
DISSERTATION

RAPID EARLY DESIGN SPACE EXPLORATION USING LEGACY DESIGN

DATA, TECHNOLOGY SCALING TREND AND IN-SITU MACRO MODELS

Submitted by

Charles V.K. Thangaraj

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall, 2009

UMI Number: 3401003

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Dissertation Publishing

UMI 3401003
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

COLORADO STATE UNIVERSITY

Nov 9, 2009

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER

OUR SUPERVISION BY CHARLES V.K. THANGARAJ ENTITLED RAPID EARLY

DESIGN SPACE EXPLORATION USING LEGACY DESIGN DATA, TECHNOL­

OGY SCALING TREND AND IN-SITU MACRO MODELS BE ACCEPTED AS

FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY.

Committee on Graduate Work

George^Cillins

A
Anthony Maciejewski

Advisor: Tom Chen

Department Head: Anthony Maciejewski

n

ABSTRACT OF DISSERTATION

RAPID EARLY DESIGN SPACE EXPLORATION USING LEGACY DESIGN

DATA, TECHNOLOGY SCALING TREND AND IN-SITU MACRO MODELS

CMOS technology scaling trend, i.e. the doubling of the operating frequency and

the doubling of the number of transistors on a die every eighteen months, also know

as Moore's Law has been a fundamental driver for the semiconductor industry for

well over three decades. Scaling CMOS technologies into deep sub micron especially

into sub 100 nm dimensions have caused a significant shift in business and design

philosophy, and methodology. In addition to the semiconductor industry maturation

there are seven key disruptive trends impacting the semiconductor industry. They are

competitive landscape changes, technology convergence, greater global connectedness,

increased design complexity, commoditization, consumerization, and the soaring re­

search, development and engineering costs. These disruptions have made traditional

business models increasingly ineffective and the benefits of Moore's Law insufficient

for sustained competitiveness [1]. 'More-than-Moore' approach to heterogeneous sys­

tem integration and holistic system optimization strategies in addition to the benefits

of technology scaling are necessary for future success [2] [3].

Embedded computation systems and microprocessor designs have significantly

benefitted from "cramming" more transistor on a single die. When memory is in­

cluded on die (with large amounts of cache on die) the latency incurred in moving

data and instructions to the computation units reduces sharply, increasing the overall

iii

instruction execution rate and ultimately increasing performance. Increase in oper­

ating frequency being another aspect of technology scaling, improves the number of

instruction executed per unit time. In a superscalar execution pipeline, increasing

operating frequency increases overall instruction execution rate and throughput. The

conventional design flow for computation engines (embedded computation systems

and microprocessors) starts with architectural design followed by physical design. In

nanometer CMOS technologies, successful physical implementation of a highly opti­

mized architectural design is not guaranteed due to power consumption variations,

signal integrity and processing challenges.

Consequently, design convergence in both power and performance have become

increasing difficult with increasing levels of system integration, design complexity and

technology scaling related uncertainties. As a result, traditional compartmentalized

design methodologies are no longer sufficient as they lead to designs that are pes­

simistic, slow and/or power hungry. A holistic and systematic understanding of the

various design tradeoffs and exploring the design solution space extensively early in

the design phase improves design convergence. Some design challenges can be best

addressed at the circuit level, others are most effectively addressed at the architecture

or system level. With increasingly competitive business conditions dictating design

cycle times and time-to-market window, a thorough design space exploration at an

early stage of a design can put the design in an optimal subspace for better con­

vergence and for avoiding costly redesigns later on in the design cycle. Rapid and

effective design space exploration at all stages of a design process enables faster de­

sign convergence and meeting time-to-market stipulation. Design space exploration

is important and particularly effective during the early stage of a design where design

decisions can have a significant impact on design convergence. A holistic approach

to system design is possible only when design tools and aids that incorporate high

iv

level system models are easily available to perform tradeoff analysis and design space

exploration.

This work proposes a system level design framework for early design space ex­

ploration with a focus on power and performance tradeoffs using analytical power

and performance prediction models. The analytical prediction models are driven by

legacy design data, technology scaling trend, low level physical design parameters and

in-situ simulations. Experiments on ISCAS benchmark circuits validate the feasibility

of the proposed approach and yielded power centric designs that improved power by

7% - 32% for a corresponding 0% - 9% performance impact; or performance centric

designs with improved performance of 11.25% - 17% for a corresponding 2% - 3.85%

power penalty. Evolutionary algorithm based Pareto analysis on an industrial 65 nm

design uncovered design tradeoffs which are not obvious to designers and optimize

both power and performance. The high performance design option of the industrial

design improved the straight-ported design's performance by 29% with a 2.5% power

penalty, whereas the low power design option reduced the straight-ported design's

power consumption by 40% for a 9% performance penalty.

The design framework and methodology developed and demonstrated in this

work form the foundational steps for early design space exploration utilizing technol­

ogy scaling trends, process dependent parameters and in-situ simulations. Analytical

prediction models are currently limited only to predicting power and performance.

Prediction models for yield, chip area and system reliability are seen as valuable future

additions to EIDAs capability. Modeling the impact of process variation and the abil­

ity to incorporate statistical inputs and outputs are seen as an another incremental

improvement to EIDAs value as a design tool. In addition to the above improve­

ments, a macromodel based critical path delay calculation technique including clock

and signal uncertainties, incorporating special libraries, RF and analog modules in

v

the system model and, improving the evolutionary algorithm used for design space

exploration are salient direction for future research.

Charles V.K. Thangaraj
Department of Electrical and

Computer Engineering
Colorado State University

Fort Collins, Colorado 80523
Fall, 2009

VI

ACKNOWLEDGEMENTS

"If I have seen further than others, it is by standing upon
the shoulders of giants." - Sir Isaac Newton

"The horse is made ready for the day of battle, but victory
rests with the LORD." - Proverbs 21:31

I am forever grateful to my graduate advisor, Dr. Tom Chen, for his constant

support and guidance in the pursuit of my academic goals.

I thank Dr. George Collins, Dr. Anura Jayasumana, Dr. Anthony Maciejewski

and Dr. Philip Chapman, members of my graduate committee, for their support

throughout the program. I would also like to specifically thank all members of the

VLSI System Architecture Lab, Colorado State University, for their invaluable help

and support.

Special thanks to Bea & Carl Mohr and the Mohr family, Lynn & Jeffrey Smith,

for their well wishes and many friends who where with me through thick and thin.

I would also like to thank all my teachers from Stanes High School, Kumaraguru

College of Technology and Colorado State University on who's shoulders I stand.

Last but not the least, I thank my lovely parents and brother, for being my constant

source of inspiration and for having faith in me.

Above all, I humbly give all glory to my Lord Almighty for His grace and blessings

to undertake this arduous journey, without whom nothing is possible !

vii

CONTENTS

1 Introduction 1
1.1 CMOS Technology Scaling 1
1.1.1 Technology Scaling and System Level Design 4
1.2 Semiconductor Industry Trends and Challenges 6
1.2.1 Business Trends 6
1.2.2 Manufacturing Technology Cost Challenges 7
1.2.3 Design and EDA Tool Challenges 9
1.3 Motivation and Objective 11

2 Background Information, Existing Methodologies and Approaches 13
2.1 Overview 13
2.2 System Level Power Performance Optimization 14
2.2.1 SimpleScalar Toolset 16
2.2.2 SimplePower Toolset 19
2.2.3 Wattch Toolset 22
2.2.4 AccuPower Toolset 25
2.2.5 PowerTimer Toolset 27
2.3 RT-Level Power Performance Optimization 31
2.4 Physical Level Power Performance Optimization 35
2.4.1 BACPAC Toolset 38
2.5 Shortcomings of Existing Tools and Methodologies 41

3 The Proposed Approach 45
3.1 Overview 45
3.2 Proposed High Level Modeling Methodology 45
3.3 Module Descriptor Vector Elements 49
3.3.1 Legacy Design Descriptors 50
3.3.2 Target Process Technology Descriptors 51
3.3.3 In-situ Simulations and Descriptors 52
3.4 Proposed Analytical Power and Performance Modeling Methodology . . . 54
3.4.1 Dynamic Power 54
3.4.2 Leakage Power 56
3.4.3 Operating Frequency 58
3.4.4 Effect of Vdd Scaling 59

vm

3.4.5 Procedure to Find Coefficients X and Y in Eqn 3.26 61
3.4.6 Procedure to Find ABBC, ABBPC, STC, STPC and DVTC Descriptors 62
3.5 Proposed Methodology for Rapid Early Design Space Exploration 66
3.5.1 Estimating Module Power and Performance 66
3.5.2 System Design Target Prediction 67
3.5.3 Design Space Exploration 67
3.5.4 Evolutionary Algorithms for Design Space Exploration 70

4 Proposed Design Space Exploration Methodology: Experimental
Setup 71

4.1 Overview 71
4.2 Experiments in Technology Node Migration 72
4.2.1 Applying Module Granular Circuit Level Design Choice 74
4.3 Design Target Prediction Accuracy 75
4.3.1 Successive Design Porting From 180 nm to 65 nm Technologies 76
4.3.2 Design Space Exploration of the Test Circuit in 32 nm Technology . . 78
4.4 Evolutionary Algorithm Based Design Space Exploration 79
4.4.1 Design Migration 80
4.4.2 Pareto-Analysis Using Randomized Design Generation 80
4.4.3 Pareto-Analysis Using EA Based Design Generation 85

5 Experimental Results, Discussion of the Results and Future Work 89
5.1 Results of Experiments In Technology Node Migration 89
5.1.1 Technology Node Migration Experiment Observations 98
5.2 Results of Design Target Prediction Accuracy 100
5.2.1 Results of Successive Design Porting From 180 nm to 65 nm Technologies 100
5.2.2 Results of Design Space Exploration of the Test Circuit in 32 nm Tech­

nology 102
5.3 Results of Evolutionary Algorithm Based Design Space Exploration . . . 103
5.3.1 Results of Pareto-Analysis Using Randomized Design Generation . . . 103
5.3.2 Results of Pareto-Analysis Using EA Based Design Generation 109
5.3.3 Pareto-Front Decrowding Replacement Schemes 110
5.3.4 Figures of Merit: Stoping Criteria 112
5.3.5 Results of Pareto-Analysis Using the IRRR Scheme on ISCAS89 Circuit 117
5.4 Discussion of the Results 119
5.4.1 Impact of ABB Design Choice 119
5.4.2 Prediction Model Complexity: Impact of Model Parameters 121
5.4.3 Pareto-front Quality: Impact of Evolutionary Algorithm 124
5.5 Conclusion 125
5.6 Future Work 127

6 Acknowledgement 129

IX

A C o m m o n Design Techniques Incorpora ted into t h e E I D A Tool 130

B Code for Sys tem Design Targe t P red ic t ion 136

C Code for EA Based Design Space Explora t ion 142

D G U I I m p l e m e n t a t i o n of E I D A 148
D.l Screen Captures of the GUI 148
D.2 TCL/Tk Code for the GUI 155

Bibl iography 184

x

LIST OF FIGURES

1.1 ITRS clock frequency trend up to the year 2020 . 2

1.2 Clock rate for high performance microprocessors from Dec '92 to May '02 3

1.3 Transistor L, Vdd and V* through 2020 4

1.4 ITRS Roadmap for gate and wire delay through process nodes 5

2.1 Design flexibility, solution time and tool complexity 14

2.2 System level optimization flows 15

2.3 An overview of SimpleScalar toolset 17

2.4 SimpleScalar pipeline model 18

2.5 SimpleScalar internal organization 18

2.6 SimplePower internal organization 20

2.7 SimplePower switching capacitance table for bit-dependent microarchitec­

tural blocks 22

2.8 Wattch internal organization 23

2.9 AccuPower internal organization 26

2.10 PowerTimer internal organization 27

2.11 PowerTimer pipeline model 28

2.12 PowerTimer microarchitectural block power model 30

2.13 Typical RTL power estimation flow 32

2.14 Interconnect parasitics model 39

2.15 Steps to estimated delay in BACPAC 40

xi

2.16 Steps to estimated dynamic power in BACPAC 41

3.1 Critical paths and modules 47

3.2 Fanout of four configuration 48

3.3 A partitioned system shown with module # 3 abstracted with F04 inverters

and its corresponding descriptor vector 49

3.4 Experiment to obtain STC and STPC factors . 62

3.5 Experiment to obtain ABBC and ABBPC factors 64

3.6 Experiment to obtain DVTC factor 66

3.7 Application of a design choice to a module 67

3.8 Rapid early design space exploration flow chart 69

4.1 Benchmark circuit partitioning with critical path shown 73

4.2 Test system to determine prediction accuracy 76

4.3 Procedure to compare EIDA and SPICE 78

4.4 Block diagram of an modern microprocessor. B / I /M/FP: branch/ integer/

memory/ floating point units; ALAT: advanced load address table;

TLB: translation look-aside buffer 81

4.5 a) Simple randomizer algorithm b) Complete randomizer algorithm . . . 84

4.6 (a) Chromosome for evolutionary algorithm based pareto analysis. A com­

plete list of all design choices is listed in Table 4.6 (b) A valid chromo­

some (12,9,3,0, ,9,7,10,11) 86

5.1 C5315 design choices 91

5.2 C6288 design choices 92

5.3 C7552 design choices 93

5.4 S38584 design choices 94

5.5 S132007 design choices 95

xii

5.6 S38417 design choices 95

5.7 S15850 design choices 97

5.8 S9234 design choices 98

5.9 Observed technology scaling trends for power and performance 100

5.10 Observed prediction error with respect to SPICE 101

5.11 Pareto-front analysis results 104

5.12 Design # 9 details 106

5.13 Design #11 details 106

5.14 Design 14 details 107

5.15 Design 13 details 108

5.16 EA pareto-front progression - baseline with no replacement 109

5.17 EA pareto-front progression - with EER I l l

5.18 EA pareto-front progression - with IRRR I l l

5.19 Figure of merit for pareto-front solution quality 113

5.20 Figure of Merit for pareto-front solution spread 113

5.21 Pareto-front analysis results 115

5.22 Details of system design A from Fig 5.21 116

5.23 Details of system design B from Fig 5.21 117

5.24 Pareto-front with IRRR at 50K iteration for ISCAS89 s38584 and s38417

circuits 118

5.25 Figure of merit for ISCAS89 s38584 and s38417 circuits Pareto-front with

IRRR solution quality 118

5.26 Figure of Merit for ISCAS89 s38584 and s38417 circuits Pareto-front with

IRRR solution spread 119

5.27 Impact of ABB design choice 120

A.l An illustration for using sleep transistors for power gating 131

xiii

A.2 An illustration for multiple V ^ zones in a design 132

A.3 An illustration for clock gating technique 133

A.4 Decoupling capacitance allocation in a standard cell design 134

D.l Invoking the EIDA tool's GUI from the command prompt 148

D.2 Entering the number of modules in the design 149

D.3 Confirming the number of modules and choosing interactive run type . . 149

D.4 Entering the process dependent descriptors 150

D.5 Entering the command file name to save the entered data 151

D.6 Entering VDD scaling descriptors 151

D.7 Entering modules descriptors for each module in the system 152

D.8 Entering design choices for each module in the system 153

D.9 System power and performance for the chosen module design choices . . 153

D.10 EIDA tool used in batch mode from the command prompt. A command file

corresponding to the modules in the system and their respective design

choices has to be created prior to invoking EIDA from the command

prompt 154

xiv

LIST OF TABLES

3.1 Descriptors from legacy design 50

3.2 Target process technology descriptors 52

3.3 Circuit-level design choices requiring In-situ simulations 53

3.4 Descriptor vector elements from in-situ simulations 54

3.5 Algorithm ST_size_evaluate 63

3.6 Algorithm ABELevaluate 65

4.1 Benchmark circuit details 72

4.2 Assumed descriptor and coefficient values for 180 nm TSMC to 130 nm

PTM technology porting 73

4.3 Module-granular circuit-level design choices 74

4.4 Assumed descriptor and coefficient values for 180 nm to 130 nm PTM &:

130 nm to 90 nm PTM & 90 nm to 65 nm PTM k 65 nm to 32 nm

PTM 77

4.5 Assumed descriptor and coefficient values for 65 nm to 32 nm PTM . . . 82

4.6 Valid available additional design choices 83

4.7 Seed recipes for pareto-front analysis 83

4.8 Summary of evolutionary algorithm based pareto analysis 87

5.1 Technology mode migration results 90

5.2 Circuit C5315 migration results 91

5.3 Circuit C6288 migration results 92

xv

5.4 Circuit C7552 migration results 93

5.5 Circuit S38584 migration results 94

5.6 Circuit S132007 migration results 96

5.7 Circuit S38417 migration results 96

5.8 Circuits S15850 & S9234 migration results 97

5.9 EIDA and SPICE comparison 102

5.10 Modular design choices for designs #14, #13 , # 8 and #10 105

5.11 Power and performance sensitivity of selected model parameters 122

5.12 Power and performance sensitivity of selected model parameters with re­

duced de-coupling capacitance 123

xvi

Chapter 1

Introduction

1.1 C M O S Technology Scaling

CMOS being the dominant technology used in VLSI systems has scaled well into

deep sub-micron (DSM) sub 100 nm feature sizes. CMOS technology scaling is ex­

pected to continue the current trend and scale into sub 10 nm feature sizes in the

coming decades. Current state-of-the-art production CMOS process has a minimum

feature size of 45 nm and 32 nm technologies are currently being piloted for produc­

tion. The semiconductor industry road map predicts that CMOS technologies with

a minimum feature size of 6 nm will be developed by the year 2020 [4]. The benefits

of technology scaling include reduced manufacturing cost per transistor, reduction in

energy per logic function implemented on chip, and increase in the number of logic

functions (i.e. transistors) that can be integrated on a single die. As feature sizes

reduce, the evaluation time required for a logic function implemented in these tech­

nologies reduce due to faster transistor switching times. Reduction in evaluation time

translates into an increase in the number of evaluations completed per unit time, in

other words, an increase in performance. Improved performance and the reduced cost

of integrating logic functions on chip are very favorable for business. The economic

benefits of scaling have been very tangible and companies want this trend to continue

well into the future.

Moore's Law [5] states that the number of transistors in a chip and the chip

operating frequency double every eighteen months. Global semiconductor industry

competitive landscape dictate that semiconductor companies abide by this law and

scale their manufacturing process to stay relevant in the globalized market place. In

addition to device size the operating frequency also doubles every eighteen months.

As a result, designs in scaled technologies become faster. Due to the higher integration

potential of the scaled technologies, designs have become bigger, more powerful and

more capable in terms of functionality. For example, technology scaling has enabled

microprocessor companies to design microprocessors with higher operating frequency

compared to their preceding generation designs. A recent high performance micro­

processor designed in a 65 nm SOI process operates at a core clock frequency of 4.7

GHz [6].

70,000 -

60,000 -

50,000 -

40,000 -

30,000

20,000 -

10,000 •

20

Expected MPU core frequency Vs Year

je
hc

yj

•'it-

05 2010 Year 2015 20 20

Figure 1.1: ITRS clock frequency trend up to the year 2020

The ITRS (international technology road-map for semiconductors, predicts the

core operating frequency for high performance microprocessor as shown in Fig 1.1.

At present CMOS technologies with minimum feature size in the range of few tens

2

of nanometers are becoming relatively commonplace allowing higher operating fre­

quencies [7,8]. As shown in Fig 1.1 the projected microprocessor core operating

frequency for the next decade is upwards to 73 GHz. Aggressive scaling enables de­

signer to design chip that meet the ever increasing demands of increased functionality

by scaling designs to newer and advanced CMOS processes. In addition to increased

functionality the newer technologies enable designs with higher operating frequencies.

Fig 1.2 [9] shows the microprocessor core operating frequency trends in the past, i.e.

from the December 1995 to May 2002.

Figure 1.2: Clock rate for high performance microprocessors from Dec '92 to May '02

Technology scaling along with its benefits has numerous challenges. A very im­

portant challenge is the closing gap between the supply voltage V ^ and threshold

voltage Vt a s shown in Fig 1.3. This means that the transistor cannot be turned

off effectively and thus lead to a dramatic increase in leakage currents. The increase

in leakage is further compounded by the decreasing transistor lengths which lead to

a decrease in Vt- Leakage power consumption in state-of-the-art high performance

microprocessor designs can be as much as 30 to 40% of the total power consump­

tion. Due to the higher levels of integration the total switching capacitance load

(normalized to technology) increase. Higher operating frequencies leading to higher

3

switching rates result in an increase in thermal induced instabilities and switching

related signal integrity uncertainties. Another direct impact of scaling is the explo­

sion in the number of interconnects, particularly long global interconnects as the die

sizes increase. Increasing interconnect densities will lead to a reduction in signal

integrity and preventive measures to improve signal integrity, which are costly are of­

ten necessary. With increasing operating frequency and distances, global signals have

to travel faster and longer than they did earlier resulting in an increased need for

repeaters in global interconnects. Consequently resulting in tighter delay tolerance,

design tolerance and an increase in repeater power consumption [10-12].

1 -

0.8

0.6

0.4 -

0.2

20

Expec ted V D D / Vt and Gate L Vs Year

•Vddj QKiin

\

"ysfiis

,^y' S v
- x .

" "

* -

\

vc>

-u

S'J'.'8f

\

*m=

—

wss.

\

Stjjr

Ga :e L in

^ ^ r=B*-

05 2010 Year 2015

n m

*mmm

- 30

- 25

20

- 15

10

• 5

2020

Figure 1.3: Transistor L, V ^ and Vt through 2020

1.1.1 Technology Scaling and System Level Design

The effects of technology scaling impact the design process of a VLSI system in

a number of different ways. Notably technology scaling exasperates the effect of man­

ufacturing process variation. When the critical dimension or the minimum feature

sizes (CD) reduces, the tolerance in manufacturing variation can approach the CD

or be the same order of magnitude as the CD. Therefore manufacturing variations

can significantly alter gate delay, interconnect delay, threshold voltage V^, gate oxide

4

thickness tox, gate area, leakage current variations and SRAM stability among many

others, leading to increased design uncertainties. In addition to manufacturing vari­

ability lithographical limitations impact device and interconnect characteristic and

composition.

Figure 1.4: ITRS Roadmap for gate and wire delay through process nodes

Fig 1.4 shows the growth in wire delay through various process technologies.

Global interconnects have become performance limiters at the system level due to

exponentially increasing wire delays. Interconnect composition (width, pitch and

thickness) variations causes uncertainties in interconnect delays [13]. To include in­

terconnect uncertainties designers focus on the worst case which results in pessimistic

over designing of interconnect drivers and increased power consumption. It is very

important to accurately estimate interconnect delay as the critical path delay has a

significant interconnect delay component which ultimately determines system perfor­

mance. The same is true for gate delay as well. The variations in gate L or W, Vf

and tox manifests as uncertainties in switching speed, drain or on current (Ids) a s

well as leakage current. From a power consumption point of view it is very important

to be able to estimate the leakage currents to ensure that the design falls within the

5

power envelope specification [14]. SRAM stability, negative and positive bias tem­

perature instability [15] and SER (soft error rate) [16,17] vulnerability (all of which

are strongly influenced by scaling) will determine the minimum power supply voltage

Vdd [18], the system reliability [19] and the implementation of system level archi­

tectural error protection schemes [20]. Clearly technology scaling greatly influences

key design parameters which in turn impact system level design parameters and/or

system architecture.

1.2 Semiconductor Industry Trends and Challenges

1.2.1 Business Trends

The semiconductor industry has grown approximately 16% in the past decade,

with 9 to 10X revenue growth to around 200 billion dollars annually. The projected

growth for this industry in the next ten years is 6% annually with a projected revenue

of approximately 700 billion dollars annually by 2017 [21]. Microprocessors are the

most important of all semiconductor products and represents the high end of the

semiconductor industry's product line. The fierce competition in this market segment

compels companies to maintain an edge over their rivals to retain market share. In the

past decade, quick and successive introduction of new microprocessor architectures or

process technology improvements have proved to be a successful strategy to maintain

market share and profitability. Current leading microprocessor design companies try

to introduce new process technology or architectural advancements once every two

years.

The two year cycle in the microprocessor industry is increasingly difficult to

maintain, the reasons are attributed to the exponentially increasing cost of building

a new manufacturing or fabrication facility (fab). The cost of a 90 nm fab was US$2

6

billion whereas the cost for building a 45 nm, 300 mm wafer fab which is two genera­

tions ahead of the 90 nm fab is well over US$5 billion. Moreover the cost incurred in

developing a new 45 nm process technology was 30% higher than the 90 nm process.

The cost of research and development of newer (i.e. 32 nm, 22 nm, 16 nm and so on)

450 mm CMOS technology is expected to grow exponentially with each progressive

technology generation [21]. Given the high capital cost of developing newer fabs and

technologies, it is important for semiconductor companies to have very short design

cycles, smaller time-to-market, fewer re-spins (prototyping for testing and validation

before marketing), high yield and minimal operating cost to maintain market segment

share and profit margins. Design leveraging is a strategy used my most semiconductor

companies to achieve better return on investment. Design leveraging is the process

of porting an existing high end design to a newer technology to release the legacy de­

sign as a newer incremental product, swiftly. Design leveraging also includes reusing

parts of the existing high end design to create a product with a subset of features on

the original design targeted to the lower end of the market segment or a completely

different market segment. Design leveraging strategy attempts to reduce the time-to-

market for keeping the company's product lines fresh and its business attractive to

investors who continually seek value and good business fundamentals.

1.2.2 Manufacturing Technology Cost Challenges

The lithography process, especially in the sub 100 nm CMOS technology domain

had increased in complexity many folds in order to maintain high patterning qual­

ity [22] [23]. Sub-wave-length lithography (were the wave length of the light source

used in the manufacturing process is larger then the intended pattern size on the

wafer) and decreasing feature size tend to decrease patterning quality. The wave­

length of the illumination source used in lithography has changed very little over the

7

years and reticle enhancement techniques (RET) [24] have become commonplace to

improve lithographical patterning quality. Phase-shift masks, optical proximity cor­

rections (OPC) [25] and off-axis illumination (OAI) [26] are three major resolution

enhancement technologies that have enabled optical lithography extend into the nano

meter era. These techniques considerably increase the complexity of lithographical

masks. OAI in particular limits the pitches and sizes of the shapes the can be pat­

terned effecting transistor designs. Among new proposed technologies to improve

lithography, extreme-UV (EUV) lithography is promising however the cost of this

technology has remained prohibitive till date. An other cheaper alternative is immer­

sion lithography which is shown to be practical, however there are many mechanical

problems with this technology that needs further development [27,28].

Sub-wave-length lithography and the additional complications introduced by

phase-shift masks, OPC, OAI and other sub-resolution assist features (SRAF) in­

crease the variability in semiconductor manufacturing. Process variations (PV) in

doping densities, gate oxide thickness, field oxide thickness and gate dimension alters

the characteristic of transistors by introducing uncertainties in transistor on-off cur­

rents, Vf, gate leakage and junction leakage currents [29]. Smaller the feature size

more pronounced are the effect of process variation motivating the need for expensive

RETs. Designers (as opposed to the technology developers) have tackled the un­

desirable outcome of PV by employing design for manufacturing (DFM) techniques

during the design process. DFM techniques usually involve additional design rules

to help improve pattern quality and reduce the impact of PV. The limitation of this

technique is that as CMOS technology scales, there will be an explosion in DFM rules

further restricting and complicating the design process.

Given the high cost of manufacturing, challenges remain in reducing manufac­

turing cost. However until a suitable and relatively inexpensive solution is identified,

8

semiconductor companies have to contend with existing technologies and rely upon

efficient design methodologies to keep cost to a minimum and thus remain profitable.

1.2.3 Design and EDA Tool Challenges

As explained in Section 1.2.1, design leveraging and re-optimizing existing de­

signs have become common design approaches to reduce design cost. Since leveraged

or re-optimized designs have very specific goal of either boosting performance or re­

ducing power or optimizing both; huge cost savings are possible when designs are

leveraged or re-optimized. While some of the design goals may be obtained through

porting a design to a newer technology, often additional tweaking of the ported de­

sign in the newer process is necessary. Lithography challenges in the newer technology

generations result in physical device topology restrictions making design convergence

more difficult. In addition to these restrictions, since many features do not scale well,

co-optimization and design of the devices, the circuits and the layout are absolutely

essential to successfully port designs to newer technologies.

With companies opting for quick and successive introduction of newer products

in the market, the time available for product design (i.e. design cycle time) reduces.

This implies that design teams have to increase in size (which may not be possible or

desirable) or need to be more efficient and turnout high quality designs that reduce

the need for expensive re-designs and debugging. A thorough design space exploration

at an early stage of a design can put the design in an optimal subspace for better

convergence whereby avoiding expensive redesigns later on and improves the design

team's efficiency.

Conventional design flow starts with the system architectural design followed

by physical design [30]. System architects base their design decisions on expert

knowledge and assumptions regarding many aspect of the physical design process.

9

In nanometer CMOS, however, physical implementation and design convergence of

a highly optimized architectural design is not guaranteed due to increasing leakage

power, process variation effects, thermal density issues, signal integrity degradation

and lithographical challenges [4]. The physical design process tries to optimize and

often tradeoff design objectives such as performance, power consumption, reliability

and yield despite the fact that the design objective are deeply intertwined with each

other [31,32]. Under stiffer time-to-market stipulation dictated by business needs,

making optimal and correct design choices at each design phase becomes imperative.

This is especially true at the architectural design phase where design decision have

a greater impact on design convergence. Since the physical design convergence of a

highly optimized architectural design cannot be guaranteed, a quick feasibility anal­

ysis of all the architectures considered will help in choosing an architectural solution

that is implementable and has a higher chance of design convergence.

Existing EDA tools typically address specific design aspect such as timing or

power in an accurate and detailed manner. They do not address the overall sys­

tem level design trade-off, implementation feasibility analysis, and fast turn-around

what-if analysis often required for assisting designers to meet design quality and time-

to-market requirement [33]. Even though a collection of existing tools may be utilized

to perform the above tasks, inter-operability overhead and their nature of lower level

detailed analysis makes such a concoction too slow for quick feasibility analysis re­

quired for effective design space exploration. Therefore newer design tools and design

aids that incorporate system level models and are fast and sufficiently accurate need

to be developed. These tools can then be used during the early design phase or archi­

tectural design phase for design space exploration and tradeoff analysis and can help

in choosing optimal system design for implementation. Doing this would improve

design convergence and help meeting time-to-market stipulation.

10

1.3 Motivation and Objective

Business, technology and tool challenges faced by the semiconductor industry

have resulted in tighter design cycle time, increased difficulty in design convergence

and a need for newer design tools and aids to improve first pass design successes.

A thorough design space exploration at an early stage of a design puts the design

in an optimal design subspace enabling better design convergence. Existing conven­

tional design flows lack the ability for performing early rapid design space exploration

capable of reducing the need and extent of expensive last-minute re-designs.

Most modern high performance designs tend to improve and build on compa­

rable existing designs. Sophisticated design exploration methodology and tools are

especially suited for such leveraged designs since the parameters in the system level

models have higher confidence level than those for ground-up designs. The work de­

scribed in this dissertation is motivated by the lack of fast and effective design space

exploration tools and the shortcomings of the existing approaches. The goal of the

proposed method is two folds. First, to develop a high level system modeling method­

ology which includes low-level physical design parameters to provide more realistic

constraints for design space exploration. Second, to develop a design framework for

early design space exploration consisting of the high level system models and analyt­

ical models that can be used to estimate design targets such as power consumption

and (maximum operating frequency) performance.

Designing large systems such as high-end multi-core microprocessors and com­

plex system-on-chips (SOCs) are often performed by multiple design teams in parallel

with each team focusing on a portion (sub-system) of the larger system. In such an en­

vironment, compartmentalized design optimizations done by individual design teams

do not guarantee global design optimality. To ensue and achieve global design opti-

mality, a holistic approach to design tradeoff and optimization is needed [2,3]. This

11

work focuses on performance and power optimization and tradeoff analysis during the

early design space exploration phase when complete bottom-up implementation data

is not yet available. The proposed analytical models include prediction models for

leakage power consumption, dynamic power consumption and maximum operating

frequency. Utilizing legacy design data, technology scaling trend data and allowing

in-situ macro-model generation and simulation, the proposed framework is positioned

for more realistic estimates of the impact of circuit level design choices for a given

design. The proposed evolutionary algorithm based design space exploration method­

ology and the modeling of a system as a collection of modules (or sub-systems or sub-

design) where the modules are independently characterized allows for modeling and

analyzing large designs with large design spaces without significantly disproportionate

increase in system modeling efforts.

12

Chapter 2

Background Information, Existing
Methodologies and Approaches

2.1 Overview

Design convergence in both power and performance have become increasing dif­

ficult with increasing levels of system integration, design complexity and technol­

ogy scaling related uncertainties. Consequently, early design phase design validation

through power performance tradeoff analysis and design space exploration have thus

become an integral part of the standard design flow. This can be performed at various

stages in the design process such as;

• Power performance optimization at the system level

• Structural or logic optimization at the RTL level

• Library optimization at the physical level

• Process technology (SPICE model) optimization at the foundry level

The physical design convergence of a highly optimized architectural design in

nanometer CMOS is not guaranteed. The likelihood of physical design convergence

5 5"

o 01

=r 3
3 s-

Architectural opt imizat ion at the system level

Structural or logic opt imizat ion at the RTL level

Library cell area opt imizat ion at the physical level

Semiconductor technology related opt imizat ion at the fab

3 =>

S 3

*. 3
g: -o.
= fD

Figure 2.1: Design flexibility, solution time and tool complexity

of the highly optimized architectural design can be increased by performing design

space exploration and design optimization at the system level based on models rep­

resenting low level implementation during the early design phase. The scope and

opportunities for power and performance tradeoff are maximum when the optimiza­

tion is performed at the highest level of design abstraction, as illustrated in Fig 2.1.

Moreover, discovering a system level power consumption excursion from the intended

design target when the physical implementation is complete is far too late in the

design cycle for significant remedial redesign effort without delaying time to market.

Design teams recognize the potential harm in encountering this situation and try to

avoid it by employing many techniques and tools. The following section reviews ex­

isting methodologies and tools for design space exploration and power performance

tradeoff at various levels of abstraction.

2.2 System Level Power Performance Optimiza­
tion

In a conventional design flow the system architectural design precedes physical

implementation. System architects often use high level architectural models to explore

the architectural design space to perform architectural design optimization.

14

Fig 2.2 shows two procedures where a high level architectural model for a compu­

tational engine is utilized for architectural design optimization. These architectural

models are implemented in traditional programming languages or hardware descrip­

tion languages. They serve to emulate the execution of standard benchmark programs

on the computational engines they model. By compiling and executing well known

benchmark programs, the architectural correctness and the efficiency of an architec­

tural design can be determined very early on in the design phase.

Hardware config #1 | | Hardware config #2 Common hardware config

Toolset Toolset

IT \
Pwr / pert estimates

Compare

Toolset

T
Toolset

Pwr / perf estimates
Compare

J
Toolset - Any architectural simulation tool

Figure 2.2: System level optimization flows

High level architectural models have three critical and conflicting characteristics,

they are model fidelity, model flexibility and model detail. Model fidelity refers to the

model's ability to capture the computational engine's features such that the emulated

execution of the various types workloads are close to the actual execution of the

various workloads on the computational engine. Flexibility indicates the model's

ability to model a wide variety of architectural designs and the relative ease of making

incremental changes to the architecture and emulating the execution of benchmark

15

programs. Model detail pertains to the level of architectural detail incorporated in

the model. For example, a execution unit may be modeled as a black box or can be

modeled at a lower level of abstraction as a unit consisting of sub-units or blocks such

as program counter, decode logic, ALU, multiplier unit etc.

Practically however, maximizing model fidelity, model flexibility and model de­

tail in tandem has been proven to be difficult. Most existing system level architectural

models developed to study and optimize computation engine architecture, maximize

two of the three critical model characteristic often at the expense of the third. The

earliest notable toolset for architectural optimization is the SimpleScalar toolset [34].

SimpleScalar toolset is a fast, flexible and accurate simulator of microprocessors based

on the MIPS architecture. SimpleScalar implements a parameterized modular mi­

croprocessor model based on the MIPS-4 instruction set architecture (ISA). In the

following sections existing solutions for system level design optimization are discussed.

2.2.1 SimpleScalar Toolset

The SimpleScalar toolset provides an infrastructure for architectural design, sim­

ulation and optimization. The parameterized microprocessor model used in Sim­

pleScalar has good fidelity and flexibility and, capable of modeling a variety of archi­

tectures ranging from a simple un-pipelined microprocessor to a complex multi cycle

multiple issue out-of-order dynamic scheduling microprocessor with multiple levels of

cache. The It is also easy to extend the built in microprocessor model to include addi­

tional microarchitectural features and/or to modify existing features. This allows for

sufficiently detailed architectural modeling. SimpleScalar emulates the computation

process in the microarchitected processor by executing the benchmark program's in­

structions using an instruction interpreter. Software workloads designed for popular

processor architectures such as Alpha, Power PC, x86, and ARM can also be executed

by using appropriate instruction interpreters for the various workloads.

16

FORTRAN C
benchmark source benchmark source

f2c J -
I

Simulator source
(e.g., sim-outorder.c)

| . SimpleScalar
assembly

SimpleScalar
GAS

)

^ Object files

SimpleScalar
executables

Sw/iw/ato/} —^. RESULTS

Precompiled SS
binaries (test, SPEC95)

Figure 2.3: An overview of SimpleScalar toolset

SimpleScalar complies binaries of the workloads (as in Fig 2.3) for the modeled

architecture and emulates program execution. Thus verifying instruction execution,

determining cache miss rates, estimating or summarizing execution profiles and exe­

cution time in number of processor clock cycles. The execution pipeline model used

in SimpleScalar is shown is Fig 2.4. Figure 2.5 shows the SimpleScalar's internal soft­

ware organization. Software workloads run on the modeled microarchitectural model

using a technique called execution-driven simulation. An instruction-set emulator and

an I/O emulator are utilized to interpret the workloads instructions to execute using

the host platform. The instruction-set emulator interprets each compiled instruction

and directs the microarchitectural models activity through callback interfaces built

into the instruction interpreter.

The interpreter comprehends the nature and functioning of all the instructions in

the ISA and directs the architectural model to update appropriate registers and mem­

ory state. A preprocessor uses these machine definitions to synthesize the interpreter,

the dependence analyzer and the microcode generator that SimpleScalar models need

to emulate program execution. The I/O emulation module provides interface to the

17

Fetch jE>i$patchf
Register

Scheduler

Memory:
Scheduler

Exec

Mem

I-Gache
MT2B

Writeback Commit

E^Gache
0L1) I

I-Gache
::;(IL2):

D-TLB

D-Gache
; (DL2)

Virtual Memory

Figure 2.4: SimpleScalar pipeline model

U s e r p r o g r a m s

P r o g / S i m i n te r f ace

F u n c t i o n a l C o r e

P r o g r a m B ina ry

T a r g e t I S A I/O In te r face

T a r g e t I S A E m u l a t o r I/O E m u l a t o r

P e r f o r m a n c e c o r e

B -P red

R e s o u r c e

C a c h e

S i m u l a t o r C o r e

L o d e r R e g s

S ta t s

D e b u g

M e m o r y

H o s t In te r face

H o s t p l a t f o rm

Figure 2.5: SimpleScalar internal organization

external host's input and output sources. The I/O interface translates a system call

in the emulated program execution into an equivalent host operating system's system

call. After executing the system call the I/O interface handles the returning of the

results back to the emulated program. In this manner any program written for a

18

particular instruction set architecture (ISA) can be interpreted and executed on any

host playform. This is called execution driven microarchitectural simulation.

Execution driven approach provides access to all data produced and consumed

during program execution. These values are crucial to the understanding data and

control flow, prediction optimizations, memory compression and dynamic power anal­

ysis. In dynamic power analysis, the simulation must monitor the data values sent to

all microarchitectural components such as the arithmetic logic units and the caches

to gauge switching activity which consumes power. Execution driven microarchitec­

tural simulation also permits greater accuracy in the modeling of speculative branch

prediction or load address speculation. Speculative execution causes miss-predictions,

when a miss-prediction is detected later on during program execution, the pipeline

is flushed and restarted with the instruction preceding the miss-prediction. Specula­

tive instruction executions cause resource conflicts with nonspeculative instructions

potentially slowing the program, this can be studied only with execution driven mi­

croarchitectural simulation. Trace-driven techniques cannot model speculative code

execution because instruction traces record only correct program execution. Thus,

execution driven simulation faithfully reproduces the speculative computation and

correctly models its impact on program performance. Execution driven microarchi­

tectural simulation, as in SimpleScalar, is therefore considered better than the leading

alternative i.e. trace based microarchitectural simulation. The use of SimpleScalar

in evaluating and optimizing different system architectures for throughput and chip

area is illustrated in [35].

2.2.2 SimplePower Toolset

A major limitation of the SimpleScalar toolset is the lack of a power estimation

tool in the toolset. It may be recalled that SimpleScalar does provide activity factors

19

for various microarchitectural blocks under a variety of workloads. However just activ­

ity factors alone are not sufficient to estimate power consumption. SimplePower [36]

an extension to SimpleScalar, is an input transition-sensitive execution-based cycle-

accurate power estimation tool. Essentially SimplePower is a set of C-based post pro­

cessing procedures to perform simulator independent process technology dependent

power estimation. SimplePower assumes a five stage pipelined data path, consisting

of the fetch stage (IF), the instruction decode stage (ID), the execution stage (EXE),

the memory access stage (MEM), and the write-back stage (WB). Figure 2.6 shows

the organization of SimplePower toolset [37].

SimpleScalar l

GCC I

High Level

Compiler
Optimizations

SimpleScalar
Assembly

SimpleScalar l

GAS I
Object f i le

Compiler
Optimizations

Opt imizat ion Module-;i

SimplePower

Main
Memory

Cache/Bus Simulator

IF H ID H EXE H MEM M WB

^&ft r^r
RTL Power Estimation Interface

VT
: 2:bu:
5.0V

0.8u
3.3V

0.35u'
3.3V;I

: New
:Tables

SWITCH CAP TABLES

SimpleScalar l

GLD I
SimplePower

Executables

RT Level
I Optimizations!

S i m p l e P o w e r i
Output
Module

Energy Statistic:

Core Memory Bus I/O Pads
Energy Energy Energy Energy

Figure 2.6: SimplePower internal organization

20

While executing a compiled benchmark workload, SimpleScalar, at each clock

cycle, simulates the execution of all active instructions, while SimplePower monitors

the activity and calls corresponding to the power estimation interfaces for all acti­

vated microarchitectural blocks. SimplePower maintains a pre-calibrated technology

dependent switching capacitance table for each microarchitectural block in the de­

sign such as the adders, the ALUs, the multipliers, the shifter, the controllers, the

register file, the pipeline registers and the multiplexors. The built-in bus simulator

snoops and records the total number of accesses and the number of transitions on the

instruction cache address bus, the instruction cache data bus, the data cache address

bus, and the data cache data bus. The recorded number of accesses are combined

with analytical interconnect power models to compute the effective switch capaci­

tance of the on-chip buses. The cache simulator simulates the cache access activity

and records them. SimplePower then estimates the power consumption by using a

lookup table containing the switching capacitance for each input transition for every

microarchitectural block activated.

2.2.2.1 Switching Capacitance Table Construction

SimplePower's power estimation accuracy depends on the accuracy of the switch­

ing capacitance tables. The construction of these tables is based on the structure of

the microarchitectural block. All microarchitectural blocks fall into one of the fol­

lowing types: bit-independent microarchitectural block or bit-dependent microarchi­

tectural block. In a bit-independent microarchitectural block, the bit slices operate

independent of each other. Thus only a small bit slice switching capacitance table is

needed. The total energy consumed by the microarchitectural block can be calculated

by summing the energy consumed by each bit slice during transition. Bit-independent

functional units include the pipeline registers, the logic unit in the ALUs, latches and

21

buses. In a bit-dependent microarchitectural block, the bit slices are not indepen­

dent of each other. In such cases energy characterization is based on input vector

differences i.e. the total bit flips between two adjacent inputs; as shown in Fig 2.7 [36].

Index
previous cur ren t

inpu t vector inpu t vector

0 i . . . 0 n 0 i . . .0„
0 i . . . 0„ O i . . . l n

0 i . . . 0 n Oi . . lO n

0i..-.0„ O i . . l l „

l i . . . l „ 1 I . . 1 0 „

l i . . . l „ l i . . l l „

Switch
Capac i t ance

(PF)

capo
cap\
cap2
cap3

...
c a p 2

n - 2
c a p 2

n - i

Figure 2.7: SimplePower switching capacitance table for bit-dependent microarchi­
tectural blocks

For large microarchitectural blocks with a large input vector size, observing that

the size of this table grows exponentially, two remedial measures were included. They

are; analytical transition independent power modeling and partitioning of large mi­

croarchitectural blocks into smaller ones. Analytical modeling involves approximat­

ing the switching capacitance based on other observable parameters depending on the

microarchitectural block. Partitioning of the microarchitectural blocks into smaller

blocks does not require any additional changes to the toolset, only the number of

microarchitectural blocks will increase.

2.2.3 Wattch Toolset

The Wattch toolset [38] similar to SimplePower is an extension of SimpleScalar

and can be used to analyze and optimize microprocessor architectures and power

dissipation. Wattch features a parameterized power model for common microarchi­

tectural blocks found in modern superscalar microprocessors. These power models are

22

integrated into the SimpleScalar architectural simulator toolset to form the Wattch

toolset.

Hardware conf ig

Binary fi le Cycle- level per fo rmance
Simulator ~

Parameter izab le
Power mode ls

Cyc le-by-cyc le hardware
access counts

Power
est imates

Pe rform a n ce
est imates

Figure 2.8: Wattch internal organization

Figure 2.8 shows the illustrates the internal organization of Wattch, showing

the interface between the architectural simulator and the power models. Wattch's

power modeling methodology classifies microarchitectural block commonly found in

a microprocessor into four categories. They are;

• Array Structures: Data and instruction caches, cache tags, register files, register

mapping table, branch history tables, and instruction / data load store queue.

• Fully Associative Content Addressable Memories: Instruction reorder buffer

and translation look aside buffers.

• Combinational Logic and Wires: Control logic, dependency check logic and all

signal buses.

• Clocking: Clock buffers, clock wires, and capacitive loads.

The power for each microarchitectural block is given by the product of the total

load capacitance (C), frequency (f), square of supply voltage (V ^) and activity factor

(a) i.e. (Pj = C x a x / x V^) . Power supply voltage and frequency depend on the

process technology used for the design. The activity factor for all microarchitectural

blocks are estimated while the cycle accurate simulator, i.e. SimpleScalar, executes

the benchmark programs. The exception to obtaining the activity factor from the

23

cycle accurate simulator is when some blocks that use dynamic logic circuits that pre-

charge and evaluate every cycle are used in the design. For such microarchitectural

blocks an activity factor of 1 (unity) is assumed. For blocks where measuring activity

with the cycle accurate simulator is not possible and are not using dynamic logic

circuits, a base activity factor of 0.5 (random switching activity) is assumed. When

clock-gating is used in the design, higher level power models modify the activity count

for microarchitectural blocks selectively (based on whether the clock to a particular

block is gated or not) whereby effectively lowering overall activity factor for the

corresponding blocks.

2.2.3.1 Calculating Switching Capacitance

Switching capacitance estimation varies for the four types of microarchitectural

blocks commonly found in a microprocessor. The array structure power model is pa­

rameterized based on the number of rows (entries), columns (width of each entry), and

the number of read/write ports as they affect the size and number of decoders,word

lines, bit lines, length of pre-decoder wires, word lines and bit lines. Power con­

sumption of the array consists of the following components; decoder power, word line

driver power, bit line discharge and output sense amplifier powers. Word line capaci­

tance includes the diffusion capacitance of the word line driver, the gate capacitance

of the memory cell and the capacitance of the word line's metal wire. The bit line

capacitance includes the pre-charge transistor's diffusion capacitance, the diffusion

capacitance of the memory cell and the capacitance of the bit line's metal wire. The

total switching capacitance of the array will be the sum of all the line capacitances

and the gate capacitance of the transistors in the decode and sense amplifier.

Content addressable memory structures are analyzed very similar to the array

structures. However, in the content addressable memory structure tag lines and

match lines are used instead of bit lines and word lines. Switching capacitance for

24

complex logic blocks are obtained from existing published design literature [39] [40].

Switching capacitance for buses are estimated by multiplying metal capacitance per

unit length and length of the wires in the buses. The bus lengths are calculated

by assuming microarchitectural block sizes based on published design literature [41].

Clock network on high performance microprocessors are a significant source of power

consumption. Clock power consumption consists of long clock net switching capaci­

tance, clock buffers and clock load switching capacitance. An example showing how

the switching capacitance values were obtained from the design manual of the Alpha

processor is shown in [42].

2.2.4 AccuPower Toolset

AccuPower toolset which is also based on SimpleScalar, modifies the SimpleScalar

toolset and includes a power estimation tool. The AccuPower tool consists of three

parts, microarchitectural simulator (modified version of the SimpleScalar toolset),

physical layouts for major data path components & caches and, the power estimation

module that uses coefficients obtained from SPICE simulations and transition counts

obtained from the microarchitectural simulator to compute energy/power. Figure 2.9

shows the internal organization and the overall power/energy estimation methodology

of the AccuPower toolset [43].

AccuPower incorporates a detailed architectural model including microarchitec­

tural blocks such as the issue queues, the register files, the reorder buffers, the load

store queues, the pipeline by-pass mechanisms, multiple levels of onchip caches, inter­

connections, arbitration blocks, chiplevel I/O traffic blocks and the clock distribution

network. Since there is a SPICE engine involved in this toolset, design techniques

such as clock gating, voltage and frequency scaling can be incorporates into the toolset

allowing detailed design space exploration. For best accuracy, coefficients obtained

25

Compiled
benchmarks"

Datapath_
specs

Transistpr
context i

Microarchitectural
Simulator

counts,
information

Data analyzer/
Intra-stream

analysis

Performance stats

Two threads

VLSI Layouts

SPICE model SPICE

Energy/
Power

Estimator Power/
energy

stats

SPICE measures of energy per transition/event

F igure 2.9: AccuPower in terna l organizat ion

from SPICE measurements of actual VLSI layouts are used. AccuPower uses pa­

rameterized models for energy dissipation for major data path components. Pipeline

model improvements over SimpleScalar incorporated in Accupower include the split­

ting of the monolithic cache model into a two level cache model to support multiple

cycle cache reads and writes, incorporating level-1 instruction and data cache, a uni­

fied level-2 cache, level-1 and level-2 cache contention, level-2 and off-chip memory

contention and, a realistic multi stage multi cycle model for dispatch, register re­

name and operand register and read operations (these were lumped into one cycle in

SimpleScalar). Therefore the microarchitectural model incorporated in Accupower is

more advanced that the model used in SimpleScalar.

The focus of the AccuPower toolset is to facilitate design space exploration and

gauging the impact of well understood circuit design techniques intended for saving

power consumption such as clock gating, dynamic voltage and frequency scaling.

AccuPower can be used to obtain realistic measurements of bit level data path activity

26

on the interconnects and dedicated transfer links and, the read and write activities for

the register files that form the data path storage components. In addition, the data

analyzer modifies the switching counts based on signal bit invariance and measures the

average occupancy rates for various microarchitectural blocks. The occupancy rates

can be used for dynamic resource allocation studies or just resizing microarchitectural

blocks. However, a major drawback of Accupower is its reliance on detailed physical

layouts for all microarchitectural blocks in the design, this clearly is not possible at

the early design phase when physical implementation has not been commenced and

only preliminary layouts may exist.

2.2.5 PoweiTimer Toolset

The PowerTimer [44] toolset is an early design phase microarchitectural level

power performance analysis tool for modern microprocessors developed by IBM. Pow­

erTimer consists of parameterizable energy functions that can be used in conjunction

with any cycle accurate microarchitectural simulator. PowerTimer's internal organi­

zation is shown in Fig 2.10. Typically the cycle accurate microarchitectural simulator

will target a particular microarchitecture, however for general architectural studies a

parameterize microprocessor model, as shown in Fig 2.11, is used along with a cycle

accurate simulator called Turandot.

PowerTimer

executable

cycle-by-cycle
performance
simulator

microarch
parameters

circuit/tech
parameters

periormanc e, estimate

Energy Models -. >
power
estimate

Figure 2.10: PowerTimer internal organization

27

I-TLB1

I-TLB;

L2 cache*

$

Main
Memory

I 1

Cast-out
queue

A
T
I *-

L1-Dcache

I "
D-TLB1

D-TLB2

_1-lcache

A X

o
H
LU
LL

r

l-Buffer

NFA/Branch Predictor

•

•

t t
Issue-queue

Integer
issue logic

Issue-queue
Load/store

issue loqic

1
Reg. read Reg. read

u '

Integer
units

t k

+
Decode/
Expand

i

Rename/
Dispatch

V

Issue-queue
Float.Point
issue loqic

v

Reg. read

'
Load/store

units

load/store
reorder buf

store
queue

miss
q ueue

4

T
Issue-queue

Branch
issue loqic

•"

Reg. read

u

Float. Point
units

x . ' i r i

\ r

Branch
units

r
Retirement

queue
retirement logic

^ '

Figure 2.11: PowerTimer pipeline model

The modeled pipeline structure of the parameterized Turandot microprocessor

is similar in complexity to modern microprocessors. The model has an in-order front

end. The instruction fetch unit on any given cycle, accesses the level-1 instruction

cache to fetch the next sequential group of instructions into the instruction buffer. The

per cycle fetch window width is a parameter that the user sets. The decode/expand

unit is parameterized and can decode up to five instructions per cycle to form a basic

instruction dispatch group. Some complex instructions are broken down into micro

operations. After the register renaming and dispatch the instructions are issued to one

28

of the four queues; namely the integer queue, the load/store queue, the floating-point

queue and the branch queue. Each instruction issue logic supports out-of-order issue

to the execution units. Up to two instructions can be issued per cycle. The model

also supports out-of-order execution with in-order retirement using a reorder buffer

mechanism. Turandot incorporates a two level cache hierarchy i.e. a split instruction

and data LI caches and a unified L2 cache. Instruction and data translation look

aside buffers are also included in the model. The main memory is considered as an

infinite perfect storage with a constant parameterized access latency.

PowerTimer uses a variety of sources for developing the power models, such as

detailed circuit level power analysis results, extraction tool based estimator results

and analytical models derived in a bottom-up modeling methodology. Energy models

can be developed based on the following methodologies;

• Microarchitectural level energy models, used in early conceptual design phase

is based block level latch counts estimated by the design team. These latch counts are

estimated from logic level specifications or area and latch density based projections

from prior designs, suitably scaled by technology upgrade parameters. Observing

that clocked latches account for 70 to 80% of logic power, a latch based energy model

for non array portions of the design is adequate during conceptual phase design space

exploration.

• Microarchitectural level energy models can be build on detailed macro level

power (SPICE) simulation data of prior existing design. Macros that are reused in

subsequent designs are characterized using detailed SPICE simulation. This method

is appropriate for both the early design phase as well as the early implementation

phase.

Fig 2.12 represents the hierarchial macro based power characterization method­

ology. Where SF (switching factor) is the average rate at which a particular microar­

chitectural block is called while executing benchmark workload suites. HoldPower

29

Energy Models

Sub-Units (uArch-level Structures)

(
Power=C1*SF+HoIdPower

Power=C2*SF+HoldPower

Power=Cn*SF+HoldPower

Macrol

Macro2

MacroN

J

Figure 2.12: PowerTimer microarchitectural block power model

is the quantity used to represent the leakage power a particular microarchitectural

block. Ci through C n are microarchitectural block dependent slope estimates of the

linear power model, assuming N microarchitectural blocks in a design. The total

power is the summation of individual microarchitectural block power values.

• Macros that are new and not available in pervious design are characterized

by PowerSpice based detailed circuit simulation experiments to obtain energy data

for primitive building blocks such as latches, clock-buffers, multiplexors, and inter­

connects. Analytical equations in terms of high level organizational and technology

parameters are formulated to model various combinations and sizes of the primitive

blocks when used to build other microarchitectural blocks. The macros are charac­

terized with and without clock gating included.

• Finally, independent analytical power models are used to model power in reg­

ular structures such as SRAM array macros. A special tool was developed with the

goal of modeling the energy and delay characteristics of IBM-specific SRAM array

designs that implement cache macros. But currently designer provided energy models

for customized SRAM array macros are used.

The power models can be integrated into the simulator function and run on a

cycle-by-cycle basis, calculating the switching factor (SF) along with other perfor-

30

mance metrics such as the average microarchitectural switching factor, the CPI, the

cycle-by-cycle power and the power swing (di/dt). Average power and performance

can be obtained by post processing the collected data from the cycle accurate simu­

lator. Examples for using PowerTimer from [44] show that optimizing the quantity

cycles per instructions - CPI) x power consumption gives the best power-performance

architectural solution.

