MAS等ER'S REWORT

 SYABY. GHAWIETS TH
 ERODTBLE MATERTAL

Submitted by KIng Yu

In partial fulfillment of the requirements for the Degree of Master of Irrigation Engineering Colorado Agricultural and Mechanical College Fort Collins, Colorado June, 2.949

ARCHIVE

> COLORADO AGRICULTURAL AND MECHANICAL COLLEGE

May 27

WE HEREBY RECOMMEND THAT THE REPORT PREPARED UNDER OUR SUPERVISION BY KING XU ENTITLED .-. THE DESIGN OF STABLE CHANNELS TN \qquad ERODIBLE MATERIAL

BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF IRRIGATION ENGINEERING

MAJORING IN \qquad IRRIGATION MMGINEXRIMG

Permission to publish this report or any part of it must be obtained from the Dean of the Graduate School.

ACKWOWISDGETBUT

The writer wishes to express his appreciation to $D_{r, ~ W}$. I. Albertson, Associnted Professor of Civil Nigineering, Colorado A \& 4 College, $10 r$ his guidance and assistance in this study and the preparation of this manuscript. Por his inspiretion and helpful suggestiong, the writer is indebted to ils. I. W. Lane, Consulting Engineer, Bureau of Reclamation.

The writer is grateful to lir. C. I. Rohwer, Senior Irrigation Engineer, Soil Conservation Service, for permission to use his unpublished data of canal oross-sections.

The writer also wishes to acknowledge the assistance given him by the following members of the facnlty of Colorado A \& M College: Professor \mathbb{R}. I. Lewis, Head of Civil Engineering Department; 7M. B. I. Parshall, Special Lecturer in Civil Ingineerine; Dr. J. G. Hodgson, Director of Libraries, and the library staff.

TABLE OP CONTENTS

Chapter Page
I TNTRODUORION 7
The problem 7
II REVTEW OF IITERATURE 9
III GEMERAL AMALYSIS OF THE PROBLEME 24
Sumnary and analysis of previous work 24
Dimensional analysis. 29
IV TYEORETICAL SHAPS OT STABTE CHANHEL
CROSS-SECT ION 33
Shape for non-cohesive material 33
Shape for cohesive naterial 37
V ANALYSTS OF DATA 41
Dimensionless fonctions 41
Shape of the channel cross-section 52
VI DISCUSSION 61
Sumsestions for designing stable channel.s 61
Recommendations for further research 66
VII SUMMARY 68
APPY 70
BIBLIOGRAPHY 76

LIST OR TABLES

Table Page
1 DIMENSIONIESS COORDINATES OF THEORETICAL CROSS-SRCTIOHS OF SRABLZ CHANHISLS 40
2 DATA ON STABLE CHANNELS 46
3 COMPUPRD DTURXSIONZESS PARANETERS FOR STABLE CHARNELS 48
4 CANAL CROSS-SECTIONS 54
5 MEAN TEMPPRATURE DURING IRRIGATION SEASONT 75

IIST OR FIGURSS

Figure Page
1 GHATHEL CROSS-SECT ION 34
2 BQUTLIBRIUK OF AN INTDIVIDUAK PARTICAL ON A HORIZONTAL PLANE WHEN MUR SURPACE drag is of major importance 34
3 VARIATION OF RESISFTNG FORCES OF PARTTCLAS 畨ITH DPPHE 34
4 THEORERTCAT CROSS-SECTIONS OF STABIS OMAMMES 40
5 VARIATION OP C/ $\sqrt{6}$ WITE $\mathbb{E} \sqrt{\text { E }} / \mathrm{C}$ 50
6 CANAL GROSS-SECTIONS; NOS. I AHD 2 55
7 CANAL CROSS-SEGTIONS, HOS. 3 AND 4 56
© CANAL CROSS-SEUTIOHS, NOS. 5 AND 6 57
9 CAWAL CROSS-SECTIONS, WOS. 7 ANB 8 58
10 CANAL CROSS-SECTIONS, NOS. 9 AND 10 59
11 CANAL CROSS-SECMIONS, NOS. 11 AND 12 60

Chapter I

INTRODUCe ION

Many important problems must be solved by engineers when designing channels in erodible material and unfortunately their complete solution requires more knowledge of the subject than now exists. The primary purpose of the designing work is to obtain a stable channel which will have the least initial cost and least maintainance cost. For a channel to be stable, the hydraulic features and the characteristics of the bed material and the material in suspension mast have a combined effect that will cause neither silting nor scouring. To this end, British Engineers have done very intensive study in connection with large irrigation canals in India. Their solutions, however, have not applied so well in the regions other than those where the data were obtained. A generalized analysis of stable channels is reported in this manuscript.

The problem

In what ways may the problems of stable channels in erodible material be solved more
satisfactorilys This question may be subdivided into several items as follows:

1. What have previous workers done in this field?
2. What are the important factors involved, and Which of these factors have previous investigators neglected?
3. What are the proper methode of attacking this problem?
4. Can the shape of a stable channel crosssection be expressed mathematically?
5. Do the available data verify the results of theoretical and dimensional analyses?
6. What conclusions and recommendations may be made as a resuit of this study?

It is the purpose of this manuseript to summarize the information now available on the subject of stable channels and analyze the problem from both the theoretical and dimensional point of view. To the extent that the limited available data will permit, these developments are tested experimentally.

Chapter II

REVIEW OF LTTMRATURE

Although in this chapter the oftation of the literature are essentially in ohronological order, each author developed his own series of formulas for design of stable channels and published them at different times as the research progressed. Hence the chronologicel presentation is based unon the time of the first important contribution of a given author. The English system of units is used in all equations unless otherwise stated.

As will be noticed, pioneering studies of stable channels have been made by British engineers in India although some have boen made in Egypt. Interest in this problem in the United States has developed only within the last thirty years.

Kennedy (14) using the data of the Upper Bari Doab Canal in India, empirically derived the following equation for stable ohannels in 1895:

$$
\begin{equation*}
\nabla_{e}=0.34 \mathrm{~m} \mathrm{y}^{0.64} \tag{2.1}
\end{equation*}
$$

in which ∇_{e} is the eritical velocity which will just
keep the channel free from either silting or scouring, y is the water depth of the channel exclusive of side slopes (most of the channels were rectangular in oross-section), and m is a coefficient. A standard for the coefficient m of 1.0 for sandy silt was adopted. Coarser sand had values of 1.1 to 1.2 and finer sand 0.8 to 0.9 .

Kennedy determined the slopes of the channels by assuming a value of N for Kutter's equation which is in turn applied to Chezy's equation. He suggested N be 0.02 for large canals and 0.0225 for small canals.

Woods (28) in 1917 proposed the use of derinite ratios of depth to width, based on an analysis of data from the Lower Chenab Canal System. In 1927, he published his general equations:

$$
\begin{aligned}
\log D & =0.434 \log W_{a} \\
V_{C} & =\log W_{a} D=1.434 \log W_{a} \\
s & =1 / \log Q^{2}=1000 \mathrm{~s}
\end{aligned}
$$

in which D is the average depth of water, "a is the mean wiath of water, V_{G} is the non-silting, non-scouring mean velocity, Q is the rate of discharge or $W_{a} D V_{C}$, and S is the water surface fall in 1000 feet distance or 1,000 s.

Woods believed that the sediment carrying eapacity of a shallow channel is greater than for a deep channel and depends on $\frac{\left(\nabla_{S}-\nabla_{V}\right)}{}$, where ∇_{S} is the surface velocity and v_{b} is the bottom velocity.

In 1919, Lindley (23) published the following equations developed from 786 observations made on 2700 miles of channels in Jhang and Lyallpur, India:

$$
\begin{align*}
\mathrm{v}_{0} & =0.95 \mathrm{y}^{0.57} \tag{2.5}\\
\mathrm{v}_{\mathrm{c}} & =0.59 \mathrm{y}^{0.355} \tag{2.6}\\
B & =3.8 \mathrm{y}^{1.61} \tag{2,7}
\end{align*}
$$

in which B is the bed width of channel in feet. Kutter's equation was used to compute the velocity of flow. Believing that the ratio of bed width to depth plays an important part in determining stable sections, he put forward the theory that "the dimensions: width, depth, and gradient, of a channel to carry a given supply loaded with a given silt charge, were all fixed by nature."

Molesworth and Yonidunia (20:129) developed the following general equation in 1922 from a careful examination of a large number of stable Egyptian cansls.

$$
\begin{equation*}
y=(9060 \mathrm{~s}+0.725 \mathrm{~B}) \tag{2.8}
\end{equation*}
$$

In 1923 Buckley (3) developed a modification of
Fq. (2.8) for channels of depths less then 5.26 feet (1.6 meters).

$$
\begin{equation*}
y=\frac{0.0025(100000 s+8)^{2} B}{1.62} \tag{2.9}
\end{equation*}
$$

As reported by Lacey (16), Buckley later derived an equation from measurements of the Nile at Belieda:

$$
\begin{equation*}
V=m R^{0.85} S^{0.72} \tag{2.10}
\end{equation*}
$$

in which R is the hydraulic radius.

As reported by Lacey (16), Phillips also developed an equation for the Nile at Beleida.

$$
\begin{equation*}
V=2.08(R S) \tag{2.11}
\end{equation*}
$$

From 1926 to $1946 G_{2 l i f i t h}(8,9,10,11)$
established his basic law and olaimed that changes in the cross-section of a channel, which resulted from changes in the prevailing hydraulic conditions, could be mathematically calculated by reference to this basic law. His work was based on the Zutter and Chezy equations and did not use the existing canal data. In his latest paper (8), published in 1946, he used the data of the Missouzi Miver to check his equations. His work oan be summarized as follows:

1. The basic law of equilibrium of the bed at any point in the oross-section is:

$$
\begin{equation*}
v=m y^{(0.5+3.33 m)} \tag{2.12}
\end{equation*}
$$

in which v is the mean velocity in a vertical line through the point under consideration, y is the water depth at this point, m is the general sediment factor, and II is the Kutter coefificient of roughness.

