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Abstract

Feline immunodeficiency virus (FIV) is the feline analogue of human immunodeficiency

virus (HIV) and features many hallmarks of HIV infection and pathogenesis, including the

development of concurrent oral lesions. While HIV is typically transmitted via parenteral

transmucosal contact, recent studies prove that oral transmission can occur, and that saliva

from infected individuals contains significant amounts of HIV RNA and DNA. While it is

accepted that FIV is primarily transmitted by biting, few studies have evaluated FIV oral

infection kinetics and transmission mechanisms over the last 20 years. Modern quantitative

analyses applied to natural FIV oral infection could significantly further our understanding of

lentiviral oral disease and transmission. We therefore characterized FIV salivary viral kinet-

ics and antibody secretions to more fully document oral viral pathogenesis. Our results dem-

onstrate that: (i) saliva of FIV-infected cats contains infectious virus particles, FIV viral RNA

at levels equivalent to circulation, and lower but significant amounts of FIV proviral DNA;

(ii) the ratio of FIV RNA to DNA is significantly higher in saliva than in circulation; (iii) FIV

viral load in oral lymphoid tissues (tonsil, lymph nodes) is significantly higher than mucosal

tissues (buccal mucosa, salivary gland, tongue); (iv) salivary IgG antibodies increase signifi-

cantly over time in FIV-infected cats, while salivary IgA levels remain static; and, (v) saliva

from naïve Specific Pathogen Free cats inhibits FIV growth in vitro. Collectively, these

results suggest that oral lymphoid tissues serve as a site for enhanced FIV replication,

resulting in accumulation of FIV particles and FIV-infected cells in saliva. Failure to induce a

virus-specific oral mucosal antibody response, and/or viral capability to overcome inhibitory

components in saliva may perpetuate chronic oral cavity infection. Based upon these find-

ings, we propose a model of oral FIV pathogenesis and suggest alternative diagnostic

modalities and translational approaches to study oral HIV infection.

Introduction

Feline immunodeficiency virus (FIV) is a naturally occurring lentivirus of domestic cats and

non-domestic feline species that is genetically, structurally, and biochemically similar to

human immunodeficiency virus (HIV), thereby providing a valuable animal model for study-

ing HIV infection [1–6]. While HIV transmission typically occurs via parenteral or
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transmucosal venereal contact, oral transmission of HIV via receptive oral intercourse, breast

feeding, and human bites has been well-documented, especially in the presence of a disrupted

oral mucosal barrier (ie: epithelial ulceration), inflammation, and/or concurrent oral infections

[7–15]. These alternative modes of HIV transmission represent a significant health concern to

at-risk individuals, including recipients of oral intercourse, infants of HIV-positive mothers,

and dental health professionals. Additionally, recent studies have shown that both HIV viral

RNA and proviral DNA are detectable in saliva of infected individuals, and salivary RNA levels

are correlated with levels in circulation; facts that have been largely overlooked in studies of

HIV pathogenesis [16, 17]. Furthermore, HIV antibodies in saliva may lend themselves to

noninvasive diagnostic methodologies via rapid detection of saliva specific antibodies, and

HIV therapies that incorporate antiviral properties of saliva have been considered, including

the use of inhibitory molecules as components of commercial lubricants [14, 18–23].

HIV, Simian Immunodeficiency Virus (SIV), and FIV have all been shown to target lym-

phocytes of the alimentary tract early during viral infection, resulting in long term conse-

quences for mucosal immune function [24–28]. Several studies have linked lentiviral-induced

gastrointestinal mucosal insult to chronic immune activation associated with infection via

translocation of bacteria or bacterial antigens [25, 29–32]. It is feasible that the oral cavity, with

its rich lymphoid tonsillar structures, is similarly impacted by lentiviral infection, and may

serve as important reservoir for lentiviral persistence [27]. Unlike primate lentiviral infections,

which are primarily considered to be transmitted venereally, during maternal-offspring inter-

actions, or via exchange of blood products, FIV is believed to be primarily transmitted from

cat to cat via bite wounds during antagonistic or mating interactions. However, vertical trans-

mission of FIV has been experimentally shown via colostrum and milk, and may provide an

appropriate model to study mother-to-offspring transmission of HIV [33, 34]. Additionally,

FIV periodontitis/gingivitis is a hallmark of both naturally occurring and experimental FIV

infections, and characteristic lesions of FIV gingivitis are similar to those frequently reported

for HIV-associated dental disease, such as linear bands of erythema along the gingival margin

and ulcerative to necrotizing lesions within the gingival and buccal mucosa [1, 6, 35–44].

