which of the columns of <1> is most useful for 

solving the problem? In general, one associates a quality function to a center. In this case that means 

measuring the value of a column 4>i of <I> in solving the least squares problem. One measure is the cosine 

of angle between / and each column of $ , 

1 i / i i i i W 
In other words the best center is the one for which Vi is as large as possible, i.e., the angle is as small as 

possible. This solution is indexed by i* meaning </>j. is the solution to the optimization problem. 

Once the best column (and hence RBF center) of <& has been determined, the next best center can be 

computed by projecting the remaining columns along <pi*. This approach may be iterated to obtain a 

reduced subset of centers that has acceptable modeling accuracy. 

The algorithm proceeds as follows: 

Let k = 1,2,...,Nc 

• Step 1: k = 1 

, fT4>(t) 2̂ 
I1 = a r g m a x (mP^ ) 
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• Step k: 

fc — 1 

3 = 1 

fT J') 
ik = argmax( ŷ-r— f 

where ifc < i < iVc,i 7̂  i 1 ; . . . ,i ^ ik-\ 

fc-i 

• The procedure is terminated at the Mth step when 

'-g((jnyjn[)2)<^»-»<-<' 
We note that the performance of OLS is specific to the function selection, and the norm selection 

in RBFs. In our application the primary goal of clustering data is to identify regions which have the 

similar perceptual properties. This may explain why OLS was out performed by the algorithm presented 

below. 

Clustering Algorithm Based on Covariance Matrix 

A cluster can be described by its mean vector and variance-covariance matrix. The mean vector is 

the center of the cluster, and the variance-covariance matrix consists of the variances of the color data 

points along the main diagonal and the covariances between each pair color components in the other 

matrix positions. For example, if a cluster is in the CMYK color space, the covariance of this cluster 

provides a measure of the strength of the correlation between any two color components. Let the center 

CMYK value of a cluster be x = (C, M, Y, K), i.e., x\ = C, ~xi = M, X3 = Y, and £4 = K, and let mc 

denote the number of data points in a cluster. The formula for computing each element COVjji in a 

4 x 4 CMYK covariance matrix for a cluster is: 

COVjj, = ^ m - - x , - ) (4 - xr]/(mc - 1) (2.2) 
i=\ 

where j , j ' = 1,...,4 

When the rank of the covariance matrix is less than the number of the input color components, it 

means: 

• The correlations are not all independent of each other. 
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• The number of the data points in the cluster is less than the number of color components. 

. A Gaussian function which can be expressed as the function of the covariance matrix can not be 

selected if there exists a non-full rank cluster. 

Our clustering algorithm is described as following: 

• Calculate the covariance matrix of each cluster. 

• If the rank of the covariance matrix of a cluster is less than the number of input color components, 

the center of this cluster is deleted, and the data points in this cluster are moved to nearby clusters. 

• Update the center of each cluster, and perform the LBG algorithm to refine each cluster. 

• Repeat until every cluster has a full rank covariance matrix. 

Results of Algorithm Comparison 

Our experiments indicated that the clusters obtained from the covariance matrix method are suffi­

cient for building the color conversion model. We performed both the OLS algorithm and the covariance 

algorithm using data Set II (1410 data points). The number of the clusters obtained from the OLS is 

around 160 depending on the function <j> selection. For the color conversion from the CMYK to CIELab, 

the mean color conversion errors ranged from 1.1 to 1.3, and the maximum errors ranged from 3.2 to 

3.7. The number of clusters obtained from the covariance matrix method is 188. Although the number 

of clusters obtained from the covariance method is larger than the number obtained from the OLS, 

the color conversion is more robust. The mean color conversion errors ranged from 0.7 to 0.9, and the 

maximum errors ranged from 2.7 to 3.0 depending on the function selection. 

The number of clusters via the covariance matrix method may not be time efficient. However, 

building the color conversion model is an off-line process. So, the computational expense is not an 

over-riding concern. 

2.4 Function Optimization 

The radial basis functions themselves are generally selected so that they satisfy an invertibility 

condition on the square interpolation problem for the weights [64]. These functions have the property 

that expansions such as those given by Equation (2.1) represent continuous functions over compact 

domains. The location of these functions is stipulated by the vector centers {c .̂} generally scattered 

over the domain in a manner that reflects the distribution of the data. Both theoretical investigation and 

practical results suggested that the choice of the nonlinearity </>(.) is not critical to the performance of 
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the RBF [52]. However, for our application, the color conversions from CMYK to CIELab, and CIELab 

to CMYK, we have found the multiquadric function 

4>(x) = v r2 + x2 

to be the most accurate model for most of cases. Other functions that performed well include the 

Gaussian 
-x1 ' 

<j>{x) = exp(—2-) 

and the inverse multiquadratic function 

^ ( X ) = / 2 _ L 2 

v r + xz 

On the other hand, the Gaussian function 

4>{x) = exp[-(x - / Uj) T s 7 1 ( x ~ ^j)] 

where \ij is the mean of a cluster, and E" 1 is the covariance matrix of the cluster, and global functions 

such as the thin plate spline 

4>{x) = x2 lnx 

and the cubic 

<f>(x) = x3 

did not perform well on data Set II. The maximum and the mean conversion errors were at least 20% 

higher than errors generated using the multiquadratic function. 

We also mixed RBFs, for example, a multiquadratic and a Gaussian, a thin plate spline, and an 

inverse multiquadratic, etc, 
x2 

4>{x) = ay/{r2 + x2) + /?exp(—^-), 

\/rA + x^ 

The accuracy with these models did not improve over single RBFs on color data Set II. So the 

combined functions were not being used in later research. 

More functions have been suggested recently including BRF's with compact support due to Wendlan 

[53, 54, 55]. These functions are polynomials. 
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2.4.1 Parameter Optimization 

The radius r in Gaussian, multiquadratic, and inverse multiquadratic functions needs to be opti­

mized. Our experiments indicated that the multidimensional Newton's method was an efficient opti­

mization method for 2-norm least square settings, fn this case, the objective function aims at minimizing 

the mean error. We describe this method using the color conversion from CMYK to CIELab:R4 —> R3, 

i.e, 

fh{xurL) = ALXi + aL0 + ^wLj4>L{\\xi - Cj\\,rL) 
i = i 

fa(xi,ra) = AaXi + aa0 + ^2wa3<j)a{\\xi - Cj\\,ra)-
j=i 

lF*-c , - ,r6) fb{xi,rb) = AbXi + ab0 + ^ wb] 

The problem formulation is: 

E(rL,ra,rb) = Y^KM*,r£) - v\f + ( /ofc ,r a ) - y*)2 + (fb(Xi,n) - y\)2] 
i=\ 

Emin = m i n E(rL,ra,rb) 

Then for each iteration, let 
(dE/drL\ 

? « = 8E/dra 

\dE/drb) 

d2E d2E d2E 

Then 

d2rL drr,dra drrdr^ 
F(k) = | d2E &E d^E 

' drndrL d2ra dr„drb 
d^E 82E <PE 

\ dri?dri drbdra d2rb 

rk+i=rW-F{rW)<-VgW 

For every r^k+1\ the weighting factor Wj's are updated, the new function E(r) is obtained. The 

iteration stops when E(r) does not improve anymore. 

Other optimization algorithms can also be used. The radius r and weighting factor Wj's can also be 

optimized together, however, because the size of Jacobian matrix F gets bigger, it's more computational 

expensive to optimize all parameters together. 
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2.4.2 Weight Determination vs. Norm Selection 

The algorithms for RBF data fitting depend on the selection of norms. Traditionally, RBFs are 

solved employing a Li norm to measure the magnitude of the residuals. For our color conversions 

application, we believe the norm should be selected considering the visual tolerance of the colors in the 

ClELab color space, and the source of errors in the color conversion process. 

We are interested in employing different norms for different regions in the CIELab color space. 

Particularly, we are interested in the following norms: 

• L\ norm: 
771 

Nil = 5ZiXii 
i=\ 

• Ln norm: 

N& 
Loo norm: 

F l o o = m a / \xi l<x<m 

The relationship of errors via L\ norm, Li norm, and Loo norm are stated in Theorem 2.4-1 

Theorem 2.4.1 (Theorem 1.3 in[78]) 

For all e in C[a,b] the inequalities 

Hell! < (fe-o)1 /2!^!^ < (6-a) | | e | l 0 0 

hold. 

This theorem indicates that if we are able to find small error via Loo norm, then the errors via L\ norm 

and Li norm are also small. 

For our application, [a, b] = [0,1]. The CIELab color space is heuristically chosen in three regions: 

• Neutral region: 0 < C*b < 7. 

• Medium color region: 7 < C*b < 30. 

• Saturated color region: C*b > 30. 
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where C*b is the chroma of colors in CIELab color space. 

For the neutral color region, the visual color difference tolerance is very small. Error from the 

measurements and machine can affect the accuracy of the color conversion. The L\ norm is preferred 

since it is least sensitive to the outliers. For the medium color range, the color difference tolerance 

is getting bigger, and the errors from the measurements and machine play less of a role affecting the 

quality of the color conversions. However, we need to control the color conversion error to be less 

than the magnitude of 2, so the color difference is less visible. The L2 norm is chosen to minimize the 

average error. For the saturated color regions, the errors from the machine is very small compared to 

the color conversion error mainly due to gamut mapping. It's unlikely for the HVS to detect any errors 

with magnitude less than 2. It's in our best interest to minimize the maximum error due to the color 

conversion, thus the i M norm is preferred. 

The approximation algorithms for solving the weighting factors in RBFs depend upon the norm 

selection. For the least squares method, the typical algorithms are normal equation, SVD, and QR 

factorization. 

The data fitting problem using the L ^ or the Lp approximations were studied by G.A. Watson 

([86, 87]). However, very little research has been done on high dimensional nonlinear scattered data 

fitting with Loo norm or L\ norm. Further, we are not aware of any research nor any use of these norms 

in the color conversion problem. These problems can be solved via linear programming. The methods 

and algorithms for solving color conversion problems using L\ and L^ norms are discussed in later 

chapters. 

2.4.3 Interior Points vs. Boundary Points 

As discussed in the previous chapter, the continuity and smoothness are critical to the quality of the 

color conversion. When adjacent clusters or two adjacent regions have different mapping functions, care 

needs to be taken to maintain the smoothness of the color conversion. This may be achieved by including 

some of the data in the adjacent clusters in the current cluster [46]. In our application, we optimized 

the overlapping ranges specified as S's for each region. The 5's values are the distance calculated in the 

CIELab color space. The data regions partitioned for the Li, L2, and L^ approximation are: 

• L\ approximation: 0 < C*b < 7 + 6n. Intended range: 0 < C*b < 7. 

• Z/2 approximation: 7 — 5mi < C*b < 30 + 5mu. Intended range: 7 < C*b < 30. 

• Loo approximation: C*b > 30 — 5S. Intended range: C*b > 30. 
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where Sn is the extended region for the L\ norm, b^i and Smu are the upper and lower extended regions 

for the L2 norm, and 6S is the extended region for the L^ norm. 

The partitions of the CIELab color space are illustrated in Figure 2.4 where the dotted lines "-" 

represent the overlapping ranges, and the solid lines represent the original boundary for the neutral, 

intermediate, and saturated color regions respectively. The lines in blue indicate the neutral region, ma­

genta lines indicate the boundaries of the intermediate color region, and red lines indicate the saturated 

color region. 

Figure 2.4: The partition of the CIELab color space in the ab* plane for different norm approximations. 

For the CMYK to CIELab conversion, the domain space is the CMYK color space. It is impossible 

to predict what the CIELab value is for any given CMYK color that is not in the data set II. Therefore 

the color space is not divided into regions. All 1410 data points are used. For the CIELab to CMY 

conversion, the CIELab color space is divided into the three regions that are described above using the 

866 CMY data. The optimized J's values are found in the L\, L2, and L^ experiments in later chapters 

and sections. 
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2.4.4 Cross Validation 

Validation techniques are used for model accuracy estimation and model selection. The most 

common techniques are cross validation and bootstrap [56]. Among the cross validation techniques, 

the K-fold cross validation and the leave-one-out cross validation are the most used methods. For our 

application, we use the validation technique mainly for model selection. Therefore, we need to balance 

the absolute accuracy and the bias of variances. The validation method we used for the color conversion 

application is the K-fold cross validation since it is widely used [57, 58, 59, 60, 61, 62, 63]. 

In general, several thousands data points are selected for building a color conversion model. We 

can afford a relatively large K number to ensure the model accuracy even though the data set is large. 

Different from other cross validation applications, the evaluation of color conversion models involves 

both numerical analysis and psychophysics analysis. For the numerical analysis, the test data set is 

collected spanning the input color space. For the perceptual analysis, a number of images are often 

selected in a visual experiment. At the present stage of the research, due to the printer availability, 

psychophysics experiments have yet to be conducted. 

We conducted experiments to select the K value for the color conversion using L\, L%, and L^ 

approximations. For the CMYK to CIELab conversion, all 1410 data points in the data set II were 

used. And for the CIELab to CMY color conversion, the 866 CMY data were used. For the Li 

approximation, the mean error is used as the measure for the model selection. And for the L\ and Lx 

approximations, the L\ error and maximum error are calculated instead respectively. For all cases, the 

variance as a function of the K value is obtained to decide the K value. In this chapter, we concentrate 

on the K value determination for the least squares approximation. The determination of K values for 

the Loo and L\ approximation are discussed in Chapter 3 and Chapter 4 respectively 

The cross validation technique is described using CMYK to CIELab conversion as the example: 

• The modeling set is divided into K-fold partition data sets. 

• For each of K experiments, use K — 1 folds for training and the remaining one for testing. 

• Apply K-fold cross validation to determine the best K value, and best model. We tested all 

RBF combinations, and optimized the radius r using Newton's method if radius r is a parameter 

specified in the function. 
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Figure 2.5: K values in the K-f'old cross validation versus mean errors. 

Figure 2.6: K values in the K-fold cross validation versus variance of mean error. 
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Figure 2.7: K values in the K-fold cross validation versus maximum errors. 

Figures 2.5, 2.6, and 2.7 show the mean least squares error, the variance of mean error, and maximum 

error as functions of the K value for the L^ approximation. The mean error decreases with the increase 

of the K value for K < 10, and it stays roughly at the same level for K > 15. On the other hand, the 

variance of the mean error stays flat for K < 15, and increases with the increase of the K value. It's 

interesting to find that the maximum error decreases almost monotonically with the increase in the K 

value. Although the maximum error keeps decreasing and the mean error stays flat for K > 15, because 

of increase of the variance, we believe the K value for the least squares approximation for the color 

conversion problem, based on the 1410 data points, is 15. 

2.5 Color Conversions Using the R B F Data Fitting Algorithm in the L2 Norm 

The CMYK to CIELab conversion was performed using the RBF data fitting algorithm in the Li 

norm. In this experiment 1410 data points were used for the CMYK to CIELab color conversion. These 

data were clustered using the combination of the LBG algorithm and the covariance matrix algorithm 

which produced 188 clusters. In all 165 clusters were removed. 

There are two optimization stages. At first stage we try to find a good starting function and radius 

for the R4 ->• R3 optimization. We find the best models of R4 -» R for the CMYK to L*, a*, b* 

conversions respectively. The Gaussian, multiquadratic, inverse multiquadratic, thin plate spline, and 

cubic functions were selected. Theoretically, we can make all function combinations, and apply the least 

squares data fitting algorithm to R4 —> R3 . However, the number of all possible function combinations 

is huge. Although theoretically it will give us the best solution, we don't believe that the little accuracy 

we gained in practice justifies the computational expense. Newton's method was used to optimize the 
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radii for the Gaussian, multiquadratic, and inverse multiquadratic functions. The K-fold cross validation 

was set to K — 15. The color conversion results showed that the Gaussian, multiquadratic, and inverse 

multiquadratic function always performed better than the thin plate spline and cubic functions, and the 

multiquadratic function performs the best for all three output components. 

In the next modeling stage, we set JL, /«, and /& to multiquadratic with initial TL, ra, and rb 

obtained from the above experiments. The multidimensional Newton's method was applied to optimize 

these parameters. The result is that the multiquadratic function with TL = 0.4, ra = 0.6, and rt, = 0.55 

is the optimized solution for the CMYK to CIELab conversion based on our experiment data. 

For the CIELab to CMY conversion, we optimized both data range (5mi and 5mu) for the least 

squares approximation and the color conversion model. The algorithm is describe as the following: 

. Let 5mi = 0, Smu = 0, and k = 0, then sk = {{L, a, b)jk | 7 < C*abjk < 30}. 

— Perform clustering algorithm to find the clusters. 

— Perform optimization of R3 —> R for the CIELab to C, M, and Y conversions respectively. 

— Perform the multidimensional Newton's method of R3 —> R3 for the CIELab to CMY con­

version. 

— Record the mean error and maximum error. 

• Let Smi = 2.5, Smu = 2.5, and let sk = {{L, a, b)3k \ 7-2.5k < C*bjk < 30+2.5&, k = 1,2,. . . , }. 

— Repeat the above optimization process. 

— Program stops when all 866 data points are included in sk-

The initial data set contains 365 data points from the 866 CMY values for the least squares ap­

proximation, and 64 clusters were obtained. Least square errors were obtained by calculating the 

differences between the original values and the estimated values. Again, we found that the Gaussian, 

multiquadratic, and inverse multiquadratic functions out performed the thin plate spline and cubic func­

tions. Our results indicated that the best model is generated with all 866 data points. The optimized 

models indicated: Gaussian function for the cyan component with re = 0.2, the inverse multiquadratic 

for the magenta component with TM = 0.5, and multiquadratic function for the yellow component with 

rY = 1.2. 
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2.6 Summary 

In this chapter, we discussed the data fitting technique using RBFs including: 

• The clustering algorithm with the combination of the LBG algorithm and the covariance matrix-

based algorithm. 

• The RBFs selection and Newton's method for the parameter optimization. 

• The approximation algorithms with Lp norm with emphasis on L\, L2, and LQQ norm for the 

neutral, intermediate, and saturated color areas. 

