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ABSTRACT

This paper emphasizes both the selection of the hydraulic resistance model for surfaces of uniform rough-
ness and the estimation of model parameters for hydrograph simulation of watersheds with nonuniform roughness.

The hydraulic resistance modeling of surface roughness is reviewed and discussed in detail. A three-
parameter model for hydraulic resistance is designed by assuming a flow through a set of parallel random-width
channels with equal water depth in these channels. Numerical methods for solutions of kinematic wave equations
for the overland flow are used to simulate the outflow hydrographs of small watersheds. The two—parameter and
the three-parameter surface roughness models are used in the optimization of model parameters. These two models
are then compared oy comparing deviations between the hyarographs simulated with the optimized parameters and
the hydrographs observed at the Rainfall-Runoff Experimental Facility at Colorado State University. The
results show that the three-parameter model describes more precisely the relationship between the discharge, Q,
and the equivalent water depth, h, for various kinds of roughness over a wide range of discharge than does the
two-parameter model, Q=ah®. The three-parameter model can be applied in the study of effects of changes in the
land use on hydrographs, as well as to determine the precise estimate of sediment transport by the overland flow.
When only the high flows of a hydrograph are important in hydrologic analysis, the two-parameter model as sim-
pler and less expensive should be used in hydrograph simulation in comparison with the three-parameter model.
The two-parameter model is recommended for high flow application.

Methods of estimation of the lumped parameters of the two-parameter model are in turn developed for water—
sheds couposed of nonuniform roughness elements. For a watershed of nonuniform roughness in the flow direction,
the lumped parameters can be estimated by selecting the values of parameters which can reproduce the equilibrium
detention storage equivalent to the equilibrium detention storage produced by the watershed with nonuniform
roughness. The linear uniformity of roughness in flow direction is much more important than the areal unifor-
mity of roughness for achieving the equivalent uniformity. For a watershed of nonuniform roughness in trans-
verse direction, the hydrographs can be simulated by combining the hydrographs produced by the individual
elements.
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INTRODUCTION

1.1 General Statement

A great number of factors affect the outflow
hydrographs from a watershed, because hydrologic prob-
lems usually are very complex. Hydrographs specific
to a particular problem can be predicted by using
statistical or physically-based deterministic methods
or by using a combination of these two methods. How-
ever, since too many factors are involved in the gen-
eration of a hydrograph, the watershed components are
necessarily simplified and model parameters reduced to
as few as possible according to accuracy required in
practical uses. Physically-based deterministic models
have a theoretical structure founded primarily on the
laws of conservation of mass, energy, and momentum,
and basin output hydrographs can be produced for known
initial and boundary conditions and rainfall inputs.
This can replace the black-box approach if the model
is feasible. Physically-based models of watershed
components invariably involve either ordimary or par-
tial differential equations. The solution of these
equations frequently requires the use of numerical
methods. There have been advanced developments in
physically-based deterministic models and in digital
computer use in recent decades. During the simulation
of hydrographs, adequate selection of the necessary
model parameters and adequate simplification of the
watershed components are important.

Surface runoff, such as overland or open channel
flow, is an important part of the response of a water-
shed to rainfall. Floods from small watersheds are
almost invariably caused by direct surface runoff from
rainfall. Therefore, the design of flood control
structures or nonstructural measures to reduce flood
damage utilizes estimates of flood peaks for given
frequencies. As many small rural and urban watersheds
do not have discharge records, engineers usually uti-
lize mathematical models along with rainfall data to
produce runoff data. The type of hydraulic resistance
models and model parameters play an important role in
the simulation of the overland flow hydrographs, but
the parameters must be determined experimentally. The
configuration of natural watersheds is very complex
and simplification of watershed components is re-
quired. Also, the number of components must be re-
duced; therefore a component within a watershed simu~-
lation model may include many kinds of surfaces with
different roughnesses while experiments are mostly
restricted to a single surface with a uniform distri-
bution of surface roughness. In order to apply the
experimental data to natural watersheds, the hydraulic
resistance model must be selected and the representa-
tive overall parameters of simplified components
estimated.

This study emphasizes both the selection of a
hydraulic resistance model for a uniform surface and

the estimation of parameters for watershed components
which have spatially variable roughness.

1.2 Definition of Basic Concepts and Magnitudes

Surface Roughness

The magnitude, form, and distribution of
roughness protrusions have been selected by previous
investigators as the parameters of surface roughness
for the study of flow over a plane. For a given form
and distribution, the magnitude k of the roughness
protrusions characterizes the surface conditions. For

the natural roughness of most surfaces, k is a random
variable and should be treated in statistical terms.
In addition to the magnitude k, both the form and
distribution of roughness are relevant parameters in
describing the hydraulic behavior of flows over vari-
ous surfaces. Since it is difficult to include all
three of these parameters in the general flow formula-
tion, the surface roughness in open channel flow is
empirically expressed in the form of resistance coef-
ficients, such as f, C, and n of the Darcy-Weisbach,
Chézy, and Manning equations, respectively.

Uniform and Nonuniform Roughness

The roughness in a natural watershed varies with
the type of land surface, obstructions and vegetation.
Uniformity of roughness is defined herein with respect
to a particular path on the watershed surface. If the
roughness is a constant along a particular path, the
surface is said to have uniform roughness in that
direction; if not, it is nonuniform. In this study
the uniformity of roughness is expressed in two paths:
(i) the flow direction and (ii) the transverse direc-
tion, perpendicular to the flow direction. Figure 1-1
shows a scheme of various roughnesses along the flow
direction, represented in terms of Manning's n. For
the uniform roughness in flow direction the Manning's
n is constant along the surface from upstream to down-
stream, The non-uniform roughness in the flow direc-
tion is classified as follows:

(1) Increasing roughness. When the density of
vegetation increases in the flow direction, the
roughness also increases.

(2) Decreasing roughness. When the density of
vegetation decreases in the flow direction, the
roughness also decreases. For a sparsely vege-
tated surface, rills are gradually developed as
the water flows downward, with water flow concen-
trated in the rills of the downstream side, so
that the roughness may decrease in downward
direction.

(3) Alterpating roughness. This kind of surface
roughness is often encountered in the agricul-
tural areas of alternating strip croppings for
soil conservation purposes. The roughness
changes alternatively according to the vegetated
crop patterns.

(4) Irregular distribution of roughness.
surfaces with irregularly distributed obstruc-
tions and vegetation, the roughness is also
irregularly distributed.

For land

To simulate hydrographs for a watershed with
alternating roughness, the watershed can be modeled by
a cascade of planes with uniform roughness withip each
plane. For a watershed with a gradual change or a
random distribution of roughness, the watershed can be
divided into planes of proper sizes, and the roughness
of each plane approximated by a constant value.
Usually, man-made experimental surfaces do not have
gradual change of roughness, being mostly limited to
surfaces of uniform roughness, or with a discrete
nonuniform roughness, as shown in (1) and (4) of Fig.
1-1.
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Figure 1-1. Uniform and nonuniform roughness patterns
in the flow direction: (1) uniform; (2)

increasing Manning roughness coefficient
in flow direction; (3) decreasing Manning
roughness coefficient in flow direction;

(4) alternating (checkered) patterns;

(5) irregular variation.

Uniform and nonuniform roughness in  the
transverse direction can be classified in the same
manner as roughness in the flow direction.

Uniform and Nonmuniform Roughness of Surfaces

The wuniformity of roughness of a surface is

classified as follows:

UFUT, meaning uniform roughness in the flow direction
and the transverse direction.

UFNT, meaning uniform roughness in the flow direction
and nonuniform roughness in the transverse
direction.

NFUT, meaning nonuniform roughness in the flow
direction and uniform roughness in the transverse
direction.

NFNT, meaning the plane has nonuniform roughness in
both directions.

This study uses data from an experimental
watershed of conic section. Spatial variability was
accomplished by utilizing two surface roughnesses--a
smooth butyl surface and the butyl surface covered
with gravel, subsequently called the butyl and gravel
surfaces. Schematic drawings of the experimental
watershed configurations are shown in Fig. 1-2. Some
of the nonuniform arrangements of roughness surface
are systematic while the others are random.

Equivalent Uniform Roughness

Equivalence of two watersheds with identical
boundaries can only be defined in terms of their

D Butyl Surface
D Gravel Surfaoce

iRv,

(A) UFUT, m=1 (B) UFNT, m=2

m=7 (C) NFUT me=2

{8) NFNT, m= 2|
Figure 1-2. Various roughness arrangements on the
conic-section surfaces with m = the

i number of elements.

response to identical rainfall input. Consider
hydrographs from two watersheds, A and B, which are
identical except that watershed A has nonuniform
roughness and watershed B has uniform rqughness. From
these two hydrographs we can obtain the following
index of goodness-of-fit,

(1-1)

with G = the goodness-of-fit, D = the absolute value
of the deviation of volumes between the two hydro-
graphs from watersheds A and B, and a = the total
volume of rainfall input, Fig. 1-3. Theoretically,
the goodness-of-fit can be unity if the sizes of
roughness elements in watershed A are infinitesimally
small and the different kinds of roughness are alter-
natively arranged. However, from the practical view-

point, watershed A can be considered as a watershed of
if the two

uniform
coincide.

roughness hydrographs nearly

D=0, +Dp
6=1-D/20

Watersheds A gnd B g f?

Figure 1-3. Goodness-of-fit measures for two hydro-
graphs from uniform and ponuniform rough-

ness watersheds.



It is conceived in this study that an equivalent
uniform roughness exists for a watershed with nonuni-
form roughness if the hydrographs from both configura-
tions are equivalent for identical rainfall excess
patterns. Hydrographs will be considered equivalent
when (1) the goodness-of-fit, G, is greater than Ge’

and (2) the ratio of difference between hydrograph
peaks to the peak of the uniform watershed is less
than Pe’ where GE and Pe are the criteria to be used

for defining equivalent uniform roughness and will be
determined in this investigation. The equivalent
uniform roughness may be determined from experiment or
by simulation of hydrographs by mathematical models.
However, determination by experiment is very time
consuming and expensive and simulation of hydrographs
by mathematical models is a convenient way to work.

Consider a watershed composed of elements of two
kinds of roughness, described by Manning's coeffi-
cients ny and n,. An element is defimed in this study

as a subarea of the watershed which has a defined
shape and its surface roughness can be assumed as
approximately or truely uniform over it. For NFUT
surfaces, the flow is one dimensional because of
uniform roughness in the transverse direction. The
factors determining whether or not an equivalent
uniform roughness exists are: (1) difference between
two roughnesses, (2) relative area of two roughness
surfaces, and (3) size of elements. The domain of
equivalent uniform roughness with respect to those
three factors is shown schematically in Fig. 1-4.
With only two elements an equivalent uniform roughness
can exist only if n; *n, or the relative area of one

roughness is too small to affect the total hydrograph.
The locus of points represented by nl,’n2 = 1 obviously

defines a region of equivalent uniform roughness as do
the left and right boundaries in Fig. 1-4. For a
certain area ratio of two roughness surfaces, water
flows through the alternate roughnesses more frequent-
ly and the hydrograph becomes equivalent to the hydro-
graph of a uniform surface when the number of elements
is greater. The domain of equivalent uniform rough-
ness is enlarged as the number of elements increases.

Domain of Equivalent

Uniform Roughness for m=2
Equivalent Uniform Rough
does not Exist for m=2

me=

ALl

0 100
% of Areawith Roughness n,

h<hy

n, and ny ore Monning’s n of Two

Roughness Surfaces

m is the Number of Elements

Figure 1-4. Schematic diagram of domain of equivalent
uniform roughness.

For UFNT surfaces, it is assumed that the lateral
flows will occur since the roughness is not uniform in
the transverse direction and the differences in result-
ing water depths will create then a lateral water
surface gradient. The factors affecting uniformity of
roughness are the same as those in NFUT surfaces.
When only one dimensional flow is considered, the
outflow hydrograph from a UFNT watershed of conic
section composed of numerous sectors is equivalent to
the combination of hydrographs produced by two sectors
of different roughness surfaces. The domain of equiv-
alent uniform roughness is bounded by the curve of two
elements as shown in Fig. 1-4 regardless of the number
of elements. However, in the actual situation, it is
postulated that lateral flows will occur and its
effect becomes more significant as the size of sectors
becomes smaller or the number of sectors increases.
Because of mixing of flows from two roughness sur-
faces, the apparent uniformity of roughness is improv-
ed and the domain area increases as the number of
elements increases.

It should not be expected often that a natural
watershed would have a UFNT surface with numerous
small elements of various roughnesses. When the size
“of elements is not small and the effect of lateral
flows is not significant, the outflow hydrographs from
UFNT surface can be easily simulated by a combination
of hydrographs from various elements, In contrast,
NFUT-like surfaces often occur in natural watersheds
and the simulation of hydrographs is more complicated.

1.3 Scope and Objectives

Numerical methods for solutions of the kinematic
wave equations for overland flow have been used exten=
sively for simulating watershed outflow hydrographs.
Before presenting the analysis of these methods, the
hydraulic resistance laws are discussed. Alternative
two- and three-parameter models for hydraulic resis-
tance are proposed and are tested for their goodness-
of-fit by comparing simulated hydrographs with observ-
ed hydrographs. Experimental data from the Rainfall-
Runoff Experimental Facility at Colorado State
University are used for these tests. Finally, the
two-parameter model is selected as most feasible for
the simulation of hydrographs. The methods of param-
eter estimation for watersheds with spatial variabili-
ty of roughmess are developed. The objectives of
these investigations are:

(i) To select the simplest hydraulic resistance
model that adequately describes overland
flow for a watershed with uniform roughness
in the flow direction and in the transverse
direction (UFUT),

(ii) To develop criteria for determining the
existence of an equivalent uniform roughness
for a watershed with nonuniform roughness
and to develop techniques to estimate the
parameters for the equivalent uniform rough-
ness, and

(iii) To develop methods for the application of
the model to natural watersheds.
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LITERATURE REVIEW

2.1 Analytical Models of Hydraulic Resistance on a
Uniform Surface

Plane Surface

Many researchers have discovered that three flow
regimes--laminar, transitional laminar-to-turbulent,
and turbulent--exist in flows over relatively smooth
plane surfaces. These regimes are often distinguished
from one another by discontinuities in curves which
show the relationship between the Darcy-Weisbach
friction coefficient, f, and the Reynolds number, Re.

The theoretical equations of uniform laminar flow
in open channels, in pipes and betweer two plates have
the same form:

gR’s

v ’ (2-1)

with ¢ = a constant, R = the hydraulic radius of flow
passage, Vv = the kinematic viscosity, g = the gravita-
tional acceleration, and S = the slope of energy
gradient.

The resistance to uniform turbulent flow is often
expressed by one of the following equations:

VZ

Darcy-Weisbach § = f 8k (2-2)
Cheézy vV = CJfRS (2-3)
Manning V= 1—‘:;—%- g?/3 gl/2 (2-4)

with f = the Darcy-Weisbach friction factor, C
Chézy's coefficient, V = the average velocity, and n
the Manning roughness coefficient. Actually, the
Chézy formula has the same form as the Darcy-Weisbach
formula.

Most investigators have related the
Darcy-Weisbach friction coefficient to the Reynolds

number. The Reynolds number equation is:
Re = B (2-5)
v
Because of difficulties in defining the hydraulic

radius of flow passages over or through grass or
stems, the water depth, y, has also been used instead
of the hydraulic radius, R, in the relationship be-
tween f and Re for overland flow. Since the basic
approximation made in “ie kinematic wave equation for
overland flow is that the energy slope is equal to the
bed slope, the bed slope is used for the energy slope
in flow equations.

Numerous studies of hydraulic resistance in open
channel and overland flow have been made. The equa-
tions for steady uniform laminar flow and for the
Reynolds number on smooth surface, wide open channels
are:

=8 S = 3w N
Velss or 82 (2-6)
gy
Re = (2-7)
with y = the water depth, equivalent to R. By equat-

ing Eq. (2-6) to Eq. (2-2) and making a substitution
in Eq. (2-7) the following relation is obtained:

= 24 =
t=% (2-8)

Many investigators have shown the Darcy-Weisbach f in
laminar flows to be

f = TE (2"‘9)
with C = a constant depending on roughness, cross-
sectional shape and channel slope. Theoretically,

C = 24 for a wide, smooth-bed channel.

In the turbulent flow tegime, the effect of the
Reynolds number is smaller than in laminar regime, as
the relative roughness becomes important. For low
relative roughnesses (k/y small) and fixed rigid
boundary conditions, Manning's n becomes practically
independent of the water depth in the full turbulent
regime. For a comparatively high relative roughness
of the fixed rigid boundary condition, the friction
coefficient is primarily a funcfion of relative
roughness.

Several investigators studied the transition from
laminar to turbulent flow in an open channel with
smooth boundaries. The critical Re has a considerable
variation, from 300 to 1500. Apparently, other
factors besides the Reynolds number influence the
upper limit for viscous type flow, and the change is
from a laminar to an intermediate regime rather than
to a strictly turbulent regime (Kruse, et al., 1965;
Parson, 1949). The transition regime is intermediate
between the laminar and turbulent regimes, and the
relationship between f and Re is rather unstable. In
general, the range of Re for the transitional regime
for rough surfaces is wider than for smooth surfaces.
Chen (1976) showed f = C/Re is applicable up to Re =

10" for flow on natural turf surfaces which is equiv-

alent to laminar flow.

The upper limit of flow equivaleht to laminar
flow can be defined in terms of the Reynolds number
for which the relationship f(Re) starts to deviate
from f = C/Re. It is called the critical Reynolds
number. To the left of the discontimguity, the flow is
equivalent to laminar; to the right, the flow is
transitional, a mixture of laminar agd turbulent. The
flow with Re exceeding the upper bound of the tramsi-
tional regime is then fully developed turbulent flow.

The following relationships are valid for open
channel turbulent flow if Manning's equation is used:



¢ = 88YS | 8gyS . 8’ -1/3
2 2473 2 ;
v (1.486/n)%yY s 1.486
_Vy _11.486 5/3 (1/2
R v 3 %
and £ Re!/S = 38 (B _)9/5 G110 (2-10)
v 1.486

For flow over a constant slope, f is proportional to

R=-1f5, therefore, the £ vs Re line on log-log paper
has a slope of -0.2.

A schematic relationship of f vs Re is shown in
Fig. 2-1. This is the model for laminar-turbulent
flow on a plane with two parameters, C in f = C/Re and
Re, with Rc the Reynolds number of the transition.
This model has been used by many investigators to
simulate hydrographs for overland flow. For the Chézy
equation, f is constant in the turbulent regime.

log !

Rough Surfoce

Ranging from
100 101500
Li/s
Smooth
Surfoce

Re log i;

Figure 2-1. Relationship f vs Re for flows on a
plane.