Despite the fact that FIV associated gingival disease is widely diagnosed, very few studies have

assessed mechanisms of FIV salivary excretion, transmission, and pathogenesis [42, 45]. Fur-

ther, recent reports document that FIV infection is poorly or rarely transmitted among cats in

multi-cat households, calling into question whether FIV salivary transmission is limited by

innate immune barriers in stable social groups [46].

Studies of FIV salivary transmission and pathogenesis of oral disease have the potential to

reveal sites of lentiviral replication and persistence, mechanisms of salivary excretion, and oral

lentiviral immune responses and diseases—thereby expanding our knowledge of the pathogen-

esis of FIV disease and mechanisms of orally transmitted pathogens. Although it is widely

accepted that FIV is primarily transmitted by biting, and much less efficiently during social

grooming, few studies have evaluated FIV oral infection kinetics and transmission mecha-

nisms over the last 20 years. Modern quantitative analyses applied to natural FIV oral infection

could significantly further our understanding of the temporal events that occur during FIV

oral infection pathogenesis, and may thus aid in the design of improved diagnostics, vaccines

and vaccine modalities, choice of adjuvants, and design and delivery of antiviral agents for

FIV. As salivary excretion and kinetics of HIV infection is also understudied, identification of

similarities and differences between FIV and HIV oral pathogenesis can also ultimately

enhance our understanding of HIV-associated oral disease.

Previous studies of FIV oral transmission and pathogenesis have sought to characterize

viral excretion mechanisms by detection of saliva FIV RNA, DNA or antibodies, or though iso-

lation of virus in saliva or oral tissues [42, 44, 45, 47, 48]. However, because much of this work
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was performed before the development of quantitative analyses, there has been limited under-

standing of the temporal events that take place in the oral cavity during FIV infection. To

address these knowledge gaps, we opportunistically evaluated salivary transmission character-

istics in cats intravenously inoculated with a well-characterized immunopathogenic strain of

FIV (FIVC36) [36, 49]. Blood, saliva, and tissue samples from 18 cats enrolled in a clinical trial

were evaluated for viral RNA and proviral DNA by real-time quantitative PCR (qPCR) analy-

sis, in addition to other clinical and hematologic parameters associated with disease progres-

sion. Additionally, quantification of total IgA/IgG and FIV-specific IgA/IgG antibodies in

saliva was performed using microsphere immunoassay (MIA), and histologic changes in tis-

sues were assessed. Saliva from naïve SPF (specific pathogen free) cats was incubated with a

viral stock of FIVC36 and tested for capacity to inhibit viral growth in Crandall feline kidney

(CRFK) cell cultures. Coincident studies evaluating hematologic and clinical features of infec-

tion in these same cats allowed comparisons of oral and peripheral characteristics of viral

infection [50, 51].

This study represents the first quantitative analysis of FIV RNA and DNA in saliva and oral

tissues of FIV-infected cats, evaluated in conjunction with quantification of anti-FIV IgG and

IgA antibodies in saliva and assessment of concurrent alterations in the oral mucosa to provide

a comprehensive assessment of the pathogenic events that contribute to the development of

oral FIV infection. Overall, our findings characterize sites of FIV replication and persistence,

and reveal that oral cavity viral kinetics and antibody responses mirror that of the periphery;

suggesting that immunological and tissue level barriers are ineffective at inhibiting FIV viral

replication and excretion at the oral mucosal surface.