> 2. The general equation for the equilibrium of a crossmection is

$$
\begin{equation*}
V=k \mathrm{~m} \mathrm{D}_{\mathrm{D}}(0.5+3.33 \mathrm{~N}) \tag{2.13}
\end{equation*}
$$

in which V is the mean velocity of the crossmsection under consideration, D is the mean depth of the orosssection, and k is the ratio of V / v_{a} where v_{a} is the
mean velocity in the vertical of mean aepth. The following values of k were given:

For rectangular cross-section	$k=1.0$
For iriangular cross-section	$k=1.13$
For semi-elliptical cross-section	$k=1.055$

3. The general equation for the equilibrium of cross-sections is of similar type:

$$
V=m D^{(0.543 .33 \text { I })}
$$

4. The equation relating the sediment factor to the sediment concentration is:

$$
\begin{equation*}
c=z m=\frac{z v}{p(0.5+3.33 M)}=\frac{z v}{p(0.5+3.33 N)} \tag{2.15}
\end{equation*}
$$

In which c is the sediment concentration of bed load in parts per $10,000 \mathrm{by}$ weight of water, and z is a sediment coefficient (for fine sand $z=7.5$).

> 5. The equations for regime sectiong:
> $\mathrm{R}=\frac{0.35 \mathrm{0.314}}{(1000 \mathrm{~s})^{0.22}}=\frac{0.314}{13.06 \mathrm{~s}^{0.22}}$
$\mathrm{P}=\frac{48.75 \mathrm{Nm} 0.477}{\mathrm{~s}^{0.13 \%}}$
$m=\frac{V}{D^{0.5}+3.331}=38.4 s^{0.47} Q^{0.058}$
(2.18)
$G=1.8 s^{0.47} Q^{1.058}$
in which R is the hydraulio radius, P is the wetted perimeter, Nim is Kanning's coefficient of roughness, and G is the rate of discharge of bed load in pounds per
second.
During the period 1929 to 1946 Lacey $(16,17$,
18, 19) publishod sevoral Important papers basod on data from major irxigation canals in Inala.

His ifnal equations may be summarized as
follows:

1. The relation between velocity and hydraulic
radius:

$$
\begin{equation*}
V=1.151 \quad \sqrt{\rho^{R}} \text { or } \quad I=0.75 \mathrm{~V}^{2} / R \tag{2.20}
\end{equation*}
$$

in which if is the silt factor.
2. The relation between discharge and wetted perimeter:

$$
\begin{equation*}
P=2.668 \sqrt{Q} \text { or } P / R=7.11 V \tag{2.21}
\end{equation*}
$$

in which P / R is a "shape factor".
3. The flow equation:

$$
\begin{equation*}
V=16\left(R^{1 / 2} s\right)^{2 / 3} \tag{2.22}
\end{equation*}
$$

Substituting Eq. (2.20) into Eq. (2.28):

$$
\begin{equation*}
V=\frac{1.3458}{N_{a}} R^{3 / 4} \mathrm{~s}^{1 / 2} \tag{2.23}
\end{equation*}
$$

in which

$$
\begin{equation*}
N_{a}=0.0225 \mathrm{e}^{1 / 4} \tag{2.24}
\end{equation*}
$$

Where N_{a} is the absolute rugosity, defined by the gradation of the sediment and as a function of average sediment diameter.
(Felation of silt factor to bed material diameter:

$$
s=1.76 \sqrt{d}
$$

in which d is the mean diameter of bed material in millimeterg.

In Lacey's recent interpretation of his theory (16), he re-emphasized his belief that his equations are applicable to all active channels in alluvium in general, irrespective of the precise degree of scouring or silting, or the variation in sediment charge. He rearranged Eq. (2.22) to obtain

$$
\begin{equation*}
V s=1.60\left(R^{1 / 2} s\right)^{4 / 3} \tag{2.26}
\end{equation*}
$$

In which $s=1000$ s where s is the slope of the water surface. Lacey allea $\mathrm{Fq} .(2,26)$ the "normal alluvial equation ${ }^{n}$ and pointed out two significant parameters in this equation:

1st parameter, (VS) - aireotly proportional to terminal settling velocity of sediment particles and espitomizing the forces tending to restore the particles to the bed.

2nd parameter, $\left(\mathrm{R}^{1 / 2} \mathrm{~S}\right)$ - a function of sediment size, sediment density, and sediment discharge and espitomizing the forces tending to propel them forward. The upper limit of Eq. (2.26) will be reached when the critioal velocity occurs $v=\sqrt{9 D}=\sqrt{9 R}$ From Eq. $(2,26)$, he obtained:

$$
\begin{gather*}
V S=g^{2 / 4.096}=253 \tag{2.27}\\
R^{1 / 2} S=g^{3 / 2 / 4.096}=43.5 \tag{2.28}
\end{gather*}
$$

The lower limit of (V S) is due to the
cohesion of very fine sediment.
In connection with Lacey's work, Bottomley (2) equated Manning's equation to Lacey's Eq. (2.22) to find an expression of Manning's coefficient of roughness in terms of the observed slope:

$$
\begin{equation*}
\mathrm{H}_{\mathrm{m}}=0.00928 \mathrm{~S}_{\mathrm{m}}^{1 / 6} \tag{2.29}
\end{equation*}
$$

in which

$$
S_{m}=1,000,000 \mathrm{~s}
$$

For \mathbb{I}_{a}, Lacey re-arranged $\mathbb{E}_{\mathrm{q}}(2.22)$ as:

$$
V=\left[(16)^{9 / 8} /(\mathrm{Vs})^{1 / 8}\right] \mathrm{R}^{3 / 4} \mathrm{~s}^{1 / 2}
$$

which combines with \mathbb{E}. (2.25) to give:

$$
\mathrm{N}_{\mathrm{a}}=0.0596(\mathrm{~V} \text { s })^{1 / 8}
$$

or

$$
\begin{equation*}
N_{a}=0.025 \cdot(\mathrm{~V})^{1 / 8} \tag{2.30}
\end{equation*}
$$

As a summary of his work, Lacey stated the
following conclusions:

1. Astable channel is one that is active and neither silting nor scouring.
2. A regime channel is a stable channel transporting a regime sediment discharge.
3. A regime sediment discharge is the minimum transported sediment load consistent with a fully active bed.
4. For every regime channel there is, for a given bed sediment grade, a fixed value for the product of the mean velocity and the slope.
5. The product (V S) is in all regime channels a criterion of the silt grade, and is proportional to the terminal velocity of the silt particles. This produet is at all times an indication of the order of bed material.
6. The normal alluvial equation takes the form:

$$
\begin{equation*}
(\mathrm{V} 3)=1.60\left(\mathrm{R}^{1 / 2} \mathrm{~s}\right)^{4 / 3} \tag{2.26}
\end{equation*}
$$

It may be re-arranged as:

$$
\begin{equation*}
\mathrm{V}=1.42(\mathrm{~V} \mathrm{~S})^{1 / 4} \mathrm{R}^{1 / 2} \tag{2.31}
\end{equation*}
$$

which is the equation for the velocity of bed load propulsion. *working vslue of (V S) may be assigned to any channel.
7. All active channels in alluvium, free from "shock", whether silting or soouring or subject to an excess silt charge, conform with the normal equation.
8. The degree of silting or scouring, and the intensity of the sediment discharge, are implicit in the values of $V, R_{\text {, and }} S$ which a normal channel adopts when these values are associated with actual grade of sediment exposed on the bed.
9. If any active channel is subjected to "shook" by the presence of major irregularities of the banks or bed, the effective hydraulic mean depth is reduced, the slope increased, the velocity diminished, and the depth increased. There is no change in the bed sediment grade, or in the value of (V S) previously recorded.
10. As to the shape of the ohannel, it has been found that the wetted perimeter gives as good a correlation as the width. And the wetted perimeters of similar alluvial channels vary as the square roots of the discharge. (16:46-7)

Chatley $(3,4)$ published two series of articles in London in 1938. The general topic of the first series was: "River flow problems" and the second series, "River control problems." He based his developments on Chezy's equation, modifying it according to the Blasius relation between boundary resistance and the Reynold number.

$$
\begin{equation*}
V=\frac{1}{\mathbb{N}_{1}} \mathrm{R}^{0.71} \mathrm{~s}^{0.57} \tag{2,32}
\end{equation*}
$$

in which ${ }_{N_{1}}$ is an arbitrary coefficient of roughness, involving the shape factor f^{l} of the bed material, the density of fluid ρ, the coefficient of rubbing friction μ^{\prime}, and the kinamatic viscosity of the iluid \boldsymbol{V}. In general, \mathbb{I}_{1} is smaller than Kutter's \mathbb{N} 。 He compared Eq. (2.32) with manning's equation:

$$
v=\frac{1}{T_{m}} n^{2 / 3} s^{1 / 2}
$$

and Forchheiner's equation:

$$
\mathrm{V}=\frac{1}{\frac{1}{V}} \mathrm{R}^{0.7} \mathrm{~s}^{0.5}
$$

The above equations, including \mathbb{S}_{q}. (2.32), are all in metric units.

Chatley analyzed the shape of the channel by three separate methods. These were Chezy's equation, Manning's equation, and Eq. (2.32). His third equation gave

$$
\begin{equation*}
W=\pi_{1}\left(\frac{\gamma}{T}\right)^{1.71} \mathrm{~s}^{1.14} \mathrm{a} \tag{2.33}
\end{equation*}
$$

in whioh γ is the specific weight of lluid, W is the width of the water surface, and I is the tractive force per unit area along the river bed. His assumptions were: (a) Eq. (2.32) holds true, (b) DulBoy's 1 dea of constant tractive resistance at equilibrium is true, i.e. $T=\gamma D s$, (c) The slope of the channel bed equals the hydraulic gradient. (d) Discharge \& is determined by drainage area and runoff factors. (e) The hydreulic radius R equals the mean depth $D_{\text {. (}}(f)$ The soil structure is
uniform.
In 1943, King (1,15) developed a series of equations from the data of canals in Punjab and Sind, India. In all equations he used the effective depth D and the water suxpace width (1nstead of the hydramilo radius R and the wetted perimeter P. He pointed out:

The Priction ooefficient, which in pipes is the actual coefficient at any point, is in the case of channels an average coefficient, or alternatively may be considered as a maximun value aistributed over an average perimeter less than the wetted perimeter and greater than the bed width. This average perimeter is assumed to equal the surface width V. (15:52)

Hence, he used W/D as the "hydraulic shape" and V^{2} / D as the "turbulence oriterion" in comparison with Lacey's P / R and V^{2} / R.