Upright Circular Cylinder on a Plane

In studying the effect of tall vegetation on flow
and sediment, Li and Shen (1973) proposed a plane
surface with vertical circular cylinders on the plane
as an analogy. They concluded that the different
patterns or groupings of tall vegetation have a sig-
nificant effect on retardation of flow rates and
sediment yields. Equations for the wake spread and
decay derived by Petryk (1969) and the linear super-
position of velocity effects were used to obtain the
mean drag coefficient of individual cylinders among an
array of cylinders in an open channel. The equation
obtained for the drag force is

F. =

i (2-11)

= 2
C v dy,

L

in which Fi = the drag force for the cylinder at the
ke row, Ci = the computed mean drag coefficient at
the ith p = the water density, Vo

row, = the mean

velocity, d = the diameter of cylinders, and y = the
water depth. In deriving this equation, the drag
coefficient for a single cylinder, Cd, was assumed to

be 1.2, which is the drag coefficient for the range of

the Reynolds number of 8 x 10° to 2 x 10°. The re-
sults showed that ci for a high order of rows (beyond

the order of seven) tended to be a constant. It was

1.1 for the staggered array and 0.77 for the parallel
array when spacing was ten times the cylinder diameter.

For a surface with unsubmerged obstructions the
hydraulic resistance force which must be equal to the
downslope water weight component consists of bed sur-
face resistance force and drag force due to cylinders.

Porous Medium Flow

Henderson and Wooding (1964) suggested that
overland flow over an impermeable surface would be in-

cluded in one of the following three cases: (1)
laminar flow, (2) turbulent flow, and (3) flow in a
porous medium. The flow passing through closely

growing plants may resemble type (3). They noted that
in flow over clipped turf, the fluid motion near the
base of the plants may qualitatively resemble .ype (3)
while the motion above the plants may be better de-
scribed by either type (1) or (2). Because of high
hydraulic resistance, porous media flow will rarely
reach turbulent range. For a uniform porous medium,
the hydraulic radius of flow passage, R, in Eq. (2-1)
is a constant regardless of water depth, y. If the
energy gradient is approximated by the bed slope for
overland flow, the velocity is constant and the

Reynolds number, — , is proportional to the water

depth, y. When y is substituted for R in Eq. (2-2)
the Darcy-Weisbach coefficient, f, is also proportion-
al to the water depth, y. The relationship of f vs Re
will be a straight line with one to one increasing
slope on log-log graph which is completely different
from the relationship for flow over a hydraulically
smooth plane surface.

Two Parameter Statistical Relationship

Because of viscosity, the flow in a system is
either laminar or turbulent, or a combination of both.
The selection of the discharge model for the laminar
or turbulent flows, which will be used in the simula-
tion of hydrographs, depends mainly on the range of
the Reynolds number. For the flow covering a wide
range of Reynolds numbers or discharges, both the
laminar and turbulent regimes should be investigated.
The flow equation can be expressed for either laminar
or turbulent flows in the form

Q=on", (2-12)
with Q = the unit width discharge, h = the equivalent
water depth (water storage expressed in depth), m = a
constant of 3 for the laminar flow and 1.5 (Chézy) or
1.67 (Manning) for the turbulent flow in a wide open
channel and 1.0 for the porous media flow, and o = a
constant depending on slope, surface roughness and
shape of cross section. For the flow at a plane
surface, the m value can be fixed in both the laminar
or turbulent flow with only a parameter, a, remaining.
However, if the flow of interest is mainly in the
range of transition or combination of the laminar,
turbulent and porous media flow, the m value is be-
tween 3.0 and 1.0, and it cannot be fixed in advance.
Equation (2-12) is a two-parameter model with two
unknown parameters, @ and m, which are statistically
estimated from the observed hydrographs of a water-
shed.

2.2 Experimental Investigation

Izzard (1944) concluded from a series of
experiments that C for shallow flows over paved and
turf surfaces departs significantly from the



theoretical wvalue of 24. With a paved surface, he
found values for C other than 24, such as 27, 40 and
58, for various bed slopes and rainfall intensities
tested. For a turf (Kentucky Blue grass) surface, he
obtained C as high as 10,000, which is a few hundred
times greater than values for paved surfaces.

Woo and Brater (1961) studied the effect of
channel slope on C. For a masonite surface, with 11
channel slopes ranging from .001 to .006 tested, the
C values obtained were all approximately equal to
30.8. However, for a glued-sand surface, C increases
with an increase of the slope. They also analyzed the
data of the Corps of Engineers Laboratory in Vicksburg,
Mississippi, for various packed-sand and cement sur-
faces and found that the finest sand surface acts as a
very smooth surface with C = 24, whereas C for the
other six sand surfaces are larger than 24, with the
largest C being for the roughest sand surface. The
ranges of critical Reynolds number were 400 to 900 for
the masonite surface, 400 to 800 for the sand surface,
and 500 to 1000 for the Vicksburg data. This range
varied inversely with the slope.

Emmett (1970) conducted experiments on a smooth
plane surface of uniform sand-grain roughness with a
median grain diameter of .50 millimeters in a labora-

tory flume with adjustable slope. From the flow
experiments without artificial rainfall, he con-
cluded that extremely shallow uniform flows were

characterized by laminar flow at Reynolds numbers of
less than 350 (or somewhat greater) and turbulent flow
at Reynolds numbers higher than 1,500 (or somewhat
smaller). A transitional flow exists between the
laminar and turbulent flows. For laminar flow with
constant slope, the Darcy-Weisbach frictiom factor, f,
decreases inversely proportional with an increase of
Reynolds number, Re. For the turbulent flows, f
decreases only slightly with an increase in Re which
agrees with the Manning equation. Absolute resistance
to flow depends on the magnitude of relative roughness
of flume surface. For shallow flow depths, with
uniform simulated rainfall over the flume, all flows
were in the laminar regime as defined by the Re crite-
rion established for the uniform flow tests without
rainfall. However, the flow was not truly laminar,
because of the effect of falling raindrops. For
disturbed flow compared to uniform flow, Emmett found
the falling raindrops roughly double the resistance to
flow.

Kouwen and Unny (1973), using flexible plastic
strips to simulate a vegetated open channel, studied
the variation of relative roughness with respect to
the stiffness of vegetation. Two widths of the plas-
tic strips were 0.5 cm and 0.75 cm. In experiments
with the 0.5 cm plastic strips the space between these
strips was 0.5 cm, while the space between the 0.75 cm
plastic strips was 0.75 cm. Spaces between the rows
were 2.0 and 3.0 cm, respectively. Three basic flow
regimes: erect, waving, and prone, were observed. In
the erect regime the plastic strips were erect and
stationary; in the waving regime the strips underwent
a waving motion; in the prone regime the strips were
bent over. The plot for the erect and waving regimes
of the Darcy-Weisbach f versus Re show that f is
mainly a function of the relative roughness, being
independent of Re. For k/y = 1 (k = the deflected
height of roughness elements, y = the normal depth), £
was about 35 for the experiment range of Re between
1000 to 3000.

From experiments on steady uniform flow over a
simulated turf surface Phelps (1970) found a marked
dissimilarity between the friction

coefficient-Reynolds number relationsh:ip for the flow
over the turf at different depths, when there was only
a partial submergence of surface elements. The rela-
tive water depth (y/d, y = the mean depth, d = the
representative length dimension of the flow passage
between leaves) influenced the friction coefficient in
the laminar range, namely the friction coefficient
increased with an increase of the relative water depth
for a constant Reynolds number. For a constant depth
of laminar flow, the product C = fRe was not comstant,
but decreased as Re increased. This result might be
explained by postulating changes in the boundary
geometry which means that the flexible elements re-
spond to changes in mean velocity. The critical
Reynolds number at the upper limit of laminar flow
ranging from 100 for y/d in the range 1.39-1.43 to 750
for the maximum y/d of 4.68-4.71.

Chen (1976) conducted a series of experiments in
the laminar range for flow on surfaces with a maximum
density of Kentucky Blue grass and on surfaces with a
maximum density of Bermuda grass. The bed slope
ranged from .1 percent to 1:1.5. The value of f for
laminar flow on the turf surface is & few orders of
magnitude higher than the value of f on the glued-sand
surface. A best fitting line for each slope was drawn
through data points to parallel the theoretical lime
of f = 24/Re. The relationship between C and S for a
given turf was drawn on log-log paper. It appeared
that a straight line can be fitted. The f value
increases with an increase of bed slope. The friction
coefficient for shallow flow over the natural surface
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was expressed as f = 510,000 S " /Re.

Kowobari, et al. (1970), by using different
arrangements of 3/32 and 9/32 inch diameter upright
aluminum rods on a 44 ft long by 18 inch width flume,
studied the relationship of the Manning's resistance
coefficient to the size of roughness elements, the
pattern of arrangement and the density of rods. The
depth of flow in the channel was such as to keep the
roughness element unsubmerged for a better understand-
ing of the retardation for flow through upright rods.
They concluded that the resistance to flow decreases
with an increase of the discharge under smooth channel
conditions, but that it increases with an increase of
the discharge when the channel coatains the roughness
elements. The Reynolds number in this experiment
ranged from 700 to 20,000.

From the above literature review, the previous
investigators obtained, in general, f-Re = constant,
which is wvalid for the laminar flow in wide open
channels. However, C = f-Re increases with an in-
crease of roughness. Woo and Brater - (1961) showed
that C increases with an increase of the channel slope
for the flow over glued-sand surfaces, while Chen
(1976) showed the same phenomena for the flow over
turf surfaces. All the previous investigators used
the water depth for R in the Darcy-Weisbach equation
and the Reynolds equation (Eqs. 2-2 and 2-5). Most
flows on turf surface are in laminar ‘and transition
regimes. Only the experiment condacted by Kowobari,
et al., (1970) for a surface with rigié upright stems
showed that the resistance to flow increases with an
increase of the discharge. This is reasonable if the
upright elements are not flexible.



2.3 Kinematic Wave Theory

Theory and Analytical Solution for the Rectangular
Plane

As shown in Fig. 2-2, a plane of unit width,
length Lo, and slope So, receives rainfall at a rate

i(x, t) per unit area, which is a function of distance
x and time t. Water is infiltrating at the rate ir(x,

t). The net lateral inflow is q(x,t) = i(x,t) -
ir(x,t). For simplification of analysis, i is assumed

constant, with experiments conducted for an impervious
plane. In this case, the lateral inflow is a constant
i. Flow is assumed to be one-dimensional, and the
dependent variables are the local mean velocity, V,
and the local depth, h. The continuity and momentum
equations are

9h + 3(Vh) = i(x, t) (2-13)
at  ax
(V-v,)
g Y Syt 8 o= g(S,8,) - ilx,t) —— (2-14)

with Sf = the friction slope, and V, = the x-component
of the velocity of the lateral inflow. VE is zero

when the downward momentum introduced by rainfall is
negligible, and the velocity component of the rainfall
in the x-direction is assumed to be zero. The usual
basic assumptions, that the sine of the slope angle,
6, is approximately equal to the tangent and that the
velocity distribution coefficient, B, is equal to one,
are also applied herein.

Rainfall i( x,1)

UWELITE R

Infiltration, if (x,1)

Figure 2-2. Definition sketch of overland flow on a
plane.

In the kinematic wave approximation of overland
flow, all terms in the momentum equation, except the
term involving the bed slope and friction slope, are
assumed to be negligible. Equation (2-14) then becomes

s, = 8. (2-15)

If the bed slope is constant, the friction slope over
the plane must also be constant. Then the un%t width
discharge and the velocity equatioms can be written as
Eq. (2-12),

Q=ob" and V=aa™l (2-16)

Equation (2-16) can be substituted in Eq. (4—13) to
produce a partial differential equation with one
dependent variable

oh , an" _ .

3t +a i(x, t) (2-17)
or

ah -19h _ |

3t *omh" 5= ilx, t). (2-18)

The total differential of h(x, t) is

ah oh _
dt T dx 3x - dh. (2-19)
It may be assumed that the flood wave is composed
of infinitesimal discontinuous surges (Chow, 1959),
and the values of 9h/3x = 0/0 and 3h/3t = 0/0. The
characteristic equations are

dx _ m=-1 '

3¢ = om h (2-20)
and

dh _ G

= = i(x, t) (2-21)

Let us consider the simple case of a spatially
invariant rainfall on an impervious surface, beginning
at a constant rate, i, at time t = 0, and continuing
until an equilibrium condition is reached, and bound-
ary conditions of h(0, t) =0 and h(x, 0) = 0. The
discharge equations for the rising limb of the hydro-
graph and at the equilibrium can then be obtained by
integration as (Woolhiser, 1975)

(2-22

= B. Gt € Lo yim = ¢
Q - ﬂ(it) » e ) .m-1 = e
ai
L
o . o 1/m
Q. lLo o ( ,m-l) A t'o
ai

in which I.D = the length of the plame, Q = the outflow
discharge per unit width, te = time to equilibrium,
and to = duration of rainfall. The hydrograph of the

recession from the equilibrium can be found by assum-
ing that at some time, to > te, the inflow ceases,

The relationship between discharge and time for the
recession becomes

m=1

1/m. m S =
Q - 1L° + imo ' TQ (t - tDJ =0; t <t (2-23)

When the duration of rainfall is shorter than the
equilibrium time, a partial equilibrium hydrograph
results. Supposing that rainfall begins at rate i at
t =0, and continues until t = D, the relationships
between discharge and time are (Woolhiser, 1975)

Q=a(it)m; 0<t<D

— |
L_(iD) .
Q=olD)™ Detep+ -2  (2-20)
m=-1 .y l-m
o= L (iD)
. l/m, m s L o MR
Q- L, + ina'/®Q ™ (t-a) = 0; D+ = — Det

The above equations are for the case in which o and m
are constant over the plane and invariant for all
depths.



Numerical Methods for Solving the Kinematic Equation
and Its Application on a Conic Section

Although the kinematic wave equations can be
solved analytically for constant values of o and m,
numerical solutions are more convenient when i, o and
m are not constants over the area and time. Kibler
and Woolhiser (1970) compared three finite-difference

schemes, namely single step Lax-Wendroff, upstream
differencing, and Brakensiek's four-point implicit
schemes, for the kinematic wave equations with the

input pulse duration equal to the time to reach equi-
librium on the two-plane cascade. The result showed
that the second-order Lax-Wendroff method gives the
best approximation. For experimental watersheds or
plots that have geometries other than a plane, the use
of the kinematic cascade to simulate surface runoff
may also be applied. Kibler and Woolhiser (1970)
compared the kinematic cascade solution with the
kinematic solutions for a conic section by using the
second-order Lax-Wendroff scheme. In approximating
the converging section, two variables, the number of
rectangular cascade planes, n, and the number of Ax
increments in each plane, B, were used (Fig. 2-3).
The examination showed that the error index decreased
as nB increased for any n, but that very little
accuracy was gained by increasing nB from 15 to 20.
In general, the results indicated that the kinematic
cascade approach effectively reduces the geometric
complexity and accurately simulates the overland flow
derived from rather complex shapes.
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Figure 2-3.

Cascade approximation of converging
section (after Kilber and Woolhiser,
1970).

2.4 Parameter Estimation Techniques

If the two-parameter model, Q = I:I'hn, is effective
over the plane watershed, i.e., o and m are constant
through the flow direction, the values of parameters
can be easily estimated from experiments (Woolhiser,
1975). The steady-state detention storage can be
measured experimentally by integrating the measured
recession hydrograph. The mean detention depth, h,
can be also analytically expressed as:

L

= 0 "

h =i—o J’ dm ey = HUmEpL /. @23)
o

Substituting measured detention storage for h
and using the assumed value of m in Eq. (2-25), a can
be obtained.

The a and m can also be simultaneously estimated
from the rising hydrograph from a plane surface for a
constant lateral inflow rate. Equation (2-22) shows

that Q = a(it)™ for the rising limb of the hydrograph.

If Q and t obtained from experimental data are plotted
on logarithmic graph paper, a and m can be obtained
graphically.

For experimental watersheds or plots, geometries
are usually other than a plane, the hydraulic resis-
tance model has a complex form and the rainfall excess
rate is time-varying. The rising hydrograph and the
equilibrium detention are, therefore, very complex and
optimization techniques must be utilized for parameter
estimation. In this method the hydraulic resistance
model is assumed and starting parameter values are
estimated. Equation (2-18) is then solved numerically
and an objective function is evaluated. The parameters
are then adjusted by some optimization scheme until
the objective function is minimized.

Two objective functions which are frequently used
are:

A. Sum of Squares of Deviations:

n
F= X

i=1

[o, (iAt) - q (iae)]? (2-26)

with F = the objective function, with the subscripts o
and ¢ referring to observed and computed discharge,
respectively, and At = a fixed time increment. F is
the function of parameters in the hydraulic resistance
model. Mathematically speaking, equal weights are
placed on all of the observations. However, since the
absolute difference between the estimated value and
the observed value is usually greater for the observa-
tion with a greater quantity, in reality, a greater
weight is placed on high flows.

B. Sum of Square of Logarithms of Deviations:

n

F= I [log(Q,(it) - log(Q (ist)]?
i=1
(2-27)
= 3 [log Qo(ift) 2
Q_(iAt)
. C
i=l
This second objective function transfers the

difference between the observed and calculated dis-
charge to their ratio. The estimated errors on all
points are more nearly equal in percentage than in
absolute values. This is desirable when the small
observed values are equally as important as the large
values.

For the hydrograph study, the flood peak may be
more important than the low flows. Therefore, the sum
of squares of deviations is often used for the objec-
tive function.

Ibbitt  (1970) reported nine optimization
echniques applicable to hydrologic models. He con-
cluded that Rosenbrock's method (1960) was the best to
use. This method is an iterative procedure in which
small steps are taken during the search in orthogonal
coordinates. Instead of continnally searching the-
coordinates corresponding to the directions of the
independent variables, an improvement of the search is
made after ome cycle of coordinate search, by lining
the search directions up into an orthogonal system,
with the overall step of the previous stage as the
first building block for the new search coordinates.



Simons and Li (1976) modified Rosenbrock's method
by coupling Powell's unidimensional minimization
(1964, 1965) and by considering the constrained minimi-

zation problems.

They noted that the number of

function evaluations for the Rosenbrock's function was
reduced to 30 in their approach in comparison with the
206 function evaluations needed in the original

Rosenbrock's method.




Chapter 1
THREE-PARAMETER VERSUS TWO-PARAMETER MODEL
FOR HYDRAULIC RESISTANCE

3.1 Three-Parameter, Parallel Channel Model with
Random Widths

In this section a model of parallel channels with
random widths is proposed as a better physical analogy
of flow over natural vegetated surfaces than the
commonly assumed plane. As a simple approximation,
channels are assumed random with a negative exponen=
tial width distribution (Fig. 3-1). Fundamentally,
the Boussinesq equation is used for the laminar flow
and Manning for the turbulent flow. In 1868,
Boussinesq derived the velocity equation of laminar
flow for smooth surface with respect to x, y coordi-
nates in a rectangular pipe. Because the flow pattern
in a rectangular pipe is symmetrical about the hori-
zontal center line, the Boussinesq equation may be
applied to a rectangular channel of width b and depth
y to obtain the following expression for the average
velocity (Woo and Brater, 1961).

SES L By 31, 2t
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Figure 3-1. Random width parallel channel model.