Materials and methods

Ethics statement

This study was approved by the Colorado State University Institutional Animal Care and Use

Committee; 09-064A-01—New Therapies for Retroviral Diseases. Colorado State University’s

animal care program is licensed by the United States Department of Agriculture (USDA),

accredited by Association for Assessment and Accreditation of Laboratory Animal Care

(AAALA) International, and holds an Office of Laboratory Animal Welfare (OLAW) assur-

ance (A3572-01). In accordance with the approved IACUC protocol, if any animal exhibited

significant clinical abnormalities (vomiting, diarrhea, lethargy, refusal of food> 24 hours,

labored breathing, dehydration, >5% weight loss from one week to the next), a complete phys-

ical exam with additional bloodwork was performed. In the case that a study animal exhibited

severe discomfort or symptoms listed above which worsened and did not respond to symp-

tomatic therapy, humane euthanasia was to be performed and followed by a complete nec-

ropsy. Time points for euthanasia of study animals was determined by previously established

time intervals to assess acute FIV infection, or at the discretion of a clinical veterinarian based

upon the severity of any associated clinical signs and/or response to symptomatic therapy.

Humane euthanasia procedures were conducted by phenobarbital overdose in accordance

with IACUC protocols and American Veterinary Medical Association (AVMA) Guidelines for

the Euthanasia of Animals. Prior to euthanasia, all study animals were anesthetized by intra-

muscular injection of ketamine (20mg/kg) and acepromazine (2mg/kg) to minimize animal

suffering and distress. No animals died without euthanasia during this study as a result of

experimental procedures. All study animals were monitored daily by animal care personnel for

development of clinical signs of FIV infection. Any animals exhibiting clinical signs either

associated with FIV infection or other untoward condition were evaluated and treated as pre-

scribed by the clinical veterinarian. One animal developed clinical signs at week 6 post-
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infection, and was humanely euthanized at the discretion of the attending veterinarian. All

other animals were euthanized at the end of the experimental study.

In vivo protocol

Twenty-four, 8–11 week old, specific pathogen free (SPF) cats, procured from Cedar River

Laboratories, Mason City, IA, and the Andrea D. Lauerman Specific Pathogen Free Feline

Research Colony, Fort Collins, CO, were housed within barrier rooms in accordance with Col-

orado State University (CSU) IACUC-approved protocols at a CSU AAALAC-international

accredited animal facility. All animals were part of an anti-retroviral protocol, and were accli-

mated to the facility for 2 weeks prior to initiation of the study. At day 0, eighteen cats were

intravenously inoculated with 1ml of a 1:10 dilution of a previously characterized FIVC36 viral

stock that is acutely immunopathogenic and induces reproducible high titer viremia [37, 49].

Six additional cats were sham inoculated as negative controls. Over the course of the study, 12

of the FIV-infected cats received experimental anti-retroviral treatment, while 6 FIV-infected

cats and the 6 sham-inoculated cats received no anti-retroviral treatment and served as positive

and negative controls, respectively.

Evaluation of viral RNA and DNA in blood and saliva

Blood and saliva samples were collected from cats at 7-day intervals, beginning at 15 days

post-infection and ending at 92 days post-infection. Blood samples were obtained as previously

described [50]. Saliva was obtained from under the tongue and cheek pouches of each cat

using sterile cotton swabs, which were immediately broken off into 1.5ml microcentrifuge

tubes containing 200μL of RNAlater Solution (Ambion, Austin, TX) and stored at -20˚C. At

processing, stored swabs were thawed at room temperature, vortexed vigorously for 1 min,

and centrifuged at 400 x g for 1 min. To collect saliva from the swab tip, swabs were inverted

using sterile forceps, placed back into microcentrifuge tubes, spun at 2000 rpm for 2 min, and

then discarded, leaving the saliva/RNAlater solution in the microcentrifuge tube.