• The K-fold cross validation method. 

• The optimization of the overlapping area between two different models. 

We also gave a detailed descriptions how we applied the least squares data fitting algorithm to the 

color conversions of the CMYK to CIELab and the CIELab to CMY in the intermediate color area. 

Our experimental results indicated that the RBFs approximation models are accurate and efficient. 

The multiquadratic, gaussian and inverse multiquadratic functions performed better than cubic and 

thin plate spline. 
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Chapter 3 

OVERDETERMINED LINEAR SYSTEMS IN THE L^ SENSE 

In saturated color areas, the perceptual color difference tolerance is much higher than the magnitude 

of machine and instrument errors. The data outliers no longer play a significant role in the color 

conversion. As discussed in Chapter 1, the maximum error is heavily weighted in the color conversion 

quality assessments. Our goal for the color conversion in this area is thus to reduce the maximum 

approximation error. Therefore, we are interested in solving the problem via the L ^ approximation, 

also referred as the Chebyshev norm. We know from norm inequalities (see Theorem 1.1) that if we 

control LQO norm, then the L\ and L2 error will be also small. 

There has been considerable research on function approximation using the L^ norm ([65, 66, 67, 

69, 70, 71, 72, 73, 74, 75, 76, 77]. Many algorithms have been developed for this type of application 

([82], [83], etc). They are all locally equivalent to the exchange algorithm [85]. However, there is limited 

research on scattered data fitting techniques using the L^ especially for the large sparse problems 

[68, 75, 79, 80, 84], For the large sparse problems, the main technique is to convert the problem to 

a linear programming problem, and use the linearized subproblem as the basis [85]. Among all the 

algorithms, Barrodale and Phillips' dual algorithm (BP algorithm) and Bartels, Conn, and Li's primal 

algorithm (BC algorithm) are the most reputable algorithms for solving overdetermined linear systems 

Kn —> R in the Chebyshev norm [68, 75]. Jonasson and Jonasson and Madsen made simple modifications 

on the linearized subproblem to speed up the convergence [79, 80]. The effectiveness of their algorithms 

has yet to be tested on large-scale problems [85]. 

The BP dual algorithm was analyzed and compared with the BC primal algorithm in [68]. It was 

believed that the superiority of the BP dual algorithm was due to the effective choice of a suitable 

starting point for the exchange algorithm embedded in the BP dual algorithm. It was also believed that 

the primal approach was also preferable for problems arising from the function approximation if care 

was taken for the initial data point in the algorithm [68]. 



The BP and BC algorithms are especially attractive in view of the similarity of teir formulations 

with the RBFs approach. In this chapter, we first present the details of the BP dual algorithm using 

simplex method, and then the BC primal algorithm using direct search method including: 

• Problem formulation in primal and dual forms. 

• Discussion of the simplex method in the BP dual algorithm. 

• Discussion of the exchange algorithm. 

• Discussion of direct search method in the BC primal algorithm. 

As the BP and BC algorithms are for K™ —• R, later, we discuss the extension of BP dual algorithm 

for K3 —> R3 for the color conversion from CIELab to CMY. Although the performance is not an 

overriding concern for the color conversion problem, we still would like to gain a basic understanding of 

the algorithm.efficiency of the BP and BC methods. We present our observations lastly in this chapter. 

3.1 Approximation Problem 

The general form of the Chebyshev problem is now described. We use slightly different notations 

to describe this general form. Later we relate the notations to our application. 

Let 

Ax = b (3.1) 

where 

A=[ai,a2,...,an}e^mxn 

where m > n > 2 and 

bT = [p1,p2,---,/3m]edtm 

Our objective is to find the vector x 6 5Rn such that 

\\Ax-b\\00= max \ai
Tx - pt\ (3.2) 

l<i<m 

is minimized 

Following Equation 3.f, let L be a linear space spanned by the functions {</>,} 

L=< (j>i{z),4>2{z),...,4>n{z) > 
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where each 4n is continuous on [a,b], j = 1 , . . . ,n. 

A function cj> € L can be expressed as 

n 

<j>{z) = Y^aj4>j{z) eL 
j=l 

where z G [a, b]. As we can see, the RBF is a perfect example of such a space. 

Given m > n > 2, data points {(zi,yi), i = l , 2 , . . . , m } , we seek to determine a = (ai,...,an) to 

minimize 

e(ai ...,an) =|| Vi-^2 aJ^"(^) ll°° (3-3) 

n 

= ,max \Vi - V a ,^ (z i ) | (3.4) 

To relate the notations in Equation 3.1, we set 

A 

x = a = {Qi ,a 2 l . • • , a n } 

/ < M 2 i ) <M«i) ••• <t>n(zi)\ 

\<l>l(zm) 4>2{zm) • •• <t>n(zm)J 

and 

b= (yi 2/2 • • • Vm) 

3.2 Formulation of Linear Programming Problem 

Now we are ready to convert the L ^ approximation problem to a standard form of the linear 

programming. 

3.2.1 Primal Problem Formulation 

First, we set up the problem in the primal form [68, 75]. Let ( denote the maximum error. 

£ = max e j ( a i , a 2 , . . . ,«„) 
l < i < m 

where e is defined in Equation 3.1. 

The primal problem is formulated as: 

Minimize £ 

subject to 

n 

t + Yl aJ$AZi) ^ Vi (3-5a) 
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£ ~ J2 a3$Azi) ^ ~Vi (3-5b) 
J = l 

Vi where 

and 

a\,a2,...an are unrestricted 

3.2.2 Dual Problem Formulation 

The standard form of the corresponding dual linear program is transformed from the above primal 

linear programm [88]: 
m 

subject to 

and 

where 

5 3 f o - £*)^*= ° (3-6a) 

m 

X > t + £,)<! (3-6b) 

<Li,Zt > 0, i = 1,2, ...m 

3.3 The Exchange Algorithm and Theorems 

Before we discuss in detail how the BP dual algorithm and the BC primal algorithm work, we need to 

discuss the the exchange algorithm and related theorems which almost all the Chebyshev approximation 

algorithms were based upon. 

Let A be a linear subspace of C[a, b], f e C[a, b], L be any closed subset of [a, b], p* £ A, 

e*(x) = f(x)-p*{x) 

and 

LM = ( i £ i | s*(x) obtains extreme values} 

The following lemma provides a necessary and sufficient condition for a minimax solution. 



Lemma 3.3.1 (Theorem 7.1 in [78]) 

p* is the best approximation from A to f, iff ftp G A, s.t., 

e*(x)p{x) = [f{x)-p*(x)]p{x) > 0, Vx e LM 

i.e., e*(x),p(x) are of same signs at all extreme points. 

The following condition defines a class of functions upon which the Exchange Algorithm can be 

applied. 

The Haar Condition: 

• Let A be an (n+l)-dimensional linear subspace of C[a, b]. A satisfies the Haar condition iff Vp G A, 

the number of roots of the equation 

{p(x) = 0;a<x<b} 

is less than the dimension of A. 

• A derived condition states that if {£* : i = 1, 2 , . . . , k} C [a, b], k < n then 3p G A, s.t., p changes 

signs at £j : i = 1, 2 , . . . , k and p has no other roots. 

As we can see the RBFs in the form of Equation 2.1 meet the Harr condition because of the linear 

part in the equation. Now we state the key theorem for the Exchange Algorithm. 

Theorem 3.3.2 Minimax Characterization Theorem (MCT. Theorem 7.2 in [78]) 

Let A be an (n + 1)-dimensional linear subspace ofC[a,b] that satisfies the Haar condition, and let f be 

any function in C[a, b]. Then p* is the best minimax approximation from A to f, iff, there exist (n + 2) 

points {£*;£ = 0 , 1 , . . . , n + 1 } , sd., the conditions 

(1) a < Q < d* < • • • < Cn+i < b, 

(V |/(C) -P*(€DI= ll/-P*lloo.* = 0,1,.... ,n + 1, 

and 

(3) / (C+i) -P* (£+ i ) = - [ / ( £ ) -P* (# ) ] .» = 0 , . . . ,n alternative signs) 

are obtained. 

Now we discuss the minimax approximation theorem on a discrete point set: 
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Theorem 3.3.3 ([78], Theorem 8.2)in [78] 

Let A be a finite-dimension subspace ofC[a, b] that satisfies the Haar condition. Let {#* : i — 1,2, . . . , m} 

be a set of distinct points from [a,b], where m is not less than the dimension of A. For any f inC\a,b], 

let the one-point exchange algorithm be applied to calculate the element of A that minimizes expression 

. max \f(xi) - p{xi)\, peA 
1=1,2,. ..,m 

Then the required approximation to f is obtained in a finite number of iterations. 

The color conversion problem is composed of a set of discrete data points. We would like to sketch 

the main idea of the exchange algorithm for this case. The Exchange Algorithm is based on the MCT. 

It is illustrated in Figure 3.1. 

Figure 3.1: Illustration of the main idea of the Exchange Algorithm. 

For each iteration k, it adjusts a reference {£; : i = 0 , 1 , . . . , n 4- 1}, then finds a trial approximation 

Pk, s.t., 

• Condition (3) in the MCT is satisfied. 

• Condition (2) in the MCT might not be satisfied. 

On a discrete set, i.e., / is known on a set of points {xi, i = 1,2,. . . , m}, to find trial approximation 

Pk in each iteration, let 

h = /tfo)-p*«o) 

and solve 

/ ( 6 ) - P(6) = (-l) 'fc, i = 0 ,1 ,2 , . . . , n + 1 

The iteration stops when pk satisfies all the conditions in the MCT. 
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3.4 Barrodale and Phillips' Algorithm for Solving Dual Problem 

The BP dual algorithm is based on the standard form of the simplex method composed of three 

stages. It was believed as the most efficient algorithm for the large scattered data fitting problem. We 

discuss the algorithm in detail in the following subsections. 

3.4.1 The Condensed Tableau in the B P Dual Algorithm 

The BP dual algorithm introduces artificial variables Qj in Equation 3.6a and slack variable £ in 

3.6b [75]. The underscores were added to each variable to differentiate the dual variables from the 

primal. The above dual problem becomes 

Maximize /_"(cLj — T_i)Vi 
2 = 1 

subject to 
m 

^2iZi - Zi)<Pji + <Xj = 0, j = 1,2,. . . , n 
i=l 

m 

i_i «i, Zi > 0, i = 1, 2, ...m 

Denoting the column vectors formed by the coefficients of q_t, Tj, a-, and £ by s i ; ti} a•, and w, then 

•li+k = 2w 

Let b denote the right-hand side of Equation 3.5, then 

b = w=(0 0 . . . 0 l)T = el+1 

Because of the above relationships, the initial dual formulation is converted to a condensed simplex 

tableau. The initial tableau is stated in Table 3.1, where {cr^Zi), i = 1,2,. . . , m} are nonbasic variables, 

and {QJ, j = 1,2,... , n} , and £ are basic variables. 

3.4.2 The Three-Stage B P Dual Algorithm 

We now discuss each of the three stages in the BP dual algorithm based on the setup of the 

condensed tableau. The first two stages are to get the efficient starting point for the stage three which 

is equivalent to the exchange algorithm for the linear minimax approximation. 
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Table 3.1: Condensed initial simplex tableau. 

Basis 

Marginal Cost 

S l 

0i, i 

02,1 

0n,l 

1 

-2/1 

s2 

01,2 
02,2 

0n,2 
1 

-2/2 

6'm 

01,m 
02,m 

'Pn,m 
I 
^2/m 

Let $ denote a m x n matrix: 

$ = 

^01,1 02,1 
01,2 02,2 

»l,m <P2,m 

0n,l\ 

0n,Tn/ 

The rank of <5 is denoted as k. 

The First Stage of the B P Dual Algorithm 

In the first stage, the first k simplex iterations were performed. The algorithm is to find the 

maximum residual at each iteration and reduce it to zero. The nonbasic variables that can enter the 

basis to become basic variables are <Xj's, and basic variables that can leave the basis to become nonbasic 

variables are strictly restricted to ats. Basic variable £ remains zero in the basis. As the end of stage 1, 

there are k residues at zero. 

• <jt that enters the basis corresponds to that with the largest absolute reduced cost, i.e., choosing 

the largest residual in the primal problem. 

• The pivot is selected from this column as the largest absolute value corresponding to an a^ in the 

basis. 

• At the t'th iteration, with the corresponding g_t entering the basis, there are t zero residuals, i.e., 

n 

J = l 

The Second Stage of the B P Dual Algorithm 

In the second stage, the (k + l)th simplex iteration is performed, the variable £ is forced to leave 

the basis, which means the error £ in the primal problem is increased above zero. At the end of the 

second stage, the k + 1 residuals of magnitude equal to resulting value of £. 

52 



• The (k + l) th pivotal column is chosen also corresponding to the largest absolute marginal cost, 

i.e., equivalent to choosing the largest residual in the primal problem. Exchange Oj-'s and T,-'S if 

the marginal cost is negative. 

• Care needs to be taken to make n + 1th row a legitimate pivotal row. If there are positive values in 

the first n elements in the pivotal column, these values need to be changed to negative by adding 

twice of the corresponding rows to the n + 1th pivotal row, and change the sign of those original 

rows. 

The Third Stage of the B P Dual Algorithm 

The third stage is equivalent to the exchange algorithm for a linear minimax approximation. 

• The pivotal column is chosen corresponding to the most negative marginal cost. 

• The pivotal row is chosen by ratio selection rule [88]. 

• The iteration continues until all marginal cost is nonnegative. 

• Every iteration increases the value of £ until £ = e*, where e* is the minimum value in Equation 

3.3. 

3.5 Bartels and Conn's Algorithm for Solving Primal Problem 

The BP dual algorithm can be expressed equivalently using the interior point method based on the 

natrual primal problem formulation [68]. The authors believed that the primal method was much more 

nature than the dual method, and was superior to the dual approach when care is taken in the choice 

of the starting point for the primal approach. To rewrite the primal formulation in Equation 3.6, let 

c0 = (1 0 0 . . . 0 ) T 

n + l 

71+1 

1 
cm+i i , 

V + "V n+l 

Si = ~Vi 

5m+i = Vi,i = 1,2 

V • 

n+l 
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3.5.1 Conversion from a Constrained Problem to an Unconstrained Optimization Prob­
lem 

The above primal problem is converted to an unconstrained optimization problem via a piecewise 

linear penalty funciton. Let /J > 0 be a fixed parameter. Define 

2m 

p(vi,/i) — ^CQV — 2_] min(0,c^ v — Sj) (3.7) 

For any arbitrary v € R n + 1 , Equation 3.7 can be expanded into 

p{v,n) = /J.CQV — 2_] min(0,cJ- v — Sj) 

— V^ min(0, cjv — Sj) 
jei+ 

— 2_] mm(0,cjv — Sj) 

where 

• 1° = I°(v) = {j\cjv = S3} = {jltj2,.. .,jk} 

1+ = /+(„) = {j\cJv > 63} 

r=r(v) = {j\cjv<53} 

For any d £ R n + 1 , and any A > 0 sufficiently small, 

p(v + Ad, n) = p(v, JJ.) + \\HCQCI — Y^ cjd — ^2 min(0, cjd)] (3.8) 

= p(v, (i) + XhTd + A J2 ay cjd (3.9) 
j£l« 

where 

and 

h = fic0- ^2 CJ 

_ , ,, f 0 if cjd > 0 . r0 

Define the matrix 

N = [Cjl,Cj2,---,Cjk} 

and let 

P = I-N(NTN)-1NT 

It's clear that matrix P is the orthogonal projector onto the null space of NT. 
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3.5.2 Search Direction and Step Size 

Now we need to define search direction d such that p(v + Ad, fi) < p(v,/j,). Let 

d=-Ph 

Case I: Ph ^ 0 

Apply d defined in Equation 3.10 to Equation 3.9, 

cjd = -cjPh 

= -cjPPh 

= -{PcjfPh 

= 0 

Since P is the orthogonal projector onto the null space of NT. The Equation 3.8 becomes: 

p(v 4- Ad, fj,) = p{v,n) + \hT d 

and 

hTd<0 

i.e., 

p(v + \d,/i) <p{v,n) 

Thus, d serves as a descent direction for the function p. 

Case II: Ph = 0 

Assuming columns of N are linearly independent, then 

k 

Then Equation 3.8 is changed to 

k 

p{v + Xd,ii) = p{v,fi) + A]T[?7J + 0~i\cjd 
t= i 

Subcase a: r)it < 0 for some i» € 7° 

Choose d, s.t., 

cjd = 0 , j € / ° , j ^ * 
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cld=l 

This implies that a~ = 0,j € J°, and equation (12) becomes to equation (15), and because 

hTd = r/i.c^d = V < 0 

Then 

p(v + \d,n) < p{v,fi) 

Subcase b: r\it > 0 for all ir G 1° 

If no constraints are being violated, it is the optimal. Otherwise, reduce fi, and start another iteration, 

{choose step size A} 

A(D * / {A|A = ^ | X A > o, j e /+ u / " } • 

A = minA (1 ) 

update 

v = v + Xd. 

3.6 The BC Primal Algorithm in Color Conversion 

The Loo norm approximation is applied to color conversions from CMYK to CIELab and CIELab 

to CMY. The formulation of this color conversion in the primal form is described in the following using 

the CIELab to CMY color conversion as the example: 

subject to 

Minimize £ = £c + £m + £y 

n+4 

£c + 53a c jF C j (Zi) > C; 
.7 = 1 

n+4 

Sc — / y ^cji cj\zi) ^ Cj 

.7 = 1 

n+4 

Sm i / ^ &mjr mj\Zi) -^L TFli 

J=l 

n+4 

Sim / ^ OLmji mj\Zi) -^L T^li 

J' = l 

n+4 

sy + / y
 ayjFyj\Zi) — 2/» 

.7=1 

(3.12a) 

(3.12b) 

(3.12c) 

(3.12d) 

(3.12e) 
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n+4 

where 

a i , « 2 , ...Q„+4 unrestricted 

z, = {L,a,6},,i = 1 , . . . , m 

Fji = [l,Zi,4>1(Zi),4>2(Zi),...,4)n(zi)}4+n 

hi = <Pj(Zi) 

<j>j is one of the RBFs, n is the number of clusters, and m is the number of color data points. 