For a channel of

infinite width,
reduces to Eq. (2-6)

Eq. (3-1)

2
v =8y
3v
Woo and Brater (1961) evaluated the importance of side
wall effect by

=]
k=1-388 ¥ 3 1 a2l D
m n=1 (20+1) 4
" (3-2)
vk 8L, 5=
v kSY
with k = 1 for b = ® and k < 1 for b < ®, Equating
Eqs. (2-2) and (3-2) gives
=2y 261 _C
=Wy " T B "8 (3-3)
where
c= 2 (3-4)

10

. exceeds 600, Re = VR/v

Various values of C were plotted against b/y as shown
in Fig. 3-2, from which the effect of side walls can
be estimated. For example, for b/y = 25, C differs
from 24 by less than 5 percent.

56
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c40
32

24
1

1o 100 500

b/

Figure 3-2. Variation of C with b/Y (after Woo and
Brater, 1961).
One can use Eq. (3-1) for calculating the

discharge of individual channels with smooth surface
in a set of isolated channels separated by infinitesi-
mally thin walls as shown in Fig. 3-1.

As an example, the following assumptions were
made: 8 = 0.005, v = 0.00001, L = length of channels
= 1000 ft. The Boussinesq equation is assumed valid

in laminar regime for Re < 600, and the Manning equa-
tion in turbulent regime for Re > 600 (Re = VR/V).
Manning's n for an individual channel is determined by
substituting discharge and depth obtained from the
Boussinesq equation at Re = 600 in the Manning's
equation, and is assumed constant for Re > 600.

Single Rectangular Channel

The f vs Re (=Vy/v) relationships have been
computed in this study for single rectangular channels
with widths of 1/5, 1/10, 1/25, 1/50, 1/100 and 1/200
ft. Results are plotted on a log-log graph paper in
Fig. 3-3.
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Figure 3-3. Relationship f vs Re for a single
channel.

For a single channel of 1/5 ft width, the channel
is relatively wide and the Reynolds numbers Re = Vy/v
are close to Re = VR/v. Since the Manning equation is
assumed to be valid for Re = VR/v exceeding 600, the
f vs Re curve deviates from the straight line of the
laminar flow regime at around Re = Vy/v = 600. For
the channel of 1/10 ft width, even though Re = Vy/v
is still less than 600 and the



transition occurs at about Re = Vy/v = 850. All
computations have been made up to the depth of .32 ft.
Within this range, all the flows in the channels of
width less than 1/50 ft are laminar. Because of the
narrow width of channels, the velocity increases much
more slowly with an increase of the depth. For high
Reynolds numbers, V is almost constant with an in-
crease of y. This is the reason why the friction

factor f = BgSy,J’Vz increases with an increase of y at
high Reynolds numbers.

Model of Isolated Parallel Channels

The relationships of f vs Re are obtained from
the rising limb of hydrographs of 100 random-width
channels by using the kinematic wave equation. Rain-
fall intensity, i, is assumed to be constant and equal
to 1 in/hr. The distribution of the width is assumed
to be a negative exponential,

O =2, pp=lan  (65)

One hundred random values are considered sufficient
for simulating a negative exponential distribution.
This distribution seems well fitted, since widths of
natural rills or spaces between obstructions for a
natural vegetated watershed have high densities of
small widths. The average velocity V and the average
depth y of 100 channels at outlets are used in calcu-
lating f and Re. The analytical solution of kinematic
wave equations for the rising limb of hydrographs
gives:

Vi = it, fort < teqi (3-6)
then, Qit = f{yit, bi), where f is given by Boussinesq,

Eq. (3-1) if Re = VR/v < 600 or by the Manning Eq. th
(2-4) if Re > 600. The subscript "it" is for the i
channel at time t; the subscript "eqi" is for the

th

equilibrium of flow in the i

brium discharge in the iﬂ:l channel is then

Q

channel. The equili--

eqi =i bi L. (3-7)

can be determined from the
eqi = quih’
and the depth and discharge will be constant after the
time of equilibrium. For determining f and Re at time
t, the following equations are used.

Since Q is known, y

eqi eqi
flow equation. Time to equilibrium is t

100

100 f by ¥i¢ Q,
Q=2 Q¢ Y o —> Y% 100

i=1 i Y, 2 ¥

3 1
- Re = Lt
vZ2 v
t

Therefore, a series of f vs Re can be determined for
different times t. The A's of the negative exponen-
tial distribution are assumed to be 5, 10, 25, 50, 100
and 200, and mean widths 1/5, 1/10, 1/25, 1/50, 1/100
and 1/200 ft, respectively. The computed results are
plotted in Fig. 3-4. To visualize the differences in
depth between channels, the water depth in each
channel for A = 100 at t = 16,000 sec is computed,
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showing a large variation of depths, ranging from
0.0277 ft to 0.370 ft. Figure 3-4 shows the limit
Reynolds number of around 2,000. At this point, f
increases rapidly to high values with an increase of
Re. A certain period after rainfall starts, the
larger channels attain equilibrium conditions, with a
constant depth after that, while in the small channels
the water depths are still rising. Increases of
depths and cross section areas of small channels
decrease the average velocity, since high velocities
of large channels keep constant. The increase of y
compensates in Re = Vy/v for the decrease of V, and Re
is almost constant. ,However, for the Darcy-Weisbach
equation, f = 8gSy/V", V decreases as y increases,
causing a rapid increase of f.

|0=§‘1'!‘I'ITITI'I—F'T'TTH’W[ T |1mm'| TTTI

A =Porameter of Negaotive
Exzponential Distri uhnr
-

=T A=200
10 =
= 100
a 10°

3
10° 10' 10* 10% 10* R, 10

Figure 3-4. Relationship f vs Re for rising
hydrographs of isolated channels, with
A = the parameter of negative exponen-

tial distribution (ft'l).

Model of Parallel Channels with Equal Water Depths

Because the large difference in depth as shown
for the model of isolated parallel channels does not
seem appropriate, it is assumed that the channels are
interconnected with the shallow flow passing through
the spaces between gravel, grass or through rills. If
a set of parallel channels with negative exponentially
distributed widths but of the same water depths is
assumed, then for y = the equal water depth for all
the channels and Qi = f(y, hi)' f is that givem by the

Boussinesq, Eq. (3-1), if Re = VR/v < 600, or by the
Manning, Eq. (2-4), if Re > 600, and

100
= = J—
e= 2%, V=00

’
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The relationships of f to Re for A =5, 10, 25,
Sv, 100 and 200, or the mean width of 1/5, 1/10, 1/25,
1/50, 1/100 and 1/200 ft are plotted on the log-log
graphs as shown in Fig. 3-5.

Because of the assumption of an equal water depth
in all channels, the average velocity increases with
an increase of y. At the high Reynolds numbers, f in-
creases with an increase of Re, but with no rapid im-
crease of f in comparison with the f curves obtained
for the rising limb of hydrographs in case of the
model of isolated channels. The curves do not
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Figure 3-5. Relationship f to Re for parallel channel
model of equal water depths, with A = the

parameter of negative exponential distri-
bution (ft™1).

intersect like those of single channels because of
negative exponential distribution of the channel
width. The curves continuously change in shape from
high A values to low A values. Kowobari's experiment
(1970) on the upright stems showed an increase in the
resistance to flow with an increase in discharge for
the turbulent flow range. Thus, the proposed model is
consistent with his experimental results.

f vs Re Relationship from Balance of Forces

In a previous section, the friction law for
parallel channels was derived from the Boussinesq's
equation for flow in rectangular ducts. To develop a
more general f to Re relationship, the concept of
balance of forces by considering the drag force is
applied in this section.

For flow passing through the obstructions at the
surface, a plane surface with vertical cylinders
erected on the plane is assumed. The factors affect-
ing the resistance are the friction of the bed and the
drag on the cylinders. Assuming that these factors
are mutually independent, the sum of these two forces
should be equal to the flow direction component of the
weight of flow mass:

Downslope Water

- Bed Surface +
{Fx]'deight Component (Fs)Resistance Force
Drag Forces "

(FbJDue to Cylinders (3-8)
with

F

= WS, (3-9)

Fs

o yysf (3-10)
and F

b _Llz . y2 i

ey Cd DVO dy, (3-11)

in which A = the area of bed surface excluding the
area occupied by cylinders, y = the unit volume weight
of water, n = the number of cylinders, y = the water
depth, S = the bed slope, S, = the plane surface
friction “slope Cd = the mean drag coefficient of
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cylinders, p = the water density, V{) = the mean veloc-

ity based on channel flow area, and d = the diameter
of cylinders. By assuming that the drag coefficient
for a single cylinder, Cg=12, Li_ and Shen (1973)
obtained the mean drag coefficient Cd , for an array

of cylinders. It was 1.1 for the staggered array and
0.77 for the parcel array. In this trial computation,
the C, values from the graph of the Cd to Re relation-

d
ship, as reported in standard text books such as

Schlichting (1968), are used for the wide range of the
Reynolds number. Cd in Eq. (3-11) is determined by

Cd = I.UCdfl.Z, where 1.0 is the approximate value

between the parallel array and the staggered array.

The overall Darcy-Weisbach friction coefficient
is f = BgySOI\Fz. By substituting So = f sz‘agy in Eq.
(3-9), then

F

2 v 2 o

e (3-12)
Similarly,

F

B 1 2 i

Vi fs pv (3-13)
in which V = the wvelocity of flow through spaces

between the cylinders and fs = Darcy-Weisbach fric-

tion coefficient for the plane surface. Expressing
the density of cylinders as n cylinders per unit
area, the drag force per unit area becomes

1 -y
lat, pU‘: dy (3-14)

in which At = the area of bed surface including the

area occupied by cylinders. From Eq. (3-8), it
follows
L eor(ion ™) o Lg o200 By 4+ Lo B 4
§ RYMTRTE) Mg P % 2 2 GPY, 4 Y
or
. ‘JZ !mEdd v
e ) )
Yy nd
o (1-n ——
A
Considering the continuity equation, it can be
assumed that V/Vo = ll{l-nrl:dzlﬁ), the above equation
becomes
4tnC.d y
£=f —L1— i, (3-15)
nd”,2 nd
(1-n T) (1-n T)
. _ Bgys, _ 8eS, 3
or f= Vz cE, =
4 Q
8gs _ .
then H.égya-__.a_.m.i._zcdy-f __...1_2._20’
Q . nd”. 2
1-n o (1-n % )
(3-16)



in which Q = the unit width discharge. With known Q,
fs can be obtained from the friction law of a wide

open channel flow for smooth surfaces by using Re =

2
Vy/v = Q/v (1-nnd“/4), and C4 can be determined by
Ed = 1.0C,/1.2, and C4 from the C, to Re curve given
in the text, by using Re = Vodfu = Qd/yv. Equation

(3-16) has only one unknown, y, and it can be solved.
The parameter f is determined by substituting y in Eq.
(3-15). In this test computation, the following
values were used: § = 0.005; n= 2, 5, 10, 20, and
50; v = 0.00001, and d = 1.5/12 ft.

The computational results of the f to Re
relationship are shown in Fig. 3-6. The shapes of
curves obtained from the balance of forces are quite

similar to those obtained from the Boussinesq
equation.
10" rrrm
; :||1I'I'h1 illilﬂ'[ 1s|ruu| TTo
10'
1%k
n= Dengty af
|Q"' Cylinders
A% Parameter of
Negolive Exponential
Distribation (11°7)
16*
10° 10 10° 10° 10*  Reid®
Figure 3-6. Relationship f to Re for balance of force

in upright cylinders in comparison with

that of the parallel channel model, with
n = the density of cylinders, and A = the
parameter of negative exponential distri-

bution (ft-l) .

!
Darcy-Weisbach Friction Coefficient

The analysis of the f vs Re relationship by a
balance of forces showed that the model of random
width parallel channels with equal water depths gives
the relationship close to that for the flow passing
through the spaces between obstructions. Furthermore,
a set of curves for the f vs Re relationship (Fig.
3-5), derived from this model, can cover the flow
phenomena from flow on a smooth plane with A = 0 to
flow in porous media with a high value of A. The
model of random width parallel channels with equal
water depths is considered herein as a feasible model.

For application of the model of random width
parallel channels to the natural watershed, the thick-
ness, W, of the walls which separate the parallel
channels must be taken into account. Assume that
n = the number of channels, Hc = the sum of channel

widths, h‘w = the sum of wall widths = nW, Qt = the
total discharge in n channels, Qc = the mean discharge

per unit width of channels, Q = the mean discharge per
unit width of a watershed, including channel and wall
widths, Vc = the average velocity in the channel,
v
y

the average velocity in the watershed = Q/y, and
depth of flow in channels, then
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with

Q
log Re = log ‘v_c‘ - [~log 'N'c + ].1:;3(1«'c + Ww)l (3-17)

and

log £ = log ﬁ;lgﬁ + 2[-log W_ + log(_+ W)].

c
(3-18)

The first terms at the right sides of Eqgs.
(3-17) and (3-18) are log Re and log f of channels
without a consideration of the wall thickmess. By
considering the wall thickness, the f to Re relation-
ship shifts diagonally in the direction parallel to
the slope of 1:2 in log-log paper. Other factors
such as slope, surface roughness, and the Reynolds
number at the transition will also affect the position
of this curve; however, there will only be a slight
change in the shapes of these curves. Since the
discharge is often expressed as a function of water
storage in the analysis of overland flow, the effect
of those factors will be discussed in more detail in
the next section, in which the discharge is expressed
as a function of water storage. The friction coeffi-
cient derived for the model in this section will be
compared with data obtained by previous investigators.

The friction coefficient obtained by using the
approach of parallel channels with an equal water
depth in channels shows that the friction coefficient
decreases with an increase of the Reynolds number in
the range of low values of the Reynolds number, but
increases with an increase of the Reynolds number in

the range of high values of the Reynolds number.
Many investigators have shown that the friction
coefficients decrease with an increase of the

Reynolds number in the range of low values of the
Reynolds number, but the experimental data presented
by Kowobari, et al, (1970) are the only set that show
an increase of the friction coefficient in the range
of high values of the Reynolds number.

Experimental data of Kowobari, et al. (1970),
Ree (1939), Ree and Palmer (1949), and Ched (1976)
are plotted on a graph along with the friction coeffi-
cient for the parallel channel approach for comparison
purposes, as shown in Fig. 3-7. Kowobari, et al.
studied the wvariation of Manning's n for a smooth
rectangular channel, fitted with different sizes of
unsubmerged artificial roughness elements. The data
obtained from a square grid spacing of 9/32 inch
diameter cylinders was shown in their table. The

computed n and n‘r‘l{u6 were also given. By equating
Manning's equation to the Darcy-Weisbach equation,
the Darcy-Weisbach friction factor can be determined.
The f to Re relatiomship shows that data of Kowobari,
et al. agree with the friction law obtained for the
parallel channel approach.

W. 0. Ree (1939) conducted experiments on flows
in a channel which had a trapezoidal cross-section
and a slope of 3 percent, lined with the Bermuda
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Figure 3-7.

grass sod 12 inches high with 350 stems per square
foot. Five different flow discharges were used in
that study. At the time of the tests the grass was
bent over, forming a loose mat. For the first four
tests, the depths of flow were less than the height
of the grass cover, with the flow entirely hidden
from view. During Test 5, with the highest dis-
charge, the flow produced a depth and velocity suf-
ficient to submerge about 30 percent of the cover.
This resulted in a change in hydraulic characteris-

tics of the test waterway, which is reflected in
the sudden drop in the Manning n wvalue. From data
shown in that paper, the Reynolds number and the
Darcy-Weisbach friction factor were computed by
using equations Re = VR/v and f = BgRS{'Vz, respec-
tively. Their relationships are reproduced in
Fig. 3-7.

Ree and Palmer (1949) presented the results of a
study in an outdoor hydraulic laboratory, concerned
principally with the effects of vegetation linings on
the capacity and stability of small channels.
Experiments were carried out with Bermuda grass,
Lespedeza, Sericea Lespedeza and a wmixture of orchard
grass. From the computed Manning n, as shown in
tables of that paper, the Reynolds number and the
Darcy-Weisbach friction factor were computed by using

equations Re = VR/v and £ = (83/1.4862) (nzlkl"r?’),
respectively. The f to Re relationships for dormant
Bermuda grass, dormant Bermuda grass cut to 2-1/2 in.
high, long green Bermuda grass, and long green Serica
Lespedeza with a bed slope of 3 percent are also
reproduced in Fig. 3-7. Water flowing at a slight
depth through the vegetation encounters the resistance
of stalks, stems and foilage. As depth of the flow
increases, the force exerted by the flowing water
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causes the vegetation to bend, when the bending
moment becomes greater than the resistance moment.
With highly flexible vegetation such as Bermuda grass
(leaf blade height 1" to 4" and flower-bearing branch
height 6" to 12'"), bending occurs rapidly. When a
portion of the cross section of the chamnel is freed
of vegetation obstructions by their bending, the
resistance to flow greatly decreases with the result
that the friction coefficient also decreases sharply.
The f to Re relationship is then the inverse of that

for the rigid obstructions, such as the erected
cylinders. A good stand of tall green Sericea
Lespedeza, averaging 22 inches height, produces

another type of resistance change.
flow becomes greater, therefore, the Reynolds number
also becomes greater, with the coefficient being
higher. As the submergence further increases, the
resistance decreases because of the bending of the
stems. Before the bending of stems takes place, the
phenomenon is similar to that of flow through cylin-
ders. However, after the bending of stems starts,
the flow phenomenon becomes that of the Bermuda
grass. It is apparent from these results that the f
to Re relationship for vegetation cover is greatly

When the depth of

~affected by the height and stiffness of the grass.

Chen's (1976) laboratory experiments on Bermuda
grass, three inches in height showed that the f-value
increases as the bed slope increases, but decreases
as the Reynolds number increases. Three representa-
tive lines of the f to Re relationship are presented
in Fig. 3-7.

One can see from the results of past
investigations that the friction law for turf surfaces
is very complex. Many factors, such as the density,
height, length and stiffness of stems and foilage,
structure of vegetation, degree of bending, frequency
of vibration, and degree of submergence affect their
resistance law. The f to Re relationship curves give
convex or concave curves rather than straight lines.

Discharge as a Function of Water Storage and

Factors Affecting the Discharge

Many investigations reveal that overland flow
can be simulated by using kinematic wave theory. In
the kinematic wave equations the friction slope, Sf’

is assumed to be equal to the bed slope, so, which is

constant during the wave passage. The discharge per
unit width is a function of water storage only, i.e.

Q= ah™. The ultimate purpose of determining the f
to Re relationship is to find the relationship be-
tween Q and h with respect to various values of the
Reynolds number. The f to Re relationship shows a
series of concave curves, complex for amalysis. It
is, therefore, useful to examine the Q to h relation-
ship in order to find a more convenient method of
analysis.