Viral RNA was extracted from saliva using an RNAqueous total RNA isolation kit (Ambion,

Austin, TX), according to manufacturer’s instructions. Samples were eluted in 50μL and etha-

nol precipitated overnight at -20˚C (2.5 vol 100% ethanol, 0.1 vol 3M sodium acetate, and

1.0μL glycogen). Precipitated RNA was pelleted at 18,000 x g for 20 min at 4˚C and re-sus-

pended in 20μL of RNA Storage Solution (Ambion, Austin, TX). RNA from each sample was

converted to cDNA using the RETROscript reverse transcription kit (Ambion, Austin, TX).

The total volume of extracted RNA was transferred into two 20μL reactions and converted

using random decamer primers and following manufacturer’s instructions for reverse tran-

scription without heat denaturation of RNA. FIV-C was detected by qPCR in triplicate using

an iQ5 thermocycler (Bio-Rad, Hercules, CA) with reaction components, cycling parameters,

and FIV-C primers and probes as previously described [52, 53]. To quantitate viral copy num-

ber in each reaction, a six-point standard curve was generated by diluting FIV-C virus stock in

a 10-fold dilution series into RNAlater solution. Each dilution was then extracted and con-

verted to cDNA as described above, and assigned a copy number value based on comparison

to a FIV C gag plasmid standard curve ranging from 105 to 10−1 copies per reaction. A Ct

threshold was set according to the run data for each plate, and Ct values greater than those of

negative controls were included in the analysis. The resulting copy number data for each sam-

ple was analyzed using Prism 4 (GraphPad Software, La Jolla, CA). Triplicate values for each

sample were averaged, and calculated to determine viral copies per mL saliva. Standard error

was calculated for each treatment group at each time-point. Viral RNA was extracted from

blood and quantified by qPCR as previously described [50].
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Proviral DNA was extracted from saliva of all cats for time-points 43 and 64 days post-inoc-

ulation using a DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA) and a user-adapted pro-

tocol for purification of total DNA from animal saliva [54]. Samples were eluted in 100μL, and

then ethanol precipitated (2.5 vol 100% ethanol, 0.1 vol 3M sodium acetate, and 1.0μL glyco-

gen) overnight at -20˚C. Precipitated DNA was then pelleted at 18,000 x g for 20 min at 4˚C

and re-suspended in 20μL H2O. FIV-C provirus was quantitated by qPCR in duplicate using

an iQ5 thermocycler (Bio-Rad, Hercules, CA), FIV-C primers and probe, and FIV-C plasmid

standards as previously described [52, 53]. Proviral copy number was then normalized to

copies per 106 cells by quantitating genomic DNA using real-time qPCR targeted to feline

GAPDH. A GAPDH plasmid standard curve was prepared as previously described [55] and

the following primers were used for qPCR: GAPDH-F forward primer, 5’- AAGGCTGAGAAC
GGGAAAC-3’; GAPDH-R reverse primer, 5’- CATTTGATGTTGGCGGGATC–3’. GAPDH

qPCR for each sample was set up in 25 μl using the following reaction components: 2 μl sample

DNA, 8.5 μl de-ionized water, 1 μl GAPDH-F, 1 μl GAPDH-R, and 12.5 μl SsoFast EvaGreen

Supermix (Bio-Rad, Hercules, CA). Reaction mixtures were denatured at 95˚C for 30 seconds

and then followed by a two-step reaction cycle protocol of 40 cycles that alternated between

95˚C for 5 seconds and 60˚C for 10 seconds. Proviral DNA was extracted from blood, quanti-

fied by qPCR, and normalized to a GAPDH standard curve to determine the number of cell

equivalents per DNA sample. Proviral copy number per cell was calculated as previously

described [49, 50].