King'g final equations for designing canals are:

1. The regime oheck equation:
$T=80 W^{1 / 7}(D s)^{4 / 7}=\frac{3}{2} W^{1 / 7}(D S)^{4 / 7}$
in which W is the width of water surface, and D is the effective depth or A .
2. The channel dimensions in terms of S and Q:

$$
\begin{align*}
& V=s^{1 / 3} Q^{3 / 4} \tag{2.35}\\
& D=\frac{3}{7} Q^{5 / 21} s^{-4 / 9} \tag{2,36}\\
& W=\frac{7}{3} S^{1 / 9} 4^{23 / 42} \tag{2.37}
\end{align*}
$$

3. The channel dimensions in terms of f and

Q:

$$
\begin{align*}
& T=\frac{7}{9} \mathrm{e}^{3 / 10} \mathrm{e}^{11 / 70} \tag{2.38}\\
& D=\frac{3}{5} \mathrm{e}^{11 / 35} \mathrm{e}^{-2 / 5} \tag{2,39}\\
& \mathrm{~W}=\frac{15}{7} \mathrm{e}^{1 / 10} 37 / 70 \tag{2.40}
\end{align*}
$$

in which P corresponds to Lacey's "silt factor" except that King used $e=V^{2} / D_{\text {, }}$
4. Slope in terms of f and :

$$
\begin{equation*}
S=\frac{7}{15} e^{9 / 10} e^{-6 / 35} \tag{2.41}
\end{equation*}
$$

5. The turbulence equation:

$$
\begin{equation*}
f=\frac{11}{4} a^{10 / 21} e^{-1 / 21} \tag{2.42}
\end{equation*}
$$

in which d is the mean diameter of sediment.
6. Dimensionless equations:

$$
\begin{align*}
\mathbb{F}^{2} / \mathrm{S} & =2.237 \underline{\mathrm{R}}^{1 / 3} \tag{2.43}\\
\frac{W}{D} & =0.124 \underline{\mathrm{R}}^{1 / 3} \tag{2.44}\\
\frac{\mathrm{~F}^{2}}{\mathrm{~S}} & =3.763 \frac{\mathrm{E}^{1 / 4}}{\mathrm{~F}^{1 / 4}} \tag{2.45}\\
\underline{\mathrm{~F}}^{2} & =2.77 \mathrm{a}^{10 / 21} \mathrm{Q}^{1 / 10} \tag{2.46}
\end{align*}
$$

where E is the Froude number or $\frac{V}{\sqrt{E D}}, \frac{R}{}$ is the Reynolds number or $\frac{V D}{\nu}$, and \underline{E}_{W} is the Reynolds number with W as a length parameter or $\frac{T W}{\nu}$

In 1940 Straub (25) derived the equations for Wide channels where side effects are negligible and R may be considered equal to D. He based his work on the
following two equations:
DuBoy*s equation: $G=X \frac{\text { 宩 }}{\gamma}\left(\frac{T}{\gamma}-\frac{T 0}{\gamma}\right)$
Stickler and Gilbert's equation: $V=\mathrm{K}^{2 / 3} \mathrm{~g}^{1 / 2}$
In which G is the rate of bed load aischarge per unit width, Te is the critical unit traetive force at which bed movement begins, and x is the sediment parameter, an experimental coerficient. His equetion is:

$$
\begin{equation*}
G=x \frac{s^{1.4}}{k^{1.2}} q^{3 / 5}\left[q^{3 / 5}-q_{0}^{3 / 5}\right] \tag{2.47}
\end{equation*}
$$

Where $q=D V$ is the d ischarge per unit width of channel and q_{c} is the aischarge under oritionl conditions. In 1946 he (26) applied the principle of $\mathbb{B q}$. (2.47) to the suspended sediment discharge of the $H i s s o u r i$ Hiver past Kansas City as:

$$
\begin{equation*}
G=(30.4)\left(10^{-11}\right) Q^{2.16} \tag{2.48}
\end{equation*}
$$

In which G is the rate of suspended sediment discharge in tons per second, and Q is the rate of water discharge in thousands of cubic feet per second.

A further equation paraileling $\mathbb{E q}_{\mathrm{q}}(2.47)$ for the case of constant discharge was derived:

$$
\begin{equation*}
G=x q^{2 / 3} x^{1 / 4} v^{7 / 3}\left(v^{7 / 3}-V c^{7 / 3}\right) \tag{2.49}
\end{equation*}
$$

Under equilibrium conditions, the average amount of sediment transported per unit volume of water must be the same at all sections of the canal, i.e. $\frac{G}{q}=K^{\prime}$ (a
constant). Hence, when $V e \rightarrow 0$

$$
\mathrm{z}^{2}=x \frac{1}{q^{5 / 3} K^{4}} v^{14 / 3}
$$

Because

$$
\begin{aligned}
& q=D V \\
& V=\frac{\left(x^{1}\right)^{1 / 3} X^{4 / 3}}{X^{1 / 3}} D^{5 / 9}
\end{aligned}
$$

or

$$
\begin{equation*}
V=m D^{0.56} \tag{2.50}
\end{equation*}
$$

in which m is a coefficient of the Kennedy-type equation and can be computed from a number of parameters defining the sediment and hydraulic characteristics of the stream. In other words, the value of m is a function of the sediment transportation characteristics, the sediment load, the water discharge, and the roughness of the channel.

Although Lane (20) did not develop any equations, an important and clear discussion of the prineiples involved in the design of stable ohennels in exodible material was brought out in his paper in connection with the design of the All-Amerioan Canal in 1937. He summarized the factors affecting the stable ohannel shape as Pollows:
(a) Hydraulic factors (slope, rouchness, hydraulic radius or depth, mean velooity, veloeity distribution, and temperature): (b) channel shape (width, depth, and side slopes); (c) nature of material transported (size, shape, specific gravity, dispersion, quantity, and bank and sub-grade material); and, (d) miscellaneous (alignment, unformity of flow, and aging). (20:131)

In 1947 Fai (7) published his stuay of stable channels in the Chinese Sournal, Hydraulic Mngineering. He derived an equation for the shape of stable channels in cohesive erodible material mathematically under the main assumption that the resisting force of the particles is constent along the circumference of the channel oross-section.

Chapter III

GENERAL ANALYSIS OF THE PROBLEM

Summary and analysis of previous work

The pioneering work on stable channel flow was started by Kennedy. Since his initial work was done, the same type of equation has been proposed by various investigators in a large number of special applications. In general, it should be noted, however, that such an equation $\left(V=m y^{n}\right)$ gives an expression only for the oritioal velocity, indiaating that it increases with the depth. Kennedy gave a limiting eritical velocity which corresponds to depths of about 10 faet. In fact, this limiting exitical velocity depends largely upon the material which composes the bank and bed of the channel. Woods, Jindley, and the Egyptian investigators introduced the relationship between volocity, bed width, hydraulic radius, and slope in addition to Kennedy ${ }^{\mathbf{z}}$ type of relation. They still gave no sugeestion, however, that these relations might be influenced by the quantity or the guality of the gediment.

The most elabowate work in this field was Lacey's, although King's work was directly in parallel.

While both of them gave the relationship between channel dimensions and velocity and introduced the effect of the size of sediment, neither of them considered the quantity of sediment transported. Lacey used the wetted perimeter P, and the hydraulic radius \mathbb{R} instead of the water đepth y of the Kennedy-type equations. King strongly opposed Lacey. He pointed out that the idea of P / R measuring "hydraulic shage" was at variance with the real canal shape where the sides are quite different from the bed in nature as well as in appearance. He cited that introanding R originated from pipe flow studies where $\frac{A}{E}=R=\frac{r}{2}$. For the reason mentioned in Chapter II, he used water surface width W and $D=\frac{A}{W}$ as effective depth of water.

Because Lacey and King gave various equations which are helpful in the design of stable channels, a comparison of their work is given:

1. Similarity of "regime test" equation:

From Lacey's Eq. (2.22)

$$
V=16\left(R^{2} s\right)^{1 / 3}
$$

or

$$
\mathrm{f}=\text { const. } \quad \mathrm{V}^{2} / \mathrm{R}=\text { Const. } \quad\left(\mathrm{R}^{1 / 2} \mathrm{~s}\right)^{2 / 3}
$$

From King's Eq. (2.34)

$$
\mathrm{V}=80 \mathrm{~W} / \mathrm{I} / 7(\mathrm{Ds})^{4 / 7}
$$

If R in Lacey's equation is replaced by D

$$
\begin{aligned}
\nabla & =\text { Constr. } \mathrm{e}^{2 / 9} \mathrm{D}^{2 / 3} \mathrm{~s}^{1 / 3} \\
& =\text { Constr. }(\mathbb{W} / D)^{1 / 7} \mathrm{D}^{5 / 7} \mathrm{~s}^{4 / 7}
\end{aligned}
$$

which is in almost the same form as King's.
2. Similarity of " f^{n} :

From Lacey's Eq. (2.22)

$$
f=\text { Const. } \frac{V^{2}}{R}=\text { Const. }\left(\mathbb{R}^{1 / 2} s\right)^{2 / 3}
$$

From King's Bq . (2.34)

$$
P=\frac{V^{2}}{D}=\text { Constr. } W^{2 / 7} D^{1 / 7} s^{8 / 7}
$$

3. Similarity of roughness and turbulence
criteria
From Lacey's $\mathbb{E q}_{\text {. }}$ (2.23), and Eq. (2.24)

$$
\mathrm{V}=\frac{\text { canst }}{\mathrm{P}^{1 / 4}} \cdot \mathrm{R}^{3 / 4} \mathrm{~s}^{1 / 2}
$$

From King's Eq. (2.43)

$$
\frac{\mathrm{P}^{2}}{S}=2.237 \underline{R}^{1 / 3}
$$

or

$$
\frac{\mathrm{V}^{2}}{\mathrm{D}}=\text { constr. } s \cdot(\mathrm{VD})^{1 / 3}
$$

or

$$
\mathrm{V}=\text { constr. } \mathrm{s}^{1 / 6} \mathrm{D}^{7 / 6} \mathrm{~s}^{1 / 2}
$$

4. Similarity of slope equations: Lacey transferred his equation to the form of the Punjab Research Institute equation and obtained the following form: (17:24)

Lacey's equation

$$
s=f^{5 / 3} / 1844.3 u^{1 / 6}
$$

King's Eq. (2.41)

$$
s=\frac{7}{15} e^{9 / 10 / 46 / 35}
$$

The f values calculated from the above equation of Lecey's were not oonsistent with the f values calculated from \mathbb{Z} 。 $(2,22)$. The former varied as a power of the later around 0.5 to 0.6 . This variation was removed by King's equations because $\frac{V^{2}}{D}$ is comparable to f .