2.3 RT-Level Power Performance Optimization

Register-transfer level (RTL) power estimation [45] is a popular technique for

system power estimation often employed by in-house by designs teams. An RTL

description is typically structurally well defined and can be directly mapped onto

standard library cells. Tools that operate at the RT-level typically estimate power

by aggregating power estimates for its constituent RTL components, such as stan­

dard logic gate cells, latches, registers units, memory cells, etc. Accuracy is achieved

through a combination of special purpose estimation algorithms and carefully crafted

modeling techniques specific to a particular sub-system such as clock sub-system,

10, etc. Power savings achievable with complex fine-grain power management tech­

niques that cannot be modeled at the system level, can be analyzed at the RT-level

quickly; enabling identification of localized power hot spots that otherwise would be

too difficult to find. A typical RTL power estimation flow is shown in Fig 2.13.

Some of the power saving design techniques that can be evaluated at the RT-level

include [46] [47];

• Re-timing - Purely combinational logic between sequential latches can be further

partitioned into smaller logic, consequently reducing path delay between latches

31

Standard cell
library

Pre characterized
power macro

models

Workload

RTL Power estimation tool

Power estimates

Figure 2.13: Typical RTL power estimation flow

and hence increasing clock speed. When pipe stages in a microprocessor are re­

timed the clock rate increases, improving through put but with an increase in

dynamic power.

• Bus encoding - Large buses can be encoded or bit-compressed to a smaller

number of bits. The encoded information is passed on to be decoded or un­

compressed when needed. This strategy help lower the number of toggling bits

in a bus, thus reducing transaction dynamic power. However additional logic is

required to compress, uncompress, encode and decode the bits.

• Asynchronous designs - Designs can be completely clock-less. This technique

removes bulky clock buffers, reduce clock delivery power. However designing

hand-shaking logic adds complexity and uncertainty to the design.

• Clock gating and power-aware clock implementation - An alternate technique to

asynchronous designs is to turn off clock signals when determined not necessary.

32

This technique cuts down unnecessary clock power, however there is a delay

penalty and a power plane integrity issue due to | | during clock signal turning

on when required. This technique suits low activity designs better.

• Pulsed latches - A conventional flip-flop is composed of two latches, master and

slave. A pulse clock triggered latch is similarly to edge-triggered flip-flop, but

half the logic, this saves power. However meeting timing may become an issue

with the stringent edge triggered behavior.

• Signal gating - A technique where all signals are gated along with clock signal

when a functional module is under a period of inactivity.

• Memory partitioning - Banking memory structures into smaller partitions and

activating these smaller partitions as necessary will reduce power by avoiding

turning on the entire memory unit at once. Also a smaller partitions will lead

to smaller read and write currents.

• Logic partitioning - Partitioning a larger logic block into smaller blocks and se­

quentially gating power reduces the over all power consumption. This technique

and a strong impact on computation delay.

• Low power FSM encoding

• Power-aware synthesis, placement and routing

• Minimum leakage vector technique to reduce leakage current

• Pre-computation logic

• Data path reordering to reduce glitches

33

The list above lists some of the design choices a designer can make in order

to tradeoff power and performance to achieve a design goal. Typically these design

choices are handled by RTL optimization tools in the following ways.

• Design choices involving library cell mapping for low power or high perfor­

mance designs are evaluated by selectively instantiating pre-characterized library

power macro models. Analyzing the power models in the context of the entire design

improves design optimality.

• Design techniques which modifying input signals such as clock or signal gating,

pulse latching etc. require suitable test bench environments so as to evaluate their

impact. At the RT-level such test bench environments are simple to develop and

quick to test.

• Other design techniques involving changes to the original design under in­

vestigation, such as asynchronous designs, memory or logic partitioning, pipeline

re-timing, bus encoding etc. require modifying the underlying RTL model to reflect

these changes. This is the most tedious of RT-level power performance optimization

procedures, however this flexibility is not present at any other level and provides very

powerful power performance optimization.

Power estimation and optimization at the RT-level is accurate since at the RTL

stage of a design, typically, the library cells are very well defined and well charac­

terized. RTL power estimation is a well understood and mature design technique

and many commercial tools such as PowerTheater [48], PowerPro CG [49], Design

Compiler Ultra [50], Talus Power [51] and Encounter RTL Compiler [52] to mention

a few, are available. A designer iteratively using any one of these tools can perform

structural RTL based power performance optimization.

34

2.4 Physical Level Power Performance Optimiza­
tion

Power consumption in digital CMOS circuits consists of three components, dy­

namic power, short-circuit power and leakage power. Dynamic power relates to charg­

ing and discharging of the load capacitance at the gate output. Short-circuit power

is due to the period of time during signal switching, where both the PMOS and the

NMOS trees are on creating a path from VDD to ground and leaking power by short­

ing them. Static power is due to gate leakage, gate to source and drain tunneling

leakage and source to drain leakage in the sub-threshold conduction region. Leak­

age (static power) is growing exponentially especially in the nanometer CMOS era.

Power savings at the physical level is achieved primarily by targeting leakage power

and dynamic power. Performance is improved by making transistors switch faster.

Through a combination of circuit design choices and processing technology tweaks,

power and performance can be optimized.

At the physical level, power and performance can be optimized by techniques

such as the ones shown below [46], [47], [53], [54] and [55];

• Transistor sizing - adjusting the size of logic gates in the design so as to optimize

power and or performance. By trading critical path transistors in a positive

slack path with low leakage transistors, power saving can be achieved without

violating timing.

• Dynamic voltage scaling - altering the supply voltage dynamically to meet peak

performance requirement when need and the subsequent supply voltage reduc­

tion to save power when performance demand has elapsed.

• Voltage islands - multiple supply voltage for various functional blocks based on

criticality to optimize power and performance.

35

• Multiple threshold voltages - low-Vf, nominal and high-V^ FETs are selectively

used to improve performance in critical parts of the design, in non-critical parts

of the design and high leakage parts of the design; to optimize power and per­

formance.

• Power gating - High-Vj low leakage sleep transistors gate the power supply and

puts parts of the design to "sleep" when these parts are not required to switch.

• Non-min-L transistors - selective use of transistors with non minimum (larger

than min L) length that have lower leakage and performance.

• Stacking and parking states - stacking off-transistors in series with on-transistors

when not switching to reduce leakage.

• Logic design styles - choosing design styles (static, dynamic and pass-transistor

logic) based on power-performance targets.

• Process tweak - modifying metal line widths and compositions to reduce series

resistance.

• Process tweak - modifying inter metal dielectrics and line pitch to reduce par­

asitic capacitance.

• Process tweak - modifying threshold voltage, mobility, channel strain, doping

density etc., to modify drain current.

Power performance optimization at the transistor or circuit level is the most

effective of all techniques to achieve system optimality. However at this level of

abstraction there is no flexibility in the models. A complete transistor level power

estimation for a full chip may take days if not weeks of computation resources. More

over such a detailed simulation is very complicated to build and is usually error

36

prone. When a modular approach to simulation is undertaken the complexity can

be greatly reduced. Modular simulations however cannot simulate inter-modular

communications and the power associated with such communications. The most

common use of circuit level power performance characterization is when the results

are rolled up to develop power and performance models at higher levels of abstraction

and then analyzed. The best accuracy is obtained if such a process is used. Most of the

design techniques in the above list are evaluated using detailed circuit simulator such

as SPICE. Process tweaks are reflected in the SPICE model cards used to perform

the circuit simulations. One must be careful not to generalize this method, as it can

be applied only to designs that are similar to existing designs or designs that have

a family of generational designs such a microprocessors of a particular instruction

set architecture. Leveraged designs are the most suitable for such a methodology for

optimizing power and performance.

Low physical level simulations are unsuitable for system level design optimiza­

tions, however empirical analytical models developed based on the low physical level

simulation results from pervious generation have been found useful for system level

design optimization. These analytical models quickly and fairly accurately predict

power and performance for any newer design. Moreover these models being param­

eterized based on physical and process level quantities, are very useful in predicting

power and performance of newer leveraged designs in an advanced process technology.

Since, the newer physical implementation layouts of majority of the microarchitectural

block are scaled versions of older implementation. Speed paths also tend to be similar

in structure in the newer designs. Many in-house proprietary solutions exist to per­

form power performance estimations from circuit level parameters. In the public and

academic domains the most notable tool for system optimization based on low level

paremeters is (Berkeley Advanced Chip Performance Calculator) BACPAC [56] [57].

The following section discusses some salient features of BACPAC.

37

2.4.1 BACPAC Toolset

BACPAC is a system level power performance analysis tool based on low physical

level design parameters. BACPAC comprise of a set of empirical analytical models

to collectively form a new system power performance prediction model. Without

the need for detailed circuit level SPICE simulations, BACPAC focuses on low level

physical design parameters and attempts compile the model equations. BACPAC

consists of the following analysis types;

• Delay Analysis

• Noise Analysis

• Dynamic Power Analysis

• Leakage Power

• Short-circuit Power

• Packaging Issues

• Yield Modeling

For delay analysis, BACPAC uses minimum feature size, metal line widths, dielec­

tric constants, metal pitch, line thickness, inter metal dielectric thickness, dielectric

constant and metal resistivity. BACPAC then proceeds to calculate the resistance

and capacitance of each metal layer based on a three dimensional interconnect model

shown in Fig 2.14. The product of unit length metal resistance and capacitance give

unit length time constant or delay. BACPAC considers module sizes of 50,000 to

100,000 gates. That is, a design is partitioned into modules of fixed user defined size

between 50,000 and 100,000 gates. Figure 2.15 shows the step used by BACPAC to

38

Upper Ground Plane

A

X

w
< >

7T

HI

C tine

i f

H2

JL
-̂ lower

- - - •
Continual
Array

£=k£„

Lower Ground Plane

Figure 2.14: Interconnect parasitics model

calculate critical path delay.

Critical path delay = (Total global wire length times unit length delay) + (# of gates

in critical path x gate delay) * (1 + 0.05 + 0.1).

Noise analysis is performed by using Miller capacitance approximation to add coupling

capacitance in the equations leading up to calculating the gate delay. Noise analysis

estimates the effect of noise on critical path delay and hence system performance.

Figure 2.16 shows the step used by BACPAC to calculate a designs dynamic

power. Total dynamic power is given by;

PdynJot = ^blocks + Pglobal + Pclock + Pmemory + PlOjpads-

Where alpha (a) is the activity factor. Cwire, Cdevice, Cciocj~, Cpaai and Cmem are

wire, device, clock network, 10 pad and memory switching capacitances.

Leakage power is estimated by the product of the device width, a scaling factor

and unit width leakage measured at nominal operating conditions. Thus,

Powerleakage = Wdemce x lOpA/fim x iQ-Vt/95mV _

Short circuit power is estimated as,

Powershortjtircu.it = # o f S a t e s x l 12xTshort.circuit x l
Vcak x Vdd x / x alPha

Where Tshort-circuit a n d Ipeak a r e the overlap switching time and peak switching

39

http://shortjtircu.it

Delay

Unit C and R for metal layers

_C
The avg global net length is found
using Rents rule and considering

the blocks as gates

Calculate optimal buffer size
using top metal parasitic values

for load

Calculate Lcrit min wire length
needed to be buffered

Find # of buffers per avg
global wire

Global wire delay then is
delay through the buffers

Device resistance
(min inv input R)

Device C
(junction and gate for min inv)

Avg wire length in a module
A module = 50k gates

(changeable)

Calculate avg wire length
for fanout of 1,2,3 and 4

With wire length and unit C & R
size the device optimally

All gates are assumed te be
2 input NAND

Define a critical path to be
Latches + logic gates + global net

with repeaters
X

Latch setup time and delay
Setup time and delay
are is input by user

Clock skew is also input by user
default is 10% clock cycle time

IL_
The logical part of the critical path
is defined by the user, interms of

% of fanout of (1,2,3,4) gates

Delay for each fanout set is
found using the optimal W and
and corresponding wire length

Figure 2.15: Steps to estimated delay in BACPAC

current. Physical parameters such as minimum feature size, metal pitches, dielectric

constants and circuit related input parameters including gates per module and num­

ber of modules also occur in the model's equations. A design when modeled using

BACPAC can be quickly evaluated to obtain power and performance estimates, by

performing these evaluations iteratively, a designer can optimize the design for power

and performance. Packing issues and yield modeling have been included in BACPAC

however they do no pertain directly to system level power performance optimization

hence not discussed here in this work.

40

Dynamic power

Block dynamic power

Get avg wire length
for all fanouts

length'unit cap
gives interconnect cap

:L
Using min size NAND
gate get device caps

50K*caps
gives device cap

Total C = Cwire + C device
P=alpha'VddA2T(TotaiC)

Assume 50K/module
Collection of modules constitute

the entire chip

A block's area is found by
50K * area of a 2 input

NAND gate

Global interconnect
dynamic power

X
Clock network
dynamic power

Use Rents rule to get
avg global net and length
using Lcrit get # of buffers

needed

find dock load within block,
in Htree, in memory (6T cell),

in latches and buffers

P=alpha*VddA2T
(Total global wire C) *
(# buffer * buffer cap}

find total dock net length
alpha =1

P=Cclock*VddA2*f

External I/O pin
dynamic power

Memory read/write
dynamic power

I I
Use Rents rule to get

output pins
Cpad = # of pins * cap per pad

cap per pad is user input

C = Cread+Cwrite
estimate this using 6T RAM
assumption from fraction of
total fets that are memory

| |
P=alpha"Cpad*VddA2*f Alpha =1

P=VddA2TC

Figure 2.16: Steps to estimated dynamic power in BACPAC

2.5 Shortcomings of Existing Tools and Method­
ologies

The scope and opportunities for power and performance optimization are maxi­

mum when design optimization is performed at the highest level of abstraction. Exist­

ing system design optimization tools fall into two broad categories, the first category

are tools that are specifically intended for microprocessors or computation engines.

Tools in this category include SimplePower, SimpleScalar, Wattch toolset and Power-

Timer. These tools model an underlying computation architecture and emulate code

execution on the modeled architecture. They collect activity rates, instruction exe­

cution rates, miss rates, and prediction efficiency to estimate cycles per instruction

(CPI) and other performance metrics. These tools primarily optimize microarchi­

tectural features to maximize computational performance (CPI). Power estimation

is a post processing step on the collected metrics and predetermined per-transaction

power estimates. The second category of tools are applicable primarily to ASICs to

optimize physical implementation. Tools in this category include BACPAC (in the

41

public domain) and other in-house proprietary tools. These tools estimate power and

performance based on low-level physical design parameters and key process parame­

ters.

SimpleScalar was the earliest well recognized toolset for performance estimation

of computation engines. SimpleScalar (Sec 2.2.1) essentially is a cycle accurate execu­

tion emulator. Emulating the execution of benchmark suites on a targeted processor

architecture for a specific instruction set architecture and monitoring every instruc­

tion's life in the pipeline; an accurate execution performance is obtained. However a

major shortcoming of SimpleScalar was its inability to estimate power consumption

of the architectural design being analyzed. Cycle accurate performance simulators

like SimpleScalar, when coupled with microarchitectural activity monitors embedded

in the toolset can be used to estimate system power consumption. This technique is

applicable to microprocessors, embedded processors and computation engines. Typi­

cally in such cases performance is measured as number of computation cycles required

to execute one instruction - cycles per instruction (CPI). System power however is

estimated through the collected activity counts, when unit transaction and unit ac­

tivity power requirements are know. SimplePower (Sec 2.2.2) toolset an add-on to

SimpleScalar, estimates system power consumption by monitoring microarchitectural

block activity and using a unit activity power look up table to estimate total system

power.

Power estimates from SimplePower include just the dynamic power component

of system power. Leakage component of power consumption was omitted. This is

a major weakness of the SimplePower toolset, especially in nanometer CMOS era.

Secondly, the static nature of the power tables make such an approach unsuitable

for design space exploration with dynamically varying circuit level design choices or

implementation details. Another major drawback of SimplePower is that clock distri­

bution network power is not included in the tool, which can account for up to 30% of

42

the total dynamic power consumption in modern designs [58-61]. Wattch toolset (Sec

2.2.3) similar to SimplePower only estimates the dynamic power component of the

total power, this is Wattch's main drawback. These shortcomings make SimplePower

and Wattch less attractive for early system level design space exploration.

AccuPower toolset (Sec 2.2.4) which is an extension to the SimpleScalar toolset

incorporates library cell characterization data and detailed physical layouts to esti­

mate dynamic and leakage power. Parameterized analytical power models are used

in lieu of physical layouts when their implementation does not exist. A similar ap­

proach is used in the PowerTimer toolset (Sec 2.2.5) as well. PowerTimer is a ground

up power modeling tool which builds power models from the bottom up and has

the ability to evaluate dynamically varying design choices during design space ex­

ploration. PowerTimer and AccuPower toolsets are have high fidelity, accuracy and

detail. However, they are less flexible and are not suitable for "quick" power perfor­

mance predictions which are required for design space exploration. This is due to the

nature of the power models which are build from the bottom up. During design space

exploration when a design is modified, power estimates cannot be obtained without

re-simulating each module and this results in large time penalty between iterations.

As a result these two toolsets are not suitable for rapid early design space exploration.

Design space exploration and power performance optimization performed at the

RT-level using a complete RTL description of the design can be relatively efficient for

designs of smaller size. However for larger designs such as a modern microprocessor,

design space exploration and power performance optimization performed at the RT-

level becomes time consuming and inefficient. RTL model based power estimation

depends on the availability of fully characterized library cell and macros. While their

availability is possible further along the design cycle, they may not exist during the

early design exploration phase.

43

The BACPAC toolset (Sec 2.4.1), uses parameterized analytical power and per­

formance models for system power and performance estimation. BACPAC attempts

to recreate a design as a collection of equal sized modules, which is an acceptable

approach for ASIC designs but not suitable for modeling or optimizing highly mod­

ular designs such as microprocessors and other high performance designs. Moreover

BACPAC models leakage power as a linear function of the total gate width in the

module, which is too simple to capture the exponential increase in leakage power

in nanometer CMOS. Furthermore BACPAC's analytical models lack the ability to

access the the impact of applying additional circuit level design choices which are

applied to microarchitectural blocks to either reduce power or improve their perfor­

mance. The BACPAC toolset provides the correct direction for a system level design

optimization tool. However, due to the insufficiencies in its modeling methodology

it is not suitable for rapid early design space exploration of large designs such as

microprocessors and other high performance designs.

The work described in this dissertation is motivated by the lack of fast and effec­

tive design space exploration tools and the shortcomings of the existing approaches.

Chapter 3 introduces the proposed approach, design methodology and the envisioned

framework (tool) to perform rapid early design space exploration of modern VLSI

designs.

44

Chapter 3

The Proposed Approach

3.1 Overview

Due to challenges faced by designs in nanometer CMOS arising from business

and cost aspects, the design cycle time and time-to-market stipulation are becoming

progressively more stringent. It was shown that a thorough design space exploration

using system level models during the early design phase is capable of placing a de­

sign in an optimal design sub-space and improve design convergence. The challenge

in performing such design space exploration was the lack of suitable design tools

and aids and, design tools capable of modeling and analyzing large systems such as

microprocessors and high performance designs were needed. To this affect, a new

methodology for modeling large systems and performing rapid early design phase

design space exploration was proposed. In this chapter the proposed high level mod­

eling methodology, the proposed design target prediction models and the proposed

methodology for design space exploration are detailed.

3.2 Proposed High Level Modeling Methodology

EIDA (Early Integrated circuit Design Assist) is a framework for early design

space exploration. It consists of two components; the high level models (modeling

methodology) and the analytical models for design target prediction. Design space

exploration using EIDA involves iteratively building modular level models, assigning

module-granular circuit-level design choices, and estimation of the expected achiev­

able system targets when the design solution is implemented. A system is defined as a

collection of modules and each module is characterized by a set of module descriptors,

called descriptor vector. A collection of descriptor vectors form the system model.

Consider a leverage redesign of an existing system design in a newer process,

where portions of the system critical path lie in a subset of modules called critical

modules, as shown in Fig 3.1. To estimate system performance, system critical path

delay i.e. sum of modular critical path delays of critical modules are necessary. Legacy

data can be used to get an initial estimate of the modular critical path delay values.

When complete bottom-up design data is not available, abstracting the underlying

design is necessary so as to estimate critical path delay. A module's critical path delay

depends on number of gates and interconnect length along the path and typical gate

delay. Other factors such as additional circuit-level design choices influence critical

path delay. Therefore factors such as legacy performance, total interconnect length

and the ratio of gate to interconnect delay are elements in the module descriptor

vector and in the performance estimation model (Section 3.4). To estimate power

consumption, dynamic and leakage power for all modules are necessary. Dynamic

power depends on total switching capacitance, operating frequency, power supply and

switching factor. Leakage power depends on gate area for gate leakage, junction area

for junction leakage and total width of active devices that are off for sub-threshold

leakage. These factors among others are elements in the module descriptor vector

and in the power estimation models (Section 3.4).

The module critical path can be modeled as a series of inverters or NAND gates.

An equivalent logic gate is defined as a standard sized inverter with a fanout of four

46

1

4

20

5

11

*

6

> '

7

12

16

26

21

3 :'

8

13 J

17

22

; 14

23

25

9

10

- l 5
 : .'

18 19

24

Critical paths Critical modules

Figure 3.1: Critical paths and modules

(F04) load, its propagation delay is defined by equivalent logic gate delay (EGD). The

delay of any logic gate can be expressed in terms of EGDs and the critical path delay

is the sum of EGDs of all gates along the path. That is, a non-standard sized inverter

may have a delay of 3.75 EGDs and if the critical path consists of 10 of these then,

the critical path delay is 37.5 EGDs. For cells in a given library their corresponding

EGDs are characterized and known. Using EGDs to express delay normalizes process

technology, and the critical path delay can be expressed in a technology independent

manner. The use of EGD captures logic delay including nominal load on each logic

gate. Significant RC delays on a path is not captured by the EGD metric. These

RC delays need to be added to the logic delay to get total path delay. For leveraged

redesigns the ratio of RC delay to logic delay for each module in the legacy design is

know. Therefore the RC delay can be estimated as a function of the logic delay and

the ratio of RC delay to logic delay.

47

For power estimation, a module's underlying physical implementation is ab­

stracted as an inverter (the module inverter) with a F04 load, as shown in Fig 3.2.

Note that this representation is different from the standard sized inverter F04 con­

figuration used for EGD calculation. The module inverter sizing is proportional to

the total P and N FET widths in the module which can be obtained by scaling the

legacy data. Total power consumption consists of dynamic and leakage power. Leak­

age power consumption for a design is primarily related to the total gate area, total

junction area and total device width in the design. These physical design descriptors

can be obtained by scaling legacy design data. Also, leakage is a strong function of

the transistor stacking effect, which is captured by including the stacking factor in the

analytical model (Eqn 3.14). Dynamic power consumption on the contrary, depends

on physical design descriptors and operating frequency; where operating frequency

is estimated using the critical path delay. The F04 connected module inverter rep­

resentation forms the basis for macro-model generation used to estimate power and

performance impact of technology scaling and the application of additional circuit-

level design choices; through in-situ simulations.

Module Inverter #4

Fanout of four (F 0 4) conf igurat ion

Figure 3.2: Fanout of four configuration

Elements in a module descriptor vector are primarily obtained from legacy data

from previous generation designs or estimates through other sources. Power and per­

formance of leveraged designs can be estimated by modeling switching capacitance

48

scaling and power supply scaling. For example, the module inverter size which re­

flects the module's active transistor area and total switching capacitance obtained

from legacy data is used to estimate scaled active transistor area and total switching

capacitance. Some descriptor values such as supply voltage, min FET length etc. are

obtained from the new process technology specs.

List of
module

descriptors

P width
N width

Qoad

etc

Figure 3.3: A partitioned system shown with module # 3 abstracted with F04 inverters
and its corresponding descriptor vector

In-situ SPICE simulations are used to ascertain circuit-level design-choice de­

pendent descriptors such as sleep transistor performance correction (STPC) etc. Fig

3.3 illustrates the proposed approach of using F04 module inverters to abstract the

physical implementation along with module descriptors to estimate power and per­

formance from analytical models.

3.3 Module Descriptor Vector Elements

The descriptor vector is a set of parameters from multiple sources that are used

to model and predict system power and performance. Elements in the descriptor

System

Module
#1

~M~
o
d
u
I
e

2

ufettr

Modules;

^ > F 0 4
inverters

49

vector enable the inclusion of physical constraints while performing system level op­

timizations.

3.3.1 Legacy Design Descriptors

Table 3.1 lists descriptor vector elements obtained from prior/legacy designs

along with their explanations.

Table 3.1: Descriptors from legacy design
Descriptor

^oriq
TWL
ULC
Wtotal/(P/N)

•L'min

Sold
ASF
CGF
DECAP_SENS

^de-cap
sf
HVR
LVR

^wireJbuf f
TPFR

USPE
BSUF

^unit.old

*ds..old
temp

Explanation

The total load capacitance in legacy design
The total wire length in legacy design
Unit length capacitance in the legacy design (all metal layers)
The total/(P/N) fet width in legacy design

The minimum fet length in legacy design
operating frequency of the legacy design
Average switching factor in the legacy design
Clock gating correction to activity factor
supply voltage change due to unit de-coupling capacitance in­
sertion
De-coupling capacitance added in legacy design
Stacking factor
Ratio of # of high Vt to total fets in legacy design
Ratio of # of low Vt to total fets in legacy design
Total buffer capacitance added in legacy design
Typical path fet ratio i.e. ratio of logic delay to total path delay
in a typical speed path
Useful skew allocation performance enhancement factor
Speed up factor due to buffer insertion
Unit area gate capacitance in legacy design
min W&L, drain current in legacy design
Typical operating temperature in legacy design

For example, with the rate of supply voltage scaling diminishing and drain induced

barrier lowering (DIBL) effects becoming stronger with technology scaling, the ef­

fectiveness of leakage reduction by stacks becomes higher. In complex CMOS gates

50

where FETs are stacked, this effect captured by the stacking factor descriptor (sf)

defined as the ratio of single device leakage to stack leakage. The sf descriptor is

typically obtained from legacy design. Average switching activity of a module (ASF)

and clock gating (CGF) used in legacy design are very important for dynamic power

consumption estimation. Clock gating factor is calculated as the average fraction of

time the clock signal is gated. Interconnect and gate delay component proportions of

the critical path delay are described by the typical path FET ratio (TPFR) descriptor

which is the ratio of critical path gate delay to the total critical path delay. Cwjrej)Uff

is the additional switching capacitance introduced due to interconnect buffer inser­

tion and the buffer speed up factor (BSUF) captures the speed up in critical path

interconnect delay due to buffer insertion. The useful skew allocation performance

enhancement (USPE) descriptor (unity by default) reflects critical path timing im­

provement as a result of positive skew allocation and combinatorial circuit re-timing

and redesign.

3.3.2 Target Process Technology Descriptors

Table 3.2 lists descriptor vector elements and their explanations which are ob­

tained from the new process technology specifications, to which the design is to be

ported. Scaling factors, unit capacitance and supply voltage are typically well defined

for any process. Some of the descriptors can be obtained from the SPICE model for

the new process. For example, the supply voltage at the highest metal power grid

on-chip is lower than the voltage at the package power supply terminals due to pack­

age power network's IR drop. This effect is characterized by the r\ descriptor which

characterizes the expected drop due to the package power network. The RC slowdown

factor (RCSF) descriptor captures the change in unit length (the most representative

interconnect length in the legacy design) interconnect delay in the new process com-

51

pared to legacy interconnect delay, when driven by comparably drivers. This factor

is typically obtained from process characterization data.

Table 3.2: Target process technology descriptors
Descriptor

^ddspec

V
"ddJoump
sgate-cap
siuire-cap
svjidth

*leak-junc

•^leak-qate

*othv

'•owhv

lotlv

*owlv

Igatejperjw
RCSF

^unitjnew

•^dsjnew

Explanation

Voltage at package supply in new chip
Package IR drop factor
Voltage at supply bumps in new chip (V^ spec x rj)
scaling factor for gate capacitance in new process
scaling factor for wire capacitance in new process
Width scaling factor in new process
Unit junction leakage current in new process
Unit gate leakage current of in new process
Typical I0f t for high Vj fet in unit linear //m
Worst I0ff for high V^ fet in unit linear jim
Typical I0ff for low V^ fet in unit linear /im
Worst I0ff for low Vt fet in unit linear nm
Gate tunneling current for unit linear //m
RC slowdown factor - slow down due to wire scaling
Unit area gate capacitance in new process
min W&L, drain current in new process

3.3.3 In-situ Simulations and Descriptors

Leveraged redesigns often involve additional features and use additional circuit-

level design choices. Under such circumstances scaling legacy design data for design

space exploration alone is not sufficient. Therefore, macro models are generated for

in-situ simulation to determine the relevant descriptor values for various circuit-level

design that were not available from the legacy design but may be needed in the

new design. Using macro models to allow designers to quickly evaluate the impact

of applying a particular circuit-level design choice or a technology process tweak.

Additionally, in-situ simulation improve the accuracy of design target (power and

performance) prediction models. Macro-model generation and in-situ simulations are

52

necessary and performed when the situations listed in Table 3.3 occur during design

exploration. The corresponding descriptor vector elements and their explanations are

listed in Table 3.4.

Table 3.3: Circuit-level design choices requiring In-situ simulations
S.No

1

2

3

4

Description of design choice

Using multiple threshold FETs i.e. using nominal Vf as non-critical and
low Vt as critical path FETs, to improve performance. [54]
Inserting sleep transistor and turning off power supply to a module
when it is inactive to reduce power consumption. [54]
Using adaptive body biasing; PFET's body i.e. nwell tied to V d̂ o r

forward biasing (FB) to improve performance. [53]
Reverse biasing (RB) nwell to reduce leakage power.

Design options listed in Table 3.3 affect both power and performance. The STC

descriptor captures the effective leakage power saving obtained when the module's

power is gated by the sleep transistor. Using a F04 inverter macro model, in-situ

SPICE simulations are used to calculate this descriptor. Similarly the STPC descrip­

tor captures the device performance degradation due to sleep transistor wake-up time.

In-situ simulations on F04 inverter macro model are used to determine the effects of

using back body biasing design technique. The ABBC descriptor capture the change

in device leakage currents when using back body biasing and ABBPC descriptor cap­

tures the change in device performance. When the additional circuit-level design

choice of using low-Vf FETs along the critical path to improve critical path delay is

applied, both performance and leakage power consumption increases. Leakage power

increases due to excessive sub-threshold leakage in the low-Vf FETs. To determine

the impact of using low-V^ FETs on power and performance, in-situ simulations on

macro model formulated as nine stage ring oscillator with all nominal and all low-V^

FETs are performed. The performance improvement achieved through using low-Vi

53

FETs (the DVTC descriptor) can be calculated from the observed operating frequen­

cies of the two ring oscillator macro models. DVTC descriptor alters the estimated

operating frequency and thus the dynamic power consumption. The impact on leak­

age power is indirect and achieved through the HVR and LVR descriptors and does

not require in-situ simulations. Low-V^ FET leakages are typically pre characterized

and using them additionally in a design does not alter their leakage characteristics.

Table 3.4 lists the descriptors needed to include the effect of applying these design

choices while design target prediction. The effect of varying supply voltage for what-if

analysis is described in next section.

Tab
Descriptor

STC

ABBC

DVTC

ABBPC

STPC

e 3.4: Descriptor vector elements from in-situ simulations
Explanation

Leakage power correction factor due to power savings obtained
by sleep transistor insertion.
Leakage power correction factor due to change in leakage power
by applying adaptive body biasing.
Performance improvement in critical path delay due to dual-Vt
FETs in the critical path.
Performance correction factor due to change in transistor delays
by applying adaptive body biasing.
Performance impact for the corresponding power saving due to
sleep transistor insertion.

3.4 Proposed Analytical Power and Performance
Modeling Methodology

3.4.1 Dynamic Power

The dynamic power of a generic block is given by equation 3.1.

Pdyn — Cnew X ^ddjnew X fnew X RP^F (3.1)

54

^new — V^orig x \\sgate-cap x Jracfet) + {{*• Jracfet) x siui7"e_cap))j /o o\

"| ^wireJmf f

Vdd_neW = (Vdd-bumP * SLPZD) + DECAPC (3.3)

/new = (fpredict) X ̂ F X CGF (3.4)

Jmmp

E no-0 f -library -cells TI^ Cell J,-power-original

ppc't1 * = * l Cell-i jpower.after-redesign (r>a\
no-0 f-library-cells

DECAPC = DECAPSENS x Q e _ m p (3.7)

C0rig = ^ /e i + Cw{re (,3.oj

C w i r e = 7 W L x £/XC (3.9)

Areafet = Wtotai x sw i d i / l x LTOin (3.10)

C/et = ^ e a / e i x Cox (3.11)

/ ™ c / r f = - ^ (3.12)
^orig

The re-design power savings factor (RPSF, Eqn 3.6) captures the power savings

obtained through improvements to standard library cells. Average power savings

from individual library cells measured using simulations are averaged with appropri­

ate weights (Wi in Eqn 3.6) to obtain the RPSF descriptor value. The total switching

capacitance in the module (Cnew, estimated by Eqn 3.2) is a function of the total gate

switching capacitance and interconnect load capacitances. Total gate switching capac­

itance obtained from scaling the original legacy switching capacitance (Corig) by the

gate capacitance scaling factor (sgate„cap)> w i r e capacitance scaling factor {swire_cap)

55

and the fraction of gate capacitance to interconnect capacitance (frac/-ei). Any addi­

tional switching capacitance introduced due to the addition of interconnect buffers is

added to the scaled value and given by C ^ g j ^ j .

Vddjnew is the effective supply voltage at the supply rails, which can be altered

by inserting de-coupling capacitance and power supply noise due to switching activ­

ity. This value is estimated using Eqn 3.3 and depends on the supply bump voltage

(Vddjbump)' estimated supply droop due to a switching activity (SLPZD) and correc­

tion to supply voltage due to de-coupling capacitance insertion (DECAPC). Supply

droop due to switching is estimated using Eqn 3.5, where NADSP is the average mea­

sured power supply droop under typical switching activity rates of a power supply

network in the new process. Supply voltage correction due to de-coupling capacitance

insertion is estimated using supply network sensitivity to unit de-coupling capacitance

(DECAP_SENS) and total de-coupling capacitance inserted (Cdecap) as in Eqn 3.7.

Switching activity and clock gating both affect the switching activity of a module,

this is included in dynamic power calculations by altering the predicted operating

frequency (fpredict) f° r calculation purposes by the average switching factor (ASF)

and clock gating factor (CGF). This results in an equivalent operating frequency

(fnew, Eqn 3.4) which reflects the actual switching activity of the module; dynamic

power is estimated using the equivalent operating frequency.

3.4.2 Leakage Power

Leakage power for a generic block is given by Eqn 3.13.

Pleak = {[{Vdd-bump x 4 / /) + (Vdd.bump x (Igate + BUFFLC))
(3.13)

+ (Vdd-bump X Ijunc)] XV} + [VddJmmp x DECAPLC]

56

(3.14)

Ioff = 1 X (Wtotnl^swidth x H V R x ^

+ fWtotal^swidth x £y# x £ ^

fM*»fh,,)+M*mi,ft7;)>\

yl = eV 2 / (3.15)

B = e\ ^ / (3.16)

I gate = ^gate x swidth x Heak^gate W-1')

ljunc = -A-S(i X J-leak-junc (o. loj

A s d = r x ^ f f a f e (3.19)

DECAPLC = ^ d e_ c a p x /,eafc_ffote (3.20)

BUFFLC = - x > W e J m / / x /Zeafc.9a ie x A S F (3.21)

V? = STC x ABBC (3.22)

The total module sub-threshold leakage current (I0ff), which is the average of the

P and N tree leakage currents, is estimated using Eqn 3.14. Sub-threshold leakage

is a function of the total device width (Wt0tal), type of FET i.e. nominal or low-

Vt, typical unit width leakage values (\0thv I owhv I otlv I owtv)' process width scaling

factor (swidth)> average stacking factor for cell in the new process library (sf) and

the fraction of low-Vf FETs to nominal FETs (LVR, HVR). The total module gate

leakage current (Igate) is estimated using Eqn 3.17 and is a function of the total gate

area in the module (Agate), width scaling factor (swidth)i a n d unit width gate leakage

current 0-ieak.gate) • The total module junction leakage current (Ijunc) is estimated

using Eqn 3.18 and is a function of source and drain junction area (AS(j) and unit

junction area leakage (lieak.junc)- Values for the unit width sub-threshold leakage and

unit area gate and junction leakages are determined from the new process' foundry

characterization data.

57

An empirical constant determined by process and device layout rules (r in Eqn

3.19) is used to estimate the average source and drain junction areas based on gate

area. The impact of applying either sleep transistors or back body biasing to the

module is captured by the effective leakage modifier (</?) as defined in Eqn 3.22.

Additional gate leakage due to interconnect buffers insertion (to improve interconnect

delay) and de-coupling capacitances insertion (to improve power grid integrity) are

captured by the factors BUFFLC and DECAPLC, respectively.

3.4.3 Operating Frequency

The max operating frequency of a generic block can be calculated from Eqn 3.23.

f = ((fold x HVR) + (fold x LVR x DVTC)) x DIF
JPredict (TPFR x FSF) + ((1 - TPFR) x RCSF^) l J

RCSF»= m% <3 2 4>
0 = STPC x ABBPC x USPE (3.25)

*dd_spec -^
FSF = (3.26)

miri-old

Vddjbump x SLPZD x (SLPZD - X)

^unitjold v j_d.

Cunit-new X Swidth X ^ " % ' ^s.old
miri-Oia

Design choice dependent factors affecting ipredict a r e) legacY operating frequency

(i0ld), nominal to low-Vf FET ratios (HVR, LVR), critical path speed up due to

low-Vt FETs (DVTC), performance impact correction due to sleep transistor inser­

tion (STPC) and performance impact correction due to back body biasing (ABBPC).

Empirical factors affection ipredict a r e ! expected interconnect slow down due to in­

terconnect RC scaling (RCSF), expected interconnect buffer insertion speed up at­

tainable (BSUF) and the expected ratio of a typical critical path gate delay to total

critical path delay (TPFR). Process dependent factors affection ipredict a r e ; r a t io of

58

unit area gate capacitance in the old and new process (DIF), ratio of minimum size

device drive currents in old and new process (DIF) and the impact of supply voltage

droop on FET delay (FSF). FSF (FET slowdown factor) is a factor that captures

FET switching speed dependence on power supply voltage and environmental power

grid noise. Propagation delay measurements from SPICE simulations on standard

logic gates in the new process technology are used to obtain X and Y paraments in

Eqn 3.26, by curve fitting the SPICE delay measurement data (Section 3.4.5.). The

operating frequency (reciprocal of the critical path delay) for a module is estimated by

Eqn 3.23. For modules that have new features with no legacy data, critical path delay

estimated using the number of equivalent gate delays and TPFR are used instead of

legacy data in Eqn 3.23.

3.4.4 Effect of Vdd Scaling

Lowering supply voltage to reduce total power consumption or elevating supply

voltage to improve performance is a standard design technique [53]. When a module's

supply voltage changes, that affects module dynamic, leakage power, and operating

frequency. The impact of supply voltage change on dynamic power can be directly

estimated from the expression for dynamic power (Eqn 3.1). However, the impact

of supply voltage change on gate leakage, junction leakage, sub-threshold leakage,

and device slowdown/speedup (operating frequency) are indirect and have to be de­

termined individually. Supply voltage does not directly appear in the expressions

for total sub-threshold current (Eqn 3.14), total gate leakage current (Eqn 3.17) and

total junction leakage current (Eqn 3.18). Moreover, unit width or unit area leakage

values at nominal supply voltage are used to estimate leakage currents and the device

slowdown/speedup (i.e. FSF in Eqn 3.26) was calculated at nominal supply voltage.

Clearly, leakage and gate delay are supply voltage dependent. Detailed models for

leakage currents such as models described in [62] exists and can be used to accurately

59

calculate the leakage currents under varying supply voltages. However, these models

require detailed physical device analysis and utilize additional process parameters

that are hard to extract or not readily available. Therefore the task of determining

the impact of supply voltage on leakage current can be simplified by using simple

empirical equations that capture the general relationship of the detailed models to

the first order, as shown in Eqns 3.28 - 3.34.

VddJmmp = V x Vddspec (3-28)

a = Jdd-Spec (3.29)
*ddjapplied

-Lleak-junc-new = Heak-junc x e \o.6\3)

heak-gate-new = heak^gate x e ^ " " 1) (3.31)

I0ff.new = Ioff x e 7 * 6 (3.32)

t . " ' + • * + / ' + « • ' - 1 (3 ,3)

FSP^-FSFxlWy1'')* (3.34)

Suitable test circuits are simulated using the new process SPICE model to mea­

sure the leakage currents and device delay by sweeping the supply voltage. The

measured values are then used to determine the analytical approximation coefficients

(a,/3,7, S and e) by curve fitting. Establishing the analytical approximation prior

to design space exploration, obviates the need for repetitive characterization runs,

thus speeding up the estimation of power supply scaling on leakage currents and

device delays. V^_spec is the nominal power supply voltage and V^appZied ^s ^ n e

scaled/altered supply voltage applied. 77 is a factor characterizing package supply

network's IR drop. Iieak-junc-newi heak.gate-new'> I0ff-
new a n d FSFjnew are unit

area junction, unit area gate, unit width sub-threshold leakages and FET slowdown

60

file:///o.6/3

expected at the altered supply voltage and Iieak_jUnci heak-gate-* ^off a n ^ FSF are

the corresponding leakages and FET slowdown at nominal supply voltage. When a

module's supply voltage changes, the new unit leakage values and FET slowdown are

calculated and then these values are used instead of the nominal values to estimate

module leakage, dynamic powers and operating frequency.

3.4.5 Procedure to Find Coefficients X and Y in Eqn 3.26

The values of these curve fitting parameters (X and Y) are obtained from SPICE

simulations performed on a test circuit using the appropriate device model. The

test circuit consists of inverters of varying sizes with appropriate F04 load. Inverters

sizing starts with minimum the size (IX). Other sizes used in the simulations are 10X,

100X and 1000X the minimum size where the 100X and 1000X inverters are suitable

fingered. Propagation delay of these devices is defined as the average of high-to-low

and low-to-high 50%-to-50% V^ transition times. Propagation delay for the inverters

for Vfj^ sweep of V^ ± 40% V ^ m steps of 1% V^ is measured.

The FSF (FET slowdown factor) is a measure of the change in propagation

delay of the devices under various applied supply voltages, with respect to nominal

supply voltage. Analytically FSF is given by Eqn 3.35. By curve fitting the measured

propagation delay values for the various supply voltages, the coefficient values of X

and Y in Eqn 3.35 are obtained.

FSF =

Y
*ddspec — -X-

(3.35)
VddJbump x SLPZD x (SLPZD - X) _

Vdd.bump = Vdd.spec x 0-95 (3.36)

SLPZD = {Vdd-bu™/ - NADSP) (3.37)
^ddJoump

61

3.4.6 Procedure to Find ABBC, ABBPC, STC, STPC and
DVTC Descriptors

Applying module granular circuit level design choices, namely, adaptive body

biasing, sleep transistor insertion and, using dual threshold FETs require background

SPICE simulation to ascertain their impact on module power and performance.

I S l e e i

F u l l V d d

W S F

.JjL.eak_STj

CD>
CD.

V i r t u a l N/aa

I N !

W F

O U T

W N

• M o d u l e i n v e r t e r .

r—K. W F

W K

r H t

H :

w ,

w IM

r-4C

H :

W F

CD !

CD *

CD

"C3 1
O *

ca ;
C3 ;

CD •

r-4C W F

Figure 3.4: Experiment to obtain STC and STPC factors

Fig 3.4 shows the setup used to determine the impact of applying sleep transistor

insertion to a module. The width of the sleep transistor (Wgp) has tremendous

influence on the benefits of applying this design choice to the module, it is hence a

very important design specification. To optimize sleep transistor size and its impact

on a block, an algorithm (described in Table 3.5) which uses the relation in Eqn 3.38

was developed.

62

w\ ' sleep (3.38)
L J SleepFBT Vn X Cox X (VDD - Vt) X Vsleep

Where, Isieep and Vsieep are the sleep leakage current and the voltage drop across

the sleep FET.

Table 3.5: Algorithm ST_size_evaluate
Step

1

2

3

4

5

6

7

Explanation

Maximum switching current of the block without ST is calculated using
SPICE.
Using Eqn 3.38, assuming a fixed value for Vsieep [FullVdd/2) and
setting Isieep equal to the value in step 1; the initial sleep transistor W
is calculated
The estimated Wgp (sleep transistor width) is used with SPICE to
measure Vs\eep and Isieep

 a n e w width is calculated using the latest
values as in Eqn 3.38
STCj = Leakage with STs (most recent Isieep from SPICE) / Leakage
without any STs
STPCj = Propagation delay without STs / Propagation delay with STs
(most recent delay value from SPICE)
Steps 3 to 5 are iteratively repeated until a user defined stopping criteria
is met, this is the optimal Wgjr value
In the iterative process when the stopping criteria is reached the STCj
and STPCj factors correspond to the optimal Wgp and are the optimal
STC and STPC.

The decision to stop the iterative sleep transistor width sizing is based on the

stoping criteria parameter (STOPJ3T) given by Eqn 3.39, which is calculated in step

6 in Table 3.5.

STOPST = (((5 T Q - 5 r C i _ i) x a 5 r) + (5 r P Q - 5 r P C i _ i) x (l - a 5 r)) / 2 (3.39)

where agx is a u s e r provided weight to trade-off power and performance, it is

set to 0.5 by default. STCj, and 5TCj_i are the leakage power correction descriptors

for the ith and (i + l)th iterations, respectively. STPQ and STPCi _1 are the per­

formance correction descriptors for the i and (i + 1) iterations, respectively. The

63

iterations are stopped if and when the value of STOPST becomes less than an user

provided threshold value £5^ .

i
;

I N ;

s

* :

I

i

:
t

\ A / P >

W N

M o d i

F

j l e

1
«

u l v d d i
\

1 i

Y B P ! •

O U T ; j
' 8

V B M : '•
s fc ' * ~" i -

i i

1
i *

r-41

1—II

- |
r-^HZ
1—ir

r^H
i r -

II

r^H

1—II
s„ . „ . „ . ,

W P

1

w,=

I

V V H

W N

W n

W M

,̂ =-̂ .

1
1
!
i

;

CO '

ct> !
> ;

_o? i
— t !

CD .'

£ .;
o I
& !
CD '.

5

""-J !
1 1

;

1
t

i

\
i

Figure 3.5: Experiment to obtain ABBC and ABBPC factors

Fig 3.5 shows the setup used to determine the impact of applying adaptive back

body biasing to a module. To determine the optimal bias voltages, an algorithm

(described in Table 3.6) was developed. The body voltage sweep ranges are V ^ ± 5 0 %

of Vdd for PFETs and GND ± 50% of Vdd for NFETs.

A figure of merit value (FOM_ABB) as defined in Eqn 3.40 is used to determine

the optimal bias voltages.

FOMABB = (ABBPQ/ABBCi) (3.40)

where, ABBPCi and ABBCi are the performance and leakage power correction de­

scriptors values at the i step. The user can choose to bypass the algorithms de-

64

Table 3.6: Algorithm ABELevaluate
Step

1

2

3

4

5
6
7

8

Explanation

Leakage current (sub-threshold) and propagation delay without ABB
are calculated using SPICE
A complete two variable nested sweep of the body voltage in 10% of
Vrfd steps is started, recording the leakage and propagation delay value
at each sweep point
ABBQ = Leakage with ABB (most recent leakage current from SPICE)
/ Leakage without ABB
ABBPQ = Propagation delay without ABB / Propagation delay with
ABB (most recent delay value from SPICE)
Calculate FOM_ABB as in Eqn 3.40
Loop steps 2-4 for all combinations of bias voltages
The bias voltage combination which maximizes FOM_ABB is chosen as
the optimal bias condition
ABBCj and ABBPQ factors correspond to the optimal bias conditions
and are the optimal ABBC and ABBPC.

scribed in Tables 3.5 and 3.6 a custom sleep transistor size or bias voltages may be

used respectively in the background simulations to calculate the descriptors.

To improve performance a design technique commonly employed is using dual

threshold FETs i.e. low-Vt FETs along the critical path and nominal Vt FETs else­

where. The increase in leakage due to low-\4 FETs is captured by Eqn 3.14 and the

performance improvement is captured by the DVTC descriptor in Eqn 3.23.

Fig 3.6 shows the setup used to determine the impact of using dual threshold

FETs. The nominal operating frequency i.e. with all nominal FETs of the test setup

is measured. The nominal FETs are replaced with low-14 FETs and the operating

frequency is measured again. The increase in performance i.e. DVTC factor is then

calculated as in Eqn 3.41.

DVTC =
Operating frequency with low — Vt FETs

Operating frequency with nominal FETs
(3.41)

65

Full VDD * « ,

W p / 9

-IN < OUT

\ WN/9 If]-1

-,. ' 1

rs v^
1 ring oscillator

f>^
\ > ^

^ ^
9 / c

Figure 3.6: Experiment to obtain DVTC factor

3.5 Proposed Methodology for Rapid Early De­
sign Space Exploration

3.5.1 Estimating Module Power and Performance

Eqns 3.3 though 3.1 represent the analytical design target prediction models to

estimate a module's power and performance. Module descriptors are primary vari­

ables in these models. When an existing design is ported to a new technology or

when different module-granular circuit-level design choices are applied, appropriate

module descriptors are modified to reflect the changes; as shown in Fig 3.7. When

a design choice is applied to the module which requires in-situ simulations, such as

the choices described in section 3.3.3; simulations on the macro models are performed

to calculate the corresponding descriptor values. Once all necessary descriptors are

obtained, evaluating the analytical design target prediction models (Eqns 3.1 though

3.27) results in module power and performance estimates.

66

/ D e s i g n \
y c h o i c e s J

A p p l y | j

L i s t o f
m o d u l e

d e s c r i p t o r s

P w i d t h
N w i d t h

C i o a d

e t c

Figure 3.7: Application of a design choice to a module

3.5.2 System Design Target Prediction

For a system with multiple modules, design choices are independently assigned to

each module in the system. With non-homogeneous design choice applied to modules,

power and performance of all modules in the system are sequentially estimated. Once

this is complete, the predicted system power is as the sum of all the individual module

power estimates. All modules which contain portions of the system critical path are

flagged as "critical modules". The predicted system performance i.e. critical path

delay, is the sum of all critical module delay estimates.

3.5.3 Design Space Exploration

Design space exploration involves evaluating system designs iteratively by varying

circuit-level design choices applied to various modules in the system. The module

granular circuit level design choice that can be applied to modules for design space

exploration are described in detail in Appendix A. Fig 3.8 shows how the proposed

M o d u l e
1

2

M o d u l e s

67

methodology and tool for design space exploration (EIDA) fits in a standard system

design flow.

Given a system architecture optimized for computation efficiency or for function­

ality in a SoC, generating the optimal power, performance (i.e. operating frequency)

system implementation scheme involves the following steps.

1. Generating the modular system model and descriptor vectors for all modules.

2. Initializing all non circuit-level design choice dependent descriptor values. They

include all legacy design descriptors, target process technology dependent de­

scriptors and analytical approximation coefficients.

3. Making module-granular circuit-level design choice assignments to all modules

in the system.

4. Generating in-situ macro models and initiating SPICE simulations to measure

the relevant parameters to calculate the corresponding descriptor values.

5. Predicting system power and performance using the analytical design target

prediction models.

The analytical prediction models for system power and performance provide a

path to link the physical level behavior to the high level system specifications, making

the proposed approach for design space exploration more meaningful. Furthermore,

using path 'A' in Fig 3.8, the architect may modified the system architecture based

on EIDA's power-performance trade-off and what-if analyses; such physical imple­

mentation driven architectural optimization leads to a correct-by-design system ar­

chitecture. Thus, given a system architecture, early design phase power-performance

optimization as in Fig 3.8 improves design convergence and help meet time-to-market

requirement.

68

Start

i -*±«-
System architectural

(computational) optimization

No

Any existing
system

(computational)
optimization tool

From chosen architecture get
- functional partitioning
- critical modules and paths
- module sizes and placement
- interconnect lengths
- etc.. (update descriptors)

Design space exploration
(EIDA)

List of
design
choices

Can use genetic
algorithms or other
techniques to optimize
system power & pref,
given an architecture

1
For each modules in system:
- apply a design choice
- evaluate descriptors
- estimate power and performance

Estimate system power & pref

Figure 3.8: Rapid early design space exploration flow chart

69

3.5.4 Evolutionary Algorithms for Design Space Exploration

An evolutionary algorithms (EA) is a search technique that follows natural se­

lection and survival of the fittest phenomenon observed in the biological world. EAs

are unlike traditional optimization techniques by searching, at each iteration, within

a collection of potential solutions called "population" and not from a single solution.

At the end of every iteration a competitive selection process "weeds out" unfit solu­

tions from the population so that in the next iteration these solutions do not generate

more unfit solutions. The solutions with high fitness that remain in the population,

they then mutate or recombine with each other to generate additional solution. Re­

combination and mutation are used to generate new solutions that are biased towards

the fittest solutions (elite solutions) in the current population. EAs can be applied to

many types of problems and it is particularly suited for multi objective optimization

such as power performance optimization in modern VLSI designs.

In [63] an evolutionary algorithm based design space exploration was demon­

strated on a larger VLIW-microprocessor based platform. It was shown that an evo­

lutionary algorithm based design space exploration is immune to increase in system

size and maintained high levels of efficiency. The proposed methodology of incorpo­

rating an evolutionary algorithm for design space exploration and the use of analytical

models for design target prediction (design fitness estimation) result in high quality

Pareto fronts suitable for performing power performance tradeoffs. The modeling of a

system as a collection of modules (or sub-design) structurally lends itself very well to

be represented as a chromosome, which is an integral part of any EA. Also by mod­

ularizing a system and independently characterizing the individual modules, permits

modeling and analyzing large designs with large design spaces without significant

disproportionate increase in system modeling efforts.

70

Chapter 4

Proposed Design Space
Exploration Methodology:
Experimental Setup

4.1 Overview

The overall goal of the proposed design framework is to enable designers to

perform sufficiently accurate early design space exploration to improve design con­

vergence and meeting time-to-market schedule. Validation of the proposed method

for design space exploration is demonstrated through a technology node migration

experiment. This experiment generates normalized predicted power vs performance

charts, while applying standard circuit-level design techniques to modularized bench­

mark circuits. Following methodology validation, analytical system design target

prediction model accuracy is verified against SPICE simulation results. Finally, the

scalability of the proposed approach is shown by applying a Pareto-front analysis to

two ISCAS89 benchmark circuits and an industrial microprocessor based design.

4.2 Experiments in Technology Node Migration

Technology node migrations of ISCAS85 [64,65] circuits C5315, C6288 and C7552

[66] and ISCAS89 [67,68] circuits S132007, S15850, S38417, S38584 and S9234 from

a 180 nm process to a 130 nm process technology [69-71] are performed. Table 4.1

list the characteristics of the ISC AS benchmark circuits used in this experiment.

Table 4.1: Benchmark circuit details

• ISCAS85 c5315 : 178 inputs, 123 outputs, 2406 logic gates

• ISCAS85 c6288 : 32 inputs, 32 outputs, 2406 logic gates

• ISCAS85 c7552 : 207 inputs, 108 outputs, 3512 logic gates

• ISCAS89 s9234 : 36 inputs, 39 outputs, 211 DFF, 5597 logic gates

• ISCAS89 sl3207 : 62 inputs, 152 outputs, 638 DFF, 7951 logic gates

• ISCAS89 sl5850 : 77 inputs, 150 outputs, 534 DFF, 9772 logic gates

• ISCAS89 s38584 : 38 inputs, 304 outputs, 1426 DFF, 19253 logic gates

• ISCAS89 s38417 : 28 inputs, 106 outputs, 1636 DFF, 22179 logic gates

Structural Verilog description of these circuits were mapped to gates from a

180 nm standard logic gate library from [72] and the corresponding transistor level

SPICE netlists were generated. The circuits were each randomly partitioned into four

partitions, each partition with its input/output signal (nets) is considered as a module

in a system of four interconnected modules; as shown in Fig 4.1. Critical paths within

each module and within the whole circuit were determined using NanoSim [73]. These

circuits were relatively small and with random partitioning the system critical path

fell along and included all four partitions, but with varying degrees of contribution to

the system critical path delay. The transistor level netlists for the benchmark circuits

were used to determine each partition's (module's) total P and N FET widths. Process

dependent descriptors were obtained from the 130 nm process specs.