Unit Width Discharge versus Water Depth

Figure 3-8 shows the relationships of unit width
discharge, Q, to the actual water depth in channels,
y, for the model of parallel channels with the slope
of 0.005. The upper part of the figure shows the
relationship for channels separated by walls with

infinitesimal thickness. When wall thickness is
considered, the series of curves will shift downward
as shown in the lower part of the figure. Let

Q. = the unit width discharge without considering the

wall thickness, Q = the wunit width discharge
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Figure 3-8. The Q to y relationships for parallel

channel model; (a) without considering
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thickness of 1.5", and (c) comparing
with previous investigators' data, with
S = the slope, and A = the parameter of

negative exponential distribution
(£t )

considering the wall thickness W, Hc = the sum of
widths Q= QN /(W + W), and W/
(Wc + nW) = = a constant.

fore, Q/Qc will be a constant for given A.

of n channels,

a constant for A There-

For parallel channels, without considering the
wall thickness, the Q to y relationship will tend to
be a straight line with a 45° slope when the dis-
charge is large. The reason for this is that the
velocity tends to be constant in a mnarrow channel
when the discharge is large. If wall thickness is
considered, those curves will shift downward and the
relationships behave close to the phenomenon of flow
in porous media. In other words, the model can
represent a wide range of flows between a wide open
channel flow and a porous media flow.

Effect of Channel Slope

Previous computations of Q vs y are based on
S = 0.005. Since the Rainfall-Runoff Experiment
Facility, for which data were used in this study, has
a slope of 0.05, Q vs y for parallel channels model
was computed for S = 0.05, and shown in Fig. 3-9.
The comparison between the Q vs y relationships for
these two slopes is shown in Fig. 3-10. The increase
of the slope tends to shift the curves to the left,
narrowing the range of spacing of curves.
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Figure 3-10. The Q vs y relationships for parallel

channels, the average unit width dis-
charge, Q, and the equivalent water
depth, h, are

Unit Width Discharge versus Equivalent Water Depth,
and Effect of Wall Thickness

For an analysis by the kinematic wave equations,
flow discharge as a function of water storage should
be used. The unit width discharge versus the equiva-
lent water depth for the flow with obstructions is

useful. When the wall thickness is considered in the
model of parallel channels, the average unit width
discharge, Q, and the equivalent water depth, h, are
wc Hc
Q=ch + oW '’ and hayi\‘ + oW (3-19)
c c

in which Q = the unit width discharge and y = the

actual water depth of parallel chanmels separated by
infinitesimally thin walls. On the log-log scale
graph, the shifting distances for both Q and h are
identical, namely log[Hc! (Hc + nW)]. As shown in

Fig. 3-11 the shapes of Q vs h curves for channels for



1 |.||| TR
il

wige Chonnai—s’
g

Tie°E

b §=0.0%
By

o 1d A= 100
o W= Waoll

Thichness

T R RN R R Wt

L1 i} e I il Lm| Lli
wd g gt o d
h or yiit)

abll

The Q vs vy relationships for parallel
channels, showing effect of wall
thickness.

Figure 3-11.

which the wall thickness is considered are identical
to shapes of curves without considering the wall
thickness; however, the positions are shifted downward
diagonally at the slope of 45°.

Effect of Reynolds Number in the Transitional Regime

Previous investigators have shown the various
Reynolds numbers for the transitional regime, in
general ranging from 100 to 1000. Because of unstable
flow phenomena at the transition, this value at tran-
sition cannot be precisely determined. With the model
of parallel channels, two extreme values of the
Reynolds number at transition, namely Rc = 1000 and

RC = 100, were used for computation of the Q vs y

relationships. The shapes of curves for these two
relationships are similar. The Q vs y relationships
for A = 100, with Rc = 1000 and 100, respectively, are

shown in Fig. 3-12. The curve,
shift of the curve based on A =

following a parallel
100 and Rc = 1000 to

the position of the curve based on A = 100 and Rc =
100, is shown by a dashed line.
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Figure 3-12. The Q vs y relationships for parallel
channels, showing effects of Reynolds

number at transition.

Since the slopes of curves for different values
of the Reynolds number at the transitional regime are
similar, the change of the Reynolds number at the
transition causes only a parallel shift of curves.

Effect of Surface Roughness

The above computation for the Q vs y relationmship
refers to the smooth surface. Several investigators
showed that a parallel shifting of the log f vs log Re
curves for a smooth surface will also fit the
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relationship for a rough surface. Assuming that this
is valid, and that the Reynolds number at the transi-
tion from the laminar to the turbulent flow is a
constant for all kinds of surface roughness, the
distance of the parallel shift in horizontal direction
for Q vs y curves can then be estimated. Let f = the
Darcy-Weisbach friction coefficient for a smooth
surface, fr = the friction coefficient for a rough

surface, y = the depth of water on the smooth surface,

and ¥o = the depth on the rough surface. For a con-
stant Reynolds number, Re, or for a constant unit
width discharge, Q: f = 8gyS/V® = 8gSy>/qQ° and

equal to the
C/Re

respectively.
horizontal shift

- 1/3
y /v = (£ 03,
ratio Cr/C, where Cr

for the
Therefore,
becomes

The ratio fr;"f is
and C =

and smooth surfaces,
distance of the

the C values in f =

rough
the

=logy_-logys= % log(C_/C). (3-20)

Effect of Tortuosity

Because of various obstructions on the surface of
a watershed, tortuosity in flows is a general pattern
of natural surfaces. Since the above considered
channels were straight, the effect of tortuosity omn
discharge must be taken into account. If Vt = the

average tangential velocity, then mean velocity in the
X direction is given by Vx = VthILt, with I‘x = the

distance between the ends of a segment of channel in X
direction and Lt = the length of the tortuous chanmnel.

The mean slope of the channel is given by St = SxI.x/

I‘t’ with Sx = the slope of the watershed in the X
direction, and St = the slope along the tortuous
channel.

The Q wvs y curves are derived in previous
sections for the flow equation in the laminar flow
range, while the Manning n in the turbulent flow range
is obtained from the Manning n at the transitional
point. For a wide open channel flow, the curve has
1:3 slope in the laminar flow range and 1:(5/3) grade
in the turbulent flow range, with the discontinuity at
Q=Re X v =600 X 0.00001. A horizontal shi®t of the
curve of the laminar flow range causes the horizontal
shift of the curve in the turbulent flow range. Let

the laminar flow equation be Q = Vy and V = c‘erS.

The unit width discharge in a straight channel is Qx =
cyssx’ and in the tortuous channel Q =V e =

i 2
V(L /L)y, = (cy?8,L /L) (L /L)y, = ey (L /1)
Let Q in both cases be 1dent.:|.ca1 the ratio of the
tortuous channel water depth, Yer to the straight

2

v, is v /y = (B /L)%3. The
quantity (L II. ) has been called "t.ortuosity," esti-
mated as 2.0 for the isotropic granular material in
porous media flow. This value comes from the statis-
tical mean direction of flow of about 45° with respect
to the macroscopic direction of flow. The distance of
the horizontal shift of Q vs y curve is, therefore,
log y, - logy = (1/3)log T, with T = (L /L)% 1If

2.0 is taken as the T value, the shift on the log
scale becomes 0.100.

channel water depth



Comparison with Previous Investigation Data

Data of experiments made by Kowobari, et al.
(1970), Ree (1939), Ree and Palmer (1949), and Chen
(1976) are plotted in Fig. 2-8 for the comparison with
the Q vs y relationship for parallel channels.
Kowobari's results show that the parallel channel
model fits well the data at high Reynolds numbers.
However, the parallel channel model does not fit the
turf data well. Chen's data show that the relation-

ship Q = ay’
to 0.20 ft.

in Q = chsy of the laminar flow increases with an

increase of the water depth, so that Q is proportional

to 5'3. The Q vs y curves behave as in the laminar

flow though the Reynolds number, Q/v, is above 600.
This may be due to flows passing through spaces be-
tween the soft leaves of grass such as the Bermuda
grass. For the flow with a high discharge, Ree and
Palmer (1949) show that the relationship is much more
complex. The height and flexibility of leaves and
stems and the degree of bending affect the Q vs y
relationship.

is applicable for y in the range of 0.02
It follows that the hydraulic radius, R,

Three-Parameter Model

The unit width discharge, Q, versus the
equivalent water depth, h, is a more convenient ap-
proach than the friction law of the f vs Re relation-
ship in the analysis of overland flow by the kinematic
wave theory, and the relationship of Q vs h will be
used.

As noted, the curves for a parallel channel model
can represent all the smooth surface flows between the
open channel and porous media flows. These curves are
asymptotes to the laminar flow lines in wide open
channels, with slope of 1:3 on the log-log graph in
the case the flow is small; they tend to 1:1 slope for
a narrow channel of a large flow discharge. The model
can be applied to a flat watershed with obstructions,
high vegetation or rills. However, the model cannot
be applied well to'a turf surface. In considering the
effects of wall thickness, tortuosity, Reynolds number
at transition, and surface roughness, the shapes of
curves do not change very much; however, their posi-
tions change. The complexity of computations in
estimating the parameters through an optimization
technique makes it almost impossible to estimate so
many parameters. Therefore, the number of parameters
must be reduced to as few as feasible. The three
parameters approach is selected, with parameters
defined as (see Fig. 3-14):

A = the inverse of mean channel width, which
defines the shape of the relationship curve;

V = the vertical shift in the curves with the
upward shift as positive; and

H = the horizontal shift in the curve, with the
right hand shift as positive.

The observed hydrographs of a specified watershed are
used to estimate these three parameters by an optimi-
zation technique.

Correia (1972) and Brazil (1976) worked out the Q
to h relationships for an impervious rectangular plane
having slope of 0.05 in an experiment with the artifi-
cial rainfall produced by sprinklers. Under the
steady state condition, the unit width discharge was
calculated by Q = ix (Fig. 2-2), with the mean
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velocity, V, measured by the dye injection. The
equivalent water depth, h, was computed by h = Q/V.
The Q vs h relationship was obtained by the regression

analysis in using the two-parameter model, Q = ab™.
The experiments were made with different rainfall
intensities onm a butyl rubber surface, a gravel-
covered butyl surface and a concrete rill surface.
The Q vs h relationships are shown in Fig. 3-13. In
every case, the m value was approximately 1.5, al-
though different @ values were obtained for various
rainfall intensities and roughnesses. The observed
data and the Q vs h curve for a concrete rill surface,
obtained by Brazil, is plotted in Fig. 3-14. For a
trial fit of the parallel channel model to the ob-
served data, the parameters A = 100, V = -.276, and
H = -1.40 were used. The curve B of Fig. 3-14, after
the vertical and horizontal shifts of the curve for
A = 100, fits the observed data much better than the
straight line obtained by assuming « and m as con-

stants inQ = oh™. This means that the three-parameter
model can more precisely model the flow phenomenon
over a wide range of discharges than the two-parameter
model. In Fig. 3-13 the Q vs h relatiomships in
laminar flow, obtained by Correia (1972) and Brazil
(1976) show discharges greater than theoretically
possible for the plane surface, as the relationship
obtained for a smooth surface by assuming Sf = So' In

other words, the velocity on the experimental water-
shed is apparently higher than for the smooth surface,
while the water depth is smaller than for the smooth
surface. The likely explanations of this phenomenon
include: (1) Transfer of downstream direction momen-
tum due to the raindrop impact, and (2) Concentration
of flow because of an uneven surface. The effect of
concentration of flow for the uneven surface has been
described as the effect of wall thickness in the sec-
tion "Model of Isolated Parallel Channels"”. For a
gravel surface, the effect of concentration is more
significant than the effect of raindrop impact, or the
effect of raindrop impact may be neglected. However,
the effect of raindrop impact on the butyl surface may
be significant, and therefore must be investigated.
The watershed configuration and the sprinkler system
used by Brazil were analyzed to determine whether
there was a significant raindrop effect im laminar
flow in equilibrium for a smooth surface. Brazil made
dye injections at the very top of the plane at points
9, 15, and 21 meters from the upstream end (third,
fifth, and seventh sections) of the 30 meter sectionm,
then evaluated the Q vs h relationship for points at
the 4.5, 12, and 18 meters from the upstream end.
Since the effect becomes more significant for a shal-
low flow, the test was carried out for points at the
4.5 and 12 meters from the upstream end for various
rainfall intensities. The full momentum equation, Eq.
(2-14), was used for the computation of friction
slnpe, Sf, under the raindrop impact, and Eq. (2-6)

was used for the computation of velocity at a smooth
surface without the raindrop impact. Summation of
products of the rainfall intensity and the x-component
of velocity for the lateral inflow from all of the
sprinklers in operation was taken as the value i.v! of

Eq. (2-14). Rainfall intensity and the x-component of
velocity for the lateral inflow from each sprinkler
are functions of distance and angle of the sprinkler.
They were evaluated from data in the test of drop size
distribution for sprinklers (M. E. Holland, 1969).
The results show that the effect of raindrop impact on
the Q vs h relationship is not significant and as such
can be neglected. The difference between the bed
slope and the friction slope is within 1.5 percent of
the bed slope. The difference between the depths of
flows with raindrop impact and without it is within
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Figure 3-14. The Q vs h relationship for concrete
rill surface (Brazil's data, 1976) with
three-parameter model.

0.6 percent. Apparently, the reason that the Q vs h
relationships in laminar flow exceed the boundary of
relationships for plane surfaces is mainly the concen-
tration of flow because of the uneven surface.

3.2 Comparison of Two-Parameter and Three-Parameter
Models

%tinization of Parameters with Two-Parameter and
ree=-Parameter Models

Two-parameter and three-parameter models are used
herein for finding the best-fit parameters by minimiz-
ing the objective function for various watersheds of
this study. An objective function takes into account
the sum of squares of deviations between observed and
simulated hydrographs with a five second time incre-
ment. The model parameters should be determined so
that the model can simulate the actual hydrographs as
closely as feasible. The observed hydrographs are
used for a comparison with hydrographs simulated by
the model, with the estimated parameters.

Simulation of hydrographs with estimated
parameters are made by using kinematic wave theory and
a numerical method, namely the second-order Lax-
Wendroff scheme for the interior of each subdivided
plane, and the upstream differencing method for the

downstream end. Since o and m of Q = ah™ for the
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three-parameter model are not comstant and vary with
the depth, h, the schemes used by Kilber and Woolhiser
(1970) are rewritten as:

(a) Single Step Lax-Wendroff Scheme

i
m
i 1'1)

i
o [t Y Ly |
PO 3% im}ﬂ" 10 URN ORI h‘ml}'
= }{"iﬂ DRI H’[ s - K "‘;J]
{ i
CELRIEIE. ) CUR SLERIWRN
o B g q})* (3-21)
and
(b) Upstream Differencing Scheme
"}ﬂ = "} -8 Lr-; hl"'.: <al p "‘14} +ql at.

§=1 751 3 (3-22)

The notations for finite-difference schemes are

defined in Fig. 3-15.

! Ax

i+l

S

ot

i+l

Figure 3-15. Notation for finite-difference schemes.

The data used for the comparison of models are
taken from the concrete rill surface with rectangular
section 98.4 ft long and 6.6 ft wide and a conic
section of 30° central angle with butyl surface
covered with uniformly distributed gravel of

20 1bs/yd2 (configuration 14). Figure 3-16 shows the
shapes of the watershed and cascade of planes approxi-
mating the conic section for numerical solution of the
kinematic wave equation (see section 2.3). Experi-
mental facilities and discharge correction for the
data are described in Sections 4.1 and 4.2.

In trial optimization computations, Rosenbrock's

method and Simons and Li's modified method were
tested. Because of the oscillation of objective
functions due to the numerical approximation, the

optimization often resulted at the local minimum of
the objective function. Finally, the grid method was
used for finding the minimum of the objective func-
tion. To obtain a graphical representation of the
response surface the objective functions are obtained
and plotted for a certain grid of points on a graph,
with axes of parameters to be estimated. Then the
global minimum is determined by search in the area of
the possible minima.

Twelve hydrographs were selected for each of two
watersheds. Intensities and durations of rainfall
inputs of the twelve hydrographs are shown in Table
4-1. These twelve hydrographs cover four rainfall
intensities and three rainfall durations. One is a
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duration long enough to produce the equilibrium hydro-
graph and the other two are the durations which pro-
duce only the partial equilibrium. In order to avoid
unnecessary calculations, the computation of the
equilibrium hydrograph is limited to the time when the
outflow discharge reaches the equilibrium flow. For
the partial equilibrium, the hydrograph is limited to
the time during recession when the outflow discharge
reaches one third of the peak discharge. In numerical
computation for the rectangular section, longitudinal
distance was divided into ten subdivisions (Ax). For
the conic section, the watershed was approximated by a
cascade of five rectangular planes and each plane was
divided into three subdivisions (Ax). The time incre-
ment, At, should be within the limit of linear stab-
ility which decreases with an increase of the unit
width discharge. In order to save computer time, two
criteria were used for At: (1) to take 90 percent of
the maximum allowable At, which is restricted by the
linear stability criteria of numerical analysis, and
(2) to take 5 seconds if the value of (1) exceeds 5
seconds.

In the case of inadequate assumed parameter
values, the rising limb of the hydrograph may increase
rapidly or the peak may be unreasonably high. This
will reduce the magnitude of At, and consequently
increase the computational time very much. In order
to avoid unnecessary computation for unreasonable
parameters, the computer program was designed to
terminate computation when the number of time incre-
ments exceeds 250.

The numerical solution of kinematic wave equations
needs o and m values at each Ax increment for each At
increment. For the three-parameter model of parallel
channels, Q vs y relationships for 10 selected A
values, ranging from 0 to 300, were computed and o and
m values with respect to B84 various depths, y, were
obtained for each A value. For a given value of A
(other than 10 selected values), ¢ and m with respect
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to various depths are obtained by interpolation.
Then, o and m are adjusted for given V and H. During
hydrograph computation, @ and m for equivalent water
depth, h (other than 84 selected depths), at each Ax,
were also obtained by interpolation.

Three-Parameter Model

For the three parameters, A, V, and H, the
objective functions are plotted on the graph V against
H for fixed values of A. The best fit parameters are
selected as the set which gives the minimum of the
objective function on grid points. Both the sum of
squares of hydrograph deviations and the sum of squares
of peak deviations are plotted on the graph for
comparison.

(1) Gravel Surface with Uniform Distribution of

20 1bs/yd®, with 30° Conic Section of 110 ft
Radius

Values for the objective function are plotted on
the graphs with V and H as axes for the given A
values of 200, 100, 50, 25, 10, 4, and 0. The examples
are shown in Fig. 3-17. For a given A, the objective
function has a long narrow valley., Comparison of the
graph for hydrograph deviations with that for peak
deviations, shows that the objective function deter-
mined from the hydrograph deviations gives smaller
values when the locations of the valleys on both
graphs meet. A set of V and H with 2 minimum of the
objective function can be found for each A value. It
was observed that the graph for A = 25 has a longer
valley with the lowest value of the objective func-
tion. The minimum of the objective function is locat-
ed at the point of V = -1.8 and H = -0.88. Among the
seven assumed A, A = 25 is the best value. The Q vs h
curve for A = 25, V= ~-1.8 and H = -0.88, is shown in
Fig. 3-18. It appears that the Q vs h relationship is
almost a straight line for the main range of dis-
charges in the log-log paper.

Because a series of discrete values of A are used
in determining the minimum of the objective function,
it is difficult to say definitely whether A = 25 is
the best value; however, it can be said that the best
values of parameters are very close to A = 25,
V = -1.8, and H = -0.88. To determine the minimum of
the objective function with CDC 6400 computer, approx-
imately 200 evaluations would be necessary using 5000
seconds of computer time.