Because King's equations were developed from a more fundamental method of analysis, his equations are probably more reliable for application to designing stable channels. The primary defect of King's work, however, is that he developed such a great number of different types of equations.

One should keep in mind the matually dependent nature of those factors which control the stable conditions and understand the limitations of the equations which he uses.

All of the above mentioned investigators developed their equetions from the data of existing canals. The following ones derived their equations mathematically.

Basing his work on the Kutter and Chezy equations, Griffith started with a basic law which was initiated by himself. He developed the velocity equation as a type gimilar to Kennedy's but the variation of m and n followed a definite law. Griffith also correlated the concentration of bed load with the coefficient
m and the rate of discharge of bed load with the slope s and water discharge a. Although some of these relations may be questionable, he nevertheless was approaching the problem in the advanced airection of research in this field.

Chatley and Straub both started from DuBoy's equation. Chatley introduced the Blasius relation between tractive force and the effect of Reynolds number, while Straub used the result of Strickler and Gilbert's studies. Equations of both authors are for wide channels, but Straub considered only unit wiath of channel while Chatley gave the relation between width W, slope s, and discharge q. Because for wide channels the hydraulic radius is practically equal to the average depth, Chatley's width equation was unnecessary. Furthermore, the signifioance of the channel width depends upon the characteristics of the channel material--in some cases the width is not important while in other eases it is quite important. In the wide channels specifically studied by Chatley, the width of channel is comparatively unimportant.

Straub"s work was more progressive. He is the only one among all the authors to put the concentration of the sediment into the equation. Unfortunately, however, he simply stated that the coefficient m is a function of the sediment transportation characteristies,
the sediment load, the water discharge, and the roughness of the channel--no suggestion was made as to how to determine this complex function.

Lane made a detailed analysis of this problem and stimulated interest in further studies in this field.

Dimensional analysis

To make a dimensional analysis of this problem, it is necessary to study the various factors which control the channel ilow. These factors may be divided into three groups:
A. Flow and channel characteristies:

1. V mean velocity of the flow
2. s hydraulic gradient of the flow
3. water surface width
4. D average depth of channel, $D=\frac{A}{V}$
B. Fluid characteristios:
5. P density of the pluid
6. Δr interface difference of specific weight
7. μ viscosity of fluid
C. Sediment characteristics:
8. d^{\prime} mean diameter of sediment transported
9. σ^{\prime} standerd deviation of sizes of seaiment transported
10. d mean diameter of bed material
11. σ standard deviation of sizes of bed
material
12. $\rho_{s g}$ density of sediment
13. G rate of discharge of sediment
14. f^{\prime} shape factor of seaiment
15. f_{e}^{\prime} a factor of cohesion of sediment Other variables which are not listed in the Poregoing, but mentioned by tane (20) in his work on the design of the All Ameriean Canal, are roughness, velocity distribution, temperatuee, and channel aging. These are not included for the following reasons:
16. Roughness may be considered as a result of the combined effect of the size of bed material and bed load, and the concentration of bed load and suspended load together with the Rlow and channel characteristics.
17. Velooity aistribution depends primarily upon the nature of the turbulence of the flow. The turbulence in turn depends upon the variables listed so that it becomes an additional dependent vaxiable which must not be included.
18. Temperature influences only the viscosity of the 1 luid. Therefore it should not be included.
19. Aging of the channel results in sorting of the bed material and depositing of a colloidal coating which makes the channel smoother. This reflects the combined effect of σ, f^{\prime}, and Io' which have already been listed.

The most general relationship of all the variables may be expressed as follows:

$$
\phi\left(w, D, a, \sigma, d^{\prime}, \sigma^{\prime}, s^{1}, f_{c}^{\prime}, V, G, P, \rho_{B}, \Delta \gamma, u, s\right)=0
$$

When D, V, and ρ are chosen as repeating
variables the following function of aimensionless parameters is obtained:

$$
\phi_{1}\left(\frac{W}{D}, \frac{d}{D}, \frac{\sigma}{D}, \frac{a^{\prime}}{D}, \frac{\sigma^{\prime}}{D}, f^{\prime}, f_{e}^{\prime}, \frac{G}{D P V^{3}}, \frac{\rho_{s}}{\rho}, R, E, s\right)=0 \quad \text { (3.1) }
$$

in which R is the Reynold number $V D P / \mu$, and I is the Froude number $V / \sqrt{\frac{\Delta r}{\rho} D} \div V / \sqrt{g^{D}}$.

From Eq. (3.1) it is evident that the problem is a complex one. Fortunately, however, the density of sediment varies over a narrow range. Purthermore, the form of the particles is mostly rounded without sharp angles, aue to the attrition while rolling along with the fluid. Therefore, with these considerations Eq. (3.1) can be aimplified to:

$$
\begin{equation*}
\phi_{2}\left(\frac{W}{D}, \frac{d}{D}, \frac{\sigma}{D}, \frac{d^{\prime}}{D}, \frac{\sigma^{\prime}}{D}, f_{c}^{\prime}, \frac{G}{D P V^{3}}, \frac{R}{P}, s\right)=0 \tag{3.2}
\end{equation*}
$$

Still further simplifioation may be accomplished by assuming that there is a definite relation between the characteristics of bed material and the sediment transported by the fluia, i.e. either $\frac{d}{D}$ and $\frac{\sigma}{D}$ or $\frac{d^{h}}{D}$ and $\frac{\sigma^{\prime}}{D}$ are dependent variables in Eq. (3.2). Hence Eq. (3.2) may be written as:

$$
\begin{equation*}
\phi_{3}\left(\frac{W}{D}, \frac{G}{D}, \frac{\sigma}{D}, f_{c}^{\prime}, \frac{G}{D P V^{3}}, \underline{R}, s\right)=0 \tag{3.3}
\end{equation*}
$$

32

Although $\mathbb{E q}$. (3.3) is still a hopelessly
complex function for experimental investigation, it is possible to restrict the problem to particular cases as discussed in Chapter VI.

Ghapter IV

MHEORETIOAL SHARE OR STABLE OHANHEL CROSS-SECTIONS

The investigation of the shape of the stable channel erossmaction vas started with Lane's idea, as he stated:

The slope of the bank must be sufficiently flat so that the component along it, of the force of gravity, when combined with the force of the water, is insufficient to dislodge the particles (20:135).

Two ceses must te considered, (a) for the non-cohesive material and (b) for the cohesive material:

Shape for non-cohesive material

Considex a single particle A of Fig. 1. When the forces acting on this partiele are in equilibrium, the resultant of the tractive rorce by water and the downward sliding foree of gravity should be balanced by the resisting force of the particle. i.e.:

$$
\begin{equation*}
t^{2}+(w \sin \alpha)^{2}=r^{2} \tag{4.1}
\end{equation*}
$$

in which w is the weight of the particle in waters r is the resisting foree of the particle against movement, and t is the tractive force of flowing wator on the particle.

Fig. 1. - Channel cross-section

Fig.2-Equilibrium of an individual particle on a horizontal plane when the surface drag is of major importance.

Fig. 3-Variation of resisting forces of particles with depth.

Assume

$$
\begin{equation*}
t=t_{0} \frac{y}{y_{0}} \tag{4.2}
\end{equation*}
$$

in which t_{0} is the tractive force on a single particle at the lowest point of the channel; and y_{0} is the maximum depth of water.

Fur ther assume that when $y=0, \alpha=\theta$ the angle of repose of saturated partiales, and $t=0$.

From 5q. (4.2):
$(\sin \theta)^{2}=r t^{2}$
1.e. $r_{t}=w \sin \theta$
in whioh r_{t} is the tractive porce on a particle in the bank at water gurface level.

Then $y=y_{0}$:

$$
\begin{equation*}
d=0 \text { and } t=t_{0} \tag{4.4}
\end{equation*}
$$

From $\mathbb{S q} \cdot(4.1) \quad t_{0}^{2}=x_{0}^{2}$.
From the theory of the boundary layer, it is
well known that there is a laminar sublayer existing above the suxface of an hydrodynamically smooth boundary, even though the flow is turbulent. Bearuse most
alluvial irsigation canals may be considered smooth, it may be assumed that all the particles of the bed and bank are within this laminar sublayer. Therefore, surfaee drag and deformation drag dominate rather than fom drag as the water Plows over the partieles. A sohematic diagram of the forces involved is shown in ig. 2. When these forces are in equilibrium,

$$
t_{0}=w \tan \theta^{\prime}=\mathbb{k} w \tan \theta
$$

According to the data from the experiments by White (27), K is between 0.3 and 0.4 . Therefore, assuming $\mathrm{K}=1 / 3$,

$$
t_{0}=\frac{1}{3} w \tan \theta
$$

From $\mathrm{Zq}_{\mathrm{g}}(4.4) \quad \mathrm{t}_{0}{ }^{2}=r_{0}{ }^{2}=\left(\frac{1}{3} \mathrm{w} \tan \theta\right)^{2}$
or

$$
\begin{equation*}
r_{0}=\frac{2}{3} w \tan \theta \tag{4,5}
\end{equation*}
$$

If it is further assumed that r varies linearly with the depth, see Fig. 3, at point A:

$$
\begin{align*}
r & =r_{t} \cdot\left(r_{0}-r_{t}\right) \frac{y}{y_{0}} \\
& =w \sin \theta+(1 / 3 w \tan \theta-w \sin \theta) \frac{y}{y_{0}} \\
& =w \sin \theta\left[1+\left(\frac{1}{3 \cos \theta}-1\right) \frac{y}{y_{0}}\right] \tag{4,6}
\end{align*}
$$

Eq. (4.6) now may be substituted in F_{q}. (4.1) and divided by $t_{0}{ }^{2}$, so that every term becomes dimensionless to yield

From Eq. (4.2) and Eq. (4.5):

$$
\left(\frac{y}{y_{0}}\right)^{2}+9\left(\frac{\sin \alpha}{\tan \theta}\right)^{2}=9 \cos ^{2} \theta\left[1+\left(3 \frac{1}{\cos \theta}-1\right) \frac{y}{y_{0}}\right]^{2}
$$

therefore

$$
\sin \alpha=\sin \theta \sqrt{\left[1+\left(\frac{2}{3 \cos \theta}-1\right) \frac{y}{y_{0}}\right]\left[1-\frac{y}{y_{0}}\right]}
$$

and

$$
\frac{d y}{d x}=\tan d=\frac{d(y / y)}{d(z / y o)}
$$

or

$$
\begin{equation*}
\frac{d\left(x / y_{0}\right)}{d\left(y / y_{0}\right)}=\frac{1}{\tan \alpha}=\frac{\sqrt{1-\sin ^{2} \alpha}}{\sin \alpha} \tag{4,7}
\end{equation*}
$$

then

$$
\frac{d\left(\frac{x}{y_{0}}\right)}{d\left(\frac{y}{y_{0}}\right)}=\frac{\sqrt{1-\sin ^{2} \theta\left[1+\left(\frac{2}{3 \cos \theta}-1\right) \frac{y}{y_{0}}\right]\left[1-\frac{y}{y_{0}}\right]}}{\sin \theta \sqrt{\left[1+\left(\frac{2}{3 \cos \theta}-1\right) \frac{y}{y_{0}}\right]\left[1-\frac{y}{y_{0}}\right]}}
$$

finally

By graphical integration, the results of $\mathbb{E q}$. (4.8) are presented in Table 1 and in Fig. 4.