The problem can be rewritten in this form: 

Minimize CQV 

subject to 

vhere 

cjv > Sj,j = 1,2,... 6m 

c = (i o ... i o ... i o ... o)3n+1 
T 

5 

T 

3n+15 

Ci = ( l -aa 0 . . . 0 2 „ + 8 ) 3 n + 1 5 

Cm+i = ( l aci 0 . . . 0 2 n + 8 ) 3 n + 1 5 

C2m+i = (0 . . . 0 n + 4 1 — ami 0 . . . 0 n + 4J 
3n+15 

C3m+i = (0 ••• 0 n + 4 1 ami 0 . . . 0 n + 4 j 3 ) i + 1 

C4m+i = (0 ••• 02n+8 1 —Oiyi) 

+ 15 

T 
3n+15 

C5m+i = (0 ••• 02n+8 1 Oyi) 

Si = -Ci 

Om+i ~ ^i 

52m+i — —Mi 

T 
3n+15 
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&Zm+i — Mi 

VAm+i = *i 

where i = 1 , . . . ,m. 

The primal problem is divided into the following steps using the modified BC algorithm: 

• Convert the primal problem with constraints to an unconstrained problem via a piecewise linear 

penalty function. Let n > 0 be a fixed parameter. Define 

6m 

p(v, n) = iic^v - Y^ min(0, cjv - 6j) 

For any arbitrary v € R3 n + 1 2 , 

p{v,n) = /J.CQV — 2_, min(0,cjv — 8j) 

— \_. min(0, Cj v — Sj) 
jei+ 

— Y^ mm(0,cjv — 6j) 

where 

1° = I°(v) = {j\cjv = Sj} = {juh, • • • ,jk} 

1+ = I+[v) = {j\cjv > 5,} 

r = I-{v) = {j\<$v<6j} 

• Find sets 1°, 1+, and I~. 

• Update search direction and step size as defined in the previous subsection. 

3.7 The B P Dual Algorithm in Multidimensional Color Conversion 

The formulation of color conversion in dual is described in the following using the CIELab to CMY 

color conversion as the example: 

m 

Maximize ^ ( o ; c i - Tci)a + (ami - i m > , + (ayi - zyi)Vi 
i=i 

subject to 

E f e c i - Z c , ) r S J l = 0 (3.13a) 
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and 

^ > c t + r C j ) < i (3.13b) 
i = l 

m 

J2^Mi-ZMl)F
T

Mji=0 (3.13c) 
i=\ 

m 

E f e M t + Z M 2 ) < l (3.13d) 
i=l 

m 
Ytte-Yi-TyjFl^O (3.13e) 
1=1 

m 

J2&Yi+LYz)<l (3.13f) 

ffjjZj > 0, i = 1, 2 , . . . , m 

where 

2* = {L,a,b}u i = l,2,...,m 

Fji = [l,Zi,<f>i(Zi), <fo(Zi), . . . , </>n(Zi)]n+4 

<Pji = 4>j{Zi) 

and 0j is one of the RBFs , n is the number of clusters, and m is the number of color d a t a points. 
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The condensed initial simplex tableau for the CIELab to CMY conversion is shown in the next 

table. 

Table 3.2: Condensed initial simplex tableau for the CIELab to CMY conversion. 

Basis 

a c i 

" M i 

aMn 

aYl 

Ceyn 

WC 

WM 

Wy 

Marginal 
Cost 

s C l 

F'k, • 

FTc„., • 
0 

0 
0 

0 
1 
0 
0 
- C i . 

sc„, 
• rh^ 

• rT
c_ 

0 

0 
0 

0 
1 
0 
0 
— (-'m 

SMx 

0 

0 
FT 

FT 

' M„ i ' 
0 

0 
0 
1 
0 
-Mi . 

SM,„, 

0 

0 
h Mi , m 

FT 

t M„ m 0 

0 
0 
1 
0 
-Mm 

sYl 

0 , . 

0 
0 

0 

F Y M • 

FT 

h r„,i • 0 
0 
1 
-Yi . 

sYm 

0 

0 
0 

0 

FYlim 

FT 

0 
0 
1 

1 m 

The simplex procedures are described in the following: 

• Find the rank of the matrix Fnxm, k. 

• Perform the first step BP simplex algorithm: k simplex iterations for each of Fc„xm for cyan 

component, FM„XT„, for magenta component, and Fynxm for yellow component. 

— Only allow vectors sc to enter the basis, and only vectors ac can leave the basis for Fcnxm', 

— Only allow vectors SM to enter the basis, and only vectors CUM can leave the basis for Funxm\ 

— Only allow vectors sy to enter the basis, and only vectors ay can leave the basis for Fynxm; 

• Perform the second step BP simplex algorithm: Force t;c, £M, and £y to leave the basis. The 

corresponding vectors entering the basis are sc, SM, and sy respectively. 

— If the corresponding marginal cost of Sc, % , or sy is positive, then s, is changed to U using 

U = 2w3 n + 4 - Si 
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where 

wc = (0 0 . . . 0 1 0 0 0 ) T = eL+i 

wM = (0 0 . . . 0 0 1 0 0) T = e^n+2 

wY = (0 0 . . . 0 0 0 1 0 ) r = e L + 3 

— If si is the pivotal column, r is the row vector of pivotal row. For any j t h row vector r, 

containing Sy > 0, where j / 3n + 1 for Fcnx„,, j =£ 3n + 2 for F M„.X„,,, and j ^ 3n + 3 for 

Fy„xm, change r to r + 2rj, and change r^ to —Vj. 

• Perform the third step BP simplex iterations until all the marginal costs are non-negative. 

3.8 Experiments and Results 

The experiments for the L^ approximation were designed to answer the following questions: 

• What is the reasonable K value for the cross validation? 

• What is the optimized color range, i.e., the 8S value, for the CIELab to CMY color conversion 

using the L m approximation? 

• Is the Loo approximation an affective method for reducing the maximum color conversion errors 

comparing to the maximum error obtained by the least squares approximation? 

• Which algorithm is a more efficient algorithm between the BP dual algorithm and the BC primal 

algorithm for the color conversion problem? 

To answer the first three questions, the BP dual algorithm was performed on the CMY to CIELab 

conversion. All 866 CMY data points were used with 64 cluster centers. We chose the CMY to CIELab 

conversion because the same data set should be used for the CIELab to CMY color conversion, and the 

error calculated in the CIELab is more meaningful than that was calculated in the CMYK color space. 

Notice that, when we convert the minimax problem to a linear programming problem, the parameter 

optimization for the function with radius became manual and empirical, i.e., we need to run the problem 

with a set of radius values to determine which parameter is the best for the application. 

The maximum error and its variance with respect to the cross validation K value are plotted in 

Figure 3.2. Different from the results of the least squares approximation, large K value is needed for the 

Loo approximation. Figure 3.2 shows that maximum error decreases for K < 60, and it stays relatively 
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Figure 3.2: The maximum error and its variance as function of cross validation K value. 

flat (or decreases very slowly) for K > 60. The variance of the maximum errors also stays relatively 

stable for K > 60. 

Similar to the experiment we conducted to determine 5mi and 6mu for the least squares approxima­

tion, we applied the BP dual algorithm on the CMY data with a series of 5S value. Again, we found that 

using all 866 data is the best color data range for the color conversion problem with the Loo approach. 

Our results also indicated that the maximum error for CMY to CIELab conversion is 2.83 using 

least squares approximation, and the maximum error is reduced to 2.25 using the L ^ approximation. 

We then implemented both the BC and the BP algorithms on the CIELab to CMY conversion. The 

866 CMY data points in the data set II were used. Our results indicated that although both approaches 

gave similar results, the BP dual algorithm performs much faster than the BC primal algorithm for our 

application based on the 866 data points. The CPU time of running the BP dual algorithm is around 

210 seconds calculated by the MATLAB CPU routine. The CPU time of running the primal algorithm 

is about 4-6 times more than that running the BP dual algorithm depending on the function selection. 

By all means, our experiment was not designed for the performance analysis. It's not our intention to 

make any performance judgment on the BP and BC algorithms. We only use this result to decide what 

algorithm we use for the L\ approximation and the color conversion with toner saving problem. 

3.9 Summary 

The RBFs based Loo approximation techniques were applied to the color conversion in the saturated 

color regions to reduce the maximum errors. The modified multidimensional primal and dual algorithms 
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based on the BC primal and BP dual algorithms were implemented and tested. Both algorithms were 

based on the exchange theorem. Our results indicated that the BP dual and the BC primal algorithms 

gave very similar results. The maximum color conversion error was sufficiently reduced. Based on our 

experimental color data, the BP dual algorithm performed much faster than the BC algorithm. However, 

our experiment was not designed for the performance analysis. 
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Chapter 4 

COLOR CONVERSION USING THE Lx N O R M APPROXIMATION 

4.1 Neutral Color Conversion Problem 

Color conversion in neutral color areas plays a critical role in color reproduction quality, yet the task 

is difficult. Firstly, the human visual system (HVS) is very sensitive to color changes in neutral color 

areas. Secondly, the color conversion errors due to machine stability, paper uniformity, and instrument 

accuracy are more profound relative to the human color difference tolerances. Thus, there are more 

chances for the existences of outliers. The main goal for building a color conversion model in these areas 

is to minimize the negative impact of outliers. Therefore the L\ norm approximation is the natural 

choice because of its robustness to outliers. 

There have been many studies concerning the L\ solutions to the overdetermined linear system. In 

early 70's, Barrodale and Roberts presented a simplex algorithm in the primal form to bypass a few 

iterations[89]. Prior to this algorithm, a few attempts were made to solve this problem in the dual 

form when m is large [90, 91, 92]. Barrodale conducted an empirical study indicating that solving the 

primal problem is more efficient [93]. In late 70's Bartels, Conn, and Sinclair presented a technique for 

solving the L\ approximation problem by minimizing piecewise differentiable functions [94]. Armstrong 

and Hultz also presented a technique for a special purpose algorithm [99]. The results of computer 

comparisons demonstrated that Barrodale and Roberts' algorithm was one of the most efficient algo­

rithm. Later, a simplex version of this algorithm based on a LU decomposition was made by Armstrong, 

Frome, and Kung further enhancing it [100]. In 80's, Bloomfield and Steiger made further modifications 

on the Barrodale and Roberts' algorithm by employing a steepest edge criterion [101]. Besides Bartels, 

Conn, and Sinclair's algorithm, there were also a few other attempts on the direct decent approach 

[95, 96, 97]. Comparisons of L\ approximation algorithms were made [98, 102, 103]. Although there 

was no concensus on which method performed most efficiently, research suggested that both approaches 

were equivalent, only the implementation details were different [104, 105]. 



Among all the L\ algorithms, we selected the Barrodale and Roberts' primal algorithm (BR algo­

rithm) for its simplicity and robustness. 

In this Chapter, we discuss: 

• The general Lx approximation problem for overdetermined linear systems. 

• The theorems for the discrete L\ approximation and why the best discrete L\ approximation 

calculation is a linear programming problem. 

• Barrodale and Roberts' algorithm for solving the primal problem. 

• L\ approximation in color conversion. 

• Results of color conversion via the L\ norm approximation. 

4.2 Overdetermined Linear Systems in the L\ Sense 

Similar to the problem setup for the L ^ , the overdetermined linear system of the general L\ 

approximation problem is stated as follows: 

Ax = b (4.1) 

where 

A = [ a i , a 2 , . . . , a „ ] e R m x " , (m > n > 2) 

and 

bT = {[31,[32,...,0m]emm 

Our objective for the L\ norm approximation is to find vector x G Mn s.t., 

m n 

i = l j = l 

is minimized 

Let L be a linear space spanned by function <pt 

L =< <j>i(z),(j>2(z),...,4>n(z) > 

where each fa is continuous on [a,b], i = 1 , . . . , n. A function cf> can be expressed as 

n 
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where z € [a,b] C Rk. 

Given m > n > 2, data points (zi,yi), determine a = (QI , ...an) to minimize 

e(ai. . .a„) =| | J/; - ^a,</>.,-(zj) ||i 
i = i 

In Equation 4.1, 

y l = 

x = a 

/4>l(zi) 4>2izl) ••• <t>n(Zl)\ 

\4>l(zm) <t>2{zm) . . . <t>n{Zm)J and 

6 = (iu 2/2 Vr, 

If we defined the function in the RBF form, then it becomes: 

k n-\-k 

<f>{z)=a0 + J2apz(P)+ Yl " J ' K I I Z - C ? 1 

P = I j=fc+i 

where x = ( a 0 , a i , . . . ,Qfe,afc+i,... ,a„+fc). 

yl becomes 

/ l 2(1) Zl(2) . . . 2l(A;) <M«l) 02(2l) 

,4 = ••• 

\ 1 Zm(l) 2m(2) . . . 2m(fc) (j>l{zm) <p2{zm) 

4.3 The Theory of the Best L\ Approximation 

4>n(zi)\ 

<Pn(zm)J 

(4.3) 

(4.4) 

(4.5) 

It's obvious that the Li and Lx norms in C[a, b] and in Kn are not strictly convex. Let A be a linear 

subspace of either the L\ or the L^ normed linear space, then the uniqueness of best approximations 

from A to / depends on properties of A and / . 

Let p* in A be the best L\ approximation function to / . Define a sign function as: 

' - 1 , f{x)<p*{x) 

s*{x)=\ 0, f{x)=p*(x) (4.6) 

^ 1, f(x)>p*(x) 

The following theorem gives the basic necessary and sufficient condition for the function p* to be a best 

L\ approximation from A to / . 
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Theorem 4.3.1 (Theorem 14.1 in [78]) 

Let A be a linear subspace of C[a,b]. Let f be any function in C[a,b], and let p* be any element of A, 

such that the set 

£ = {x : f(x) = p*(x), a < x < b} 

is either empty or is composed of a finite number of intervals and discrete points. Then p* is a best L\ 

norm approximation form A to f, iff, the inequality 

| / s*(x)p{x)dx |< J \p(x)\dx (4.7) 

is satisfied for all p in A, where s* is the function 4.6. 

A similar theorem for discrete L\ approximation is stated below: 

Theorem 4.3.2 (Theorem 15.2 in [78]) 

Let the function values {f(xt);t = 1,2,... ,rn}, and fixed positive weights {wt; t = 1,2,... ,m} be given. 

Let A be a linear space of functions that are defined on the point set {xt; t = 1,2,... , m}. Let p* be 

any element of A. Let £ contain the points of {xt\ t = 1,2, . . . , ra} that satisfy the condition 

p*{xt) = f(xt) (4.8) 

and let s* be the sign function 

s*{x) 

- 1 , f(xt)<p*(xt) 

0, f(Xt)=p*(xt) (4.9) 

{ 1, f{xt)>p*{xt) 

t — 1,2,.. . , m. Then p* is the function in A that minimizes the expression 

m 

^wt\f(xt)-p(xt)\,p€A (4.10) 
t= i 

iff, the inequality 

£>ts*(x t )p (a : t ) |< Y, wMxt)\ (4.11) 
t=i xtec 

holds for all p in A 

Theorem 4.3.2 implies that in order to get the best discrete Li approximation p*, the inequality in 

4.11 has to be tested to be satisfied for every single element p in A. In real applications, it's generally 

not practical. The next theorem shows that an optimal function p* can be obtained by searching for 

suitable interpolation points in £. 
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Theorem 4.3.3 (Theorem 15.3 in [78]) 

Let the function values {f(xt); t = 1,2,. . . , m} and fixed positive weights {wt; £ = 1,2,. . . , m} be given. 

Let A be a linear subspace ofMm, where the component of each vector p in A have the values {p(xt); t = 

1,2,. . . , m}. Then there exists an element p* in A, that minimizes expression 4.10, and that has the 

property that the zero vector is the only element p in A that satisfies the conditions {p(xt) = 0; xt e £}, 

where the set C is defined in Theorem 4.3.2 

With Theorem 4.3.3, we are able to show that the best discrete L\ approximation calculation is a 

linear programming problem. Let <j> = {fa; i = 0 , 1 , . . . , n} be a basis of the space A of approximation, 

the expression 4.11 is changed to 
m n 

X>t |3 fc -X>&(a : t ) | (4-12) 
t=l i=0 

where yt is the output value corresponding to each xt. Define the bounds {ut > 0} and {vt > 0} so that 

n 

-vt <yt-^2Kfa{xt) < ut (4.13) 

i=0 

for {t = 1, 2 , . . . ,m}. Then the problem is changed to a linear programming problem: 

m 

Minimize y^ywt{ut + Vt) 
t= i 

subject to 
n 

-vt <yt~^2 \fa(xt) <ut, t = 1, 2,..., m 
i=0 

ut > 0 

vt > 0 

for t = 1, 2 , . . . ,m. 

4.4 Barrodale and Roberts' Algorithm (BR algorithm) for Discrete L\ Linear Approxi­
mation 

Because of the success of using the Barrodale's simplex L^ algorithm in solving color conversion 

problem, again, we chose the Barrodale and Roberts' simplex algorithm for solving the color conversion 

problem via the L\ approximation. The algorithm is described as follows: 

Let 
n 

fi ~ ̂ 2 «i<^i,i = Ui-Vi 

where {ui, Vi : i = 1,2,.. . , m} are nonnegative variables. We define nonnegative variables {bj,Cj : j = 

1,2,.. . , n} , and the weights aj = bj — Cj. 

68 



The problem formulation of the primal problem is 

m 

Minimize 2_^(Ui + Vi) 

subject to 

n 

fi = ^2(bJ - c])$]\i + Ui~Vi, i = 1, 2, . . . , TO 
3 = 1 

and 
bj,Cj,Ui,Vi > 0 

The algorithm is implemented in two stages: 

• Stage 1: For the first n iterations, the pivotal columns are restricted to bj and Cj only. The vector 

entering the basis is the one with the largest nonnegative marginal cost, i.e., Y^ILi §i,i- The vector 

leaving the basis is chosen among Vi and Ui for the one causing the maximum reduction in the 

objective function. 