Three of the 12 hydrographs simulated for A = 25,
V=-1.8, and H = -0.88, are plotted in Fig. 3-19,
together with the observed hydrographs. The simulated
hydrographs agree very well with the observed
hydrographs.

(2) Concrete Rill Surface of Rectangular Section,
98.4 ft Long and 6.6 ft Wide

Values of the objective function are plotted on
the graphs with V and H axes for given A, 100, 50, 25,
10, 4 and 0, as shown in the examples in Fig. 3-20.
The same procedures as described above are followed in
finding the minimum of the objective function. The
best values of the three parameters found are: A =0,

V=-1.2, and H = -0.5. The Q vs h curve for these
values is shown in Fig. 3-21. Three of the 12 hydro-
graphs simulated with these parameter values are

plotted in Fig. 3-22 together with the observed hydro-
graphs. The simulated hydrographs agree well with the
observed hydrographs. Around 150 evaluations of
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graph deviations, (B) peak deviations.
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Comparison of hydrographs simulated by

three-parameter model with observed hy-

drographs, for gravel 30° conic section
surface of 20 lbslydz, 110 ft radius and
5 percent slope.
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Figure 3-22.

objective functions are made, with approximately 2300
seconds of computer time used. Since A = 0, and the
vertical shift of the curve is large, the Qvs h
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relationship is a straight line for the main range of
discharges in the log-log paper.

Two-Parameter Model

(1) Gravel Surface with Uniform Distribution of 20
1bs/yd, with 30° Conic Section of 110 ft Radius

Values of the objective function are plotted on
the semi-log paper with log o and m axes, as shown in
Fig. 3-23. The low values of the objective function
lie on a straight line in the semi-log paper. This
greatly helps in pre-estimating the location of the
minimum, The parameters with a minimum of the objec~
tive function are a = 1.23 and m = 1.22.  The values
of the objective function vs m are shown in Fig. 3-26.
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Values of the objective function of
two-parameter model, for gravel comic

section surface of 20 lbs/ydz.

Figure 3-23.

The Q vs h curve for o = 1.23 and m=1.22 is
shown in Fig. 3-18 for comparison with the results of
the three-parameter model. Three of the 12 simulated
hydrographs with @ = 1.23 and m = 1.22 are shown in
Fig. 3-24 together with the observed hydrographs. The
computed hydrographs agree well with the observed
hydrographs.

For obtaining the minimum of the objective
function, 45 evaluations of the objective function
were made, using approximately 450 seconds of computer
time.

The low values of objective functions are located
on a straight line in the log @ vs m graph (Fig.
3-23). This means that log @ and m for the low values
of objective function have a linear relationship and
can be expressed as log @ + m log h = log Q, for

Q= l:lh., with Q and h constant. If the Q vs h rela-
tionships for a family of pairs of a and m, located on
the straight line, are plotted on the log-log graph, a
family of straight lines passing through a fixed point
are obtained, as shown in Fig. 3-25. The coordinates
of the fixed point in the example of the watershed
used are Q = 0.0085 cfs/ft and h = 0.017 ft. In other
words, if a Q vs h line passes through that point, the
computed hydrograph will be close to the observed



4.0 Ran 156 Cont. No. 14
S D= 53.7itwc ® Observed
- Partial Equiibrium * 25123 m=122 ,F=8.5
I=3675m. /e
3.0 T=Ranfall Intensity
L Dr Duration of Aanfell
'E' F=0usetive Function
~
g Z‘Or 4.0
F - % -k —';7‘[%‘9‘3!”
5 = Run 1828 '
o ~ L = 5ec
1.0 "..lili' £ 3.0 CwlibAor
..- L p ]
F o™ %wWT .
§ - L] &
o | i L 1 i =] 5
[+] 100 200 300 o
1{sec) I_ o
Run 155 H
D=204.53 sec Ior 3
Partial Equilibrium .
c»:"o u o
\ 0... L4 ; 1 1 | §
3 aat i
dl W Yo 06 200 300
i “ 0w t{sec)
E U- ‘9'
"
‘ o ,
— o
- o '=°
& oe ':.
o o .
a®
L L b
100 200 300 400
t(sec)

Figure 3-24. Comparison of hydrographs simulated by
two-parameter model with observed hydro-
graphs for gravel conic section surface
of 20 1bs/yd>.
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Figure 3-25. A family of Q vs h curves having lower
values of objective function of two-
parameter model, for gravel 30° conic

section surface of 20 lbs,e“ydz with 110
ft radius and 5 percent slope.

hydrograph. This fixed point decides the location of
the Q vs h curve while the adjustment of m causes the
computed hydrograph to be a best fit for the
hydrograph.
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two-parameter model for: (1) concrete
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(2) Concrete Rectangular Section Rill Surface of
98.4 ft Long and 6.6 ft Wide

The values of the objective function for various
parameters, three samples of the 12 hydrographs simu-
lated by using the best-fit parameters, o = 36.0 and
m=1.80, and a family of the Q vs h curves for the
low values of the objective function are shown in
Figs. 3-27, 3-28, and 3-29. The Q vs h curve for the
above best-fit parameters is also shown in Fig. 3-21
for comparison with the results of the three-parameter
model. The wvalues of the objective function vs m
value are shown in Fig. 3-26.

Fifty evaluations are made for obtaining the
minimum of the objective function using approximately
250 seconds of computer time.

Table 3-1. Comparison between two-parameter and

three-parameter models.

Section Number of  Numbers of Computer Time Minimunm of

Shape Parameters Evaluation {sec) Objective
Bie Jotal Function
ne Total o
(in./hr)=
: 200 25 5,000 11.8
Conic
¢ 45 10 450 8.15
Rectan- 3 150 15 2,300 7.91
aie 2 50 5 250 7.18




100.0 T T T T T T T T T T T

B0.OL
To0F Q=ah®™
60.0 P N
s0.0}- -

400\

wramens S5l o
shtrgreddy

i |

Cysyeant

20,0

10.0

i)

20 21

Figure 3-27. Values of objective function of
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Figure 3-28. Comparison of hydrographs simulated by
two-parameter model with observed hydro-
graphs, for concrete rectangular sec-
tion rill surface, with I = the rainfall
intensity, D = the duration of rainfall,
and F = the objective function value.
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Comparison of Results

Comparison between the computed hydrographs
simulated by the three-parameter model and by the two-
parameter model shows that both are almost equally
good for simulating the observed hydrographs, see
Figs. 3-19, 3-22, 2-24 and 3-28. However, the two-

parameter model requires substantially less computer
time.

The Q vs h curves of the best-fit parameters
estimated for the three-parameter model show an almost
straight line relationship in the log-log graph for a
cycle of log scale representing the main range of
discharges of the unit width discharge, as shown in
Figs. 3-18 and 3-21. Comparison of the Q vs h rela-
tionships for the three-parameter model and the two-
parameter model shows that the deviations between
these relationships on their extremes, which are
outside the main range of discharges, do not signifi-
cantly affect the hydrograph shapes. Because the main
discharge range covers only a limited segment of the Q
vs h curve and because the curvature for the three-
parameter model is small, the Q vs h curve can be
approximated by a straight line which is equivalent to
the relationship for the two-parameter model.

From a set of the Q vs h relationships, with low
values of objective functions (Figs. 3-25, 3-29), the
location of curves on a graph is much more important
than the slope of the curves. Once the location is
correctly assigned, small changes in m do not affect
significantly the hydrograph shape.

Correia (1972) and Brazil (1976) found the
relationships of Q vs h for rectangular watersheds
using the two-parameter model and the dye-injection
method under equilibrium. In this study, these rela-
tionships are determined by using the observed hydro-
graphs. Comparison of results are shown in Figs. 3-30



and 3-31, This study used the concrete rill surface
watershed that was also used by Brazil. The water
depths, h, obtained by Brazil had lower wvalues than
the values obtained in this study. The reason for
departures is likely the concentration of dye in the
rills and the measurement of velocity in dye injection,
which tend to give a velocity higher than the average
velocity.

In general, the deviations in the Q wvs h
relationships for the low flow rates cause hydrograph
deviations on both its rising and falling limbs.
However, the values of low flows for an observed
hydrograph are not reliable. The devices used mainly
for measuring the peak flows often produce inaccurate
results in low flows. Additionally, the low flows of
a hydrograph may not be important for flood hydrograph
studies. The three-parameter model more precisely
describes the relationship of discharge to the equiva-
lent water depth over a wide range of flows. However,
from a practical viewpoint, the Q vs h relationship
for high flows dominates the hydrograph shape. Then
the two-parameter model is sufficient to describe the
relationship of discharge to equivalent water depth
for the hydrograph simulation.

The two-parameter model requires much less
computer time for optimization in comparison with the
three-parameter model. The resulting hydrographs fit
the observed hydrographs as good as the three-
parameter model. Since the low values of objective
functions are located on a straight line in the log o
vs m graph, it is easy to estimate the a and m param-
eters. Therefore, the two-parameter model is more
efficient in simulation of hydrographs when only the
high flow rates are important.

Since the three-parameter model can provide
precise relationships of Q vs h over a wide range of
flows, this model will be useful when both the high
flow and low flow rates are important in hydrological
problems. Three-parameter model has significance
according to physical principles, therefore, the
simulated hydrographs are close to physical reality.
The parameter, A, describes the variation of spaces
between obstructions which is the main factor affect-
ing the changing phenomena of flow in the vegetated
area. The application of the three-parameter model
may lead to study of the effect of changing land use
on the flow hydrographs. Sediment transport capacity
is proportional to between fourth and sixth power of
flow velocity (Simons and Senturk, 1977). If the unit
width discharge is constant, 10 percent error in
estimate of detention storage will yield 10 percent
error in velocity which will cause 45 to 75 percent
error in the estimate of sediment tramsport. The low
flow rates at the beginning and ending of the hydro-
graph are also important in the estimate of sediment
transport since the low flow rates may last for a long
time. The three-parameter model will produce smaller
errors in estimation of detention storage for a wide
range of flows, consequently, cause less errors in
sediment and erosion analysis.
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Figure 3-30. Comparison of results obtained in this
study with results obtained by dye in-
jection method (Brazil, 1976), for con-
crete rectangular rill surface.
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Chapter IV
ESTIMATES OF PARAMETERS FOR TWO-PARAMETER MODEL

4.1 Experimental Facilities

from the
at Colorado
This facility provides a means for
conducting controlled experimentation in watershed
response. The facility's size is such that it is an
intermediate step between laboratory models and natu-
ral watersheds; it has the capability of reproducing
experiments with consistency, but is not so small as
to distort the surface roughness characteristics.

The data used in this study are
Rainfall-Runoff Experimental Facility
State University.

The 25,000 square feet impervious surface has
proven particularly useful in simulating urban water-
sheds where response times are short and infiltration
is negligible. Characteristics such as surface rough-
ness and geometry can be changed to represent a wide
variety of natural catchments. The consistency with
which the facility can be operated and the homogeneity
of the surface area allows for test runs to be made
where individual parameters can be examined indepen-
dently. This capability makes the artificial water-
shed an excellent tool for testing theoretical rela-
tionships and mathematical models of runoff from an
impervious watershed.

A complete synopsis of the original objectives
and design of the facility is given in the paper by
Dickenson, Holland and Smith (1967). The shape is two
sloping planes, similar to Wooding's model (Wooding,
1965), with an additional upper conical section,
Fig. 4-1. This shape can be defined mathematically
and allows for simplification of data analysis. The
planes slope of five percent in the direction of a
line parallel to the straight side boundaries of the
conic section. The conic section has a radius of 116
ft and a uniform slope of five percent. The conic
section and planes can be divided by walls to make any
desirable size of conic section or rectangular sec-
tion. Water flowing on the conic and plane sections
is separated by a six inch high boundary. A similar
boundary wall exists around the entire surface.

10 Typical
Sprinkler Standpipes
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Figure 4-1. Colorado State University Rainfall-Runoff
Facility--general arrangement.
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The simulated rainfall is generated by 277
sprinklers, each located on top of a 10 ft wertical
pipe. Water is supplied to the sprinkler risers by
parallel aluminum lines, spaced approximately 17.5 ft
apart. Each line has about 20 risers, each spaced 10
ft apart. Various intensities are created by electric
solenoid valves operating a different combination of
sprinklers. When all sprinklers are running simul-
taneously, approximately & in/hr of rainfall input is
being generated. Use of fewer risers will create
lower intensities.

Discharge from the watershed is captured and
measured by two H flumes; one is a 1.5 ft H flume at
the outlet of the conic section, and the other is a 2
ft H flume at the outlet of the plane section of the
watershed. The conic and plane sections can be gauged
separately or as a single watershed. When flow leaves
the conic section, it can be either directed under-
ground and measured separately or added to the flow
from the planes and measured through the flume below
the planes.

The hydrograph data of the conic section in this
study are from experiments conducted during 1969 to
1972. During this period, about 600 runs for about 50
types of configurations with various shapes and sizes
of sections and various roughness were conducted. All
the data were put on magnetic tapes. The surfaces of
various roughness include butyl rubber surfaces, butyl
rubber surfaces covered with different densities of
uniformly distributed gravel or bricks, and butyl
surfaces with different arrangements of gravel cover-
ing. The data from the butyl surfaces covered with

gravel of 20 llnh'd2 are mainly used in analysis,
because they give the greatest number of different
arrangements of gravel covering for systematic
analysis.

The data of concrete rill surface were obtained
from the experiment on a rectangular section on slop-
ing plane in 1976. A 0.6 ft HS flume, with a converg-
ing section of 2 percent slope was used for measuring
discharge at the downstream end.

4.2 Discharge Correction for Experimental Data

Examples of correction for discharge data are
made for the two configurations used in Section 3.2,
Comparison of Two-Parameter and Three-Parameter
Models. They are the concrete rill surface with
rectangular section of 98.4 ft long and 6.6 ft wide
and a conic section of 30° central angle with butyl
surface covered with uniformly distributed gravel of

20 1bsfyd2 (Configuration 14). For the rectangular
section, the time of hydrograph peak should be at the
time when rainfall ceases. However, the observed data
showed that the peaks were located after the rainfall
ceases indicating time lags between the outflow
hydrograph and the observed hydrograph. A discharge
correction for storage effect in the measuring flume,
and lag time correction for the time lag in the tram-
sition are required. Since the measuring flume at the
end of the conic section does not have a transitionm,
only a discharge correction is required. Figure 3-16
shows the shapes of the rectangular concrete rill
section and the comic section with gravel. Figures
4-2 and 4-3 show some of the hydrographs before and
after correction for conic and rectangular sectionms,



respectively. The methods of correction are discussed
in Appendix A.
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4.3 Parameters for Various Surfaces

As stated in section 4.1, the greatest number of
experimental runs were available for the butyl surface

covered with 1.50 inch diameter gravel of 20 lbs/ydz.
These experiments provide data that can be used to
test the concept of equivalent uniform roughness and
to develop short-cut techniques to estimate the rough-
ness parameters for the equivalent uniform surface if
it exists.

Seven configurations with different arrangements
of gravel surfaces including UFUT, UFNT, NFUT, and
NFNT surfaces were chosen. These configurations are
shown in Fig. 4~4. Table 4-1 gives rainfall intensi-
ties and durations for hydrographs used for each
configuration. By assuming the watershed as a lumped
system of uniform surface, the two parameter model was
used for optimization of parameters. In order to test
the assumed equivalent uniform surface, goodness-of-
fit and ratio of peak difference were computed by
comparing the observed hydrographs with the hydro-
graphs simulated by optimized parameters for the
equivalent uniform surface. The optimization results,
including the o and m, the minima of objective func-
tions and average values of goodness-of-fit are given
in Table 4-2. For the hydrographs which have peaks
greater than one inch per hour, Table 4-3 lists the
values of goodness-of-fit and ratios of difference
between peaks to the peak of uniform surface as de-
fined in section 1.2. Figure 4-7 shows the comparison
between the observed and simulated hydrographs by
using the optimized parameters. Only a representative
hydrograph for each configuration is shown.

<
Configuration 38 Configuration 37 Configuration |10

Configuration 18 Configuration 48
Figure 4-4. Configurations with different

arrangements of gravel surfaces of

20 1btfyd2 gravel density.

Although configuration 26 is a UFUT surface, the
values of goodness-of-fit are between 93 and 96 per-
cent and the ratios of peak difference are between 1
and 25 percent. Errors in data measurement, in the
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hydrographs used in optimization.
Number of
v Durati T ) Durati
b ures ™ | e eet | Tivewet” "eer | ool “toac” | g tove)
17 .
SR TN TEE T
232.5%e 401, 7% 291,26 557,67
" H LEE saTIe 7.8 53,00 1,802 56,00 B 1,91
2053 196,03 221,13 22,4
405 62e 542, 6% 462,030 500.47e
E ] L] 401 e 1.807 10,26 B4 52,39
0.2 .57 17,57
508,93 151, 9% 06, 00w
d : : 5.2
i 10 3,568 728,79 et g2 mo 6 Aha
657.01e 177,62 &13.59
; .12 : a7 113 124,61 407 161.37
e g | TR ° e 30
18 1a 173 S04 2.0 99.40 337 24,44 Rt 236,90
1.2 143,04 223,76
A15, 008 1.9 65, Wi
. : an . 4 12,41
W o ﬁ;ié . :31;,; o o 234,81
411330 70,63 52.81
FERELI
run 1 uiing cont Toms 26, 27, 28, and 20
& Bepresentative hydvopraths of Fig, 17, Hincluding contigorations. o8 s 19:
Table 4-2. Optimized parameters o and m.
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Table 4-3. Goodness-of-fit and peak deviation of
hydrographs.
Ratio of
uifference
Between Peaks
to Peak of
Uniform
I 1] Goodness-of-fit Wacershed in
Conf. No. (in/hr) (sec) (%) Percent
26 4.735 53,19 93.6 12.3
4,135 102.95 95,2 3.6
2.035 45.54 93.8 24.4
2.035 94,69 92.7 1.6
Avg. 93.8 10.5
14 3.675 53,71 96.9 5.0
3.675 204,53 96.1 2.6
2.838 194.83 95.6 3.9
2.838 53.00 9.0 14.8
Avg. 96.2 6.5
38 4,073 38.51 95.5 1.1
4.073 B80.12 97.3 1.1
1.807 99,57 96.1 1.0
1.807 151.99 95.2 6.0
Avg. 96.0 3.8
7 1.686 §1.24 93.3 15.6
1.686 121.45 95.6 1.2
17 177.62 93.1 4.3
71 123.87 93.2 5.3
Avg. 93.8 8.5
1o 2.374 79.17 931.7 2.9
4.094 69.12 95.0 22.8
1.130 124.63 93.3 25.5
Avg, 94.0 27
18 3.739 90.87 86.5 29.6
3.739 131.27 92.4 5.1
2.073 99,40 a8.9 18.2
2.073 143,04 89.7 19.4
Ava. 89.4 18,1
48 4.40 41.27 91.6 25.8
4.401 118.85 9.4 8.5
4,337 34,54 89.2 53.8
4.337 103.8 9.5 16.7
Avg. 91.1 26.2
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Caonfiguration 9

Figure 4-5. Configurations with gravel of 10 lbs,’yd2

and 30 lbs/yd®.
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selected physical model, and in the numerical solution
of kinematic wave equation are unavoidable. The
ratios of peak difference are not consistent and
deviate a great deal. The reason might be in the
difficulties of measuring the discharges of instant
peaks. Because of inaccuracy of peak discharge mea-
surement, the criterion of equilibrium umiform rough-
ness might be set at Ge = 0.93 without restriction in

Pe (see definitions in section 1.2). With this crite-

rion, configurations 26, 14, 38, 37, and 10 are clas-
sified as the surfaces of equivalent uniform roughness
and configurations 18 and 48 as the surfaces of not
equivalent uniform roughness. In general,  the simu-
lated hydrographs of configurations 26, 14, 38, 37,
and 10 fit well the observed hydrographs. Configura-
tion 18, classified as UFNT, consisted of two comic
sections, one a 30 degree gravel conic section and the
other an 83 degree butyl section. The observed hydro-
graphs have either comparatively flat peaks or double
peaks, because of a combination of two hydrographs
from the two sectors. However, the hydrograph simu-
lated from a lumped system of uniform surface can
produce only a single peak. This may be the reason
why the simulated hydrographs do not fit well the
observed hydrographs. Configuration 48, classified as
NFUT, consisted of a 116 ft radius conic section with
a butyl surface on the upper section and butyl covered
by gravel on the downstream section of 38.5 ft.
Evidently, the concept of the equivalent uniform
roughness could not be used because the observed
hydrographs do not agree with the hydrographs of
uniform surface.