Shape for cohesive material

The following study was initiated in 1947 by Tai (7). The main assumption which he made to simplify the mathematical work was to consider r, the resisting force of the particles against scouring, a constant along the circumference of the cross-section. The following development shows that this assumption is evidently not true for non-cohesive material: Combining Eggs. (4.3) and (4.5) and letting $t_{t}=t_{0}$,

$$
w \sin \theta=1 / 3 w \tan \theta
$$

Which means

$$
\cos \theta=1 / 3
$$

or θ must equal $70{ }^{2}{ }^{\circ}$. Therefore, the foregoing assumption holds only for $\theta=70 \frac{3}{2}^{\circ}$.

For cohesive material, however,

$$
r=e_{c}+f_{f}
$$

where f_{g} is the cohesive force between particles and f_{f} is the frictional force between particles. Due to the meager knowledge of the cohesion of soil particles r becomes an unknown quantity. Therefore as an approximation it may be assumed that x is constant along the perimeter of the channel.

> From Eq. (4.1) it may be seen that:
when

$$
y=0, \quad \alpha=\theta, \quad t=0,
$$

and

$$
\begin{equation*}
\sin \theta=\frac{r}{6} \tag{4.9}
\end{equation*}
$$

When

$$
y=y_{0}, \alpha=0, \quad t=0,
$$

and

$$
\begin{equation*}
t_{0}^{2}=r^{2} \tag{4.10}
\end{equation*}
$$

Dividing Eq. (4.1) by Eq. (4.10),

$$
\left(\frac{t}{t_{0}}\right)^{2}=\frac{x^{2}-(w \sin \alpha)^{2}}{r^{2}}
$$

or

$$
\left(\frac{t}{t_{0}}\right)^{2}=\frac{(x / w)^{2}-\left(\sin ^{2} \alpha\right)}{(x / w)^{2}}
$$

Substituting $\mathbb{B}_{q s}$. (4.2) and (4.9) into the above equation:

$$
\left(\frac{y}{y_{0}}\right)^{2}=\frac{(\sin \theta)^{2}-(\sin \alpha)^{2}}{(\sin \theta)^{2}}
$$

Hence

$$
\begin{equation*}
\sin \alpha=\sin \theta \sqrt{1-\left(y / y_{0}\right)^{2}} \tag{4,11}
\end{equation*}
$$

Finally, substituting Eq. (4.11) into Eq. (4.7) :

$$
\frac{a\left(\frac{x}{y_{0}}\right)}{a\left(\frac{y}{y_{0}}\right)}=\frac{\sqrt{1-\sin ^{2} \theta\left[1-\left(y / y_{0}\right)^{2}\right]}}{\sin \theta \sqrt{1-\left(y / y_{0}\right)^{2}}}
$$

or

$$
\begin{equation*}
{\frac{x}{y_{0}}}_{0}=\int_{0}^{\frac{y}{y_{0}}} \sqrt{\frac{\csc ^{2} \theta}{1-\left(y / y_{0}\right)^{2}}-1} d\left(y / y_{0}\right) \tag{4.12}
\end{equation*}
$$

This equation may be integrated graphically. The results of which are presented in Table 1 and Fig. 4.

Table I --Dimensionless coordinates of theoretical cross-sections of stable channels

$\frac{y}{y}$	x / y_{0}								
	Non-Cohesive Material							Cohesive Material	
	$\theta=30^{\circ}$	$\theta=45^{\circ}$	$\theta=60^{\circ}$	$\theta=60^{\circ}$	$\theta=75^{\circ}$	$\theta=90^{\circ}$			
0	0	0	0	0	0	0			
1	0.181	0.106	0.062	0.058	0.028	0.005			
.2	0.378	0.223	0.133	0.118	0.059	0.015			
3	0.595	0.354	0.213	0.184	0.097	0.040			
4	0.835	0.501	0.304	0.257	0.145	0.077			
5	1.102	0.668	0.410	0.340	0.204	0.127			
6	1.407	0.858	0.533	0.436	0.278	0.193			
.7	1.762	1.082	0.681	0.552	0.372	0.279			
8	2.197	1.358	0.865	0.697	0.495	0.395			
9	2.791	1.736	1.121	0.902	0.674	0.565			
95	3.235	2.009	1.306	1.051	0.805	0.692			
99	3.905	2.428	1.593	1.283	1.014	0.892			

$\theta=$ Angle of repose of saturated bed materia $y_{0}=$ Maximum water depth

Chapter V
DATA ANAZYGIS

As indicated in the preceding two chapters, experimental data are needed to establish the general function given in $\mathrm{Bq} .(3.3)$ and to determine the validity of the theoretical equations which have been derived.

Dimensionless Punctions

The most logical method of utilizing experimental data would be to analyse them according to the dimensionless parameters in \mathbb{E}. (3.3). Unfortunately, however, the data on existing canals are incomplete so that it is not possible to compute all of the parameters. The information most generally missing is the temperature of the water and the size and concentration of the sediment. Therefore, it has been necessary in this study to use only the data for water that is essentially clear and to estimate the temperature based upon weather records.

Two kinds of bed material may give water that is nearly slear, namely, those with particles coarse enough that the flowing water eannot disturb them and those with compact graded sediment coated with settled colloid of
high cementing value. None of the data were used for coarse material in existing canals, because sufficient information was not available on the description of the bed material. Furthermore, the coarse material is usually accompanied by fine material due to decomposition and disintegration.

In view of the foregoing, the data of canals used in this analysis are from canals of cemented fine material with almost olear water. The general dimensional analysis gives Eq. (3.3):

$$
\phi_{3}\left(\frac{W}{D}, \frac{d}{D}, \frac{\sigma}{D}, f_{d}^{\prime}, \frac{G}{D P} V^{3}, \underline{R}, \underline{E}, s\right)=0
$$

Under the above mentioned condition, $\frac{G}{D P V^{3}}=0$ and f_{c}^{\prime} is always a high value and may be neglected. Then, Eq. (3.3) can be reduced to:

$$
\begin{equation*}
\phi_{4}\left(\frac{\mathbb{W}}{D}, \underline{R}, I, s, \frac{d}{D}, \frac{\sigma}{D}\right)=0 \tag{5.1}
\end{equation*}
$$

For highly cohesive material, the nearly-clear water can hardly change the width of the channel and the average water dep the Hence $\frac{V}{D}$ is largely artificial rather than controlled by flowing water and it probably does not represent the shape of the channel. This statement is consistent with the results of the theoretical channel shape derived in Chapter IV. That is, the curves of lig. 4 for cohesive material show that a flat portion of uncertain length is always present in the central part of the channel. Therefore, in this case

素 is considered to be insignifieant. Bq. (5.1) then becomes:

$$
\begin{equation*}
\phi_{5}\left(\frac{R}{}, \underline{B}, s, \frac{d}{D}, \frac{\sigma}{D}\right)=0 \tag{5.2}
\end{equation*}
$$

Eq. (5.2) wepresents the fluational relationship in a form as complete as can be obtainea by dimensional analysis and losical reasoning. It is therefore necessary to investigate available theoretical relationships which will further develop the function.

Because open channel. slow is primarily a gravity phenomenon, and because the velocity varies largely as the square poot of the channel slope, $\underset{F}{F}$ and s may be combined into one parameter as $E / \sqrt{5}$. Fuxther proof of the validity of such a step is found in the Chezy equation arranged for wide channels:

$$
\nabla=0 \sqrt{D_{s}}
$$

02

So that

$$
\frac{\nabla}{\sqrt{D}}=c
$$

$$
\begin{equation*}
\frac{E}{\sqrt{8}}=\frac{0}{\sqrt{8}} \tag{5.3}
\end{equation*}
$$

Hence, $\mathbb{E q}$. (5.2) may be written as:

$$
\begin{equation*}
\phi_{\sigma}\left(\frac{R}{R}, \frac{E}{\sqrt{s}}, \frac{d}{D}, \frac{\sigma}{D}\right)=0 \tag{5.4}
\end{equation*}
$$

02^{2}

$$
\begin{equation*}
\phi_{6}\left(\frac{R}{-}, \frac{c}{\sqrt{6}}, \frac{d}{D}, \frac{\sigma}{D}\right)=0 \tag{5.5}
\end{equation*}
$$

Evidently, this function expresses the variation of the resistance coeflicient with the Reynolds mumber and the
bed material.
Because flow in open channels is a boundary layer phenomenon, it is to be expected that the results of previous investigators should be applicable to this problem. It may be recalled that the Karman-Schoenherr resistance equation for ilow past a smooth boundary is

$$
\begin{equation*}
\frac{1}{\sqrt{C P}}=4.13 \log \left(\underline{R} C_{\underline{f}}\right) \tag{5.6}
\end{equation*}
$$