To confirm the presence of infectious FIV particles in saliva of infected cats, duplicate cell

cultures consisting of GFox cells (CrFK cells overexpressing CD134) were established in

96-well plates at 20,000 cells/well and allowed to attach at 37˚C overnight [53, 56]. GFox cell

cultures were maintained at 37˚C and 5% CO2, in 240 μl of culture medium composed of Dul-

becco’s modified Eagle’s medium (DMEM) with GlutaMAX-1, 10% fetal bovine serum (FBS),

and 1x penicillin-streptomycin (10,000 U/liter penicillin and 10,000 μg/liter streptomycin), as

well as 1 μg/ml of Fungizone1 (Amphotericin B; Life Technologies) [57]. At day 0, 10 μl of

saliva from 5 FIV-infected and 1 sham-inoculated (uninfected) cats (collected as previously

described) were added to the previously established Gfox cell culture, bringing the total vol-

ume to 250 μl (1:25 dilution of saliva). A parallel set of wells containing Gfox cells without

virus was incubated with media only (negative control). Cell cultures were then incubated at

37˚C for 12 hours, at which point all culture media was removed from each well, discarded,

and replaced with 250 μl of fresh culture media. GFox cells were visually inspected at days 7,

10, 14, 21, and 28 post-inoculation by inverted light microscopy for evidence of cell growth,

attachment, syncytial cell formation, detachment, and cell death. At days 7, 14, 21 and 28 post-

inoculation, 125 μl of supernatant was removed from each well, frozen at -80˚C, and replaced

with 125 μl of fresh culture media. The supernatant collected from each well and each time

point was then assayed for the detection of FIV p26 antigen by capture ELISA using previously

described protocols [58]. For each treatment, absorbance (Abs) was measured at 450 nm and a

background threshold value was established by calculating the mean Abs of FIV-negative

(naïve) saliva plus 3 standard deviations. All Abs values above this threshold were considered

positive.

Evaluation of viral RNA and DNA in oral tissues

DNA was extracted from frozen necropsy tissues using a DNeasy Blood and Tissue Kit (Qia-

gen, Valencia, CA), and eluted in 200μl AE buffer. All samples were adjusted to 20ng/μl using

1X TE buffer and FIV-C provirus was quantitated by qPCR using previously described reac-

tion components, cycling parameters, and FIV-C primers and probes [52, 53]. Proviral copy
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number within these tissues was quantitated using a standard curve with 1:10 serial dilutions

of FIV-C gag plasmid into 1X TE buffer, ranging from 105 copies to 101 copies per reaction.

Resulting proviral copy numbers were normalized to copies per 106 cells based on the total

amount of DNA present in the reaction (100ng) as previously described [49].

RNA was extracted from frozen necropsy tissues using an RNeasy Mini Kit (Qiagen, Valen-

cia, CA) and tissue homogenizer (MP Biomedicals, Solon, OH). Superscript II (Invitrogen),

random primers (Invitrogen), and RNase Out (Invitrogen) were used to synthesize cDNA by

reverse transcription. Real-time qPCR quantification of viral RNA was then performed on an

iQ5 thermocycler (Bio-Rad, Hercules, CA) using previously described reaction components,

cycling parameters, and FIV-C primers and probes [52, 53]. Viral RNA was normalized to

GAPDH expression as previously described [46] using the ΔΔCT method [59].

Histological evaluation

Necropsy was performed on sixteen FIV-inoculated cats at 92 days post inoculation; one

sham-inoculated cat was coincidently necropsied to provide FIV negative control tissues. Pala-

tine tonsils, retropharyngeal lymph nodes, submandibular salivary glands, tongue and buccal

mucosa were collected. Necropsy tissues were then halved and placed into either 1ml tubes

and frozen at -80˚C, or into standard tissue cassettes that were then fixed in 10% neutral-buff-

ered formaldehyde for 24 hours prior to trimming and processing for histology. Five μm paraf-

fin sections were collected onto charged slides (Superfrost; Colorado Histo-Prep, Fort Collins,

CO), and one slide of each tissue was stained with hematoxylin and eosin (H & E) for micro-

scopic examination. Tissues were scored using the following criteria: 0 = no apparent pathol-

ogy/change, 1 = minimal change (minimally increased numbers of small lymphocytes, plasma

cells, macrophages, and/or mast cells), 2 = mild change (mild inflammation, edema, and/or

parafollicular expansion, secondary follicle formation, and presence of tingible body macro-

phages within lymph nodes), 3 = moderate change (as previously described, but more moder-

ately extensive), 4 = marked changes (as previously described, but with severe inflammation,

edema, and/or lymphoid reactivity)