Since configurations 38, 37 and 10--NFUT and NFNT
surfaces composed of alternate roughness of more than
six strips--are classified as the equivalent uniform
roughness, a watershed composed of alternate roughness
may be simulated by an equivalent uniform roughness if
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the width of strips is less than one sixth of the
total flow length. The hydrographs for this kind of
watershed can be simulated by using a tweo parameter
model and assuming the system to be a uniform surface.
For UFNT surface, it is better to simulate the hydro-
graphs by a distributed system.

4.4 Tdentification of Watershed Response for Surfaces
with the Same Density of Gravel

The parameter optimization technique can be used
to determine the roughness parameters for an equiva-
lent uniform surface, however, it is sometimes slow
and costly. In this section some techniques for
determining equivalency of watershed response are
discussed and the experimental watersheds of equiva-
lent uniform roughness with the same density of gravel
were used for the test of identification of watershed
response. This will help estimation of roughness
parameters for watersheds which have the same density
of various roughnesses.

(i) By comparison of dimensionless hydrographs:

Woolhiser (1969) introduced the
dimensionless hydrographs for the conic section
(Fig. 4-6) with the normalized units:

Qe = Q/Qa (4-1)
and

ty = /T, (4-2)

with Q¥ = the dimensionless discharge, t* = the dimen-

sionless time, Q = the outflow discharge, t = the
time, Qo = the normalized discharge at x = I.o(l-r)

under steady state
concentration (see Fig. 4-6), To

to travel the distance Lo(l-r) at the velocity Vo,

conditions, r = the degree of
= the time required

given by

m-1 1 1

2 e m o.\m 1-r)"
T, = EH® O -,

where Vo = the steady-state normal velocity at x =

(4-3)

Lo(l-r), q = the lateral inflow rate, Lo = the radius
of conic section and x = the radial distance from the
upstream end.

The shape of the rising and recession limbs of a
dimensionless equilibrium hydrograph is independent of
a and q, but depends on the m and r values. For
watersheds with the same r, the shapes of dimension-
less hydrographs should be the same if m values are
identical. To test if m values are identical, for
various watersheds with the same density of gravel,
watersheds of configurations 9, 38, and 10 including
UFUT and NFUT surfaces were used. Configuration 9
consisted of a 30° conic, butyl covered section, with
1 1/2 inches diameter gravel and a density of 10

lbs/ydz. Configuration 38 consisted of a 60° conic
section of alternate butyl and gravel strips, 20 ft
wide, while configuration 10 had a 30° section and
alternate strips 10 ft wide. The r values for those
configurations are very small and considered as the
same. Instead of the time required for water to
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travel the distance of I.D(l-r) at the velocity Vo, the

water storage at the equilibrium (in inches), divided
by the lateral inflow rate (in in/sec), was taken as
the normalizing time parameter To’ since Vo was not

measured in experiments. These two normalizing times
have a constant ratio for a constant r value, and the
change of the normalizing time does not affect the
shapes of hydrographs.

Two equilibrium hydrographs are selected for each
configuration, with the rising and falling limbs of
their dimensionless hydrographs shown in Fig. 4-8.
In general, the shapes of superimposed hydrographs
are very similar, so there is no reason to reject the
hypothesis that m values are identical.
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Figure 4-8. Superimposed dimensionless equilibrium

hydrographs for configurations 9, 10 and
38.

(ii) By comparison of characteristic time:

The normalizing time, To' as the equilibrium

storage divided by the lateral inflow rate, is the
simplest parameter to measure experimental watershed
response. It is called herein the characteristic
time. Theoretically, T, is proportional to

When L is a

q(l-u)flﬂ(LDfa)Um if r is constant.

o
constant, values of &« and m are identical if the
relationships of observed T0 vs q are identical for

the watersheds with the same density of gravel.
Configurations 9, 10, 37 and 38, including UFUT, NFUT,
and NFNT surfaces, were used for the test. The radii,
I.o, of conic sections of these configurations are not

the same; two of them are 116 ft and the other two are
110 ft. However, the small difference in I‘o will

1.5,

Lo is assumed

create only around 3.6% error in Tn if m=
Since the error is not very large,
constant for the test.

The data of To vs q are plotted in a log-log
graph as shown in Fig. 4-9. Theoretically, log To vs

log q is a linear relationship and the regression
lines can be used for the test of identity of the
relationship. Let x = log q and y = log T , then the

linear models for various watersheds are:
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y® Bio * Pyi®
¥y = Byo * ByX
Y= Bag * Pyyx ew

For the test of the equality of these linear models,

the hypothesis

Hyt Byg = Byo = Pyg = Byo =
Prip = By = Py = By =
is tested, with the H_ rejected if, and only if,
W as2(H-1), N-2H, with
(s, - 5.5./M)2
- lsﬂ, " ,H’“) - J!—Jf{i—g "5;1’ -5z i (4-5)
S&g 10D
H
H = the npumber of linear models, N = z Dy Wy = the
h=1
number of observations in model h, a = level of
significance,
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(see F. A. Graybill, "Theory and Application of the
Linear Model," 1976, Duxbury (Ch. 8, Sec. 6), "'Testing
the Equality of a Set of Linear Models"). The compu-
tation for the test of equality is shown in Table
4-4(A). Since W is less than Fu:z(ﬂ-l), N-2H° there

is no reasonm to reject the hypothesis of identity. By
assuming all the linear models to be identical, the
regression analysis gives the equation for the char-

acteristic timeas To = 206.490 q-0.331203, or To is

proportional to q(l"')" B and (1-m)/m = -0.331203,
withm = 1,495.
To test whether or mnot this technique can

discriminate between radically different surfaces, the
data from configurations 14 and 20, comnsisting of

gravel of 20 Ibslydz and 30 lbslydz densities respec-
tively, are included in the test of identity. Compu-
tations are shown in Table 4-4(B) and the data points
are also plotted in Figure 4-9. Since W is greater
than Fa:z(ﬂ-l), N-21" the hypothesis of equality of

models is rejected.



Table 4-4. Test of the equality of a set of linear
models.

(A) Gravel density of 10 Tbs/yd’

. 2 2 syl
C::T n, I N I X5 I Xhg I *h§¥hj (m,-2)ap
9 4 9.112951 20.821835 0.508717 0.616636 0.980432 0.00260811
10 8 18.317541 42,037539 1.150460 0.939900 2,367826 0.00438123
38 3 6.613238 14.615074 0.782799 0.445090 1.631513 0.00000155
37 4 9.043890 20.497972 0.262447 0.529496 0.442415 0.00549366
I 19 43.087620 97.972420 2.704423 2.531122 5.422186 0.01248455

H=4, N=19, a = 5%, W=1,720990 < F = 3.09

.05:6,11

(B) Gravel densities of 10, 20, and 30 'Ihs,fyci2

Conf.

2 : 2

No. ™ ¥y Loy Ixpg  Dxyy Dxggtng (Mg205,

9,10

38,37 19 43,087620 97.972420 2,704423 2.531122 5.422186 0.01248455

14 4 9.173848 21.048282 1.168340 0.601315 2.634699 0.00077733

20 4 9,466609 22.413930 1,172117 0.577885 2.727485 0.0005313
[ 27 61.728077 141.434732 5.044880 3.710322 10.784370 0.0379327

H=6,N=27,0=58 W=6798>F o1 15 = 2.04
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Figure 4-9. Characteristic time vs lateral inflow

rate.

The conclusion is that watersheds of the same
density of gravel on the butyl surface for which the
concept of equivalent uniform roughness is applicable
may have the same values of @ and m, although the
arrangements are different. Furthermore, this tech-
nique can discriminate between watersheds with dif-
ferent density of various roughness.

(iii) By comparison of partial equilibrium peaks:

For constant wvalues of m and r, the
dimensionless partial equilibrium hydrographs should
be identical if the dimensionless durations of lateral
inflows are the same. The dimensionless peak in-
creases as the dimensionless duration increases.
There is a relationship between the dimensionless peak
and the dimensionless duration of lateral inflow if m
and r are constant, regardless of the values of a and
q. The partial equilibrium hydrograph of the four
watersheds with constant r, used in the previous
section, are used herein for the test of identity of
m. The data of QplQe Vs D{To are plotted in Fig.

4-10, with Qp = the partial equilibrium peak, Qe = the

equilibrium or steady state discharge, D = the dura-
tion of lateral inflow, and To = the characteristic
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time obtained from the regression line of Fig. 4-9.
The results show a large scatter of observed values so
that it is difficult to say whether the relationships
Qp)‘Qe Vs D/To for the four watersheds are identical or

not, or whether the values of m are identical. The
reason for the scatter is likely due to the difficulty
in measuring the actual peak under the partial equili-
brium conditions. Under these conditions the plane
surface produces a flat peak hydrograph, while the
conic section gives a sharp peak hydrograph. Uneven
surface of watersheds and water storage in the measur-
ing flume of the conic section greatly affect the peak
values. In addition, the sensitivity of the measuring
gage also affects the accuracy of observed peaks.
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Figure 4-10. The mee vs D!‘l‘0 relationship points.

4.5 Comparison of Hydrographs Obtained by
Optimization of Parameters and Hydrographs Simu-
lated by a Distributed System with the Observed
Hydrographs

With the optimized values of o and m for a butyl
surface (configuration 26) and a gravel surface of 20

llm/yd2 density (configuration 14) given in Table
4-2, hydrographs for watersheds of a combination of
butyl and gravel surfaces can be simulated by using
the numerical scheme of a distributed system. The
representative observed hydrographs, simulated hydro-
graphs by using the optimized parameters, and simu-
lated hydrographs in using a distributed system for
nonuniform watersheds are superimposed in Fig. 4-11
for comparison. Hydrographs are also simulated for a
distributed system by reversing the arrangement of
butyl and gravel locations in configurations 37, 38,
and 10. The values of the objective function are
given in column (4) and (5), Table 4-5.

For configurations 38 and 37, classified as the
surfaces of equivalent uniform roughness, the hydro-
graphs are successfully simulated by both the optimi-
zation technique and the distributed systems with low
values of objective function. The simulated hydro-
graphs obtained by using a distributed system fit the
observed hydrographs as well as the optimized hydro-
graphs do. Since the weights of butyl and gravel
surfaces are equal in both configurations, the values
of objective functions are kept low when the locations
of butyl and gravel are reversed. For configuration
18, classified as the surface of not equivalent uni-
form roughness, the value of objective function is
greatly reduced when the distributed system is used
for simulating hydrographs. The hydrographs simulated
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Figure 4-11, Hydrographs for various configurations;
(A) observed hydrographs, (B) hydro-
graphs simulated by distributed system,
(C) hydrographs simulated by using opti-
mized parameters, with I = the rainfall
intensity and D = the duration of
rainfall.

Table 4-5. Objective function of simulated
hydrographs of watersheds with various
arrangements of gravel layers on butyl

surface.
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by the distributed system fit the observed hydrographs
much better than the optimized hydrographs of a lumped
system do. This means that the UFNT surface should
not be sumulated by a lumped system but by a distri-
buted system.

In order to avoid the errors resulting from the
depression and interception losses at the beginning of
rainfall, the observed time of beginning of rainfall
excess was corrected at each run by subtracting the
time required to fill the amount of depression loss
and compensate for the interception loss. The amount
of these losses were obtained by subtracting the total
outflow volume from the input rainfall. Under the
normal conditions, the time correction should be
negative, meaning that the time correction should be
subtracted from the original time record. However,
time corrections in most runs for configurations 48
and 10 were positive. The observed hydrographs might
have time errors. The factors that caused these
errors are: (1) simulated rainfall at some sprinkler
heads was retarded in comparison with the general
initiation of rainfall; (2) some of the sprinkler
heads could not be shut off immediately at the end of
simulated rainfall; and (3) there was some pipe leak-
age. Since the total volume of outflow was computed
from the long duration hydrographs, the factor (3) may
have mostly affected the time correction, with the
error larger for lower flow rates. The observed
hydrographs of configurations 48 and 10 show the low
flows to last for a long time at the initiation of
runoff output due to errors in time corrections.
During the process of minimizing the objective func-
tion, the simulated hydrographs were forced to fit the
low flows of a long duration at the hydrograph inmitia-
tion, and become relatively flat and wide hydrographs.
In a comparison, the hydrographs generated by a distri-
buted system give sharper high peaks which agree
better with the observed peaks. Although the values
of objective functions for hydrographs simulated by a
distributed system are the same or greater than those
for hydrographs simulated by optimized parameters, the
simulation by a distributed system is considered to be
better. The simulated hydrographs by distributed
system should fit the observed hydrographs more close-
ly if the time correction is proper. For NFUT surface
composed of large elements of various roughness such
as configuration 48, the watershed is classified as
the surface of not equivalent uniform roughness, and
the simulation by the distributed system is considered
much more feasible than the simulation by optimized
parameters.



Chapter V
SPATIAL VARIABILITY OF ROUGHNESS

5.1 Uniformity of Roughness

For UFNT watersheds, the outflow hydrographs can
be easily simulated by a combination of hydrographs
from elements of various roughnesses. However, flow
phenomena on NFUT surfaces are more complicated and
the application of equivalent uniform roughness for
simplification of hydrograph simulation will be neces-
sary. In this section a shortcut method is given for
testing whether the equivalent uniform roughness can
be used for hypothetical NFUT watersheds composed of
alternate elements of butyl and gravel with equal
weight along the flow direction. The watersheds are
assumed to be the conical sections with a radius
of 120 ft and a slope of five percent.

Hydrographs from the two NFUT watersheds A and B,
which are ident.cal except that the locations of butyl
and gravel elements are reversed, are considered.
When the size of elements is sufficiently large, the
watersheds do not behave as the surface of equivalent
uniform roughness, in which case the two hydrographs
simulated for the two watersheds with the same rain-
fall input will deviate to a great deal. As the size
of the elements decreases, the two hydrographs will
tend to be closer. When the size of elements become
sufficiently small, the two watersheds can be treated
as the surfaces of equivalent uniform roughness and
the two hydrographs will nearly coincide. The short-
cut method for testing the equivalent uniform rough-
ness is to compare the two hydrographs simulated for
watersheds A and B. Either the watershed A or the
watershed B can be considered as the watershed of
equivalent uniform roughness if the two hydrographs
from A and B nearly coincide. The goodness-of-fit and
ratio of peak difference, as described in section 1.2,
are used for the justification of use of the equiva-
lent uniform roughness. When a pair of hydrographs
simulated from two NFUT surfaces of reversible rough-
ness arrangements is used to measure the deviations
between the hydrographs, the deviations would be
double of the deviations between the hydrograph of a
nonuniform roughness and the hydrograph of a uniform
roughness surface. The criterion of Ge should be

smaller than 0.93 used in Chapter IV for comparison
between the observed hydrograph of a nonuniform rough-
ness surface and the hydrograph simulated from a
uniform roughness surface. However, as there are no
observational errors involved in using only the numer-
ical models, the more strict criteria for an equiva-
lent uniform roughness surface are used, i.e., G
0.93 and P, = 0.05. ’

Conical areas (watersheds of curved strips normal
to the direction of flow, as shown in Fig. 1.2(C)),
composed of 2, 4, 6, 8, and 10 alternate strips either
of equal width or equal area are used in these tests.
Since hydrograph simulation by the distributed system
with kinematic cascade planes can produce hydrographs
very close to the observed hydrographs of NFUT sur-
faces, this method has been used for generation of
hydrographs for the considered hypothetical water-
sheds. Two criteria used for numerical simulation of
a cascade of planes are: (1) the number of planmes in
kinematic cascade is at 1least five, and (2) the
number of A increments in each plane is at least
three. For each hypothetical configuration, twelve
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pairs of hydrographs are generated for testing the
equivalent uniformity of roughness, namely three
durations (one for equilibrium and two for partial
equilibrium) for each of the four intensities of 1, 2,
3, and 4 inches of rainfall per hour. Figure 5-1
shows two out of the twelve pairs of hydrographs
simulated for the watersheds composed of ten alternate
strips of gravel and butyl surfaces. Hydrographs
marked 1 and 2 are simulated for watersheds which are
divided into ten strips of equal width, and hydrographs
3 and 4 are for watersheds which are divided into ten
strips of equal areas. Hydrographs 1 and 3 are simu-
lated for watersheds which have a gravel strip at the
upper end, and hydrographs 2 and 4 for watersheds
which have a butyl strip at the upper end. The hydro-
graphs simulated for the watersheds with ten equal
width strips (1 and 2) are almost identical even
though the roughness locations are reversed while the
hydrographs (3 and 4) simulated for the watersheds
with ten equal area strips, deviate to a great deal
when the roughness locations are reversed. Since
deviations of partial equilibrium hydrographs are more
evident than those of equilibrium hydrographs, only
eight pairs of partial equilibrium hydrographs simu-
lated for the reversible arrangements are used for the
test of goodness-of-fit. Values of goodness-of-fit
and ratios of peak deviation to the lower peak of two
hydrographs were computed for eight pairs of hydro-
graphs in each configuration, and their maximum,
minimum, and average values are shown in Table 5-1.
The average walues of goodness-of-fit parameter with
respect to the number of strips are plotted on Fig.
5-2. The results show that the surface of watershed
with equal width strips can be treated as having an
equivalent uniform roughness if the number of strips
is greater than six. However, the surface of water-
shed with equal area strips cannot be treated as
having an equivalent uniform roughness even though the
number of strips is increased to ten. In one-dimen-
sional flow, the linear uniformity of roughness along
the flow direction is much more important than the
areal uniformity in meeting the condition of treating
it as having equivalent uniform roughness. In other
words, when the width of equal width strips is less
than one sixth of total flow length, the surface of
the watershed can be treated as having an equivalent
uniform roughness and may be approximated by a uniform
roughness surface. Actually, the width of strips
meeting the equivalent uniform roughness condition is
related to the difference between the two roughnesses.
The larger the width of strips the smaller is the
difference between the two roughnesses.