Where C_{f} is the resistance coefficient. Likewise a similar, and perhaps more common, equation for turbulent flow in smooth pipes is the equation of Kármán-Prandtl:

$$
\begin{equation*}
\frac{1}{\sqrt{\underline{g}}}=2 \log (\mathrm{R} \sqrt{\underline{\underline{P}}})-0.8 \tag{5,7}
\end{equation*}
$$

where $£$ is the Darey-Weisbach resistance coefficient in the equation:

$$
\frac{h_{e}}{L}= \pm \frac{1}{4 R} \frac{V^{2}}{2 E}
$$

in wich \mathbb{R} is the hydraulic radius of the flow in pipe. For flow in open channels this equation becomes equal to the slope s and may be rearranged as

$$
\frac{\mathrm{V}}{\sqrt{\mathrm{gRs}}}=\frac{\sqrt{8}}{\sqrt{\underline{8}}}
$$

which, if the average depth is set equal to the hydravic radius, is equal to B_{q}. (5.3) so that

$$
\begin{equation*}
\frac{\sqrt{B}}{\sqrt{\underline{E}}}=\frac{C}{\sqrt{g}} \tag{5.8}
\end{equation*}
$$

From Eq. (5.8), Eq. $_{\text {. }}(5.7)$ can be written as:

$$
\begin{equation*}
\frac{C}{\sqrt{g}}=5.66 \log (\underline{R} \sqrt{8} / C) \div 0.292 \tag{5.7a}
\end{equation*}
$$

Because of the similarity between flow in closed conduits and flow in open conduits, it is probable that 4q. (5.5) can best be rewritten as:

$$
\begin{equation*}
\phi_{7}\left(\mathbb{Z} \frac{\sqrt{g}}{C}, \frac{G}{g}, \frac{d}{D}, \frac{\sigma}{D}\right)=0 \tag{5.9}
\end{equation*}
$$

which will evidentally take a logarithmic form such as

$$
\begin{equation*}
\frac{c}{\sqrt{6}}=\mathbb{K}_{1} \log \quad \mathbb{R} \quad \frac{\sqrt{E}}{c}+\mathbb{K}_{2} \tag{5.10}
\end{equation*}
$$

K_{1} and K_{2} being constants which must be determined experimentally. The parameters describing the bed material must act as third and fourth variables.

To establish the validity of this general
function and to determine the magnitude of the constants in Sq. (5.10), data were selected from the limited information available on stable channels in the United States-namely, data from the St. Clair River taken from the work of Li (22) in his master's thesis at the State University of Iowa and data on various irrigation canals taken from Soobey's reports (24). To determine the probeble viscosity of the water, the mean water temperature was estimated from the mean air temperature during channel-flowing season, Table 5. All of the elementary data are arranged in Table 2. From Table 2, the dimensionless parameters were computed and arranged in Table 3.

The computed results are plotted in Fig. 5 with semi-logarithmio coordinates to conform to Eq. (5.10).

Table 2.-mDATA ON STABLE CHANNEIS

No. Channel	Bonk and bed material	$\frac{Q}{\text { c.f.s. }}$	$\frac{A}{f t^{2}}$	$\frac{V}{\mathrm{f} .1 \mathrm{sec} .}$	$\frac{W}{f t}$	$\frac{5}{f+. / f t}$	$\frac{V}{\begin{array}{l} \text { f+ }{ }^{2} / \mathrm{sec} \\ \text { in } 10^{-5} \end{array}}$
1. Main channel above Ecarte, St. Clair Biver	clay	189,370	65,500	2.90	1948	0.00002	1.46
2. Main chennel below Ecarte	Softer clay	178,000	68,500	2.60	2045	0.000019	1.46
3. South channel above Bassatt	Fine sediment	68,000	33,500	2.03	1320	0.00002	2.46
4. South channel below Bassatt	do	56,500	28,500	1.98	944	0.000015	1.46
5. Middle channel, St. Clair River	co	33,800	18,400	2.84	692	0.000015	1.46
6. Grand Canal, Arizona	Clay loam	161.8	59.6	2.72	29.0	0.000438	1.05
7. Lateral 7, Turlock, Calif.	Compact sand	15.4	23.0	0.67	21.0	0.000098	1.21
8. Main, Turlock, Calif.	do	35.0	35.2	0.99	28.0	0.000263	1.21
9. Rist and Goss Ditch, Colo.	Heavy Loam	3.3	3.6	0.91	6.3	0.00034	1.31
10. Old Bames Ditch, Colo.	Pirm earth	9.9	8.5	1.17	9.0	0.00032	1.31
11. Jarbeau Power Ditch, colo.	clay loam	32.3	16.4	1.96	13.6	0.00049	1.21
12. Louden Ditch, Colo.	Compact sand	62.0	37.3	1.66	25.0	0.00038	1.31
13. Masa Lateral, Colo.	Fine sediment	40.3	27.4	1.47	14.7	0.00026	1.21
14. Boulder and white Rock, Colo.	Grade sediment	3.2	3.21	1.0	7.2	0.001246	1.21
15. Billings Land \& Irr. Company, Mont.	clay loam	167.6	68.4	2.45	24.0	0.000230	1.21
16. Do Lateral 2, Mont.	Sandy $10 a m$	6.37	8.2	0.78	8.4	0.000175	1.21
17. Bitter Root Valley Irr. Company, Mont	Hard pan	95.3	59.8	1.58	27.0	0.00020	1.31

Table 2.--DATA ON STABLE CHANIELS -- Continued

Table 3.--CONPUTED DIMENSIONLISSS PARAMETERS
POR STABLE CHANWELS

\#0.	V	$D=\frac{A}{W}$	s	$\underset{\text { in } 10^{-5}}{ }$	$E=\frac{V}{\sqrt{9 D}}$	$E / \sqrt{5}$	$\begin{aligned} & \hline R=V D / \nu \\ & \text { in } 10^{5} \end{aligned}$	$\begin{aligned} & \hline R \sqrt{5} / E \\ & \text { in } 10^{4} \end{aligned}$
1.	2.90	, 34.1	0.00002	1.46	0.087	19.4	68.0	35.0
2.	2.60	33.6	0,000019	1.46	0.079	18.1	60.0	33.1
3.	2.03	25.5	0.00002	1.46	0.071	15.8	35.0	22.1
4.	1.98	30.5	0.000015	1. 46	0.063	16.2	41.0	25.3
5.	1.84	26.7	0.000015	1.46	0.063	16.2	34.0	21.0
6.	2.72	2.05	0.000438	1.05	0.336	16.1	5.43	3.37
7.	0.67	1.10	0.000098	1.21	0.113	11.4	0.61	0.535
8.	0.99	1.26	0.000263	1.21	0.156	9.6	1.03	1.07
9.	0.91	0.57	0.00034	1.31	0.214	11.6	0.4	0.345
10.	1.17	0.945	0.00032	1.31	0.213	11.9	0.85	0.714
11.	1.96	1.21	0.00049	1.21	0.314	14.2	1.96	1.38
12.	1.66	1.49	0.00038	1.31	0.240	12.3	2.17	1.77
13.	1.47	1.86	0.00026	1.21	0.191	11.9	2.26	1.90
14.	1.00	0.446	0.001246	1.21	0.270	7.65	0.37	0.484
15.	2.45	2.35	0.000230	1.21	0.256	16.8	5.79	3.45
16.	0.78	0.98	0.000175	1.21	0.140	10.6	0.63	0.594
17.	1.58	2.21	0.00020	1.31	0.189	13.4	2.58	2.00
18.	1.63	2.10	0.000262	1.31	0.199	12.3	2.61	2.12
19.	1.85	2.60	0.000215	1.31	0.202	13.7	3.67	2.68
20.	2.00	2.13	0.000312	1.31	0.242	13.7	3.25	2.37

Table 3.--COMPUTED DIMENSIONLESS PARAMETERS
FOR STABLE CHANHELS -- Continued

N0.	V	D	5	$\text { in } 10^{-5}$	F	$F / \sqrt{3}$	$\begin{aligned} & R \\ & i n 10^{5} \end{aligned}$	$\begin{aligned} & B \sqrt{5} / E \\ & \text { in } 10^{4} \end{aligned}$
22.	1.88	2.99	0.000152	1.21	0.192	15.6	4.64	2.98
22.	2.56	2.65	0.00033	1.21	0.278	15.3	5.60	3.66
23.	2.00	2.37	0.000335	1.21	0.229	12.5	3.92	3.14
24.	2.30	2.32	0.000295	1.21	0.266	15.5	4.40	2.84
25.	2.22	2.74	0.00017	0.93	0.237	18.2	6.55	3.60
26.	1.19	0.708	0.00075	1.21	0.250	9.1	0.69	0.758
27.	1.01	0.533	0.00056	1.21	0.244	10.3	0.45	0.437
28.	0.54	0.183	0.00135	1.21	0.252	6.9	0.063	0.00913
29.	1.48	I. 65	0.00027	1.21	0.204	12.4	1.99	1.60
30.	1.38	0.738	0.000875	1.21	0.283	9.6	0.85	0.886

The average ounve drawn through the data follows the general form of Eq. (5.10 and establishes the constants so that

$$
\begin{equation*}
\frac{0}{\sqrt{8}}=5.66 \log -\sqrt{8} / \mathrm{C}-11.0 \tag{5.11}
\end{equation*}
$$

Because data are not available on the bed material, it is not possible to draw ourves of oonetant $\frac{d}{D}$ and the plotting can show only the variation of $\frac{R}{-}$ with $E / \sqrt{s^{*}}$ To compare the data with the funotion for resistance in pipes, $\mathrm{Eq} .(5,7)$ is plotted as shown. It is to be expeoted that this equation should not agree exactly with the data because the equetion is Por pipes and the data are for open ohannols. Furthermore, the 5q. (5.7) is for smooth pipes whereas the data probably represent ohannels which are not smooth. Mevertheless, it is noteworthy that Eq. (5.7) for pipes and Eq. (5.11) representing the data are parallel. Evidently, the assumptions made $1 n$ developing $\mathrm{E}_{\mathrm{q}}(5.10)$ are substantlated by 1 ield data.

Because the data probebly represent channels that are not exactly smooth, it is to be expected that they all fall above a gmooth-boundary curve which aots as a lower envelope. For this reason an estimated ourve is drawn in such that all of the points tall above 1t.

$$
\begin{equation*}
\frac{c}{\sqrt{\text { B }}}=5.66 \log \frac{R}{E} / c-7.5 \tag{5.12}
\end{equation*}
$$

This equation for smooth channels corresponds to \mathbb{E}_{q}. (5.7) for smooth pipes.