72

Part. #3 Part. #4

Critical path

'in

Figure 4.1: Benchmark circuit partitioning with critical path shown

Table 4.2: Assumed descriptor and coefficient values for 180 nm TSMC to 130 nm
PTM technology porting

• Swidth w a s s e t t o °-7

• sf was set to 2.5

• RPSF was set at 1

• 10% Vdd droop i.e. NADSP was set at 0.1

• ASF was set to 0.2

• HVR was set to 0.9

• RCSF was set to 0.15 i.e. 15% interconnect degradation

• BSUF was set to 1.3

• TPFR was set to 0.75

• DECAP_SENS was set to 0.05 V/nF (legacy data)

• Fitted a, (3,^,5 and e in Eqns 3.30 - 3.34 were 10, 8, 1.1, 1 and 2 respectively.

• Fitted X and Y in Eqn 3.35 were 0.2737 and 0.4305 respectively

• Interconnect length (TWL) was set at 1 m and divided among partitions ac­
cording to the ratio of partition FET width to total FET width.

73

Table 4.2 shows the list of descriptors and analytical approximation coefficients

and their values used for this experiment. Once all the descriptor values (in-situ sim­

ulation descriptors appropriately initialized to unity or zero) have been determined,

analytical evaluations of Eqns 3.1 to 3.27 are performed, resulting in predicted power

and performance numbers for the scaled circuits. The scaled circuits with no changes

to any design choices (i.e. straight port) are used as the reference circuits to compare

with scaled designs with a variety of different choices. The results of the design space

exploration are normalized to the "straight port" designs for all circuits considered

in the experiments.

4.2.1 Applying Module Granular Circuit Level Design Choice

Design space exploration is performed using a set of design techniques for either

reducing power or improving performance. A design "assignment" is considered valid

and complete when all modules in a system has been assigned a circuit-level design

choice or a valid combination of design choices. Table 4.3 lists the design choices

Table 4.3: Module-granular circuit-level design choices
S.No -

1
2
3
4
5
6
7

Design choice

No change to the original design
Lowering V^ by 200 mV to reduce power consumption
Elevating V d̂ by 200 mV to improve performance
Using Low Vt FETs in critical path to improve performance
Using sleep transistors to reduce leakage power
Adaptive body biasing to PFETs (FB) to improve performance
Adaptive body biasing PFETs (RB) to reduce leakage power

applied to the scaled design on a per module basis. The design choices are divided

into two subsets, the first subset contained design choices for improving performance

and second subset contained design choices for reducing power. Combinations of

design techniques (recipes) within a subset are applied to the partitions of all three

circuits. Design choices that are available for each module are listed in Table 4.3.

74

Lowering supply voltage to reduce power and using low-14 FETs to improve criti­

cal path delay may not be a desirable combination. Incidently, adaptive body biasing

and sleep transistor together may not be a desirable combination since body bias

has no effect when the supply is turned off. Design choices and their combinations

are then assigned to the modules based on the module's criticality; i.e. critical mod­

ules were assigned design choices from the high performance subset and non-critical

modules were assigned design choices from the low power subset. All possible as­

signments under criticality constraints were generated and evaluated. This was done

to mimic the intuitive design practice followed by design teams. When using sleep

transistors, operating temperatures differ depending on whether a module is turned

on and off [74]. This is accounted for in the in-situ simulations performed by chang­

ing temperature settings accordingly. Active operational temperature was set to 90°

centigrade and inactive temperature was set to 25°.

4.3 Design Target Prediction Accuracy

Prediction accuracy is the foundation of the applicability of the proposed method­

ology. The feasibility of the proposed approach was established by the experiment

described in Section 4.2. Design target prediction model accuracy with respect to

SPICE has to be estimated in order to validate the applicability of the proposed

methodology. SPICE simulation and measurement on the selected benchmark cir­

cuits were not possible due to large input vectors sizes. A test circuit in a reference

technology is chosen for SPICE runs to verify prediction accuracy. The test circuit's

input vector size is smaller and more manageable for SPICE simulation to validate the

applicability of the proposed methodology. Two experiments were conducted on the

test circuit to ascertain prediction accuracy. In the first experiment the test circuit

was successively ported from 180 nm to 130 nm to 90 nm to 65 nm technologies and

75

at each technology node the predicted power and performance and SPICE measure­

ments are compared. In the second experiment the design space of the test circuit

in a 32 nm process is explored to obtain a power and a performance centric solution.

There solution were them implemented in SPICE and their power and performance

were measured. The measured power and performance values were compared with

the power and performance values predicted by the proposed prediction models.

4.3.1 Successive Design Port ing From 180 nm to 65 nm Tech­
nologies

A<15:0>
• -

B<15:0>
• -

C<15:0>

D<15:0H

E<7:0>

F<7:0>

G<7:0>

H<7:0>

addl

add2

compare
1

criticai pain g

add3
<15:8>

Ol

sub
<7:0>

compare
2

addl - 1 6 bit adder
a d d 2 - 16 bit adder
add3 - 8 bit adder
Sub - 8 bit subtractor
compare 1 - 16 bitxor
compare2 - 16 bit xor

add l , add2 and
comparel are critical
modules

- • Each module will be
£ considered individually
A1 for applying design
& choices
o
V

Figure 4.2: Test system to determine prediction accuracy

Table 4.4 lists the descriptor values and analytical approximation coefficients for

180 nm to 130 nm, 130 nm to 90 nm and 90 nm to 65 nm technologies used in this

experiment.

76

Table 4.4: Assumed descriptor and coefficient values for 180 nm to 130 nm PTM &
130 nm to 90 nm PTM k 90 nm to 65 nm PTM & 65 nm to 32 nm PTM

(a) Common values of descriptors used

• swidth was set to 0.7

• sf was set to 2.5

• RPSF was set at 0.9

• 10% Vdd droop i.e. NADSP was set at 0.1

• ASF was set to 0.2

• HVR was set to 0.75

• RCSF was set to 0.1 i.e. 10% interconnect degradation

• BSUF was set to 1

• TPFR was set to 0.5

• DECAP_SENS was set to 0.05 V/nF

• Interconnect length (TWL) was set at 0.01 m and divided among modules
according to the ratio of module FET width to total FET width.

(b) Technology port dependent descriptor values

Descriptor

a Eqn 3.30
P Eqn 3.31
7 Eqn 3.32
5 Eqn 3.33
e Eqn 3.34
X Eqn 3.35
Y Eqn 3.35

180 to 130 nm

10
8
1.1
1
2
0.2737
0.4305

130 to 90 nm

8.5
7.25
1.02
0.94
1.8
0.3103
0.4625

90 to 65 nm

6
6.25
0.9
0.65
1.22
0.5262
0.5235

65 to 32 nm

5
5.25
1
0.65
1.4
0.5529
0.5448

Fig 4.2 shows the chosen test circuit, consisting of six modules, two 16-bit adders,

one 8-bit adder, one 8-bit subtractor and two 16-bit comparators. The test circuit

is implemented in 180 nm TSMC technology and its power consumption and perfor­

mance (critical path delay) are measured by SPICE simulations. This implementation

is considered as the legacy design and the measured power and delay form legacy de-

77

sign data. This legacy design is then manually scaled to 130, 90 and 65 nm PTM

technologies. SPICE simulations on the scaled circuits are used to determine their

power and performance. Simultaneously, the legacy design is modeled as described

in Section 3.2 and ported successively to 130, 90 & 65 nm PTM technologies and the

ported design's power and performance are estimated using the design target predic­

tion model in Section 3.4. The SPICE measured power and performance is compared

to the predicted power and performance.

4.3.2 Design Space Exploration of the Test Circuit in 32 nm
Technology

Successive scaling experiment validates the prediction model accuracy as well as

establishes the predicted result's conformity to comparable results in the literature.

To further validated and demonstrate the applicability and accuracy of the proposed

H<7:0> -rrW^

addl - 1 6 bit adder
a d d 2 - 16 bit adder
add3 - 8 bit adder
Sub - 8 bit subtracter
comparel - 16bi txor
compare2 - 16 bit xor

addl , add2 and
comparel are critical
modules

- • Each module will be
§ considered individually
^ for applying design

SPICE implementation
and simulation

SPICE implementation
and simulation

SPICE
measured power
and performance

EIDA predicted power ^ ^ r e
and performance

Figure 4.3: Procedure to compare EIDA and SPICE

methodology for design space exploration, the test circuit is implemented in a 65

nm PTM process and the ported from 65 nm to 32 nm PTM technology. Fig 4.3

illustrates this experiment. A design space exploration of the ported circuit in 32 nm

78

technology using the circuit level design choices listed in Table 4.3 was performed.

Table 4.4 lists the descriptor values and analytical approximation coefficients for 65

nm to 32 nm technologies used in this experiment.

4.4 Evolutionary Algorithm Based Design Space
Exploration

The validity of the proposed modeling methodology for design space exploration

and design target prediction accuracy are addressed through technology node migra­

tion (Section 4.2) and design target prediction accuracy (Section 4.3) experiments

respectively. In this section the evolutionary algorithm (EA) based design space ex­

ploration, pareto-front analysis [75] and the scalability of the modeling methodology

are demonstrated on ISCAS89 s38584 and s38417 circuits, and a larger design based

on an existing microprocessor design in a 65 nm CMOS technology [76].

The ISCAS89 circuits were randomly partitioned into four modules as described

in Section 4.2. The circuits critical paths fell along all four partitions. The micro­

processor based design is partitioned into 26 modules based on micro-architectural

functionality. Partitioning is not a trivial task since in addition to functionality, floor-

planing, power network integrity, and performance requirements all influence parti­

tioning. Partitioning of a microprocessor is often a complex and manual process. In

the process of partitioning the microprocessor, the optimization techniques discussed

here played a minor role. Fig 4.4 shows the partitioning of a modern microprocessor

similar to the partitioning scheme used for this experiment [77] [78] [79]. The detailed

discussion of the partitioning process is beyond the scope of this report. The system

critical path fell along 10 out of the 26 modules in the system.

To demonstrate design space exploration it is assumed that;

79

1. A hypothetical microprocessor (based on the existing design in a 65 nm PTM

technology) is to be redesigned with no micro-architectural changes in 32 nm

PTM process. Following the procedure outlined in Fig 3.8 and using the existing

functional partitioning, all relevant legacy descriptor values are extracted. The

design is then ported (migrated) to the 32 nm PTM process and the system

power and performance (operating frequency) are predicted. Then an EA based

design optimization using Pareto-analysis is performed on the ported design to

complete the design space exploration.

2. The two ISCAS89 circuits (s38584 and s38417) are to be ported (migrated)

from a 180 nm process to a 130 nm process technology ([69,70]) similar to the

experiment described in Section 4.2. Then an EA based design optimization

using Pareto-analysis is performed on the ported design to complete the design

space exploration.

4.4.1 Design Migration

The 65 nm microprocessor based design is ported to a 32 nm PTM design [69,70].

Descriptor values for this experiment are shown in Table 4.5. Similarly, the ISCAS89

circuits are ported from 180 nm to 130 nm PTM. Descriptor values and analytical

approximation coefficients for this experiment are shown in Table 4.2.

4.4.2 Pareto-Analysis Using Randomized Design Generation

Table 4.6 lists the module granular circuit level design choices for the ported 32

nm design. Design space exploration of the ported design is performed by assigning

these design choices independently to all the 26 modules [80]. A design solution or

recipe is considered "assigned" and valid when all twenty six modules have been given

80

L1
c a c h e

B r a n c h
p r e d i c t i o n

I ns t r uc t i on
T L B

B B B I I M M M M F F

R e g i s t e r s t a c k e n g i n e / R e n a m e

B r a n c h
un i t

I n t e g e r
un i t

• • •
M e m o r y
/ I n t e g e r

F P un i t

L 1 D
c a c h e

A L A T D a t a
T L B

L 2 c a c h e

Q u e u e s / C o n t r o l L3 c a c h e

S y s t e m i n t e r f a c e

Figure 4.4: Block diagram of an modern microprocessor. B / I /M/FP: branch/ inte­
ger/ memory/ floating point units; ALAT: advanced load address table; TLB: trans­
lation look-aside buffer

one of the thirteen design choices from Table 4.6. The power and performance of a

recipe can be estimated using the design target prediction model.

The number of possible recipes that are possible when thirteen design choices

are independently assigned to twenty six modules is very large (i.e. 26! x 13! =

2.51130432 x 1036). Given such a large design space, it is not possible to evaluate

all the recipes. Moreover not all recipes may be meaningful. However, design space

exploration involves generating recipes for evaluation and choosing an optimal solu­

tion within the generated recipes. Therefore, two algorithms, simple randomizer and

81

Table 4.5: Assumed descriptor and coefficient values for 65 ran to 32 nm PTM

• swidth w a s s e t t 0 °-7

• sf was set to 2.0

• RPSF was set at 0.9

• 10% Vdd droop i.e. NADSP was set at 0.1

• ASF was set to 0.2

• HVR was set to 0.75

• RCSF was set to 0.1 i.e. 10% interconnect degradation

• BSUF was set to 1

• TPFR was set to 0.5

• DECAP_SENS was set to 0.05 V/nF

• Fitted a,/3,7,5 and e in Eqns 3.30 - 3.34 were 5, 5.25, 1, 0.65 and 1.4 respec­
tively.

• Fitted X and Y in Eqn 3.35 were 0.5529 and 0.5448 respectively

• Interconnect length (TWL) was set at 10 m and divided among modules ac­
cording to the ratio of module FET width to total FET width.

complete randomizer outlined in Fig 4.5a) and b) respectively to generate recipes for

design space exploration were developed. These algorithms both utilize twelve stan­

dard design solutions called "seed recipes" in Table 4.7 to initialize recipe generation.

The simple randomizer algorithm chooses a seed recipe and generates a coin-flip

based random bit for each of the twenty six modules. When the random bit corre­

sponding to a module is T then that module is marked for modification. When all the

twenty six random bits have been generated, one of the thirteen design choices from

Table 4.6 is randomly selected and applied to the modules marked for modification.

The complete randomizer algorithm uses the same random bit generation technique to

82

Table 4.6: Valid available additional design choices
No.

1
2
3
4
5
6
7
8

9
10
11
12
13

Design choice

No additional design choices applied
Reduce Vdd by 100 mV
Reduce Vdd by 100 mV & apply sleep transistor for power gating
Reduce Vdd by 100 mV & ABB RB for critical path transistors
Increase Vdd by 100 mV
Increase Vdd by 100 mV & low Vt transistors in critical path
Increase Vdd by 100 mV & ABB FB for critical path transistors
Increase Vdd by 100 mV, Low Vt transistors & ABB FB in critical path
transistors
Low Vt transistors in critical path
Low Vt transistors & ABB FB in critical path transistors
ABB FB in critical path transistors
ABB RB in critical path transistors
Inserting sleep transistors for power gating

Table 4.7: Seed recipes for pareto-front analysis
No.

1
2
3
4
5

6
7

8

9

10
11

12

Design choice

All non critical modules power gated with sleep transistors
All non critical module critical path transistors applied ABB-RB
All critical module critical path transistors made low-V^
All critical module critical path transistors applied ABB-FB
All critical module critical path transistors applied ABB-FB and made
low-Vt
All critical modules applied 100 mV higher VDD
All critical module critical path transistors made low-V^ and to critical
modules applied 100 mV higher VDD
All critical module critical path transistors applied ABB-FB and critical
modules applied 100 mV higher VDD
All critical module applied 100 mV higher VDD, critical path transis­
tors made low-Vf and applied ABB-FB
All non critical modules applied 100 mV lower VDD
All non critical modules applied 100 mV lower VDD and module tran­
sistors applied ABB-RB
All non critical modules applied 100 mV lower VDD and power gated
with sleep transistors

83

START f START ")

Reset pointer to first module
Reset pointer to first module

Randomly generate binary bit (coin flip)
1 => select this module for modification

0 => skip this module

NO

Randomly generate binary bit (coin flip)
1 => select this module for modification

0 => skip this module

End of module list ?

YES Reset pointer to first module

Reset pointer to first module

Randomly choose 1 of 13 design choices.

Randomly choose 1 of 13 design choices.
Increment module pointer.

Apply selected design choice
to all modules.

C STOP J

Apply selected design
choice to current module.

(STOP ~)

(b) Complete randomizer algorithm (a) Simple randomizer algorithm

Figure 4.5: a) Simple randomizer algorithm b) Complete randomizer algorithm

mark modules for modification. However instead of choosing one design choice to be

applied to all modules marked for modification, the complete randomizer algorithm

randomly chooses one of the thirteen design choices from Table 4.6 individually for

each module marked for modification. Starting with the initial twelve seeds, a total

of two hundred and thirty recipes were generated. The power and performance of the

generated recipes were estimated using the design target prediction models and are

normalized to the straight ported values.

84

4.4.3 Pareto-Analysis Using EA Based Design Generation

Randomizer algorithm based design space exploration yielded a sparse pareto-

front, Fig 5.11. Moreover the randomizer algorithms are not capable of tracking

designs which optimize both power and performance. An evolutionary algorithm

(EA) based design optimization using pareto-analysis of the ported design will yield

a well populated and diverse pareto-front. In addition to improving the pareto-front,

EAs are well suited to track solutions that optimize multiple criteria and evolve them

to generate subsequent solutions. The original design in 65 nm is ported to 32 nm

as described in Section 4.4.1. Table 4.6 lists the module-granular circuit-level design

choices that are used for design space exploration.

4.4.3.1 Chromosome Definition

Design space exploration using multi-criteria evolutionary algorithms ([81]) re­

quires a "chromosome" mapping scheme to represent the system to be optimized.

The microprocessor based design consists of 26 modules, where each module can be

independently assigned one of twelve design choices from Table 4.6. Therefore the

design's chromosome mapping is defined as a vector of length 26, where each vector

element, or gene, can have an integer value 0 through 12. For the ISCAS89 circuits

the chromosome mapping is defined as a vector of length 4, where each vector element,

or gene, can have an integer value 0 through 12. Fig 4.6(a) shows the chromosome

(for the microprocessor based design) with 26 elements, one for each module in the

system with possible gene values for module 1 expanded.

4.4.3.2 Chromosome Fitness Estimation

Every chromosome has fitness values associated with it, which in this experiment

corresponds to a vector of size two (power,performance) i.e. total power consumption

and performance of the system with design choices applied as represented by the

85

(a)Cr

1

iromosome

2 # 3

- length

4

of 26 (genes)

2 3 # 2 4 # 2 5 # 2 6

Design choices (gene values)
0 — No change to the original design
1- Reduce Vdd by 100 mV

j 12 — Insert sleep Transistors

(b) A valid chromosome with 26 gene values

12 9 3 0 9 7 10 11

Figure 4.6: (a) Chromosome for evolutionary algorithm based pareto analysis. A
complete list of all design choices is listed in Table 4.6 (b) A valid chromosome
(12,9,3,0, ,9,7,10,11)

chromosome itself. Fig 4.6(b) shows a valid chromosome with design choices applied

to all the modules in the design. The fitness of a given chromosome is evaluated using

the analytical prediction models. Power and performance for all modules in the system

are estimated considering its corresponding gene value, i.e. design choice. Then from

them the system power and performance are calculated which forms the chromosome

fitness vector. The starting point for design space exploration is the ported design

to the new process with no additional design choices applied, represented by the

straight-ported chromosome (0,0) for the

microprocessor based design and (0,0,0,0) for the ISCAS89 circuits. All power and

performance results presented here are normalized to the straight-ported chromosome

fitness values respectively.

4.4.3.3 Chromosome Encoding, Generation and Optimization

Binary encoding of the chromosome is used to transform the chromosome into a

string of Is and 0s. Individual gene value can be an integer between 0 and 12, therefore

a 4-bit binary encoding for each gene is used. Each chromosome will be transformed

86

into a (26x4) 104-bit long binary number. For example, the chromosome in Fig 4.6(b)

will be represented as a binary string:

12 9 3 0 9 7 10 11

Tiogl̂ Ĵ oTTgooo iooi§ni loioion.

The parameters used in the evolutionary algorithm based design space exploration

are summarized in Table 4.8.

Table 4.8: Summary of evolutionary algorithm based pareto analysis
Characteristic

Population size
Crossover
Selection method
Mutation probability
Replacement policy

Description

100
Uniform crossover
Two random chromosomes
1%
Dominant child replaces one dominated chromosome in
the current population

The initial population is selected in such a way that none of the chromosomes

in the initial population dominate any other chromosome in the population. After

the initial population is chosen, the iterative process to optimize the design is carried

out. At each iteration two new chromosomes are generated by uniform crossover of

two randomly selected chromosomes in the current population. Invalid chromosomes

are discarded. A generated valid chromosome's fitness is evaluated and compared to

all existing chromosome in the current population. If any chromosome in the current

population is dominated by the generated one, then the dominated chromosome is re­

placed with the generated chromosome. Only one replacement is allowed per iteration

to maintain a constant population size. If any chromosome in the current population

dominates the generated chromosome then the generated one is discarded.

Chromosome domination is defined in Eqn 4.5. Consider a multi-criteria EA

optimization problem with, n optimization criteria, chromosome length of m and

population size p. Let C, Sj and F^ be the criteria, a generic chromosome and fitness

vectors respectively.

87

CeRnandC={C1,C2,...,Cn]
T (4.1)

Sz e RmandSl = [Sn,Si2,..., Sim)T (4.2)

F% e Rn andF% = [Fn, Fi2,..., Fin]
T (4.3)

The criteria vector can be grouped as,

C = [Ci,C2T--,C$,C$jri,C$jr2,----,C\,C\jri,C\jr2,---,Cn] (4.4)

Where, criteria 1 to $ are minimization, i? + 1 to A are maximization and A + 1 to n

are criteria considered don't care for problem relaxation purposes (optional).

Now, let Si,S2 and F\,F2 be two chromosomes and their corresponding fitness

vectors. Chromosome S\ dominates S2 if a n d only if the following is true;

F\j<F2j V 3 :!...•&

Fik>F2k V fc:(0 + l) . . . A (4.5)

The results of the experiments to validate the proposed modeling methodology

for design space exploration, to establish the design target prediction accuracy and,

to demonstrate the scalability of EA based design space exploration are presented

next in Chapter 5.

88

Chapter 5

Experimental Results, Discussion
of the Results and Future Work

5.1 Results of Experiments In Technology Node
Migration

The eight chosen benchmark circuit, each partitioned into four modules were

ported from 180 nm TSMC to 130 nm PTM process technology, designated as "straight

port" design. The ported circuit's power and performance were estimated using the

analytical design target prediction model. For each circuit an exhaustive module gran­

ular design choice assignment list (generated design) is generated and their power and

performance are estimated using the analytical design target prediction models. Figs

5.1 to 5.8 show the power vs performance curve for all generated designs normal­

ized to the "straight port" design for each of the eight chosen benchmark circuits.

In Figs 5.1 to 5.8 design labeled A & B are performance centric and design labeled

C,D & E are power centric. The power and performance centric assignment details

for each chosen benchmark circuit are listed in Tables 5.2 to 5.8, where assignments

subscripted "solution" are the chosen power/performance centric solution. Table 5.1

summarizes results of the technology migration experiment followed by the normal­

ized power performance plots for all the circuits. For each circuit considered, system

power and performance impact for the power and performance centric assignment

solutions are shown in Table 5.1.

Table 5.1: Technology mode migration results
Circuit name

C5315

C6288

C7552

S38584

S13207

S38417

S15850

S9234

Assignment name

A
D
A
E
A
E
B
C
B
D
B
C
B
D
B
C

%pwr impact

2.35
-32
2.43
-17
3.85
-32
2
-16
2
-23
3
-7
5
-8
4
-4

%pref impact

11.25
-9
10.31
-4.3
15.3
-1.3
9
-3
11
-3
17
< - l
8
-6
6
-2

-Intentionally left blank.

90

Figure 5.1: C5315 design choices

Table 5.2: Circuit C5315 migration results
Assignment

A solution
B

C
D solution

Module 1

low-T4
low-Vf &
ABB-FB
law-Vdd
IOW-VM & ST

Module 2

low-Vf
low- Vt &
ABB-FB
low-V^
low-ydd & ST

Module 3

low-T4
low- Vt &
ABB-FB
none
none

Module 4

low- Vt
low-Vf &
ABB-FB
none
none

For circuit C5315 in Fig 5.1, performance centric assignment A offers a 2.35%

increase in power for a 11.25% improvement on performance and power centric as­

signment D offers a 32% reduction in power for a 9% performance penalty.

91

Figure 5.2: C6288 design choices

Table 5.3: Circuit C6288 migration results
Assignment

A solution
B

C
D

E solution

Module 1

low-Vt
low-Vt &
ABB-FB
1™-Vdd

ABB-RB
low-V^ & ST

Module 2

none
none

none
none

none

Module 3

none
none

none
none

none

Module 4

none
none

none
none

none

For circuit C6288 in Fig 5.2 performance centric assignment A offers a 2.43% in­

crease in power for a 10.31% performance improvement and power centric assignment

E offers a 17% reduction in power for a 4.3% performance penalty.

92

Figure 5.3: C7552 design choices

Table 5.4: Circuit C7552 migration results
Assignment

A solution
B

C
D

E solution

Module 1

low-14
low-14 &
ABB-FB
none
none

none

Module 2

none
none

low-Vdd

ABB-RB
\OW-VM & ST

Module 3

none
none

none
none

none

Module 4

low-Vi

low-14 &
ABB-FB
none
none

none

For circuit C7552 in Fig 5.3 performance centric assignment A offers a 3.85%

increase in power for a 15.3% performance improvement and power centric assignment

E offers a 32% reduction in power for a 1.3% performance penalty.

93

file:///ow-Vm

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

• •

Power

„..%

•

r%—*

Delay

* S38584

trend

•

• •

i *
1 0.6

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Figure 5.4: S38584 design choices

Table 5.5: Circuit S38584 migration results
Assignment

A

B solution

C solution

Module 1

low-Vt, hi-Vdd

k ABB-FB

vt
none

Module 2

low-Vt, hi-ydd

k ABB-FB
hi-Vdd k low-
Vt
none

Module 3

low-14, h\-Vdd

k ABB-FB

hi-Vrfd & low-
Vt
none

Module 4

low-Vt, \ii-Vdd

k ABB-FB

hi-Vrfd & low-
Vt
ST

For circuit S38584 in Fig 5.4, performance centric assignment B offered a 9%

performance improvement for a 2% increase in power and power centric assignment

C offered a 16% reduction in power with a 3% performance penalty. Module 4 in

circuit S38584 contributed the least to the critical path delay, therefore design choice

that lower power when applied to module 4 have a significant impact on power with

minimal impact on performance.

94

1.3

1.2

1.1

0.9

0.8

0.7

0.6 4
0.

P o w e r

«

A~-^

B !• ^ " ^

c—f*
D-j->*

D e l a y

• •

• > > ~ ^ ^

• s132007

trend

• •

* '^^~»^

•

0.8 0.9 1.0 1.2 1.3 1.4 1.5

Figure 5.5: S132007 design choices

1.3 •

1.2 -

1.1 •

1

0.9 -

0 .8

0.7

0.6

0

%

A-

Power

* •

— & • • «*
-4 T
B

0 - V -

/i

• ^ -
.%

D e l a y

• S38417

==— trend

» •

•

•

•

•

•

7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Figure 5.6: S38417 design choices

95

Table 5.6: Circuit S132007 migration results
Assignment

A

B solution

C
D solution

Module 1

low-Vt, hi-Vdd

k ABB-FB

vt
none
none

Module 2

low-Vt, \n-Vdd

k ABB-FB
h.\-Vdd k low-
Vt
none
none

Module 3

low-VJ, hi-Vdd

k ABB-FB

^~vdd & low-

none
none

Module 4

low-Vt, h.i-Vdd

k ABB-FB
hi-Vrfd k low-
Vt
low-Vdrf

ST

Table 5.7: Circuit S38417 migration results
Assignment

A

B solution

C solution

Module 1

low-Vt, hi-Vdd

k ABB-FB
hi-Vdd k low-

vt
none

Module 2

low-Vt, hi-Vdd
k ABB-FB

vt
none

Module 3

low-Vt, hi-Vdd

k ABB-FB

hi-^dd & low-
Vt
ST

Module 4

low-Vt, hi-Vdd

k ABB-FB
te-Vdd k low-
Vt
none

Partition 4 in S132007 and partition 3 in S38417 contributed < 3% to the system

critical path delay and approx 23% to the total system power. The manifestation of

this underlying circuit condition can be seen in the power performance plots where

assignments with design choices targeting module 4 in S132007 and module 3 in

S38417 fall along a straight line with the power centric assignment dominating other

assignments. For circuit S132007 in Fig 5.6 performance centric assignment B offers

a 11% improvement in performance for a 2% increase in power and power centric

assignment D offers a 23% power reduction for a 3% performance penalty. For circuit

S38417 in Fig 5.4 performance centric assignment B offered a 17 % performance

improvement for a 3% increase in power and power centric assignment C offered a

7% power reduction for no performance penalty.

96

Figure 5.7: S15850 design choices

Table 5.8: Circuits Si5850 fc S9234 migration results
Assignment
S15850
A

Bsolution

C
Dsolution
S9234
A

B solution

C solution

Module 1 Module2 Module3 Module4

lo-Vt, hi-
V^ABB-FB

^-vdd & low-
Vt
none
none

lo-Vi, hi-ydd,
ABB-FB
hi-1/dd k low-
Vt
low-V"^
ST

lo-Vt, hi-Vdd,
ABB-FB
hi-Vdd & low-
Vt
none
none

lo-Vt, hi-VM,
ABB-FB

hi-Vdd & low-
Vt
none
none

low- Vt, hi-Vdd

& ABB-FB
hi-"^d & low-
Vt

l°w-Vdd

low-Vt, hi-Vdd

& ABB-FB
hi-Vdd k low-
Vt
iow-ydd

low-14, hi-Vdd

& ABB-FB
hi-V^ &; low-
Vt
l o w - ^

low-Vt, hi-Vdd

k ABB-FB

hi-V^d & low-
Vt
low-Vdd

Circuits S15850 in Fig 5.7 and S9234 in Fig 5.8, were unique with all modules

contributing equally to both system power and system critical path delay. As a

97

; i j D e l a y i i i i
0.6 -I 1 1 1 1 1 1 i 1

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Figure 5.8: S9234 design choices

result these circuits had fewer opportunities for power performance trade-offs, this

can be seen in the power-performance plots were the assignment spread is distinctly

subdued with fewer assignments dominating other assignments. For circuit S15850

performance centric assignment A offered a 8% improvement in performance for a

5% increase in power and power centric assignment D offered 8% power savings for a

6% performance penalty. Similarly for circuit S9234 performance centric assignment

A offered a 6% improvement in performance for a 4% increase in power and power

centric assignment C offered 4% power savings for 2% performance penalty.

5.1.1 Technology Node Migration Experiment Observations

1. Normalized power vs performance plots showed expected trends with the ap­

plication of known power-centric and performance-centric circuit-level design

choice assignments.

98

2. Power vs performance plots for all but two circuits considered (S15850,S9234),

exhibited trends leading to an assignment optimizing both system power and

performance.

3. Circuits S15850 in Fig 5.7 and S9234 in Fig 5.8, were unique with all modules

contributing equally to both system power and system critical path delay. As a

result these circuits had fewer opportunities for power performance trade-offs,

this can be seen in the power-performance plots were the assignment spread is

distinctly subdued and fewer assignments dominating other assignments. The

charts for these circuit expose the difficulty in optimizing both power and per­

formance early in the design phase, thus avoiding pitfall redesigns.

4. In circuits S132007 and S38417, one module (#4 in S132007 and # 3 in S38417)

contributed less than 3% to the system critical path delay. This underlying

circuit condition leads to a reduction in system power consumption with little

impact on performance, which was observed in the power performance plots,

Figs 5.5 and 5.6 respectively.

5. An industrial study on a 16-bit multiplier implemented in a 90 nm process,

reported a 7X reduction in leakage power using sleep transistors compared to

the active state [82]. Similar trends are observed here, with a 20% system

wide activity factor the system power saving predicted here is between 16-32%

(2.5-6X)on average and is comparable to results in [82].

6. An industrial study performed power measurements on an ALU in 130 nm

process for an typical activity profile and reported a 9% and 15% reduction in

power using ABB and ST respectively [83]. Power savings predictions with a

20% activity factor, using ABB for the circuits are 3-6% on average and are

99

similar to the reported savings in [83]. This further validates the proposed

methodology.

5.2 Results of Design Target Prediction Accuracy

5.2.1 Results of Successive Design Port ing From 180 nm to
65 nm Technologies

Fig 5.9 shows the technology scaling trends observed for power and performance

when the test circuit is scaled from 180 nm to 130 nm to 90 nm to 65 nm technology.

The technology scaling trend of power and performance exhibited by the EIDA results

are consistent with the results shown for the reference ALU design in [84] and the

results for porting from 180 nm TSMC to a 130 nm technology from [85].

Figure 5.9: Observed technology scaling trends for power and performance

Fig 5.10 shows the observed power and performance prediction errors with re­

spect to SPICE. Power simulations are performed using a set of input vectors that

100

0.25
0.22

ized power error

ized pert error

- 0:13

0091

130nm PTM 90nm PTM 65nm PTM I

Figure 5.10: Observed prediction error with respect to SPICE

emulate a typical system switching activity of 20%. The prediction errors for power

range from 9% to 11% with respect to SPICE. The errors in power prediction is well

controlled given that some circuit aspects such as load capacitances may not be accu­

rately modeled at the system level. The errors in performance prediction range from

13% to 22% with respect to SPICE. This is mainly due to the unavailability of de­

tailed layout interconnect parasitic values included in the SPICE netlist. However the

interconnect RC delay contribution is estimated and included in EIDA through the

TPFR descriptor in Eqn 3.23. TPFR was set to 0.5 as shown in Table 4.4. The errors

in performance prediction are reasonable given the nature of system level modeling.

The accuracy of static timing analysis using traditional signal propagation was shown

to be within 14% of SPICE in [86] in some cases. In terms of average errors, state

of the art static timing tools from leading commercial EDA vendors report having

typical error within 5% of SPICE [87] [88]. These tools operate on detailed transistor

level netlist. Experiments on ISCAS circuits implemented in a 90 nm industrial pro­

cess using a lumped capacitance model and the most commonly used Thevenin based

0.2

0.15

0.1

0.05

0.09

H Normal

— Gv±3-
o.ii;

101

flow for timing analysis yielded errors between 10-15% (reported /i+cr error quantile

of 7.5%) [89]. With this context, operating at the highest level of abstraction and

with power and performance prediction errors in the range of 9 to 22% compared

to SPICE results makes the usage of EIDA for high level design tradeoffs practical,

especially for the early design phase when complete bottom up data is not available

yet.

5.2.2 Results of Design Space Exploration of the Test Circuit
in 32 nm Technology

Design space exploration by EIDA yields power and performance centric design

assignment solutions. The design is manually scaled to 32 nm PTM and the module

granular circuit level design choices generated by EIDA are applied. Then SPICE sim­

ulations on these circuits yield actual power and performance of the EIDA generated

power and performance centric solutions. EIDA predicted power and performance

for the power centric and performance centric design solutions are compared with

SPICE simulation based measured power and performance. Table 5.9 tabulates the

average error percentages between the predicted power and performance and SPICE

measured values.

Table 5.9: EIDA and SPICE comparison

Measurement

straight-ported design
straight-ported design
power-centric design
power-centric design
performance-centric design
performance-centric design

EIDA

1.7924 mW
392 MHz
1.0456 mW
406 MHz
1.5523 mW
442 MHz

SPICE

1.6084 mW
451 MHz
0.937 mW
368 MHz
1.375 mW
513 MHz

% error

-11.4%
13.1%
-11.5%
-10.3%
-12.9%
13.8%

EIDA predictions for power and performance were with in 14% of SPICE and

consistent with the results of the successive scaling experiment. Early design ex­

ploration studies typically require a relative measure of the "goodness" of different

102

design solutions and absolute accuracy is not necessary. Therefore, along with the

successive scaling experiment, design space exploration experiment completely vali­

dates the applicability and accuracy of the proposed approach for early rapid design

space exploration.

5.3 Results of Evolutionary Algorithm Based De­
sign Space Exploration

The straight ported power and performance predicted by the design target pre­

diction models are 2.661492 watts and 2.94 GHz, respectively. Porting the micro­

processor based design to 32 nm PTM in a straight manner (i.e. no circuit changes

etc.) improves operating frequency by 30% and reduces total power consumption by

11%, compared to the legacy design.

5.3.1 Results of Pareto-Analysis Using Randomized Design
Generation

Fig 5.11 shows the power vs performance plot of the straight ported, seed and

generated recipes, normalized to the straight ported design. Fig 5.11 clearly shows the

power-performance "cloud" of the various designs evaluated. A well known technique

for multi-criteria optimization is the use of a pareto-front based technique. Solutions

that form the pareto-front are all considered optimal that offer a certain optimality

in each of the objectives, rather than an absolute minimum or maximum. The opti­

mization criteria in this experiment is to minimize power and maximize performance.

The pareto-front shown in Fig 5.11, forms an inverted "S" and is sparsely pop­

ulated. Due the sparsity of the pareto-front a 5% region around the pareto-front

called the desired solution region is defined and designs falling along the pareto-front

or in the desired solution region are considered optimal. This improves flexibility to

trade-off power and performance. Twenty designs, labeled # 1 through #20 in Fig

103

1.30

Q. <
B
| 1.10

-q 1.00

•a 0.90

0.80^'

**

1 Paretal solution region
"'$ x x JfT

#18.?- '

A-»

#19 #2Q»
' xX-"*

*^%
x

x x
#17 #16-

Straight port ., x

. ' x x"" *x'

X #** Wj « j / *
" x x j x

X I X

| - -XT

X X
XX

. xx'xjxx x

x f ^ M
x *

X*r*fX*Si

x * / a c # l /
— j i l _ £

X x * " l K \
•x ijS^ic / #h/*V-,

/ 5? ^ x x ,

X * *
-*-

Pareto front

, - - - " # 8 #9- V Power Vs Freq

* - •
.----*£'

Predicted normalized operating frequency

1.00 1.05 1.10 1.20 1.30

Figure 5.11: Pareto-front analysis results

5.11 lie on or within the desired solution region. To illustrate design optimization

process, two pairs of designs #13 & #14 and # 9 & #11 are analyzed. The modular

design choices corresponding to these designs are shown in Table 5.10.

Designs # 1 through #13 lie below unity normalized power (Y = 1) line and are

considered power centric designs. Designs #12 through #20 lie above unity normal­

ized power line and are considered performance centric designs. Designs # 1 , # 2 , # 5 ,

#12, #14, #18, #19 and #20 are seeds, # 9 was generated by the simple randomizer

algorithm. The remaining designs were generated by the complete randomizer algo­

rithm.

Intentionally left blank.

104

Table 5.10: Modu
Module

1
2

3
4
5
6
7
8
9
10
11

12
13
14

15
16
17
18
19
20
21
22
23
24

25
26

Design #14

None applied
Low-ViFETs

Low-ViFETs
None applied
None applied
None applied
None applied
None applied
None applied
Low-ViFETs
Low-ViFETs

Low-VfFETs
Low-ViFETs
Low-ViFETs

Low-ViFETs
None applied
None applied
None applied
None applied
None applied
Low-V^ETs
None applied
None applied
Low-ViFETs

None applied
None applied

ar design choices for designs #14, #13 ,
Design #13

^Vdd&ST
TVdd&Low-
ViFETs
ABB-FB
^Vdd
ftVdd&ABB-FB
ftVdd
^Vdd&ABB-RB
^Vdd&ABB-RB
Low-ViFETs
ABB-FB
ftVdd

^Vdd&ABB-RB
^Vdd&ST
ABB-FB

Low-ViFETs
•U-Vdd&ST
-frVdd
•fl-Vdd
ST
^Vdd&ABB-RB
ftVdd&ABB-FB
ABB-RB
ST
Low-ViFETs

ST
ftVdd,Dual-
Vt&ABB-FB

Design # 9

^Vdd&ST
None applied

None applied
^.Vdd&ST
^Vdd&ST
^Vdd&ST
^Vdd&ST
^Vdd&ST
4Vdd&ST
None applied
None applied

None applied
None applied
None applied

None applied
fVdd&ST
^Vdd&ST
^Vdd&ST
^Vdd&ST
^Vdd&ST
None applied
^Vdd&ST
^Vdd&ST
None applied

^Vdd&ST
^Vdd&ST

8 and #10
Design #11

ftVdd
None applied

^Vdd&ST
^-Vdd&ST
^Vdd&ST
^Vdd&ST
^Vdd&ST
^Vdd&ST
^Vdd&ST
None applied
ftVdd&Low-
ViFETs
^Vdd&ST
^Vdd&ST
tVdd&Low-
ViFETs
^Vdd
Low-ViFETs
^Vdd&ST
^Vdd&ST
^Vdd&ST
^Vdd&ST
None applied
tVdd&ABB-FB
^Vdd&ST
ftVdd&Low-
ViFETs
^Vdd&ST
^Vdd&ST

5.3.1.1 Analysis of Power Centric Designs # 9 and # 1 1

Among power centric designs, design # 7 dominates # 3 , # 4 , # 5 and # 6 , design

9 dominates # 8 and design #11 dominates #10. Therefore the power centric de­

signs are # 1 1 , # 9 , # 7 , # 2 and # 1 . Design pair # 9 and #11 has the most increase

105

in performance with least increase in power. Figs 5.12 and 5.13 show the modular

n j 11 n ni i HUI u n M M

11111*1 Nil

i j i isl in

11

W0M\

2 I
I

iHi:H;::!5fiiiiiii!iiiJ
I • • - • • • • • : ' : • - • • • - • • !

12

T6

j i : ; : ; : ; : ; : ; : ; '

|;:;i;$?;l! j
-J

HiiHi^i

21

3

I
8 i

13

17

2 2

14

23

L.. 25

9

10

1S

15

;i;^;i

24

Critical paths Low Vdd and ST

Figure 5.12: Design # 9 details

1

^ N X s

\

20

——j

11

\

1
N

2

X x

2 " ..1
J ..,{...„. , ,H JI «J n |
S , *

— — i

16

26

21

, l (, ,,.„,„,,,„,!, , , M.J.inMj

- 3 X V X

" X

: W |
, * M " " * " " U " I

X 1 j N

14

22 I |' 23
. .1 i

"~~~"is"~"

•X X

IS

10

15

: t9

24
Wai^™*.*- »- « - ^ - ^ ™ - A J

» Critical paths [Hi p'e utAon | [Un» p^y>&f option |

1 ? Vdd
2 None applied
3 i Vdd & ST
4 i Vdd & ST
5 j Vdd & ST
6 i Vdd & ST
7 l Vdd & ST
8 I Vdd & ST
9 1 Vdd & ST
10 Nona applied
11 t Vdd & dual Vt
12 „ Vdd & ST
13 l Vdd & ST
14 t Vdd & dual Vt
1 5 ; Vdd
16 i Dual Vt
17 | Vdd & ST
18 i V d d & S T
19 i Vdd & ST
20 i Vdd & ST
21 None applied
22 t Vdd & ABB-
FB
23 i Vdd & ST
24 | Vdd & dual Vt
25 4 Vdd & ST
26 .. Vdd & ST

Figure 5.13: Design #11 details

106

design choices and the critical path for designs # 9 and #11 respectively. Compared

to the straight ported design, generated designs # 9 and #11 both optimize the design

power and performance. However design #11 with respect to # 9 improves perfor­

mance with a negligible increase in power. Power centric design solution i.e. design

#11 offers 19.6% power savings with 6.3% improvement in performance, optimizing

both power and performance with respect to the straight ported design.

5.3.1.2 Analysis of Performance Centric Designs # 1 3 and # 1 4

2:;;;;;;j;;:;:;::;h;::l l* ; j ; ; ;* ;3

iiiilii 113:

16

20

26

•:m\

17

l*4!

W\:

22. 23

18

25

\m\

19

•2&:

Critical paths Dual Vt F E T s

Figure 5.14: Design 14 details

Among performance centric designs, design #14 dominates #15, design #16

dominates #17 and design #19 dominates #18. Therefore the power centric designs

are #14, #16, #19 and #20. Designs #14 and #13 straddle the unity normalized

power line, and design #13 with respect to #14 offers 4.5% power reduction for a

negligible performance degradation of 0.21%. Design #16, with respect to #13 offers

a 4.6% performance improvement for a 15.7% power penalty. Designs #19 and #20,

107

r '.1 '•• •
[

• 1 • i • : - i • ; • ! • ' • : • ; • i • ! • i • 1i • i • ' : • :

i : i i ; : : : : ^ ; : : - i : i : ; : i : ! : ! : : - =ii WMlM\

r~ i
• 4 • •

i_

20

:*:28:

M} =;;

ijih;!

:$:!: II r
.•" 1 2 " ' •I •

' 16 ••.:'•

' I!
t :: :: :: : ^ t; i ; ; ; ;

W£

8:- .

IS' !:!:!:!
. • . - . • "

•r-:'-:--:-:'---'"-'--'-r-i | : " ! 4 ;

iMMjiiittjIiMliH HHlil
1 —1—:—1

22] Z6

•" 25 •' ' '

'•'•'M-

M-
: • : • : • :

wM

I! ii^iiii

i |*19

•\-:-m\\^\
i — . . - , . - . . , . ' i 1

Crit ical paths [t ow power option] | ; : H ^ r f fortiori i;;|

Figure 5.15: Design 13 details

1 i Vdd& ST
2* Vdd & dual Vt FETs
3 ABB FB
4 | Vdd
5 ! Vdd & ABB FB
6 t Vdd
7 J Vdd & ABB RB
8 1 Vdd & ABB R8
9 Dual Vt FETs
0 ABB FB
1 ? Vdd
2 „ Vdd & ABB RB
3 „ Vdd & ST
4 ABB FB
5 Dual Vt FETs
6 , Vdd & ST
7 - Vdd
8 * Vdd
9 ST

20 . Vdd & ABB RB
21 - Vdd & ABB FB
22 ABB RB
23 ST
24 Dual Vt FETs
25 ST
26 t Vdd, Dual Vt &

A B B F B

with respect to #13 offer about 12% performance improvement for about a 25% power

penalty. Therefore design pair #14 and #13 have the most reduction in power for

the least performance impact.

Figures 5.14 and 5.15 show the modular design choices and the critical path for

designs #14 and # 1 3 respectively. Compared to the straight ported design, designs

#14 and #13 both improve performance. Design #13 offers a 11.7% performance

improvement and a 1.63% decrease in power consumption. Performance centric design

solution i.e. design #13 offers 11.7% improvement in performance and reduces power

consumption by 1.63%, optimizing both power and performance with respect to the

straight ported design.

108

5.3.2 Results of Pareto-Analysis Using EA Based Design Gen­
eration

Fig 5.16, shows the pareto-front progression at intermediate points for a EA

optimization with 50K iterations. Fig 5.16 shows that the pareto-front progression

Figure 5.16: EA pareto-front progression - baseline with no replacement

quickly settles around 10K iterations and the progression beyond 10K is minimal.

Moreover, the solutions along the final pareto-front (50K) appear to have crowded,

leading to reduced bio-diversity in the population. Design space exploration aims to

generate a well spread pareto-front with high bio-diversity which enable various trade­

off analysis. Various techniques such as normal boundary insertion can be used to

improve pareto-front spread and increasing bio-diversity [90]. These techniques are in

general computationally intensive involving many steps of Pareto-front calculations.

109

Here two simple chromosome replacement schemes are used to improve pareto-front

spread.

5.3.3 Pareto-Front Decrowding Replacement Schemes

The two chromosome replacement schemes for pareto-front decrowding are, edge

extension replacement (EER) and interior redundancy reduction replacement (IRRR).

In the standard iterative procedure (i.e. without replacement, NOR), a newly gener­

ated chromosome which happens to be a pareto optimal but lies outside the boundary

of the pareto-front formed by the current population will get "effectively" discarded .

This is because, no chromosome in the current population will dominate or be dom­

inated by the newly generated chromosome. The decrowding replacement schemes

identify such chromosomes as "outside-pareto" chromosomes and forces the outside-

pareto chromosomes into the current population. The two replacement schemes differ

in choosing which chromosome in the current population the forced outside-pareto

chromosome replaces.

When an outside-pareto chromosome is encountered, the EER scheme chooses the

chromosome in the current population which has the least geometric distance to the

outside-pareto chromosome for replacement. Thus extends the current pareto-front's

edge outward in the direction specified by the outside-pareto chromosome. When an

outside-pareto chromosome is encountered, the IRRR scheme examines the current

population to find a pair of "candidate" chromosomes with the least amount of differ­

ence in their fitness values, for replacement. One of the two candidate chromosomes

is then arbitrarily selected to be replaced with the outside-pareto chromosome.

: T h e boundary of the pareto-front of is defined as the area of the design space between maximum
and minimum fitness values for each criteria (axis), for the chromosomes in a given population

110

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

PF progress with edge extension replacement

2K B10K A20K X30K X40K y50K O straight port

I-
1

-X:-.
*> i

Sl i t

w * \J>-#

iM^

Normalized performance

0.9 0.95 1.05 1.1 1.15 1.2 1.25 1.3 1.35

1.3

Figure 5.17: EA pareto-front progression - with EER

1.2

1.1

1

0.9

0.8

0.7

0.6

PF progress with interior redundancy reduction replacement

• 2K B10K A20K X30K X40K #50K O straight port

+*##$?&
^°i.!T!3!!?MpirlPXmin.c„.e_

0.9 0.95 1.05 1.1 1.15 1.2 1.25 1.3

Figure 5.18: EA pareto-front progression - with IRRR

111

Figs 5.17 and 5.18 show the pareto-front progression at intermediate points for a

EA optimization with 50K iterations with ERR and IRRR schemes respectively. Figs

5.17 and 5.18 show that IRRR scheme generates pareto-front that are well spread with

higher bio-diversity. In order to quantitatively analyze the generated pareto-fronts

two figure of merit (FOM) formulations are defined. The FOM formulation and the

analysis of the generated pareto-fronts are explained next.

5.3.4 Figures of Merit: Stoping Criteria

The two FOM formulations i.e. FOM for pareto-front solution quality (FOM_SQ)

and FOM for pareto-front solution spread FOM_SS are used to quantitatively analyze

the generated pareto-fronts of the different schemes. Also these metrics can be used

to determine the ideal number of iterations and the speed of convergence for different

schemes. Consider a pareto-front with p chromosomes (population size of p). Then

the two FOMs are defined in Eqns 5.1 and 5.4. F is the fitness vector with A objectives

(elements) for a chromosome, where objectives 1 through $ are minimization objec­

tives and (i? + 1) through A are maximization objectives. Note that these definitions

assume that the pareto-front points are normalized to a suitable reference and are

positive.

FOM_SQ = Median{

•d

Xv
);V v:l...p (5.1)

X" = EI F»3 (5-2)
i=l

A

&/= n F»k (5-3)

A

FOM.SS =J\ax (5.4)
x=l

112

vx = StdDev(Flx,F2x,...,F, px) (5.5)

1.5

1.45

FOM t rack ing

1.4 +2 J U ' " ' 1 ' J - - l _ J « . J ! . K J L J " J

ty»EER »A-!RRR

of i te ra t ions

02K 06K 10K 14K 18K 22K 26K 30K 34K 38K 42K 46K 50H3

Figure 5.19: Figure of merit for pareto-front solution quality

Figure 5.20: Figure of Merit for pareto-front solution spread

Figs 5.19 and 5.20 show FOM for pareto-front solution quality and FOM for

pareto-front solution spread respectively for EA runs with the two replacement schemes

113

(EER and IRRR) and no replacement (NOR). The FOMs for the generated pareto-

fronts for every 2K iterations are calculated and plotted. Solution quality for NOR

and EER increase quickly and saturate quickly around 22K and 12K iterations re­

spectively. Moreover from Fig 5.17 it is clear that the EER solution includes many

"outliers" (note the Y axis range) since the EER scheme simply extends the edge out.

As a result solutions generated by EER have higher spread (due to outliers) but are

of low quality as confirmed by the curve for ERR in Fig 5.19 which is below the other

two schemes from 14K iteration and above. The IRRR scheme generates solutions

with fewer outlying chromosomes (Fig 5.18) since the most redundant chromosome

for replacement can be located anywhere in the pareto-front, this prevents succes­

sive replacements at the edge and improves the chance of generating a chromosome

that dominates the outlying chromosomes. However when interior redundant chro­

mosomes are replaced, population diversity increases but rate of increase in solution

quality decreases. Hence the solution quality for IRRR scheme achieves parity with

the other two schemes only after 10K iterations, but continues to increase almost

monotonically before saturating around 48K iterations.

Solution spread for EER and NOR are low compared to IRRR, with NOR sat­

urating around 12K iterations and EER displaying a general decreasing trend until

40K iteration where the pareto-front particularly at high performance regions ap­

pears to be vertically spreading, increasing the solution spread as seen in Fig 5.17 but

decreasing solution quality. Fig 5.20 show that the IRRR schemes's solution spread

is generally higher than the other schemes, but appearing to have an oscillatory be­

havior. This is because with more iterations the randomness in the initial/current

population reduces converging to a pareto-front (which can be further improved with

more iterations) reducing the overall solution spread. For instance from 2K to 4K and

8K to 10K for IRRR in Fig 5.20. Then the pareto-front spreads along the direction of

114

the generated outside-pareto chromosome, which increases the solution spread. That

is from 4K to 8K and 10K to 16K for IRRR in Fig 5.20. Moreover during the stan­

dard iterative process with IRRR, the solution spread reduces when newly generated

chromosomes dominate and replace relatively outlying chromosome in the current

population. The solution spread increases when more "outside-pareto" points are

generated. Once the current population's pareto-front is sufficiently close to the edge

of the "true" pareto-front, then with more iterations the solution spread will saturate

before starting to decrease and the solution quality will saturate. The IRRR scheme

exhibits this expected behavior around 46-50K iterations which forms the necessary

stoping criteria for design space exploration using EA and IRRR.

1.2

1.1

PF @50K iterations showing the PF spread for the two
replacement schemes compared to no replacement scheme

XNOR HEER OIRRR O straight port

0.9

0.8

0.7

0.6
Normalized performance

0.9 0.95 1.05 1.1 1.15 1.2 1.25 1.3

Figure 5.21: Pareto-front analysis results

Fig 5.21 compares the final pareto-front generated at 50K iterations by the NOR,

EER and IRRR schemes. It clearly shows the spread and quality for IRRR scheme

115

to be better compared to the other two schemes and far superior to the pareto-front

obtained from the randomizer algorithms in section 4.4.2. Moreover the IRRR pareto-

front has the highest range from high performance designs to low power designs and

designs that optimize both power and performance. Thereby providing a wider choice

for design space exploration and power performance trade-offs.

1

%
4

.

5

11

9

6 7

12

16

20

26

21

3

8

13

17

22

14

| 23

25

9

10

i

18 |
i

15

19

24

:

Critical paths Hi-pref design choices | | Low-

12
12
8 -
2-
3 -
2 -
2 -
2 -
2 -
2 -
1 -
1 2
12
12
2 -
10
2 -
12
2 -
12
2 -
1:2
2 -
12
12
3 -

>wr

- S T
- S T
Low-Vt
|Vdd & ST
|,Wd & ABB-PS
jVdd & ST
IVdd & ST
IVdd & ST
iVdt) & ST
iV<W & ST
jVdd
- S T
- S T
- S T
i Vdd& ST
-ABS-FB
jVdd & ST

- S T
} W d & ST
- S T
|Vdd & ST

- S T
iVdd & ST
- S T
- S T
|Vdd & ABB-RB

design choices

Figure 5.22: Details of system design A from Fig 5.21

Figs 5.22 and 5.23 show the details of system design A and B from Fig 5.21,

respectively. Design A improves the straight-port design with 40% power reduction

with only 9% performance impact. Similarly design B improves the straight-port

design with 29% improvement in performance with only 2.5% power penalty. EA

based design space exploration with IRRR generates Pareto-fronts that optimize both

system power and performance. Solutions uncovered henceforth are non-intuitive and

are not immediately obvious, thus, enabling designers to perform quick, relatively

accurate design space exploration and trade-off analysis early in the design phase.

This ability is a key contribution of the proposed methodology.

116

-

,'•>;"'..•.'1-/>y!

* • :

:;;.20:::

:5

11

' . ' • • • & • • • ' : '

2 „,„,,„ „„„„„„,

•;.;>.'7 • :

12

16

f

26 >:

^i -

3

•;', 'SX

13

••'•:- 'it:.•:•'.-,

22

14

f— : 1

q:

' 1 S

V 23- "
l^—^L—^Jt

r^—: • - • ' • • • — i

:-25 ; ."•;•:'-;

""

_

10

; 15. .'