• Stage 2: Interchange the nonbasic Ui or Vi with the basic it, or m. Neither bj and Cj are allowed 

to leave the basis. The criteria for selecting vectors leaving and entering the basis are the same as 

that in the Stage 1. 

• Interchange basic vectors bj or c, with the corresponding nonbasic vectors Cj or bj if the final 

tableau at the end of Stage 2 is infeasible. 

The key element of making this algorithm efficient is to choose the vector leaving the basis that 

causes the maximum reduction in the objective function, rather than go through every vertex point in 

the problem. 

4.5 B R Algorithm for Solving the Multidimensional Neutral Color Conversion Problem 

We applied the BR algorithm to the neutral color conversion. Let zt = {(L,a,b)i i = 1 ,2 , . . . ,m} . 

The color conversion from CIELab to CMY is formulated in the following: 

m 

Minimize £ = 2_]uct + vCi + umi + vmi + uVi + vyi 

2 = 1 

subject to 
n+4 

^2{aCj - bcj)FCj{zi) + uci + vci = d (4.14a) 
j = i 

n+4 

^2{amj - bmj)Fmj(zi)'+ umi + vmi = Mi (4.14b) 
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^ ( a , y - byj)Fyj(zi) + uyi + vyi = Yt (4.14c) 
j=l 

where 

0 « = {l,z{i),4>l{Zi),<t>2(Zi),---,4>n{Zi)]n+4 

for C, M, and Y components respectively. 

When performing the two-stage BR algorithm, the vectors relating to C, M, and Y can only be 

exchanged with the vectors of C, M, and Y respectively. 

The condensed initial simplex tableau for CIELab to CMY conversion is shown in the next table. 
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4.6 Experiments and Results 

Similar to the L^, approximation, the experiments for the L\ approximation were designed to 

determine the K value for the cross validation, the optimized color range (i.e., the 5n value) for the 

CIELab to CMY color conversion, and the best L\ approximation model for the CIELab to CMY 

conversion. 

Firstly, the BR primal algorithm was performed on the CMY to CIELab conversion. All 866 CMY 

data points were used. We chose the CMY to CIELab conversion because the same data set should 

be used for the CIELab to CMY color conversion, and the error calculated in the CIELab is more 

meaningful than that was calculated in the CMYK color, space. 

The mean error and its variance with respect to the cross validation K value are plotted in Figure 

4.1. 

1 

0.9 
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0.1 
( 

Figure 4.1: The mean error and its variance as a function of cross validation K value. 

The results are similar to the cross validation results of the least squares approximation. The mean 

error decreases with the increase of the K value until K = 12. And the mean error stays relatively 

unchanged for K > 12. On the other hand, the variance decreases until K = 7, and increases for K > 7. 

As this cross validation experiment is conducted for the model selection, we need to balance between the 

proximation error and the magnitude of the variance. K = 12 is selected for the K-fold cross validation. 

Secondly, we repeated the experiments in the L m and L2 approximations to determine the optimized 

color range by finding Sn value. Again, we found that the best accuracy was obtained when all 866 data 

was used for modeling. 
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Lastly, we performed the L\ norm optimization process for the CIELab to CMY conversion. Again 

similar to the L^ simplex method, when we convert the L\ problem to a linear programming problem, 

the parameter optimization for the function with radius became manual and empirical, i.e., we need to 

run the problem with a set of radius values to determine which parameter is the best for the application. 

Our experiments indicate that the BR algorithm is an efficient algorithm for reducing the color conversion 

errors in the L\ norm, and the best model for the CIELab to CMY conversion is the Gaussian function 

with radius of 0.3, the multiquadratic function with radius of 0.2, and the Gaussian function with radius 

of 0.5 for fc, / M , JY respectively. 

4.7 Summary 

The RBF based L\ approximation technique was applied to the color conversion in the neutral 

color regions to minimize the effectiveness of outliers. The modified multidimensional L\ algorithm was 

developed based on the BR primal algorithm. Our experimental results indicated that this algorithm 

was robust and efficient. 
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Chapter 5 

ONE DIMENSIONAL COLOR MANIFOLDS IN THE CMYK COLOR SPACE 

The most difficult and challenging task in color printing is to reduce the cost of printing while 

maintaining quality. Traditionally, the printer color conversion from CMY (or CIELab) to CMYK has 

been achieved by under color removal (UCR) and under color addition (UCA). UCR is the process of 

removing an equal amount of cyan, magenta, and yellow, and adding the same amount of black. More 

explicitly, define the color components as: 

CMY = {C,M,Y}, 

CMYK = {C,M,Y,K}, 

Lab = {L,a,b}, 

We take the smallest value of the C, M, Y components, i.e., let 

K = min{C, M, Y} 

and then use K to convert a CMY value to a CMYK value using the following equations: 

C = C-K, 

M' = M-K, 

Y' = Y -K, 

Because of the nonlinearity of toners/inks, this UCR model is not close to being accurate, and 

introduces unacceptable color conversion errors. Colors resulting from the UCR process are dull, muddy, 

and hue shifted. 

To mitigate this problem, the UCR process is followed by the UCA correction which consists of 

adding a small amount of cyan, magenta, and yellow back to the C', Mf, Y1 values respectively to make 



colors richer and less hue shifted. However, this method is empirical and labor intensive. The conversion 

error is still quite large. 

A hypothetical solution to color toner/ink reduction problem consists of approximating a nonlinear 

continuous and differentiable functions mapping from CIELab to CMY, and CMYK to CIELab. As 

demonstrated in this chapter, the development of a color conversion model using RBPs makes accurate 

CMY to CMYK conversions possible. 

In this chapter, we discuss an optimized GCR algorithm, a method of obtaining one-dimensional 

manifolds in the CMYK color space and an optimal toner/ink selection algorithm which results no 

quality degradation. 

5.1 Computing an Optimal CMYK Color 

The algorithm for optimized CMY to CMYK conversion is described as following: Assume we have 

accurate continuous functions describing CMYK to CIELab conversion and CIELab to CMY conversion: 

g{L,a,b) -> (C,M,Y) e (R+ ,K+,R+) 

f(C,M,Y,K)^(L,a,b) 

For any CIELab value within the printer gamut, Labo = (Lo,ao,bo), 

g{L0,a0,b0) = (Co,M0,YQ) 

If C0 > 0 & Mo > 0 & Y0 > 0, seek a value (C0, MQ, YQ,K'0), s.t., 

/ (C'0, M0 Y0, K'0\ « (Lp, op, bp) 

X Y 

We propose to approximate the CMYK value xn = (Cn,Mn,Yn,Kn) iteratively such that for n 

large enough we have 

\\f{xn)-yn\\<e 

for some prescribed tolerance e 

Newton's method is preferred for its simplicity, efficiency, and accuracy if an initial data point close 

to the minimizer is found. We discuss the algorithm for finding initial starting points for the Newton's 

method and multidimensional Newton's method in the following subsections. 
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5.2 Initializing the Algorithm 

The goal of finding an initial point for Newton's method is to seek a value XQ, s.t., 

• err =|| f{x0) - y0 ||< tol 

where tol is an initial acceptable tolerance. 

One of the problems in current GCR algorithm is that the CIELab value of an equal amount of 

CMY value is not equal to the CIELab value of that same amount of black toner/ink, K, i.e., for most 

cases, the CIELab value of a K value corresponds to unequal amount of cyan, magenta, and yellow. If 

the equal amount of C, M, Y, K values are used as the initial point to Newton's algorithm, the above 

inequality may not be satisfied. A better initial point is obtained by removing unequal amounts of 

cyan, magenta, and yellow from the CMY value respectively, and adding the K value. Our experiments 

indicated that for one data set, the maximum error (err) using this process was improved from the 

traditional UCR err value of 14.42 to 10.50. The algorithm is described as follows: 

• For any K, compute the associated CIELab value using 

f(0,0,0,K)^(LK,aK,bK) (5.1) 

Now find the CMY value corresponding to this K using 

g(LK,aK,bK)^\CK,MK,YK) (5.2) 

Now we have established an equivalence 

K^(CK,MK,YK) 

Repeat it for a sequence of K values span the range of (0,1). 

• For any given (C, M, Y) value , there exists a maximum Kp value whose corresponding (CKp ,MK>>, YK>>) 

satisfies 

C = CK" or M = MK" orY = YK" 

Seek a sequence of K values, i.e., 

K = {Ki<Kp,i= 1,2,...,p} 

The corresponding (CKi, MKi, YKi)'s can also be removed from the (C,M,Y) value. 
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• Convert the CMY value (C,M,Y) to a sequence of CMYK values, i.e., 

CMYK = {(CK',MK'<,YK'<), i = l,2,...,p} (5.3) 

where 

CK'> =C~CKi 

MK> =M- MKi 

YK< =Y - YKi 

5.3 Optimized Gray Component Replacement Algorithm 

Given some initial CMY, the optimized GCR algorithm is to determine the associated ( C , M', Y', K') 

such that the quality 

\\f(C',M',Y',K')-f(C,M,Y,0)\\ 

is as small as possible. 

Since we believe that are able to find the initial point close enough to the minimizer, the multidi­

mensional Newton's method was used to find the optimal value of (C,M',Y',K') [106]. 

Let 

/ -(I) . . . 
where j/o is the corresponding CIELab value 

M 
Y 

W 
of tl 

/ A /L0X 

\bj \b0J 

le original CMY color, i.e. the desired CIELab value 

for the optimizer of the (C',M',Y',K'). 

Let f(x) be the representation of the mapping from CMYK to CIELab and express it as a RBF, 

i.e., 
N 

fj{x) = AJX + aj0 + J2wji<t>j{\\x ~Ci\\) (5.4) 

where j = 1,2,3 correspond to {ftyfaj'b}-

Let 

f(x + h)*>f{x) + f'{x)h 

where f'(x) is in the form of Jacobian matrix 

(dfL/dc dfL/dM dfL/dY dfL/dK\ 
J = f\x) = dfJdC dfa/dM dfa/dY dfJdK (5.5) 

\dfb/dC dfb/dM dft/dY dfb/dKj 

for each iteration k, 

Xk+i = xk - J{xk)'l{j\yk) - /(j/o)) (5.6) 
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The iteration stops when ||(/(a;n) — yo)|| < 10 - 1 2 . 

The dimension of the Jacobian matrix is 3 x 4. In order to change it to an invertible Jacobian 

matrix, care needs to be taken in the implementation. The algorithm is described as follows: 

• To start, keep the black value of the (C, M, Y, K) color unchanged. The Jacobian matrix in 

Equation 5.2 is then changed to: 

J = fix) 

Solve Equation 5.2 using SVD to obtain x^+i 

dfL/dc dfL/dM d}L/dY\ 
dfa/dC dfa/dM dfJOY 
dfb/dC afb/dM dh/dYj 

Xk+l 

fck+1\ 
Mk+i 
Yk+l 

V K J 
At each iteration, check if the C,M,Y values in the converted (C, M, Y, K) are in the range of [0,1], 

i.e., if x\+1 > 1 or x\+l < 0, where i= 1,2,3 correspond to C, M and Y component respectively. 

If the value of the ith component is out of the range, let 

bk+l 
1, x{i) > 1 
0, x{i) < 0 

Keep the ith component unchanged for the rest of the iterations, remove the column that cor­

responds to this component from the Jacobian matrix J, and relax the constraint on the black 

component by adding the partial derivatives with respect to black in the matrix J. For example, 

if a;(2) > 1, the magenta component is removed. The Jacobian matrix Jk+i becomes to 

Jk + i 

fdfL/dC dfL/dY dfL/dK\ 
dfa/OC dfJdY Ofa/dK 

ydfb/dc dfb/dY dfb/dKj 

and 

Xk+l 

/Ck+i\ 
1.0 

Yk+i 
\Kk+iJ 

Our results indicate any given CMY value ( C > 0 & M > 0 & F > 0 ) will converge to a CMYK 

value with the CIELab value difference practically zero. 
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5.4 Finding a Level Set for a Given Color 

As described in the previous sections, each black level K, i.e., CMYK — (0,0, 0,-ft"), can be mapped 

to a CMY value of (Ck,Mk,Yk). For any CMY value (C > 0 & M > 0 & y > 0), there exists a set 

of values {Kt, i = 1,2,... ,p} that their corresponding {Cki, Mki ,Yk%, i = 1, 2 , . . . ,p} can be removed 

from C,M, and Y, i.e., 

C>Ck' kM>Mki kY >Yki, i=l,2,...,p 

This means that for one CMY value, there exists a set of CMYK values {C - Cki,M - Mki,Y -

Yki ,Ki, i = 1, 2 , . . . , p} can be used for the initial points to the multidimensional Newton's optimization 

algorithm. 

We seek all solutions to the problem f{C,M,Y,K) = (L0,a0,bo). In other words, find the set of 

values /_1(Lo,fflO) &o)- We believe this set of values is a one-dimensional manifold, and we discuss it 

based on the pre-image theorem. 

Definition 5.4.1 Let f : X —> Y be a smooth map between manifolds. We say that a point is a regular 

value of f if for all x : x £ f~1(y) the map df : TXX —* TyY is surjective. Here, TXX and TyY are the 

tangent spaces of X and Y at the points x and y. 

Theorem 5.4.2 Pre-image Theorem Let f : X —> Y be a smooth map, and let y e Y be a regular 

value of f. Then x : x £ f~1{y) is a submanifold of X with dimf~l(y) = dimX — dimY. 

In our application, Let 

A = {set of elements of CMYK} 

B = {set of elements of CLELab} 

A function / — (fL, fa, /(,) that maps A to B is in the form of RBFs described in Equation 5.4. So / is 

continuous and differentiable. For a CIELab value y £ B, if the Jacobian matrix described in Equation 

5.5 at y is full rank, i.e., rank is equal to 3, then y is a regular point of / . Based on the Theorem 5.4.2, 

there exists a manifold S = f~1{y), S C A with dimension of one. 

We designed our algorithm for finding these one-dimensional manifolds based on the pre-image 

theorem. The detailed algorithm is described as follows: 

• For any CIELab value y that is inside the printer gamut, obtain the CMY value using 

g(y)^{C,M,Y) 
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• Check if min(C, M, Y) = 0. If it's true, it means y is not a regular point since its Jacobian matrix 

will be rank deficient. Stop the program. 

• If min(C, M, Y) > 0, perform the initializing algorithm to obtain the sequence of the CMYK value 

CMYK described in Equation 5.3. 

• Check the Jacobian matrix at each starting point, and decide if y is a regular point. If y is not a 

regular point, stop the program. 

• If y is a regular point, perform the optimized GCR algorithm to obtain optimized value for each 

starting point, i.e., obtain the 1-dimensional manifold S C A, and S = f^1{y)-

5.5 The Optimal Toner/ink Saving Solution 

When there exists a level set of CMYK values S = f~1(y) that correspond to the same CIELab 

value, y £ B, the optimal solution for the toner/ink selection can be obtained for a given objective 

function. The objective function can be toner/ink cost based in which the objective function is to 

minimize the cost of printing, or toner/ink coverage based, which is illustrated in the following example: 

min(C + M + Y + K) 

then the minimum amount of C + M + Y + K is obtained from the level set. For example, the data 

in Figure 5.2, for the original CMY value {0.7,1,1}, the total amount of toner/ink is 270%. The 

minimum total amount of toners/inks in the CMYK level set is 84.2% corresponding the CMYK value 

of {0.066186,0.031126,0,0.74461}. Thus the total amount toner savings is 185.8% 

Because every value in a CMYK level set corresponds to the same CIELab value, the toner savings 

is achieved with no quality degradation. 

5.6 Experiments and Results 

A set of regular points in CIELab were identified. The manifolds of these CIELab color were 

obtained. Examples of a CMYK level set for CMY = {0.55,0.4,0.55} and CMY = {0.7,1.0,1.0} are 

plotted in Figure 5.1 and Figure 5.2 respectively. The figures show that cyan, magenta, yellow and black 

are changing continuously, and each curve has a starting point and an ending point. 

Each CMYK data point in the manifold was converted back to the CIELab value using f(C, M, Y, K) —> 

(L,a,b). These CIELab values were compared to the original CIELab regular point. Our results indi­

cated that the maximum CIElab error was 1.27, and the mean error was 0.523. 
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Figure 5.1: The level set of CMYK values for CMY = {0.55,0.4,0.55}. 
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Figure 5.2: The level set of CMYK values for CMY = {0.7,1.0,1.0}. 
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5.7 Summary 

For the color conversion from CMYK to CIELab using RBFs, if a point y in the CIELab color 

space is a regular point, the pre-image theorem implies that there exists a one-dimensional manifold 
/ 

S = f~1(y) in the CMYK color space. In this chapter, we described a detailed algorithm of finding the 

one-dimensional manifold in the CMYK color space for any given regular point in CIELab. 

Firstly, we described our optimized GCR algorithm. Since we were able to find the starting points 

close enough to the minimizer, a multi-dimensional Newton's method was used as the optimization 

algorithm to find the CMYK color whose corresponding CIELab value is practically equal to the cor­

responding CIELab value of the original CMY color (the difference of these two CIELab colors is less 

than 10"12). 

Secondly, we discussed the algorithm for finding the one-dimensional manifold in the CMYK color 

space based on the optimized GCR algorithm. A set of regular points in the CIElab space are identified. 

For each regular point, a set of CMYK colors were obtained as the starting points to the optimized 

GCR algorithm. The optimized GCR algorithm was performed for each starting point to obtain the 

one-dimensional manifold in the CMYK color space. 

Lastly, we discuss our optimal solutions for the toner/ink selection. Because of the availability of 

the one-dimensional manifold in the CMYK color space, we are able to define objective functions for 

toner savings, cost savings, etc., with no quality degradation. 