Shape of the channel Cross-section
To check the theoretical shape of the erossseotions of stable channels, existing channel crosssections were compared with the ealculated oross-sections from Se. (4.8) for non-cohesive material and Seq. (4.2.2) for cohesive material. The angle θ was estimated by the inclination of the upper portion of the existing channel eross-section. Although the determination of whether the bed material is oohesive or non-oohesive is questionable, an estimate was made on the basis of the meager data available.

The existing cross-sections which were chosen for comparison with the theoretioal ones are for both cohesive and non-cohesive bed material and have various values of 0 . For cross-sections number 1 to 4 , whioh were measured in India ($1: 84$), the bed material was chosen as non-cohesive and θ ranged from 30° to 450 . Cross-sections number 5 to 10 were measured in California by Nr. C. Fi, Rohwer, Senior Imeigation Engineer, Soil Conservation Service, U.S.D.A. of these, numbers 5 and 6 were in material that was considered non-cohesive and θ vas 45°.

Cross-sections number 7 to 10 , however, were.
estimated to be in cohesive material and θ was found to vary from 60° to 90°. Finally, cross-sections number 11 and 12 were measured by the writer in 1944 while working in Kansu, China. For these cases the bed material was assumed to be cohesive and θ was 60° and 75°. Table 4 is a tabulation of the information on the foregoing canal eroes-sections. The graphioal comparison of existing and theoretioal eross-sections are shown in Figs. 6 to 11. For laok of more exact information, straight lines were drawn to oonnect the data points.

The close general agreement between the theoretical and the actual oross-section shapes substantiates the use of $\mathrm{Zqs} .(4.8)$ and (4.12) for desien purposes, at least as a first approximation.

```
Table 4.一-CANAL CROSS-SECTIONS
```

No.	Canal.	Location of the cross-section	Bed materisl	Cohesive or non-cohesive	θ
1. 2. 3. 4. 5.	Fohxi Canal, Sind, IndiaDoDoDo	64.6 miles from intake	Fine send Do	$\begin{gathered} \text { Non-cohesive } \\ \text { Do } \\ \text { Do } \\ \text { Do } \end{gathered}$	30°45
		118.2 mileg from intake			
		134.3 miles from intale	Do		30°
		154.2 miles from intake	Do		30°
	Main cenal, Anderson Cottonweed, Calif.	Qage station	Graveliyloam	Do	$45^{\circ}$$455^{\circ}$
6.	Highline, Tuxlock,	2.6 miles upstream from	Sandy		
	calif.	East Avenue bridge		Cohesive	90°
7.	Highline, Turlock, Calif.	Head gate	clay loam		
8.	West side main,	Gage station	Sand and	Do	75°
	Imperial, Calif.	Oage atation	clay		
9.	Briggs Ditch, Fresno,	Upper gage station	Pine sandy		60°
	Callf.		lown	Do	
10.	Briggs Ditch, Fresno,	Jensen Avenue	Do	Do	75°
	Callf.	station			
11.	Fulu Ditch, Kansu, China	1640 ft. from intake	Send and clay	Do	60°
12.	China Nenchusn Ditch, Kansu,	Head gate	$\begin{aligned} & \text { cley } \\ & \text { clay } \end{aligned}$	Do	75°
	China	Head gate			

- Theoretical cross section

2.

No. 2
Rohri Canal
118 2 Miles From Intake Sind, India

Non-cohesive, $\theta=45^{\circ}$

—. Observed cross-section, . . Theoretical cross-section

Fig. 6.-Canal cross-sections, Nos. 1 \& 2.

No. 3.
Rohri Canal
134.3 Miles from Intake

Sind, India

No. 4.
Rohri Canal
154.2 Miles from Intake

Sind, India

Fig. 7.- Canal cross-sections, Nos. 3 \& 4

No. 5. Main Canal 1-2, Gage Station Anderson Cottonweed ! irrigation District Redina, California

No. 6. Highline, 2.6 Miles Upstream from East Ave Bridge Turlock Irrigation District Turlock, Calfornia

-. Observed crows section, ——— Theoretical cross-section $=$ 8. -Canal cross-sections Nos $5 \& 6$.

```
No 7. Highline, Head Gate
    Turlock Irrigation District
                            Turlock, California
```


No. 8. West Side Main, Gage Station Imperial Irrigation District

Imperial, California

Fig 9-Canal cross-sections, Nos. 7 \& 8

No. 9. Briggs Ditch, Upper Gage Station Fresno Irrigation District
Fancher Creek, California

No.10. Briggs Ditch, Jensen Ave Station Fresno Irrigation District Fancher Creek, California

Observed cross-section, —— Theoretical cross-section
Fig. 10.-Canal cross-sections, Nos 9 \& 10.

No. 11 Hulu Ditch, 1640 Ft from Intake Kansu, China

No. 12. Nanchuan Ditch, Head Gate

$$
\text { Fig. } 11 \text { Canal cross-sections, Nos. } 11 \text { a } 12 .
$$

Chapter VI

DIScussion

Of partieular coneern to engineers in this field is the problem of designing a channel that is safe at all times. In other words, a channel that will neither be scoured to an undesireable shape nor filled up by settling sediment. It should be remembered, however, that the only acceptable condition is not necessarily actual non-scouring and non-silting. Rather, if the degree of scouring and silting stays within the limits of keeping the channel in good shape, it can be said to be in a safe condition. Although the best condition is when equilibrium is reached, i.e. the rate of scour equals the rate of deposit, it is not possible to keep this equilibrium condition at all times because no channel can avoid fiuctuations of aischarge. Therefore, it is best to investigate the situation thoroughly and keep the design condition prevailing as much of the time as possible.

Suggestions for designing stable channels:
For determining the general characteristics of flow, Pig. 5 can be quite helpful, although due to limited
data, the plot is not complete. By investigating the material in which the channel will be constructed and comparing it with the information listed in Table 2, the design engineer may get a general idea about how the condition under consideration varies with the average condition indicated by Eq. (11) in Fig. 5. This pigure gives more appropriate information than any empirical equation derived from average data.

To determine the cross-sectional shape of a ohannel, Table 1 or Fig. 4 may be used. The only problem is to determine θ the angle of repose of the material. If it is possible, determining θ experimentally is most desirable. Ordinarily, however, the material is not homogeneous and the material in the bank may not be the same as that in the bed. In fact it may be difilcult to determine whether the material belongs to the cohesive alass or the non-cohesive class. In the end only average conditions shoul d be used. Therefore the shape may best be approximated by a trapezoid based on the ourves in Fig. 4. Such a trapezoidal shape will at least be more conducive to a stable condition than a shape designed by arbitraxily assuming the side slopes of the channel.

> In view of this discussion, the following
further items must also be kept in mind.

1. Time--It takestime to silt up a channel or to scour it into an undesireable shape. Likewise, once the equilibrium condition is disturbed, it takes time to bring it back to equilibrium, Therefore, non-equilibrium conditions which cause serious scouring or silting should be permitted only for a short period. Mild scouring or silting, on the other hand, can be permitted as long as no permanent damage is done.
2. Design discharge--Contrary to usual hydraulic design procedure, the maximum discharge is not the design discharge. Instead, the design discharge is the discharge which permits reasonable soouring and silting with equilibrium oonditions prevailing during most of the water-flowing sesson. This design discharge may be called. the dominant discharge.
3. Sediment characteristics--As pointed out in Chapter V, had more information on the bed material been available it would have been possible to draw a family of eurves on Fig. 5 instead of one curve with a rather large range of scattered points. It is therefore evident that the characteristics of sediment mould be very helpful in stable channel analysis. In most cases when Manning's equation or Chezy's equation is used for design work, it is felt that the choice of the resistance coefficient \mathbb{N}_{m} or C is rather arbitrary, involving considerable guess work. Mowaday's research on this problem and the
general problem of open channel flow is pointed in the direction of getting more precise information than is embodied in those former classic equations. It is logical. then, that this report should emphasize the importance of sediment characteristics. To this end cooperation among eeologists, soil scientists, and hydraulic engineers is extremely important. For example, in treating suspended material, the electromechieal effect cannot be neglected and in dealing with bed material, electron charge of very fine particles is the important factor of cohesiveness.

In studying the guantity of sediment transported by a given iluid, common practice has been to divide it into two classes for convenience of investigetion, namely, the suspended load and the bed load. For this reason, various equations for these clases have been developed in modern engineering literature.

Kalinske $(12,13)$ used White's (27) experimental results and the basic physical principles of fluid dynamios to develop an equation for the rato of bed-load discharge. Hinstein (6) concluded on the besis of observation that a given size of particle moves in a series of steps of definite length and frequency, and that the rate of transport depends upon the number of particles moving at that time. He assumed the probability that any one particle will begin to move in a
given unit of tine to be expressible in two ways: (a) in terms of the rate of transport, the size and relative weight of the partioles, and a time factor equal to the ratio of the particle diameter to ite velocity of fall; (b) in terms of the ratio of the forces exerted by the flow to the resistance of the particle to movement where the resistance is pronortional to the immerged weight of the particle and the motivating force proportional to that given by the usual drag equation in terms of the eluid velocity at the elevation of the leminar subleyer. Equating these two forms of the probability relationship, Binstein developed a general function.

Por suspended load, a fundamental equation has been developed by various investigators from the theory of fluid turbulence.

Theoretically speaking, any truly correct bedload equation should be capable of extension to include the sediment transported in suspension. Iikewise, any truly correct suspended-load equation should also inelude the bed load. Just above tho bed, a continual interchange of material is occurring between the bed and the overlying fiuid and in this locality it is obviously diffioult to distinguish between the bed load and suspended load. If the function of total sediment transported could be expressed in explicit terms, the problem of designing stable ohannels would be much simpler.