19

I
24

Critical paths i
j Hi-pref design choices

12 -ST
7 - TVdd. LDW>V« & A8B-FB
7 - fVdd, Lwi-V» & ABS-FS
2 - |Vdd & ST
3 - iVdd & ABB-RB
2 - |Vdd & ST
2 - IVdd & ST
2 - IVdd & ST
2 - IVdd & ST
7 - jVdd, Low-Vi & ABB-FB
7 - fVdd. Lnw-Vt & ABB-FB
7 - TVdd. Low-Vi & ABB-FB
7 - tVdd, Low-Vt & ABS-FB
7 - fVdd, Lcw-Vs & ABB-FB
2 - iVdd S ST
7 - fVdd. Low-Vt & ABB-FB
1 - |Vdd
12 - ST
2 - |Vdd & ST
12-ST
1 - |Vdd
7 - fVdd, Lrav«W & ABB-FB
2 - IVdd & ST
7 - TVdd, Low-V! & ABB-FB
11 -ABB-RB
9 - Lcrw-Vt & ABB-FB

Low-pwr design choices

Figure 5.23: Details of system design B from Fig 5.21

5.3.5 Results of Pareto-Analysis Using the I R R R Scheme on
ISCAS89 Circuit

With the effectiveness of the IRRR scheme demonstrated in the previous section,

two large ISCAS89 circuits are used to further validate IRRR scheme's effectiveness

in this section. Fig 5.24 shows the Pareto-fronts for the two ISCAS89 circuits after

50K iteration with IRRR scheme. The Pareto-front for s38417 circuit was expected

to be better of the two since (as pointed out in Section 5.1.1.3) one module in s38417

contributed less than 3% to the critical path delay. Therefore power consumption

could be significantly reduced with minimal impact on performance. Since s38584

circuit did not have such an advantage and the critical path was nearly equally di­

vided between all four modules, the final Pareto-front for this circuit was inferior as

shown in Fig 5.24. This proves that the proposed design framework allows for such

opportunities to be uncovered and subsequently generating solutions that optimize

both system power and performance.

117

1.8

1.6

1.4

1.2

PF for ISCAS circuits s38584 and s38417 @ 50K iterations with
1RRR

0.8

0.6

o a
TJ"

cu
"to
E

0.6

• S38417 @ 50K

X S38584 @ 50K

O straight port

0.7

•Mr

0.8 0.9

X

X

Normalized performance

1.1 1.2

:J

1.3

Figure 5.24: Pareto-front with IRRR at 50K iteration for ISCAS89 s38584 and s38417
circuits

1.15

1.1

1.05

1

0.95

0.9 -

-J

•
F0

M

0 2 K

J . J 1

06 K

FOM tracking

' l U J d J j ^ U ^ L | L J u l

- • - S 3 8 5 8 4

-S3»s38417 ^

o f i terat ions
i : : : . 1

10K 14K 18K 22K 26K 30K

J l-'>

3 4 K

1 ^ i 1

•-. : T :

38K 42K

| W**S3

4 6 K

J ~J

50K

Figure 5.25: Figure of merit for ISCAS89 s38584 and s38417 circuits Pareto-front
with IRRR solution quality

118

FOM tracking

02K 06K 10K 14K 18K 22K 26K 30K 34K 38K 42K 46K 50W

Figure 5.26: Figure of Merit for ISCAS89 s38584 and s38417 circuits Pareto-front
with IRRR solution spread

Figs 5.25 and 5.26 show the FOM for Pareto-front solution quality and FOM

for Pareto-front solution spread, respectively, for the ISCAS89 circuits with IRRR.

As expected the solution quality for the s38417 circuit is better compared to s38584

circuit since the latter circuit had fewer opportunities to optimize both power and

performance simultaneously. The FOM for solution quality for s38417 circuit satu­

rates quickly compared to the IRRR solution quality for the microprocessor based

design. This is due to the difference in the problem size i.e. chromosome length of 4

as opposed to 26 respectively. However, the solution spread FOM indicates that the

spread of the Pareto-front consistently improves only later around 38K iterations.

5.4 Discussion of the Results

5.4.1 Impact of ABB Design Choice

Large area overhead and increased design complexity of using the ABB technique

may make the ABB choices undesirable, particularly when ABB is used in some

119

modules are mixed with other modules with no ABB on the same chip. To ascertain

the impact of ABB, an EA run with IRRR and 50K iterations without any ABB

design choices was performed and its result was compared to the result of the EA run

with IRRR and 50K iterations with all design choices.

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

PF at 50K iterations with and without ABB design choice using / /
interior redundancy reduction replacement / /

r

w
er

|

;d
po

• PF@50K

XPFwoABB@50K

v
O straight port

Region A yj f
/ / <§•/

" *rw'

ia
liz

<

N
o
rn

K><mmp^

^ _ _ _ — - ~ — ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ * ^ " " ^ 5 % over 'aP region

XX
«--"""""^ Region B Normalized performance

0.8 0.85 0.9 0.95 1.05 1.1 1.15 1.2

Figure 5.27: Impact of ABB design choice

Fig 5.27 shows the impact of ABB design choice on the final pareto-front at

50K. High performance designs (region A in Fig 5.27) predominantly use ABB-FB to

improve performance, where removal of ABB-FB leads to reduction in both power and

performance, as illustrated in Fig 5.27. In general, ABB-RB can be used to reduce

power consumption, however power consumption reduction using sleep transistors

(ST) is much larger. Low power designs (region B in Fig 5.27) predominantly use ST

(in addition to ABB-RB) to reduce power and use ABB-FB to offset the performance

impact of ST. Removal of ABB (both FB and RB) in low power designs lead to

120

reduction in performance as well as power consumption, as illustrated in Fig 5.27.

As a result the pareto-front without ABB in comparison with the pareto-front with

ABB, is shifted along the direction of lower power and performance. Interestingly,

there exists remarkable overlap in the two pareto-fronts where the same design goals

can be met with much less design complexity. Moreover as shown in Fig 5.27 if a 5%

power penalty region is considered, designs with reduced complexity (without ABB)

can be uncovered with sufficient performance and substantial power savings.

5.4.2 Prediction Model Complexity: Impact of Model Pa­
rameters

The analytical design target prediction models (Eqns 3.1 though 3.27) described

earlier in the paper have many parameters contained in them. Majority of these

parameters are easy to obtain. For example, technology dependent model parameters

and legacy design dependent parameters. These parameters are mainly obtained

from SPICE characterization which are similar to routine library characterization

and from legacy design data and new process information, respectively. However

several parameters, such as, rj - package in Table 3.2, BUFFLC in Eqn 3.13, BSUF

in Eqn 3.24 and USPE in Equ 3.25, are difficult to obtain.

One could argue that eliminating some of these parameters from the equations

would simplify the models without sacrificing prediction accuracy. In order to better

understand the impact of those " more-difRcult-to-obtain" parameters on the predic­

tion models, a set of sensitivity analysis is performed using the test circuit in Fig 4.2.

Descriptor values the various technologies used in this experiment are the same as in

Table 4.4.

Table 5.11 shows the normalized power and performance sensitivity for 130nm,

90nm and 65 nm PTM, when the corresponding parameter value is changed by 10%

121

Table 5.11: Power and performance sensitivity of selected model parameters

Descriptor / Technology

77 (Table 3.2)
DECAP_SENS (Eqn 3.7)

0 (Eqn 3.31)
7 (Eqn 3.32)
8 (Eqn 3.33)
a (Eqn 3.30)

USPE (Eqn 3.25)
RPSF (Eqn 3.24)

e (Eqn 3.34)
Y (Eqn 3.35)
X (Eqn 3.35)

BSUF (Eqn 3.24)
RCSF (Eqn 3.1)

sf (Eqn 3.14)

Power Sensitivity
130nm

2.23
1.68

-0.96
-0.96
-0.96
-0.94
0.91
0.91
-0.82
-0.65
-0.63
0.49
-0.48
-0.03

90nm

2.19
1.79

-0.68
-0.68
-0.68
-0.67
0.94
0.94
-0.47
-0.53
-0.51
0.56
-0.55
-0.02

65nm

2.23
1.75

-0.65
-0.65
-0.65
-0.64
0.87
0.87
-0.48
-0.60
-0.60
0.48
-0.48
-0.06

Perf. Sensitivity
130nm

0.59
0.74
-0.25
-0.25
-0.25
-0.25
1.00
n /a

-0.09
-0.22
-0.20
0.54
-0.53
n /a

90nm

0.70
0.79
-0.30
-0.30
-0.30
-0.30
1.00
n /a

-0.07
-0.27
-0.25
0.60
-0.59
n /a

65nm

0.66
0.77
-0.21
-0.21
-0.21
-0.21
1.00
n /a

-0.02
-0.25
-0.25
0.55
-0.55
n /a

n /a - not applicable

from its default value. Model parameters are listed according to the absolute magni­

tude sensitivity to power and performance, in the descending order for 130nm PTM

process. Chip packaging quality i.e. the IR drop in the package interconnects (77) and

change in supply voltage due to de-coupling capacitance insertion (DECAP_SENS),

have the highest impact on power consumption and performance as the power grid

voltage is a strong function of 77 and DECAP_SENS.

De-coupling capacitance insertion improves supply grid voltage and leads to per­

formance improvement. However, leakage power due to the de-coupling capacitance

as well as dynamic power due to performance improvement both increase, increasing

total power consumption. For designs that are power constrained, power consump­

tion can be reduced by reducing de-coupling capacitance and with a performance

penalty. Provided, the initial amount of de-coupling capacitance inserted was not

large enough to cause a saturation in achievable power grid voltage improvement.

With incremental de-coupling capacitance added there is diminishing return, i.e. the

122

power grid's sensitivity to unit de-coupling capacitance would decrease. To illustrate

how a designer would study the impact of a change in the power grid's sensitivity

and may choose to simplify the model, the normalized power and performance sen­

sitivities for the test circuit were recalculated after reducing the added de-coupling

capacitance by half and assuming that the power grid's sensitivity increases by 30%.

This assumption is in line with experimental results in [91].

Table 5.12: Power and performance sensitivity of selected model parameters with
reduced de-coupling capacitance

Descriptor

rj (Table 3.2)
RPSF (Eqn 3.24)
USPE (Eqn 3.25)

P (Eqn 3.31)
7 (Eqn 3.32)
5 (Eqn 3.33)
a (Eqn 3.30)
e (Eqn 3.34)
Y (Eqn 3.35)
X (Eqn 3.35)

DECAP_SENS (Eqn 3.7)
BSUF (Eqn 3.24)
RCSF (Eqn 3.1)

sf (Eqn 3.14)

Powe
130nm

2.38
0.92
0.92
-0.89
-0.89
-0.89
-0.87
-0.77
-0.61
-0.59
0.51
0.47
-0.46
-0.04

r Sensit
90nm

2.46
0.94
0.94
-0.72
-0.72
-0.72
-0.71
-0.54
-0.57
-0.55
0.61
0.52
-0.51
-0.03

ivity
65nm

2.42
0.89
0.89
-0.63
-0.63
-0.63
-0.63
-0.49
-0.59
-0.59
0.58
0.46
-0.45
-0.04

Perf.
130nm

0.69
n /a
1.00

-0.31
-0.31
-0.31
-0.31
-0.18
-0.26
-0.24
0.11
0.51
-0.50
n /a

Sensiti
90nm

0.91
n /a
1.00

-0.41
-0.41
-0.41
-0.41
-0.22
-0.36
-0.34
0.17
0.55
-0.55
n /a

vity
65nm

0.80
n /a
1.00

-0.28
-0.28
-0.28
-0.28
-0.12
-0.31
-0.31
0.14
0.52
-0.51
n /a

n /a - not applicable

Table 5.12 (similar to Table 5.11) shows the model parameter sensitivities result­

ing from this experiment. Reducing the de-coupling capacitance in half and increasing

the power grid's sensitivity by 30%, leads to a 26% reduction in total power with a

6% performance impact. Here, power and performance impact corresponding to a

unit change in DECAP_SENS parameter value are low and hence in this case default

values may be used with an acceptable prediction accuracy. Sensitivities for other

123

parameters are very similar to values in Table 5.11. For designs where altering sup­

ply voltage is not a design option, default values for parameters a, /?, 7, 5 and e can

be used without sacrificing prediction accuracy. Similarly, other paraments can use

default values depending on design constraints that allow using default values, exists.

For the test circuit used, total power consumption is least sensitive to stacking factor

(sf) since dynamic power dominated leakage power (by approx 9X) and hence the

sensitivity of the total power for a 10% change in sf is small. Therefore using default

values for sf parameter in this case would not considerably impact power predictions

unlike parameter 77. Furthermore with different process technologies the sensitivities

for some parameters reduce, for example e. Therefore, for a given design in a given

process, the tool user can choose to use default values for such parameters to simplify

the analytical prediction model. Given this flexibility, the models presented in this

paper are therefore sufficiently accurate without being excessively complex to capture

various design choices' impact on system power and performance.

5.4.3 Pareto-front Quality: Impact of Evolutionary Algo­
r i thm

The IRRR scheme (section 5.3.4) used to improve pareto-front spread, is influ­

enced by the concept of "crowing distance" based pareto-front spread improvement

outlined in [92]. However, the implementation is much simpler compared to the

NSGA-II algorithm in [92]. Similar to the NSGA-II, the IRRR scheme normalizes

the objective function values, does not require any user defined sharing parameters

and, can be applied to problems with more than two objectives.

In [93] three metrics to compare non-dominated sets (i.e. a Pareto-front at

the end of an evolutionary algorithm run) were proposed. They are the D-metric

for accuracy, A-metric for pareto-front uniformity and the V-metric for pareto-front

extent. The proposed FOM_SS metric for solution spread is similar to the V-metric

124

in the sense that both measure the extend (spread) of the pareto-front set in all

dimensions to ascertain the hyper-volume of the pareto-front. The proposed FOM_SQ

metric for solution quality measures the quality of a pareto-front as opposed to the D-

metric which requires two pareto-fronts to compute the metric. Therefore to compare

two pareto-fronts (from two EA runs for instance) a third reference pareto-front is

needed to compare each of the two pareto-fronts individually to the reference pareto-

front. In the proposed FOM_SQ formulation there is no need for a reference pareto-

front, since choosing this reference is one additional source of variability which is

can be avoided. The 5-metric for pareto-front uniformity is unique and the proposed

FOM formulations does not have a metric similar to the <5-metric. However such a

metric will be redundant since the uniformity of a pareto-front can be ascertained

from the fitness standard deviations.

The strict one child one parent replacement policy used in this work limits the

elitism offered by the evolutionary algorithm. The focus of the work at this time

is establishing the applicability of the proposed design framework for design space

exploration; hence a simpler evolution algorithm with IRRR is used. Integrating a

more rigorous algorithm such as the NSGA-II to improve the design framework for

design space exploration is a natural extension of the work presented here.

5.5 Conclusion

System power performance optimization is most effective early in the design

phase when design space exploration is performed. Design convergence in both power

and performance, especially in nanometer CMOS, has become increasingly difficult

and choosing an optimal implementation target is imperative for meeting time-to-

market requirement. The proposed framework for design space exploration using

legacy design data, technology scaling trends, and in-situ simulations provides design

125

aid in choosing optimal implementation targets for better design convergence. The

technology node migration experiment on ISCAS benchmark circuits established the

feasibility of the proposed methodology. For these circuits, the results from design

space exploration offer 7-32% power reduction with 0-9% performance degradation or

11.25-17% performance improvement with 2-3.85% power penalty.

Furthermore, power and performance prediction model accuracy in successive

CMOS technologies from 180 nm to 65 nm were experimentally estimated and com­

pared to similar estimates from existing literature. The accuracy is inline and com­

parable to results from other previously published works. Evolutionary algorithm

based design space exploration using Pareto analysis of a microprocessor based de­

sign yielded Pareto optimal solutions that optimized both power and performance.

The evolutionary algorithm was improved by a replacement schemes for decrowding

to generate well spread Pareto-fronts to allow better trade-off analysis. The design

space exploration generated designs that improved the straight-port design by re­

ducing power by 40% with 9% performance impact or by improving performance by

29% with 2.5% power penalty. In addition to generating Pareto optimal designs,

ways to reduce system implementation complexity with bounded impact on power

and performance were presented.

The experimental results illustrate the ability of the proposed framework to un­

cover complex non-intuitive solutions using evolutionary algorithm based Pareto anal­

ysis. By incorporating the proposed methodology as part of a standard system design

flow, quick what-if analysis can be performed at a high level and underlying design

risks can be exposed very early in the design phase. The key contributions of the

proposed framework are, a) the ability to uncover Pareto optimal, complex and non-

intuitive system designs, b) The ease of performing high level tradeoff and what-if

analysis, c) The potential to expose any underlying design risks very early in the

126

design phase and d) Design complexity reduction by generating solution without

complex design choices such as ABB with a bounded power and performance impact.

Thus, improving system design convergence and meeting time-to-market schedule.

5.6 Future Work

The work presented here are the first few steps in developing a design frame­

work and methodology for early design space exploration utilizing technology scaling

trends, process dependent parameters and in-situ simulations. The following areas are

identified as natural extensions to the work presented in this dissertation. In addition

to the design target prediction models for power and performance, the envisioned de­

sign framework will be greatly benefitted if models for predicting the system reliability

(FIT - failure in time) and design choices affecting reliability are included. Models

to predict the chip area and yield, a closely related design target would improve the

proposed design framework's value as a design tool.

The proposed framework does not include any estimates for the impact of pro­

cess variation on design targets which are becoming important design considerations.

Special libraries, RF and analog macro modules that does not follow standard scaling

trends are not included in the proposed framework. Critical path delay and clock

signal arrival uncertainties ([94]) are not currently accounted for in the proposed

framework. A macro model based interconnect delay estimation and needs to be

included to extend the proposed methodology well into "More-than-Moore" design

era.

Improving the evolutionary algorithm and including algorithms such as NSGA-

II [92] or SPEA2 [95] to explore the design space and generate the pareto fronts will

aid in further optimizing system designs. Integrating more rigorous algorithms such as

the NSGA-II or SPEA2 to improve the design framework for design space exploration

127

and comparing the relative merits of IRRR scheme and the various algorithms, po­

tentially using the PISA framework [96], are natural extensions of the work presented

here. NSGA-II improves the pareto-front spread while SPEA2 provides a better dis­

tribution of points when the number of objectives increases [95]. Since the problem

that we apply the evolutionary algorithm on has no absolute known pareto-front, it

will be interesting to see how much improvement these advanced algorithms achieve

compared to the IRRR scheme. PISA's assessment metrics and the two proposed

FOM can be used to compare the Pareto-fronts generated by the various algorithms.

Additionally, the uniformity (A-metric) metric proposed in [93] can be included to

compare the Pareto-fronts generated by the various algorithms.

Another area of study that remains ripe for new research is the development of

statistical design target prediction models. These models are extension of current

models capable of estimating confidence intervals for the predicted design targets,

given a set of descriptor uncertainties. This ability is seen by as a key developmental

area for the envisioned design framework.

128

Chapter 6

Acknowledgement

Dr. Cengiz Alkan, VLSI System Lab, Colorado State University, assisted in

developing and testing the evolutionary algorithm for design space exploration.

Appendix A

Common Design Techniques
Incorporated into the EIDA Tool

A design when modeled using the proposed system modeling methodology de­

scribed in Section 3.2, can be optimized for power and performance by applying

module granular circuit level design choices. The analytical design target prediction

models described in Section 3.4 are used to estimate power consumption and per­

formance of the ported design (ported from one process to an other). The initial

estimate of a ported design is called as "s t ra ight -por ted" power and performance

values. Power and performance optimization of the ported design can be performed

(as described in Section 3.5) by applying module granular circuit level design choices

to the ported design. Module granular circuit level design choices that are included

in the proposed tool are described in the remaining sections of this chapter.

Using Sleep Transistor Insertion for Power Gating

Selectively gating power supply to non-active modules in a design leads to reduc­

tion in power consumption. Fig A.l shows an example for using sleep transistors for

power gating where VDD is the power supply and VVDD is the gated virtual power

supply [97]. Power gating can be applied potentially with no performance impact,

however the activity in a design is workload dependent. As a result applying sleep

VDD,

Sleep —

VVDD.

Figure A.l: An illustration for using sleep transistors for power gating,

transistors to gate the power supply impacts both power and performance due to

the module being deactivated and the finite "wake-up" time involved when the sleep

transistor is turned on to activate the module, respectively. The power and perfor­

mance impact of applying sleep transistors are included through the STC and STPC

descriptors respectively, which are estimated for each module as described in Section

3.4.6.

Using Dual/Multiple Threshold Transistors

Low threshold FETs are faster and leakier than their nominal/high threshold

counterparts. Performance can be improved by selectively using low threshold FETs

for gates along the critical path. This will lead to an increase in leakage power

consumption. Similarly if available, high threshold FETs can be used in place of

nominal FETs in gates not in the critical path to reduce power consumption. A

dual threshold scheme i.e. nominal and low threshold FETs similar to the scheme

described in [98] is assumed. The power and performance impact of applying dual

threshold transistors is captured in EIDA through the DVTC (Section 3.4.6), HVR,

LVR> lothv, hwhv 1otlv and Iowlv descriptors.

131

Using Multiple Supply Voltage Zones

Varying the power supply voltage of a module is a design procedure that can be

used to either improve performance or reduce power by increasing or decreasing the

supply voltage respectively [99]. The impact of changing supply voltage on power and

performance are estimated using analytical models as described in Section 3.4.4. Fig

A.2 shows an example for multiple supply zones implemented within a design [100].

Figure A.2: An illustration for multiple V ^ zones in a design.

Using Adaptive Body Biasing - ABB

Applying a back bias to the body of a transistor changes its leakage and delay

characteristics. With respect to the source terminal the body of a transistor can be ei­

ther forward or reverse biased. When forward biased, device leakage currents increase

and propagation delay decreases and vice versa for reverse bias. Biasing the body

impacts device leakage in two ways, by reduction/increasing source & drain to body

junction leakage and by increasing/decreasing threshold voltage to reduce/increase

sub-threshold leakage [101]. The use of body biasing is captured in EIDA through

the ABBC and ABBPC descriptors extracted for each module as described in section

3.4.6.

132

Clock Gating

Power saving can be achieved by turning off clock signal to a module when it

is not active. Fig A.3 shows an implementation scheme for clock gating [102]. By

turning off clock the load on the external clock tree is reduced and unnecessary

switching inside the blocks need not occur, reducing dynamic power consumption.

Clock gating is captured in EIDA explicitly by the CGF (Eqn 3.4) descriptor which

modifies the module activity factor.

: Uscr'Softwpre

Write

BUS

Data Out

PCG lPeore-'.

Data In

Clock
Enable

M <

"Clock

:;BBse:'IP.;;ciJJ!&;

Figure A.3: An illustration for clock gating technique.

De-coupling Capacitance Insertion

Power supply grid voltage integrity in the midst of switching activity impacts

performance as well as power of a design. It is desirable to maintain a constant power

supply grid voltage in spite of switching activity. Inserting de-coupling capacitances

between the power supply rails (V^ and GND) reduces droop in power supply grid

voltage. The downside if inserting de-coupling capacitances is the increase in power

consumption due to leakage in de-coupling FETs which are used as capacitances.

Fig A.4 shows an example of decoupling capacitance allocation in a standard cell

design [103]. The performance improvement (power supply voltage improvement) due

to de-coupling capacitances insertion is captured in EIDA through the DECAPC (Eqn

133

3.3) and DECAP_SENS (Eqn 3.7) descriptors, and the increase in power consumption

is captured through the DECAPLC (Eqn 3.13) descriptor.

"*" decap •—*- cell

Figure A.4: Decoupling capacitance allocation in a standard cell design

Interconnect Repeater/Buffer Insertion

Global and long interconnect delay can be improved by repeating the intercon­

nects [104]. Repeaters divide the interconnect into smaller portions. Interconnect

delay reduces quadratically with length and hence repeater insertion improves overall

interconnect delay but increases power consumption due to additional load of the re­

peaters themselves. The performance impact of repeater insertion is included in EIDA

through the BSUF (Eqn 3.24) descriptor. The leakage power impact of repeater inser­

tion is captured through the BUFFLC (Eqn 3.13) descriptor and the dynamic power

impact is captured through adding the additional switching capacitance Cwirejoujj

(Eqn 3.2) to the total module switching capacitance.

Useful Skew and Time Borrowing

A module may have multiple logic paths from input to output where some are

critical paths. A critical path in a module may contain both combinatorial and

sequential elements. Logic paths in a module have either positive or negative timing

134

slack. By utilizing positive timing slack and re-timing portions of logic paths typically

lead to an improvement in performance. A procedure to optimize timing slack is

described in [105]. Performance improvement due to useful skew allocation is included

in EIDA by the USPE (Eqn 3.25) descriptor.

135

Appendix B

Code for System Design Target
Prediction

File name: eida.pl

Function: To predict the performance and the power consumption of a design based

on module descriptor values, technology constants and in-situ SPICE simula­

tions.

Input: Command file with system model and module descriptors.

Output: Prediction power consumption in watts and performance in GHz.

Reference: Fig 3.8 second loop, looping through all modules in a system.

#!/usr/bin/perl
#use warnings;
$args - 9ARGV;
if ($args < 1)
{
print "* Improper usage encountered \n \n";
print "* Proper usage - eida.pl <command file name> \n";
print "* Retry , now exiting \n";
exit;
}

$CMD_FILE_NAME - $ARGV[0];
$CMD_FILE_RESULTS = "$CMD_FILE_NAME"." . resul ts" ;
SMODULE RESULTS = "$CHD FILE N A M E " . " . m o d u l e - r e s u l t s " ;
s y s t e m (" a v k \ ' \ { i f (\ $ l \ = \ = \ " \ . c o m \ _ d e s \ ") YCpr in t \ H \ . c o m \ _ d e s \ " \"$NEW_PARAMETER_LIST\"\} e l s e \ < p r i n t \ $ 0 \ > \ } V $CMD_FILE_NAME ") ;
Use me thod l o r method 2
#method 1
ftsystemCgrep \ - v \ " \ . m o d s \ _ c h o i c e s V $CMD_FILE_NAME \ > t m p \ _ c m d \ _ i i l e n a m e ") ;
#end method 1
#system("rm \-f tmp_cmd_filename");
Smethod 2

opentOUTl, n>$CMD_FILE_RESULTS") or die "Can't create results file : Check folder permissions \n";
open(0UT2, ">$MODULE_RESULTS") or die "Can't create module results file : Check folder permissions \n";
open(CMD_FILE, "$CMD_FILE_NAME") or die "Unable to open command file $CMD_FILE_NAME : Check folder permissions \n";
while(<CMD FILE»
{
$fl_line = $_;

http://eida.pl
http://eida.pl

chomp($fl_line);
Sfl.line = split(" ",$fl_line);
S$len = ©fl_line;
$line_length = Qfl.line;

if($line_length == 0)

<
next;
}
else
•c
if($fl_line -" m/~#/)
{
next;
print "$ \n";
}
else
{
if($fl line[0] eq ".mods")
{
$no.modules = $fl_line[l];
next;
}

e l s i f ($ f l_ l ine [0] eq ".com.des")
{
@com_des = reverse (3f l_ l ine) ;
pop(®com_des);
Qcom_des = reverse(®com_des);
next;
}
e ls i fC$fl_l ine[0] eq " .pro.des")
i
®pro_des = reverse(flfl_line);
pop(®pro_des);
9pro_des = reverse(apro_des);
next;
}
else
1
next;
}
>
>
}
close CMD.FILE;

print DUT1 "S of modules in design — $no_modules\n\n";
#print "Commom descriptors — Scom_des\n";
Sprint "Process parameters — ®pro_des\n";

Initialize hash $module_des
for($i=0; $i < $no_raodules; $i++)
i
$j = $i + 1;
$key = "des_"."$j";
$module_des{$key} = "description for module Sj entered here";
}

open(CMD_FILE, "$CMD_FILE_NAME") or die "Unable to open command file $CMD_FILE_NAME : Check folder permissions \n";
while(<CHD_FILE»
{
$fl_line = $_;
chomp($fl_line);
®fl_line = splitC" ",$fl_line);
$line_length =» $fl_line;
if($fl_line =" m/~\.mods_des/)
•C

Sprint "$_"
$key = $ f l _ l i n e [l] ;
$key = "des_".$key;
®fl_line = reverse(SfInline);
pop(9fl_line);
pop(9fl_line);
©fl_line = reverse(Ofl_l ine) ;
Sprint "KEY:$key $f l_ l ine \n" ;
$module des{$key} = "Qfl line";
>
if($fl line -" m/"\.mods choices/)
{
$key - $ f l _ l i n e [l] ;
$key = "choices,".$key;
Qfl_line = reverse (<9fl_line) ;
pop(Qfl_line);
pop(9f l_l ine) ;
9fl_line = reverse (<Bfl_line) ;
$module_des{$key} = "Qfl line";
}

}
close CMD.FILE;

#for($i=0; $i < $no_modules; $i++)
#{
#$j = $i + 1;
S$key = "des_"."$j";
Sprint "Module — $module_des{$key}\nn;
#}

ff Assign common descr iptor var iables from array
$vdd_spec = $com_des[03;
$eta = $com_des[l];
$min_l = $com_des[2];

137

$gate_cap_scaling_factor = $com_des[3];
$wire_cap_scaling_factor = $com_des[4];
$width_sclaing_factor = $com_des[5];
$old_unit_gate_cap = $com_des[6];
$old_min_size_fet_ids = $com_des [7] ;
$new_unit_gate_cap = $com_des[8];
$nev__min_size_fet_ids = $com_des[93;
$redesign_power_saving_factor = $com_des[10];
$rc_slowdown_factor = $com_des[ll];
$stacking_factor = $com_des(12];
$decap_sensitivity = $com_des[13];
$unit_junc_leakage = $cota_des[14] ;
$unit_gate_leakage = $com_des[15];
$per_unit_width_gate_leakage = $com_des[16];
$typical_hi_vt_ioff = $com_des[17];
$worst_hi_vt_ioff = $com_des[18];
$typical_lo_vt_ioff = $com_des[19];
$worst_lo_vt_ioff = $com_des[20];

Assign common descriptor var iables from array - END

Assign process parameter var iables from array
$alpha = $pro_des[0];
$beta = $pro_des[l];
$gamma = $pro_des[2];
Sdelta = $pro_des[3];
$epislon = $pro_des[4];
$fsf_x = Spro_des[5];
$fsf_y = $pro_des[6];
Assign process parameter var iables from array - END

Test p r in t ing of variables
p r in t DUT1 "***********************

_ lk#Q0]ira]0n descriptors** p r i n t 0UT1
p r i n t 0UT1
p r i n t 0UT1
p r i n t DUT1
p r i n t 0UT1
p r in t DUT1
p r i n t 0UT1
p r i n t 0UT1
p r i n t 0UT1

"vdd_spec = $vdd_spec\n";
"eta = $eta\n";
"min_l = $min_l\n";
"gate_cap_scaling_factor = $gate_cap_scaling_factor\n";
"wire_cap_scaling_factor = $wire_cap_scaling_factorXn";
"width_sclaing_factor = $width_sclaing_factor\n";
"old_unit_gate_cap = $old_unit_gate_cap\n";

print 0UT1 "old_min_size_fet_ids = $old_min_size_fet_ids\n";
print 0UT1 "new_unit_gate_cap = $new_unit_gate_cap\n";
print 0UT1 "new_min_size_fet_ids = $new_min_size_fet_ids\nH;
print 0UT1 "redesign_power_saving_factor = $redesign_power_saving_factor\n"
print 0UT1 "rc_slowdown_factor = $rc_slowdown_factor\n";
print QUT1 "stacking.factor = $stacking_factor\n";
print 0UT1 "decap_sensitivity = $decap_sensitivity\n";
print 0UT1 "unit_junc_leakage = $unit_junc_leakage\n";
print 0UT1 "unit_gate_leakage = $unit_gate_leakage\n";

print 0UT1 "per.unit_vidth_gate_leakage = $per_unit_width_gate_leakage\n";
print 0UT1 "typical_hi_vt_ioff = $typical_hi_vt_ioff\n";
print 0UT1 "worst_hi_vt_ioff = $vorst_hi_vt_ioff\n";
print 0UT1 "typical_lo_vt_ioff = $typical_lo_vt_ioff\nH;
print OUTi "uorst_lo_vt_ioff = $worst_lo_vt_ioff\n\n";

print
print
print
print
print
print
print
print
print
print
Test

OUTI "************************\n
OUTI "***Process parameters***\n
OUTI "************************\n'
OUTI "alpha = $alpha\n";
OUTI "beta = $beta\n";
OUTI "gamma = $garama\n";
OUTI "delta = $delta\n";
OUTI "epislon = $epislon\n";
OUTI "fsf_x - $fsf_x\nH;
OUTI "fsf.y - $fsi_y\n\n';
printing of variables - END

Calculations begin
$vdd_bump = $vdd_spec * $eta;
#dif = device improvement factor
$dif = ($old_unit_gate_cap/$new_unit_gate_cap)
print OUTI "*******************************\n"
print OUTI "***Intermediate calculations***\n"
print OUTI "******Module independent*******\n"
print OUTI "*******************************\n"
print OUTI "Vdd_bump = $vdd_bump\n";
print OUTI "Device_improvement.factor = $dif\n\n";

$total_power_leak - 0;
$total_power_dyn = 0;
Stotal.delay = 0;

for($i=0; $i < $no.modules; $i++)

i
$j = $i + 1;
$key = "des_"."$j";
$keyl = "choices,","$j";
$key2 = "results,"."$j";
#©module_des = $module_des{$key};
ffprint OUTI "Module — $module_des{$key}\n";
<9tmp_array = split(" ",$module_des{$key});
#print OUTI "Module — $module_des{$key}\nn;
atmp.arrayl = split(" ",$module_des{$keyl});

$nadsp = pop(®tmp_array);
$if_critical_module = pop(@tmp_array);
$temperature = pop(ffltmp_array);
$buffer_speed_up_factor = pop(@tmp_array);
$useful_skew_performance_enliancement = pop((Btmp_array);
$typical_path_FET_ratio = pop(@tmp_array) ;

($new_min_size..fet_ids/$old_min_size_fet_ids);

138

$wire_buff_cap = pop(®tmp_array);
$ratio_hi_vt_FETS = pop(®tmp_array);
$de_cap_added = pop(fltmp_array);
$clock_gating_factor = pop(®tmp_array);
$average_switching_factor = pop(<3tmp_array);
$original_operating_freq = pop(@tmp_array);
$total_NFET_W = pop(0tmp_array);
$total_PFET_W « pop(Qtmp_array);
$unit_wire_length,cap = pop(9tmp_array);
$total_wire_length - pop(Qtmp_array);
$original_load_cap = pop(3tmp_array);

$use_st = pop(®tmp_arrayl);
$use_abb_rb = pop(®tmp_arrayl);
$use_abb_fb = pop(®tmp_arrayl);
$use_abb = pop(Qtmp_arrayl);
$use_dual_vt = pop(Qtmp_arrayl);
$vdd_applied = pop(<Btmp_arrayl) ;
$vary_vdd = pop(atmp_arrayl);

print 0UT1 "***********************\n";
print 0UT1 "***Module $j details***\n";
print DUT1 "***********************\n";

print 0UT1 "nadsp = $nadsp\n";
print 0UT1 "if_critical_module = $if_critical_module\n'';
print 0UT1 "temperature = $temperature\n";
print 0UT1 "buffer_speed_up_factor = $buffer_speed_up_factor\n";
print 0UT1 "useful ..skew .performance .enhancement = $useful_skew.performance.enhancement\n";
print 0UT1 "typical_path_FET_ratio = $typical_path_FET_ratio\n";
print 0UT1 "wire_buff_cap = $wire_buff_cap\n";
print 0UT1 Hratio_hi_vt_FETS - $ratio_hi_vt_FETS\n'';
print 0UT1 "de_cap_added = $de_cap_added\n";
print 0UT1 "clock_gating_factor = $clock_gating_factor\n";
print 0UT1 "average_switching_factor = $average.switchingsfactor\n";
print 0UT1 "original_operating_freq = $original_operating^freq\n";
print 0UT1 "total_NFET_W = $total_NFET_W\n";
print 0UT1 "total_PFET_W = $total_PFET_W\n";
print 0UT1 Hunit_wire_length.cap - $unit_wire_length_cap\n";
print 0UT1 "total.wire.length = $total_wire_length\n";
print 0UT1 "original_load_cap = $original_load_cap\n\n";

print DUT1 "******************************\n"
print QUT1 "***Module $j design options***\n"
print 0UT1 "******************************Yn"

Sresult = fcmodule_evaluate($original_load_cap, $total_wire_length, $unit_wire_length_cap, $total_PFET_W, $total_NFET_W, $original_operating_freq,
$average_switching_factor, $clock_gating_factor, $de_cap_added, $ratio_hi_vt_FETS, $wire_buff_cap, $typical_path_FET_ratio,
$useful_skew.performance.enhancement, $bufier_speed_up_factor, Jtemperature, $if.critical.module, $nadsp, $vary_vdd, $vdd_applied, $use_dual_vt,
$use_abb, $use^abb_fb, $use_abb_rb, $use_st,$j);

Push results into hash
$module_des{$key2> = "©result";
Sprint 0UT1 "Dynamic power for module $raodule_no = $result[0]\n";
#print 0UT1 "Leakage power for module $module_no = $result[l]\n";
Sprint 0UT1 "Performance for module $module_no = Sresult[2]\n";
$total.power_dyn =• $total_power_dyn + $result[0];
$total.power_leak = $total.power_leak + $result[l];

if($if_critical module == 1)

{
$total_delay = $total_delay + (l / $ r e s u l t [2]) ;
Use the l i ne above t o caluculate t o t a l delay if you are modeling a t a fub level with multiple fubs in the c r i t i c a l path . Added 06/21/2007

i f ((l /$ resu l t [2]> > $total_delay)
#-C
#$total delay =» (l/$result[2]);
#}
Use the above if block to calculate total delay if you are modeling above the fub level, here the critical path may be
^contained completely inside a module. We need to do this to make sure the operating frequency for the modules
#are correct when calculating dynamic power. Added 06/21/2007
>

print 0UT1 "use_st = $use_st\n";
print 0UT1 "use_abb_rb = $use_abb_rb\n";
print 0UT1 "use_abb_fb = $use_abb_fb\n";
pr in t 0UT1 "use_abb = $use_abb\n";
pr in t 0UT1 "use_dual_vt = $use_dual_vt\n";
p r in t 0UT1 "vdd.applied = $vdd_applied\n";
p r in t 0UT1 "vary vdd = $vary_vdd\n\n";
}

sub module.evaluate {
Slist = 0_;
Qlist = r e v e r s e (a i i s t) ;

$original_load_cap = pop(f i l is t) ;
$total_wire_length = p o p O l i s t) ;
$unit_wire_length_cap = popCffllist);
$total_PFET_W = pop(<81ist);
$total_NFET_W = p o p O l i s t) ;
$original_operating_freq = p o p O l i s t) ;
$average_switching_factor = p o p O l i s t) ;
$clock_gating_factor = p o p O l i s t) ;
$de_cap_added = p o p O l i s t) ;
$ratio_hi_vt_FETS = p o p O l i s t) ;
$wire_buff_cap = p o p O l i s t) ;
$typical_path_FET_ratio = p o p O l i s t) ;
$useful_skew_performance ..enhancement = p o p O l i s t) ;
$buffer_speed_up_factor = p o p O l i s t) ;
$temperature = p o p O l i s t) ;
$if_critical_module = p o p O l i s t) ;

139

$nadsp = pop(01ist);
$vary_vdd = pop(Slist);
$vdd_applied = pop(Qlist);
$use_dual_vt = pop(Qlist);
$use_abb = pop(91ist);
$use^abb_fb = pop(«list);
$use_abb_rb = pop(Glist);
$use_st = pop(Qlist);
$raodule_no = pop(filist);

$ratio_lo_vt_FETS - 1 - $ratio_hi_vt_FETS;
$w_total = $total_NFET„W + $total_PFET_W;
$area_fet = $w_total * $width_sclaing_factor * $min_l;
$c_fet = $area_fet * $old_unit_gate_cap * lel2;
$c_wire - $total_wire_length * $unit_wire_length._cap * le6;
if ($original_load_cap != 0)
{
$original_load_cap = $c_fet + $c_wire;
This if statement was added to facilitate user input orignal load cap value override. Added 06/23/2007
>
$frac_fet = $c_fet / $original_load_cap;
$decapc = $decap_sensitivity * $de_cap_added;
#$decapc = $decap_sensitivity * le9 * $de_cap_added * $c_fet;
need to check why $c_fet is present in the equation., not sure if that is correct. 09/30/2008
$a_de_cap = $de_cap_added * $c_fet / $new_unit_gate_cap;
$slpzd = ($vdd_bump - $nadsp)/($vdd_bump);
$fsf = (($vdd_spec - $fsf_x)/($vdd_bump * $slpzd * (Sslpzd - $fsf_x)))**$fsf_y;
$vdd_new = ($vdd_bump * $slpzd) + $decapc;

#Design choices — to be changed depending on user choices
if($vary_vdd == 0)

$vdd_applied = $vdd_bump;

$a = $vdd_spec / ($vdd_applied + $decapc);
$one_over_a = $vdd_applied / $vdd_spec;
FSF vdd scaling
$fsf_scaled = $fsf * (($a**(2*$epislon)) + ($a**($epislon/2)))/2;
$rc_slowdown_factor_prime = $rc_slowdown_factor/$buffer_speed_up_factor;

if($use_dual_vt == 0)
•C
$dvtc = 1;
>
else
{
print "EIDA info: Calculating Dual-Vt correction factor \n";
$dvtc = 'perl /home/charles/EIDA_gui/scripts/get_dvtc.pl $total_PFET_W $total_NFET_W $vdd_applied';
print "EIDA info: Calculating Dual-Vt correction factor Done!\n";
print 0UT1 "Calculated DVTC factor - $dvtc\n";

if($use st == 0)
•C

$stc = 1;
$stpc = 1;

else
{
print "EIDA info: Calculating Sleep transitor correction factors \n";
$st = 'perl /home/charles/EIDA_gui/scripts/get_st_params.pi $total_PFET_W $total_NFET_W $vdd_applied $vdd_spec'
Gst_params = splitC",",$st);
$stc = $st_params[0];
$stpc = $st_params[l];
print "EIDA info: Calculating Sleep transitor correction factors Done!\n";
print 0UT1 "Calculated STC factor - $stc\n";
print 0UT1 "Calculated STPC factor - $stpc\n";
>
ifC$use_abb = 0)
-{
$abbc = 1;
$abbpc = 1;

else
•c
ifC$use_abb_fb == 0)
-C
print "EIDA info: Calculating Active Body Bias correction factors \n";
$abb = 'perl /home/charles/EIDA_gui/scripts/get_abb_params.pi $total_PFET_W $total_NFET_W $vdd_applied "RB"';
©abb_params = splitC" , ",$abb) ;
$abbc = $abb_params[0];
$abbpc ~ $abb_params[l];
print "EIDA info: Calculating Active Body Bias correction factors Done!\n";
print 0UT1 "Calculated ABBC factor - $abbc\n";
print 0UT1 "Calculated ABBPC factor - $abbpc\n";
}
else
•C

print "EIDA info: Calculating Active Body Bias correction factors \n";
$abb = 'perl /home/charles/EIDA_gui/scripts/get_abb_params-pi $total_PFET_W $total_NFET_W $vdd_applied "FB"';
®abb_params = split C",",$abb);
$abbc = $abb_params[0];
$abbpc = $abb_params[l];
print "EIDA info: Calculating Active Body Bias correction factors Done!\n";
print 0UT1 "Calculated ABBC factor - $abbc\n";
print 0UT1 "Calculated ABBPC factor - $abbpc\n";
}
}

tfprint "EIDA info: Design choice factor\n";

140

#print "EIDA info: DVTC = $dvtc\n";
#print "EIDA info: STC = $stc\n";
#print "EIDA info: STPC = $stpc\n";
#print "EIDA info: ABBC = $abbc\n";
#print "EIDA info: ABBPC = $abbpc\n";

$psi = $stc * $abbc;

$f.predict.numerator = (($Original_operating_freq * $ratio_hi_vt_FETS) + ($original_operating_freq * $ratio_lo_vt_FETS * $dvtc))
* $dif * $stpc * $abbpc * $useiul_skew_performance_enhanceraent;

$f.predict.denominator = C$fsf.scaled * $typical_path_FET_ratio) + (CI - $typical_path_FET_ratio) * $rc_slowdown_factor_prime);
$f_predict = $f_predict_numerator / Sf.predict.denominator; # Predicted operating frequency

$f_new = $f_predict * $average_switching_factor * $clock_gating_factor;
$original_load_cap.prime = $original_load_cap * $gate_cap_scaling_factor;
$c_wire_buff = $wire_buff_cap * $original_load_cap;
$a_wire_buff = $c_wire_buff / $new_unit_gate_cap;
$c_new = ($original_load_cap_prime * (($frac_fet * $gate_cap_scaling_factor) + CCl - $frac_fet) * $wire_cap_scaling_factor))) + $c_wire_buff;
$p_dyn =• $c_new * $f_new * $redesign_power_saving_factor * (($vdd_new)**2); # Dynamic power

$b = (C($one_over_a**$delta) + ($one_over_a**(2*$delta)) + ($one_over_a**(4*$delta)) + ($one_over_a**(6*$delta)))/4 - 1);
$ t l = expCClog ($typical_hi .vt_ioff) + log ($worst_hi_vt_ioff))/2);
$t2 = expCClog ($typical_lo_vt_ioff) + log ($vorst_lo_vt_ioff)) /2) ;
$t3 = ($w_total * $width_sclaing_factor * le6) / $stacking_factor;
$i_off.unsealed = C$t3 * $ratio_hi_vt_FETS * $ t l) + C$t3 * $ratio.lo_vt_FETS * $ t2) ;
$i_off = $i_off_unscaled * exp($b * Sgamma); # I_off
$unit_junc_leakage_scaled = $unit_junc_leakage * expC$beta * ($one_over_a - 1)) ;
$unit_gate. leakage.scaled = $unit_gate.leakage * exp($alpha * C$one_over_a - 1)) ;
$bufflc = $a_wire_buff * $unit_gate_leakage_scaled;
$decaplc = $a_de_cap * $unit_gate_leakage_scaled;
$ i .ga te = $area_fet * le!2 * $unit_gate_leakage_scaled; # I_gate
$area_sd = 4 * $area_fet * l e l 2 ;
$i_junc = $area_sd * $unit_junc_leakage_scaled; S I_junc

$t4 = (CSvdd.bump * $i_off) + C$vdd_bump * ($i_gate + $bufflc)) + ($vddjjump * $i_junc));
$t5 = C$t4) * CCCl - $average_switching_factor) * $psi) + $average_switching_factor);
Sp.leakage = $t5 + C$vdd_bump * $decaplc); # Leakage power

re turn ($p_dyn, $p_leakage, $f_predict , $module_no);

print 0UT1 "**+*********\n";
print 0UT1 "**************************Hodule results summary**************************\n";
print 0UT1 "**\n";
print 0UT1 "[Module #][Dynamic power (W)][Leakage power (W)][Performance (Hz)]\n\n";
print 0UT2 "**\n";
print 0UT2 "**************************Module results summary#*************************\n";
print 0UT2 "**\n";
print 0UT2 "[Module #][Dynamic power CW)][Leakage power (W)][Performance (Hz)]\n\n";
for($i=0; $i < $no modules; $i++)
{
$j = $i + 1;
$key = "results."."Sj";
Stmp = s p l i t (" H,$module_des{$key});

$t0 = int($tmp[0] * l e6) ;
$t0 = $t0 / le6;

$ t l = int($tmp[l] * l e6) ;
$ t l = $ t l / le6;

$t2 = int($tmpt2] * l e l l) ;
$t2 - $t2 / le20;
$t2 = in t ($ t2 * l e6) ;
$t2 = $t2 / le6;
$t2 = n $t2 ^ . n e9 , , ;
p r in t 0UT1 "[$j][$tO] [$ t l] [$ t2] \n" ;
p r in t 0UT2 "[$j] [$ t0] [$t l] [$ t2] \n" ;
>
$total_power_dyn =• int($total_power_dyn * le6) ;
$total.power_dyn = $total_power_dyn / le6;

$total_power_leak = int($total_power_leak * le6) ;
$total .power.leak = Stotal .power.leak / le6;

$total_freq = l /$ to ta l_delay;
$total_freq = in t ($ to ta l_f req * l e l l) ;
$total_freq = $total_freq / le20;
S to ta l . f req = in t ($ to ta l_f req * l e6) ;
$total_freq = $total_freq / le6;
$total_freq = "$tota l_freq" ."e9";

pr in t 0UT1 "\n**\n";
pr in t 0UT1 "[Total][$total_power_dyn][$total_power_leak] [$ to ta l_f req 3\n";
pr in t 0UT1 "**\n";
pr in t 0UT2 "\n**\n";
p r in t 0UT2 "[Total][$total.power_dyn][$total_power_leak] [$ to ta l_f req] \n" ;
p r in t 0UT2 "**\n";
close 0UT1;
close 0UT2;
ex i t ;

141

Appendix C

Code for EA Based Design Space
Exploration

File name: genetic_new.py

Function: Aspects of the EA based design space exploration including design genera­

tion, chromosome mutation, chromosome crossover, EER, IRRR and population

maintenance are implemented in this Python program.

Input: Command file with chromosome size, objective goals (minimize or maximize),

initial population if any and EA options.

Output: Pareto-front for the EA run.

Reference: Section 4.4.3.