Our results indicated that the optimized GCR algorithm and one-dimensional manifold algorithm 

are accurate and efficient. 
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Chapter 6 

COLOR CONVERSION WITH INK LIMITATIONS 

One of the challenging tasks in color printing relates to the limitation of the amount of toner/ink 

coverage on a page to avoid excessive bleed-through. This task is particularly important for inkjet 

printing. When there exists a limit for the maximum amount of toner/ink coverage allowed per spot in 

the color printing, the color conversion in highly saturated color regions, or dark neutral color regions is 

effected. As discussed in the previous chapters, the L\ norm approximation is the most suitable solution 

for solving the neutral color conversion problem, and the L^ approximation is the best approach for color 

conversion in saturated color regions. For both approaches, we employed RBFs with linear programming. 

The color conversion effected by this limit is the CIELab to CMY color conversion. The existence 

of a toner/ink limitation can be added as a constraint in the linear programming problem formulations. 

In this chapter we discuss: 

• The L\ approximation problem formulation for solving the neutral color conversion with the 

toner/ink limitation. 

• A modified BR L\ approximation algorithm for solving the multidimensional neutral color con­

version with the toner/ink limitation. 

• The ioo approximation problem formulation for solving the color conversion with the toner/ink 

limitation. 

• A modified BP L^ approximation algorithm for solving the multidimensional color conversion 

with the toner/ink limitation. 

6.1 The Ink Limitation Problem Using the L\ Approximation 

Let g(z) be the representation of the mapping from CIELab to CMY in the form of RBF: 

n 

gk{zj) = AkZj +ako+^2 ctkifaiWzj - Ci\\) (6.1) 



where k = 1,2,3 corresponding to {9CI9M,9Y}-

Zj = {L, a, b}j 

where i = 1, 2 , . . . , n and j = 1,2,.. . . m. The dimension of A/, is 1 x 3 corresponding to the dimension 

of the domain. The dimension of ao is 1. Therefore, there are n + 4 coefficients in Equation 6.2. The 

equation of 6.1 can be written as 

9k(zj) = {zj,l,4>k(\\zj -ci| |),(/>fc(||zj -c2\\),...,(j>k{\\zj - c „ j | ) ) 
x -, ' 

aw 
otki 

«fc2 

WnJ n+4 

(6.2) 

n+4 

= ^2wkiFki(Zj) 
i=l 

Define the L\ error for each data point of component of C, M and Y using nonnegative variables: 

(6.3) 

n + 4 

9k (
2j) ~ ^2wkiFki(Zj) = Ukj Vkj 

and define the coefficients for each component using nonnegative variables: 

Wki = bki — Cki 

where ukj, vkj, bki, cki > 0 

6.1.1 The Pr ima l P r o b l e m Formula t ion in the L\ Sense 

The primal linear programming problem in the L\ sense is described below. The constraint of the 

toner/ink limit applies to the color data whose toner/ink summation exceeds L. 

subject to 

Minimize £ = ^ ui. + vXj + u2j + v2. + u3j + v3j 

n + 4 

Y^(aij - bij)Fij{zj) + uu + vij = Cj 
2 = 1 

n+4 
Y^(a2j ~ b2j)F2j{zj) + u2j + v2J = Mj 

(6.4a) 

(6.4b) 
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X]( a 3j ~ b3j)F3j{zj) + u3j + v3j = Y} (6.4c) 
3=1 

n-f4 n+A n+4 

^2(aij ~ bi^Fijizjt) + Y^(aV ~ bl2i)F~2j(zn) + Y2(a3j ~ hj)F3j(zjt) < L (6.4d) 
3 = 1 j = l J = l 

where 

J = {Ji I Cj, + Mn + Yjt > L} C {i = 1,2,... ,m} 

Ukj,vkj,bki,cki>0, /c = 1,2,3, i = 1,2,.. . , n , and 7 = 1,2,... ,m. 

6.1.2 The Modified B R Li Approximation with the Toner/ink Limitation 

Based on the formulation described above, the condensed initial simplex tableau for the CIELab 

to CMY conversion with the toner/ink limitation L is shown in Table 6.1. Let p denote the number of 

color data points that exceed the toner/ink limit. The slack variables Sj's need to be added in Equation 

6.4d. 
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Table 6.1: Condensed initial simplex tableau for the CIELab to CMY conversion with toner/ink limitation in the L\ sense. 

Basis 
UC1 

UCm 

UM1 

UMn 

UY1 

UYn 

S i 

sp 

Marginal Cost 

R 
C i 

Cm 
Ml 

Mm 

Y i 

Ym 

L 

L 

E 7 L I ( ^ + ^ + ^ ) + P L 

be, 
Fu,, 

F i 1 | m 

0 

0 
0 

0 
Flt,„ 

FU,iv 

Z^7 = l ' l ] , j 

• • • bCn 

••• F i n , t 

• • • F i n m 

. . . 0 

. . . 0 

. . . • o 

. . . 0 

• • • FKtj, 

• • Fln,iv 

••• E" l + i p Fi„ , 5 

f>M] 

0 

0 

F 2 , . i 

^ 
0 

0 
F 2 l , i , 

F2i,jv 

&M„ 
.. 0 

.. 0 
• • F2n,, 

• • F2n,m • 

.. 0 

.. 0 
• • F2nJl 

•• F^,iv 

•• Y.VfF^, 

by, 
0 

0 
0 

0 

FiUi 

F3l.n 

F^ 

Fs, ,• 

2^-j — i i 3] .j 

• • bYn 

.. 0 

.. 0 

.. 0 

.. 0 
•• r 3 „ : 1 

• • F 3 n „ 

•• ^ 3 n , „ 

•• ^ 3 „ , J 0 

•• E"Lr r 3 r •J 



The modified BR's two stages algorithm is describe as the following [89]: 

• Stage 1: There are three sets of n iterations for the C, M, and Y components respectively. In each 

of the n iterations, the pivotal columns are restricted to 6, and Q only. The vector entering the 

basis is the one with the largest nonnegative marginal cost. The vector leaving the basis is chosen 

from Vj and Uj for the one causing the maximum reduction in the objective function [89]. The 

interchange of vectors leaving and entering the basis can only be performed within the same color 

component. 

• Stage 2: Interchange the nonbasic Uj or Vj with the basic Uj, Vj, or Sjr Neither bi or Cj are allowed 

to leave the basis. The criteria for selecting vectors leaving and entering the basis are the same 

as that in the Stage 1. The interchange of vectors Vj and Uj leaving and entering the basis can 

only be performed within the same color component. However, Wjt can be interchanged with the 

Vj and Uj vector for any color component. Once the vector Sj[ leaves the basis, it's not allowed to 

enter back onto the basis. The iteration stops when all the marginal costs are non-positive. 

• Interchange basic vectors 6, or Cj with the corresponding nonbasic vectors Cj or bj if the final 

tableau at the end of Stage 2 is infeasible. 

6.2 Solving the Ink Limitation Problem Using the L^ Approximation 

As discussed in Chapter 3, the BP dual algorithm is the preferred algorithm for the color conversion 

using L^ approximation. For the color conversion with the toner/ink limitation, a constraint needs to 

be added in the problem formulation. 

6.2.1 The Problem Formulation in the L^, Sense 

Based on Equation 6.3, the L^ errors are defined for component of C, M and Y: 

n+A 

£c = max || V* wCiFcAzi) ~ ci lloo 
1 < j < m *—J 

i=l 

n+A 

Cm = max || V* wm^Fmi(zj) - Mi lloo 
l<j<m *—J 

i=\ 

n+A 

ty = , max || V wViFVi {ZJ) - Yj ||oo 
l<j<m *—' 

i=1 

First we need to formulate the problem in the primal form. 

Minimize £ = £c + £m + £y, 
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subject to 

where 

n+4 

Zc + ̂ a^FctizA^Cj (6.5a) 
i=l 

n+4 

Zc-^actFcAzA^-Cj (6.5b) 
t = i 

n+4 

?m + E ° m ' ~̂m< (^') - M-?' (6-5c^ 

n+4 

Cm - X I am,.FmAzl) > " ^ J (6-5d) 
i = l 

n+4 

£« + E Q!/< r * ^ ) - '̂ ^6-5e) 
i = l 

n+4 

^-E^.^.^)^^- (6.5f) 
z=i 

^2(aciFCi{Zjl) + amiFm.l{Zjl) +ay,fr
Vi(Zj,)) > ~L (6.5g) 

n+4 

SC5 Sm> Sy — ^ 

ai,a2,...an+4 unrestricted 

Zj = {L,a,6}j, j = 1 ,2 , . . . ,m 

^ = 0'J I C i l + A 0 1 + y j - 1 > L } C { j = l , 2 , . . . , r o} 

F j = [ l , 2 j , 0 i (Z j ) ,< /> 2 ( .Z j ) , - • • ,4>n{Zj)]n+4 

Transformed from the primal formulation, the dual formulation is describe as the following: 

TO P 

Maximize E ^ " - T^^Ci + (a m i - Tmi)M; + (ayi - ryi)Fz] - L ^ ^ 
i = l i i t = l 

subject to 

E(^-^)^-E^,=0 (6.6a) 
j '=i J 'I=I 

Efe,+rCj)<l (6.6b) 

m V 

YM™, - 2 i m j ) r^ . - E e ^ . , , = ° (6-6c) 
3 = 1 J! = l 

TO 

Efe^+W^1 (6-6d) 
3=1 



p 

and 

where 

^j> ^J> £ , : - 0 > •? = 1 ' 2 ' • • • ' m 

Zj = {L,a,6}j, j = 1,2, . . . , m 

J = { j ( | C , - 1 + M J - 1 + y J - I > L } C { j = l , 2 ) : . . , m } 

^J = [1>2j, '? ; , l («j)) (? : >2(2j) , --- ,</ ,n(«j)]n+4 

0 < = I 1 . %•<. <t>]\{zji),4>h (zii)> ••••> (t'n{Zjl)}„+4 

4>ij = 4 ( « j ) . 

p denotes the number of color data points that exceed the toner/ink limit. 

6.2.2 The Modified B P L^ Approximation Algorithm for the Toner/ink Limitation Prob­
lem 

A modified BP algorithm was used for solving the color conversion from CIELab to CMY with a 

toner/ink limitation L. The condensed initial simplex tableau is shown in the next table. The algorithm 

is described below: 

• In the first stage of the BP algorithm, the first n simplex iterations were performed [75]. 

— Only a c ' s can be moved out of the basis. The vector entering the basis has to be selected 

from sc which corresponds to that with the largest absolute reduced cost. 

— Only a m ' s can be moved out of the basis. The vector entering the basis has to be selected 

from Sm which corresponds to that with the largest absolute reduced cost. 

— Only Qj/s can be moved out of the basis. The vector entering the basis has to be selected 

from sy which corresponds to that with the largest absolute reduced cost. 

• In the second stage of the BP algorithm [75]: 

— £c is forced to be moved out of the basis. The vector entering the basis has to be selected 

from the remaining nonbasic vector sc's. No ac is allowed to move back onto the basis. 
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— £m is forced to be moved out of the basis. The vector entering the basis has to be selected 

from the remaining nonbasic vector Sm. No am is allowed to move back onto the basis. 

— £y is forced to be moved out of the basis. The vector entering the basis has to be selected 

from the remaining nonbasic vector sy. No ay is allowed to move back onto the basis. 

• In the third stage of the BP algorithm [75]: 

— The pivotal column is chosen corresponding to the most negative marginal cost. 

— The pivotal row is chosen by ratio selection rule. 

— The interchange of nonbasic vectors s,'s and basic vectors Sj's can only be performed within 

the same color component. The iteration continues until all marginal costs corresponding to 

the nonbasic vectors sc, sm, and sy, are nonnegative. So far, no vector scmy is allowed to 

enter the basis. 

• The fourth stage is added to perform simplex iteration interchanging nonbasic vectors including 

all the remaining vectors sc, sm, and sy, and scmy and basic vectors in the basis. Nonbasic vectors 

sc, sm, and sy can only interchange with basic vectors of sc, sm, and sy respectively. The nonbasic 

vectors scmy can interchange with any basic vectors of sc, sm, and sy. The algorithm stops when 

all the marginal costs are nonnegative. 

The function <j> is selected satisfying the Haar condition as described in Chapter 3. 

Table 6.2 is the condensed initial simplex tableau for the CIELab to CMY conversion with the 

toner/ink limitation L. 
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6.3 Experiment and Results 

Because the constraint was placed on the the total amount of cyan, magenta and yellow, the CIELab 

to CMY conversion was performed. Like the experiments described in Chapter 3 and Chapter 4, all 

866 color data with 64 cluster centers were used. The toner/ink limits were set to 2.8, 2.5, 2.0, 1.8 and 

1.60 for both L\ and Lx approximations. Various RBFs were used. Our results indicated that both L\ 

and Loo algorithms were able to convert all colors from CIELab to CMY with the toner coverage less 

or equal to each limit regardless what RBFs were used. For both L\ and L^ approximations with an 

added constraint, the color conversion accuracy for the colors within each toner/ink limit is very similar 

to the results obtained in L\ and L^ approximations with no constraint respectively. 

6.4 Summary 

The color conversion with the toner/ink limitation problem was solved via both L\ and L ^ ap­

proximation algorithms. The L\ and L^ approximation algorithms were developed for solving this 

problem in the neutral and saturated color regions respectively. A constraint with the toner/ink limi­

tation was added in the problem formulation. The L\ algorithm was a modified BR primal algorithm 

with this added constraint, while the L^ algorithm was developed based on the BP dual algorithm 

which extended the three-stage algorithm to a four-stage algorithm. Our results indicated that both 

algorithms are efficient and robust. They are able to convert all colors from CIELab to CMY with any 

given toner/ink limitation regardless what RBFs are used. 
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Chapter 7 

G A M U T M A P P I N G 

Due to device color gamut mismatches, colors outside an output device gamut need to be mapped 

onto colors inside the device gamut. The results of the color gamut mapping can be very unpleas-

ing. Firstly, the mapped colors have visible color differences from the original colors. Secondly, many 

perceptually different colors are mapped to the same color. In the color industry, the current gamut 

mapping methods are more art than science. There is much research on the optimized gamut map­

ping directions[24-35]. All were based on psychophysics experiments, such as CUSP, constant lightness, 

GCUSP, etc[35]. However, there is no universal accepted direction that works well for all color regions 

and devices. 

We believe that the gamut mapping process should be a part of the color conversion process since the 

color conversion should be continuous and smooth from one neighborhood to its adjacent neighborhoods. 

Thus, the numerical method ought to play an important role in gamut mapping process. As gamut 

mapping is subject to the criticism of the human perception, we believe the best computational gamut 

mapping strategy is to perform numerical gamut mapping guided by a perceptual color difference model. 

7.1 Gamut Mapping Algorithm Based on a Numerical and Perceptual Model 

The optimized RBF models for the inside gamut color conversions from CIELab to CMY, g0, and 

CMY to CIELab, /o are obtained as described in the previous chapters. The algorithm for out-of-gamut 

conversion from CIELab to CMYK is describe in the following steps: 

1. Define the thresholds for color difference in hue angle Th and color difference in lightness TL based 

on the perceptual color difference tolerance. 

2. Define the output device gamut boundary gmto specified in the CIELab color space. This boundary 

was expanded into a few layers with a small increment each time, {gmti, i = 1,2,.. . , N}. In each 

layer, the CIELab values are {(L, o, 6)^, j = 1,2, . . . . m ; } . The corresponding color in CIELch 

are {(L, c, h)i., j = 1,2,. . . , m,}, where m* is the number of the CIELab colors in the layer i. 



3. To start, obtain the CMY value using 

g0((L,a,b)h)^(C,M,Y)h 

where go is the mapping function from CIELab to CMY based on the inside gamut colors. 

(L,a,b)\ = {(L,a,6)i. , j = 1,2,. . . , mi} , i.e., the CIELab data in the first expanded layer. 

(C, M,Y)i = { (C ,M,y) i , j = 1,2,... , m i } , mi is the number of color data points in gmt\. 

4. If any C, M, and Y component value in (C,M,Y)i is smaller than 0 or greater than 1, then the 

value is changed to 0 or 1 respectively. The (C, M, Y)i is then changed to (C,M, Y)x. 

5. Obtain (L,a,b)1 using 

where /o is the mapping function from CMYK to CIELab based on the inside gamut colors . 

6. Convert (L,a,b)1 to (L,C,h)1. Calculate the lightness difference ({dLi3, j = 1,2,... ,m\] and 

the hue difference {{dh\j, j = 1,2,. . . , mi} for each data point between (L, C, h)\ and (L, C, h)1 

7. If dhij > Th or dL\j > TL, convert (L, C, h)1 to (L, C, h)t by making the following changes in Lx 

and hx : 

( Lh+TL, L\. >Lh 

Lij - TL, L\2 < L\. 

' hi.+n, h[. > hh 

h= I , m ,. , (7.2) 
hh-Th, hh<hh 

8. Repeat the Steps 2-7 until all the (C,M,Y)X values are found to meet the criteria of Th and TL. 

Now we mapped all out-of-gamut CIELab values (L,a,b)i in gmtl with (C,M,Y)i 

9. Generate models of <?i and j \ using the data points in gmt\\ 

fli((L,a,6)i)^(C,M,r) 

and 

/ i ( ( C , M , y ) i ) ^ ( L , a , 6 ) 

10. Repeat the Steps 2-9, interpolate the CIELab data in {gmti, i = 2 , 3 , . . . , N}, and find {(C, M, Y)^ , j 

1,2, ...,mi}. 
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11. The iteration stops when the last color layer reaches the optimized color ranges denned in [44]. 

When the RBF models / , and gt are generated based on the data points in gamut layer gmti, the 

data used in generating these models contain two parts: 

• The data that fit the model gt-i and /j_j that are generated based on the gamut layer i — 1. 

• The data that does not fit <?j_i and / j_i . These data who have the C, M, or Y values either below 

0 or above 1 using /;_i are clipped to either 0 and 1, and refined with thresholds T/, and Ti­

lls, doing so, the models generated for each gamut layer are continuous and smooth. To summarize, 

the gamut mapping direction was obtained by creating the numerical model guided by a perceptual color 

difference model. The advantages of this technique are that more levels are obtained from this gamut 

mapping algorithm; out-of-gamut colors in a close neighborhood vary continuously. The direction of the 

gamut mapping is not fixed as other methods, but varies smoothly. 