Considering the hydrographs produced by a
watershed of ten equal width strips as the hydrographs
of a uniform roughness surface the sums of squares of
deviations between the 12 pairs of hydrographs simu-
lated from watersheds of ten equal width strips
(column A) and hydrographs simulated from watersheds
of fewer than ten strips (column B) are shown on
Table 5-2. Representative hydrographs are shown in
Figs. 5-3, 5-4, and 5-5. It can be inferred from them
that the deviations of hydrographs of conical water-
sheds with equal area strips are larger than the
deviations of hydrographs of conical watersheds with
equal width strips.
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surfaces. Letting o and m be the two parameters for

this compound watershed, with al, my and a,, m, the

parameters for two basic surfaces (Fig. 5-6), the
coordinate of the intersection point (log h', log Q')
can be obtained as

og ¥ log ul - log az
m, = m; =

and (5-1)
log Q' = log o + my log b' ,
with

log @ = log Q' - m log h' (5-2)

With the condition of Eq. (5-2), the number of
unknown parameters has been reduced from two to one.
Once an m value is obtained, a can be determined from
Eq. (5-2). Since the watershed composed of ten equal
width alternate strips meets the equivalent uniform
roughness conditions and the value of goodness-of-fit
parameter is high, the average of two hydrographs
simulated for the conical watersheds of ten equal
width strips with reversible arrangements of roughness
is considered as the hydrograph of the equivalent
uniform roughness, as well as the average of detention
storages on the uniform surfaces of the two rough-
nesses considered as the detention storage of the
equivalent uniform roughness for the watersheds with

Log @ Log @
{Log h', Log Q')
Coah Log h
Figure 5-6. Estimation of mean parameters.

equal weight of pgravel and butyl surfaces in the
following computations. The unknown parameter m can
be estimated by an optimization, in two ways:

(i) Obtain m value by minimizing the sum of
squares of differences between hydrographs: The
objective function used here is the sum of squares of
differences between the hydrographs of an equivalent
uniform roughness surface and the hydrographs simulat-
ed for a watershed conmsidered as a lumped system with
assumed values of o and m. Hydrographs simulated for
the twelve kinds of rainfall inputs as described in
Section 5.1 are used for optimization. But substitut-
ing o = 0.5 and m, = 1.44 for butyl surface and o, =

1.23 and m, = 1.22 for gravel surface in Egs. (5-1)

and (5-2), o can be expressed as the function of m by
log o = -5.074489 + 4.23310 m. By assuming m, O can
be determined and the hydrographs simulated. The
best-fit value of m can be obtained by minimizing the
objective function as shown in Table 5-3 and Fig.
5-7(A). The minimal value of the objective function

is 0.158 (in/hr)2 at o = 2.683 and m = 1.300. The 12
hydrographs produced with these estimated o and m show
that they almost exactly fit the hydrographs of the
equivalent uniform roughness.

Table 5-3. Values of objective function for m.

o 1.330 1.320 1.310 1.305 1.300 1.295 1.280 1.280 1.270

a 3,594 3.289 2.957 2.887 2.683 2.555 2.434 2,208 2.002

F
(1n:’hr]2 25.38 14.22 3.9 1.3 .158% .297 1.99 B.81 23.09

*minimun of the objective function values

(ii) Obtain m by minimizing the water storage
deviations: One of the most representative character-
istics of watershed response is the water stored at
equilibrium. The objective function here is the sum
of squares of deviations between the detention stor-
ages of an equivalent uniform roughness surface at
equilibrium for various rainfall intensities and the
detention storages in a watershed of lumped system
with assumed m. The best-fit value of m can be ob-
tained by minimizing this objective function.

The detention storage of both the conic section
and the rectangular section of uniform roughness are
computed as follows:

Storage at equilibrium for a conic section:

For r = the radius, S = the storage/A, A = the
area of comic section, Q = the unit width discharge at
equilibrium, © = the central angle in radians, L0 =

the radius of conic section, Ar = the increment of
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Storage at equilibrium for a rectangular section:

In addition to the notations used above, let x =
the distance from upstream end, and L° = the length of

rectangular section, then Q = gx,

L L
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The dentention storage at equilibrium and the
values of the objective function for various values of
m are computed and given in Table 5-4. The objective
function versus m is shown in Fig. 5-7(B). The best-
fit values for o and m are 2.683 and 1.300, respective=-
ly. This given the minima of the objective functions
for both the rectangular and the conic sections. This
pair of values also give the detention storage closest
to the detention storage of an equivalent uniform
roughness surface for most rainfall intensities. The
optimization of parameters by detention storage ap-
proach is not affected by differences in shape of
watershed or rainfall intensity.

Table 5-4. Detention storage at equilibrium for

rectangular and conic sections.
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Estimation of mean parameters from detention storage:

The result of optimization of m by minimizing the
deviations between the detention storages is almost
exactly the same as the result of optimization by
minimizing the deviations between the hydrographs. In
other words, a pair of o and m values which can repro-
duce the detention storage of the same value as the
detention storage on a watershed of equivalent uniform
roughness can also reproduce the hydrographs of that
watershed.

Assume both hydrographs and detention storage of
the equivalent uniform roughness surface were gener-
ated by the mathematical simulation for a NFUT conical
surface with curved strips with sufficiently small
elements of two roughnesses. When the elements of the
two roughnesses are so small that the surface is close
to a uniform surface of the roughness intermediate
between the two basic roughnesses, both the produced
hydrographs and detention storages might also be close
to the hydrographs and detention storages of an equiv-
alent uniform roughness surface, to be represented by
one value of m. Therefore, m opimized from the deten~
tion storage might be also m which can reproduce the
hydrograph closest to the hydrograph of equivalent
uniform roughness surface. However, the deviation
between two values of m by the two kinds of optimiza-
tion will increase as the size of elements increases.

Suppose that o and m are known for two basic
surfaces which make a compound watershed. Since the
estimation of parameters by detention storage approach
does not depend on the difference in the watershed
shape or rainfall intensity, o and m can be easily
estimated for a compound watershed by letting the
detention storage at equilibrium agree with the deten-
tion storage of the equivalent uniform roughness
surface at equilibrium for a single rectangular sec-
tion with an assumed rainfall intensity. With esti-
mated o and m, hydrographs for wvarious rainfall




intensities and durations may be then simulated as a
lumped system by using the kinematic wave theory.

If m is predetermined as a fixed value, only one
parameter o remains to be estimated. Then a for an
equivalent uniform roughness surface may be estimated
by letting the detention storage at equilibrium agree
with the detention storage of an equivalent uniform
roughness surface at equilibrium without using Egs.
(5-1) and (5-2).

Comparison of Hydrographs Simulated by Estimated
Parameters with Observed Hydrographs

To apply the method of estimating a and m by
detention storage approach to a natural watershed, the
hydrographs for the experimental watersheds which have
the equivalent uniform roughness surface are first
simulated by using the estimated parameters and then
compared with the observed hydrographs. Some of the
simulated hydrographs are compared with the observed
hydrographs in Fig. 5-8. The values of objective
function are given in column 6, Table 4-5. Hydro-
graphs simulated for configurations 37 and 38 with o
and m estimated by detention storage approach fit the
observed hydrographs as well as the hydrographs simu-
lated with the optimized parameters or by using the
distributed system. Although for configuration 10 the
value of objective function resulting from the hydro-
graphs simulated with the mean values of @ and m from
detention storage estimation is greater than the value
of objective function resulting from hydrographs
simulated with optimized parameters, the hydrographs
simulated with parameters estimated by the detention
storage approach agree better in shape with the ob-
served hydrographs than do the hydrographs simulated
with optimized parameters. The reason for poor agree-
ment in simulation by using optimization has been
stated in Section 4.5: the simulated hydrographs by
optimization were forced to fit the low flows of a
long duration at the initiation of observed hydro-
graphs, which was caused by errors in time correction.
The estimates of @ and m by detention storage approach
are feasible for the simulation of hydrographs for

NFUT surfaces of equivalent wuniform roughness
surfaces.
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Figure 5-8. Comparison of hydrographs simulated by

estimated o and m with observed hydro-
graphs.

5.3 Hydrograph Simulation for Watersheds with Random
Distrbution of Surface Roughness

The previous discussion has shown that the linear
uniformity of roughness along the flow direction is
important in achieving the equivalent uniform rough-
ness for NFUT surfaces. In this section, NFUT
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surfaces with a random distribution of equal width
strips of butyl and gravel are discussed and the
reliability of estimating the parameters by detention
storage approach is tested. To save computer time,
numerical models of watersheds with a radius of 120 ft
and a slope of five percent are assumed to be composed
of six equal width strips, with three strips of butyl
and three strips of gravel. The hydrographs repro-
duced for a rainfall intensity of 3 in/hr and 90
seconds duration (partial equilibrium) are used for
comparison.

The number of combinations of three strips out of
the total of six strips is 20 (603). Column 2 in

Table 5-5 shows various combinations of butyl and
gravel strips. They are represented by symbols 1
and 2, respectively. Column 3 shows the number of
runs. A maximal uninterrupted sequence of like sym-

bols is called a run. In Chapter IV it was shown that
the hydrographs simulated from the distributed system
are closest to the hydrographs observed experimentally
from a watershed with random distribution of two types
of roughness surfaces. Therefore, the detention
storage and hydrographs simulated from the distributed
system will be considered as the actual detention
storages and hydrographs for a comparison with the
other short cut methods used.

Table 5-5. Test of roughness uniformity and estima-
tion of mean parameters for watersheds
with random distribution of roughness
surfaces.
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Uniformity of Roughness

The detention storage and the hydrograph for the
surface of equivalent uniform roughness surfaces
composed of equal weights of butyl and gravel elements
are described in section 5.2. They are considered to
be very close to the detention storage and the hydro-
graph of an equivalent uniform roughness surface. The
detention storage and hydrograph produced by the
distributed system for a watershed with random distri=
bution of roughness surface are compared with the
detention storage and hydrograph of an equivalent
uniform roughness surface for the test of equivalent
roughness uniformity.

Column 4 of Table 5-5 shows the detention storage
at equilibrium for various combinations computed from
the distributed system. The deviations of the deten-
tion storage from the detention storage of the equiv-
ilant uniform roughness show a chance scatter and no

general regularity for these deviations can be
inferred.



i3 Comparison of hydrographs are shown on Fig. 5-
9(A).
ness-of-fit parameters, G, and the ratio P, of differ-
ence of two peaks to the peak of the hydrograph of
equivalent uniform roughness surface. In accordance
with the method used in Section 5.1, G and P are set
at 0.965 and 0.025 respectively. Only the whtersheds
with alternate strips of butyl and gravel can be
classified as the surface of equivalent uniform rough-
ness. The sums of squares of deviations are given in
column 7, and the relationships of those values to the
number of runs are shown in Fig. 5-10.
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Figure 5-9. Hydrographs of watersheds with randomly
distributed roughness, 6 equal width
strips, I =3 in/hr, D = 90 sec.
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Figure 5-9. (Continued)

Although all of the combinations have an equal
weight of butyle and gravel, the hydrographs of an
equivalent uniform roughness surface do not fit the
actual hydrographs well. The goodness-of-fit parameter
increases or the deviation decreases as the number of
runs increases, 1i.e., the roughness uniformity
increases as the runs increase.

Reliability of Parameters Estimated by Detention

Storage Approach

All che configurations except the configuration
with alternate strips of two roughnesses do not corre-
spond to the equivalent uniform roughness surface. The
hydrographs produced from these configurations cannot
be simulated by a lumped system which considers the
watershed as that of an equivalent uniform

Columns 5 and 6 of Table 5-5 show the good- -
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Figure 5-10. Sum of squares of deviations of
hydrographs vs number of runs. A maxi-
mum uninterrupted subsequence of like

symbols of roughness is called a run.

roughness surface. In order to, find the reasonable
estimate of parameters for the watersheds with random
distribution of roughness strips, estimation of param-
eters by detention storage was first tested.

When the watershed with a random distribution of
roughness is considered as a lumped system, two un-
known parameters, o and m, may be estimated with the
detention storage approach under the two conditions:
(1) the regression line of log Q versus log h passes
through the intersection point of the two regression
lines of basic roughness (log o = -5.074489 + 4.23310
m for the surface composed of butyl and gravel), and
(2) the detention storage at equilibrium reproduced by
the lumped system with estimated o and m is equivalent
to detention storage reproduced by the distributed
system. The estimates o and m so obtained are given
in column 8 of Table 5-5. To test the reliability of
these estimates, hydrographs simulated by o and m are
compared with hydrographs simulated by the distributed
system as shown in Fig. 5-9(B). The goodness of fit
parameter, G, ratio of peak deviation to peak, Pr, and

the sums of squares of deviations between hydrographs
are given in columns 9, 10, and 11 of Table 5-5.
The relationship of the sum of squares of deviations
to the number of runs is shown in Fig. 5-10. When
hydrographs are simulated by the parameters estimated
from detention storage instead of simulation by an
equivalent uniform roughness, the sums of squares of
deviations are less, thus the values of goodness-of-
fit parameter increase. Although these configurations
do not meet the equivalent uniform roughness condi-
tions, the simulation of hydrographs by detention
storage approach can produce hydrographs very similar
to the actual hydrographs. When the number of rums is
greater than or equal to four, goodness-of-fit param-
eter is greater than 0.92 and, in general, the simu-
lated hydrographs can be accepted.



Comparison of Observed Hydrographs with Hydrographs
Simulated by Estimated Parameters

Since the Rainfall-Runoff Experimental Facility
data did not include NFUT watersheds with random
distribution of two types of roughness, NFNT water-
sheds with random distribution of two types of rough-
ness, Configurations 12 and 13 (Fig. 5-11) are select-
ed for verifying the reliability of « and m estimated
from detention storage. They consisted of a 30° conic
section with a radius of 110 ft. The conic section
was divided into three equal angle sectors, and then
into eleven equal width strips along each radial
direction, a total of 33 elements with the gravel

elements of 20 lbs/ydz randomly distributed among the
33 plots, and the numbers of elements of butyl and
gravel about the.same.

Configuration 12 Configuration 13

Figure 5-11. Configurations of watersheds with random

distribution of roughness.

Estimation of o and m from water storage at
equilibrium:

To select @ and m which reproduce the detention
storage most closely of watershed at equilibrium, four
rainfall intensities of 1, 2, 3, and 4 in/hr were
used. The total detention storage of a watershed is
obtained by summing the corresponding detention stor-
ages of butyl and gravel surfaces according to their
distribution arrangements. Considering the whole
system as a lumped system, detention storages for
various values of m (with the condition of loga =
-5.074489 + 4.23310 m) are computed and the best-fit
value of m is selected that can reproduce the deten-
tion storage closest to the total detention storage of
the watershed. The best-fit values of o and m are
2.8166 and 1.305 respectively for Configuratiom 12,
and 2.5550 and 1.295 respectively for Configuration
13. Computation results are summarized in Table 5-6.

Comparison of simulated hydrographs with observed
hydrographs:

For Configuration 12, eight hydrographs with
various intensities and durations are used for com-
parison (Table 5-6). The observed hydrographs are
well simulated by the estimated o and m. The value of

the objective function is only 7.086 (i.n/br)z. Some
of the representative hydrographs are shown in Fig.
5-12. The values of goodness-of-fit parameters for
partial equilibrium hydrographs which have peaks
greater than one inch per hour are greater tham 0.92.
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For Configuration 13, seven hydrographs with
various rainfall intensities and durations are used
for comparison (Table 5-6). The hydrographs simulated
by the estimated ¢ and m do not fit the observed
hydrographs as well as the simulated hydrographs for

Estimation of parameters for watersheds
with random distribution of roughness
(Configurations 12 and 13).

Table 5-6.

Storages (In)

Configurations  YTr7ir Zip..ar 3infoc Lingar Best fit x & m
12 035162 .060090 .082281 102872 o = 2.81G6
m o 1,308
13 036415 .062666 086184 .107998 o = 2,5550
m= 1,255
Unifor Systen
a3 m
24334 1.290 037652 .064439 .08B237  .110282
2.5830 1,285 ‘037074  .063216 086453 107936
26826 1.300 (036393 062026 .084729 .105715
2.8166 1.305 '036787  .060860 083048 103531
2.9872 1.310 (038796 050742 081415 .101409

31,1048 1.215 LDEBB46  .079826  .099347

Hydrographs Jsed 1n Configuration 12 and 11
Configuration 12
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Comparison of hydrographs simulated by
estimated o and m with observed
hydrographs.

Figure 5-12.

Configuration 12, but these fits may still be
acceptable. The objective function value is 15.98

(inlhr)z. Some representative hydrographs are shown
in Fig. 5-12. The values of goodness-of-fit parameter
for partial equilibrium hydrographs which have peaks
greater than one inch per hour are around 0.90. )
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Chapter VI
APPLICATION OF TWO-PARAMETER MODEL TO NATURAL WATERSHEDS

The results obtained in this study, based on
experimental data, are applied to natural watersheds.
The two basic results are:

(1) The two-parameter model, Q = uhm, is sufficiently
good to simulate well the overland flow hydro-
graphs;

(2) For watersheds consisting of surfaces with

wvarious and varying roughnesses, the parameters o
and m for the equivalent uniform roughness sur-
face can be estimated by letting the detention
storage at the equilibrium, produced by these
estimated parameters, be equivalent to the deten-
tion storage at equilibrium, produced by the
distributed system with known parameters for the
surfaces of various and varying roughnesses.

Data available on roughness are in general
limited to surfaces of uniform roughness over an area.
In simulating the hydrographs of watersheds with
random distribution of surfaces of various and varying
roughnesses, the method of cascade planes can be
applied. However, if a surface consists of a large
number of small plots with various and varying rough-
nesses, the cascade method becomes so complicated that
the cost of simulation significantly increases. These
kinds of surfaces are often encountered in agricul-
tural land use, such as an area of alternating strip
croppings for soil conservation purposes. For this
case, results of this study can be applied to obtain
the overall parameters by considering the surface as a
single system of equivalent and uniform roughness.
This approach simplifies to a great extent the compu-
tations in simulating the hydrographs of natural
watersheds.

To verify the feasibility of this method, a flood
event of June 12, 1957 at a watershed near Coshocton,
Ohio is used for the test. The data are obtained from
"Hydrologic Data for Experimental Agricultural Water=-
sheds in the United States, 1956-1959," published by
Agricultural Research Service, USDA. The map of the
watershed is shown in Fig. 6-1, with 62.6 percent of
the total catchment area under the counter-strip
cropped with corn-meadow strips (34 percent) and
wheat-meadow strips (28.6 percent). The types of
vegetation are given in Table 6-1. The widths of
alternate strips for corn-meadow and wheat-meadow were
around 100 feet. Program KINGEN75 (Rovey, Woolhiser,
and Smith, 1977) was used for the hydrograph simu-
lation. Because sufficient information on the rough-
ness and experimental data for estimating parameters
in the two-parameter model for surfaces with various
vegetation over the area were not available, the
Chézy equation was used in simulating the hydrographs.
The walues of Chézy's C for surfaces with various
vegetation patterns, as given in Table 6-1, were
estimated from the data in the table on resistance
parameters for overland flow in "Simulation of Un-
steady Flow" (Woolhiser, 1975, Unsteady Flow in Open
Channels, Chapter 12). Since the flood event occurred
in June, and there were legumes, grass and weeds of 5
to 6 inches high between the main crops, lower values
of C in the table were chosen.