#!/usr/bin/env python

from subprocess import * from random import
from glob import * import sys import os

from time import
from math import
import os.path

#INITIALIZE_POP = 1 #INITIAL_POP_FILE - "./initial_pop_100.txt"
#EIDA_SCRIPT_WRAPPER = "../evaluate_designs_analytical.pl "
#REPLACEMENT_TYPE =* 0 ft# Type -1 : No replacement ## Type 0
: replaces the chromosome in the current pop which has the min
distance to the new one #8 Type 1 r replaces the chromosome in the
current pop which has the min distance with other chromosomes in
the current pop, with the new one #8 Type 2 : not implemented yet

##Enter the design choices you want to exclude from the choromosome
#EXCLUDE_DESIGN = 1 #EXCLUDE_DESIGNS = [3,6,7,9,10,11] gobi = []

LF = open
O/home/charles/EIDA_gui/ASP_DAC_2009_GA/genetic/ \
g l o b a l _ l o g _ f i l e . t x t ' , ' w ')
p r in t » L F , 'S ta r t ing the GA code a t : ' , asctimeO LF.flushQ

if len(sys.argv) <= 1:
print 'usage : prg def.py' sys.exitO
else:
mod,ext = os.path.splitext(sys.argv[l]) try:
defm = (import (mod)) xdef =
getattrCdefm,'xdef) ydef = getattr(defm,'ydef')
NUMITER = getattrCdefm,'NUMITER',10000)
P0PSIZE = getattrCdefm,'P0PSIZE',100)
NBITS = getattrCdefm,'NBITS',8) MUTATION =»
getattrCdefm,'MUTATION',0.01) UNIF0RMCR0SS0VER
• getattrCdefm,'UNIFORKCROSSOVER'.True)
PUREPARETO - getattrCdefm,'PUREPARET0'.False)
INF = getattrCdefm,'INF',1E308) IGNORE
= getattrCdefm,'IGNORE',0) MINIMIZE =
getattrCdefm,'MINIMIZE',1) MAXIMIZE =
getattrCdefm,'MAXIMIZE',2)

INITIALIZE.POP = getattrCdefm,'INITIALIZE.POP'.O)
INITIAL_P0P_FILE = getattrCdefm,'INITIAL.POP.FILE'
H./initial_population.txt") EIDA_SCRIPT_WRAPPER
= getattrCdefm,'EIDA_SCRIPT_WRAPPER',
".,/evaluate_designs_analytical.pl
") REPLACEMENT.TYPE =

getattr(defm,'REPLACEMENT_TYPE\0) EXCLUDE.DESIGN =
getattr(defm,'EXCLUDE DESIGN',0) EXCLUDE.DESIGNS =
getattrCdefm,'EXCLUDE_DESIGNS',[]) REPLACE.DESIGNS =
getattr(defm,'REPLACE.DESIGNS',[]) NO_0F_CHECKPOINTS
= getattr(defm,'NO.OF.CHECKPOINTS',10)

except ImportError:
p r in t 'Could not load def in i t ion f i l e ' , s y s . a r g v [l]
sys.exitO
except AttributeError:
print 'Could not find definitions in module',
mod sys.exitO
except:
print 'Unknown error while loading module',
mod sys.exitO

class Gene:
def init (self, name, defval, min, max, bits,
parent=None):
self._name = name self._min = float(rain) self..max =
float(max) self._defval = float(defval) if defval <
min or defval > max:
raise ValueError
self._bits = bits[:] self..len = len(bits) self._bval
= self ..calcBValO self..val = self..calcValO
self..parent = parent

Oclassmethod def random(cls, name, defval, min, max, len):
bits = 0 for i in range(len):
bit = choice([0,l]) bits.append(bit)
g = Gene(name, defval, min, max, bits) return g

def parent(self):
return self..parent

def setParent(self, parent):
self..parent = parent

def name(self):
return self..name

def setName(self, name):
self..name - name

def min(self):
return self..min

def setMin(self, min):
self._min = float(min) self._val = self..calcValO

def max(self):
return self..max

def setMax(self, max):
self..max = float(max) self..val = self..calcValO

def defVaKself) :
return self..defval

def setDefVaKself, defVal):
if defVal < self-.min or defVal > self..max:
raise ValueError
self..defval = float(defVal)

def bits(self):
return self..bits[:]

def setBits(self, bits):
if len(bits) != self._len:
r a i s e ValueError
s e l f . . b i t s = b i t s [:] se l f ._bval = self ..calcBValO
se l f ._va l = se l f . . ca l cVa lO

def val(self):
return float(self..val)

def setVaKself, val):
if val < self._min or val > self..max:
raise ValueError
bval = float(2**self..len) / float(self..max -
self._min) * float(val - self..min) self.setBVaK
bval)

def _calcVal(self):
bval = self..calcBValO val = float(self._min) val +=
float(self..max - self._min) / float(2**self..len)
* float(bval) return val

def bVal(self):
return self..bval

def setBVal(self, bval):
if bval < 0 or bval >= 2**self..len:
raise ValueError
r = range(self ..len) r.reverseO bits = [] for i
in r:
v = 2**i if bval >= v:
bits.append(1) bval = bval - v
else:
bits.append(0)
bits.reverseO self..bits * bits self..bval =
self ..calcBValO self ..val = self ..calcValO

def .ca lcBVal(se l f) :
bval = 0 for i in r a n g e (s e l f . . l e n) :
b i t = s e l f . . b i t s [i] bval += b i t * 2**i
re turn f loa t (bval)

def mutated(self, r a t) :
b i t s = [] for b i t in s e l f . . b i t s :
if randomO < r a t :
if b i t - • 1:
bi ts .append(0)
e l s e :
bits.append(1)
else:
bits.append(bit)
g = Gene(self..name, self..defval, self._min,
self..max, bits) return g

def xor (self, other):
if UNIFQRMCROSSOVER:
return self._uniformCrossOver(other)
else:
re turn self._singleCrossOver(other)

def _uniformCrossOver(self, o ther) :
c l = [] c2 = [] for p l ,p2 in
z i p (s e l f . . b i t s , o t h e r . . b i t s) :
if randomO < 0 .5 :
cl .append(pl) c2.append(p2)
e l s e :
cl.append(p2) c2.append(pl)
gl = Gene(self..name, s e l f . . d e f v a l , self._min,
self . .max, cl) g2 = Gene(self..name, s e l f . . de fva l ,
self ._min, self . .max, c2) re turn gl ,g2

def _singleCrossOver(self, o the r) :
cl = Q c2 = [] crossAt =
r a n d i n t (0 , l e n (s e l f . _ b i t s) - l) i = 0 while i < crossAt:
pi = s e l f . . b i t s [i] p2 = s e l f . . b i t s [i]
cl .append(pl) c2.append(p2) i += 1
while i < l e n (s e l f . . b i t s) :
pi = s e l f . . b i t s [i] p2 = s e l f . . b i t s [i]
cl.append(p2) c2.append(pl) i += 1
gl = Gene(self..name, self..defval, self..min,
self..max, cl) g2 = Gene(self..name, self..defval,
self..rain, self..max, c2) return gl,g2

def str (self):
return self..name + ' = ' + str(self..val)

def repr (self):
s = '<Gene ' + self..name + ' = ' for bit in
self..bits:
s += '%d> */. bit
s +« •>' return s

def __len__(self):
return self._len

def getitem (self, key):
if key < 0 or key >= self..len:
raise IndexError
return self._bits[key]

def setltem (self, id, val):
if key < 0 or key >= self._len:
raise IndexError
self._bits[key] = val self..bval = self..calcBValO
self..val = self ..calcValO

def iter (self):
return self..bits. iter ()

def int (self):
return self..bval

def float (self):
return self._val

def eq (self, other):
return self..name =*= other..name and self..bits °=
other..bits

def ne (self, other):
return self..name != other..name or self..bits !=
other..bits

class Fitness:
powerSaved = 0 perfSaved = 0 def init (self, name, min,
max, mode, func, parent=None):
self..name = name self._min - min self..max = max
self..mode = mode self..func = func self._val =
None if parent:
self..val = self..eval(parent)
self..parent = parent

def update(self):
self._val = self._eval(self..parent)

def name(self):
return self..name

143

def setName(self, name):
self._name = name

def parent(self):
return self ...parent

def setParent(self, parent):
self..parent = parent self._val = self._eval(parent)

def min(self):
return self._min

def setHinCself, min):
self..min = min

def maxCself):
return self..max

def setHaxCself, max):
self._max = max

def mode(self):
return self._mode

def setMode(self, mode):
self._mode = mode

def funcCself):
return self._func

def setFuncCself, func):
self..func = func self._val =
self._eval(self..parent)

def isValidCself):
if self._val < self._min or self._val > self._max:
return False
return True

def _eval(self, chro):
and = EIDA_SCRIPT_WRAPPER #cmd = './charles.py
j gj-g „ seif ._name+' ' first = True for gene in
chro._genes:
if first:
arg +* str(int(gene.val())) first
= False
else:
arg += ','+str(int(gene.val()))
_cmd = cmd+axg print 'calling ' + _cmd, asctimeC)
print »LF, 'calling ' + _cmd, asctimeC) LF.flushO
p = Popen(_cmd, shell=True, stdout=PIPE) ftprint
"CMD:H, cmd+arg for 1 in p.stdout:
print 'read ',1 print »LF, 'read',1
LF.flushO ft(power.perf) = l.splitC',')
#if self..name ==• 'power': ft return
float(power) ftelif self._name ==
'performance': ft return float(perf)
return float(1)

return None

#for gene in chro._genes: ft
exec(gene.name()+'='+str(gene.val())) ft # ftreturn
eval(self..func)

def float (self):
return float(self._val)

def sub (self, other):
return self._val - other._val

def str (self):
return self..name + ' n * + str(self..val)

def repr (self):
s = '<Fitness ' + self..name + ' = ' + str(self._val)

def __lt (self, other):
if self._mode == IGNORE:
return False
elif self..mode == MINIMIZE:
return self._val > other._val
elif self..mode == MAXIMIZE:
return self._val < other._val

def le (self, other):
if self..mode == IGNORE:
return False
elif self..mode == MINIMIZE:
return self-.val >= other._val
elif self..mode == MAXIMIZE:
return self._val <= other._val

def eq (self, other):
if self..mode == IGNORE:
return False
elif self..mode == MINIMIZE or self..mode ==
MAXIMIZE:
return self._name == other..name and
self._val == other..val

def ne (self, other):
if self..mode == IGNORE:
return False
elif self..mode ~~ MINIMIZE or self..mode ==
MAXIMIZE:
return self..name != other,.name or self._val
!= other._val

def __gt (self, other):
if self..mode == IGNORE:
return False
elif self..mode == MINIMIZE:
return self._val < other._val
elif self..mode == MAXIMIZE:
return self._val > other._val

def ge (self, other):
if self..mode == IGNORE:
return False
elif self..mode == MINIMIZE:
return self._val <= other.^val
elif self..mode -• MAXIMIZE:
return self._val >= other.^val

class Chromozome:
def init (self, parent=None):
self..genes = [] self..fitness = [] self..parent
= parent

def appendGene(self, g):
self..genes.append(g) g.setParent(self) for f
in self..fitness:
f.update()

def appendFitnessfself, f):
self..fitness.append(f) f.setParent(self)

def parent(self):
return self..parent

def setParent(self, parent):
self..parent - parent

def isValid(self):
for f in self..fitness:
if not f .isValidO :
#print f .nameO ,float(f) return False
if EXCLUDE.DESIGN == 1:
for g in se l f . . genes :
ftprint 'gene = ' , in t (g ._val) if
in t (g ._va l) in EXCLUDE.DESIGNS:
ftreturn False place =
EXCLUDE.DESIGNS.index(int(g. val))
g.setVal(REPLACE.DESIGNS[place])
ftprint p lace, ' — > ' ,
REPLACE.DESIGNS[place]

re turn True

def distance(self, other):
distance = 0 for ffi, ff2 in zip(self..fitness,
other..fitness):
distance * distance + ((float(ffl) -
float(ff2))**2)
distance = sqrt(distance) return distance

@classmethod def random(cls, xdef, ydef, genelen):
c = ChromozomeO keys = xdef.keysO keys.sortO
for k in keys:
name = k def val, min, max =* xdef [k] g =
Gene.random(name, defval, min, max, genelen)
c.appendGene(g)
keys = ydef-keysO keys.sortO for k in keys:
name = k yrange, func, mode = ydef[k] min.max
m yrange f = Fitness(name,min,max,mode,func)
c.appendFitness(f)
return c

def mutated(self, rat):
c = ChromozomeO for gene in self..genes:
g - gene.mutated(rat) c.appendGene(g)
for f in self..fitness:
f =
Fitness(f.name() , f .min() ,i .max() ,f .mode() ,f .funcO)
c.appendFitness(f)
return c

def xor_ (self, other):
if UNIFORMCROSSOVER:
return self._uniformCrossOver(other)
else:
return self._singleCrossOver(other)

def _uniformCrossOver(self, other):
chl = ChromozomeO ch2 = ChromozomeO for pi ,p2
in zip(self..genes,other..genes):
cl,c2 = pi " p2 chl.appendGene(cl)
ch2.appendGene(c2)
for f in self..fitness:
fl =

144

Fitness(f .nameO ,f .minO ,f.max() ,f .modeO ,f .funcO)
f2 =
Fitness(f.name() ,f .minC) ,f.max() ,f .modeO ,f .funcO)
chl.appendFitnessC fl) ch2.appendFitnessC
f2)
return chl,ch2

def .singleCrossOverCself, other):
chl = ChromozomeC) ch2 = ChromozomeO crossAt =
randintCO.lenCself,_genes)-l) i = 0 while i <
crossAt:
pi = self..genes[i] p2 = self._genes[i]
cl = Gene(pl..name, pl._defval, pl._min,
pl._max, pl._bits[:]) c2 = Gene(p2._name,
p2._defval, p2._min, p2._max, p2._bits[:j)
chl.appendGeneC cl) ch2.appendGene(c2)
i += 1

pl = sel f ._genes[i] p2 = se l f ._genes[i] c l , c2 = pl ~
p2 chl.appendGeneC cl) ch2.appendGene(c2) i += 1

while i < lenCself . .genes) :
p l = s e l f . . genes [i] p2 = s e l f . . g e n e s [i]
cl = GeneCpl._name, p l ._defval , pl._min,
pl._max, p l . _ b i t s [:]) c2 = Gene(p2._name,
p2._defval, p2._min, p2._max, p 2 . _ b i t s [:])
chl.appendGene(c2) ch2.appendGene(cl)
i += 1

for f in self..fitness:
fl =
FitnessCf.nameO ,f ,min() ,f .maxO ,f .modeO ,f .func()>
f2 =
Fitness Cf.nameO ,f .min() ,f -maxO ,f .modeO ,f .funcO)
chl.appendFitness(f1) ch2.appendFitness(
f2)
return chl,ch2

def __str (self) :
s - 'Chromozome:\n' genes = •(> for g in self._genes:
genes[g.nameC)] = g
keys = genes.keysO keys.sortO for key in keys:
g = genes[key] s += '*/.10s =*/„9.5f\n' '/,
(key.float(g))
s += ' \nJ fs = O for f in
self..fitness:
fs[f.name()] = f
keys = fs.keysO keys.sortO for key in keys:
f = fa [key] s += '%10s =*/.9.5f\n' '/.
(key.float(f))
return s

def repr (self):
s = '<Cnromozome ' for g in self._genes:
s += repr(g)
for f in self..fitness:
s += rept(f)
return s

def __len (self):
return lenCself..genes)

def getitem (self, key):
if key < 0 or key >= lenCself._genes):
raise IndexError
return self..genes[key]

def __setltem._(self, id, val) :
if key < 0 or key >=• lenCself ..genes):
raise IndexError
self..genes[key] = val val.setParent(self) for
f in self..fitness:
f.updateC)

def contains (self, item):
for g in self..genes:
if g == item:
return True
return False

def __iter__(self):
return self..genes. iter C)

def _.lt (self, other):
for fl,f2 in zipCself..fitness,other..fitness):
if fl >= f2:
return False
return True

def __le (self, other):
for fl,f2 in zipCself..fitness,other..fitness):
if fl > f2:
return False
return True

def eq (self, other):
for gl,g2 in zipCself..genes,other..genes):
if gl !- g2:
return False
return True

def ne (self, other):
for gl,g2 in zipCself..genes,other..genes):
if gl !- g2:
return True
return False

def gt (self, other):
for fl,f2 in zip(self..fitness,other. fitness):
if fl <= f2:
return False
return True

def ge (self, other):
for fl,f2 in zipCself..fitness,other, fitness):
if fl < f2:
return False
return True

def writeGnuplotCself,file):
fd = open(file,'w') for g in self:
print »fd,int(float(g)) ,
print »fd,': J, for f in self ..fitness:
print »fd,floatCf),
print » f d fd.closeQ

class Population:
def init (self, size, parent=None):
self._chros = [] self..size = size self..parent
= parent

def appendChroCself, chro):
if not chro.isValidO :
return False
if chro in self:
return False

for c in self..chros[:]:
if c > chro:
return False
isoutsideparpoint = 1 minchro.distance = 10000000000

for c in self..chros[:]:
if c < chro:
self.^chros.removeC c)
isoutsideparpoint = 0 if not
PUREPARETO:
break

if isoutsideparpoint == 1:
if REPLACEMENT.TYPE == 0:
for c in self..chros[:]: # for
fff in c . f i t n e s s : # if
Cfff.nameC) == strC'power")):
currcnropwr
- float(fff) # if
Cfff.nameC) ~= strCperformance")) : S
currchroper - float(fff)
chro.distance =
c.distance Cchro)
if chro.distance <
minchro.distance:
minchro.distance =
chro.distance
#print >>LF, "Chromosonal
distance: "chro.distance
print » L F , "Hin chromosonal
distance: ", minchro.distance

for c in self..chros[:]:
chro.distance =
c.distance(chro)
if chro.distance ==
minchro.distance:
self..chros.removeC c
) self..chros.append(
chro) print »LF,
"This is an outside
pareto point -
inserted into current
population.set type 0

if REPLACEMENT.TYPE =•= 1:
for _t in range (len(self..chros)):
for _tt in range
(lenCself..chros)):
chro.distance =
self._chros[_t].distanceCself..chros[_tt])
#print » L F ,
"Chromosonal
distance: ",
chro.distance if
self..chros[_t]
!= self..chrosC.tt]:
if
chro.distance
<
minchro.distance:
minchro.distance

chro.distance

145

#for c in self..chros[:]:
#for cl in self,_chros[:]:
#chro_distance =
cl.distance(c) #print
»LF, "Chromosonal
distance: ",
chro_distance #if
C != Cl:
#if
chxo_distance
<
minchro_distance:
tfminchro.distance

chro.distance

print »LF, "Min chromosonal
distance: ",minchro_distance print
»LF," "

#for c in self._chros[:]:
#for cl in self..chros[:]:
ftchro.distance =
cl.distance(c) #print
»LF, "Chromosonal
distance: H,
chro_distance #if
c != c l :
#if
chro.distance

minchro_distance:
#self._chros.remove(
cl)
#self._chros.appendC
chro)
#print
»LF,
"This
is an
outside
pareto
point

inserted
into
current
population.set
type
1"
#break

for _t in range (lenCself._chros)>:
for _tt in range
(lenCself-_chros)>:
chro_distance =
self..chros[_t].distanceCself..chros[_tt])
#print » L F ,
"Chromosonal
distance: ",
chro.distance if
self..chros[_t]
!= self._chros[_tt]:
if
chro_distance

minchro_distance:
self..chros.remove(
self..chros[_tt]
)
self . .chros .append(
chro)
p r in t
» L F ,
"This
i s an
outside
pareto
point

inser ted
into
current
populat ion_s et
type
1"
break

#print lenCself._chros) if lenCself..chros) <
self._size:
self..chros.appendC chro) chro.setParentC
self) return True
return False

def parentCself):
return self..parent

def setParentCself, parent):
self..parent = parent

Sclassmethod def randomCcls, xdef, ydef, popSize, geneLen,
chros=[]) :

p = Population(popSize) for chro in chros:
p..chros.appendC chro) chro.setParentC p)
while lenCp) < popSize:
c s Chromozome.randomCxdef, ydef, geneLen)
if not c.isValidO :
print 'notValid' print » L F ,
'notValid' LF.flushC) continue
if c in p:
print 'already in' print »LF,
•already in' LF.flushC) continue
add = True for chro in p._chros[:3:
if chro > c:
print 'dominated' print >>LF,
'dominated' LF.flush()
add = False break
if not add:
continue
if PUREPARETO:
for chro in p._chros[:]:
if chro < c:
p..chros.remove(
chro)
print 'size* ,len(p),popSize print >>LF,
'size',len(p) .popSize print » L F ,
p LF.flushC) p..chros.appendC c)
sys .stdout .flushO c.setParentC p)
print »LF, p LF.flushC) return p

def __len__Cself):
return lenCself..chros)

def getitem Cself, key):
if key < 0 or key >= lenCself..chros):
raise IndexError
return self..chros[key]

def setitem Cself, key, value):
if key < 0 or key >= lenCself._chros):
raise IndexError
self..chros[key] = value value.setParentC self)

def delitem Cself, key):
if key < 0 or key >= lenCself..chros):
raise IndexError
del self..chros[key]

def iter (self):
return self..chros. iter C)

def contains (self, item):
for c in self..chros:
if c == item:
return True
return False

def s t r Cself):
s = 'Populat ion: \n ' c = self . .chros[03 genes = O
for g in c . .genes:
genes [g.nameO] = g
fs = O for f in c . . f i t n e s s :
fs[f .nameC)] = f
keysg = genes.keysC) keysg.sortO keysf = fs.keysC)
keysf.sortC) for k in keysg:
s += "/,9s' % k
s += •I' for k in keysf:
s +=» '7,9s' 7. k
s += '\n' s += '.'*C9*ClenCkeysg)+lenCkeysf))+D s +=
'\n' for c in self..chros:
genes = O for g in c..genes:
genesCg.nameC)] = g
for k in keysg:
g = genes[k] s += '7,9.3f 7. floatCg)
fs = O s += ' | ' for f in c . . f i t n e s s :
fs[f.nameC)] » i
for k in keysf:
f = fsDO s +- '7.9.31* 7, floatCf)
s += >\n'
re turn s

def writeGnuplotCself,file):
fd = openCfile,'w') for c in self..chros:
for g in c:
print »fd,intCfloatCg)) ,
print »fd,':', for f in c..fitness:
print »fd,floatCf),
print » f d
fd.closeC)

def uriteGobi(self, file, org):
fd = openCfile,'w') print »fd,'<?xml
version="1.0"?>' print »fd,'<!DOCTYPE ggobidata
SYSTEM "ggobi.dtd">' print »fd,'<ggobidata>'
print »fd,'<data name=HGA optimization">* print
»fd,'<description>' print »fd,"'This data is the
entire GA population''' print »fd,'</description>'

varCount = lenCself..chros[0]..fitness)
varCount += lenCself..chros[0]..genes) + 2 print
»fd, '^variables count=H7.d">> '/, varCount for f in
self..chros [0]..fitness:
print »fd,'<realvariable name="7oS"' '/„

146

' min="%f"

f.nameO, if f.minC) > -INF:
p r in t »fd,'min="7.f " ' 7. f .minO,
if f.max() < INF:
p r in t »fd,'max="7.f"' 7, f.maxO,
p r i n t » f d , ' /> •
for g in self ._chros[0] ._genes:
p r in t » f d , ' < r e a l v a r i a b l e name="7.s
max="7,f"/>' 7. (
g.nameO ,g.min() ,g.max())
print »fd,'<categoricalvariable name=Hcategory">>

print »fd,'<levels count=M">' print »fd,'<level
value="0">original</level>' print »fd,'<level
value="ln>dominates</level>' print »fd,'<level
value=H2r,>normal</level>> print »fd,'</levels>'
print »fd,'</categoricalvariable>' print
»fd,'<categoricalvariable name=Hpareto">' print
»fd,*<levels count="2">' print »fd,'<level
value="0">noniial</level>' print »fd,'<level
value="l">pareto</level>' print »fd,'</levels>'
print »fd,'</categoricalvariable>' print
»fd, '</variables>'

recCount = len(self)+l print »fd,'<records
count="°/.i">' 7. recCount print »fd,'<record color="2"
glyph="fc 3">', for f in org..fitness:
print »fd,float(f),
for g in org._genes:
print »fd,float(g),
print »fd,'0' (print »fd,'0', print
»fd,'</record>'

for c in self._chros:
if c > org:
dominates = True
else:
dominates = False
pareto = True for o in self._chros:
if o == c:
continue
if c < o:
pareto = False break
print »fd,'<record', if dominates:
print »fd, ,color="4'",
else:
print »fd, ,color="8n',
if pareto:
print »fd, 'glyph-"plus 3"',
else:
print »fd,'glyph="fc 3"',
print »fd,'>'

for f in c..fitness:
print »fd,float(f),
for g in c._genes:
print »fd,float(g),
if dominates:
print »fd, '1',
else:
print »fd, '2',
if pareto:
print »fd, '1*,
else:
print »fd,
print »fd, r , </record>'
print »fd,'</records>'

print »fd,'</data>' print »fd,'</ggobidata>'
fd.closeO

class Genetic:
def init (self, pop):
self._pop = pop pop.setParent(self)

def evolve(self, numlter, org):
i = 0 while i < numlter:
print 'iteration',i print >>LF, 'iteration',i
LF.flushO pop = self._pop parents =
sample(pop,2) pi - parents[0] p2 ~ parents[l]
cl,c2 = pi " p2 res = pop.appendChro(cl)
if cl > org:
print print cl gobi.appendC cl)
if res:
print 'X', sys.stdout.flushO
res = pop.appendChro(c2) if c2 > org:
print print c2 gobi.append(c2)
if res:
pr in t 'X ' , sys.stdout .f lushO
i += 1 yie ld i parents = sample(pop,1) p =
parents[0] c = p.mutatedCMUTATION) res =
pop.appendChro(c) if c > org:
p r in t p r in t c gobi.append(c)
if r e s :
print 'M', sys.stdout.flushO
Sprint »LF, 'Iteration** ' ,i,' population'
tfprint »LF, pop #LF.flush() i += 1 yield i

raise Stoplteration

if ,_name == ' main,.
for f in glob('*.xml'):
OS.unlink(f)

#if o s . p a t h . i s f i l e
(Vhome/charles/EIDA_gui/ASP_DAC_2009_GA/genetic/ \

previous_run_chromosome_new.txt"):
#os.unlink(Vhome/charles/EIDA_gui/ASP_.DAC_2009_GA/\

#genetic/previous_run_chromosome_new.txt")

if INITIALIZE.POP — 1:
i n i t = []

for l i ne in open(INITIAL_POP_FILE):
a = l i n e . s p l i t O p r i n t » L F ,
'Chromosome i n i t i a l i z e d from f i l e '
p r in t » L F , a LF.flushO org =
ChromozomeO keys = xdef.keysO
keys . so r tO i i i i =* 0 for k in keys:
name = k val,min,majc
= xdeftk] g =
Gene (name, val, min, max, [0
for i in range(NBITS)])
#print float(a[iiii]), iiii,
a g.setValC float(a[iiii]))
org.appendGene(g) iiii += 1
keys = ydef.keysO keys.sortO
for k in keys:
name = k yrange,func,mode =
ydef[k] min,max = yrange f =
Fitness(name,min,max,mode,func)
org.appendFitnessC f)

init.append(org)
org.writeGnuplotCorig.dat') print print 'Original:'
print »LF, 'Original:' LF.flushO print org print
'Initializing and generating initial population'
print »LF, 'Initializing and generating initial
population'

else:
org = ChromozomeO keys = xdef.keysO keys.sortO
for k in keys:
name = k val,min,max = xdefUO
g = GeneCname.val.min.max,CO for i
in range(NBITS)]) g.setValC val)
org.appendGene(g)

keys = ydef.keysO keys . so r tO for k in keys:
name = k yrange,func.mode = ydef[k] min,max =
yrange f = Fitness(name,min,max,mode,func)
org.appendFitnessC f)
org .wr i teGnuplotCor ig .da t ') p r in t p r in t 'Or ig ina l : '
p r in t » L F , ' O r i g i n a l : ' LF.flushO pr in t org
p r in t 'Generating i n i t i a l populat ion' p r in t » L F ,
'Generating i n i t i a l populat ion'

if INITIALIZE.POP — 1:
pop = Population.randomC xdef, ydef, POPSIZE,
NBITS, i n i t)
e l s e :
pop = Population.randomC xdef, ydef, POPSIZE, KBITS,
[org])

print 'complete' print »LF, 'complete' LF.flushO
pop.writeGnuplotCinit.dat') pop.writeGobiCinit-xml', org)

ga - GeneticC pop) step = int(NUMITER/N0_0F_CHECKP0INTS)
for i in ga.evolve(NUMITER,org):
if i X step == 0:
pop.writeGobi(str(i)+'.xml*,org) print
»LF, 'Iteration* ',i,' population' print
»LF, str(pop) LF.flushO #if os.path.isfile
(n/home/charles/EIDA_gui/ASP_DAC_2009_GA/genetic/global_log_file.txt"):
#os.unlinkC',/home/charles/EIDA_gui/ASP_DAC_2009_GA/genetic/global_log_file.txt,')
pop.writeGnuplot('final.dat') pop.writeGobi('final.xml', org)

print print ' ', « = 4 for f in org._fitness:
print '7.10s' '/, f.nameO, w += 10
for g in org._genes:
print '7.10s' '/, g.nameO, w += 10
print print 'org:', print » L F , 'org:', for f in
org._fitness:
print '7.10.4f */. float(f), print »LF,
'7.10.4f 7. float(f),
for g in org._genes:
print '7.10d' '/, int(f loat(g)), print »LF,
'7.10d' 7, int(floatCg)),
print print » L F print '_'*w print » L F
in pop:
if chro > org:
print 'imp:', print >>LF, 'imp:'.

'*w for chro

else:
print
for "
print

'par:', print »LF, 'par:',
in chro._fitness:
'7.10.4f 7. float(f), print »LF,

'X10.4f 7. floatCf),
for g in chro._genes:
print '7.10d' % int(floatCg)) , print
»LF,'7.10d' 7. int (float (g)),
print print » L F

Sgpop = Population(len(gobi)) #for c in gobi: #
gpop._chros.append(c) ffgpop.writeGobi('inter.xml', org)
LF.close()

147

Appendix D

GUI Implementation of EIDA

D.l Screen Captures of the GUI

l?JBEMFJ!*3

S e s s i o n E d i t V i e w B o o k m a r k s S e t t i n g s H e l p

Command to open EIDA Gul
[cfaarles@vlsi-xO EIDA]$./eida.tcl

• H S h e l

Early Integrated circuit Design Assist
Number of modules in design i

Choose ' run type
{ntera6tive:;descriptor vector entry ; :run

iPreformated Gommad:fi le run command file mn

Edit existing module description

Choose I

Exit

14

Figure D.l: Invoking the EIDA tool's GUI from the command prompt

Early Integrated circuit Design Assist
Numberof modules in design :

•|5J Se t * modules J

\
Unset $ ifloeMss l •

Choose run-type
Interactive descriptor vector entry run

Pre for mated com mad file run

Interactive run

Command file run

Edit existing: module description

Choose J V ['•-• " 1

Exit

Figure D.2: Entering the number of modules in the design

Early Integrated circuit Design Assist
D Uw, •

iSSHOtttl''/MOOS'S^i

Number of modules in design

Unset # modules iJ
Choose run type

Interactive descriptor vector entry run interactive run J

Pre formated com mad file run Command file run

Edit existing module description

Choose

Exit

Figure D.3: Confirming the number of modules and choosing interactive run type

149

Descriptors common to all modules
i

S u p p l y v o l t a g e o f n e w p r o c e s s (V) * T 5 " ~ ~ ™ ~ ~

P a c k a g e I B d r o p f a c t o r (e t a) oTTs™ —"

jTTi ^

Min length in new process j m) 32e-9 —

Gate'cap scaling factor Mi 2

Wire cap scaling factor *i.s

Gate width scaling factor ; i. i

Original unit area gate cap (F/um2) 'ie-i2

Original min W/L drain current (A) -'ise-s .."""

New chip's unit area gate cap (F/um2) 'fi 7e-i2 :

New chip's min W/L drain current (A) •aoe-s

Library redesign power saving factor i —

RC interconnect slowdown factor "T

Average statcking factor for new design *o <5

Unit decap sensitivity (V/nF) , 0 0 1

N e w p r o c e s s ' s l e a k a g e c u r r e n t e s t i m a t e s
f r o m f o u n d r y or S P f C E s i m u l a t i o n s

U n i t j u n c t i o n a r e a l e a k a g e (A / u m 2) < i 1 8 " 7

U n i t g a t e a r e a l e a k a g e (A / u m 2)

U n i t l inear g a t e l e a k a g e c u r r e n t (A / u m)

j U n i t l inear, typ ica l l_of f for h i g h V t F E T s (A / u m)

! U n i t l inear, w o r s t t_of f f o r h i g h V t F E T s (A / u m)

• U n i t l inear, t yp ica l l_of f fo r low V t F E T s (A / u m)

. U n i t l inear, w o r s t l_of f f o r low V t F E T s (A / u m)

! ; i©-5
i --~_-y

_ ;fbOe-

' "asoe-

• 2 :508-

'••

•W

-8 '

Q"~

SQOe-S

Clear All I Stave ant i p roceed -1
— — r — i ; : - . v ...- : ; r ^ _ _ 1 _ ! L ^ _ _ ^

Figure D.4: Entering the process dependent descriptors

150

'Directory: /home/charles/E I PA_jjui/E I DA .fell

IE comman d_file.c m d
El command_f i leaa.cmd
E l demo nov.cmd

I !-

File n a m e : d i s s e rtati o n_d e'm o|

Files of t y p e : Command Files (* . c m d)

Figure D.5: Entering the command file name to save the entered data

!^JJ^T^«^-W' ^r^w^™*rg^P-^^J ™ ^ ^ ^ ^ ^ - m ^ i # m » ^ ^ * ^ ^ * ^ - ™ .

Enter constants for Vdd scaling equations

alpha

beta

gamma

delta

epislon

.5

;05.Z5

^ ~ —

;0.65

,01.4

• 'V* M-*P™

{ « - !) !

h,nk_

FSf

'/«'<

K
b

\.w

„M,1t

f.f-

=

IV

JH

iL*

—

11

izfi

F

' I F nfr_'/«fl

= ' » / / X

J t * i 4<> i «»*

/ f
J -

p-fc
- 1

2

{ < » -

<r

- i i

J

: 0.5529

F S F = :

:¥: 0,554E|

1 >'

Save and proceed
:fci

Figure D.6: Entering VDD scaling descriptors

151

Individual module descriptors
2 "out of5 entered

ii

Original load capacitance (F)

Total wire length (m)

Unit length wire cap, all metal layers (F)

Total PFET width (m)

Total NFET width (m)

Original operating frequency (Hz)

Average switching factor

Clock gating factor

Decap added (% of total FET width)

Ratio of Hi-to-Lo Vt FETS

Wire buffers (% of total FET width)

Typical path FET ratio

Useful skew perf enhancement

Interconnect speedup due to buffers

Temperature of operation

Critical module?

NADSP - Vdd droop (% of Vdd)

j2.05e-12

p _ _ _ _ _

_ _ _ _ _ _

0

|bT™

l__

mm
'J 0.1

0
foi~
„ . . „

, „ „ „

m Y E S / N O

0.2

Clear All Save and proceed
M

Figure D.7: Entering modules descriptors for each module in the system

152

'"''••• \.'-. :.;••;' ': .•'\-wiammiim—
Select design recipe applied to module fz put of 5 ©nieced

• Vary" V'dd .?• .• pr Y E S / N O Enter applied Vdd (V) ;o.ej

Use Dual-Vt FETs ? . _J VES / MO

U s e A B B ? , pr. VES./.NO • _J.FB

p - RB

Use sleep transistors ? W VES / N O

Save and proceed

Figure D.8: Entering design choices for each module in the system

Results Nummary; from El PA ruri

fx****^****^^^ * • * * * * * * * * * * * * > * * * * * * * * * *

******+*****:***.***:*.*******jiddule • re'suit3 summary**************************
*^****;+**i********;****:*^*****+*>*i^*;**** ************.**********************

[Module #] [Dynamic; power; (¥) ,] [: Leakage j) owe r (W) ̂ [Performance (Hz) •]•'

[IV] { 0 / 1 4 3 9 9 1 ,
[2 : :] [9 : : 288944
[3] [1 : 8 3 8 4 2 5
•[; .•••:••'*••:' -.'1"[;0- 4 0 1 5 2 3
[: 5 ' H O . 3 7 0 0 8 1

] [0:16183
A]:(1.29464S
] [0,256231
] f0- 447731;.
] [0,412667

] [0 ; 5 6 8 7 7 e 9 ;]
;] [4 . 5 8 5 9 1 e 9].

] i 4 : 5 8 5 9 ± e 9]
] [0 . 5 7 3 2 3 8 e 9]:
] [0 . 5 7 3 2 3 8 e 9]

* * * * * * + * * * * * * * * * * * * * * * • * • * * t********:********************.*******************
[: T o t a l] [1 2 . 042966] [2.57:3107•. ' . : '] [2 . 2929SSe9 • •] - . .

Return to main window Exit El DA

Figure D.9: System power and performance for the chosen module design choices

153

file://�'/-wiammiim�

>}j.yB - %-Mstm -sS>
Session Edit View Bookmarks Settings Help

Using EIDA from command prompt with command file
[charles@vlsi-xO EIDA]$ /home/charles/EIDA_gui/scripts/eida.pl ./dissertation demo, cmd
[charles@vlsi-x0 EIDA}$ more ./dissertationdemo.cmd.module, results
************ ************ **
* ^ 0 (y u j g results summary******'1'*******************
*
[Module #][Dynamic power (W)][Leakage power (Wj][Performance (Hz)]

][0.143991
][9.288944
][1.838425
][B. 401523
}[0.370081

)'[0.16183
][1.294645
][0.256231
][0.447731
J[0.412667

][9.56877e9]
][4.58591e9]
][4.58591e9 j
][0.573238e9
][0,573238e9

[Total] [12.042966 J[2,573107 }[2:29295569'.]
*
[charlesisvlsi-xO EIDA]$ | T

(Shell

Figure D.10: EIDA tool used in batch mode from the command prompt. A command
file corresponding to the modules in the system and their respective design choices
has to be created prior to invoking EIDA from the command prompt.

154

D.2 T C L / T k Code for the GUI

File name : eida.tcl

Funct ion: Implements the GUI interface for the EIDA design framework.

Input: Optional for interactive run. A command file corresponding to the modules

in the system and their respective design choices is required for the command

file run.

Output: System (and module) performance and power consumption estimates.

Reference: Section D.l.

exec wish "$0" "$0"
append auto_path
Vhome/charles/my_softwares/AvtiveTcl/lib/tcl8.4
/home/charles/my_softwares/AvtiveTcl/lib
/home/charles/my_softwares/AvtiveTcl/lib/tklib0.4
/home/charles/my_softwares/AvtiveTcl/lib/tcllibl.8
/home/charles/my_softwares/AvtiveTcl/lib/tk8.4"
if {! [info exists
vTcl(sourcing)]} {

catch {package require bogus-package-name}
set packageNames [package

names]
package require BWidget
switch $tcl.platform(platform) {
windows {
}
default {

option add *ScrolledWindow.size 14
>

>
package require Tk
switch $tcl_platform(platforra) {
windows {

option add *Button.padY 0
}
default {

option add *Scrollbar.width 10
option add

*Scrollbar.highlightThickness 0
option add

•Scrollbar.elementBorderWidth 2
option add

•Scrollbar.borderWidth 2
}

}

if {![info exist vTcl(sourcing)]} {
proc ::vTcl:rename {name} {

regsub -all "\\." $name "_H ret
regsub -all "\\-H $ret "_" ret

regsub -all " " $ret n_n ret
regsub -all "/" $ret " " ret
regsub

-all "::" $ret " " ret
return [string tolower Sret]
}
proc ::vTcl:image:create_new_image {filename {description {no
description}} {type {}} {data {}}} {

if {[info exists ::vTcl(images,files)]} {
if {[lsearch -exact $::vTcl(images,files) $filename] > -1} {
return }

}
if {![info exists ::vTcl(sourcing)] &ft [string length $data] >

0} {
set object [image create [vTcl:image:get_creation_type $filename]
-data $data]

} else {
if {! [file exists $filename] } {

set script [file dirname [info script]]
set filename [file

join $script [file tail $filename]]
}
if {![file exists $filename]} {

set description "file not found!"
set object [image create

photo -width 1 -height 1]
} else {

set object [image create [vTcl:image:get_creation_type
$filename] -file $filename]

}
}

set reference [vTcl:rename Sfilename]
set

::vTcl(images,$reference,image) $object
set

::vTcl(images,$reference,description) ̂ description

set ::vTcl(images,$reference,type) $type
set

::vTcl(images,filename,$object) $filename
1append

::vTcl(images,files) $filename
lappend ::vTcl(images,$type) $object

return Sobject
}
proc ::vTcl:image:get_image {filename} {

set reference [vTcl:rename $filename]
if {![info exists

::vTcl(images,$reference,image)]} {
set imageTail [file tail $filename]
foreach oneFile
$::vTcl(images,files) {

if {[file tail $oneFile] == $imageTail} {
set reference [vTcl:rename $oneFile]
break

}
}

}
return $::vTcl(images,preference,image)
}
proc ::vTcl:image:get_creation_type {filename} {

switch [string tolower [file extension $filename]] {
.ppm -
•JP6 "
.bmp -
.gif {return photo}
.xbm {return

bitmap}
default {return photo}

}
}
foreach img {

} {
eval set _file [lindex $img 0]

vTcl:image:create_new_image\
$ file [lindex $img 1] [lindex Simg 2] [lindex $img 3]
}

155

catch {package require Img}
foreach img {
{{[file join / home charles EIDA_gui images eqnl_s.jpg]} {user
image} user {}}
{{[file join / home Charles EIDA_gui images

eqn2_s.jpg]> {user image} user {}}
{{[file join / home charles

EIDA gui images hour_glass.jpg]} {user image} user {}}
} {
eval set _file [lindex $img 0]

vTcl:image:create_neu_image\
$ file [lindex $img 1] [lindex $img 2] [lindex $img 3]
}
if {![info exist vTcl(sourcing)]} {
set vTcl(fonts,counter) 0
proc

::vTcl:font:add_font {font.descr font_type {newkey {}}} {
if {[info exists ::vTcl(fonts,$font_descr,object)]} {

return $::vTcl(fonts,$font descr,object)
}
incr ::vTcl(fonts,counter)

set newfont [eval font create

$font_descr]
lappend ::vTcl(fonts,objects) $newfont
if {Snewkey ==

""} {
set newkey vTcl:font$::vTcl(fonts.counter)

while
{ [vTcl:font:get_font $newkey] != ""} {

incr ::vTcl(fonts,counter)
set newkey

vTcl:font$::vTcl(fonts,counter)
}

}
set ::vTcl(fonts,$newfont,type) $font_type

set ::vTcl(fonts,$newfont,key) Snewkey

set ::vTcl(fonts,$newfont,font_descr) $font_descr

set ::vTcl(fonts,$font_descr,object) $newfont
set

::vTcl(fonts,$newkey,object) $newfont
lappend

::vTcl(fonts,$font_type) $newfont
return Snewfont

}
proc ::vTcl:font:getFontFromDescr {font.descr} {

if {[info exists ::vTcl(fonts,$font_descr.object)]} {
return $::vTcl(fonts,$font_descr,object)

} else {
return ""

} c
}
vTcl:font:add_font \

"-family helvetica -size 12" \
stock \
vTcl:fonti

vTcl:font:add_font \
"-family lucida -size 18" \

stock \
vTcl:font8
}
if {![info exists vTcl(sourcing)]} {
proc ::Window {args} {

global vTcl
foreach {cmd name newname} [lrange $args 0 2] {}

set rest [lrange $args 3 end]
if {$name == H" II $cmd == ""}

{ return }
if {Snewname == ""} { set newname Snarae }
if {$name ==

"."} { wm withdraw $name; return }
set exists [winfo exists $newname]

switch Scmd {
show {

if {Sexists} {
wm deiconify $newname

} elseif {[info procs vTclWindow$name] != ""} {
eval "vTclWindow$name Snewname $rest"

}
if {[winfo exists Snewname] && [wm state $newname] -~

"normal"} {
vTcl:FireEvent Snewname « S h o w »

}
}
hide {

if {Sexists} {
wm withdraw Snewname
vTcl: FireEvent Snewname « H i d e »

return}
}
iconify { if Sexists {wm iconify Snewname; return} }
destroy {
if Sexists {destroy Snewname; return} }

}
}
proc ::vTcl:DefineAlias {target alias widgetProc top_or_alias

global widget
set widget(Salias) Starget
set widget(rev,Starget)

Salias
if {$cmdalias} {
interp alias {} $alias {} SwidgetProc Starget

}
if {$top_or_alias != ""} {

set widget($top_or_alias,Salias) Starget
if {Scmdalias} {

interp alias {} Stop or alias.Salias {} SwidgetProc Starget
}

}
}
proc ::vTcl:DoCmdOption {target cmd} {

set parent Starget
while {[winfo class Sparentj == "Menu"} {
set parent [winfo parent Sparent]

}
regsub -all {\'/,widget} $cmd Starget cmd
regsub -all {\'/,top} $cmd

[winfo toplevel Sparent] cmd
uplevel #0 [list eval $cmd]
}
proc ::vTcl:FireEvent {target event {params {}}} {

if {![winfo exists Starget]} return
foreach bindtag [bindtags

Starget] {
set tag_events [bind Sbindtag]
set stop.processing 0
foreach

tag_event $tag_events {

if {$tag_event == Sevent} {
set bind_code [bind Sbindtag $tag_event]
foreach rep
"\{'/,W Starget \J Sparams" {

regsub -all [lindex $rep 0] $bind_code [lindex Srep 1]
bind code

}
set result [catch {uplevel #0 $bind_code} errortext]

if {Sresult == 3} {
set stop_processing 1

} elseif {Sresult != 0} {
bgerror Serrortext

}
break

}
}
if {$stop_processing} {break}

}
proc ::vTcl:Toplevel:WidgetProc {w args} {

if {[l length Sargs] = 0} {
re turn $w

}
set command [lindex Sargs 0]
set args [lrange Sargs 1 end]

switch — [s t r ing tolower Scommand] {
"setvar" {

foreach {varname value} Sargs {}
if {Svalue == ""} {

re turn [set ::${w}::${varname}]
} e l se {

re turn [set ::${w}::${varname} Svalue]
}

}
"hide" - "show" {

Window [string tolower Scommand] $w
}
"showmodal" {

Window show $w; raise $w
grab $w; tkwait window $w; grab

release $w
}
"startmodal" {

Window show $w; raise $w
set ::${w}::_modal 1
grab $w;

tkwait variable ::${w}::_modal; grab release $w
}
"endmodal" {

set ::${w}::_modal 0
Window hide $w
}
default {

uplevel $w Scommand Sargs
}

}
}
proc ::vTcl:WidgetProc {w args} {

if {[llength Sargs] == 0} {
return $w

}
set command [lindex Sargs 0]
set args [lrange Sargs 1 end]

uplevel $w Scommand Sargs

cmdaliaqjroc : :vTcl:toplevel {args} {

156

uplevel #0 eval toplevel $args
set target [lindex $args 0]
namespace

eval ::$target {set _modal 0}

> if {[info exists vTcl(sourcing)]} {
proc vTcl:project:info {} {

set base .command,file
namespace eval ::widgets::$base {
set set,origin 1
set set,size 1
set runvisible 1

>
namespace eval ::widgets::$base.buttl {
array set save {-command 1 -disabledforeground 1 -text 1}

>
namespace eval ::widgets::$base.framel {
array set save {-font 1 -foreground 1 -highlightcolor 1 -text 1}

>
set site_3_0 $base.framel
namespace eval

: :widgets::$site_3_0.entryl {
array set save {-background 1 -disabledforeground 1 -font 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.butt_choose_file {
array set save {-command 1 -disabledforeground 1 -text 1}

}
namespace eval ::widgets::$base.labell {
array set save {-disabledforeground 1 -font 1 -text 1}

}
set base .control
namespace eval ::widgets::$base {
set set,origin 1
set set,size 1
set runvisible 1

}
namespace eval ::widgets::$base.canvas {
array set save {-borderwidth 1 -closeenough 1 -height
1 -insertbackground 1 -relief 1 -selectbackground 1
-selectforeground 1 -width 1}

}
namespace eval ::widgets::$base.labell {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$base.cpd80 {
array set save {-activebackground 1 -activeforeground 1 -command
1 -disabledforeground 1 -text 1}

}
namespace eval ::widgets::$base.canvas_run_type {
array set save {-borderwidth 1 -closeenough 1 -height
1 -insertbackground 1 -relief 1 -selectbackground 1
-selectforeground 1 -width 1}

}
namespace eval ::widgets::$base.canvas3 {
array set save {-borderwidth 1 -closeenough 1 -height
1 -insertbackground 1 -relief 1 -selectbackground 1
-selectforeground 1 -width 1}

}
set base .design.choice
namespace eval ::widgets::$base {
set set,origin 1
set set,size 1
set runvisible 1

}
namespace eval ::widgets::$base.butt1 {
array set save {-command 1 -disabledforeground 1 -text 1}

}
namespace eval ::widgets::$base.cpd82 {
array set save {-background 1 -foreground 1 -height 1 -maximum
1 -relief 1 -troughcolor 1 -variable 1}

>
namespace eval ::widgets::$base.cpd83 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -relief 1 -state 1 -textvariable 1}

}
namespace eval ::widgets::$base.canvasl {
array set save {-borderwidth 1 -closeenough 1 -height
1 -insertbackground 1 -relief 1 -selectbackground 1
-selectforeground 1 -width 1}

}
namespace eval ::widgets::$base.title {
array set save {-disabledforeground 1 -font 1 -text 1}

}
set base .interactive_common
namespace eval ::widgets::$base {
set set,origin 1
set set,size 1
set runvisible 1

>
namespace eval :iwidgets::$base.framel {
array set save {-borderwidth 1 -height 1 -relief 1 -width 1}

>
set site_3_0 $base.framel
namespace eval

::widgets::$site_3_0.1abell {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.1abel2 {
array set save {-disabledforeground 1 -font 1 -text 1}

>

namespace eval ::widgets::$site_3_0.1abel3 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.1abel4 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval ::widgets::$site_3_0.1inel {
array set save {-background 1 -orient 1}

}
namespace eval ::widgets::$site_3_0.1abel5 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.1abel6 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.1abel7 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval :iwidgets::$site_3_0.1abel8 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval ::widgets::$site_3_0.entryl {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.entry2 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.tempi {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.entry3 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1 -validate 1 -validatecommand
1}

>
namespace eval ::widgets::$site_3_0.entry4 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.entry5 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.entry6 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.entry7 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.entry8 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.cpd75 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.cpd77 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.1abel_templ {
array set save {-disabledforeground 1 -font 1 -state 1 -text 1}

}
namespace eval ::widgets::$site_3_0.1abell0 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.entryl0 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

>
namespace eval ::widgets::$site_3_0.1abelll {
array set save {-disabledforeground 1 -font 1 -text 1>

}
namespace eval ::widgets::$site_3_0.entryll {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.cpd73 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval :iwidgets::$site_3_0.cpd74 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.1abell2 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval :iwidgets::$site_3_0.entryl2 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval :iwidgets::$site_3_0.1abell3 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval ::widgets::$site_3_0.cpd78 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

157

namespace aval ::widgets::$site_3_0.1ine2 {
array set save {-background 1}

>
namespace eval ::widgets::$site_3_0.heading2 {

array set save {-disabledforeground 1 -font 1 -text 1}
}

namespace eval ::widgets::$site_3_0.cpd79 {
array set save {-background 1}

}
namespace eval ::widgets::$site_3_0.entryl6 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site„3_0.cpd80 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.cpd81 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.cpd82 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.cpd83 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.cpd84 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.1ine4 {
array set save {-background 1 -orient 1}

>
namespace eval ::widgets::$site_3_0.1abell7 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval ::widgets::$site_3_Q.cpd86 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.cpd87 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.cpd88 {

array set save {-disabledforeground 1 -font 1 -text 1>
>

namespace eval ::widgets::$site_3_0.cpd91 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.cpd93 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.cpd94 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.cpd95 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval ::widgets::$base.buttl {
array set save {-command 1 -disabledforeground 1 -text 1}

}
namespace eval ::widgets::$base.butt2 {
array set save {-command 1 -disabledforeground 1 -text 1}

}
namespace eval ::widgets::$base.heading {
array set save {-disabledforeground 1 -font 1 -text 1}

}
set base .interactive_common_edit
namespace eval ::widgets::$base

{
set set,origin 1
set set,size 1
set runvisible 1

}
namespace eval ::widgets::$base.framel {
array set save {-borderwidth 1 -height 1 -relief 1 -width 1}

}
set site_3_0 Sbase.framel
namespace eval

::widgets::$site_3_0.1abell {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval ::widgets::$site_3_0.1abel2 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.1abel3 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval ::widgets::$site_3_0.1abel4 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.1inel {
array set save {-background 1 -orient 1}

}
namespace eval ::widgets::$site_3_0.1abel5 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.1abel6 {

array set save {-disabledforeground 1 -font 1 -text 1}
}

namespace eval ::widgets::$site_3_0.1abel7 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.1abel8 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.entryl {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

>
namespace eval ::widgets::$site_3_0.entry2 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.tempi {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.entry3 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.entry4 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.entry5 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.entry6 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.entry7 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.entry8 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.cpd75 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

>
namespace eval ::widgets::$site_3_0.cpd77 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.1abel_templ {
array set save {-disabledforeground 1 -font 1 -state 1 •

namespace eval ::widgets::$site_3_0.1abell0 {
array set save {-disabledforeground 1 -font 1 -text 1}

namespace eval ::widgets::$site_3_0.entryl0 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1>

>
namespace eval ::widgets::$site_3_0.1abelll {
array set save {-disabledforeground 1 -font 1 -text 1}

namespace eval ::widgets::$site_3_0.entryll {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.cpd73 {
array set save {-disabledforeground 1 -font 1 -text 1}

namespace eval ::widgets::$site_3_0.cpd74 {
array set save {-disabledforeground 1 -font 1 -text 1}

namespace eval ::widgets::$site_3_0.1abell2 {
array set save {-disabledforeground 1 -font 1 -text 1}

namespace eval ::widgets::$site_3_0.entryl2 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

>
namespace eval ::widgets::$site_3_0.1abell3 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.cpd78 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

>
namespace eval ::widgets::$site_3_0.1ine2 {
array set save {-background 1}

}
namespace eval ::widgets::$site_3_0.heading2 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval ::widgets::$site_3_0.cpd79 {
array set save {-background 1}

}
namespace eval ::widgets::$site_3_0.entryl6 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

-text 1}

158

namespace eval :iwidgets::$site_3„0.cpd80 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval :iwidgets::$site_3_0.cpd81 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval :iwidgets::$site_3_0.cpd82 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.cpd83 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval :iwidgets::$site_3_0.cpd84 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.1ine4 {
array set save {-background 1 -orient 1}

}
namespace eval ::widgets::$site_3_0.1abell7 {
array set save {-disabledforeground i -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.cpd86 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval :iwidgets::$site_3_0.cpd87 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval :iwidgets::$site_3_0.cpd88 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.cpd91 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.cpd93 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval ::widgets::$site_3_0.cpd94 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.cpd95 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval :iwidgets::$base.buttl {
array set save {-command 1 -disabledforeground 1 -text 1>

}
namespace eval ::widgets::$base.butt2 {
array set save {-command 1 -disabledforeground 1 -text 1}

}
namespace eval :rwidgets::$base.heading {
array set save {-disabledforeground 1 -font 1 -text 1}

>
set base .interactive_individual_l
namespace eval ::widgets::$base

{
set set,origin 1
set set,size 1
set runvisible 1

}
namespace eval :iwidgets::$base.framel {
array set save {-borderwidth 1 -height 1 -relief 1 -width 1}

}
set site_3_0 $base.framel
namespace eval

:iwidgets::$site_3_0.label! {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval :iwidgets::$site_3_0.1abel2 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval ::widgets::$site_3_0.1abel3 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval :iwidgets::$site_3_0.1abel4 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval :iwidgets::$site_3_0.1inel {
array set save {-background 1 -orient 1}

}
namespace eval ::widgets::$site_3_0.1abel5 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval :iwidgets::$site_3_0.1abel6 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval :iwidgets::$site_3_0.1abel7 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval :iwidgets::$site_3_0.labels {
array set save {-disabledforeground i -font 1 -text 1}

}
namespace eval :iwidgets::$site_3_0.entryl {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval :iwidgets::$site_3_0.entry2 {
array set save {-background 1 -disabledforeground 1

-insertbackground 1 -textvariable 1}
>

namespace eval :iwidgets::$site_3_0.entry3 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1 -validate 1}

}
namespace eval :iwidgets::$site„3_0.entry4 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1>

}
namespace eval :iwidgets::$site_3_0.entry5 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval :iwidgets::$site_3_0.entry6 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval :iwidgets::$site_3_0.entry7 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1 -validate 1 -validatecommand
1}

}
namespace eval :iwidgets::$site_3_0.entry8 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
name
array

ispace eval ::widgets::$site_3_0.cpd75 {
• set save {-background 1 -disabledforeg sabledforeground 1

-vali dat ec ommand

-text 1}

Lnsertbackground 1 -textvariable 1}
>

namespace eval :iwidgets::$site_3_0.cpd77 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval :iwidgets:i$site_3_0.1abell0 {
array set save {-disabledforeground 1 -font 1 -state 1 -text 1}

>
namespace eval :iwidgets::$site_3_0.entry!0 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1}

>
namespace eval ::widgets::$site_3_0.1abelll {
array set save {-disabledforeground 1 -font 1 -text 1}

namespace eval :iwidgets::$site_3_0.entryll {
array set save {-background 1 -disabledforeground t
-insertbackground 1 -textvariable 1 -validate 1 -v;
1}

>
namespace eval ::widgets::$site_3-0.cpd73 {
array set save {-disabledforeground 1 -font 1 -t

namespace eval :iwidgets::$site_3_0.cpd74 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval ::widgets::$site_3_0.1abell2 {
array set save {-disabledforeground 1 -font 1 -text 1}

namespace eval ::widgets::$site_3_0.entryl2 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.1abell3 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval ::widgets::$site_3_0.cpd78 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval :iwidgets::$site_3_0.entryl6 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

}
namespace eval :iwidgets::$site_3_0.cpd80 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

>
namespace eval ::widgets::$site_3_0.1abel!7 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.cpd86 {
array set save {-disabledforeground 1 -font 1 -text 1}

namespace eval ::widgets::$site_3_0.cpd85 {
array set save {-disabledforeground 1 -font 1 -state 1 -text 1}

}
namespace eval ::widgets::$site_3_0.cpd79 {
array set save {-disabledforeground 1 -font 1 -text 1}

namespace eval :iwidgets::$site_3_0.checkl {
array set save {-_tooltip 1 -disabledforeground 1 -text 1
-variable 1>

}
namespace eval ::widgets::$site_3_0.cpd76 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1}

>
namespace eval ::widgets::$site_3_0.entryl8 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -textvariable 1}

159

namespace eval ::widgets::$site_3_0.cpd90 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval :rwidgets::$base.buttl {
array set save {-command 1 -disabledforeground 1 -text 1}

}
namespace eval ::widgets:r$base.butt2 {
array set save -C-command 1 -disabledforeground 1 -text 1}

}
namespace eval rrwidgets::Sbase.heading {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$base.cpd73 {
array set save {-background 1 -foreground 1 -height 1 -maximum
1 -relief 1 -troughcolor 1 -variable 1>

>
namespace eval :rwidgets::$base.cpd74 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -relief 1 -state 1 -textvariable 1}

>
set base .interactive_individual_l_edit
namespace eval

::widgets::$base {
set set,origin 1
set set,size 1
set runvisible 1

}
namespace eval ::widgets::$base.framel {
array set save {-borderwidth 1 -height 1 -relief 1 -width 1}

}
set site_3_0 Sbase.framel
namespace eval

::widgets::$site_3_0.1abell {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.1abel2 {
array set save {-disabledforeground i -font 1 -text 1}

>
namespace eval :rwidgets::$site_3_0.1abel3 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval :rwidgets::$site_3_0.1abel4 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval ::widgets::$site_3_0.1inel {
array set save {-background 1 -orient 1}

>
namespace eval ::widgets::$site_3_0.1abel5 {
array set save {-disabledforeground i -font 1 -text 1}

>
namespace eval :rwidgets::$site_3_0.1abel6 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.1abel7 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval ::widgets::$site_3_0.1abel8 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval ::widgets::$site_3_0.entryl {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1}

>
namespace eval ::widgets::$site_3_0.entry2 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.entry3 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1 -validate 1}

}
namespace eval ::widgets::$site_3_0.entry4 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.entry5 {
array set save {-background 1 -disabledforeground 1
-insertbackground i -state 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.entry6 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1}

>
namespace eval ::widgets::$site_3_0.entry7 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1 -validate 1
-validatecommand 1}

>
namespace eval :rwidgets::$site_3_0.entry8 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1}

}
namespace eval :rwidgets:r$site_3_0.cpd75 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1}

}
namespace eval :rwidgets::$site_3_0.cpd77 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1}

}
namespace eval rrwidgets::$site_3_0.1abell0 {
array set save {-disabledforeground 1 -font 1 -state 1 -text 1}

namespace eval :rwidgets:r$site_3_0.entryl0 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1}

}
namespace eval :rwidgets::$site_3_0.1abelll {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval :rwidgets::$site_3_0.entryll {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1 -validate 1
-validatecommand 1}

}
namespace eval :rwidgetsr:$site_3_0.cpd73 {
array set save {-disabledforeground 1 -font 1 -text 1}

namespace eval :rwidgets::$site_3_0.cpd74 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval :rwidgetsrr$site_3_0.1abell2 {
array set save {-disabledforeground 1 -font 1 -text 1}

namespace eval ::widgets::$site_3_0.entry!2 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1}

>
namespace eval :rwidgetsrr$site_3_0.1abell3 {
array set save {-disabledforeground 1 -font 1 -text 1}

namespace eval rrwidgetsr:$site_3_0.cpd78 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1}

>
namespace eval rrwidgets::$site_3_0.entryl6 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1}

>
namespace eval ::widgets::$site_3_0.cpd80 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1}

}
namespace eval ::widgets::$site_3_0.1abell7 {
array set save {-disabledforeground 1 -font 1 -text 1}

>
namespace eval rrwidgets::$site_3_0.cpd86 {
array set save {-disabledforeground 1 -font 1 -text 1}

namespace eval :rwidgets::$site_3_0.cpd76 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1}

>
namespace eval :rwidgets::$site_3_0.cpd85 {
array set save {-disabledforeground 1 -font 1 -state 1 -text 1}

}
namespace eval rrwidgets::$site_3_0.cpd79 {
array set save {-disabledforeground 1 -font 1 -text 1}

}
namespace eval :rwidgetsr:$site_3_0.checkl {
array set save {-.tooltip 1 -disabledforeground 1 -state 1 -text
1 -variable 1}

>
namespace eval ::widgets::$site_3_0.entryl8 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -state 1 -textvariable 1}

>
namespace eval ::widgets::$site_3_0.cpd91 {
array set save {-disabledforeground 1 -font 1 -text 1>

namespace eval ::widgets:;$base.butt1 {
array set save {-command 1 -disabledforeground 1 -text 1
-textvariable 1}

}
namespace eval rrwidgets::$base.butt2 {
array set save {-command 1 -disabledforeground 1 -text 1>

}
namespace eval rrwidgets::$base.heading {
array set save {-disabledforeground 1 -font 1 -text 1}

namespace eval rrwidgetsrr$base.cpd73 {
array set save {-background 1 -foreground 1 -height 1 -maximum
1 -relief 1 -troughcolor 1 -variable 1}

}
namespace eval :rwidgets:r$base.cpd74 {
array set save {-background 1 -disabledforeground 1
-insertbackground 1 -relief 1 -state 1 -textvariable 1}

}
namespace eval :rwidgets::$base.butt3 {
array set save {-command 1 -disabledforeground 1 -state 1 -text
1}

}
set base .interactive_process
namespace eval :rwidgets::$base {
set set,origin 1
set set,size 1
set runvisible 1

}
namespace eval ::widgets::$base.canvasl {
array set save {-borderwidth 1 -closeenough 1 -height
1 -insertbackground 1 -relief 1 -selectbackground 1
-selectforeground 1 -width 1}

}
namespace eval ::widgets::$base.buttl {

160

array set save {-command 1 -disabledforeground 1 -text
>

set base .interactive_process_edit
namespace eval ::widgets::$base

{
set set,origin 1
set set.size 1
set runvisible 1

>
namespace eval ::uidgets::$base.canvasl {
array set save {-borderwidth 1 -closeenough 1 -height
1 -insertbackground 1 -relief 1 -selectbackground 1
-selectforeground 1 -width 1}

>
namespace eval :widgets::$base.buttl {

-disabledforeground 1 -text array set save {-command
>

set base .results_display
namespace eval ::widgets::$base {
set set,origin 1
set set,size 1
set runvisible 1

>
namespace eval ::widgets::$base.canvasl {
array set save {-borderwidth 1 -closeenough 1 -height
1 -insertbackground 1 -relief 1 -selectbackground 1
-selectforeground 1 -width 1}

>
namespace eval ::widgets::$base.labell {
array set save {-disabledforeground 1 -font 1 -relief 1 -text 1}

}
namespace eval ::widgets::$base.buttl {
array set save {-command 1 -disabledforeground 1 -text 1}

}
namespace eval ::widgets::$base.butt2 {
array set save {-command 1 -disabledforeground 1 -text 1}

}
set base .wait

namespace eval ::widgets::$base {
set set,origin 1
set set,size 1
set runvisible 1

}
namespace eval ::widgets::$base.canvasl {
array set save {-borderwidth 1 -closeenough 1 -height
1 -highlightthickness 1 -insertbackground 1 -relief 1
-selectbackground 1 -selectforeground 1 -width 1}

}
namespace eval ::widgets_bindings {
set tagslist { TopLevel vTclBalloon}

}
namespace eval ::vTcl::modules::main {
set procs {

init
main

}
set compounds {

>
set projectType single

}
}
>
proc ::main {argc argv} {
wm withdraw .command.file
wm
withdraw .interactive.common
wm withdraw .interactive_individual_l
wm
withdraw .interactive.process
wm withdraw .design.choice
wm withdraw
.interactive_common_edit
wm withdraw .interactive_individual_l_edit
wm withdraw .results_display
wm withdraw .wait
set no modules 0
>

proc ::init {argc argv} {
}
init $argc $argv
proc vTclWindow. {base} {

if {$base == ""} {
set base .