7.2 Experiments and Results of Gamut Mapping Algorithm Comparison 

The current gamut mapping algorithm was implemented, and compared with one of our previous 

gamut mapping algorithms. It was found that the current gamut mapping algorithm transformed a 

connected out-of-gamut color data set to a connected set of color data around the boundary of the 

device gamut. The results are shown in Figure 7.1 using color data at a hue angle of 300° as the 

example. The "o"s represent colors outside a printer gamut. There are three sets of these colors: 

S l = {L* = 40, C*b = 20, 30 , . . . 80}; s2 = {L* = 50, C*b = 40, 50 , . . . 80}; and s3 = {L* = 60, C*b = 

30,40,. . .80}. Our previous gamut mapping algorithm mapped each set of colors si, S2, and S3 onto 

three single points on the boundary at lightness level of 40, 50 and 60 respectively. In other words, the 

color differences within each set are lost. Our current gamut mapping algorithm mapped colors in s1 ; 

S2, and S3 onto three sets of colors near the boundary. The "*"'s represent colors after gamut mapped. 

It is very clear that these gamut mapped colors are differentiable. 

It was also found that the gamut mapped colors change smoothly and maintain similar properties 

relative to the colors in the same neighborhood. These results are shown in Figure 7.2. There are three 

color ramps in this figure. The middle ramp are the original colors changing smoothly from blue to 

purple. The first 6 colors from left to right are the colors out-of a printer gamut, and the last two 

colors in the ramp are the colors inside the printer gamut. The top ramp is converted to a printer 

color using the minimum distance gamut mapping algorithm. The bottom ramp is converted to the 

colors of the same printer using the current gamut mapping algorithm. The results showed that the 
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minimum-distance gamut mapping algorithm converts the first three colors from left to right to the 

same color, and the next 4 — 6th colors to another color. There is an abrupt change from the 6th color 

to the 7th color which is inside printer gamut. The colors converted using the current gamut in the last 

ramp change more smoothly, and maintain the similar hue changes as in the original colors. The change 

from the 6th color to the 7th color is much smoother. 

Figure 7.1: Illustration of the current gamut mapping algorithm for the color data at hue angle 300°. 

Figure 7.2: Gamut mapping comparison for blue-purple colors. 
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7.3 Summary 

A novel gamut mapping algorithm was developed based on the numerical model guided by a percep­

tual color difference model. The gamut boundary was expanded into a few layers with a small increment 

each time. The out-of-gamut CIELab colors in each layer are converted to the CMY values using the 

RBFs models generated based on the data in the previous layer. These CMY values are corrected by 

a perceptual color difference model. Our results showed that the current gamut mapping algorithm 

transformed a connected out-of-gamut color set to a connected set of colors around the boundary of 

the device gamut. Therefore, more levels are obtained. The out-of-gamut colors in a close neighbor­

hood vary continuously. The direction of the gamut mapping is not fixed as other methods, but varies 

smoothly. 
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Appendix I: Color Science Terminology 

• Brightness: Attribute of a visual sensation according to which an area appears to exhibit more 

or less light [2]. 

• Chroma: The colorfulness of an area judged in proportion to the brightness of a similarly illumi­

nated area that appears to be white or highly transmitting [2]. 

• CMYK color space: The primary colors cyan, magenta, yellow, and black, used together in 

printing to effectively create a multitude of other colors. Based on the subtractive color theory, 

the primary colors are used in four color printing processes. 

• Color: A visual attribute of things that results from the light they emit, transmit, or reflect. 

• Color component: A dimension of a color value expressed as a numeric value. A color value 

may consist of one, two, three, four, or eight components, also referred to as channels. According 

to the International Color Consortium (ICC) Specifications, there can be up to 15 components for 

a color space [3]. 

• Color conversion: The process of converting colors from one color space to another. 

• Color gamut: A range of colors achievable on a given color reproduction medium (or present in 

an image on that medium) under a given set of viewing conditions. It is a volume in color space. 

• Color gamut boundary: a surface determined by a color gamut's extremes. 

• Color space: A model for representing color with intensity values. It specifies how color infor­

mation is represented. 

• Colorfulness: Attribute of a visual sensation according to which an area appears to exhibit more 

or less of its hue [2]. 

• Device-dependent color space: The color spaces tied to a specific piece of equipment. 



• Device-independent color space: A set of mathematical models that are used to represent 

colors matching human perceptions. CIE-based color spaces allow color to be expressed in a device-

independent way. It ensures colors to be predictably and accurately matched among various color 

devices. 

• Gamma: The light emitted from a CRT is not linearly proportionate to the electric signal levels 

driving it, thus a distortion is created in the image shown on the screen, where contrast loses 

its linearity. This non-linearity is expressed by an exponential function, and the power to this 

exponential function is defined as gamma. 

• Hue: Attribute of a visual sensation according to which an area appears to similar to one, or to 

proportions of two, of the perceived colors red, yellow, green, and blue [2]. 

• Lightness: The brightness of an area judged relative to the brightness of a similarly illuminated 

area that appears to be white or highly transmitting [2]. 

• Luminance: In a given direction, at a point in the path of a beam, the luminous intensity per 

unit projected area [2]. 

• Neutral colors: Colors that have low value of chroma, such as black, white, beige, silver, brown, 

etc. 

• Perceptual color space: CIE based color space, such as CIELab and CIEXYZ. 

• RGB color space: Additive colors are transmitted light used in video monitors and televisions. 

Red, green and blue light are referred as the additive primary colors. When used in various degrees 

of intensity and variation, they create all other colors of light; when superimposed equally, they 

create gray. 

• Saturation: The colorfulness of an area judged in proportion to its brightness [2]. 

• sRGB: A standard RGB system created by HP and Microsoft. It is well defined and is designed 

to match typical home and office viewing conditions. 

• Subtractive system: It's also referred as the CMYK system. The subtractive color process is 

based on light reflected from an object and passed through pigments or dyes that absorb certain 

wavelengths, allowing others to be reflected. In theory, the combination of these three colors 

should produce black, but the fourth color black in CMYK is needed to produce true black. 

• White point: Color stimulus to which color space values are normalized. [ISO 12231] 
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Appendix II: Matlab Code 

Center Selection and Clustering 

i function c c l = f i n a l C e n t e r s . e ( d a t a , i n W , s r ) 
2 

3 ccO=in i t i a lCen te r s (da ta , inW); 
4 [ cc l , i ndx ]=c lus t e rCen te r_e (da t a , c c O , s r ) ; 

6 go=1; while go>0 
7 indx=refineClusters.e(data,ccl,indx,inW,sr); 
s cc=findCenters_e(data, indx); 
y go=length(ccl)—length(cc); 
io [ccl,indx]=clusterCenter.e(data, cc, sr) ; 
li end 

I function [cc]=initialCenters(data,inW) 
2 

3 len=length(data); 
4 num=floor(len/inW); 

G rn=randomNumberGenerator(len,num); 
7 

s for j=l:num 
9 cc (j, :)=data(rn(j), : ) ; 
io end 

1 

2 

3 

4 

5 

7 

8 

9 

10 

11 

12 

13 

14 

15 

ie 

17 

18 

19 

20 

21 

22 

23 

24 

indx 

[m, n 

len= 

cc (: 

cntl 

= re fineClusters_e(data, cc, indx, inW,sr) 

]=size(indx); 

len 
,8) 

= 0; 

for 

gth (cc); 

=l:len; 

i=l:len 

cnt=0; 

for j=l:m 

if indx(j,2)==i 

cnt=cnt+l; 

d (cnt)= indx(j,1); 

tmp(cnt, :)=data(indx(j, 1) , : ) ; 

elseif indx ( j, 2)>i 

break; 

end 
end 

M=cov(tmp(:,5:7)) ; 

rk=rank(M); 

if(rk>=3) 

clear tmp d; 

continue; 



25 e l s e i f r k < 3 

26 p = i — c n t l ; 

27 c c ( p , : ) = [ ] ; 

28 t i n d x = s o r t r o w s ( i n d x , 1) ; 

29 f o r k = l : c n t 

30 i n d = f i n d C l u s t e r _ e ( t m p (k # : ) , c c , s r ) ; 

ai t i n d x ( d ( k ) , 2 ) = i n d ; 

32 e n d 

33 i n d x = s o r t r o w s ( t i n d x , 2 ) ; 

34 c n t l = c n t l + l ; 

35 , c l e a r d t i n d x t m p ; 

36 e n d 
37 e n d 

1 

2 

3 
4 

5 

6 

7 

8 

9 

1 0 

1 1 

1 2 

1 3 

1 4 

1 5 

1 6 

1 7 

1 8 

1 9 

2 0 

2 1 

2 2 

function cc=f indCente r s . e (da ta , indx) ; 

n= leng th( indx) ; 
cn t= l ; 
t m p ( 1 , : ) = d a t a ( i n d x ( 1 , 1 ) , : ) ; 
P=0; 

for i=2:n 
i f ( i n d x ( i - l , 2 ) = = i n d x ( i , 2) ) 

cnt=cnt+l ; 
tmp (cnt, : ) = d a t a ( i n d x ( i , 1 ) , : ) ; 

e l s e 
p=P+l; 
cc(p , : )=mean( tmp,1) ; 
c l e a r tmp; 
cn t= l ; 
t m p ( c n t , : ) = d a t a ( i n d x ( i , 1 } , : ) ; 

end 
end 
cc(p+1, :)=mean(tmp,1); 
c l e a r tmp; 

2 function [cc,indx]=clusterCenter_e(data,cc,sr) 
3 

4 g o = l ; 
5 w h i l e (go>0 .001) 
6 c c = s o r t r o w s { c c , [ 5 , 6 , 7 ] ) ; 
7 [ l e n , c o l ] = s i z e ( c c ) ; 
s cc ( : , 8 ) = 1 : l e n ; 
9 i n d x = f i n d C l u s t e r s . e ( d a t a , c c , s r ) ; 

10 n c c = f i n d C e n t e r s . e ( d a t a , i n d x ) ; 
i i i f ( l e n g t h ( n c c ) = = l e n ) 
12 go=norm(ncc—cc (: , 1: 7) } 
13 end 
14 cc=ncc; 
15 end 

RBF functions 

i f u n c t i o n v = r b f F u n c t i o n ( x , r , n a m e ) 
2 %x input value 
3 %r ratio 
4 
5 %narne: name or t h e f u n c t i o n . 
6 
7 i f name==' g ' 
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8 

9 

1 0 

1 1 

1 2 

1 3 

14 . 

1 5 

1 6 

1 7 

1 8 

1 9 

2 0 

2 1 

2 2 

2 3 

2 4 

2 5 

2 6 

2 7 

2 8 

2 9 

3 0 

3 1 

3 2 

3 3 

3 4 

3 5 

3 6 

3 7 

3 8 

3 9 

4 0 

4 1 

4 2 

4 3 

4 4 

4 5 

4 6 

4 7 

4 8 

4 9 

5 0 

5 1 

5 2 

5 4 

v=exp{—x*x' In"2) ; %gau;:-;slar! 
e l s e i f n a m e = = ' c ' 

v=norm(x) " 3 ; ^ c u b i c 
e l s e i f n a m e = = ' I ' 

v = n o r m ( x ) ; r i i n e a r 
e l s e i f n a m e = = ' t ' 

t m p = n o r m ( x ) ; 
i f tmp==0 

t m p = 0 . 0 0 0 0 0 1 ; 
end 
v = t m p ~ 2 * l o g ( t m p ) ; %thin p l a t e s p l i n e 

e l s e i f name=='m' 
v = s q r t ( x * x ' + r * r ) ; v j o u l t i q u a d v i c 

e l s e i f n a m e = = ' i n v ' 
i f x==0 

x = 0 . 0 0 0 0 0 1 ; 
end 
v = ( r " 2 + x * x ' ) " ( - 1 / 2 ) ; 

H 
e l s e i f n a m e = = ' g f n ' 

v = 0 . 5 + e x p ( — x * x / ( r * r ) ) + 0 . 5 * s q r t ( x * x + r * r ) ; 
e l s e i f name== 'n+c ' 

v - 0 . 5 * s q r t ( x * x + r * r ) + 0 . 5 * x " 3 ; 
e l s e i f name== /m-ft ' 

i f x==0' 
x = 0 . 0 0 0 0 0 1 ; 

end 
v = 0 . 5 * s q r t ( x * x + r * r ) + 0 . 5 * x ~ 2 * l o g ( x ) ; 

e l s e i f name=='g-i e ' 
v = 0 . 5 * e x p ( - x * x / ( r * r ) ) + 0 . 5 * x ~ 3 ; 

e l s e i f name== 'q i - t ' 
i f x==0 

x = 0 . 0 0 0 0 0 1 ; 
end 
v = 0 . 5 * e x p ( — x * x / ( r * r ) ) + 0 . 5 * x ~ 2 * l o g ( x ) ; 

e l s e i f name==' i n v l c ' 
i f x==0 

x = 0 . 0 0 0 0 0 1 ; 
end 
v = 0 . 5 * ( x * x + r * r ) " ( - 1 / 2 ) + 0 . 5 * x " 3 ; 

e l s e i f n a m e = = f i n v + t ' 
i f x==0 

x = 0 . 0 0 0 0 0 1 ; 
end 
v - 0 . 5 * ( x * x + r * r ) ~ ( - 1 / 2 ) + 0 . 5 * x " 2 * l o g ( x ) ; 

end 
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2 
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9 

1 0 

1 1 

1 2 

1 3 

1 4 

1 5 

1 6 

1 7 

f u n c t i o n [ p ] = m a t r i x P ( d a t a , c c , i n W , r , n a m e ) 
%dat;a used cnryKlab o r labornyk i s n o r m a l ! : 

icol f number of d i m e n s i o n s In t h e input : * 

%cc oen t :e r3 'tr t ; a t i o i n r h £ funcIions 

•inaiTie name of rb f l u n c t . i o n s 

[ i n L , i n d ] = s i z e ( d a t a ) ; [ e n , c m ] = s i z e ( c c ) ; 

f o r i = l : i n L 
f o r j = l : c n 

x = d a t a ( i , l : i n W ) - c c ( j , l : i n W ) ; 
p ( i , j ) = r b f F u n c t i o n ( x , r , n a m e ) ; 

end 
end 

,ed 

l a t a , c ~myk 4, l a b 3 
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function [A]=getRBFMatrix(data,p,inW) 

[m,n]=size(data); A=ones(m,l); A=[A,data(:,1:inW) 

\edn{lstlisting} 

\begin{lstlisting} 
function [w]=rbfWeight(A,data,inW,outDim, fname2) 

-Vdata data that used lor generating model ejtyhiab 
;-;inW, number of dimensions in the input: of data 

-l-outDiin: the r\u&b<5L of dimension in the output of 
e.g.,cmyklab 1 is tl, a is 2, b is 3. 

%friame^, the nan-e of r-ethod use in solving least 
svd 

%w, the weighting factor for output: dun, and cc 

b=data(:,inW+outDim); w=leastSquare(A,b,fname2); 

pi; 

or laboinyk 

data, 

squares, eg,, 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

function [out]=getRBFResults(A,wt) 

Ida 
Kin 

mat 
[m, 

end 

:.a data that used for Generating 
•T, nuniher of dimensions in the i. 
rixP %wt the weight: for rbf cnLO 
i]=size (out); for i=l:m 
for j=l:n 

if (out (i, j)<0) 
out(i, j)=0; 

elseif (out(i,j)>l) 
out (i,j)=l; 

end 
end 

mod-
jDUt 

«0; 

;]. 

of 
nit 

::jTiyk lab o. 

data %n:aJ 

1 = 0; out:=e 

• labomvk 
.•;.:•; p f r o m 

. - w t:; 

l 

2 

3 

4 

7 

8 

9 

10 

11 

12 

function out=RBFConversion(tdata, CC, wt,r,fname) 

[m,n]=size(tdata); [row,col]=size(CC); 

outW=col—n; 

for i=l:outW 
tp=matrixP (tdata,CC,n,r(i) , char(fname(i))); 
tA=getRBFMatrix(tdata, tp, n) ; 
out(: , i)=getRBFResults(tA,wt(:,i)); 
clear tp tA ; 

end 

I function [raaxDif,avgDif]=testRBF(tdata,mdata,cc,inW,r,fname) 
•2 

3 [m,n]=size(tdata); 
4 outW=n—inW; 

6 for i=l:outW 
7 p=matrixP (mdata, cc, inW, r (i) , char (fname (i) ) ) ; 
8 mA=getRBFMatrix(mdata,p,inW); 
9 tp=matrixP(tdata,cc,inW,r(i) , char(fname(i))); 
io tA=getRBFMatrix(tdata,tp,inW); 

wt = rbfWeight(mA,mdata, inW, i, ' svd' ) ; 
out(:,i)=getRBFResults(tA,wt)*100; 
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1 5 

1G 

1 7 

1 8 

i y 

2 0 

2 1 

2 2 

i f ( i>l) 
out (: , i )=out ( : , i ) *2. 55-128; 

end 
c l e a r wt p mA t p tA ; 

end for i=l:m 
% dit fi) =cie!LaE00 (out; ( i , : ) ' , tda ta ( i , inft+1: iriW+i) ' 
d i f 2 ( i ) = s q r t ( ( o u t ( i , l ) — t d a t a { i , i n W + 1 ) ) " 2 + ( o u t ( i , 2 ) 

end avgDif=mean(dif2); maxDif=max(dif2); 

J ; 

- t d a t a ( i inW+2)) "2+ (out ( i ,3) -- t d a t a ( i , i nW+3))~2); 