The watershed was first divided into cascades of
12 rectangular planes contributing to a network of
channels as shown in Fig. 6-1. The schematic repre-
sentation of cascade planes and channels is shown in
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Conraur nterval = 20 feet

Figure 6-1. Map of Coshocton watershed, Ohio.

Table 6-1. Description of vegetation on the Coshocton

watershed, Ohio.

Yegetation 3 Strips Crops Heizht Esntimated
Chezy C
= corn €a"
corn 1.6
weeds %
Cern-meadow 4 -
Tegumes ,
meadow grass, & 52 1.8
weeds
wheat Kivhg
wheat 2.5
Tegumes , g
& grass
Wheat-resdow 28.6
Tequmes ,
meadow grass, & &" 1.8
weeds
Wheat 6.0 wheat 0 4
Tegures g
& grass
Pasture 8.3 1.8
weeds 6"
Hardwood
& Orchard 5.4 2.0
Reforested 10 8

Miscellaneous

Determination of the Overall Discharge Coefficient

. 2.1/2 ;
Since Chézy formula, Q = Ch3’ S / , is used in
the simulation of hydrographs, « and m in the two-
parameter model are then

w

a = cs*/?,

and m =3, (6-1)



Fig. 6-2. The planes Pl and P2 were the corn-meadow
area and the planes P3 and P4 were the wheat-meadow
area. Before starting the simulatien, the overall
discharge coefficient for those four planes should be
determined by using the technique described in this
study.
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Figure 6-2. Schematic representation of cascade
planes and channels.

with S = the slope of the plane, and C = the Cheézy
coefficient. Only parameter o remains unknown. The
overall wvalue of a for a compounded plane can be
determined by letting the detention storage of equili-
brium, produced by a be equivalent to the accumulated
detention storages in subplanes at equilibrium. As
stated in Section 5.2, the estimates of parameters
from the detention storage are not sensitive to the
difference in rainfall intensity. The rainfall inten-
sity of 2 in/hr was used to estimate the overall value
of o from the detention storage.

The cascade planes, Pl, P2, P3, and P4 were
divided into subplanes according to the width of
strips, as shown in Fig. 6-2 and given in Table 6-2.
The slope of each subplane was measured and the stor-
age in each subplane computed by using the equation

X, wtl
1 - m q,1/m m 2 _
as, hodx = oy @7 [x lxl-
o % o
1
i mhl wmhl
k [ S Iy (6-2)
Loul/n 2 1

with k= [o/(wt1)] ¢/®

plane, x = the distance from the upstream end of the
plane to the upstream end of the subplane, x, = the

, AS N the storage in a sub-

distance from the upstream end of the plane to the
downstream end of the subplane, I'o = the total length
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of the plane, and q = the lateral inflow rate or the
rainfall excess rate. The o value in the above equa-
tion for each subplane-was obtained from Eq. (6-1).
The overall o was obtained by

L 1/m
- s ]

51__-}311\51:—1(_]_',III ;
o

- _ Kk m

a= (S-—*) L, . (6-3)

t
Table 6-2. Computations of overall parameters for

contour-strip cropped planes.

e=3, q=zinme, k-2 ML 70560 0 107

Unit: ft

ml o]
Plane  Sectfon Crop € xS . W MR e 5 T
(10*)
1 Com 3,6 100 .09 1.000 1.0526 2154 00406
4l ] Meadow 1.8 200 .09 506631 01002
L=39%0 1 Corn 3.6 300 18 1.527  1.3260 6604 40908
] Meadow 1.8 390 .17 LI 7374 01785
Total Bkl : B89 2.365
1 Corn 3.6 100 .20 1,650 1,393 2154 00765
bz 2 Meadow 1.8 200 .19 785 6810 4636 00947
L =450 3 Corm 3.6 300 .17 1.3010 E604
o 4 Meadow 1.8 400 17 742 LBI%6 8211 01735
5 Corn 3.6 450 .00 1,347 1.2197 4710 00664
Total Yag THAa3d  1.0197  2.004
1 Whest 2.5 100 .17 1.0: 1.0206 2154 00430
P3 H Meadow 1.8 200 .13 645 L7156 4636 01273
L,=380 3 Wheat 2.5 30 .12 L3085 6604 01420
] eadow 1.8 380 10 569 .606A 6452 1924
Total o Jroes 192
1 Wheat 2,5 100 .16  1.000 1.0000 2154 00370
- z Meadow 1.8 200 .14 673 7680 4656 01043
L wds0 1 Wheat 2.5 300 .16 1.000 1.0000 6604 01135
o ] Meadow 1.8 400 .14 673 L76L0 8 ,01051
5 Wheat 2.5 A4S0 )4 1.061 1,040 4710 o0
Tatal BET U5TEY  LE206  2.098

The details of computation are given in Table 6-2.
The overall Chézy C was obtained by substituting
o into Eq. (6-1) and then given in Table 6-3.

Table 6-3. Dimensions, areas, slopes, vegetation, and
Chézy C for cascade planes and channels.

Element Length Width** Area
Number*  (ft) (ft) n? T

1oty

Vegetation Chézy Slope
C"ﬂ

Pl 390 420 16.380 13.0 Corn-meadow 2.365 .11
P2 450 600 27.000 21.4 Corn-meadow 2.404 180
P3 380 350 13.300 10.5 Wheat-meadow 1.921 .136
P4 450 500 22.500 17.8 Wheat-meadow 2.0%8 .153
PS5 300 200 6.000 4.8 Pasture 1.8 .182
P6 225 310 6,980 5.5 Pasture 1.8 200
P? 490 275 13.470 10,7 Wheat 2.5 160
P8 245 510 12.435 9.9 Reforested 1.8 267
] 40 530 2.120 1.7 Hardwoods 2.0 133
P10 25 470 1.175 9 Hardwoods 2.0 100
Mm a0 470 1.410 1.1 Hardwoods 2.0 100
P12 65 530 3.445 2.7  Hardwoods 2.0 154
€13 130 2.0 20 .08
Cla 550 3.0 30 055
(413 500 4.0 35 .045
€16 500 .0 20 055
a7 50 5.0 40 .055
Total 126.3 100

* P = Plane, C » Channel with 1 to 1 side slope.
** Widths of planes or bottom widths of channels.
‘% Estimations of C for P1, P2, P3, and P4 refer to Table 6-2.
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Simulation of Hydrographs

Dimensions, areas, slopes, and vegetation, as
well as the estimated Chézy C for the elements in the
system, are given in Table 6-3. The soil texture
consists of 37 percent of mixed silt loams, 26 percent
of Keene silt load, 16 percent of Muskingum silt loam,
and 21 percent of Muskingum loam. Since no experimen-
tal data are available for infiltration, the param-
eters of infiltration function are assumed and several
trial computations made to estimate reasonably the
parameters, giving the outflow volume equal to the
outflow volume of the observed hydrograph. Defini-
tions of infiltration parameters in KINGEN 75 Program

(Rovey, et al., 1977), and the estimated values of
parameters are as follows: AL = the exponent param-
eter for decay curve = 0.6; B = the ponding time
parameter = 2.0; C = the infiltration scaling param-
eter = 3000 min; SI = the initial volumetric relative
water content = 0.5; SMAX = the maximum volumetric

water content under imbibition = 1.0; ROC = the wolu-
metric relative rock content = 0; and FMIN = the
minimum infiltrate rate at steady state condition for
a plane = 0.28 in/hr.

The precipitation record and the observed
hydrograph, as well as the simulated hydrograph, are
shown in Fig. 6-3. The simulated hydrograph fits well
the observed hydrograph.

—  Obseeved bydeageph

i |

Somulered Hydrogroph

K “,
i D oo
oL Lot L s RN
Q "0 0 a0 Ll L0 o i 60 80
timin ]
Figure 6-3. Observed and simulated hydrographs of the

event of June 12, 1957, Coshocton water-
shed, Ohio.

Comparison Between the Hydrograph Obtained by the
Distributed System and the Hydrograph Obtained by
Using the Overall Value of «o

Planes Pl, P2, P3, and P4 are considered as
single planes in the simulation of the above hydro-
graph. In order to demonstrate the feasibility of the
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method by using the overall parameter estimated from
detention storage, comparisons are made between the
hydrographs obtained by the distributed system and the
hydrographs obtained by using the overall «, for those
four planes, as shown in Fig. 6-4. The results show
that the hydrographs simulated by using the overall
values of « are almost identical to the hydrographs
simulated by the distributed systems. This example
demonstrates that the method of obtaining owverall
parameters from the detention storage is effective.
By using the overall parameters, this method greatly
simplifies computations in simulating the hydrographs
and makes the simulation very efficient.
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Figure 6-4. Hydrographs simulated by using the

overall parameter and by using the dis-
tributed system for contour-strip cropped
planes.



Chapter VII
CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

(1) A three-parameter model for hydraulic
resistance, postulated by assuming a flow through a
set of parallel channels with negative exponential
distribution of widths and equal water depth in the
channels, more precisely describes the relationship
between the discharge, Q, and the equivalent water
depth, h, for various kinds of roughness over a wide
range of discharge than the two-parameter model, Q =

ahm. does. The three-parameter model may be applied
to the effects on the hydrographs of changing land
use, as well as for the precise estimation of sediment
transport in overland flow.

(2) The two-parameter model requires much less
computer time for simulation of hydrographs in compar-
ison with the three-parameter model. When only the
high flows of hydrographs are important in hydrologic
analysis, the two-parameter model is simpler and less
expensive to wuse and implement in hydrograph
simulation.

(3) An equivalent uniform roughness can be used
for a watershed with nonuniform roughness over its
surface if the hydrographs from this watershed are
proved to be equivalent to the hydrographs of a water-
shed of equivalent uniform roughness for identical
rainfall excess patterns. The factors which affect
the application of the equivalent uniform roughness
concept are the differences between roughnesses,
relative subarea of a given constant roughnesses, and
the size of these uniform roughness subareas.

(4) For the experimental watersheds composed of
alternating strips of gravel and butyl surfaces, this
study shows that the linear uniformity of roughmess in
flow direction is much more important than the areal
uniformity of roughness for applying the equivalent
uniform roughness concept.

(5) For a watershed composed of equal width
alternate strips of two roughness surfaces along the
flow direction, the watershed can be approximated by
an equivalent uniform roughness surface, if the width
of strips is less than or equal to ome-sixth of total
flow length.

(6) The lumped parameters @ and m of the two-
parameter model for a watershed of equivalent uniform
roughness surface with equal weights of two rough-
nesses can be estimated by selecting o and m which
reproduce the equilibrium detention storage equivalent
to the average of the equilibrium detention storages
produced by the two uniform roughness surfaces of the
basic roughnesses.

(7) For a watershed composed of randomly
distributed surface elements of two roughnesses, a and
m can also be approximated by selecting the values of
@ and m which reproduce the equivalent detention
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storage matching the equilibrium detention storage
produced by the watershed of randomly distributed
roughness with distributed system. For a watershed
composed of six equal width strips, three gravel
strips and three butyl strips, this method is appli-
cable if the number of changes of roughness along the
flow direction is greater than three.

(8) For watersheds with nonuniform roughness in
the direction normal to the basic flow direction,
hydrographs can be simulated by using a distributed
system, i.e., by combining the hydrographs produced by
the individual surface elements.

7.2 Recommendation for Additional Work

The effects of spatial variability of roughness
on the runoff hydrographs have been investigated in
this study for watersheds consisting of two roughness
surface elements: (1) butyl surface, and (2) surface
of 1-1/2" diameter gravel with the density of 20

lbsfydz. These two surface elements have significant-
ly different roughnesses. For a watershed with alter-
nate equal width strips of butyl and gravel surface
elements, it was shown in this study that the caoncept
of an equivalent uniform roughness surface can be
applied, and the hydrographs well simulated by assum-
ing the watershed as having a uniform roughness, when
the width of strips is less than or equal one sixth of
total flow length. As stated in Section 1.2, the size
of strips inm applying the concept of an equivalent
uniform roughness surface is related to the difference
between two roughnesses and to relative weights of two
roughnesses. Further investigations might search for
the relationship among these three factors.

A runoff hydrograph from a watershed with surface
depressions may be much different from a hydrograph
from a surface having the upright obstructioms. The
rising limb of the hydrograph starts late and the flow
rapidly increases after depressions are completely
filled. A further investigation may search for an
adequate hydraulic resistance model for a surface with
depressions and determine the effects of its spatial
variability on hydrographs. This kind of surface
often exists in the area of contour cropping where the
contour ridges of farming run along the contour lines
of the topography.

In application of the methods used in this study
for simulation of hydrographs, the time of travel of
overland flow for the watershed with various vegeta-
tion strips can be estimated. Consequently, the
effect of vegetation management on flow retardation
may be investigated. This would provide some useful
information for evaluating the effects of vegetation
buffer strips in controlling the non-point sources of
pollution.
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APPENDIX A

OUTFLOW DISCHARGE CORRECTION

The outflow systems of the rectangular section
and the conic section are shown in Fig. A-1(A) and
(C). The outflow hydrograph observed at the end of
the measuring flumes should be corrected for storage,
s0 that it becomes the outflow hydrograph at the end
of the experimental watershed. Since rectangular
watershed has a converging section between the water-
shed and the flume, the corrections for both the dis-
charge at the converging section and the flume are
required. The conic section required only the correc-
tion at the flume.
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Figure A-1. Outflow systems of rectangular and conic

section.

A.1 Correction of Discharge for Storage Effect in
Flume

The most common reservoir flood routing method is
used for this correction, namely

I ~A -0+« A =AS

1 1 e
3 (I1 + 12) At 3 (01 + 02} At = 32 31

g o =
I2 X (s2 sl) +0, +0 I

in which, I = the inflow rate into the reservoir,
0 the outflow rate from the reservoir, § the
storage, At = the constant time increment in routing,
and subscripts 1 and 2 refer to the beginning and the
end of a time increment. The difficulties in routing
from the downstream hydrograph to the upstream hydro-
graph are that the routed hydrograph will oscillate
strongly if there is a slight oscillation in the
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relationship of storage versus time due to
measurement errors. The storage should be smoothed
out first by following Eq. (A=2), as schematically
shown in Fig. A-2. Let the subscript n be the index
of the time increment,

+5) +3 (s 45, D1 (a-2)

n-1 n+l

with Sn the storage in the flume from the observed

stage in the flume, and S'I_t the corrected storage

to be used in the routing. The error in estimation
of the inflow at the beginning portion will also
cause an exaggeration of the oscillation in the
latter portion. In order to avoid an exaggeratiom of
this oscillation, the average of the two successively
computed discharges was taken for computation in the

next step as follows. The basic equations are:

-

1 =
2At - 3 (In—l + In'i-l} - 2At 3 {ﬂn_l + 0n+1J =
51'rl‘1 - Sn-l
=l (s, -s )+0 40 -1
n+l At ““ntl n=1 n-1 n+l n-1
i mg i b ) (A-3)
n 2 Yn=1 ntl’"’
Assuming lo =0, I'l1 = the computed inflow rate

before taking the average, In = the inflow rate after

taking average and to be used in the routing, the
steps of computations are as follows:

1
5(52-So)+00+0 1c:p

2

—
1

1 |
153 (Io - 12)

.opr = L - -
12. 13 = A (53 Sl} + 01 * 03 Il
=1 1
L= +%) .
I: I} =2 (8, =8,)+0,+0, -1
37 T4 At Y4 2 2 4 2
il 1
Iy=g U+ 1
and so on. The computation steps are schematically

shown in Fig. A-2. The inflow hydrograph so obtained
will be the outflow hydrograph of the watershed at
the upstream end of the flume.

A.2 Correction of Time Lag in Converging Section
Because the converging section had a cover on

it, there was no lateral inflow into the section.

The inflow from the upstream end of the converging



section went over the dry surface at the beginning. '

This caused a surge wave at the very beginning of the
hydrograph, for which the analytical solution of the
kinematic wave equations may not be applied.

o—s—= Qnginal Sterage Curve
o-< =0 Storage Curve After
Smocthed Out

Y
(b) Steps of Inflow Routing

Figure A-2. Schematical representation of storage
curve smoothing and steps of inflow
routing.

However, considering the whole hydrograph, the

analytical solution may be applied because the errors
at the very beginning will not affect the total
hydrograph very much. The time lag was divided into
two parts: the time lag in the converging section,
and the time lag in the upstream part of the flume
where no storage occurred.

Converging Section

The converging section was approximated by a
conic section as shown in Fig. A-3(A). The equation
of continuity for the converging section with zero
lateral inflow is

dh _ 3(ubh) _ uh

3t T ox (€]

(A-4)

and

u = ﬂh.‘-l.

(A-5)

in which, h = the water depth, u = the velocity, «
and m = constants, and Lo and x = defined in Fig.

A-3(B). The characteristic equations are

dx _ m-1

" omh (A-6)
and
m
g% =I. Ehx d (a-7)
0
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The analytical solution shown abové can be employed
only when o« and m are constant over the surface.
Since the laminar-turbulent friction law was used for
determining o and m , the length in the x-directign
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Figure A-3.

was divided into small segments for integration. For

convenience, (I.o - x) in the above equation is de-
noted by x in the following computation as shown in
Fig. A-3(D). The characteristic equations are:
A% cooomel i
at - omh (A-8)
m
dh _ oh” -
o =52 (A-9)
dh _ _h_ "
i~ (A~10)

Taking a section between % and X, and integrating

Eq. (A-10), then:

b X

= or x B = x h™ = constant through x along

h; o | : 1 | 2 2 the character line.
ZItxlﬂ o nx,0

a(—5gg~) by = al—g5~) b, = Total discharge = Q.

(A-11)



h= e,

Substituting Eq. (A-12) into Eq. (A-8), then

m-1 i
%=-m(]~§2m, dt=-—ImT1x'dx
om K™
2 . B
Itdt=---—EJ_x dx
Y m K™ %2
2m-1 2m-1
I | . _m m m
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. b m m
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For each segment, the lag time is

1
1/m

At

1]
—~
=
ot
]
=

1

(2m-1)a' /Mg /¢! "

(A-14)

For an outflow discharge Qt the total time lag in the

converging section may be obtained by adding At in
segments.

Rectangular Section

Because of the concentration of flow in the
flume, only the turbulent friction law is used. The
characteristic equations for the rectangular section
are:

Q m-1 1 1
dx _ Ml o (-t ™ = Pty 3
qc = om h = ‘m(w-u) = o rn[w m
” 1
At = LD QT-]-_- e
malfn(ﬁi) m

with W = the width of flume, Lo = the length of flume

excluding the part which has storage, and t = the time
lag in flume. Computations showed that the time lag
in the upstream part of the flume is very small and
negligible due to the concentration of the flow.
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models are compared by differences of simulated hydro-
graphs with optimized parameters and observed hydro-
graphs at the Rainfall-Runoff Facility at Colorado
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