}
wm focusmodel $top passive
wm geometry $top lxl+0+0; update
wm

maxsize $top 1265 994
wm minsize Stop 1 1
wm overrideredirect $top

0

if {$base == ""} {
set base .command_file

}
if {[winfo exists $base]> {

wm deiconify $base; return
}

set top $base
vTcl:toplevel $top -class Toplevel \
-relief raised -highlightcolor black

wm withdraw $top
wm focusmodel Stop passive
wm geometry Stop

616x172+303+540; update
wm maxsize Stop 1265 994
wm minsize Stop

1 1
wm overrideredirect Stop 0
wm resizable Stop 0 0
wm title

Stop "Command file entry"
vTcl:DefineAlias "Stop" "Toplevel2"

vTcl:Toplevel:WidgetProc "" 1
bindtags Stop "Stop Toplevel all

_TopLevel"
vTcl:FireEvent Stop «Create»
wm protocol Stop

WM.DELETELWINDOW "vTcl:FireEvent Stop «DeleteWindow»"
button

Stop.buttl \
\
-command {wm withdraw .command_file
set edit_design_choices [tk_messageBox -title "EIDA question" -message
"Edit design choices?" -type yesno -icon question]
if {[string equal

$edit_design_choices "yes"]} {
catch {exec more $cmd_filename I grep
".mods_des" I wc -1} no_modules
puts "Modules read Sno.modules"
set x

0
set new_cmd_filename $cmd_filename
set vdd_bump_for_cmd_file_run 1

set vdd_applied 0
set vary_vdd 0
set use_dual_vt 0
set use_abb 0
set

use.st 0
catch {exec \.V/scripts/clear_design_choices.pl $cmd_filename
} junk
wm deiconify .design.choice
} else {
wm deiconify .wait
catch
{exec \.\./scripts/eida.pl $cmd_filename} junkl
wm withdraw .wait
set

result_ext ".module.results"
set cmd_filenamel $cmd_filename
append
cmd_filenamel $result_ext
catch {exec more $cmd_filenarael} results
wm
deiconify .results.display
set sw [text .resuits_display.canvas1.sw

-wrap char -height 20]
pack $sw -fill both -expand 1
$sw insert end
Sresults
>} \
-disabledforeground #alalal -text {Execute command file}

vTcl:DefineAlias "Stop.buttl" "Buttonl" vTclrWidgetProc "Toplevel2"

labelframe Stop.framel \
-font [vTcl:font:getFontFromDescr ' -family helvetica -size 12"]

wm resizable Stop 1 1
wm withdraw Stop
wm title Stop "vtcl.tcl"

bindtags Stop "Stop Vtcl.tcl all"
vTcl:FireEvent Stop «Create»

vTcl: FireEvent Sbase « R e a d y »
}
proc vTclWindow.command.file {base} {

-foreground black -text {Module descriptors} -highlightcolor
black

vTcl:DefineAlias "Stop.framel" "Labelframel" vTcl:WidgetProc
"Toplevel2" 1

set site_3_0 Stop.framel
entry $site_3_0.entryl \
-background white -disabledforeground #alalal \
-font
[vTcl:font:getFontFromDescr "-family helvetica -size 12"] \

-insertbackground black -textvariable cmd_filename
vTcl:DefineAlias "$site_3_0.entryl" "Entryl" vTcl:WidgetProc
"Toplevel2" 1

button Ssite 3 O.butt choose file \
\

command {wm withdraw .command_file
set types {

{{Command Files} {.cmd} }
{{All Files} *

}
}

protocol Stop WM_DELETE_WIND0W "vTcl:FireEvent Stop «DeleteWindow»"
set cmd_filename ""
while {[string equal $cmd_filename ""]} {
set

cmd_filename [tk.getOpenFile -filetypes Stypes -initialdir ./ -initialfile

161

command file -title "Choose command file"]
}
wm deiconify .command file}
\
-disabledforeground #alalal -text Browse

vTcl:DefineAlias "$site_3_0.butt_choose_file" "Button2"
vTcl:WidgetProc "Toplevel2" 1

place $site_3_0.entryl \
-in $site_3.0 -x 30 -y 60 -width 428 -height 25 -anchor nw \

-bordermode ignore
place $site_3_0.butt_choose_file \

-in $site_3_0 -x 483 -y 58 -width 76 -height 28 -anchor nw \

-bordermode ignore
label Stop.labell \

-disabledforeground tfalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Descriptor file path}

vTcl:DefineAlias "$top.labell
1

place $top.buttl \
-in $top -x 230 -y 135 -width 161 -height 28 -anchor nw \

$no.modules
append msg module descriptor verctors expected"

-type ok tk_messageBox -title "Confirm # modules"
$msg -icon info
set x 0
set y [expr C$x/$no.modules) * 100]
set

module_entry_precentage $y
set module_entry_step "Descriptor vector

entry step"} \
-disabledforeground tfalalal -foreground black -highlightcolor
black \
-state disabled -text {Set # modules}

vTcl:DefineAlias "$top.canvas.butt.set.blocks" "Buttonl"
vTcl:WidgetProc "Toplevell" 1

button Stop.canvas.butt_unset.modules

-bordermode ignore
place $top.framei \

-in $top -x 15 -y 20 -width 586 -height 101 -anchor nw \

-bordermode ignore
place Stop.labell \

-in Stop -x 30 -y 50 • width 144 -height 20 -anchor nw \

-bordermode ignore
vTcl:FireEvent $base «Ready»

}
proc vTclHindow.control {base} {

if {$base == ""} {
set base .control

}
if {[winfo exists $base]} {

wm deiconify Sbase; return
}

set top Sbase

vTcl:toplevel Stop -class Toplevel \
-relief groove -highlightcolor black

wm focusmodel Stop passive
wm geometry $top 605x355+264+167; update

wm maxsize Stop 1265 994
wm minsize Stop 1 1
wm overrideredirect

Stop 0
wm resizable Stop 0 0
wm deiconify Stop
wm title Stop "EIDA

control"
vTcl:DefineAlias "Stop" "Toplevell" vTcl:Toplevel:¥idgetProc

"" 1
bindtags Stop "Stop Toplevel all .TopLevel"
vTcl:FireEvent

Stop «Create»
wm protocol Stop WM_DELETE_WIND0W "vTcl:FireEvent

Stop «DeleteWindow»"
canvas Stop.canvas \
-borderwidth 2 -closeenough 1.0 -height 87 -insertbackground black

-activebackground #f6f7f6 -activeforeground black \
-command

"Labell" vTcl:WidgetProc "Toplevel2f. control, canvas, entryl config -state normal
set .control::entryl 0
.control.canvas.butt_unset.modules config -state

disabled
.control.canvas.butt_set.blocks config -state normal} \

-disabledforeground #alalal -foreground black -highlightcolor
black \
-state disabled -text {Unset # modules}

vTcl:DefineAlias "Stop.canvas.butt_unset.modules" "Button4"
vTcl:WidgetProc "Toplevell" 1

Separator Stop.canvas.Iine2 \
-background #d6cdbb

vTcl:DefineAlias "Stop.canvas.Iine2" "Separator2" vTcl:WidgetProc
"Toplevell" 1

bind Stop.canvas.line2 <Destroy> {
Widget::destroy %W; rename %W {}

}
label Stop.labell \
-disabledforeground ftalalal \

-font [vTcl:font:getFontFromDescr
"-family lucida -size 18"3 \
-text {Early Integrated circuit

Design Assist}
vTcl:DefineAlias "Stop.labell" "Labell" vTcl:WidgetProc "Toplevell"
1

button $top.cpd80 \
-activebackground #f6f7f6 -activeforeground black \
-command
{#puts $tcl_pkgPath
catch {exec rm -f tmp_cmd_filename} junk3
catch {exec rm -f

temp_crad_file} junk3
catch {exec rm -f abb_spice_run_junk} junk3
exit}

\

-relief groove -selectbackground #clc2cl -selectforeground
black \
-width 575

vTcl:DefineAlias "Stop.canvas" "Canvasl" vTcl:WidgetProc
1

entry Stop.canvas.entryl \
-background white -disabledforeground #alalal -foreground black \
-highlightcolor black -insertbackground black \
-selectbackground

#clc2cl -selectforeground black \
-textvariable no_modules
-validate key \
-validatecommand {.control.canvas.butt.set.blocks
config -state normal
.control.canvas_run_type.butt_run_typel config -state normal
return 1}

vTcl:DefineAlias "Stop.canvas.entryl" "Entryl" vTcl:WidgetProc
"Toplevell" 1

label Stop.canvas.label.no_of.modules \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black \
-text {Number of modules in design}

vTcl:DeiineAli as "$top.canvas.label_no_of.modules" "Label3"
vTcl:WidgetProc "Toplevell" 1

button Stop.canvas.butt_set_blocks \
-activebackground #f6f7f6 -activeforeground black \
-command

{.control.canvas.entryl config -state disabled
.control.canvas.butt_unset_modules config -state normal
.control.canvas.butt.set.blocks config -state disabled
set msg

-disabledforeground ftalalal -text Exit
vTcl:DefineAlias "Stop.cpdSO" "Button6" vTcl:WidgetProc "Toplevell"
1

canvas $top.canvas_run_type \
-borderwidth 2 -closeenough 1.0 -height 97 -insertbackground
black \
-relief ridge -selectbackground #clc2cl -selectforeground

black \
-width 575

vTcl:DefineAlias "$top.canvas_run_typen "Canvas2" vTcl:WidgetProc
"Toplevell" 1

label $top.canvas_run.type.label_run_type \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr

Toplevell-1!amily helvetica -size 12"] \
-foreground black -highlightcolor

black -text {Choose run type}
vTcl:DefineAlias "Stop.canvas_run_type.label_run_type"
"Label5" vTcl:WidgetProc "Toplevell" 1

label
$top.canvas_run_type.lable_run_typel \

-activebackground #f6f7f6 -activeforeground black \
-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black \
-text {Interactive descriptor vector entry run}

vTcl:DefineAlias "$top.canvas_run.type.lable_run_typel"
"Label6" vTclrWidgetProc "Toplevell" 1

label
Stop.canvas_run.type.label.run_type2 \

-activebackground 8f6f7f6 -activeforeground black \
-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black \
-text {Preformated commad file run}

vTcl:DefineAlias "Stop.canvas_run_type.Iabel_run_type2"
"Label7" vTcl:WidgetProc "Toplevell" 1

button
Stop.canvas_run_type.butt_run_typel \

-activebackground #f6f7f6 -activeforeground black \
-command
{#puts "excuting scripts"

162

http://label.no

wm withdraw .control
set vdd_spec 0
set eta 0.95
set vdd_bump 0

set l_min 0
set s_gate_cap 0
set s_wire_cap 0
set s_width 0
set

c_unit_old 0
set i_ds_old 0
set c_unit_new 0
set i_ds_new 0
set rpsf

0
set rcsf 0
set sf 0

set decap_sens 0
set nadsp 0
set i_leak_junc

0
set i_leak_gate 0
set i_gate_per_v 0
set i_othv 0
set i_owhv 0

set i_otlv 0
set i_owlv 0

wm deiconify .interactive_common} \
-disabledforeground tfalalal -foreground black -highlight col or
black \
-state disabled -text {Interactive run}

vTcl:DefineAlias "Stop.canvas_run_type.butt_run_typel"
"Button9" vTcl:WidgetProc "Toplevell" 1

button
$top.canvas_run_type.butt_run_type2 \

-activebackground #f6f7f6 -activeforeground black \
-command

{wm withdraw .control
win deiconify .command.file} \
-disabledforeground tfalalal -foreground black -highlightcolor
black \
-text {Command file run}

vTcl:DefineAlias "$top.canvas_run_type.butt_run_type2" "Butti
vTcl:WidgetProc "Toplevell" 1

Separator $top.canvas_run_type.linel \
-background #d6cdbb

vTcl:DefineAlias "$top.canvas_run_type.linel" "Separatorl"
vTcl:WidgetProc "Toplevell" 1

bind $top.canvas_run_type.linel
<Destroy> {

Widget:: destroy */,W; rename %W {}
}

canvas $top.canvas3 \
-borderwidth 2 -closeenough 1.0 -height 87 - insertbackground
black \

-relief ridge -selectbackground #clc2cl -selectforeground
black \
-width 575

vTcl:DefineAlias M$top.canvas3H "Canvas3" vTcl:WidgetProc "T<
1

label $top.canvas3.labels \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground tfalalal \
-font [vTcl:font:getFontFromDes cr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black \
-text {Edit existing module description}

vTcl:DefineAlias " Stop.canvas3.labels" "Label2" vTcl:WidgetProc
"Toplevell" 1

entry $top.canvas3.entry2 \
-background white -disabledforeground tfalalal -foreground
black \
-highlightcolor black -insertbackground black \
-selectbackground #clc2cl -selectforeground black \
-textvariable

cmd_file_to_edit
vTcl:DefineAlias "$top.canvas3.entry2" "Entry2" vTcl:WidgetProc
"Toplevell" 1

button $top.canvas3.butt5 \
-activebackground 8f6f7f6 -activeforeground black \
-command

{set types {
{{Command Files} {.and} }

{{All Files} *
}

}

set cmd_file_to_edit ""
while {[string equal $cmd_file_to_edit ""]} {

set cmd_file_to_edit [tk_getOpenFile -filetypes Stypes -initialdir
./ -initialfile command file -title "Choose command file"]

}
.control.canvas3.butt5 config -state disabled
.control.canvas3.butt6

config -state normal} \
-disabledforeground tfalalal -foreground black -highlightcolor
black \
-text Choose

vTcl:DefineAlias "Stop.canvas3.butt5" "Button7" vTcl:WidgetProc

"Toplevell" 1
button $top.canvas3.butt6 \
-activebackground #f6f7f6 ^activeforeground black \
-command
{catch {exec more $cmd_file_to_edit I grep ".com_des" I wc -1}
re ad_ common_de s
catch {exec more $cmd_file_to_edit I grep ".pro_des" I wc -1}
read_process_des
catch {exec more $cmd_file_to_edit I grep
".mods_des" t wc -1} read_modules_des
tk_messageBox -title
"Command file details" -type ok -message "$read_common_des -
common module description,\n$read_process_des - process description
and\n$read_module5_des - module description detected in command file"
-icon info
catch {exec more $cmd_file_to_edit I grep ".com.des"}

read_common_des
set tt [split $read_common_des " "]
set vdd_spec
[lindex $tt 1]
set eta [lindex $tt 2]
set vdd_bump [expr [lindex $tt
1] * [lindex $tt 2]]
set l_min [lindex $tt 3]
set s_gate_cap [lindex

$tt 4]
set s_wire_cap [lindex $tt 5]
set s_width [lindex $tt 6]
set

c_unit_old [lindex $tt 7]
set i_ds_old [lindex $tt 8]
set c_unit_new
[lindex $tt 9]
set i_ds_new [lindex $tt 10]
set rpsf [lindex $tt 11]
set rcsf [lindex $tt 12]
set sf [lindex $tt 13]
set decap sens [lindex

$tt 14]
set i_leak_junc [lindex $tt 15]
set i_leak_gate [lindex $tt 16]

set i_gate_per_w [lindex $tt 17]
LIO" set i_othv [lindex $tt 18]

set i_owhv
[lindex $tt 19]
set i.otlv [lindex $tt 20]
set i owlv [lindex $tt 21]

wm deiconify .interactive_common_edit
.control.canvas3.butt6 config

-state disabled
.control.canvas3.butt5 config -state normal
wm withdraw
.control} \
-disabledforeground tfalalal -foreground black -highlightcolor
black \
-state disabled -text Edit

vTcl:DefineAlias "$top.canvas3.butt6" "Button8" vTcl:WidgetProc
ell" "Toplevell" 1
Separator $top.canvas3.cpd75 \
-background #d6cdbb

vTcl:DefineAlias "$top.canvas3.cpd75" "Separator3" vTcl:WidgetProc
"Toplevell" 1

bind $top.canvas3.cpd75 <Destroy> {
Widget::destroy 7.W; rename '/,W {}

}
place $top.canvas \
-in $top -x 15 -y 40 -width 575 -height 87 -anchor nw \

set i_gate_per_w [lindex $tt 17]
set i_othv [lindex $tt 18]
set i_owhv
[lindex $tt 19]
set i.otlv [lindex $tt 20]
set i_owlv [lindex $tt 21]

wm deiconify .interactive_common_edit
.control.canvas3.butt6 config

-state disabled
.control.canvas3.butt5 config -state normal
wm withdraw
.control} \

-disabledforeground tfalalal -foreground black -highlightcolor
black \
-state disabled -text Edit

vTcl:DefineAlias "$top.canvas3.butt6" "Button8" vTcl:WidgetProc
ell" "Toplevell" 1
Separator $top.canvas3. cpd75 \
-background #d6cdbb

vTcl:DefineAlias "$top.canvas3.cpd75" "Separator3" vTcl:WidgetProc
"Toplevell" 1

bind $top.canvas3.cpd75 <Destroy> {
Widget::destroy 7.W; rename '/,W {}

}
place $top.canvas \
-in $top -x 15 -y 40 -width 575 -height 87 -anchor nw \

-bordermode ignore
place Stop.canvas.entryl \

-in Stop.canvas -x 145 -y 45 -width 83 -height 25 -anchor nw \

-bordermode ignore
place Stop.canvas.label_no_of.modules \

-in Stop.canvas -x 7 -y 3 -width 218 -height 24 -anchor nw \

-bordermode ignore
place Stop.canvas.butt_set_blocks \

-in Stop.canvas -x 285 -y 45 -width 101 -height 28 -anchor nw \

-bordermode ignore
place Stop.canvas.butt_unset.modules \

-in Stop.canvas -x 416 -y 45 -width 130 -height 28 -anchor nw \

-bordermode ignore
place Stop.canvas.Iine2 \

-in Stop.canvas -x 400 -y 42 -width 2 -height 37 -anchor nw \

-bordermode ignore
place $top.labell \

-in Stop -x 70 -y 0 -anchor nw -bordermode ignore
place $top.cpd80 \

-in Stop -x 260 -y 320 -anchor nw -bordermode inside
place $top.canvas_run_type \

-in Stop -x 15 -y 130 -width 575 -height 97 -anchor nw \

-bordermode ignore
place $top.canvas_run_type.label_run_type \

-in $top.canvas_run_type -X 5 -y 3 -width 126 -height 24 -anchor
nw \

163

-bordermode ignore
place $top.canvas_run_type.lable_run_typel \

-in $top.canvas_run_type -x 110 -y 24 -width 273 -height 24 \

-anchor nw -bordermode ignore
place $top.canvas_run_type.label_run_type2 \

-in $top.canvas_run_type -x 112 -y 59 -width 217 -height 24 \

-anchor nw -bordermode ignore
place Stop.canvas_run_type.butt_run_typel \

-in $top.canvas_mn_type -x 385 -y 23 -width 133 -height 28 \

-anchor nw -bordermode ignore
place $top.canvas_run_type.butt_run_type2 \

-in $top.canvas_run_type -x 385 -y 59 -width 133 -height 28 \

-anchor nw -bordermode ignore
place $top.canvas_run_type.linel \

-in $top.canvas_run_type -x 365 -y 54 -width 171 -height 2
-anchor nw \
-bordermode ignore

place $top.canvas3 \
-in $top -x 15 -y 230 -width 575 -height 87 -anchor nw \

-bordermode ignore
place $top.canvas3.1abe!8 \

-in $top.canvas3 -x 5 -y 5 -width 234 -height 24 -anchor nw \

-bordermode ignore
place $top.canvas3.entry2 \

-in $top.canvas3 -x 85 -y 35 -width 298 -height 25 -anchor nw \

-bordermode ignore
place $top.canvas3.butt5 \

-in $top.canvas3 -x 400 -y 30 -width 73 -height 28 -anchor nw \

-bordermode ignore
place $top.canvas3.butt6 \

-in $top.canvas3 -x 504 -y 30 -width 53 -height 28 -anchor nw \

-bordermode ignore
place $top.canvas3.cpd75 \

-in $top.canvas3 -x 490 -y 33 -width 2 -height 27 -anchor nw \

-bordermode ignore
vTcl:FireEvent $base «Ready»

}
proc vTclWindow.design_choice {base} {

if <$base == ""} {
set base ,design_choice

}
if {[winfo exists $base]} {

wm deiconify $base; return

}
set top $base
vTcl:toplevel Stop -class Toplevel \
-highlightcolor black

wm withdraw $top
wm focusmodel $top passive
wm geometry $top

609x378+231+378; update
wm maxsize $top 1265 994
wm rainsize

$top 1 1
wm overrideredirect $top 0
wm resizable $top 0 0
wm

title Stop "Design choices"
vTcl:DefineAlias "Stop" "Toplevel6"

vTcl:Toplevel:WidgetProc "" 1
bindtags Stop "Stop Toplevel all

_TopLevel"
vTcl:FireEvent $top «Create»
wm protocol Stop

WM_DELETE_WINDOW "vTclrFireEvent Stop «DeleteWindow»M

button
Stop.buttl \

-command [list vTcl:DoCmd0ption Stop.buttl {incr x
set new_cmd_file_id [open $new_cmd_iilename a]
puts $new_cmd_iile_id
".mods.choices $x $vary_vdd $vdd_applied $use_dual_vt Suse.abb
$use_abb_fb $use_abb_rb $use_st\n"
close $new_cmd_file_id
set

vdd_applied $vdd_bump
if {$vdd_bump_for_cmd_file_run == 1} {
set

vdd^applied 0
}
set vary_vdd 0
.design_choice.canvas1.entryl config

-state disabled
set use_dual_vt 0
set use_abb 0
set use_abb_fb 0
set

use_abb_rb 0
set use_st 0
if {$x<[expr $no_modules + 1]} {
set al

[expr 0.01/$x]

set bl [expr 0.01/$no.modules]
set b [expr {$bl/$al}

* 100]
set module_design_precentage $b
se t module_design_step "$x

out of $no modules entered"
}
if {$x == $no_modules} {
wm withdraw
-design_choice
tk_messageBox -title "EIDA information" -type ok -message
"Ready for What-if analysis" -icon info
wm deiconify .wait
catch

{exec \.\./scripts/eida.pl $cmd_filename} junkl
wm withdraw .wait
set

result.ext ".module.results"
set cmd_filenamel $cmd_filename
append
cind_filenamel $result_ext
catch {exec more $cmd_filenamel> results
wm

deiconify .results_display
set sw [text .resuits_display.canvas1.sw

-wrap char -height 20]
pack $sw -fill both -expand 1
$sw insert end
Sresults
}>] \
-disabledforeground #alalal -text {Save and proceed}

vTcl:DefineAlias "Stop.buttl" "Buttonl" vTcl:WidgetProc "Toplevel6"
1

ProgressBar $top.cpd82 \
-background #d6cdbb -foreground #000099 -height 15 -maximum
100 \
-relief raised -troughcolor #d9d9d9 \
-variable

module_design_precentage
vTcl:DefineAlias "$top.cpd82" "ProgressBarl" vTcliWidgetProc
"Toplevel6" 1

entry $top.cpd83 \
-background white -disabledforeground #alalal -insertbackground
black \
-relief groove -state readonly -textvariable

module_design_step
vTcl:DefineAlias "Stop.cpd83" "Entry3" vTcl:WidgetProc "Toplevel6"
1

canvas Stop.canvasl \
-borderwidth 2 -closeenough 1.0 -height 277 -insertbackground
black \
-relief ridge -selectbackground #clc2cl -selectforeground

black \
-width 590

vTcl:DefineAlias "Stop.canvasl" "Canvasl" vTcl:WidgetProc "Toplevel6"
1

label Stop.canvasl.labell \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black -text {Vary Vdd ?}
vTclrDefineAlias "Stop.canvasl.labell" "Label2" vTcl:WidgetProc
"Toplevel6" 1

checbbutton Stop.canvasl.checkl \
-activebackground #f6f7f6 -activeforeground black \
—command

{if {Svary.vdd == 1} {
.design,choice.canvasl.entryl config -state normal

.design_choice.canvasl.labella config -state normal
}

else {
.design.choice.canvasl.entryl config -state disabled
.design.choice.canvasl.labella config -state disabled
}} \

-disabledforeground #alalal -foreground black -highlightcolor
black \
-text {YES / NO} -variable vary_vdd

vTcl:DefineAlias "Stop.canvasl.checkl" "Checkbuttonl" vTcl:WidgetProc
"Toplevel6" 1

label Stop.canvasl.labella \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black -state disabled \
-text {Enter applied Vdd (V)}

vTclrDefineAlias "Stop.canvasl-labella" "Label3" vTcl:WidgetProc
"Toplevel6H 1

entry Stop.canvasl.entryl \
-background white -disabledforeground Salalal -foreground black \
-highlightcolor black -insertbackground black \
-selectbackground

#clc2cl -selectforeground black -state disabled \
-textvariable

vdd_applied
vTclrDefineAlias "Stop.canvasl.entryl" "Entryl" vTcl:WidgetProc
"Toplevel6" 1

label Stop.canvasl.Iabel2 \

164

"-family helvetica -size 12"] \
-text {Select design recipe

applied to module}
vTcl:DefineAlias "$top.title"

-activebackground #f6f7f6 -activeforeground black \
-disabledforeground #alaial \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black -text {Use Dual-Vt FETs ?}
vTcl:DefineAlias "Stop.canvasl.label2" "Label4" vTcl:WidgetProc
"Toplevel6" 1

checkbutton $top.canvasl.check2 \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground Salalal -foreground black -highlightcolor
black \
-text {YES / NO} -variable use_dual_vt

vTcl:DefineAlias "$top.canvasl.check2" "Checkbutton2" vTcl:WidgetProc
"Toplevel6" 1 -bordermode ignore

label $top.canvasl.Iabel3 \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground ffalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black -text {Use ABB ?}

vTcl:DefineAlias "$top.canvasl.label3" "Label5" vTcl:WidgetProc
"Toplevel6" 1

checkbutton $top.canvasl.check3 \
-activebackground #f6f7f6 -activeforeground black \
-command
{if {$use_abb == 1} {
.design,choice,canvasl,check3a config -state normal

'Labell" vTcl:WidgetProc "Toplevel6"

place $top.buttl \
-in $top -x 240 -y 340 -anchor nw -bordermode ignore

place $top.cpd82 \
-in $top -x 355 -y 5 -width 245 -height 15 -anchor nw \

-bordermode inside
place $top.cpd83 \

-in $top -x 358 -y 25 -width 243 •height 22 -anchor nw \

place Stop.canvasl \
-in Stop -x 9 -y 55 -width 590 -height 277 -anchor nw \

-bordermode ignore
place Stop.canvasl.labell \

-in Stop.canvasl -x 9 -y 15 -width 87 -height 24 -anchor nw \

.design choice.canvasl.check3b config -state normal
}

else {
.design_choice.canvasl.check3a config -state disabled
.design.choice.canvasl.check3b config -state disabled
set use_abb_fb

-bordermode ignore
place Stop.canvasl.checkl \

-in Stop.canvasl -x 115 -y 15 -anchor nw -bordermode ignore
place Stop.canvasl.labella \

-in Stop.canvasl -x 225 -y 15 -anchor nw -bordermode ignore
place Stop.canvasl.entryl \

-in Stop.canvasl -x 405 -y 15 -anchor nw -bordermode ignore
place Stop.canvasl.Iabel2 \

-in Stop.canvasl -x 8 -y 50 -width 152 -height 24 -anchor nw \

set use_abb_rb 0
}} \

-disabledforeground #alalal -foreground black -highlightcolor
black \
-text {YES / NO} -variable use.abb

vTcl:DefineAlias "Stop.canvasl.check3" "Checkbutton3
"Toplevel6" 1

checkbutton Stop.canvasl.check3a \
-activebackground #f6f7f6 -activeforeground black \
-command
{if {$use_abb_fb == 1} {
.design.choice.canvasl.check3b config -state disabled
set use_abb_rb

0
.design,choice.canvasl.check3a config -state normal
} else {
.design,choice.canvasl.check3a config -state disabled
set use_abb_fb

0
.design choice.canvasl.check3b config -state normal
}} \

-disabledforeground (talalal -foreground black -highlightcolor
black \
-state disabled -text FB -variable use_abb_fb

vTcl:DefineAlias "Stop.canvasl.check3a" nCheckbutton4'
"Toplevel6" 1

checkbutton $top.canvasl.check3b \
-activebackground #f6f7f6 -activeforeground black \
—command
{if {$use_abb_rb == 1} {
.design,choice.canvasl.check3a config -state disabled
set use_abb_fb

0
.design,choice.canvasl.check3b config -state normal
} else {
.design,choice.canvasl.check3b config -state disabled
set use_abb_rb

0
.design choice.canvasl.check3a config -state normal
}} \
-disabledforeground Salalal -foreground black -highlightcolor
black \
-state disabled -text RB -variable use_abb_rb

vTcl:DefineAlias "Stop.canvasl.check3b" "Checkbutton5
"Toplevel6" 1

label Stop.canvasl.Iabel4 \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black \
-text {Use sleep transistors ?}

vTcl:DefineAlias "Stop.canvasl.Iabel4" "Label6" vTcl:WidgetProc
"Toplevel6" 1

checkbutton Stop.canvasl.check4 \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground ffalalal -foreground black -highlightcolor
black \
-text {YES / NO} -variable use.st

vTcl:DefineAlias "Stop.canvasl.check4" "Checkbutton6
"Toplevel6" 1

label Stop.title \
-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr

-bordermode ignore
place Stop.canvasl.check2 \

-in Stop.canvasl -x 175 -y 50 -anchor nw -bordermode ignore
place Stop.canvasl.Iabel3 \

-in Stop.canvasl -x 10 -y 85 -anchor nw -bordermode ignore
place Stop.canvasl.check3 \

-in Stop.canvasl -x 175 -y 85 -anchor nw -bordermode ignore
place Stop.canvasl.check3a \

-in Stop.canvasl -x 270 -y 85 -anchor nw
place Stop.canvasl.check3b \

vTcl: WidgetPna: Stop.canvasl -x 273 -y 108 -width 41

•bordermode ignore

•height 22 -anchor nw \

-bordermode ignore
place Stop.canvasl.label4 \

-in Stop.canvasl -x 10 -y 145 -anchor nw -bordermode ignore
place Stop.canvasl.check4 \

-in Stop.canvasl -x 190 -y 145 -anchor nw -bordermode ignore
place Stop.title \

-in Stop -x 10 -y 20 -anchor nw -bordermode ignore
vTcl:FireEvent Sbase « R e a d y »

}
proc vTclWindow.interactive_common {base} {

if {$base == ""} {
set base .interactive_common

}
if {[winfo exists Sbase]} {

wm deiconify Sbase; return
}

set top Sbase
vTcl:WidgetBrTnl:toplevel Stop -class Toplevel \

-highlightcolor black
wm withdraw Stop

wm focusmodel Stop passive
wm geometry Stop

492x913+381+10; update
wm maxsize Stop 1265 994
wm minsize Stop

1 1
wra overrideredirect Stop 0
wm resizable Stop 0 0
wm title

Stop "Common descriptors"
vTcl:DefineAlias "Stop" "Toplevel3H

vTcl:Toplevel:WidgetProc "" 1
bindtags Stop "Stop Toplevel all

_TopLevel"
vTcl:FireEvent Stop «Create»
wm protocol Stop

vTcl:WidgetProcWM_DELETE_WINDOW "vTcl:FireEvent Stop «DeleteWindow»"
frame

Stop.framel \
-borderwidth 3 -relief groove -height 810 -width 470

vTcl:DefineAlias "Stop.framel" "Framel" vTcl:WidgetProc "Toplevel3"
1

bindtags Stop.framel "Stop.framel Frame Stop all _TopLevel"

set site_3_0 Stop.framel
label $site_3_0.labell \

-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Supply voltage of new

process (V)}

vTcl:DefineAlias "$site_3_0.labell" "Labell" vTcl:WidgetProc
"Toplevel3" 1

vTcl:WidgetPrfcE±>el $site_3_0.1abel2 \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Package IR drop factor

165

(eta)}
vTcl:DefineAlias "$site_3_0.1abel2" "Label2" vTcl:WidgetProc
"Toplevel3H 1

label $site_3_0.1abel3 \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Min length in new process
Cm)}

vTcl:DefineAlias "$site_3_0.1abel3" "Label4" vTcl:WidgetProc
"Toplevel3" 1

label $site_3_0.1abel4 \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Gate cap scaling factor}

vTcl:DefineAlias "$site_3_0.1abel4" "Label5" vTcl:WidgetProc
"Toplevel3" 1

Separator $site_3_0.1inel \
-background #d6cdbb -orient horizontal

vTcl:DefineAlias "$site_3_0.1inel" "Separatorl" vTcl:WidgetProc
"Toplevel3" 1

bind $site_3_0.1inel <Destroy> {
Widget:: destroy '/,W; rename '/.W O

}
label $site_3_0.1abel5 \

-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Wire cap scaling factor}

vTcl:DefineAlias "$site_3_0.1abel5N "Label6M vTcl:WidgetProc
"Toplevel3" 1

label $site_3J).label6 \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Gate width scaling

factor}

vTcl:DefineAlias "$site_3_0.1abel6" "Label7" vTcl:WidgetProc
"Toplevel3" 1

label $site_3_0.1abel7 \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Original unit area gate

cap (F/um2)}

vTcl:DefineAlias "$site_3_0.1abel7" "Label8" vTcl:WidgetProc
"Toplevel3" 1

label $site_3_0.1abel8 \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Original min W/L drain

current (A)}

vTcl:DefineAlias "$site_3_0.1abel8" "Label9n vTcl:WidgetProc
"Toplevel3" 1

entry $site_3_0.entryl \
-background white -disabledforeground #alalal -insertbackground
black \
-textvariable vdd_spec

vTcl:DefineAlias "$site_3_0.entryl" "Entryl" vTcl:WidgetProc
"Toplevel3" 1

entry $site_3_0.entry2 \
-background white -disabledforeground #alalal -insertbackground
black \
-textvariable eta

vTcl:DefineAlias "$site_3_0.entry2" "Entry2" vTcl:WidgetProc
"Toplevel3" 1

entry $site_3_0.tempi \
-background white -disabledforeground ftalalal -insertbackground
black \
-state readonly -textvariable vdd.bump

vTcl:DefineAlias "$site_3_0.tempi" "Entry3n vTcl:WidgetProc
"Toplevel3" 1

bindtags $site_3_0.tempi "$site_3_0.tempi Entry $top
all .TopLevel"

entry $site_3_0.entry3 \
-background white -disabledforeground ftalalal -insertbackground
black \
-textvariable l_min -validate focusin \
-validatecommand
{set vdd_bump [expr $eta * $vdd_spec]
return 1}

vTcl:DefineAlias "$site_3_0.entry3" "Entry4" vTcl:WidgetProc
"Toplevel3" 1

entry $site_3_0.entry4 \
-background white -disabledforeground ftalalal -insertbackground
black \
-textvariable s_gate_cap

vTcl:DefineAlias "$site_3_0.entry4" "Entry5" vTcl:WidgetProc
"Toplevel3" 1

entry $site_3_0.entry5 \
-background white -disabledforeground ftalalal -insertbackground
black \
-textvariable s_wire_cap

vTcl:DefineAlias "$site_3_0.entry5" "Entry6" vTcl:WidgetProc
"Toplevel3" 1

entry $site_3_0.entry6 \
-background white -disabledforeground ftalalal -insertbackground
black \
-textvariable s_width

vTcl:DefineAlias "$site_3_0.entry6" "Entry7" vTcl:WidgetProc

"Toplevel3" 1
entry $site_3_0.entry7 \
-background white -disabledforeground ftalalal -insertbackground
black \
-textvariable c_unit_old

vTcl:DefineAlias "$site_3_0.entry7n "EntryS" vTcl:WidgetProc
"Toplevel3" 1

entry $site_3_0.entry8 \
-background white -disabledforeground ftalalal -insertbackground
black \
-textvariable i_ds_old

vTclrDefineAlias "$site_3_0.entry8" "Entry9" vTcl:WidgetProc
"Toplevel3" 1

entry $site_3_0.cpd75 \
-background white -disabledforeground ftalalal -insertbackground
black \
-textvariable c_unit_new

vTclrDefineAlias n$site_3_0.cpd75" "EntrylO" vTcl:WidgetProc
"Toplevel3" 1

entry $site_3_0.cpd77 \
-background white -disabledforeground ftalalal -insertbackground
black \
-textvariable i_ds_new

vTcl:DefineAlias "$site_3_0.cpd77" "Entryll" vTcl:WidgetProc
"Toplevel3" 1

label $site_3_0.1abel_templ \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-state disabled -text {Vdd_bump =

Vdd_supply x eta}
vTcl:DefineAlias "$site_3_0.1abel_templ" "Labelll" vTcl:WidgetProc
"Toplevel3" 1

label $site,3_0.1abell0 \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Library redesign power
saving factor}

vTclrDefineAlias "$site_3_0.1abell0" "Label3" vTcl:WidgetProc
"Toplevel3" l

entry $site^3_0.entryl0 \
-background white -disabledforeground ftalalal -insertbackground
black \
-textvariable rpsf

vTcl:DefineAlias "$site_3_0.entryl0" "Entryl2n vTcl:WidgetProc
"Toplevel3" 1

label $site^3_0.labelll \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {RC Interconnect slowdown

factor}

vTcl:DefineAlias "$site_3_0.labelll" "Labell2" vTcl:WidgetProc
"Toplevel3" 1

entry $site_3_0.entryll \
-background white -disabledforeground ftalalal -insertbackground
black \
-textvariable rcsf

vTcl:DefineAlias "$site_3_0.entryll" "Entryl3" vTcl:WidgetProc
"Toplevel3" 1

label $site^3_0.cpd73 \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {New chip's unit area

gate cap (F/um2)}

vTcl:DefineAlias n$site_3_0.cpd73" "Labell3" vTcl:WidgetProc
"Toplevel3" 1

label $siteJ3_0.cpd74 \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {New chip's min W/L drain
current (A)}

vTclrDefineAlias "$site_3_0.cpd74" "Labell4" vTcl:WidgetProc
"TopIevel3" 1

label $sitej3_0.1abel!2 \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Average statcking factor

for new design}

vTcl:DefineAlias "$site_3_0.1abell2" "Labell5" vTcl:WidgetProc
"Toplevel3" 1

entry $site_3_0.entryl2 \
-background white -disabledforeground ftalalal -insertbackground
black \
-textvariable sf

vTcl:DefineAlias "$site_3_0.entryl2" "Entryl4" vTcl:WidgetProc
"Toplevel3" 1

label $site_3_0.1abell3 \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Unit decap sensitivity
CV/nF)}

vTcl:DefineAlias "$site_3_0.1abell3" "Labell6H vTcl:WidgetProc
"Toplevel3" 1

entry $site_3_0.cpd78 \
-background white -disabledforeground ftalalal -insertbackground
black \

166

-textvariable decap_sens
vTcl:DefiiiGAlias "$site_3_0.cpd78" "Entryl5" vTcl:WidgetProc
"Toplevel3" 1

Separator $site_3_0.1ine2 \
-background #d6cdbb

vTcl:DefineAlias "$site_3_0.1ine2'' "Separator2" vTcl:WidgetProc
"Toplevel3" 1

bind $site_3_0.1ine2 <Destroy> {
Widget:: destroy XW; rename XW {}

}
label $site_3_0.heading2 \

-disabledforeground tfalalal \

-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {New process's leakage

current estimates
from foundry or SPICE simulations}

vTcl:DefineAlias H$site_3_0.heading2" "Labell7" vTcl:WidgetProc
"Toplevel3" 1

Separator $site_3_0.cpd79 \
-background #d6cdbb

vTcl:DefineAlias H$site_3_0.cpd79" "Separator3" vTcl:WidgetProc
"Toplevel3" 1

bind $site_3_0.cpd79 <Destroy> {
Widget:rdestroy '/,W; rename XW {}

>
entry $site_3_0.entryl6 \

-background white -disabledforeground #alalal -insertbackground
black \
-textvariable i_leak_junc

vTcl:DefineAlias "$site_3_0.entryl6" "Entryl6" vTcl:WidgetProc
"Toplevel3" 1

entry $site_3_0.cpd80 \
-background white -disabledforeground #alalal -insertbackground
black \
-textvariable i_leak_gate

vTcl:DefineAlias "$site_3_0.cpd80" "Entryl7" vTcl:WidgetProc
"Toplevel3H 1

entry $site_3_0.cpd81 \
-background white -disabledforeground tfalalal -insertbackground
black \
-textvariable i_gate_per_w

vTcl:DefineAlias "$site_3_0.cpd81" "EntrylS" vTcl: WidgetProc
"Toplevel3" 1

entry $site_3_0.cpd82 \
-background white -disabledforeground Salalal -insertbackground
black \
-textvariable i_othv

vTcl:DefineAlias "$site_3_0.cpd82'* "Entryl9" vTcl :WidgetProc
"Toplevel3" 1

entry $site_3_0.cpd83 \
-background white -disabledforeground ttalalal -insertbackground
black \
-textvariable i_owhv

vTcl:DefineAlias "$site_3J3.cpd83" "Entry20" vTcl:WidgetProc
"Toplevel3" 1

entry $site_3_0.cpd84 \
-background white -disabledforeground #alalal -insertbackground
black \
-textvariable i.otlv

vTcl:DefineAlias "$site_3_0.cpd84" "Entry21" vTcl:WidgetProc
"Toplevel3" 1

Separator $site_3_0.1ine4 \
-background #d6cdbb -orient horizontal

vTcl:DefineAlias "$site_3_0.1ine4" "Separator4" vTcl:WidgetProc
"Toplevel3" 1

bind $site_3_0.1ine4 <Destroy> {
Widget:: destroy XW; rename XW {}

}
label $site_3_0.1abell7 \

-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Unit junction area leakage
(A/um2)}

vTcl:DefineAlias "$site_3_0.1abell7" "Labell8" vTcl:WidgetProc
"Toplevel3" 1

label $site_3J>.cpd86 \
-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Unit gate area leakage
(A/um2)}

vTcl:DefineAlias "$site_3_0.cpd86" "Labell9" vTcl:WidgetProc
"Toplevel3" 1

label $site_3_0.cpd87 \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Unit linear gate leakage

current (A/um)}

vTcl:DefineAlias "$site_3_0.cpd87" "Label20" vTcl:WidgetProc
"Toplevel3" 1

label $site_3_0.cpd88 \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Unit linear, typical
I.off for high Vt FETs (A/um)}

vTcl:DefineAlias "$site_3_0.cpd88" "Label21" vTcl:WidgetProc
"Toplevel3" 1

entry $site_3_0.cpd91 \

-background white -disabledforeground ftalalal -insertbackground
black \
-textvariable i_owlv

vTclrDefineAlias "$site_3_0.cpd91" "Entry22" vTcl:WidgetProc
"Toplevel3" 1

label Ssite_3_0.cpd93 \
-disabledforeground tfalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Unit linear, worst I_off

for high Vt FETs (A/um)}
vTcl:DefineAlias "$site_3_0.cpd93" "Label22" vTcl:WidgetProc
"Toplevel3" 1

label $site_3_0.cpd94 \
-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Unit linear, typical
I.off for low Vt FETs (A/um)}

vTcl:DefineAlias "$site_3_0.cpd94" "Label23" vTcl:WidgetProc
"Toplevel3" 1

label $site_3_0.cpd95 \
-disabledforeground #alalal \
-font [vTcl:iont:getFontFromDescr
"-family helvetica -size 12"] \
-text {Unit linear, worst I_off
for low Vt FETs (A/um)}

vTcl:DefineAlias "$site_3_0.cpd95" "Label24" vTcl:WidgetProc
"Toplevel3" 1

place $site_3_0.1abell \
-in $site_3_0 -x 5 -y 15 -width 258 -height 20 -anchor nw \

-bordermode ignore
place $site_3_0.1abel2 \

-in $site_3_0 -x 7 -y 40 -width 213 -height 20 -anchor nw \

-bordermode ignore
place $site_3_0.1abel3 \

-in $site_3_0 -x 4 -y 95 -width 228 -height 20 -anchor nw \

-bordermode ignore
place $site_3_0.1abel4 \

-in $site_3_0 -x 5 -y 127 -width 173 -height 20 -anchor nw \

-bordermode ignore
place $site_3_0.1inel \

-in $site_3_0 -x 299 -y 5 -width 2 -height 456 -anchor nw \

-bordermode ignore
place $site_3_0.1abel5 \

-in $site_3_0 -x 5 -y 155 -width 169 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.1abel6 \

-in $site_3_0 -x 6 -y 185 -width 184 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.1abel7 \

-in $site_3_0 -x 2 -y 215 -width 264 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.1abel8 \

-in $site_3_0 -x 5 -y 245 -width 248 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.entryl \

-in $site_3_0 -x 305 -y 15 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.entry2 \

-in $site_3_0 -x 305 -y 45 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.tempi \

-in $site_3_0 -x 305 -y 70 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.entry3 \

-in $site_3_0 -x 305 -y 95 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.entry4 \

-in $site_3_0 -x 305 -y 125 -anchor nw -bordermode ignore
place Ssite_3_0.entry5 \

-in $site_3_0 -x 305 -y 155 -anchor nw -bordermode ignore
place $site_3_0.entry6 \

-in $site_3_0 -x 305 -y 185 -anchor nw -bordermode ignore
place $site_3_0.entry7 \

-in $site_3_0 -x 305 -y 215 -anchor nw -bordermode ignore
place $site_3_0.entry8 \

-in $site_3_0 -x 305 -y 245 -anchor nw -bordermode ignore
place $site_3_0.cpd75 \

-in Ssite^S^O -x 305 -y 274 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd77 \

-in $site_3_0 -x 305 -y 303 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.1abel_templ \

-in $site_3_0 -x 60 -y 65 -anchor nw -bordermode ignore
place $site_3_0.1abel!0 \

167

-in $site_3_0 -x 7 -y 330 -width 266 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.entryl0 \

-in $site_3_0 -x 305 -y 332 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.1abelll \

-in $site_3_0 -x 6 -y 360 -width 245 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.entryll \

-in $site_3_0 -x 305 -y 360 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd73 \

-in $site_3_0 -x 8 -y 274 -width 280 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd74 \

-in $site_3_0 -x 6 -y 303 -width 273 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.1abell2 \

-in $site_3_0 -x 7 -y 388 -width 292 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.entryl2 \

-in $site_3_0 -x 305 -y 388 -width 148 -height 22 -anchor nw \

-bordermode ignore
place Ssite_3_0.1abell3 \

-in $site_3_0 -x 9 -y 418 -width 201 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd78 \

-in $site_3_0 -x 305 -y 415 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.1ine2 \

-in $site_3_0 -x 10 -y 475 -width 456 -height 2 -anchor nw \

-bordermode ignore
place $site_3_0.heading2 \

-in $site_3J) -x 90 -y 490 -width 307 -height 42 -anchor nw \

-bordermode ignore
place $site_3_0.cpd?9 \

-in $site_3_0 -x 95 -y 540 -width 296 -height 2 -anchor nw \

-bordermode ignore
place $site_3_0.entryl6 \

-in $site_3_0 -x 360 -y 575 -width 100 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd80 \

-in $site_3_0 -x 360 -y 610 -width 100 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd81 \

-in $site_3_0 -x 360 -y 640 -width 100 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd82 \

-in $site_3_0 -x 360 -y 670 -width 100 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd83 \

-in $site_3_0 -x 360 -y 705 -width 100 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd84 \

-in $site_3j3 -x 360 -y 735 -width 100 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.1ine4 \

-in $site_3_0 -x 355 -y 575 -width 2 -height 216 -anchor nw \

-bordermode ignore
place $site_3_0.1abell7 \

-in $site_3_0 -x 7 -y 580 -width 257 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd86 \

-in $site_3_0 -x 6 -y 610 -width 238 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd87 \

-in $site_3_0 -x 5 -y 640 -anchor nw -bordermode inside
place $site_3_0.cpd88 \

-in $site_3_0 -x 4 -y 675 -width 349 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd91 \

-in $site_3_0 -x 360 -y 765 -width 100 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd93 \

-in $site_3_0 -x 7 -y 703 -width 345 -height 29 -anchor nw \

-bordermode ignore
place $site_3_0.cpd94 \

-in $site_3_0 -x 5 -y 735 -anchor nw -bordermode inside
place $site_3_0.cpd95 \

-in $site_3_0 -x 5 -y 765 -anchor nw -bordermode inside
button $top.buttl \

\
-command {wm withdraw .interactive_common
set vdd_bump [expr $vdd_spec * $eta]
set types {

•[{Command Files} {.cmd} }
{{All Files} *

}
}

set new_cmd_filename [tk_getSaveFile -filetypes $types
-initialdir ./ -initialfile command_file -title "Enter file
name"]

wm deiconify .interactive_common
set new_cmd_file_id
[open $new_cmd_filename w]
puts $new_cmd_file_id "\# Begin

module descriptions \n"
puts $new_cmd_file_id "\# number of
modules \n"
puts $new_cmd_file_id ".mods $no_modules \n"
puts
$new_cmd_file_id "\# Common descriptor list \n"
puts $new_cmd_file_id "\#

Vdd_spec,ETA,Min_L,Gate_cap_scaling_factor,Wire_cap_scaling_factor,width_sclaing_factor,
+ •*

puts $new_cmd_file_id "\#
01d_unit_gate_cap,old_min_size-FET_ids,New_unit_gate_cap,new_min_size_FET_ids,Redesign_po-
+ "
puts $new_cmd_file_id "\#
RC_slowdown_factor,stacking.factor,Decap.sensitivity,unit.junc_leakage,unit_gate_leak age,
+"
puts $new_cmd_file_id "\#

per unit width gate leakage,typical_hi_vt ioff,worst hi vt ioff,typical_lo vt ioff,worst_
\n\n"
puts $new_cmd_file_id H.com_des $vdd_spec $eta $l_min $s_gate_cap
$s_wire_cap $s_width $c_unit_old $i_ds_old $c_unit_new $i_ds_new
$rpsf $rcsf $sf $decap_sens $i_leak_junc $i_leak_gate $i_gate_per_w
$i_othv Si_owhv $i_otlv $i_owlv\n\n"
puts $new_cmd_file_id "\#
Begin individual module descriptions\n"
puts $new_cmd_file_id
"\# Individual module descriptor list\n"
puts $new_cmd_file_id "\#
Original_load_cap,total_wire_length,unit_wire_length_cap,total_PFET_W,
+"
puts $new_cmd_file_id "\#
total_KFET_W,original_operating_freq,average_switching_factor,
+ "
puts $new_cmd_file_id "\#
clock_gating_factor,de_cap_added,ratio_hi_vt_FETS,wire_buff_cap,typical_path_FET_ratio,
+"
puts $new_cmd_file_id "\#
useful_skew.performance.enhancement,buffer_speed_up_factor.temperature,if_critical_module

close $new_cmd_file_id
wm withdraw .interactive_common
set c.orig

0
set twl 0
set ulc 0
set w_total_p 0
set w_total_n 0
set f_old 1

set asf 0
set cgf 0
set c_de_cap 0
set hvr 0
set c_wire_buff 0
set tpfr 0
set uspe 0
set bsuf 0
set temperature 25
set cm_yes 1
set nadsp 0
wm deiconify .interactive_individual_l} \
-disabledforeground #alalal -text {Save and proceed}

vTcl:DefineAlias "$top.buttl" "Buttonl" vTcl:WidgetProc "Toplevel3"
1

button $top.butt2 \
\
-command {set vdd_spec 0
set eta 0.95
set ljmin 0
set s_gate_cap 0
set s_wire_cap 0
set s width

0
set c_unit_old 0
set i_ds_old 0
set c_unit_new 0
set i_ds_new 0
set rpsf 0
set rcsf 0
set sf 0
set decap_sens 0
set i_leak_junc 0
set i_leak_gate 0
set i_gate_per_w 0

168

set i_othv 0
set i_owhv 0
set

i_otlv 0
set i^owlv 0} \

-disabledforeground Salalal -text {Clear All}
vTcl:DefineAlias "$top.butt2" "Button2" vTcl:WidgetProc
1

label $top.heading \
-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Descriptors common to

all modules}

vTcl:DefineAlias "$top.heading'
1

place Stop.framel \
-in $top -x 10 -y 45 -width 470 -height 810 -anchor nw \

-bordermode ignore
place $top.buttl \

-in Stop -x 295 -y 875 -anchor nw
place $top.butt2 \

-in $top -x 70 -y 875 -anchor nw -
place Stop.heading \

-in $top -x 124 -y 19 -width 260 -

"Label7" vTcl:WidgetProc

-bordermode ignore

bordermode ignore

•height 24 -anchor nw \

-bordermode ignore
vTcl: FireEvent $base «Ready»

}
proc vTclWindow.interactive_common_edit {base} {

if {$base == ""} {
set base .interactive_common_edit

}
if {[winfo exists $base]} {

wm deiconify $base; return
}

set top $base

vTcl:toplevel $top -class Toplevel \
-highlightcolor black

wm withdraw $top
wm focusmodel Stop passive
wm geometry Stop

492x906+413+11; update
wm maxsize $top 1265 994
wm minsize $top 1

wm overrideredirect $top 0
wm resizable Stop 1 1
wm title Stop

"Edit common descriptors"
vTcl:DefineAlias "Stop" "Toplevel7"

vTcl:Toplevel:WidgetProc "" 1
bindtags $top "Stop Toplevel all

JTopLevel"
vTcl: FireEvent $top «Create»
wm protocol Stop

WM_DELETE_WIND0W "vTcl:FireEvent $top «DeleteWindow»'
frame

Stop.framel \
-borderwidth 3 -relief groove -height 795 -width 470

vTcl:DefineAlias "Stop.framel" "Framel

Widget::destroy %W; rename '/„W {}
}

label $site_3_0.1abel5 \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \

Toplevel3"-text {Wire cap scaling factor}

vTcl:DefineAlias "$site_3_0.1abel5" "Label6" vTcl:WidgetProc
"Toplevel7" 1

label $site_3_0.1abel6 \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Gate width scaling