1 

4 

5 

6 

7 

S 

9 

1 0 

1 1 

1 2 

1 3 

1 4 

1 5 

17 

18 

19 

2 0 

2 1 

2 2 

2 3 

2 4 

2 5 

2 6 

2 7 

2 8 

2 9 

3 0 

3 1 

3 2 

3 3 

3 4 

3 5 

3 6 

3 7 

3 8 

3 9 

4 0 

4 1 

function [x , resnorm]=ts topt imiza t ion(mdata ,CC,col , inW,fname) 

m=l 

f o r 

end 

angth(mdata); n=length {CC); 

i= l :m 
x d a t a ( i , 1 ) = 1 ; 
x d a t a ( i , 2 : 5 ) = m d a t a ( i , 1:4) ; 
for j = l : n 

xdata ( i , j + 5) =norm (mdata ( i , l:inW)-CC( j , l:inW),) ; 
end 

ydata=mdata(: ,col+inW); s i ze (yda ta ) len=n+6; 

xO (1)=0; xO (2 : l en )= l ; 

i f =ol==l 
i f fname==' u/ 

f=rbf ld_mL (xO, xdata) ; 
[x,resnorm] = l sqcurvef i t (@rbf ld_mL,xO,xdata ,ydata) ; 

e l s e i f fname==-' g' 
f=rbf ld_gL (xO, xdata) ; 
[x,resnorm] = l sqcurvef i t (@rbf ld_gL,xO,xda ta ,yda ta ) ; 

e l s e i f fname=='inv' 
f=rbfld- imL(xO,xdata) ; 
[x,resnorm] = lsgcurvefi t(@rbfld_imL, xO, xdata , ydata) ; 

end 
e l s e 

end 

i f f narne=='it;' 
f=rbf ld jnab(xO,xdata) ; 
[x,resnorm] = l sqcurvef i t (@rbf ld_mab,xO,xdata ,ydata) ; 

e l s e i f fname=='q' 
f=rbf ld .gab (xO, xdata) ; 

[x,resnorm] = l sqcu rve f i t (@rbf ld .gab ,xO,xda t a ,yda t a ) ; 
e l s e i f fname=='inv' 

f=rbf ld . imab(xO,xdata) ; 
[x,resnorm] = l sqcurve f i t (@rbf ld . imab ,xO,xda ta ,yda ta ) ; 

end 

I function [tdata,mdata]=patitionKFold(data,k,n) 
2 

3 row=length(da ta) ; l en=f loor ( row/k) ; str=(n—1)*len + l ; s tp=n*len; 
4 

5 t d a t a = d a t a ( s t r : s t p , : ) ; i f (n>l & n<k) 
e mda ta=[da ta (1 : s t r—1, : ) ; da t a ( s tp+ l : end , : ) ] ; 
7 e l s e i f n==l 
s mdata=data(s tp + 1rend, :) ; 
9 e l s e i f n==k 

10 d=row—k*len; 
n i f d==0 
12 mdata=data (1 : str—1, :) ; 
13 e l s e 
14 mdata= [data (1: str—1, : ) ; data (stp+1 :end, :) ] ; 
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end 
end 

1 function out=kfoldCV(data, pdata, cc, k, 
2 inW,r,fname) 
3 

4 [m,n]=size(data); 
5 

G p = randperm(m); for i=l:m 
7 ndata(i, :)=pdata(p(i), :) ; 
s end 
9 

io for i = l:k 
n [tdata, mdata]=patitionKFold(ndata,k,i); 
12 [maxDif(i),avgDif(i)]=testRBF(data,mdata,cc, inW, r, fname) ; 
13 end 

14 maxdf=mean(maxDif); 
15 avgdf=mean(avgDif); 
16 vardf=var(avgDif) ; 
17 out=[avgdf vardf maxdf]; 
is c l e a r t d a t a mdata maxDif avgDif; 

BP Dual Algorithm 

1 

3 

5 

6 

7 

8 

9 

1 0 

1 1 

1 2 

1 3 

1 4 

f u n c t i o n [ A , b ] = i n p u t 2 B P D u a l ( d a t a , cc 

J ] - ^-u < i c N n ' J. i s n o n 

s i J. il T c_ - i i t -j t h e in] 
e t c 

i 

r * i i ' , J i 

it i it n , , , 

p = m a t r i x P ( d a t a , c c , i n W , r , n a m e ) ; 

A = g e t R B F M a t r i x ( d a t a , p , i n W ) ; b = d a t a ( : 

inW, c o l , r , n a m e ) 

- : a l i z e d 

nit d a t a , emyk 4, 

i n W + c o l ) ; 

l a b ?,, 

I 

2 

3 

4 

5 

e 

8 

9 

10 

11 

12 

13 

14 

16 

17 

18 

19 

20 

21 

22 

23 

f u n c t i o n [ M , w i d 2 ] = i n p u t 2 B P D 
r , n a m e , T l i m i t ) 

ual_r_AlDim ( r d a t a , rCC, 

%data m o d e l i n g d a t a -jcc c e n t e r s f o r d i m e n s i o n 1 , 2 , 3 'ir i s an 
a r r a y f o r t h e r a d i u s f o r t h e 3 d i m e n s i o n -Vname i s c h a r a r r a y 
f o r t h e f u n c t i o n s names f o r t h e t h r e e d i m e n s i o n s 

[ m , n ] = s i z e ( r d a t a ) ; 

[ A l , b l ] = i n p u t 2 B P D u a l ( r d a t a , 
[ A 2 , b 2 ] = i n p u t 2 B P D u a l ( r d a t a , 
[ A 3 , b 3 ] = i n p u t 2 B P D u a l ( r d a t a , 

rCC, 3 , 
rCC, 3 , 
rCC, 3 , 

w id2=0 ; f o r i = l : m 
i f ( b l ( i ) + b 2 ( i ) + b 3 ( i ) ) > T l i m i t 

w i d 2 = w i d 2 + l ; 
Bl (wid2 , : ) = A 1 ( i , : ) ; 
B2 (wid2 , : ) = A 2 ( i , : ) ; 
B3 (wid2 , : ) = A 3 ( i , : ) ; 

end 

1, r ( 1 ) , c h a r ( n a m e ( 1 ) ) ) ; 
2 , r ( 2 ) , c h a r ( n a m e ( 2 ) ) ) ; 
3 , r ( 3 ) , c h a r ( n a m e ( 3 ) ) ) ; 
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24 end 
25 

26 

27 [ m A , n A ] = s i z e ( A l ) ; 
28 
29 t m p = z e r o s ( n A , m A ) ; t m p l = o n e s ( 1 , m A ) ; t r n p O = z e r o s ( 1 , m A ) ; 

30 t m p 2 = z e r o s ( 1 , w i d 2 ) ; b 4 = o n e s { 1 , w i d 2 ) * T l i m i t ; 

31 

32 

33 M=[A1' tmp tmp —Bl' ; tmp A2' tmp — B 2 ' ; tmp tmp A3' ̂ -B3'; tmpl 
34 tmpC tmpO tmp2;tmp0 tmpl tmpO tmp2; tmpO tmpO tmpl''tmp2] ; 
35 row=3*nA+3; M(row+l,l:mA)=-bl'; M(row+1,mA+1:2*mA)=-b2' ; 
36 M{row+1,2*mA+l:3*mA)=-b3'; M(row+1,3*mA+l:3*mA+wid2)=b4; 

I function [a,er]=BPDual(mdata, cc, inW, col,r,fname) 
2 [A,b]=input2BPDual(mdata, cc, inW, col, r,fname); M=A'; 
3 [n,m]=size (M) ; M(n+1, : )=1; M(n+2, :)=-b' ; 
4 

5 k=rank(A); 
6 

7 [Al, cR, indx]=BPStepl (M,'k) ; [A2, indx] =BPStep2 (Al, cR, indx) ; 
s [a, er]=BPStep3_l<A2,indx); 

I function [a,er]=BPDual_ts(mdata, cc, r,name,Tlimit) 
2 

3 [A, wid2 ]= input2BPDual_r_AlDim (mdata, cc, inW, r, name, Tlimit) ; 
4 

s [Al, indx]=BPStepl_ts_l (A,wid2) ; 
6 [A2, indx]=BPStep2_ts_l(Al,indx,wid2); 
7 A3=BPStep3_ts_l (A2, indx,wid2) ; 
8 [a,er]=BPStep4_ts_l(A3,indx,wid2); 

I %This function is ~o calculate the first stip of Bairodale and 
2 Phillips due %alqoi:i!::hin using condensed simplex method 
3 

4 function [Al,indx]=BPStepl_ts_l(A, wid2) 
5 

6 %A ±s the two—d matrix including constrains and marginal cost 
7 from step 1 %cR is the marginal cost row where the irarginal 
s cost is zeros for base variables 
9 

10 [m,n]=size(A); wid=(n—wid2)/3; len=(m—4)/3; 
n 
12 

13 rhs = zeros (m, 1).; rhs (m— 3:m— 1) =1; A (:, n+1) =rhs; 
14 

is cnt = 0; mc= [A (end, 1: 3*wid), — A (end, 1: 3*wid) ] ; 
16 
17 for i=l:m— 4 
is [minV, mcol]=sort(mc); 
10 for l=l:6*wid 
20 col=mcol(1) ; 
21 i f c o l > 3 * w i d 
22 c o l = c o l — 3 * w i d ; 

23 e n d 
24 n u m = f l o o r ( ( c o l — 1 ) / w i d ) ; 

25 l e n l = n u m * l e n + l ; 

26 l e n 2 = ( n u m + 1 ) * l e n ; 

27 p C o l = z e r o s (m—4, 1) ; 

28 p C o l ( l e n l : l e n 2 ) = A ( l e n l : l e n 2 , c o l ) ; 

29 

30 f o r j = l : c n t 

31 pCol ( i ndx { j , 2) ) = 0 ; 
32 e n d 
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[maxP,row]=max(abs(pCol)); 
if maxP>10" (-12) 

A=simplexCal(A,row,col); 
cnt=cnt + l; ;' 
indx(cnt,1)=col; 
indx{cnt,2)=row; 
mc=[A(end,1:3*wid), —A(end, 1:3*wid) ] ; 
for p=l:cnt 

mc (indx(p,1))=0; 
mc (indx(p,1)+3*wid)=0; 

end 
break 

end 
end 

end 

Al=A; indx=sortrows(indx,1); indx=[zeros(3,2);indx]; 

Phillips due ^algorithm û::i.r:a condensed sinplex n:ei:nod 

function [A2, indx] =BPStep2_ts_l (Al, indx, wid2) 

•j-A is the two d matrix including constraint and marginal coe 
from step 1 ^coi is the coloumn number for w (error) vector 
[m,n]=size(Al); wid={n—1—wid2)/3; len=length(indx); A2=A1; 
clear Al 

i=l:3 
row=rn—4+i; 
w=zeros(m,1); 
w(row)=1; 
str=(i—1)*wid+l 
stp=i*wid 
mc=zeros(1,6*wid); 
mc(str:stp)=A2(end,str:stp) ; 
mc (str+3*wid:stp+3*wid)=—A2(end, str:stp) ; 
min(mc) 

for q=l:len 
if indx (q, 1)>=0.5 

if indx(q,1) <=3*wid 
mc (indx(q,1))=0; 
mc (indx(q,1)+3*wid)=0; 

end 
end 

end 
[minV, mcol]=sort(mc); 
[minV(l) mcol(1)] 

for j=l:6*wid 
if minV( j)<10" (-12) 

if mcol (j)>3*wid 
col=mcol (j) —3*wid; 
A2 (: , col)=2*w-A2 (: , col) ; 

else 
col=mcol(j ) ; 

end 
for p=l:m—1 

if (A2 (p, col)>10" (-12) & p~=row) 
A2(row,:)=A2(p,:)*2+A2(row,:); 
A2(p, :)=-A2(p, :) ; 

end 
end 
if A2 {row, col)>10" (-12) 
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5G 

5 7 

5 8 end 
end 

A2=simplexCal(A2,row,col); 
i n d x ( i , 1 ) = c o l ; 
indx( i ,2)=row; 
break. 

end 
e l s e 

break. 
end 

c l e a r mc 

I %This function is to calculate the first step of Barrodaie and 
2 Phillips due 

4 

5 function [A3]=BPStep3_ts_l(A2, indx, wid2) 
6 

7 %?. is the two—d matrix inc iodine; constrains and tr=arg :=. nal cost' 
s from step 1 %nc is rhs column number for w (error) ec'iur:m A3::::/-C; 
9 clear A2; [m,n]=size(A3); wid=(n-l-wid2)/3; L=(m-4)/3; 
10 len=length(indx) ; 
ii 

12 l a s t R o w = z e r o s ( 6 * w i d , 1 ) ; l a s t R o w ( 1 : 3 * w i d ) = A 3 ( e n d , 1 : 3 * w i d ) ; 
13 

14 f o r i = l : 3 
15 s t r = 3 * w i d + ( i~-l) * w i d + l ; 
16 s t p = 3 * w i d + i * w i d ; 
17 lastRow(str:stp)=2*A3(end,indx(i, 1) ) — lastRow((i—1)*wid+l:i*wid) ; 
is end 
19 

20 f o r i = l : l e n 

21 l a s t R o w ( i n d x ( i , 1 ) ) = 100 ; 
22 l a s t R o w ( i n d x ( i , 1 ) + 3 * w i d ) = 1 0 0 ; 

23 e n d 
24 

25 [ m i n V , m c o l ] = m i n ( l a s t R o w ) ; 
26 

27 w h i l e ( m i n V < 0 ) 

28 [ t m i n , t i d ] = s o r t ( l a s t R o w ) ; 

29 c n t l = 0 ; 

30 f o r i = l : 6 * w i d 

31 c n t l = c n t l + l ; 
32 i f t m i n ( i ) < l ( T ( - 1 2 ) 

33 i f t i d ( i ) > 3 * w i d 

34 c o l = t i d ( i ) — 3 * w i d ; 

35 n u m = f l o o r { ( c o l — 1 ) / w i d ) + 1 ; 

36 A3 ( : , c o l ) = 2 * A 3 ( : , i n d x ( n u m , 1) ) - A 3 ( : , c o l ) ; 

37 e l s e 
38 c o l = t i d ( i ) ; 

39 e n d 
40 l = f l o o r ( ( c o l - l ) / w i d ) + l ; 

4i l e n l = ( l - l ) * L + l ; 

42 l e n 2 = l * L ; 

43 t = [ A 3 ( l e n l : l e n 2 , c o l ) ; A 3 ( m - 4 + 1 , c o l ) ] ; 

f o r j = l : L + l 

i f t ( j ) = = 0 

t ( j ) = 1 0 ~ ( - 1 2 ) ; 

e n d 

e n d 

r a t = A 3 ( l e n l : l e n 2 , e n d ) . / t ( 1 : L ) , 
r a t t = A 3 ( m - 4 + 1 , e n d ) / t ( e n d ) ; 
r a t ( L + l ) = r a t t ; 

108 



5G 

5 7 

5 8 

5 9 

6 0 

6 1 

6 2 

6 3 

6 4 

6 5 

6 6 

6 7 

6 8 

6 9 

7 0 

7 1 

7 2 

7 3 

7 4 

7 5 

7 6 

7 7 

7 8 

7 9 

8 0 

S I 

8 2 

8 3 

8 4 

8 5 

8 6 

8 7 

8 8 

8 9 

9 0 

9 1 

9 2 

9 3 

9 4 

9 5 

9 6 

9 7 

9 8 

9 9 

1 0 0 

1 0 1 

1 0 2 

1 0 3 

1 0 4 

1 0 5 

end 

m a x R a t = a b s ( m a x ( r a t ) ) ; 

c n t 

f o r 

end 
i f 

end 

i f 

e n d 
e l s e 

end 

i f c n t l 

end 
end 

=0; 

s = l e n l : l e n 2 
i f A3 ( s , c o l ) < = l ( T ( -12) 

r a t ( s—lenl + 1)=maxRat + l ; 
c n t = c n t + l ; 

end 

A3 (m-4+1, c o l ) < = 1 0 " ( -12) 
r a t ( e n d ) = m a x R a t + l ; 
c n t = c n t + l ; 

cn t<L+l 
[ m i n R , r o w ] = m i n ( r a t ) ; 
i f row==L+l 

row=m—4+1; 
e l s e 

row=row+len l—1; 
end 
A 3 = s i m p l e x C a l ( A 3 , r o w , c o l ) ; 
l a s t R o w = z e r o s ( 6 * w i d , 1 ) ; 
l a s t R o w ( l : 3 * w i d ) = A 3 ( e n d , 1 : 3 * w i d ) ; 

f o r i = l : 3 
s t r = 3 * w i d + ( i — 1 ) * w i d + l ; 
s t p = 3 * w i d + i * w i d ; 
l a s t R o w ( s t r : s t p ) = 2*A3(end, i n d x ( 

end 
f o r i = l : l e n 

l a s t R o w ( i n d x ( i , 1 ) ) = 100 ; 
l a s t R o w ( i n d x ( i , 1 ) + 3 * w i d ) = 1 0 0 ; 

end 
minV=min( las tRow) 
m i n e r = A 3 ( e n d , e n d ) 
break 

minV=12345678900; 

==6*wid 
minV=1234567890; 

L , l ) ) - - l a s t R o w ( ( i — 1 ) * w i d + l i * w i d ) ; 

l 

3 

5 

7 

8 

9 

1 0 

1 1 

1 2 

1 3 

1 4 

1 5 

f u n c t i o n [a , e r ] = B P S t e p 4 _ t s _ l ( A 3 , i n d x , w i d 2 ) 

[m, n ] = s i z e ( A 3 ) ; wid=(n—1—wid2)/3; l e n = l e n g t h ( i n d x ) ; 

mc=zeros(n—l+3*wid , 1) ; mc(1 :n—1)=A3 ( end ,1 :n—1) ; 

f o r i = l : 3 
s t r = n + ( i — 1 ) * w i d ; 
s t p = n + i * w i d — 1 ; 
m c ( s t r : s t p ) = 2 * A 3 ( e n d , i n d x ( i , 1) )—mc(s t r—n+1:s tp—n+1) ; 

end 

f o r i = l : l e n 
m c ( i n d x ( i , 1 ) ) = 1 0 0 ; 
m c ( i n d x ( i , 1) + n - l ) = 1 0 0 ; 
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16 e n d 
17 

i s m i n V = m i n (mc) ; w h i l e ( m i n V < 0 ) 

10 [ t m i n , t i d ] = s o r t ( m c ) ; 