Reoommendationg fox furthor Pesearch

A2thowgh this roport mows that conalderable advance towazd a solutton of the phemomenon of stable ohannels has boen mado, this molution is atil2 far from eomplete oz adegnate. Ag shown in the dimensionad analysis of Ghapter ITI and in the foregoins at sonesion. the problea involves aazy vartables and complex relationahipe. In solving moh a cotaplex ptoblem, the best approsch $1 s$ uaually to sttack the aimpleat aase firet. Henge, the non-gotenive matorial with oompametveqy comre Branular partioles of nearly wniform size probably thoula be ohomen for the ifrst investigatione For this anae $\mathrm{Sq}_{\mathrm{q}}(3.3)$ beoomos:

$$
\begin{equation*}
\phi_{9}\left(\frac{W}{D}, \frac{d}{D}, \frac{G}{D P V} 3, \underline{R}, \underline{I}, s\right)=0 \tag{6.2}
\end{equation*}
$$

Bearne $1 t$ is very aftesoujt to make atudy of this nature in oxisting canala, 14 is more economical, paster,
 inventigotion. For thin purpone, a chennel Is needed in Whioh may be placed the beat matenial at thy costrea slope. 3ecause for a civen discharge the sedinemt being trangported is the amovat remired to reach equilibrivm; it is neeessasy to be able to reekroulate the geakaent. If the anezysis in Ohaptor 7 is ansumed to be corzect, F (9. (6.1) may be written as:

$$
\begin{equation*}
\phi_{10}\left(\frac{W}{D}, \frac{d}{D}, \frac{G}{B \rho V^{3}}, \underline{R}, E / \sqrt{B}\right)=0 \tag{6.2}
\end{equation*}
$$

Although the validity of such an assumption mast be established by experiment it is possible that in this particular ace, both $\frac{1}{D}$ and $\frac{G}{D P V Z}$ are dependent variables as discussed in the first part of this chapter. If such proves to be true then the following functions result:

$$
\begin{equation*}
\frac{W}{D}=\phi_{11}\left(\frac{d}{D}, \underline{R}, \underline{F} / \sqrt{s}\right) \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{G}{D P} V^{3}=\phi_{12}\left(\frac{d}{D}, \underline{R}, E / \sqrt{3}\right) \tag{6.4}
\end{equation*}
$$

Finally, although the exact determination of each of these functions depends upon laboratory research, the behavior in existing canals remains the final criterion by which conclusions founded on the relatively simple conditions of the laboratory must ultimately be tested.

Chapter VII

SUMPARY

In the past the pioblem of stable channels has been stradied largely by empiriaal methods for immediate help in design work. Recently, however, there has been a tendency to attempt to base the design on the laws of sediment transportation and to express the equilibrium condition mathematically. Unfortunately, no perfect equation has yet been formulated. It is possible that an approach to this problem oan be made by a combination of rational and experimental methods and that results can be expressed by dimensionless plots. As a sumary of this report the following two statements may be made.

1. The general flow characteristics in stable channels may be expressed 3 functions of the Reynolds number, the broude number, the weter surface slope, and the characteristios of the sediment. Eq. (5.11)
represents the average condition and may be used as a first approximation in design。 Beo (5.12) is assumed as a Lower envelope for smooth channels. Both equations can be plotted as straight lines on semi-logarithmic paper and are parallel with the line representing the gmooth
pipe flow as shown in Fig. 5.
2. The shape of the stable channel oross-section may be expressed mathematically. For practical application, the curves of Fig. 4 are available for immediate use and the tedious compntations to obtein values from Zq. $(4,8)$ or Eq. (4.12) are not required.

A PREMDIX

NOW ATION

In the following symbols the Inglish system of units is used unless othemise stated.
c -- sediment concentration in parts per 10,000 by weight
d -- mean sediment diameter in milimeters
f -- silt factor in Lacey-type equations
\pm - Darcy - Weisbach resistance coeffieient
f_{c}-- cohesive force between particles
f_{f}-- exictional force between particles
e $^{\prime}$-- a sediment shape factor
$\rho_{c}^{\prime}-$ a cohesion factor of sediment
$h_{f}-r_{\text {resistance }}$ loss in feet of water
g -- gravitational acceleration
k-- the ratio of V / ∇_{a}
m -- a coefilcient in Kennedy-type equations
A - an exponent in Kennedy-type equations
q -- rate of discharge per unit wiath of channel
r -- resisting force of a single particle against movement
$r_{t}-r_{\text {esisting force of a particle of the channel }}$ bank at the water surface
$r_{0}--\quad$ resisting force of a particle at bottom of the channel
t -- tractive foree of flowing water on a single particle
to -- tractive force on a aingle particle at the lowest point of the channel.
v -- velocity of water in a certain region or at a point
$v_{a}-$ mean velooity along the vertioal of mean depth

W -- weight of a single sediment particle within the water
x -- horizontal co-ordinate of cross-section
y -- water depth and vertical co-ordinate of cross-section

Yo -- maximum water depth
A -- area of channel cross-section
B -- width of channel bed
C -- Chezy resistance coefficient
$C_{\text {f }}-$ mean drag coefficient
D -- mean depth of water
I -- Froude number
Q -- weight rate of sediment discharge
K -- a constant
I .- length of pipe
N -- Kutter coeffielent of roughness
$N_{\text {R }}$－Mannlag coefileient of roughnese
He $_{a}=$ absolute opeticielent of mouchness introduced by Lacey

In－- a obertetent ot roughness introduced by Ghatzey

12 －wetted perimeters
\＆－－wato of atacharge ot waters
R - hyduaulio madiva $=A / 2$
若－－Reynolas mumbes
En－Regnolde nomber vith Burfece width as the Lexgth vasiakle

3－－2，000 5

营－tractive foree per undt aren
${ }^{5} e^{-\infty}$ anitien twaetive fomea
Y $=-$ mean velocity in a gection
To－oxitient velocity Prom atand point of man－ gilting and non－scouting
＊－－with of water snxwtace
＊a mo mean width
X－a sedimont parabetex in Mu Boy＊equation

α－－angle between hozisontaz line end a tangent to the curve

子－apecifla waight of wetor
$\Delta \gamma-$ interface aifferenoe of specipio weleht

```
0 -- angle of repose of saturated material
u -- dynamic viscosity
\mu' -- coefficient of rubbing friction
\nu-- kinematic viscosity
\rho-- density of eluid
Ps -.- density of sediment
    \sigma -. standard deviation of sizes of sediment
    \phi -- a funetion
```

Table 5.-WMEAN TEMPERATURE DURING IREIGATION SEASON
[The data of this table are from "Summaries of climatological data by sections, U. S. D. A. Weather Bureau Bulletin $\mathrm{W}_{\text {, }}$ 1926."]

BIBIIOGBARHY

BIBLIOGRAPHY

1. Blench, T. and King, C. A preliminary note on the effect of dynamic shape on Lacey relations. India. Central Board of Irrigation. Annual report (Tech.) 27:75-109, 1941.
2. Bottomley, W. T. Discussions on alluviwn Pivers and canals and water supply of Kano. Institution of Civil Engineers, London. Minutes of proceedings, 237: 512-15, 1933-34.
3. Buckley, A. B. The influence of silt on the velocity of water flowing in open chamels. Institution of Civil Figineers, London. Minutes of proceed1ngs, 216: 183-298, 1922-23.
4. Chatley, H. River Control problems, (IV) Stable sectional form of alluvial rivers. Ingineering, 146:740-2, Dec. 23, 1938.
5.

River flow problems, (IV) Bed traction and depth of streams. Engineering, 146:166, August 5, 1938.
6. Einstein, H. A. Formulas for the transportation of bed load. American Society of Civil Engineers. Transactions, 107:561-577, 1942.
7. Fai, C. Y. A study of the shape of the stable channel cross-section. (In Chinese) Chinese Society of Hydraulic Engineers. Hydraulic Engineering, 15:1:71-79.
8. Griffith, W. M. Further notes on silt transportation. Institution of Civil Engineers. Journal, November 1946:67-81.
9. Silt transportation and its relation to regime channel sections. Institution of Civil Engineers. Journal, April 1944:107-120.
10. \qquad
11.

A theory of silt transportation. American Society of ivil Lngineers. Trangactions, 104:1734-86, 1939.
12. Kalinske, A. A. Criteria for determining sand transport by surface oreep and saltation. American Geophysical Union. Transactions, $23: 639-43,1942$.
13. Fivers. American Geophysical Union. Transactions, 28:615-20, 1947.
14. Kennedy, a. G. The prevention of silting in imigation canals. Institution of Civil Engineers. Kinutes of proceedings, 119:281-90, 1895.
15. King. C. Practical design formulas for stable imigation channels. InIndia. Central Board of Irrigation. Annual Report (Wech.) 31:52-61, 1943.
16. Leceje G. A general theory of flow in alluvium. $^{\text {. }}$. Institution of Civil Engineers. Joumal. Nov. 1946:16-47.
17.

Fiegime flow in coherent alluvium. India Central Board of Irrigation. Publication Mo. $20: 1-50,1939$.
18. \qquad Stable channels in alluvium. Institution or Uivil Engineers. Minutes of proceedings, 229:259-384, 1929-30.
19.

Uniform slow in alluvial river and canals. Institution of Civil Ligineers. Kinutes of proceedings, 237;421-53, 1933-34.
20. Lane, E. W. Stable ohannels in erodiblo material. American Society of ivil Engineers. Transactions, 102:123-194, 1937.
21.
and Kalinske, A. A. The relation of suspended to bed materials in rivers. American Geophysical Union. $I_{\text {ransactions, } 20: 637-41, ~}^{\text {, }}$ 1939.
22. L1, C. T. Comparison of Lacey's stable channel relations with the conditions in the St. Clair
and Lower Hississippi River. Master's Thesis, 1939, University of Lowa.
23. Indiey, E. S. Regime channels. India. Punjab ingineering ongress, procedings, 7:63-74. 1919.
24. Scobey, F. G. The flow of water in ixrigation channels. Washington, Govt. Print. Orf., 1915. 68 p. (U. S. Dept of Agriculture. Bulletin no. 194).
25. Straub, I. G. Approaches to the study of the mechanies of bed movement. Iowa University. Studies in engineering. Bulletin 20:178-92, 1940.

26. | Discharge and sediment relationships in |
| :--- |
| $\begin{array}{l}\text { an open ohannel. Ameriean ooiety of ivil } \\ \text { Bagineers. Oivil Enginecring, Nov. 1946: } \\ 490-91 .\end{array}$ |

2\%. White, C. M. Equilibrium of grains on bed of stream. Royal ooiety, Lonãon, Proceedings, 174A:322-334, 2940.
28. Woods, F. W. A new hydraulic formula for silting Velocity-Kennedy's Data). Engineer, 143:646-648, June 17, 1927.