LabellO" vTcl:WidgetProc "Topleveflattor}

vTcl:DefineAlias "$site_3_0.Iabel6"
"Toplevel7" 1

label $site_3_0.1abel7 \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Original unit area gate
cap (F/um2)}

vTcl:DefineAlias "$site_3_0.1abel7" "LabelS" vTcl:WidgetProc
"Toplevel7" 1

label $site_3_0.1abel8 \
-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Original min W/L drain
current (A)}

vTcl:DefineAlias "$site_3_0.1abel8" "Label9" vTcl:WidgetProc
"Toplevel7" 1

entry $site_3_0.entryl \
-background white -disabledforeground #alalal -insertbackground
black \
-textvariable vdd_spec

vTcl:DefineAlias "$site_3_0.entryl" "Entryl" vTcl:WidgetProc
"Toplevel7" 1

entry Ssite_3j3.entry2 \
-background white -disabledforeground Salalal -insertbackground
black \
-textvariable eta

vTcl:DefineAlias "Ssite_3_0.entry2" "Entry2" vTcl:WidgetProc
"Toplevel7" 1

entry $site_3_0.tempi \
-background white -disabledforeground Salalal -insertbackground
black \
-state readonly -textvariable vdd_bump

vTcl:DefineAlias "$site_3_0.tempi" "Entry3" vTcl:WidgetProc
"Toplevel7" 1

bindtags $site_3_0.tempi "$site_3_0.tempi Entry Stop
all _TopLevel"

entry $site_3_0.entry3 \
-background white -disabledforeground Salalal -insertbackground
black \
-textvariable l_min

vTcl: Def ineAlias "$site_3_0.entry3" "Entry4" vTcl:WidgetProc
nToplevel7" 1

entry $site_3_0.entry4 \
•background white -disabledforeground Salalal -insertbackground

bindtags Stop.framel "Stop.framel Frame Stop all _TopLevel"

set site_3_0 Stop.framel
label $site_3_0.1abell \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Supply voltage of new

process (V)}
vTcl:DefineAlias n$site_3_0.1abell" "Labell" vTcl:WidgetProc
"Toplevel7" 1

label $site_3_0.1abel2 \
-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Package IR drop factor
(eta)}

vTcl:DefineAlias "$site_3_0.1abel2" "Label2" vTcl:WidgetProc
"Toplevel7" 1

label $site_3_0.1abel3 \
-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Min length in new process
Cm)}

vTcl:DefineAlias "$site_3_0.1abel3" "Label4" vTcl:WidgetProc
"Toplevel7" 1

label $site_3_0.1abel4 \
-disabledforeground flalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Gate cap scaling factor}

vTcl:DefineAlias "Ssite_3_0.1abel4" "LabelS" vTcl:WidgetProc
"Toplevel7" 1

Separator $site_3_0.1inel \
-background Sd6cdbb -orient horizontal

vTcl:DefineAlias "$site_3_0.1inel" "Separatorl" vTcl:WidgetProc
"Toplevel7" 1

bind $site_3_0.1inel <Destroy> {

vTcl:WidgetProc "Topi eve 17Baack \
-textvariable s_gate_cap

vTcl:DefineAlias "$site_3J3.entry4" "Entry5" vTclrWidgetProc
"Toplevel7" 1

entry $site_3_0.entry5 \
-background white -disabledforeground Salalal -insertbackground
black \
-textvariable s_wire_cap

vTclrDefineAlias "$site_3_0.entry5" "Entry6" vTcl:WidgetProc
"Toplevel7" 1

entry $site_3_0.entry6 \
-background white -disabledforeground Salalal -insertbackground
black \
-textvariable s.width

vTcl:DefineAlias "$site_3_0.entry6" "Entry7" vTcl:WidgetProc
"Toplevel7" 1

entry $site_3_0.entry7 \
-background white -disabledforeground Salalal -insertbackground
black \
-textvariable c_unit_old

vTcl:DefineAlias "$site_3_0.entry7" "Entry8" vTcl:WidgetProc
"Toplevel7" 1

entry $site_3_0.entry8 \
-background white -disabledforeground Salalal -insertbackground
black \
-textvariable i_ds_old

vTcl:DefineAlias "$site_3_0.entry8" "Entry9" vTcl:WidgetProc
"Toplevel7" 1

entry $site_3_0.cpd75 \
-background white -disabledforeground Salalal -insertbackground
black \
-textvariable c_unit_new

vTcl:DefineAlias "Ssite_3_0.cpd75" "EntrylO" vTcl:WidgetProc
"Toplevel7" 1

entry $site_3_0.cpd77 \
-background white -disabledforeground Salalal -insertbackground
black \
-textvariable i_ds_new

vTcl:DefineAlias "Ssite_3_0.cpd77" "Entry 11'* vTclrWidgetProc
"Toplevel7" 1

label $site_3_0.1abel_templ \

169

-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-state disabled -text {Vdd_bump =

Vdd_supply x eta}
vTcl:DefineAlias "$site_3_0.1abel_teinpl" "Labelll"
"Toplevel7" 1

label $site_3_0.1abell0 \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Library redesign power
saving factor}

vTcl:DefineAlias "$site_3_0.1abell0" "Label3" vTcl:WidgetProc
"Toplevel7" 1

entry $site_3_0.entryl0 \
-background white -disabledforeground Salalal -insertbackground
black \
-textvariable rpsf

vTcl:DefineAlias "$site_3_0.entryl0" "Entryl2" vTcl:WidgetProc
"Toplevel7" 1

label $site_3_0.labelll \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {RC interconnect slowdown

factor}
vTcl:DefineAlias "$site_3_0.labelll" "Labell2H vTcl:WidgetProc
"Toplevel7" 1

entry $site_3_0.entryll \
-background white -disabledforeground Salalal -insertbackground
black \
-textvariable rcsf

vTcl:DefineAlias "$site_3_0.entryll" "Entryl3" vTcl:WidgetProc
"Toplevel7" 1

label $site_3_0.cpd73 \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {New chip's unit area

gate cap (F/um2)}

vTcl:DefineAlias "$site_3_0.cpd73" "Labell3" vTcl:WidgetProc
"Toplevel7" 1

label $site_3_0.cpd74 \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {New chip's min W/L drain

current (A)}

vTcl:DefineAlias "$site_3_0.cpd74" "Labell4" vTcl:WidgetProc
"Toplevel7" 1

label $site_3_0.1abell2 \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Average statcking factor

for new design}
vTcl:DefineAlias "$site_3_0.1abell2" "Labell5" vTcl:WidgetProc
"Toplevel7" 1

entry $site_3_0.entryl2 \
-background white -disabledforeground #alalal -insertbackground
black \
-textvariable sf

vTcl:DefineAlias "$site_3_0.entryl2" "Entryl4" vTcl:WidgetProc
MToplevel7" 1

label $site_3_0.1abell3 \
-disabledforeground Salalal \
-font tvTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Unit decap sensitivity
(V/nF)}

vTcl:DefineAlias "$site_3_0.1abell3" NLabeH6" vTclrWidgetProc
"Toplevel7" 1

entry $site_3_0.cpd78 \
-background white -disabledforeground Salalal -insertbackground
black \
-textvariable decap_sens

vTcl:DefineAlias "$site_3_0.cpd78" "Entryl5M vTcl:WidgetProc
"Toplevel7" 1

Separator $site_3_0.1ine2 \
-background #d6cdbb

vTcl:DefineAlias "$site_3_0.1ine2'
"Toplevel7" 1

bind $site_3_0.1ine2 <Destroy> {
Widget::destroy %W; rename %M {}

}
label $site_3_0.heading2 \

-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {New process's leakage

current estimates
from foundry or SPICE simulations}

vTcl:DefineAlias "$site_3_0.heading2" "Labell7" vTcl:WidgetProc
"Toplevel7" 1

Separator $site_3_0.cpd79 \
-background Sd6cdbb

vTcl:DefineAlias "$site_3_0.cpd79" "Sepaxator3" vTcl:WidgetProc
"Toplevel7" 1

bind $site_3_0.cpd79 <Destroy> {
Widget::destroy 7,W; rename '/.W {}

}

"Separator2" vTcl:WidgetProc

entry $site_3_0.entryl6 \
-background white -disabledforeground #alalal -insertbackground
black \
-textvariable i_leak_junc

vTcl:DefineAlias "$site_3_0.entry!6" "Entryl6" vTcl:WidgetProc
vTcl:WidgetProc "Toplevel7" 1

entry $site_3_0.cpd80 \
-background white -disabledforeground Salalal -insertbackground
black \
-textvariable i_leak_gate

vTcl:DefineAlias "$site_3_0.cpd80" "Entryl7" vTcl:WidgetProc
"Toplevel7" 1

entry $site_3_0.cpd81 \
-background white -disabledforeground Salalal -insertbackground
black \
-textvariable i_gate_per_w

vTcl:DefineAlias "$site_3_0.cpd81" "Entryl8" vTcl:WidgetProc
"Toplevel7" 1

entry $site_3_0.cpd82 \
-background white -disabledforeground Salalal -insertbackground
black \
-textvariable i_othv

vTcl:DefineAlias "$site_3_0.cpd82" "Entryl9" vTcl:WidgetProc
"Toplevel7" 1

entry $site_3_0.cpd83 \
-background white -disabledforeground Salalal -insertbackground
black \
-textvariable i_owhv

vTcl:DefineAlias "$site_3_0.cpd83" "Entry20" vTcl:WidgetProc
"Toplevel7" 1

entry $site_3_0.cpd84 \
-background white -disabledforeground #alalal -insertbackground
black \
-textvariable i_otlv

vTcl:DefineAlias "$site_3_0.cpd&4" "Entry21" vTcl:WidgetProc
"Toplevel7" 1

Separator Ssite_3_0.1ine4 \
-background #d6cdbb -orient horizontal

vTcl:DefineAlias H$site_3_0.1ine4" "Separator4" vTcl:WidgetProc
"Toplevel7" 1

bind $site_3_0.1ine4 <Destroy> {
Widget: :destroy y.W; rename */,W {}

}
label $site_3_0.1abell7 \
-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Unit junction area leakage
<A/um2»

vTcl:DefineAlias "$site_3_0.1abell7" "Labell8M vTcl:WidgetProc
"Toplevel7" 1

label $site_3_0.cpd86 \
-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Unit gate area leakage
(A/um2)}

vTcl:DefineAlias "$site_3_0.cpd86" "Labell9n vTcl:WidgetProc
"Toplevel7" 1

label $site_3_0.cpd87 \
-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Unit linear gate leakage
current (A/um2)}

vTcl:DefineAlias "$site_3_0.cpd87M "Label20" vTcl:WidgetProc
"Toplevel7" 1

label $site_3_0.cpd88 \
-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Unit linear, typical
I^off for high Vt FETs CA/um)}

vTcl:DefineAlias "$site_3_0.cpd88" "Label21" vTcl:WidgetProc
"Toplevel7" 1

entry $site_3_0.cpd91 \
-background white -disabledforeground Salalal -insertbackground
black \
-textvariable i^owlv

vTcl:DefineAlias "$site_3_0.cpd91" "Entry22" vTcl:WidgetProc
"Toplevel7" 1

label $site_3_0.cpd93 \
-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Unit linear, worst I_off

for high Vt FETs (A/um)}

vTcl:DefineAlias "$site_3J).cpd93" "Label22" vTcl:WidgetProc
"Toplevel7" 1

label $site_3_0.cpd94 \
-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Unit linear, typical
I_off for low Vt FETs (A/um)}

vTcl:DefineAlias "$site_3_0.cpd94"
"Toplevel7" 1

label Ssite^^O.cpdgS \
-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Unit linear, worst I_off

"Label23" vTcl:WidgetProc

170

for low Vt FETs (A/um)}
vTcl:DefineAlias "$site_3_0.cpd95" "Label24H vTcl:WidgetProc
"Toplevel7" 1

place $site_3_0.1abell \
-in $site_3_0 -x 5 -y 15 -width 258 -height 20 -anchor nw \

-bordermode ignore
place $siteJ3_0.1abel2 \

-in $site_3_0 -x 7 -y 40 -width 213 -height 20 -anchor nw \

-bordermode ignore
place $site_3_0.1abel3 \

-in $site_3_0 -x 4 -y 95 -width 228 -height 20 -anchor nw \

-bordermode ignore
place $site_3_0.1abel4 \

-in $site_3_0 -x 5 -y 127 -width 173 -height 20 -anchor nw \

-bordermode ignore
place $site_3_0.1inel \

-in $site_3_0 -x 299 -y 5 -width 2 -height 466 -anchor nw \

-bordermode ignore
place $site_3_0.1abel5 \

-in $site_3_0 -x 5 -y 155 -width 169 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.1abel6 \

-in $site_3_0 -x 6 -y 185 -width 184 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.1abel7 \

-in $site_3_0 -x 2 -y 215 -width 264 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.1abel8 \

-in $site_3_0 -x 5 -y 245 -width 248 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.entryl \

-in $site_3_0 -x 305 -y 15 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.entry2 \

-in $site_3_0 -x 305 -y 45 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.tempi \

-in $site_3_0 -x 305 -y 70 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.entry3 \

-in $site_3_0 -x 305 -y 95 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.entry4 \

-in $site_3_0 -x 305 -y 125 -anchor nw -bordermode ignore
place $site_3_0.entry5 \

-in $site_3_0 -x 305 -y 155 -anchor nw -bordermode ignore
place $site_3_0.entry6 \

-in $site_3_0 -x 305 -y 185 -anchor nw -bordermode ignore
place $site_3_0.entry7 \

-in $site_3_0 -x 305 -y 215 -anchor nw -bordermode ignore
place $site_3_0.entry8 \

-in $site_3_0 -x 305 -y 245 -anchor nw -bordermode ignore
place $site_3_0.cpd75 \

-in $site_3_0 -x 305 -y 274 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd77 \

-in $site_3_0 -x 305 -y 303 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.1abel_templ \

-in $site_3_0 -x 60 -y 65 -anchor nw -bordermode ignore
place $site_3_0.1abell0 \

-in $site_3_0 -x 7 -y 330 -width 266 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.entryl0 \

-in $site_3_0 -x 305 -y 332 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.1abelll \

-in $site_3_0 -x 6 -y 360 -width 245 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.entryll \

-in $site_3_0 -x 305 -y 360 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd73 \

-in $site_3_0 -x 8 -y 274 -width 280 -height 24 -anchor nw \

-bordermode ignore
place $site_3j0.cpd74 \

-in $site_3_0 -x 6 -y 303 -width 273 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.1abell2 \

-in $site_3_0 -x 7 -y 388 -width 292 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.entry!2 \

-in $site_3_0 -x 305 -y 388 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.1abell3 \

-in $site_3_0 -x 9 -y 418 -width 201 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd78 \

-in $site_3_0 -x 305 -y 415 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.1ine2 \

-in $site_3_0 -x 7 -y 480 -width 456 -height 2 -anchor nw \

-bordermode ignore
place $site_3_0.heading2 \

-in $site_3_0 -x 95 -y 490 -width 307 -height 42 -anchor nw \

-bordermode ignore
place $site_3_0.cpd79 \

-in $site_3_0 -x 100 -y 540 -width 296 -height 2 -anchor nw \

-bordermode ignore
place $site_3_0.entryl6 \

-in $site_3_0 -x 358 -y 580 -width 100 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd80 \

-in $site_3_0 -x 358 -y 610 -width 100 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd81 \

-in $site_3_0 -x 358 -y 640 -width 100 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd82 \

-in $site_3_0 -x 358 -y 670 -width 100 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd83 \

-in $site_3_0 -x 358 -y 700 -width 100 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd84 \

-in $site_3_0 -x 358 -y 730 -width 100 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.1ine4 \

-in $site_3_0 -x 355 -y 570 -width 2 -height 216 -anchor nw \

-bordermode ignore
place $site_3_0.1abell7 \

-in $site_3_0 -x 9 -y 580 -width 257 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd86 \

-in $site_3_0 -x 7 -y 610 -width 238 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd87 \

-in $site_3_0 -x 6 -y 643 -width 296 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd88 \

-in $site_3_0 -x 6 -y 670 -width 349 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd91 \

-in $site_3_0 -x 358 -y 759 -width 100 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd93 \

-in $site_3_0 -x 7 -y 698 -width 345 -height 29 -anchor nw \

-bordermode ignore
place $site_3_0.cpd94 \

-in $site_3_0 -x 9 -y 728 -width 343 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd95 \

-in $site_3_0 -x 5 -y 755 -anchor nw -bordermode inside
button $top.buttl \

\
-command {wm withdraw .interactive_common_edit

set vdd_bump [expr $vdd_spec * Seta]
set newline "$vdd_spec $eta

$l_min $s_gate_cap $s_wire_cap $s_width $c_unit_old $i_ds_old
$c_unit_new $i_ds_new $rpsf $rcsf $sf $decap_sens $i_leak_junc
$i_leak_gate $i_gate_per_w $i_othv $i_owhv $i_otlv $i_owlv"
catch {exec
\.\./scripts/swapline\.pl com $newline $cmd_file_to_edit \> temp_cmd_file
} junk
catch {exec cp temp_cmd_file $cmd_file_to_edit } junk2
set x

0
set curr_mod_is_final 0
catch {exec more $cmd_file_to_edit I grep

".mods_des 1" } read_mod_des
se t uu [sp l i t $read_mod_des H "]
set

171

c_orig [lindex Suu 2]
set twl [lindex Suu 3]
set ulc [lindex $uu 4]

set w_total_p [lindex Suu 5]
set w_total_n [lindex Suu 6]
set f_old
[lindex $uu 7]
set delay [expr l/$f_old]
set asf [lindex $uu 8]
set

cgf [lindex $uu 9]
set c„de_cap [lindex Suu 10]
set hvr [lindex $uu
113
set lvr [expr l-$hvr]
set c_wire_buff [lindex $uu 12]
set tpfr
[lindex $uu 13]
set uspe [lindex $uu 14]
set bsuf [lindex $uu 15]

set temperature [lindex $uu 16]
set cm_yes [lindex $uu 17]
set

nadsp [lindex Suu 18]
set choose_edit "Edit / Skip"
wm deiconify
.interactive_individual_l_edit
-disabledforeground #alalal -text {Save and proceed}

wm resizable $top 0 0
wm title

Stop "Individual module descriptors"
vTcl:DefineAlias "Stop"

"Toplevel4" vTcl:Toplevel:WidgetProc "" 1
bindtags Stop "$top

Toplevel all _TopLevel"
vTcl:FireEvent $top «Create»
wm protocol

$top WM.DELETE.WINDOW "vTcl:FireEvent Stop «DeleteWindow»"
frame

$top.framel \
-borderwidth 3 -relief groove -height 590 -width 470

vTcl:DefineAlias "$top.framel" "Framel" vTcl:WidgetProc "Toplevel4"
1

bindtags $top.framel "$top.framel Frame $top all _TopLevel"

set site_3_0 Stop.framel
label $site_3_0.1abell \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Original load capacitance
(F)>

vTcl:DefineAlias "$site_3_0.1abell"
"Toplevel4" 1

label $site_3_0.1abel2 \
-disabledforeground tfalalal \
-font [vTcl:font:getFontFromDescr
-family helvetica -size 12"] \

"Labell" vTcl:WidgetProc

vTcl:DefineAlias "Stop.buttl" "Buttonl" vTcl:WidgetProc "Toplevel7'l-text {Total wire length (m)}
1 vTcl:DefineAlias "$site_3_0.Iabel2" "Label2" vTcl:WidgetProc

"Label4" vTcl:WidgetProc

button $top.butt2 \
\
-command {set vdd_spec 0
set eta 0.95
set l_min 0
set s_gate_cap 0
set s_wire_cap 0
set s_width

0
set c_unit_old 0
set i_ds_old 0
set c_unit_new 0
set i_ds_new 0
set rpsf 0
set rcsf 0
set sf 0
set decap_sens 0
se t i_leak_junc 0

set i_leak_gate 0
set i_gate_per_w 0
set i_othv 0
set i_owhv 0
set
i_otlv 0
set i_owlv 0} \

-disabledforeground ttalalal
vTcl:DefineAlias "Stop.butt2" "Button2" vTcl:WidgetProc "ToplevelT^-family helvetica~-size 12"] \
1 -text {Total NFET width (m)>

label Stop.heading \ vTcl:DefineAlias "$site_3_0.1abel5" "Label6" vTcl:WidgetProc
-disabledforeground #alalal \ "Toplevel4" 1
-font [vTcl:font:getFontFromDescr label $site_3_0.1abel6 \
"-family helvetica -size 12"] \ -disabledforeground #alalal \
-text {Descriptors common to -font [vTcl:font:getFontFromDescr

all modules} "-family helvetica -size 12"] \
vTcl:DefineAlias "Stop.heading" "LabellO" vTcl:WidgetProc "Toplevel-Tttext {Original operating

frequency (Hz)}

-text {Clear All}

"Toplevel4" 1
label $site_3_0.1abel3 \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Unit length wire cap,

all metal layers (F)}

vTcl:DefineAlias "$site_3_0.1abel3"
"Toplevel4" 1

label Ssite_3_0.1abel4 \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Total PFET width (m)}

vTcl:DefineAlias "$site_3_0.1abel4" "Label5" vTcl:WidgetProc
"Toplevel4" 1

Separator $site_3_0.linel \
-background #d6cdbb -orient horizontal

vTcl:DefineAlias "$site_3_0.linel" "Separatorl" vTcl:WidgetProc
"Toplevel4" 1

bind $site_3_0.1inel <Destroy> {
Widget: :destroy '/,W; rename */0W {}

}
label $site_3_0.1abel5 \
-disabledforeground #alalal \
-font [vTclrfont rgetFontFromDescr

place Stop.framel \
-in Stop -x 10 -y 55

-bordermode ignore
place Stop.buttl \

-in Stop -x 295 -y 865

•width 470 -height 795 -anchor nw \

•width 137 -height 28 -anchor nw \

-bordermode ignore
place $top.butt2 \

-in Stop -x 70 -y 865 -anchor nw -bordermode ignore
place Stop.heading \

-in Stop -x 124 -y 19 -width 260 -height 24 -anchor nw \

-bordermode ignore
vTcl: FireEvent $base «Ready»

}
proc vTclWindow.interactive_individual_l {base} {

if {$base == ""} {
set base .interactive_individual_l

}
if {[winfo exists Sbase]} {

wm deiconify $base; return
}

set top Sbase
vTcl:toplevel Stop -class Toplevel \
-highlightcolor black

wm withdraw Stop
wm focusmodel Stop passive
wm geometry Stop

488x697+366+128; update
wm maxsize Stop 1265 994
wm minsize Stop

1 1
wm overrideredirect Stop 0

vTcl:DefineAlias "$site_3_0.1abel6" "Label7" vTcl:WidgetProc
"Toplevel4" 1

label $site_3_0.1abel7 \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Average switching

factor}

vTcl:DefineAlias "$site_3_0.1abel7" "Labels" vTcl:WidgetProc
"Toplevel4" 1

label $site_3_0.labels \
-disabledforeground Oalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Clock gating factor}

vTcl:DefineAlias "$site_3_0.1abel8" "Label9n vTcl:WidgetProc
"Toplevel4" 1

entry $site_3_0.entryl \
-background white -disabledforeground Salalal -insertbackground
black \
-textvariable c_orig

vTcl:DefineAlias "$site_3_0.entryl" "Entryl" vTcl:WidgetProc
"Toplevel4" 1

entry $site_3_0.entry2 \
-background white -disabledforeground tfalalal -insertbackground
black \
-textvariable twl

vTcl:DefineAlias "$site_3_0.entry2" "Entry2" vTcl:WidgetProc
"Toplevel4" 1

entry $site_3_0.entry3 \
-background white -disabledforeground Salalal -insertbackground
black \
-textvariable ulc -validate none

vTcl:DefineAlias "$site_3_0.entry3" "Entry4" vTcl:WidgetProc

172

"Toplevel4" 1
entry $site_3_0.entry4 \
-background white -disabledforeground ftalalai -insertbackground
black \
-textvariable w_total_p

vTcl:DefineAlias "$site_3_0.entry4" "Entry5" vTcl:WidgetProc
"Toplevel4" 1

entry $site_3_0.entry5 \
-background white -disabledforeground ftalalai -insertbackground
black \
-textvariable w_total_n

vTcl:DefineAlias "$site_3_0.entry5" "Entry6" vTcl:WidgetProc
"Toplevel4h 1

entry $site_3_0.entry6 \
-background white -disabledforeground #alalal -insertbackground
black \
-textvariable f_old

vTcl:DefineAlias "$site_3_0.entry6" "Entry7" vTcl:WidgetProc
"Toplevel4" 1

entry $site_3_0.entry7 \
-background white -disabledforeground #alalal -insertbackground
black \
-textvariable asf -validate focusin \
-validatecommand

{set delay [expr l/$f_old]
return 1}

vTcl:DefineAlias "$site_3_0.entry7" "EntryS" vTcl:WidgetProc
"Toplevel4" 1

entry $site_3_0.entry8 \
-background white -disabledforeground #alalal -insertbackground
black \
-textvariable cgf

vTcl:DefineAlias "$site_3_0.entry8" "Entry9" vTcl:WidgetProc
"Toplevel4" 1

entry $site_3_0.cpd75 \
-background white -disabledforeground #alalal -insertbackground
black \
-textvariable c_de_cap

vTcl:DefineAlias "$site_3_0.cpd75" "EntrylO" vTcl:WidgetProc
"Toplevel4" 1

entry $site_3_0.cpd?7 \
-background white -disabledforeground ftalalai -insertbackground
black \
-textvariable hvr

vTcl:DefineAlias "$5ite_3_0.cpd77" "Entryll" vTcl:WidgetProc
"Toplevel4" 1

label $site_3_0.1abell0 \
-disabledforeground ftalalai \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-state disabled -text {Ratio
if Lo-to-Hi Vt FETS}

vTcl:DefineAlias "$site_3_0.1abell0" "Label3" vTcl:WidgetProc
"Toplevel4" 1

entry $site_3_0.entryl0 \
-background white -disabledforeground #alalal -insertbackground
black \
-state readonly -textvariable lvr

vTcl:DefineAlias "$site_3_0.entryl0" "Entryl2" vTcl:WidgetProc
"Toplevel4" 1

label $site_3_0.1abelll \
-disabledforeground ftalalai \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Wire buffers ('/„ of total

FET width)}

vTcl:DefineAlias "$site_3_0.1abelll" "Labell2" vTcl:WidgetProc
"Toplevel4" 1

entry $site_3_0.entryll \
-background white -disabledforeground ftalalai -insertbackground
black \
-textvariable c_wire_buff -validate focusin \

-validatecommand {set lvr [expr l-$hvr]
return 1}

vTcl:DefineAlias "$site_3_0.entryll" "Entryl3" vTcl:WidgetProc
"Toplevel4" 1

label $site_3_0.cpd73 \
-disabledforeground ftalalai \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Decap added {% of total

FET width)}

vTcl:DeiineAlias "$site_3_0.cpd73" "Labell3" vTcl:WidgetProc
"Toplevel4" 1

label $site_3_0.cpd74 \
-disabledforeground ftalalai \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Ratio of Hi-to-Lo Vt

FETS}

vTcl:DefineAlias "$site_3_0.cpd74" "Labell4" vTcl:WidgetProc
"Toplevel4" 1

label $site_3_0.1abell2 \
-disabledforeground ftalalai \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Typical path FET ratio}

vTcl:DefineAlias "$site_3_0.1abell2" "Labell5" vTcl:WidgetProc
"Toplevel4" 1

entry $site_3_0.entryl2 \
-background white -disabledforeground #alalal -insertbackground

black \
-textvariable tpfr

vTcl:DefineAlias "$site_3_0.entryl2" HEntryl4" vTcl:WidgetProc
"Toplevel4" 1

label $site_3_0.1abell3 \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Useful skew perf

enhan c em ent}

vTcl:DefineAlias "$site_3_0.1abell3" "Labell6" vTcl:WidgetProc
"Toplevel4" 1

entry $site_3_0.cpd78 \
-background white -disabledforeground ftalalai -insertbackground
black \
-textvariable uspe

vTcl:DefineAlias "$site_3_0.cpd78" "Entryl5" vTcl:WidgetProc
"Toplevel4" 1

entry $site_3_0.entryl6 \
-background white -disabledforeground #alalal -insertbackground
black \
-textvariable bsuf

vTclrDefineAlias "$site_3_0.entryl6" "Entryl6n vTcl:WidgetProc
"Toplevel4" 1

entry $site_3_0.cpd80 \
-background white -disabledforeground ftalalai -insertbackground
black \
-textvariable temperature

vTcl:DefineAlias "$site_3_0.cpd80" "Entryl7" vTcl:WidgetProc
"Toplevel4" 1

label $site_3_0.1abell7 \
-disabledforeground ftalalai \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Interconnect speedup

due to buffers}

vTcl:DefineAlias H$site_3_0.1abell7" "Labell8M vTcl:WidgetProc
"Toplevel4" 1

label $site_3_0.cpd86 \
-disabledforeground ftalalai \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Temperature of

operation}

vTcl:DefineAlias "$site_3_0.cpd86" HLabell9" vTcl:WidgetProc
"Toplevel4" 1

label $site_3_0.cpd85 \
-disabledforeground ftalalai \
-font [vTcl:font:getFontFromDe3Cr
"-family helvetica -size 12"] \
-state disabled -text {Delay
(1/freq)}

vTcl:DefineAlias "$site_3_0.cpd85" "Labelll" vTcl:WidgetProc
"Toplevel4" 1

label $site_3_0.cpd79 \
-disabledforeground ftalalai \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Critical module?}

vTcl:DefineAlias "$site_3_0.cpd79" "Label20" vTcl:WidgetProc
"Toplevel4" 1

checkbutton $site_3_0.checkl \
-disabledforeground ftalalai -text {YES / NO} -variable cm_yes

vTcl:DefineAlias "$site_3_0.checkl" "Checkbuttonl" vTcl:WidgetProc
"Toplevel4" 1

bindtags $site_3_0.checkl "$site_3_0.checkl Checkbutton
Stop all _vTclBalloonn

bind $site_3_0.checkl «SetBalloon» {
set : :vTcl: :balloon: :'/,W {Check if critical module}

}
entry $site_3_0.cpd76 \
-background white -disabledforeground ftalalai -insertbackground
black \
-state readonly -textvariable delay

vTcl:DefineAlias "$site_3_0.cpd76" "Entry7a" vTcl:WidgetProc
"Toplevel4" 1

entry $site_3_0.entryl8 \
-background white -disabledforeground ftalalai -insertbackground
black \
-textvariable nadsp

vTcl:DefineAlias "$site_3_0.entryl8" "Entryl8" vTcl:WidgetProc
"Toplevel4" 1

label $site_3_0.cpd90 \
-disabledforeground ftalalai \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {NADSP - Vdd droop ('/,

of Vdd)}

vTcl:DefineAlias "$site_3_0.cpd90" "Label21" vTcl:WidgetProc
"Toplevel4" 1

place $site_3_0.1abell \
-in $site_3_0 -x 3 -y 15 -width 213 -height 20 -anchor nw \

-bordermode ignore
place $site_3_0.1abel2 \

-in $site_3_0 -x 7 -y 43 -width 148 -height 20 -anchor nw \

-bordermode ignore
place $site_3_0.1abel3 \

-in $site_3_0 -x 5 -y 72 -width 293 -height 20 -anchor nw \

-bordermode ignore

173

place $site_3_0.1abel4 \
-in $site_3_0 -x 5 -y 100 -width 163 -height 20 -anchor nw \

-bordermode ignore
place $site_3_0.1inel \

-in $site_3_0 -x 299 -y 5 -width 2 -height 576 -anchor nw \

-bordermode ignore
place $site_3_0.1abel5 \

-in $site_3_0 -x 5 -y 130 -width 164 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.1abel6 \

-in $site_3_0 -x 5 -y 160 -width 244 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.1abel7 \

-in $site_3_0 -x 2 -y 215 -width 189 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.labels \

-in $site_3_0 -x 5 -y 245 -width 143 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.entryl \

-in $site_3_0 -x 305 -y 15 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.entry2 \

-in $site_3_0 -x 305 -y 45 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.entry3 \

-in $site_3_0 -x 305 -y 72 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.entry4 \

-in $site_3_0 -x 305 -y 100 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.entry5 \

-in $site_3_0 -x 305 -y 130 -anchor nw -bordermode ignore
place $site_3_0.entry6 \

-in $site_3_0 -x 305 -y 160 -anchor nw -bordermode ignore
place $site_3_0.entry7 \

-in $site_3_0 -x 305 -y 215 -anchor nw -bordermode ignore
place $site_3_0.entry8 \

-in $site_3_0 -x 305 -y 245 -anchor nw -bordermode ignore
place $site_3_0.cpd75 \

-in $site_3_0 -x 305 -y 274 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd77 \

-in $site_3_0 -x 305 -y 303 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.1abell0 \

-in $site_3_0 -x 7 -y 330 -width 186 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.entryl0 \

-in $site_3_0 -x 305 -y 332 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.1abelll \

-in $site_3_0 -x 6 -y 360 -width 255 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.entryll \

-in $site_3_0 -x 305 -y 360 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd73 \

-in $site_3_0 -x 8 -y 274 -width 260 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd74 \

-in $site_3_0 -x 6 -y 303 -width 188 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.1abell2 \

-in $site_3_0 -x 4 -y 390 -width 167 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.entryl2 \

-in $site_3_0 -x 305 -y 390 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.1abell3 \

-in $site_3_0 -x 4 -y 418 -width 231 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd78 \

-in $site_3_0 -x 305 -y 419 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.entryl6 \

-in $site_3_0 -x 305 -y 449 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpdSO \

-in $site_3_0 -x 305 -y 479 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.1abell7 \

-in $site_3_0 -x 5 -y 449 -width 267 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd86 \

-in $site_3_0 -x 5 -y 479 -width 188 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd85 \

-in $site_3_0 -x 4 -y 188 -width 106 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd79 \

-in $site_3_0 -x 7 -y 511 -width 121 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.checkl \

-in $site_3_0 -x 335 -y 510 -anchor nw -bordermode ignore
place $site_3_0.cpd76 \

-in $site_3_0 -x 304 -y 187 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.entryl8 \

-in $site_3_0 -x 305 -y 540 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd90 \

-in $site_3_0 -x 5 -y 540 -anchor nw -bordermode inside
button $top.buttl \

-command [list vTcl:DoCmd0ption $top.buttl {incr x
set delay [expr l/$f_old]
set lvr [expr l-$hvr]
set new_cmd_file_id
[open $new_cmd_iilename a]
puts $new_cmd_file_id M.mods_des $x
$c_orig $twl $ulc $w_total_p $w_total_n $f_old $asf $cgf $c_de_cap
$hvr $c_wire_buff $tpfr $uspe $bsuf $temperature $cm_yes $nadsp\n"

close $new_cmd_file_id
if {$x<[expr $no.modules + 1]} {
set xl
[expr 0.01/$x]
set yl [expr 0.01/$no.modules]
set y [expr {$yl/$xl}

* 100]
set module.entry.precentage $y
set module_entry_step "$x out

of $no modules entered"
}
if {$x = $no_modules} {
wm withdraw
.interactive_individual_l
tk_messageBox -title "EIDA information"
-type ok -message "Module description complete !\nBegin Vdd scaling
characterization" -icon info
set alpha 0
set beta 0
set gamma 0

set delta 0
set epislon 0
set fsf.x 0
set fsf^y 0
wm deiconify
.interactive.process
set x 0
set cm_yes 1
} else {
set c.orig 0

set twl 0
set ulc 0
set v_total_p 0
set w_total_n 0
set f.old 1

set delay [expr l/$f_old]
set asf 0
set cgf 0
set c.de.cap 0
set

hvr 0
set lvr [expr l-$hvr]
set c_wire_buff 0
set tpfr 0
set uspe 0

set bsuf 0
set temperature 25
set cm.yes 1
set nadsp 0
wm withdraw
.interactive.individual.1
wm deiconify .interactive individual.!
}}]
\
-disabledforeground #alalal -text {Save and proceed}

vTcl:DefineAlias "$top.buttl" "Buttonl" vTcl:WidgetProc "Toplevel4"

174

button $top.butt2 \

-command {set vdd_spec
let e ta 0.95
set l_min 0
set s_gate_cap
set s_wire_cap
set s_width

set c_unit_old
set i_ds_old 0
set c_unit_new
set i_ds_new 0

0
0

0

0

protocol $top WM_DELETE_WINDOW "vTcl:FireEvent Stop «DelGteWindow»"

frame $top.framel \
-borderwidth 3 -relief groove -height 590 -width 470

vTcl:DefineAlias "Stop.framel" "Framel" vTcl:WidgetProc "ToplevelS"
1

bindtags $top.framel "$top.framel Frame $top all _TopLevelH

set site_3_0 $top.framel
label $site_3_0.1abell \
-disabledforeground ffalalal \
-font [vTcl:font:getFontFromDescr

set rpsf 0 "-family helvetica -size 12"] \

set rcsf 0 -text {Original load capacitance
set sf 0 CF>}
set decap_sens 0 vTcl:DefineAlias "$site_3_0.1abell
set i_leak_junc 0 "Toplevel8" 1

set i_leak_gate 0 label $site_3_0.1abel2 \
set i_gate_per_w 0 -disabledforeground #alalal \
set i_othv 0 -font [vTcl:font:getFontFromDescr
set i_owhv 0 "-family helvetica -size 12"] \
set -text {Total wire length (m)}
i_otlv 0 vTcl:DefineAlias "$site_3_0.1abel2
set i_owlv 0} \ "Toplevel8" 1

-disabledforeground #alalal -text {Clear All} label $site_3_0.1abel3 \
vTcl:DefineAlias "$top.butt2H "Button2" vTcl:WidgetProc "Toplevel-ftiisabledforeground #alalal \
1 -font [vTcl:font:getFontFromDescr

label $top.heading \ "-family helvetica -size 12"] \
-disabledforeground #alalal \ -text {Unit length wire cap,
-font [vTcl:font:getFontFromDescr all metal layers CF)}
"-family helvetica -size 12"] \ vTcl:DefineAlias "Ssite_3_0.1abel3" "Label4'
-text {Individual module "ToplevelS" 1

descriptors} label $site_3_0.1abel4 \
vTcl:DefineAlias "Stop.heading" "LabellO" vTcl:WidgetProc "Topleveififsabledforeground Salalal \
1 -font [vTcl:font:getFontFromDescr

ProgressBar $top.cpd73 \
-background #d6cdbb -foreground #000099 -height 15 -maximum
100 \
-relief raised -troughcolor #d9d9d9 -variable

module _entry _precent age
vTcl:DefineAlias "$top.cpd73" "ProgressBarl" vTcl:WidgetProc
"Topieve14" 1

entry Stop.cpd74 \
-background white -disabledforeground Salalal -insertbackground
black \

-relief groove -state readonly -tertvariable
module_entry_ st ep

vTcl:DefineAlias "$top.cpd74" "Entry3" vTcl:WidgetProc

Labell" vTcl:WidgetProc

"Label2" vTcl:WidgetProc

vTcl:WidgetProc

Label5" vTclrWidgetProc

place $top.framel \
-in Stop -x 10 -y 50 width 470 -height 590 -anchor nw \

-bordermode ignore
place Stop.buttl \

-in Stop -x 295 -y 660 -width 137 •height 28 -anchor nw \

-bordermode ignore
place $top.butt2 \

-in Stop -x 70 -y 660 -width 78 -height 28 -anchor nw \

-bordermode ignore
place Stop.heading \

-in Stop -x 15 -y 10 -width 205 -height 24 -anchor nw \

-bordermode ignore
place $top.cpd73

-in Stop -x 265 -y 5

-bordermode inside
place $top.cpd74 \

-in Stop -x 265 -y 25

-width 220 -height 15 -anchor nw \

•width 218 -height 22 -anchor nw \

-bordermode inside
vTcl:FireEvent Sbase «Ready»

}
proc vTclWindow.interactive_individual_l_edit {base} {

if {Sbase == ""} {
set base .interactive^individual 1 edit

}
if {[winfo exists Sbase]} {

wm deiconify Sbase; return
}

set top Sbase
vTcl:toplevel Stop -class Toplevel \
-highlightcolor black

wm withdraw Stop
wm focusmodel Stop passive
wm geometry Stop

488x693+341+114; update
wm maxsize Stop 1265 994
wm minsize

Stop 1 1
wm overrideredirect Stop 0
wm resizable Stop 1 1
wm

title Stop "Edit individual module descriptors"
vTcl:DefineAlias

"Stop" "ToplevelS" vTcl:Toplevel:WidgetProc "" 1
bindtags $top

"Stop Toplevel all JTopLevel"
vTcl:FireEvent Stop «Create»

family helvetica -size 12"] \
-text {Total PFET width Cm)}

vTcl:DefineAlias "$site_3_0.1abel4"
"Toplevel8" 1

Separator $site_3_0.1inel \
-background #d6cdbb -orient horizontal

vTcl:DefineAlias "$site_3_0.1inel" "Separatorl" vTcl:WidgetProc
"Toplevel8" 1

bind $site_3_0.1inel <Destroy> {
Widget::destroy %W; rename %tf {}

}
label Ssite_3_0.1abel5 \

Toplevel4"-disabledforeground #alalal \

-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Total NFET width (m)}

vTclrDefineAlias "$site_3_0.1abel5n "Label6n vTcl:WidgetProc
"Toplevel8" 1

label $site_3_0.1abel6 \
-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Original operating

frequency (Hz)}
vTcl:DefineAlias B$site_3_0.1abel6n "Label7" vTcl:WidgetProc
"Toplevel8" 1

label Ssite_3_0.1abel7 \
-disabledforeground Salalal \
-font [vTc1:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Average switching
factor}

vTcl:DefineAlias n$site_3_0.1abel7" "Label8" vTcl:WidgetProc
"Toplevel8" 1

label Ssite_3_0.1abel8 \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Clock gating factor}

vTcl:DefineAlias "$site_3_0.1abel8" "Label9" vTcl:WidgetProc
"ToplevelS" 1

entry $site_3_0.entryl \
-background white -disabledforeground Salalal -insertbackground
black \
-state disabled -textvariable c_orig

vTcl:DefineAlias "$site_3_0.entryl" "Entryl" vTclrWidgetProc
"Toplevel8" 1

entry $site_3_0.entry2 \
-background white -disabledforeground Salalal -insertbackground
black \
-state disabled -textvariable twl

vTcl:DefineAlias "$site_3_0.entry2" "Entry2" vTclrWidgetProc
"Toplevel8" 1

entry Ssite_3_0.entry3 \
-background white -disabledforeground Salalal -insertbackground
black \
-state disabled -textvariable ulc -validate none

vTclrDefineAlias "$site_3_0.entry3M "Entry4" vTcl:WidgetProc
"Toplevel8" 1

entry $site_3_0.entry4 \
-background white -disabledforeground Salalal -insertbackground
black \
-state disabled -textvariable w_total_p

vTcl:DefineAlias "$site_3_0.entry4" "Entry5" vTclrWidgetProc
"ToplevelS" 1

entry $site_3_0.entry5 \

175

-background white -disabledforeground ftalalal -insertbackground
black \
-state disabled -textvariable w_total_n

vTclrDefineAlias "$site_3_0.entry5" "Entry6" vTcl:WidgetProc
"Toplevel8" 1

entry $site_3_0.entry6 \
-background white -disabledforeground ftalalal -insertbackground
black \
-state disabled -textvariable f_old

vTcl:DefineAlias "$site_3_0.entry6" "Entry7M vTcl:WidgetProc
"Toplevel8" 1

entry $site_3_0.entry7 \
-background white -disabledforeground ftalalal -insertbackground
black \
-state disabled -textvariable asf -validate focusin \

-validatecommand {set delay [expr l/$f_old]
return 1}

vTcl:DefineAlias H$site_3_0.entry7" "Entry8" vTclrWidgetProc
MToplevel8" 1

entry $site_3_0.entry8 \
-background white -disabledforeground #alalal -insertbackground
black \
-state disabled -textvariable cgf

vTcl:DefineAlias "$site_3_0.entry8" "Entry9" vTclrWidgetProc
"Toplevel8" 1

entry $site_3_0.cpd75 \
-background white -disabledforeground tfalalal -insertbackground
black \
-state disabled -textvariable c_de_cap

vTclrDefineAlias "$site_3_0.cpd75" "EntrylO" vTclrWidgetProc
"Toplevel8" 1

entry $site_3_0.cpd77 \
-background white -disabledforeground ftalalal -insertbackground
black \
-state disabled -textvariable hvr

vTclrDefineAlias "$site_3_G.cpd77" "Entryll" vTclrWidgetProc
"Toplevel8" 1

label $site_3_0.1abell0 \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12H] \
-state disabled -text {Ratio
if Lo-to-Hi Vt FETS}

vTclrDefineAlias "$site_3_0.labellO" "Label3" vTclrWidgetProc
"Toplevel8" 1

entry $site_3_0.entryl0 \
-background white -disabledforeground ftalalal -insertbackground
black \
-state readonly -textvariable lvr

vTclrDefineAlias "$site_3_0.entryl0" "Entryl2" vTclrWidgetProc
"Toplevel8" 1

label $site_3JD.labelll \
-disabledforeground ftalalal \
-font [vTclrfontrgetFontFromDescr
"-family helvetica -size 12H] \
-text {Wire buffers ('/, of total

FET width)}

vTclrDefineAlias "$site_3_0.1abellln "Labell2" vTclrWidgetProc
"Toplevel8" 1

entry $site_3_0.entryll \
-background white -disabledforeground #alalal -insertbackground
black \
-state disabled -textvariable c_wire_buff -validate

focusin \
-validatecommand {set lvr [expr l-$hvr]

return 1}
vTclrDefineAlias "$site_3_0.entryll" "Entryl3H vTclrWidgetProc
"Topieve18" 1

label $site_3_0.cpd73 \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Decap added (*/, of total

FET width)}

vTclrDefineAlias "$site_3_0.cpd73" "Labell3H vTclrWidgetProc
"Toplevel8" 1

label $site_3_0.cpd74 \
-disabledforeground ftalalal \
-font [vTclrfont:getFontFromDescr
"-family helvetica -size 12"] \
-text {Ratio of Hi-to-Lo Vt

FETS}

vTclrDefineAlias "$site_3_0.cpd74" "Labell4" vTclrWidgetProc
"Toplevel8" 1

label $site_3_0.1abell2 \
-disabledforeground ftalalal \
-font [vTclrfontrgetFontFromDescr
"-family helvetica -size 12"] \
-text {Typical path FET ratio}

vTclrDefineAlias "$site_3_0.Iabell2" "Labell5" vTclrWidgetProc
"ToplevelS" 1

entry $site_3_0.entryl2 \
-background white -disabledforeground ftalalal -insertbackground
black \
-state disabled -textvariable tpfr

vTclrDefineAlias "$site_3_0.entryl2" "Entryl4" vTclrWidgetProc
"Toplevel8" 1

label $site_3_0.1abell3 \
-disabledforeground ftalalal \
-font [vTclrfont:getFontFromDescr
"-family helvetica -size 12"] \

-text {Useful skew perf
enhanc ement}

vTclrDefineAlias "$site_3_0.1abell3" "Labell6" vTclrWidgetProc
"ToplevelS" 1

entry $site_3_0.cpd78 \
-background white -disabledforeground ftalalal -insertbackground
black \
-state disabled -textvariable uspe

vTclrDefineAlias "$site_3_0.cpd78" "Entryl5" vTclrWidgetProc
"ToplevelS" 1

entry $site_3_0.entryl6 \
-background white -disabledforeground ftalalal -insertbackground
black \
-state disabled -textvariable bsuf

vTclrDefineAlias "$site_3_0.entryl6" "Entryl6" vTclrWidgetProc
"ToplevelS" 1

entry $site_3_0.cpd80 \
-background white -disabledforeground ftalalal -insertbackground
black \
-state disabled -textvariable temperature

vTclrDefineAlias "$site_3_0.cpd80" "Entryl7" vTclrWidgetProc
"Toplevel8" 1

label $site_3_0.1abell7 \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-text {Interconnect speedup

due to buffers}
vTclrDefineAlias "$site_3_0.1abell7" "Labell8" vTclrWidgetProc
"ToplevelS" 1

label $site_3_0.cpd86 \
-disabledforeground ftalalal \
-font [vTclrfontrgetFontFromDescr
"-family helvetica -size 12"] \
-text {Temperature of

operation}

vTclrDefineAlias "$site_3_0.cpd86" HLabell9" vTclrWidgetProc
"Toplevel8" 1

entry $site_3_0.cpd76 \
-background white -disabledforeground ftalalal -insertbackground
black \
-state readonly -textvariable delay

vTclrDefineAlias "$site_3_0.cpd76" "Entryl8" vTclrWidgetProc
"ToplevelS" 1

label $site_3_0.cpd85 \
-disabledforeground ftalalal \
-font [vTclrfontrgetFontFromDescr
"-family helvetica -size 12"] \
-state disabled -text {Delay
(1/freq)}

vTclrDefineAlias "$site_3_0.cpd85" "Labelll" vTclrWidgetProc
"ToplevelS" 1

label $site_3_0.cpd79 \
-disabledforeground ftalalal \
-font [vTclrfontrgetFontFromDescr
"-family helvetica -size 12"] \
-text {Critical module?}

vTclrDefineAlias "$site_3_0.cpd79" "Label20" vTclrWidgetProc
"ToplevelS" 1

checkbutton $site_3_0.checkl \
-disabledforeground ftalalal -state disabled -text {YES / NO} \

-variable cm_yes
vTclrDefineAlias "$site_3_0.checkl" "Checkbuttonl" vTclrWidgetProc
"Toplevel8" 1

bindtags $site_3_0.checkl "$site_3_0.checkl Checkbutton
$top all _vTclBalloon"

bind $site_3,0.checkl «SetBalloon» {
set r rvTclr rballoonr r'/.W {Check if critical module}

}
entry $site_3_0.entryl8 \
-background white -disabledforeground ftalalal -insertbackground
black \
-state disabled -textvariable nadsp

vTclrDefineAlias "$site_3_0.entryl8" "Entryl9" vTclrWidgetProc
"Toplevel8" 1

label $site_3_0.cpd91 \
-disabledforeground ftalalal \
-font [vTclr font:getFontFromDescr
"-family helvetica -size 12"] \
-text {NADSP - Vdd droop (*/.

of Vdd)}

vTclrDefineAlias "$site_3_0.cpd91" "Label21" vTclrWidgetProc
"ToplevelS" 1

place $site_3_0.label! \
-in $site_3_0 -x 3 -y 15 -width 213 -height 20 -anchor nw \

-bordermode ignore
place $site_3_0.1abel2 \

-in $site_3_0 -x 7 -y 43 -width 148 -height 20 -anchor nw \

-bordermode ignore
place $site_3_0.1abel3 \

-in $site_3_0 -x 5 -y 72 -width 293 -height 20 -anchor nw \

-bordermode ignore
place $site_3_0.1abel4 \

-in $site_3_0 -x 5 -y 100 -width 163 -height 20 -anchor nw \

-bordermode ignore
place $site_3_0.1inel \

-in $site_3_0 -x 299 -y 5 -width 2 -height 571 -anchor nw \

176

-bordermode ignore
place $site_3_0.1abel5 \

-in $site_3_0 -x 5 -y 130 -width 164 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.1abel6 \

-in $site_3_0 -x 5 -y 160 -width 244 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.1abel7 \

-in $site_3_0 -x 2 -y 215 -width 189 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.1abel8 \

-in $site_3_0 -x 5 -y 245 -width 143 -height 24 -anchor nw \

-bordermode ignore
place $siteJ3_0.entryl \

-in $site_3_0 -x 305 -y 15 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.entry2 \

-in $site_3_0 -x 305 -y 45 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site,3_0.entry3 \

-in $site_3_0 -x 305 -y 72 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.entry4 \

-in $site_3_0 -x 305 -y 100 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.entry5 \

-in $site_3_0 -x 305 -y 130 -anchor nw -bordermode ignore
place $site_3_0.entry6 \

-in $site_3_0 -x 305 -y 160 -anchor nw -bordermode ignore
place $site_3_0.entry7 \

-in $site_3_0 -x 305 -y 215 -anchor nw -bordermode ignore
place $site_3_0.entry8 \

-in $site_3_0 -x 305 -y 245 -anchor nw -bordermode ignore
place $site_3_0.cpd75 \

-in $site_3_0 -x 305 -y 274 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd77 \

-in $site_3_0 -x 305 -y 303 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.1abell0 \

-in $site_3_0 -x 7 -y 330 -width 186 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.entryl0 \

-in $site_3_0 -x 305 -y 332 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.1abelll \

-in $site_3_0 -x 6 -y 360 -width 255 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.entryll \

-in $site_3_0 -x 305 -y 360 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd73 \

-in $site_3_0 -x 8 -y 274 -width 265 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd74 \

-in $site_3_0 -x 6 -y 303 -width 188 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.1abel!2 \

-in $site_3_0 -x 4 -y 390 -width 167 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.entryl2 \

-in $site_3_0 -x 305 -y 390 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.1abell3 \

-in $site_3_0 -x 4 -y 418 -width 231 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd78 \

-in $site_3_0 -x 305 -y 419 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.entryl6 \

-in $site_3_0 -x 305 -y 449 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd80 \

-in $site_3_0 -x 305 -y 480 -width 148 -height 22 -anchor nw \

-bordermode ignore
. place $site_3_0.1abell7 \

-in $site_3_0 -x 5 -y 449 -width 267 -height 24 -anchor nw \

-bordermode ignore

place $site_3_0.cpd86 \
-in $site_3_0 -x 5 -y 479 -width 188 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd76 \

-in $site_3_0 -x 304 -y 187 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd85 \

-in $site_3_0 -x 4 -y 188 -width 106 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.cpd79 \

-in $site_3_0 -x 7 -y 511 -width 121 -height 24 -anchor nw \

-bordermode ignore
place $site_3_0.checkl \

-in $site_3_0 -x 335 -y 510 -anchor nw -bordermode ignore
place $site_3_0.entryl8 \

-in $site_3_0 -x 305 -y 540 -width 148 -height 22 -anchor nw \

-bordermode ignore
place $site_3_0.cpd91 \

-in $site_3_0 -x 5 -y 540 -anchor nw -bordermode inside
button $top.buttl \

\
-command [list vTcl:DoCmd0ption $top.buttl {incr x

wm withdraw .interactive_individual_l_edit
set edit_curr_mod
[tk_messageBox -title "Please confirm edit" -message "Edit
current (\# $x) module?" -type yesno -icon question]
wm deiconify
.interactive_individual_l_edit
if {[string equal $edit curr_mod "yes"]}

i
set choose.edit "Proceed"
.interactive_individual_l_edit.buttl config

-state disabled "*
.interactive_individual_l_edit.butt3 config -state normal

.interactive_individual_l_edit.framel.entryl config -state normal

.interactive_individual_l_edit-framel.entry2 config -state normal

.interactive_individual_l_edit.framel.entry3 config -state normal

.interactive_individual_l_edit.framel.entry4 config -state normal

.interactive_individual_l_edit.framel,entry5 config -state normal

.interactive_individual_l_edit.framel.entry6 config -state normal

.interactive_individual_l_edit.framel.entry7 config -state normal

.interactive_individual_l_edit.framel.entry8 config -state normal

.interactive_individual_l_edit.framel.cpd75 config -state normal

.interactive_individual_l_edit.framel.cpd77 config -state normal

.interactive_individual_l_edit.framel.entryll config -state normal

.interactive_individual_l_edit.framel.entryl2 config -state normal

.interactive_individual_l_edit.framel.cpd78 config -state normal

-interactive_individual_l_edit-framel.entryl6 config -state normal

.interactive_individual_l_edit.framel.cpd80 config -state normal

.interactive_individual_l_edit.framel.checkl config -state normal
.interactive_individual_l_edit.framel.entryl8 config -state normal

else {
if {$x<[expr $read_modules_des + 1]} {
set xl [expr 0.01/$x]

set yl [expr 0.01/$read_modules_des]
set y [expr {$yl/$xl} *
100]
set module_entry_precentage $y
set module_entry_step "$x

out of $read_modules_des entered"
if {$x != $read_modules_des} {

catch {exec more $cmd_file_to_edit I grep ",mods_des [expr $x+l]"
} read_mod_des
set uu [split $read_mod_des " H]
set c_orig [lindex

$uu 2]
set twl [lindex $uu 3]
set ulc [lindex Suu 4]
set w_total_p
[lindex $uu 5]
set w_total_n [lindex $uu 6]
set f_old [lindex

$uu 7]
set delay [expr l/$f_old]
set asf [lindex $uu 8]
set cgf
[lindex $uu 9]
set c_de_cap [lindex $uu 10]

177

set hvr [lindex $uu 11]

set lvr [expr l-$hvr]
set c_wire_buff [lindex $uu 12]
set tpfr
[lindex $uu 13]
set uspe [lindex $uu 14]
set bsuf [lindex $uu 15]

set temperature [lindex $uu 16]
set cm_yes [lindex $uu 17]
set

nadsp [lindex $uu 18]
win withdraw . interactive_individual_l_edit

wm deiconify .interactive_individual_l_edit
}
}
}
if {$x --

$read.modules_des} {
if {[string equal $edit_curr_mod "no"]} {

wm withdraw .interactive_individual_l_edit
tk_messageBox -title
"EIDA information" -type ok -message "Module description edit complete
!\nEdit Vdd scaling characterization" -icon info
catch {exec more
$cmd_file_to_edit I grep ".pro.des" } read_mod_des
set yy [split

$read_mod_des " "]
set alpha [lindex $yy 1]
set beta [lindex $yy

2]
set gamma [lindex $yy 3]
set delta [lindex $yy 4]
set epislon
[lindex $yy 5]
set fsf_x [lindex $yy 6]
set fsf.y [lindex $yy 7]
wm
deiconify .interactive.process.edit
} else {
set curr mod_is_final 1
}

}

button $top.butt3 \
\
-command [list vTcl:DoCmdOption $top.butt3 {set delay [expr
l/$f_old]
set lvr [expr l-$hvr]
set newline "$c„orig $twl $ulc $w_total_p