20 c n t l = 0 ; 

21 f o r i = l : ( n — l + 3 * w i d ) 

22 c n t l = c n t l + l ; 

23 i f t m i n ( i ) < 1 0 ~ ( - 1 2 ) 

24 i f t i d ( i ) > n - l 

25 c o l = t i d ( i ) - n + l ; 

26 num= f l o o r ( ( c o l —1) / w i d ) + 1 ; 

27 A3 ( : , c o l ) = 2 * A 3 ( : , i n d x ( n u m , 1) ) - A 3 ( : , c o l ) ; 

28 e l s e 
29 c o l = t i d ( i ) ; 

30 e n d 
31 . t = A 3 ( l : m - l , c o l ) ; 

32 f o r j = l :m—1 

33 i f t ( j ) = = 0 

34 t ( j ) = 1 0 ' ( - 1 2 ) ; 

35 e n d 
3G e n d 
37 r a t = A 3 ( l : m — l , e n d ) . / t ( l : m — 1 ) ; 

38 m a x R a t = a b s ( m a x ( r a t ) ) ; 

39 

40 c n t = 0 ; 

4i f o r k = l : m — 1 

42 i f t ( k ) < = 1 0 " ( - 1 2 ) 

43 r a t ( k ) = m a x R a t + l ; 

44 c n t = c n t + l ; 

45 e n d 
46 e n d 
47 

48 i f c n t < m — 1 

40 [ m i n R , r o w ) = m i n ( r a t ) ; 

so A 3 = s i m p l e x C a l ( A 3 , r o w , c o l ) ; 

51 m c = z e r o s ( n — l + 3 * w i d , 1) ; 

52 mc ( l : n — 1 - ) = A 3 ( e n d , 1 : n—1) ; 

53 

54 f o r i = l : 3 

55 s t r = n + ( i — 1 ) * w i d ; 

so s t p = n - f - i * w i d — 1; 

57 m c ( s t r : s t p ) = 2 * A 3 ( e n d , i n d x ( i , 1 ) ) — m c ( s t r — n + 1 : s t p — n + 1) , 

58 e n d 
59 

60 f o r i = l : l e n 

6i m c ( i n d x ( i , 1 ) ) = 1 0 0 ; 

62 mc ( i n d x ( i , 1) + n — 1 ) = 1 0 0 ; 

63 e n d 
64 m i n V = m i n (mc) ; 

65 m i n e r = A 3 ( e n d , e n d ) 
66 b r e a k 
67 e n d 
68 e l s e 
69 m i n V = 1 2 3 4 5 6 7 8 9 0 0 ; 

70 b r e a k ; 
71 e n d 
72 e n d 

73 i f c n t l = = w i d 2 

74 m i n V = 1 2 3 4 5 6 7 8 9 0 ; 

75 e n d 
e n d 

a=zeros(len-3,1); indx=sortrows(indx,2); if (minV~=1234567890 | 
minv~=12345678900) 

for i=l:len—3 

no 



82 

83 

84 

85 

8G 

87 

88 

89 

a(i)=A3(end,indx 

end 
er=A3(end, n) ; 

else 

er=0; 

end 

A4=A3; clear indx A3; 

i,l>); 

Batel's L\ algorithm 

1 

2 

3 

4 

5 

6 

7 

8 

9 

11 

12 

function [a,er]=BRL1(data, cc, inW, col,r,name) 

h i ] \ t u 1 c r ! i ! i j r i I 

norm based c i ] r ! 1 1 1 c i J ] 

code is written specifically for RBF 

dimensions in the input data, cmyk 4, lab 3, etc V::o centers 

ratio in rbf functions %col output dim, I,2, 3,,. 

A=input2BRL_l(data, cc, inW, col,r,name); 

[M, ind,ab]=BRLl_stepl_l (A) ; [a, er] =BRLl_step2_l (M, ind,ab) ; 

£r 

i 

3 

4 

7 

8 

9 

function [A]=input2BRL_l(data, cc, inW, col,r,name) 

dimensions in the input data, cmyk 4, lab 3, etc %cc centers %r 

ratio in rbf functions %col output din:;, 1,2, 3, . . 

p=matrixP(data,cc,inW, r, name); 

A=getRBFMatrix(data,p,inW); b=data(:,inW+col); A= [ A , b ] ; 

i 

3 

4 

5 

6 

7 

8 

9 

11 

13 

14 

15 

17 

18 

20 

23 

24 

25 

26 

27 

28 

function [A, B] =input2BRL_l_r_AlDim (data, cc, inW, r, name 

%data modeling data %cc centers for dimension 1,2,3 %r 

array for the radius for the 3 dimension %narne is char 

for the functions names for the three dimensions 

rdata=changeInputOutput(data,inW); 

rCC=changeInputOutput ( c c ,inW); 

[m,n]=size(data); outW=n—inW; 

Al = input2BRL_l(rdata, rCC, outW, 1,r(1),char(name (1))) 

A2 = input2BRL_l (rdata, rCC,. outW, 2, r (2) , char (name (2) ) ) 

A3 = input2BRL_l(rdata, rCC, outW, 3,r(3),char(name (3))) 

[mA,nA]=size(Al); z=zeros(mA,nA—1); tmpA=[Al(:,1:nA—1) 

Al(: , end) ]; tmpB=[z A2(:,1:nA-1) z A2(:,end)]; tmpC=[z 

A= [tmpA; trnpB; tmpC] ; 

Tlimit) 

i. s a n 

z z 
z A3 ] ; 

cnt=0; for i=l:m 

if(Al(i,end)+A2(i,end)+A3(i,end) )>Tlimit 

cnt=cnt+l; 

B(cnt, l:3 + nA-3) = [Al(i, l:nA-l) A2(i,l:nA-l) A3 (i, 1: nA-1) ]; 

B(cnt, 3*nA-2)=Tlimit; 

end 

end 
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function [a, erJ =BRLl_r(data, cc, inW, col,r,name) 

%Ihis function i s to solve overdetermxned .Linear system with. LI 
norm based ^on the Barrodale and Roberta a lgor i thm in 1?"M 

^The code le w .r i. 11 <? n s p e c i f i c a l l y for REF 

^dats need cinyklab or labcruyk i s normalized 

%col, nunber o:i: diiriens ions in ;;.he input data , crnyk 4, Lal:> '•:-, 
e t c 
%c-:; c en t e r s 
%r r a t i o in rb t functions 

;:col output dim, 1,2, i f . . rdaLa=cnangeInputOutput (daca, inW) ; 

rCC=changeInputOutput(cc,inW); [m,n]=size(data); outW=n—inW; 

A=input2BRL_l(rdata, rCC, outW, col ,r ,name); 
[M, ind,ab]=BRLl_stepl(A); 
[a,er]=BRLl_step2(M,ind,ab); 

function [M,ind,ab,eel,tst]=BRLl_stepl (A) 

%Tbis function is to solve ovirdeteimined linear system w 
norm based %or; the B-̂u: roda ].--; and Roberts algorithm in 
1974__stepl M=A; [m, n] =size (M) ; 

for i=l:n 
M(m+1, i)=sum(M(:, i) ) ; 

end 

lastRow«M(end,1:n—1); cnt=0; ab=ones (n—1, 1) ; for p=l:n—1 
eel (p) =M (end, end) ; 
[maxC,col]=max(abs(lastRow) ) ; 
if maxC==-lastRow(col) 

M(l :m, col)=—M(l :m, col) ; 
M(end,col)=maxC; 
ab(col)=-l; 

end 
t=M(l:m, col) ; 
for i=l:m 

if t (i)==0 
t(i)=10" (-12); 

end 
tmp(i) =M(i,end) /t (i) ; 

end 
maxM=max(tmp)+1; 
for i=l:m 

if (M(i, col)<=10~ (-12)) 
tmp(i)=maxM; 

end 
end 

if cnt>0 
for i=l:cnt 

tmp(ind(i,2))=maxM; 
end 

end 

[val,indx]=sort(tmp); 

cntl=0; 
for i=l:m 

if val (i)<maxM 
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92 end 

e n d 

f o r 

e n d 

c n t l = c n t l + l ; 
e l s e 

e n d 

i = l 

r o w 

break 

c n t l 
= i n d x ( i ) ; 

i f <M(end, c o l ) - 2 * M ( r o w , c o l ) > 0 & c n t l > l & 
M{end, : )=M(end, : ) -2*M(row, :) ; 
M (row, :) =—M {row, : ) ; 

e l s e 

e n d 

i f (M(end, c o l ) - 2 * M ( r o w , c o l ) > 0 ) 
r o w = i n d x ( c n t l ) ; 

e n d 

c n t = c n t + l ; 
t s t ( p , 1 ) = r o w ; 
t s t ( p , 2 ) = c o l ; 
M = s i m p l e x C a l ( M , r o w , c o l ) ; 

i n d ( c n t , 1 ) = c o l ; 
i n d ( c n t , 2 ) = r o w ; 

*{ 
f o r i = l : c n t 

i f ( M ( i n d ( i , 2) , e n d ) < 0 ) 
ab ( i n d ( i , 1) ) = a b ( i n d ( i , ! ) ) * ( -

e n d 
e n d 

f o r i = l : m 
i f M ( i , e n d ) < l ( T ( -12) 

M( i , : ) = - M ( i , : ) ; 
e n d 

e n d 

i] 
l a s tRow=M(end , l : n - l ) ; 

f o r k = l : c n t 
l a s t R o w ( i n d ( k , 1) )=0 ; 

e n d 

b r e a k ; 

c l e a r v a l i n d x trap; 
i n d = s o r t r o w s ( i n d , 1 ) ; c l e a r A ; 

K c n t l ) 

- 1 ) ; 

g 
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9 

1 0 

1 1 

12 

13 

14 

1 5 

1 6 

f u n c t i o n [ a , e r , e e , t t ] = B R L l _ s t e p 2 ( M , i n d , a b ) 

%Thi.s f u n c t i o n i s t o s o l v e o v e r d e t - r r n i n e u l i n e a r syst&rt. w i t h 1,1 
norm b a s e d %on t h e B a r r o d a l e arid R o b e r t s a l g o r i t h m i n 
1 9 7 4 _ _ s t e p 2 

l e n - l e n g t h ( i n d ( : , 1 ) ) ; [ m , n ] - s i z e ( M ) ; 

f o r i = l : l e n 
l a s t R o w ( i ) =M(end, i n d ( i , 1) ) ; 

end l a s t R o w ( l e n + 1 : 2 * l e n ) = — 2 - l a s t R o w ( l : l e n ) ; 
[1113x0,01001] =max ( l a s t R o w ) ; 

M2=M; out=M2; c l e a r M; c t = 0; w h i l e (maxOlCT (-12) ) 
c t - c t + 1 ; 
i f (mco l> l en ) 

113 



col=ind(mcol—len, 1); 
M2 (l:m-l, col)=-M2 (l:m-l,col) ; 
M2 (end,col)=maxC; 

else 
col=ind(mcol,1); 

end 
t=M2 (l:m-l,col) ; 
for i=l:m—1 

if t (i)==0 
t(i)=10" (-12); 

end 
tmp'(i)=M2 (i,end) /t (i) ; 

end 
maxM=max(tmp)+1; 
for i=l:len 

tmp(ind(i,2))=maxM; 
end 

for i=l:m—1 
if M2 <i,col)<10~ (-12) 

tmp(i)=maxM; 
end 

end 

[val,indx]=sort(tmp); 

cntl=0; 
for i=l:m—1 

if val(i)<maxM 
cntl=cntl+l; 

else 
break 

end 
end 

if cntl==0 
break 

else 
cnt2=0; 
for i=l:cntl 

row=indx(i); 
if (M2 (end, col)-2*M2 (row, col) >0) 

M2 (end, : ) =M2 (end, : )-2*M2 (row, : ) ; 
M2(row, :) =—M2(row, : ) ; 
cnt2=cnt2+l; 

else 
row=indx(i); 
break 

end 
end 
if cnt2<cntl 

tt (ct,l)=row; 
tt (ct,2)=col; 
M2=simplexCal(M2,row, col); 
ee(ct)=M2(end, end); 
for i=l:len 

if (M2 (ind(i, 2) ,end)<0) 
ab(ind(i, 1) )=ab(ind(i/ 1) ) * ( 

end 
end 
for i=l:m—1 

if M2 (i,end)<0 
M2 (i, :)=-M2 (i, : ) ; 

end 
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end 

*M2 

end 

end 
end 

f o r i = l : l e n 
l a s t R o w ( i ) = M 2 { e n d , i n d ( i , 1) ) ; 

end 
U J S = .POW f l e r ; i i : 2 " l e n ) — 2 - 1 a-re Row (1 : i&n) ; 
[ m a x C , m c o l ] = m a x ( l a s t R o w ) ; 

maxC 
*M2 i : , enct) 

end 

*{ 
f o r i = l : l e n 

l a s t R o w ( i ) = M 2 ( e n d , i n d ( i , 1 ) ) ; 
end 
l a s t R o w ( l e n + 1 : 2 * l e n ) = — 2 — l a s t R o w ( 1 : l e n ) ; 
[ m a x C , m c o l ] = m a x ( l a s t R o w ) ; 

end 
v, \ 

\: , en-:i) a - z e r o s 'n 1 , 1 ) ; f o r i = l : n 1 
f o r j = l : l e n 

i f ( i = = i n d ( j , l ) ) 
a ( i ) = M 2 ( i n d ( j , 2 ) , e n d ) * a b ( i n d ( j , 1 ) ) ; 
break 

end 
end 

e r = M 2 ( e n d , e n d ) ; 
c l e a r M2 l a s t R o w i n d ; 

Newton color conversion 

i f u n c t i o n [ c m y k P ] = n e w t o n C M Y K 2 L a b ( c m y k O , l a b O , l a b P , w t , C C , r , f n a m e ) 

3 d E = n o r m ( l a b O — l a b P ) ; 

4 

s c n t = 0 ; k = z e r o s ( 3 , 1 ) ; c n t 2 = 0 ; c n t 3 = 0 ; 

6 

7 w h i l e d E > 1 0 " ( - 5 ) 

8 c n t = c n t + l ; 

9 d f M = R B F D f M a t r i x ( c r a y k O , C C , w t , r , f n a m e ) ; 

10 b = n o r m a l i z e L a b ( l a b P ) — n o r m a l i z e L a b ( l a b O ) ; 

11 i f k = = 0 

12 d C M Y = i n v ( d f M ( : , 1 : 3) ) * b ' ; 

13 cmykO= [dCMY; 0 ] ' + c m y k O ; 

14 e l s e 
15 c n t l = 0 ; 

io f o r i = l : 3 

17 i f k ( i ) = » 0 

18 c n t l = c n t l + l ; 

i s d fM2 ( : , c n t l ) = d f M ( : , i ) ; 

20 e n d 
21 e n d 

22 dfM2 ( : , c n t l + l ) = d f M ( : , 4) ; 

23 i f c n t l = = 2 

24 d C M Y = i n v ( d f M 2 ) * b ' ; 

25 i f k ( l ) > 0 

28 c m y k O = [ 0 ; d C M Y ] ' + c m y k O ; 
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2 7 

2 8 

2 9 

3 0 

3 1 

3 2 

3 3 

3 4 

3 5 

3 6 

3 7 

3 8 

3 9 

4 0 

4 1 

4 2 

4 3 

4 4 

4 5 

4 6 

4 7 

4 8 

4 0 

5 0 

5 1 

5 2 

5 3 

5 4 

5 5 

5G 

5 7 

5 8 

5 9 

6 0 

6 1 

6 2 

6 3 

6 4 

6 5 

6 6 

e n d 

e l s e i f k ( 2 ) > 0 
cmykO=[dCMY(1);0;dCMY(2:3)] 

e l s e 
cmykO=[dCMY(l :2) ;0 ;dCMY(3)] 

e n d 
e l s e i f c n t l = = l 

c n t 2 = c n t 2 + l 
d C M Y = l e a s t S q u a r e s ( d f M 2 , b ' , ' s v d ' 
t m p = [ 0 ; 0 ; 0;dCMY(2) ] ; 
f o r 1 = 1 : 3 

i f k ( i ) = = 0 
trap ( i ) =dCMY(l) ; 
break 

e n d 
e n d 
cmykO=tmp'+cmykO; 

e l s e i f c n t l = = 0 
c n t 3 = c n t 3 + l 
dCMY=leas tSqua re s (d fM2,b ' , ' r:;vaJ 

cmykO(4)=cmyk0(4)tdCMY; 
e n d 

c l e a r dfM2; 
f o r 

e n d 

1 = 1 : 3 
i f cmykO ( i ) > l 

c m y k O ( i ) = 1 ; 
k ( i ) = l ; 

e l s e i f cmykO{i)<0 
cmykO( i )=0 ; 
k ( i ) = l ; 

e n d 

l a b O = R B F C o n v e r s i o n ( c m y k O , C C , w t , r , f n a m e ) 
dE= 

i f 

e n d 

l o r m ( l a b O - l a b P ) ; 
- n t > 5 0 
cmykO=0; 
break 

end cmykP=cmykO; c l e a r cmykO 

+cmykO; 

+cmykO; 

; 

; 

l 

3 

4 

5 

6 

7 

8 

9 

f u n c t i o n [ o u t ] = n e w t o n C o l o r C o n v e r s i o n ( c m y 2 c m y k , m d a t a , C C 

[ m , n ] = s i z e ( c m y 2 c m y k ) ; w t = R B F W e i g h t s ( m d a t a , C C , 4 , r , f n a m e 
i = l :m 

cmyk0=cmy2cmyk(i , 8 :11) ; 
I ab0=cmy2cmyk( i , 1 2 : 1 4 ) ; 
l a b P = c m y 2 c m y k ( 1 , 5 : 7 ) ; 
c m y k P ( i , :)=newtonCMYK2Lab(cmykO, l a b O , l a b P , m d a t a , wt 

end o u t = [ c m y 2 c m y k ( : , 1 : 3 ) cmykP] ; 

r , f n a m e ) 

; f o r 

CC, r , f n a m e ) ; 
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