$w_total_n $f_old $asf $cgf $c.de_cap $hvr $c.wire_buff
$tpfr $uspe $bsuf $temperature $cm_yes $nadsp"
catch {exec

\.\./scripts/swapline\.pl $x $newline $cmd_file_to_edit \>
temp_cmd_file } junk
catch {exec cp temp.cmd.file $cmd_file_to_edit

} junk3
.interactive_individual_l^edit.buttl config -state normal

.interactive_individual_l_edit.butt3 config -state disabled
.interactive.individual.l.edit.framel.entry! config -state disabled

.interactive.individual_l_edit.framel.entry2 config -state disabled

.interactive.individual_l_.edit.framel.entry3 config -state disabled

.interactive_individual_l_edit.framel.entry4 config -state disabled

interactive_individual_l_edit.framel.entry5 config -state disabled

interactive_individual_l_edit.framel.entry6 config -state disabled

.interactive_individual_l_edit.framel.entry7 config -state disabled

.interactive_individual_l_edit.framel.entry8 config -state disabled

.interactive_individual_l_edit.framel.cpd75 config -state disabled

.interactive_individual.l._edit.framel.cpd77 config -state disabled

.interactive_individual_l_edit.framel.entryll config -state disabled

. interactive_individual_l__edit.framel .entryl2 config -state disabled

.interactive_individual_l_edit.framel.cpd78 config -state disabled
.interactive_individual_l_edit.framel.entryl6 config -state disabled

.interactive_individual_l_edit.framel.cpd80 config -state disabled
.interactive_individual_l_edit.framel.checkl config -state disabled
.interactive_individual_l_edit.framel.entryl8 config -state disabled

set choose_edit "Edit / Skip"
-disabledforeground #alalal -text Proceed -textvariable
choose.edit

vTcl:DefineAlias "$top.buttl" "Buttonl" vTcl:WidgetProc "Toplevel8"set yl [expr 0.01/$read_modules_des]

if {$x<[expr $read_modules_des + 1]} {
set xl [expr 0.01/$x]

button $top.butt2 \
set y [expr {$yl/$xl> * 100]

set module_entry_precentage $y
set module_entry_step "$x out of

$read modules des entered"
}
if {$curr_mod_is.final == 1> {
wm withdraw

. i n t e r a c t i v e , i n d i v i d u a l s . e d i t
tk_messageBox - t i t l e "EIDA information"

-type ok -message "Module descr ipt ion edi t complete !\nEdit Vdd scal ing
character izat ion" -icon info

catch {exec more $cmd_file. to.edit I grep
".pro_des" } read_mod_des
set yy [sp l i t $read_mod_des " "]
set alpha

[lindex $yy 1]
set beta [lindex $yy 2]
set gamma [lindex $yy 3]
set

de l t a [lindex $yy 4]
set epislon [lindex $yy 5]
set fsf_x [lindex $yy

6]
set fsf_y [lindex $yy 7]
wm deiconify . interact ive_process_edit

vTcl:DefineAlias "$top.butt2" "Button2" vTcl:WidgetProc "Toplevelffilse {
1 catch {exec more $cmd.f i le . to .ed i t I grep ".mods_des [expr $x+l]"

label $top.heading \ } read_mod_des
-disabledforeground #a la la l \ set uu [sp l i t $read__mod_des " "]
-font [vTcl:font:getFontFromDescr set c .or ig [lindex

"-family helvet ica - s i ze 12"] \ $uu 2]
- t ex t {Individual module set twl [lindex $uu 3]

descr ip tors} set ulc [lindex $uu 4]
vTcl:DefineAlias "$top.heading" "LabellO" vTcl:WidgetProc "Toplevelsffit w . to ta l .p
1 [lindex $uu 5]

set w_total_n [lindex $uu 6]
set f_old [lindex $uu 7]

-command {set vdd_spec 0
set e ta 0.95
set l_min 0
set s_gate_cap 0
set s.wire.cap 0
set s.width

0
set c_unit_old 0
set i.ds.old 0
set c.unit.new 0
set i_ds_new 0
set rpsf 0
set rcsf 0
set sf 0
set decap_sens 0
set i_.leak.junc 0
set i_leak_gate 0
set i_gate_per_w 0
set i.othv 0
set i.owhv 0
set
i_otlv 0
set i.owlv 0} \

-disabledforeground #alalal -text {Clear All}

ProgressBar $top.cpd73 \
-background #d6cdbb -foreground #000099 -height 15 -maximum
100 \
-relief raised -troughcolor #d9d9d9 -variable

module.entry _prec entage
vTcl:DefineAlias "$top.cpd73" "ProgressBarl" vTcl:WidgetProc
"Toplevel8" 1

entry $top.cpd74 \
-background white -disabledforeground #alalal -insertbackground
black \
-relief groove -state readonly -textvariable

module.entry.step

set asf [lindex $uu 8]
set cgf [lindex $uu 9]
set c.de.cap [lindex

$uu 10]
set hvr [lindex $uu 11]
set c.wire.buff [lindex $uu 12]
set

tpfr [lindex $uu 13]
set uspe [lindex $uu 14]

vTcl:DefineAlias "$top.cpd74" "Entry3" vTcl:WidgetProc "Toplevel8" set bsuf [lindex $uu 15]
1

178

http://interactive.individual_l_.edit
http://i_.leak.junc

set temperature [lindex $uu 16]
set cm_yes [lindex $uu 17]
set nadsp
[lindex $uu 18]
}}] \

-disabledforeground #alalal -state disabled -text {Save edit}
"Button3" vTcl:WidgetProc nToplevel8M vTcl:DefineAlias "$top.butt3"

1
place Stop.framel \
-in $top -x 10 -y 50 -width 470 -height 590 -anchor nw \

-bordermode ignore
place $top.buttl \

-in Stop -x 385 -y 655

-activebackground ftf6f7f6 -activeforeground black
-disabledforeground ftalalal \
-font [vTcl:font:getFontFroraDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black -text gamma

width 67 -height 28 -anchor nw \

-bordermode ignore
place $top.butt2 \

-in $top -x 70 -y 655 -width 78

-bordermode ignore
place $top.heading \

-height 28 -anchor nw \

Stop -x 15 -y 10 -width 205 -height 24 -anchor nw \

-bordermode ignore
place $top.cpd73

-in Stop -x 265 -y 5 -width 220 -height 15 -anchor nw \

-bordermode inside
place $top.cpd74 \

-in Stop -x 265 -y 25 -width 218 -height 22 -anchor nw \

-bordermode inside
place $top.butt3 \

-in Stop -x 220 -y 655 -anchor nw -bordermode ignore
vTcl:FireEvent Sbase «Ready»

}
proc vTclWindow.interactive.process {base} {

if {$base == ""} {
set base .interactive process

}
if {[winfo exists Sbase]} {

wm deiconify $base; return
}

set top Sbase
vTcl:toplevel Stop -class Toplevel \
-relief groove -highlightcolor black

wm withdraw Stop
wm focusmodel Stop passive
wm geometry Stop

651x408+118+246; update
wm maxsize Stop 1265 994
wm minsize Stop 1

1
wm overrideredirect $top 0
wm resizable $top 0 0
wm title Stop

"Vdd scaling characterization"
vTcl:DefineAlias "Stop" "Toplevel5"

vTcl:Toplevel:WidgetProc " " 1
bindtags Stop "Stop Toplevel all

_TopLevel"
vTcl:FireEvent Stop «Create»
wm protocol Stop

WM_DELETE_WIND0W "vTcl:FireEvent Stop «DeleteWindow»"
canvas

Stop.canvas1 \
-borderwidth 2 -closeenough 1.0 -height 362 -insertbackground
black \
-relief ridge -selectbackground ftclc2cl -selectforeground

black \
-width 640

vTcl:DefineAlias "Stop.canvasl" "Canvasl

label Stop.canvasl.labell \
-activebackground ftf6f7f6 -activeforeground black \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black \
-text {Enter constants for Vdd scaling equations}

vTcl:DefineAlias "Stop.canvasl.labell" "Labell" vTcl:WidgetProc
"Toplevel5" 1

label Stop.canvasl.label2 \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black -text {alpha }

vTcl:DefineAlias "Stop.canvasl.label2" "Label2" vTcl:WidgetProc
"ToplevelS" 1

label Stop.canvasl.cpd77 \
-activebackground ftf6f7f6 -activeforeground black \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black -text beta

vTcl:DefineAlias "Stop.canvasl.cpd77" "Label3" vTcl:WidgetProc
"Toplevel5" 1

label Stop.canvasl.cpd78 \

vTcl:DefineAlias "Stop.canvasl.cpd78" "Label4" vTcl:WidgetProc
"Toplevel5" 1

label Stop.canvasl,cpd79 \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black -text delta

vTcl:DefineAlias "Stop.canvasl.cpd79" "Label5" vTcl:WidgetProc
"Toplevel5" 1

label Stop.canvasl.cpd80 \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black -text epislon

vTcl:DefineAlias "Stop.canvasl.cpd80" "Label6" vTcl:WidgetProc
"Toplevel5" 1

label Stop.canvasl.cpd81 \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black -text X
vTcl:DefineAlias "Stop.canvasl.cpd81" "Label7" vTcl:WidgetProc
"Toplevel5" 1

label Stop.canvasl.cpd82 \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground ftalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black -text Y

vTcl:DefineAlias "Stop.canvasl.cpd82" "Label8" vTcl:WidgetProc
"Toplevel5" 1

Separator $top.canvasl.linel \
-background #d6cdbb

vTcl:DefineAlias "Stop.canvasl.linel" "Separatorl" vTcl:UidgetProc
"ToplevelS" 1

bind Stop.canvasl.linel <Destroy> {
Widget::destroy '/,W; rename */,W {}

}
entry Stop.canvasl.entryl \
-background white -disabledforeground ftalalal -foreground black \
-highlightcolor black -insertbackground black \
-selectbackground
ftclc2cl -selectforeground black -textvariable alpha

vTcl:DefineAlias "Stop.canvasl.entryl" "Entryl" vTcl:WidgetProc
"Toplevel5" 1

entry Stop.canvasl.cpd85 \
-background white -disabledforeground ftalalal -foreground black \
-highlightcolor black -insertbackground black \
-selectbackground
ftclc2cl -selectforeground black -textvariable beta

vTcl:DefineAlias "Stop.canvasl.cpd85" "Entry2" vTcl:WidgetProc
"Toplevel5" 1

entry Stop.canvasl.cpd86 \
-background white -disabledforeground ftalalal -foreground black \
-highlightcolor black -insertbackground black \
-selectbackground

ftclc2cl -selectforeground black -textvariable gamma
vTcl:DefineAlias "Stop.canvasl.cpd86" "Entry3" vTcl:WidgetProc

vTcl:WidgetProc "Toplevel5" "Toplevel5" 1
entry Stop.canvasl.cpd87 \
-background white -disabledforeground ftalalal -foreground black \
-highlightcolor black -insertbackground black \
-selectbackground

#clc2cl -selectforeground black -textvariable delta
vTcl:DefineAlias "Stop.canvasl.cpd87" "Entry4" vTcl:WidgetProc
"Toplevel5" 1

entry Stop.canvasl,cpd88 \
-background white -disabledforeground ftalalal -foreground black \
-highlightcolor black -insertbackground black \
-selectbackground

ftclc2cl -selectforeground black \
-textvariable epislon

vTcl:DefineAlias "Stop.canvasl.cpd88" "Entry5" vTcl:WidgetProc
"ToplevelS" 1

entry Stop.canvasl.cpd89 \
-background white -disabledforeground ftalalal -foreground black \
-highlightcolor black -insertbackground black \
-selectbackground

#clc2cl -selectforeground black -textvariable fsf_x
vTcl:DefineAlias "Stop.canvasl.cpd89" "Entry6" vTcl:WidgetProc
"Toplevel5" 1

entry Stop.canvasl.cpd90 \
-background white -disabledforeground ftalalal -foreground black \
-highlightcolor black -insertbackground black \
-selectbackground

ftclc2cl -selectforeground black -textvariable fsf_y
vTcl:DefineAlias "Stop.canvasl.cpd90" "Entry7" vTcl:WidgetProc
"Toplevel5" 1

button Stop.canvasl.butt2 \

179

-activebackground #f6f7f6 -activeforeground black \
-disabledforeground Salalal -foreground black -highlightcolor
black \
-image [vTcl:image:get_image [file join / home Charles

EIDA_gui images eqnl_s.jpg]] \
-text button

vTcl:DefineAlias "Stop.canvasl.butt2" "Button2" vTcl:Widgetproc
"Toplevel5" 1

button $top.canvasl.cpd73 \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground ftalalal -foreground black -highlightcolor
black \
-image [vTcl:image:get_image [file join / home Charles

EIDA_gui images eqn2_s.jpg]] \
-text button

vTcl:DefineAlias "Stop.canvasl.cpd73H "Button3" vTclrWidgetProc
"Toplevel5" 1

button $top.buttl \
\
-command {set new_cmd_file_id [open $new_cmd_filename a]

puts $new_cmd_file_id H\# Vdd sclaing characterization parameters\n"
puts
$new_cmd_file_id "\# alpha,beta,gamma,delta,epislon,fsf_x,fsf_y\n"

•height 25 -anchor nw \

•height 178 -anchor n« \

puts $new_cmd_file_id M.pro_des $alpha $beta $gamma
Sdelta $epislon $fsf_x $fsf_y\n\n"
puts $new_cmd_file_id
"\ff Begin module design recipe\n"
puts $new_cmd_file_id "\#
vary.vdd.vdd.applied.use.dual.vt.use.abb.use.abb^fbjUse.abb.rb.use.stXn" 651x408+44+128; update

wm maxsize $top 1265 994

place $top.canvasl.cpd90 \
-in Stop.canvasl -x 60 -y 315 -width 150

-bordermode inside
place Stop.canvasl.butt2 \

-in Stop.canvasl -x 275 -y 41 -width 348

-bordermode ignore
place Stop.canvasl.cpd73 \

-in Stop.canvasl -x 275 -y 270 -width 333 -height 68 -anchor nw \

-bordermode inside
place Stop.buttl \

-in Stop -x 250 -y 375 -anchor nw -bordermode ignore
vTcl;FireEvent Sbase «Ready»

>
proc vTclWindow.interactive_process_edit {base} {

if {$base == ""} {
set base .interactive_process_edit

}
if {[winfo exists Sbase]> {

wm deiconify Sbase; return
}

set top Sbase

vTcl:toplevel Stop -class Toplevel \
-relief groove -highlightcolor black

wm withdraw Stop
wm focusmodel $top passive
wm geometry Stop

-message "Command file creation

close $new_cmd_file_id
wm withdraw .interactive_process
tk_messageBox
-title "EIDA information" -type ok
complete" -icon info
set vdd_bump_for_cmd_file_run 0
set vdd_applied

$vdd_bump
.design_choice.canvasl.entryl config -state disabled
set

vary..vdd 0
set use_dual_vt 0
set use_abb 0
set use_st 0
wm deiconify
.design^choice} \
-disabledforeground #alalal -text {Save and proceed}

vTcl:DefineAlias "Stop.buttl" "Buttoni"
1

place Stop.canvasl \
-in Stop -x 5 -y 5 -width 640 -height 362 -anchor nw \

-bordermode ignore
place Stop.canvasl.labell \

-in Stop.canvasl -x 5 -y 10 -anchor nw -bordermode ignore
place Stop.canvasl.label2 \

-in Stop.canvasl -x 15 -y 45 -width 50 -height 24 -anchor nw \

-bordermode ignore
place Stop.canvasl.cpd77 \

-in Stop.canvasl -x 15 -y 80 -anchor nw -bordermode inside
place Stop.canvasl.cpd78 \

-in Stop.canvasl -x 13 -y 120 -width 61 -height 24 -anchor nw \

-bordermode ignore
place Stop.canvasl.cpd79 \

-in Stop.canvasl -x 15 -y 155 -anchor nw -bordermode inside
place Stop.canvasl.cpd80 \

-in Stop.canvasl -x 15 -y 190 -anchor nw -bordermode inside
place Stop.canvasl.cpd81 \

-in Stop.canvasl -x 15 -y 270 -anchor nw -bordermode inside
place Stop.canvasl.cpd82 \

-in Stop.canvasl -x 15 -y 320 -anchor nw -bordermode inside
place Stop.canvasl.linel \

-in Stop.canvasl -x 10 -y 244 -width 611 -height 2 -anchor nw \

-bordermode ignore
place Stop.canvasl.entryl \

-in Stop.canvasl -x 116 -y 45 -width 150 -height 25 -anchor nw \

-bordermode ignore
place Stop.canvasl-cpd85 \

-in Stop.canvasl -x 116 -y 80 -width 150

-bordermode ignore
place Stop.canvasl.cpd86 \

-in Stop.canvasl -x 116 -y 118

-bordermode ignore
place Stop.canvasl.cpd87 \

-in Stop.canvasl -x 116 -y 155 -width 150 -height 25 -anchor nw \

-bordermode ignore
place Stop.canvasl.cpd88 \

-in Stop.canvasl -x 115 -y 190 -width 150 -height 25 -anchor nw \

-bordermode ignore
place Stop.canvasl.cpd89 \

-in Stop.canvasl -x 60 -y 265 -width 150

-bordermode inside

wm minsize Stop
1 1

wm overrideredirect Stop 0
wm resizable Stop 0 0
wm title

Stop "Edit Vdd scaling characterization"
vTcl:DefineAlias "Stop"

"Toplevel9" vTcl:Toplevel:WidgetProc "" 1
bindtags Stop "Stop

Toplevel all _TopLevel"
vTcl:FireEvent Stop «Create»
wm protocol

Stop WM_DELETE_WINDOW "vTcl:FireEvent Stop «DeleteWindow»"
canvas

Stop.canvasl \
-borderwidth 2 -closeenongh 1.0 -height 362 -insertbackground
black \

vTcl:WidgetProc "Toplevel5"-relief ridge -selectbackground #clc2cl -selectforeground
black \
-width 640

vTcl:DefineAlias "Stop.canvasl" "Canvasl" vTcl:WidgetProc HToplevel9"
1

label Stop.canvasl.label1 \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground #alalal \

-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black \
-text {Enter constants for Vdd scaling equations}

vTcl:DefineAlias "Stop.canvasl.labell" "Labell" vTcl:WidgetProc
"Toplevel9H 1

label Stop.canvas1.label2 \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black -text {alpha }
vTcl:DefineAlias "Stop.canvas1,label2" "Label2M vTcl:WidgetProc
"Toplevel9n 1

label Stop.canvas1.cpd77 \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black -text beta

vTcl:DefineAlias "Stop.canvas1.cpd77" "Label3" vTcl:WidgetProc
"Toplevel9" 1

label Stop.canvasl.cpd78 \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black -text gamma

vTcl:DefineAlias "Stop.canvasl,cpd78" "Label4" vTclrWidgetProc
"Toplevel9" 1

label Stop.canvasl.cpd79 \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black -text delta

vTcl:DefineAlias "Stop.canvasl.cpd79" "Label5" vTcl:WidgetProc
"Toplevel9" 1

label Stop.canvas1.cpd80 \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground tfalalal \

•height 25 -anchor nw \

•width 150 -height 25 -anchor nw \

•height 25 -anchor nw \

180

-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black -text epislon
vTcl:DefineAlias "Stop.canvasl.cpd80" "Label6" vTcl:WidgetProc
"Toplevel9" 1

label $top.canvasl.cpd81 \
-activebackground Sf6f7f6 -activeforeground black \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \

-foreground black -highlightcolor
black -text X

vTcl:DefineAlias "$top.canvasl.cpd81" "Label7" vTcl:WidgetProc
"Toplevel9" 1

label $top.canvasl.cpd82 \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground #alalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black -text Y

vTcl:DefineAlias "$top.canvas1.cpd82" "Label8" vTcl:WidgetProc
"Toplevel9" 1

Separator $top.canvasl.linel \
-background #d6cdbb

$fsf_x $fsf_y"
catch {exec \.\./scripts/swapline\.pl pro $newline $cmd_file_to_edit \>
temp_cmd_file } junk
catch {exec cp temp_cmd_file $cmd_file^to^edit }

junk2
win withdraw . interactive_process_edit
tk_messageBox -title "EIDA
information" -type ok -message "Command file edit complete" -icon info

wm deiconify .control} \
-disabledforeground #alalal -text {Save and proceed}

vTcl:DefineAlias "Stop.buttl" "Buttonl" vTcl:WidgetProc "Toplevel9"
1

place $top.canvasl \
-in Stop -x 5 -y 5 -width 640 -height 362 -anchor nw \

-bordermode ignore
place $top.canvasl.labell \

-in Stop.canvasl -x 5 -y 10 -anchor nw -bordermode ignore
place $top.canvasl.label2 \

-in Stop.canvas 1 -x 15 -y 45 -width 50 -height 24 -anchor nw \

-bordermode ignore
place $top.canvasl.cpd77 \

-in $top.canvasl -x 15 -y 80 -anchor nw -bordermode inside
place Stop.canvasl.cpd78 \

vTcl:DefineAlias "Stop.canvasl.linel" "Separatorl" vTcl:WidgetProc-in Stop.canvasl -x 13 -y 120 -width 61 -height 24 -anchor nw \
"Toplevel9" 1

bind Stop.canvasl.linel <Destroy> {
Widget: :destroy '/0W; rename '/,W {}

}
entry Stop.canvasl.entryl \
-background white -disabledforeground Salalal -foreground black \
-highlightcolor black -insertbackground black \
-selectbackground

#clc2cl -selectforeground black -textvariable alpha
vTcl:DefineAlias "Stop.canvasl.entryl" "Entryl" vTcl:WidgetProc
"Topieve19" 1

entry Stop.canvasl.cpd85 \
-background white -disabledforeground #alalal -foreground black \
-highlightcolor black -insertbackground black \
-s ele ctbackground

#clc2cl -selectforeground black -textvariable beta
vTcl:DefineAlias "Stop.canvasl.cpd85" "Entry2" vTcl:WidgetProc
"Toplevel9" 1

entry Stop.canvasl.cpd86 \
-background white -disabledforeground Salalal -foreground black \
-highlightcolor black -insertbackground black \
-selectbackground

#clc2cl -selectforeground black -textvariable gamma
vTcl:DefineAlias "Stop.canvasl.cpd86" "Entry3" vTcl:WidgetProc
"Toplevel9" 1

entry Stop.canvasl.cpd87 \
-background white -disabledforeground Salalal -foreground black \
-highlightcolor black -insertbackground black \
-selectbackground

ffclc2cl -selectforeground black -textvariable delta

vTcl:DefineAlias "Stop.canvasl.cpd87" "Entry4" vTcl:WidgetProc
"Toplevel9" 1

entry Stop.canvasl.cpd88 \
-background white -disabledforeground #alalal -foreground black \
-highlightcolor black -insertbackground black \

-selectbackground
#clc2cl -selectforeground black \
-textvariable epislon

vTcl:DefineAlias "Stop.canvasl.cpd88" "Entry5" vTcl:WidgetProc
"Toplevel9" 1

entry Stop.canvasl.cpd89 \
-background white -disabledforeground Salalal -foreground black \
-highlightcolor black -insertbackground black \
-selectbackground

#clc2cl -selectforeground black -textvariable fsf_x
vTcl:DefineAlias "Stop.canvasl.cpd89" "Entry6" vTcl:WidgetProc
"Toplevel9" 1

entry Stop.canvasl.cpd90 \
-background white -disabledforeground Salalal -foreground black \
-highlightcolor black -insertbackground black \
-selectbackground

#clc2cl -selectforeground black -textvariable fsf_y
vTcl:DefineAlias "Stop.canvasl.cpd90" "Entry7" vTcl:WidgetProc
"Toplevel9" 1

button Stop.canvasl.butt2 \
-activebackground Sf6f7f6 -activeforeground black \
-disabledforeground Salalal -foreground black -highlightcolor
black \

-image [vTcl:image:get_image [file join / home charles
EIDA_gui images eqnl_s.jpg]] \
-text button

vTcl:DefineAlias "Stop.canvasl.butt2" "Button2" vTcl:WidgetProc
"Toplevel9H 1

button Stop.canvasl.cpd73 \
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground Salalal -foreground black -highlightcolor
black \

-image [vTcl:image:get_image [file join / home charles
EIDA_gui images eqn2_s.jpg]] \
-text button

vTcl:DefineAlias "Stop.canvasl.cpd73" "Button3" vTcl:WidgetProc
"Topieve19" 1

button Stop.buttl \

-command {set newline "Salpha $beta Sgamma Sdelta Sepislon

-bordermode ignore
place Stop.canvasl.cpd79 \

-in Stop.canvasl -x 15 -y 155 -anchor nw -bordermode inside
place Stop.canvasl.cpdSO \

-in Stop.canvasl -x 15 -y 190 -anchor nw -bordermode inside
place Stop.canvasl.cpd81 \

-in Stop.canvasl -x 15 -y 270 -anchor nw -bordermode inside
place Stop.canvasl.cpd82 \

-in Stop.canvasl -x 15 -y 320 -anchor nw -bordermode inside
place Stop.canvasl.linel \

-in Stop.canvasl -x 10 -y 244 -width 611 -height 2 -anchor nw \

-bordermode ignore
place Stop.canvasl.entryl \

-in Stop.canvasl -x 116 -y 45 -width 150 -height 25 -anchor nw \

-bordermode ignore
place Stop.canvasl.cpd85 \

-in Stop.canvasl -x 116 -y 80 -width 150 -height 25 -anchor nw \

-bordermode ignore
place Stop.canvasl.cpd86 \

-in Stop.canvasl -x 116 -y 118 -width 150 -height 25 -anchor nw \

-bordermode ignore
place Stop.canvasl.cpd87 \

-in Stop.canvasl -x 116 -y 155 -width 150 -height 25 -anchor nw \

-bordermode ignore
place Stop.canvasl.cpd88 \

-in Stop.canvasl -x 115 -y 190 -width 150 -height 25 -anchor nw \

-bordermode ignore
place Stop.canvasl.cpd89 \

-in Stop.canvasl -x 60 -y 265 -width 150 -height 25 -anchor nw \

-bordermode inside
place Stop.canvasl.cpd90 \

-in Stop.canvasl -x 60 -y 315 -width 150 -height 25 -anchor nw \

-bordermode inside
place Stop.canvasl.butt2 \

-in Stop.canvasl -x 275 -y 41 -width 348 -height 178 -anchor nw \

-bordermode ignore
place Stop.canvasl.cpd73 \

-in Stop.canvasl -x 275 -y 270 -width 333 -height 68 -anchor nw \

-bordermode inside
place Stop.buttl \

-in Stop -x 250 -y 375 -anchor nw -bordermode ignore
vTcl:FireEvent Sbase « R e a d y »

proc vTclWindow.results.display {base} {
if {Sbase == ""} {

set base .results.display
}

if {[winfo exists Sbase]} {
wm deiconify Sbase; return

}
set top Sbase
vTclrtoplevel Stop -class Toplevel \
-highlightcolor black

wm withdraw Stop
wm focusmodel Stop passive
wm geometry Stop

646x419+0+0; update
wm maxsize Stop 1265 994
wm minsize Stop

1 1
wm overrideredirect Stop 0
wm resizable Stop 0 0
wm

title Stop "EIDA Results"

181

vTcl:DefineAlias "$top" "ToplevellO"
vTcl:Toplevel:WidgetProc "" 1

bindtags $top "Stop Toplevel all
JTopLevel"

vTcl:FirGEvent Stop «Create»
wm protocol Stop

WM_DELETE_WINDOW nvTcl:FireEvent Stop «DeleteWindow»"
canvas

Stop.canvasl \
-borderwidth 2 -closeenough 1.0 -height 312 -insertbackground
black \
-relief ridge -selectbackground #clc2cl -selectforeground

black \
-width 625

-disabledforeground Salalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-foreground black -highlightcolor

black \
-text {SPICE running in background

Please wait !!}
vTcl:DefineAlias "Stop.canvasl.labell" "Labell" vTcl:WidgetProc
"Toplevelll" 1

place Stop.canvasl \
-in Stop -x 10 -y 10 -width 395 -height 172 -anchor nw \

-bordermode ignore
place Stop.canvasl.butt1 \

vTcl:Def ineAlias "$top. canvasl" "Canvasl" vTcl :WidgetProc "Topleveiafl'Stop. canvasl -x 20 -y 35 -width 128 -height 93 -anchor :

label Stop.labell \
-disabledforeground tfalalal \
-font [vTcl:font:getFontFromDescr
"-family helvetica -size 12"] \
-relief groove -text {Results

summary from EIDA run}

-bordermode ignore
place Stop.canvasl.labell \

-in Stop.canvasl -x 155 -y 65 -anchor nw -bordermode ignore
vTcl:FireEvent Sbase « R e a d y »

>
bind "JTopLevel" «Create» {

vTclrDefineAlias "Stop.labell" "Labell" vTcl:WidgetProc "ToplevellO" if {![info exists topcount]> {set topcount 0}; incr topcount
1 }

button Stop.butt 1 \ bind "JTopLevel" «DeleteWindow» {
-command {wm withdraw .results.display if {[set ::%W::_modal]> {
wm deiconify .control} \ vTcl:Toplevel:WidgetProc '/,W endmodal
-disabledforeground #alalal -text {Return to main window} } else {

vTcl:DefineAlias "Stop.buttl" "Buttonl" vTclrWidgetProc " Topleveltte"stroy */,W; if {$_topcount ==• 0} {exit}
1 >

button $top.butt2 \ },
\ bind "JTopLevel" <Destroy> {
-command {catch {exec rm -f tmp_cmd_filename} junk3 if {[winfo toplevel '/.W] =»= "XW"} {incr _topcount -1}

catch {exec rm -f temp_cmd_file} junk3 }
catch {exec rm -f bind "JTopLevel" <Enter> {

abb^spice_run_junk} junk3 }
exit} \ if {'[info exists vTcl(sourcing)]} {
-disabledforeground Jtalalal -text {Exit EIDA}

vTcl:DefineAlias "$top.butt2" "Button2" vTcl:WidgetProc "ToplevellQJlnd ".vTclBalloon" «KillBalloon» {

place Stop.canvasl \
-in Stop -x 10 -y 55 -width 625 -height 312 -anchor nw \

-bordermode ignore
place Stop.labell \

-in Stop -x 210 -y 15 -width 251 -height 34 -anchor nw \

-bordermode ignore
place Stop.buttl \

-in $top -x 90 -y 380 -anchor nw -bordermode ignore
place $top.butt2 \

-in Stop -x 460 -y 380 -anchor nw -bordermode ignore
vTcl:FireEvent Sbase «Ready»

}
proc vTclWindow.wait {base} {

if {Sbase = = " " } {
set base .wait

}
if {[winfo exists $base]} {

wm deiconify Sbase; return
}

set top Sbase
vTcl:toplevel Stop -class Toplevel \

-highlightcolor black
wm withdraw Stop

wm focusmodel Stop passive
wm geometry Stop

416x187+296+466; update
wm maxsize Stop 1265 994
wm minsize Stop

1 1
wm overrideredirect Stop 0
wm resizable Stop 0 0
wm title

Stop "EIDA busy please wait"
vTcl:DefineAlias "Stop" "Toplevelll"

vTcl:Toplevel:WidgetProc ""1
bindtags Stop "Stop Toplevel all

JTopLevel"

namespace eval ::vTcl::balloon {
after cancel $id
if {[winfo exists .vTcl.balloon]} {

destroy .vTcl.balloon
}
set set 0

}
}
bind B_vTclBalloon" «vTclBalloon» {

if {$::vTcl::balloon::first != 1} {break}
namespace eval

::vTcl::balloon {
set first 2
if {![winfo exists .vTcl]} {

toplevel .vTcl; wm withdraw .vTcl
}
if {'[winfo exists .vTcl.balloon]} {

toplevel .vTcl.balloon -bg black

wm overrideredirect .vTcl.balloon 1
label .vTcl.balloon.1

-text ${*/,W} -relief flat -bg #ffffaa -fg black -padx 2 -pady 0
-anchor w
pack .vTcl.balloon.1 -side left -padx 1 -pady 1

geometry .vTcl.balloon +[expr {[winfo rootx %W]+[winfo width
'/=W]/2}] + [expr {[winfo rooty '/.W] +[winfo height %W]+4}]
set set 1

}
}
bind "_vTclBalloon" <Button> {

namespace eval ::vTcl::balloon {
set first 0

}
vTcl:FireEvent */,W «KillBalloon»
}
bind "_vTclBalloon" <Enter> {

namespace eval :rvTcl::balloon {
if {! [info exists %V]> {

vTcl:FireEvent 7,W «SetBalloon»
}
set set 0
set first 1
set id [after 500 {vTcl:FireEvent %W

«vTclBalloon»}]
}

}
bind ".vTclBalloon" <Leave> {

namespace eval ::vTcl::balloon {
set first 0

vTcl:FireEvent Stop «Create»
wm protocol Stop

WM .DELETE .WINDOW "vTcl:FireEvent Stop «DeleteWindow»"
canvas

Stop.canvasl \
-borderwidth 5 -closeenough 1.0 -height 172 -highlightthickness
2 \
-insertbackground black -relief ridge -selectbackground

#clc2cl \
-selectforeground black -width 395

vTclrDefineAlias "Stop.canvasl" "Canvasl" vTcl:WidgetProc "Toplevelll"}
1 vTcl:FireEvent '/,W «KillBalloon»

button Stop.canvasl.buttl \ }
-activebackground #f6f7f6 -activeforeground black \
-disabledforeground Salalal -foreground black -highlightcolor
black \
-image [vTcl:image:get_image [file join / home Charles

EIDA.gui images hour_glass.jpg]] \
-text button

vTcltDefineAlias "Stop.canvasl.buttl" "Buttonl" vTclrWidgetProc
"Toplevelll" 1

label Stop.canvasl.labell \
-activebackground #f6f7f6 -activeforeground black \

bind n_vTcl8alloon" <Motion> {
namespace eval ::vTcl::balloon {

if {!$set} {
after cancel $id

set id [after 500 {vTcl:FireEvent '/,W
«vTclBalloon»}]

}
}

}
}

182

Window show .
Window show .command_file
Window show .control

Window show .design_choice
Window show .interactive_common
Window show
.interactive_common_edit
Window show .interactive_individual_i
Window

show .interactive_individual_l_edit
Window show .interactive_process

Window show .interactive_process_edit
Window show .results_display

Window show .wait
main $argc $argv

183

Bibliography

[i

[2:

[3:

[4]

[5]

[6]

[7]

[s:

[9

[10;

G. Bailey and W. Huang, More than "Moore" to win: Optimization strategies
for success in a maturing semiconductor industry, ser. IBM Global Business
Services. IBM Institute for Business Value, 2008.

B. Dennington, "Low power design from technology challenge to great prod­
ucts," in Proc. of Intl. Sym. on Low power electronics and design. New York,
NY, USA: ACM, 2006, pp. 213-213.

J. Lin, "Design technology challenges for system and chip level designs in very
deep submicron technologies," in Proc. of 1st IEEE/ACM/IFIP Intl. Conf. on
Hardware/software codesign and system synthesis. New York, NY, USA: ACM,
2003, pp. 194-194.

http://www.itrs.net/, "The International Technology Roadmap for Semicon­
ductors," [Online].

G. E. Moore, "Cramming more components onto integrated circuits," Electron­
ics, Apr 1965.

John Buscemi and Vince Smith, "IBM POWER6 Microprocessor and IBM Sys­
tem p570," IBM Corporation press release, May 2007.

B. Wong, A. Mittal, Y. Cao, and G. W. Starr, "Nano-CMOS Circuit and Phys­
ical Design," ISBN: 978-0-471-46610-9, Nov 2004.

L. Chang, Y. Choi, D. HA, P. Rande, S. Xiong, J. Bokor, C. Hu, and T. King,
"Extremely Scaled Silicon Nano-CMOS Devices," Proceedings of the IEEE,
vol. 91, pp. 1860-1873, Nov 2003.

S. Bobba and I. Hajj, "Maximum voltage variation in the power distribution
network of vlsi circuits with rlc models," in ISLPED '01: Proceedings of the 2001
international symposium on Low power electronics and design. New York, NY,
USA: ACM, 2001, pp. 376-381.

S. Kubicek and K. De Meyer, "Cmos scaling to 25 nm gate lengths," The
Fourth International Conference on Advanced Semiconductor Devices and Mi­
crosystems, pp. 259-270, Oct. 2002.

http://www.itrs.net/

[11] H. Iwai, "Cmos scaling toward sub-10 nm regime," 11th IEEE International
Symposium, on Electron Devices for Microwave and Optoelectronic Applications,
pp. 30-34, Nov. 2003.

[12] H. Iwaii, "Cmos scaling for sub-90 nm to sub-10 nm," Proceedings of the 17th
International Conference on VLSI Design, pp. 30-35, 2004.

[13] U. Narasimha, B. Abraham, and N. NS, "Statistical analysis of capacitance
coupling effects on delay and noise," 7th International Symposium on Quality
Electronic Design, pp. 6 pp.-, March 2006.

[14] S. Chandra, K. Lahiri, A. Raghunathan, and S. Dey, "Considering process varia­
tions during system-level power analysis," Proceedings of the 2006 International
Symposium on Low Power Electronics and Design, pp. 342-345, Oct. 2006.

[15] G. Ribes, M. Rafik, and D. Roy, "Reliability issues for nano-scale cmos
dielectrics," Microelectronic Engineering, vol. 84, no. 9-10, pp. 1910 - 1916,
2007, iNFOS 2007. [Online]. Available: http://www.sciencedirect.com/science/
article/B6V0W-4NVM053-P/2/5bcle475c7c4072dfd6dd6955591elfa

[16] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi, "Modeling
the effect of technology trends on the soft error rate of combinational logic,"
International Conference on Dependable Systems and Networks, pp. 389-398,
2002.

[17] D. Mavis and P. Eaton, "Soft error rate mitigation techniques for modern mi-
crocircuits," Reliability Physics Symposium Proceedings, 2002. 40th Annual, pp.
216-225, 2002.

[18] R. Kapre, K. Shakeri, H. Puchner, J. Tandigan, T. Nigam, K. Jang, M. Reddy,
S. Lakshminarayanan, D. Sajoto, and M. Whately, "Sram variability and sup­
ply voltage scaling challenges," Proceedings. 45th annual. IEEE International
Reliability Physics Symposium, pp. 23-28, April 2007.

[19] S. Basu and R. Vemuri, "Process variation and nbti tolerant standard cells to
improve parametric yield and lifetime of ics," IEEE Computer Society Annual
Symposium on VLSI, pp. 291-298, March 2007.

[20] Q. Ding, R. Luo, and Y. Xie, "Impact of process variation on soft error vul­
nerability for nanometer vlsi circuits," 6th International Conference On ASIC,
vol. 2, pp. 1117-1121, Oct. 2005.

[21] M. Chang, "Foundry future: Challenges in the 21st century," Digest of Technical
Papers. IEEE International Solid-State Circuits Conference, pp. 18-23, Feb.
2007.

185

http://www.sciencedirect.com/science/

[22] C. Young, R. Leu, C. Hung, S. Chen, and K. Huang, "Critical dimension man­
agement of photo resister by lens heating compensation and statistical process
control," 5th International Workshop on Statistical Metrology, pp. 23-26, 2000.

[23] K. Aoyama, H. Kunitomo, K. Tsuneno, H. Sato, K. Mori, and H. Masuda,
"Rigorous statistical process variation analysis for quarter-^m cmos with ad­
vanced tcad metrology," 2nd International Workshop on Statistical Metrology,
pp. 8-11, Jun 1997.

[24] A. K. Wong, Resolution Enhancement Techniques in Optical Lithography. SPIE
Press, March 2001.

[25] S. Raghvendra and P. Hurat, "Dfm: linking design and manufacturing," 18th
International Conference on VLSI Design, pp. 705-708, Jan. 2005.

[26] P. Gupta, A. B. Kahngt, and C.-H. Park, "Detailed Placement for Improved
Depth of Focus and CD Control," Proc. of the Asia and South Pacific Design
Automation Conf, pp. 343-348, 2005.

[27] S. Sivakumar, "Lithography challenges for 32nm technologies and beyond,"
International Electron Devices Meeting, pp. 1-4, Dec. 2006.

[28] T. Furuyama, "Deep sub-100 nm design challenges," 9th EUROMICRO Con­
ference on Digital System Design: Architectures, Methods and Tools, pp. 9-16,
0-0 2006.

[29] W. Zhao, Y. Cao, F. Liu, K. Agarwal, D. Acharyya, S. Nassif, and K. Nowka,
"Extraction and Modeling of Process Variations for Robust Nanoscale Design,"
Arizona State University and IBM Austin Research Laboratory, 2007.

[30] G. A. Northrop and P.-F. Lu, "A semi-custom design flow in high-performance
microprocessor design," in Proc. of DAC. ACM, 2001, pp. 426-431.

[31] C. Constantinescu, "Trends and challenges in vlsi circuit reliability," Micro,
IEEE, vol. 23, no. 4, pp. 14-19, July-Aug. 2003.

[32] S. Rusu, M. Sachdev, C. Svensson, and B. Nauta, "T3: Trends and challenges in
vlsi technology scaling towards lOOnm," in Proc. of ASP-DAC. IEEE Computer
Society, 2002, p. 16.

[33] T. Karn et al, "Eda challenges facing future microprocessor design," IEEE
Trans. Computer-Aided Design Integr. Circuits Syst., vol. 19, no. 12, pp. 1498-
1506, Dec 2000.

[34] T. Austin, E. Larson, and D. Ernst, "Simplescalar: an infrastructure for com­
puter system modeling," Computer, vol. 35, no. 2, pp. 59-67, Feb 2002.

186

[35] J. Burns and J.-L. Gaudiot, "Area and system clock effects on SMT/CMP
throughput," IEEE Transactions on Computers, pp. 141-152, Feb 2005.

[36] W. Ye and et a l , "The Design and Use of SimplePower: A Cycle-Accurate
Energy Estimation Tool," 37th DAC, pp. 340-345.

[37] N. Vijaykrishnan and et al., "Energy-driven integrated hardware-software op­
timizations using SimplePower," Proceedings of the 27th International Sympo­
sium on Computer Architecture, pp. 340-345, 2000.

[38] D. Brooks et al, "Wattch: a framework for architectural-level power analysis
and optimizations," Proc. of the 27th Int. Sym. on Comp. Arch., pp. 83-94,
2000.

[39] B. Bishop, T. Kelliher, and M. Irwin, "The design of a register renaming unit,"
Proceedings. Ninth Great Lakes Symposium on VLSI, pp. 34-37, Mar 1999.

[40] S. Palacharla, N. P. Jouppi, and J. E. Smith, "Complexity-effective superscalar
processors," SIGARCH Comput. Archit. News, vol. 25, no. 2, pp. 206-218, 1997.

[41] S. Palacharla, N. Jouppi, and J. Smith_., "Quantifying the Complexity of Super­
scalar Processors." Univ. of Wisconsin Computer Science Tech. Report 1328.,
1997.

[42] H. Fair and D. Bailey., "Clocking Design and Analysis for a 600MHz Alpha
Microprocessor." ISSCC Digest of Technical Papers, pp. 398-399, 1998.

[43] D. Ponomarev, G. Kucuk, and K. Ghose, "AccuPower: An Accurate Power
Estimation Tool for Superscalar Microprocessors," Proceedings of Design Au­
tomation and Test in Europe, pp. 124-129, March 2002.

[44] D. Broooks et al, "New methodology for early-stage, microarchitecture-level
powerperformance analysis of microprocessors," IBM J. RES. & DEV., no.
5/6, pp. 653-670, Sept/Nov 2003.

[45] L. Zhong, S. Ravi, A. Raghunathan, and N. Jha, "Rtl-aware cycle-accurate
functional power estimation," IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 25, no. 10, pp. 2103-2117, Oct. 2006.

[46] M. Pedram and A. Abdollahi, "Low-power rt-level synthesis techniques: a tu­
torial," IEE Proceedings of Computers & Digital Techniques, pp. 333-343, May
2005.

[47] A. Khan, P. Watson, G. Kuo, D. Le, T. Nguyen, S. Yang, P. Bennett, P. Huang,
J. Gill, C. Hawkins, J. Goodenough, D. Wang, I. Ahmed, P. Tran, H. Mak,
O. Kim, F. Martin, Y. Fan, D. Ge, J. Kung, and V. Shek, "A 90-nm power

187

optimization methodology with application to the arm 1136jf-s microprocessor,"
IEEE Journal of Solid-State Circuits, vol. 41, no. 8, pp. 1707-1717, Aug. 2006.

[48] http://www.sequencedesign.com, [Online].

[49] http://www.calypto.com, [Online].

[50] http://www.synopsys.com, [Online].

[51] http://www.magma da.com, [Online].

[52] http://www.cadence.com, [Online].

[53] T. Chen and S. Naffziger, "Comparison of adaptive body bias (abb) and adap­
tive supply voltage (asv) for improving delay and leakage under the presence of
process variation," IEEE Trans. Very Large Scale Integr. Syst., vol. 11, no. 5,
pp. 888-899, 2003.

[54] R. Vilangudipitchai and P. Balsara, "Power switch network design for mtcmos,"
18th Intl. Conf. on VLSI Design, pp. 836-839, Jan 2005.

[55] H. Ramakrishnan, K. Maharatna, S. Chattopadhyay, and A. Yakovlev, "Impact
of strain on the design of low-power high-speed circuits," IEEE International
Symposium on Circuits and Systems, pp. 1153-1156, May 2007.

[56] D. Sylvester et al, "System-level performance modeling with BACPAC Berke­
ley advanced chip performance calculator," ACM Int. Workshop on System-
Level Interconnect Prediction, pp. 109-114, 1999.

[57] http://www.eecs.umich.edu/dennis/bacpac/index.html, [Online].

[58] D. Duarte, V. Narayanan, and M. Irwin, "Impact of technology scaling in the
clock system power," Proc. of IEEE Computer Society Annual Symposium on
VLSI, pp. 52-57, 2002.

[59] P. Restle and A. Deutsch, "Designing the best clock distribution network,"
IEEE Symposium on VLSI Circuits Digest of Technical Papers, pp. 2-5, Jun
1998.

[60] P. Mahoney, E. Fetzer, B. Doyle, and S. Naffziger, "Clock distribution on a
dual-core, multi-threaded itanium-family processor," Solid-State Circuits Con­
ference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE International,
vol. 1, pp. 292-599, Feb. 2005.

[61] E. S. Fetzer, "Using adaptive circuits to mitigate process variations in a micro­
processor design," IEEE Des. Test, vol. 23, no. 6, pp. 476-483, 2006.

188

http://www.sequencedesign.com
http://www.calypto.com
http://www.synopsys.com
http://www.magma
http://da.com
http://www.cadence.com
http://www.eecs.umich.edu/dennis/bacpac/index.html

[62] S. Mukhopadhyay, A. Raychowdhury, and K. Roy, "Accurate estimation of
total leakage in nanometer-scale bulk cmos circuits based on device geometry
and doping profile," IEEE Trans. Computer-Aided Design Integr. Circuits Syst.,
vol. 24, no. 3, pp. 363-381, March 2005.

[63] G. Ascia, V. Catania, and M. Palesi, "A multi-objective genetic approach for
system-level exploration in parameterized systems-on-a-chip," IEEE Transac­
tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24,
no. 4, pp. 635-645, April 2005.

[64] F. Brglez and H. Fujiwara, "Special Session on ATPG (Also introducing 'A Neu­
tral Netlist of 10 Combinational Benchmark Circuits')," in IEEE International
Symposium On Circuits and Systems, 1985.

[65] http://www.eecs.umich.edu/~jhayes/iscas/benchmark.html, [Online].

[66] C. Thangaraj and T. Chen, "Power and performance analysis for early design
space exploration," in Proc. of the IEEE Computer Society Annual Symposium
on VLSI, 2007, pp. 473-478.

[67] F. Brglez, D. Bryan, and K. Kozminski, "Combinational profiles of sequential
benchmark circuits," IEEE International Symposium on Circuits and Systems,
pp. 1929-1934 vol.3, May 1989.

[68] http://www.fm.vslib.cz/~kes/asic/iscas/, [Online].

[69] http://www.eas.asu.edu/~ptm/, "Predictive technology model (ptm)," [On­
line].

[70] W. Zhao and Y. Cao, "New generation of predictive technology model for sub-
45nm design exploration," in Proceedings of the 7th International Symposium
on Quality Electronic Design. Washington, DC, USA: IEEE Computer Society,
2006, pp. 585-590.

[71] W. Zhaoo and Y. Cao, "Predictive technology model for nano-cmos design
exploration," J. Emerg. Technol. Comput. Syst, vol. 3, no. 1, p. 1, 2007.

[72] http://avatar.ecen.okstate.edu/projects/scells/, [Online].

[73] http://www.synopsys.com/, [Online].

[74] K. Shi and D. Howard, "Challenges in sleep transistor design and implemen­
tation in low-power designs," in Proceedings of the 43rd annual conference on
Design automation. New York, NY, USA: ACM, 2006, pp. 113-116.

189

http://www.eecs.umich.edu/~jhayes/iscas/benchmark.html
http://www.fm.vslib.cz/~kes/asic/iscas/
http://www.eas.asu.edu/~ptm/
http://avatar.ecen.okstate.edu/projects/scells/
http://www.synopsys.com/

[75] S. K. Tiwary, P. K. Tiwary, and R. A. Rutenbar, "Generation of yield-aware
pareto surfaces for hierarchical circuit design space exploration," in Proceedings
of the 43rd annual conference on Design automation. New York, NY, USA:
ACM, 2006, pp. 31-36.

[76] B. Stackhouse, S. Bhimji, C. Bostak, D. Bradley, B. Cherkauer, J. Desai,
E. Francom, M. Gowan, P. Gronowski, D. Krueger, C. Morganti, and S. Troyer,
"A 65 nm 2-billion transistor quad-core itanium processor," Solid-State Cir­
cuits, IEEE Journal of, vol. 44, no. 1, pp. 18-31, Jan. 2009.

[77] C. McNairy and R. Bhatia, "Montecito: a dual-core, dual-thread itanium pro­
cessor," Micro, IEEE, vol. 25, no. 2, pp. 10-20, March-April 2005.

[78] C. McNairy and D. Soltis, "Itanium 2 processor microarchitecture," Micro,
IEEE, vol. 23, no. 2, pp. 44-55, March-April 2003.

[79] S. Naffziger, B. Stackhouse, T. Grutkowski, D. Josephson, J. Desai, E. Alon,
and M. Horowitz, "The implementation of a 2-core, multi-threaded itanium
family processor," Solid-State Circuits, IEEE Journal of, vol. 41, no. 1, pp.
197-209, Jan. 2006.

[80] C. Thangaraj and T. Chen, "Design target exploration for meeting time-to-
market using pareto analysis," IEEE International Symposium on Circuits and
Systems, pp. 364-367, May 2008.

[81] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, ser.
Wiley-Interscience Series in Systems and Optimization. John Wiley & Sons,
Chichester, 2001.

[82] S. K. Hsu and at el., "A 110 GOPS/W 16-bit Multiplier and Reconflgurable
PLA Loop in 90-nm CMOS," IEEE Journal Of Solid-State Circuits, pp. 256-
264, 2006.

[83] J. W. Tschanz and at el., "Dynamic Sleep Transistor and Body Bias for Ac­
tive Leakage Power Control of Microprocessors," IEEE Journal Of Solid-State
Circuits, pp. 1838-1845, 2003.

[84] B. Chatterjee, M. Sachdev, and R. Krishnamurthy, "A cpl-based dual supply
32-bit alu for sub 180 nm cmos technologies," Proc. of Intl. Sym. on Low Power
Electronics and Design, pp. 248-251, Aug. 2004.

[85] S. Mathew et al., "Sub-500 ps 64 b alus in 0.18 um soi/bulk cmos: Design &
scaling trends," IEEE International Solid-State Circuits Conference, pp. 318-
319, 460, 2001.

190

[86] D. Blaauw, V. Zolotov, S. Sundareswaran, C. Oh, and R. Panda, "Slope prop­
agation in static timing analysis," IEEE/ACM international conference on
Computer-aided design, pp. 338-343, 2000.

[87] SYNOPSYS, "http://www.synopsys.com/Tools/Implementation/SignOff
/Pages/NanoTime.aspx," 2009.

[88] CADENCE, "http://www.celestry.com/products_nautilusdc.shtml," 2009.

[89] V. Veetil, D. Sylvester, and D. Blaauw, "Fast and accurate waveform analysis
with current source models," International Symposium on Quality Electronic
Design, ISQED, pp. 53-56, March 2008.

[90] I. Das and J. E. Dennis, "Normal-boundary intersection: A new method for
generating the pareto surface in nonlinear multicriteria optimization problems,"
SIAM J. on Optimization, vol. 8, no. 3, pp. 631-657, 1998.

[91] H. Sanchez and et al, "Increasing microprocessor speed by massive application
of on-die high-k mim decoupling capacitors," IEEE International Solid-State
Circuits Conference, pp. 2190-2199, Feb. 2006.

[92] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii," IEEE Transactions on Evolutionary
Computation, vol. 6, pp. 182-197, 2002.

[93] C. Erbas, S. Cerav-Erbas, and A. Pimentel, "Multiobjective optimization and
evolutionary algorithms for the application mapping problem in multiproces­
sor system-on-chip design," IEEE Transactions on Evolutionary Computation,
vol. 10, no. 3, pp. 358-374, June 2006.

[94] S. Rusu, Interconnect-Centric Design for Advanced SOC and NOC, 7th ed.,
J. Nurmi, H. Tenhunen, J. Isoaho, and A. Jantsch, Eds. Springer, 2004, vol.
Chapter 5.

[95] E. Zitzler, K. Giannakoglou, D. Tsahalis, J. Periaux, K. Papailiou, T. F.
(eds, E. Z. Ler, M. Laumanns, and L. Thiele, "Spea2: Improving the
strength pareto evolutionary algorithm for multiobjective optimization,"
www.tik.ee.ethz.ch/sop/publicationListFiles/zlt2001a.pdf 2002.

[96] E. Zitzler and et al, "http://www.tik.ethz.ch/~sop/pisa/," A Platform and
Programming Language Independent Interface for Search Algorithms, 2008.

[97] K. Shi and D. Howard, "Sleep transistor design and implementation simple
concepts yet challenges to be optimum," Synopsys Inc. and ARM Ltd., Tech.
Rep.

191

http://www.synopsys.com/Tools/Implementation/SignOff
http://www.celestry.com/products_nautilusdc.shtml
http://www.tik.ee.ethz.ch/sop/publicationListFiles/zlt2001a.pdf
http://www.tik.ethz.ch/~sop/pisa/

[98] A. Kumar and M. Anis, "Dual-vt design of fpgas for subthreshold leakage tol­
erance," in ISQED '06: Proceedings of the 7th International Symposium on
Quality Electronic Design. Washington, DC, USA: IEEE Computer Society,
2006, pp. 735-740.

[99] W. Hung, Y. Xie, V. Narayanan, M. Kandemir, M. J. Irwin, and Y.-F. Tsai,
"Total power optimization through simultaneously multiple-vdd multiple-vth
assignment and device sizing with stack forcing," in Proceedings of the
International Symposium of Low Power Electronics and Design, August 2004.
[Online]. Available: http://www.gigascale.org/pubs/592.html

[100] D. Kang, M. Johnson, and K. Roy, "Multiple-vdd scheduling/allocation for par­
titioned floorplan," in Computer Design, 2003. Proceedings. 21st International
Conference on, Oct. 2003, pp. 412-418.

[101] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw, "Combined dynamic
voltage scaling and adaptive body biasing for lower power microprocessors
under dynamic workloads," in ICC AD, November 2002. [Online]. Available:
http://www.gigascale.org/pubs/160.html

[102] X. Chang, M. Zhang, G. Zhang, Z. Zhang, and J. Wang, "Adaptive clock gating
technique for low power ip core in soc design," in IEEE International Sympo­
sium on Circuits and Systems, 2007. ISC AS 2007., May 2007, pp. 2120-2123.

[103] H. Su, S. Sapatnekar, and S. Nassif, "Optimal decoupling capacitor sizing and
placement for standard-cell layout designs," Computer-Aided Design of Inte­
grated Circuits and Systems, IEEE Transactions on, vol. 22, no. 4, pp. 428-436,
Apr 2003.

[104] N. Menezes and C.-P. Chen, "Spec-based repeater insertion and wire sizing for
on-chip interconnect," in VLSI Design, 1999. Proceedings. Twelfth International
Conference On, Jan 1999, pp. 476-482.

[105] V. Nawale and T. W. Chen, "Optimal useful clock skew scheduling in the pres­
ence of variations using robust ilp formulations," in Proceedings of the 2006
IEEE/ACM international conference on Computer-aided design. New York,
NY, USA: ACM, 2006, pp. 27-32.

192

http://www.gigascale.org/pubs/592.html
http://www.gigascale.org/pubs/160.html