Quantification of IgA and IgG antibodies in saliva

Saliva from FIV-infected and sham-inoculated cats was evaluated for circulating antibodies at

days 22, 36, 57, and 71 post-inoculation. Total IgA and IgG from saliva were quantified using

microsphere immunoassay (MIA) protocols involving conjugation of magnetic microspheres

with IgA or IgG capture antibodies [60]. Following conjugation protocols, a hemocytometer

was used to determine microsphere concentrations and protein coupling was confirmed via

incubation of microspheres with primary antibodies and/or PE-conjugated detection antibod-

ies [51]. Successful coupling of antibody to microspheres was determined by a median fluores-

cence intensity (MFI) of>2,000. Saliva samples from FIV-infected and negative control cats

were diluted 1:100 and 1:1000 in assay buffer for detection of IgG and IgA, respectively. These

samples were then incubated in duplicate with approximately 2,500 conjugated beads per well

in untreated, round-bottom 96-well plates [51, 60]. Total IgG and IgA antibody concentrations

were calculated from an 8-point standard curve (2-fold dilution series, run in duplicate) using

the MFI obtained from�100 microspheres per analyte per well (Bio-Plex™ Manager 5.0).

Reagent concentrations, volumes, incubation times, acceptable standard recovery, and data

analysis were performed as previously described [51, 60].

FIV-specific antibodies were detected using microsphere immunoassay (MIA) protocols

involving conjugation of magnetic microspheres with FIV-specific capsid (CA) or envelope

surface glycoprotein (SUC36-Fc) recombinant proteins [51, 60]. Following conjugation
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protocols, a hemocytometer was used to determine microsphere concentrations, and protein

coupling was confirmed via incubation of microspheres with primary antibodies and/or PE-

conjugated detection antibodies [51]. Successful coupling was determined by a median fluores-

cence intensity (MFI) of>2,000. All saliva samples from FIV-infected and negative control

cats were diluted 1:10 in assay buffer and then incubated in duplicate with approximately

2,500 conjugated beads per well. All samples were assayed in conjunction with FIV-C and

naïve reference samples diluted 1:50 in assay buffer, as well as four diluent control wells per

experiment. The MFI was calculated from�100 microspheres per analyte per well (Bio-Plex™
Manager 5.0) and then used for data analysis. All reagent concentrations, volumes, incubation

times, acceptable standard recovery, and data analysis were as previously described [51, 60].

In vitro salivary inhibition of viral infection

Approximately 80μl of saliva was obtained from each of 6 healthy, non-infected SPF cats, and

was pooled and used in same day in vitro experiments. Duplicate cell cultures consisting of

GFox cells (CrFK cells overexpressing CD134) were established in 24-well plates at 180,000

cells/well and allowed to attach at 37˚C overnight [53, 56]. GFox cell cultures were grown at

37˚C in 5% CO2 in culture medium composed of Dulbecco’s modified Eagle’s medium

(DMEM) with GlutaMAX-1, 10% fetal bovine serum (FBS), and 1x penicillin-streptomycin

(10,000 U/liter penicillin and 10,000 μg/liter streptomycin), as well as 1 μg/ml of Fungizone1

(Amphotericin B; Life Technologies) [57]. At day 0, 50,000 TCID50 of FIVC36 was incubated

with varying dilutions of saliva (1:100, 1:50, or no saliva (positive control)) in 1 ml of fresh cul-

ture media for 1 hour at 37˚C [61]. Following incubation, infected media was pipetted onto

Gfox cells plated in 1 ml of culture media, bringing the total volume in each well to 2 ml. Cell

cultures were then incubated at 37˚C for 12 hours, at which point all culture media was

removed from each well, discarded, and replaced with 2ml of fresh culture media. At days 4, 6,

8 and 10 post-inoculation, 1ml of supernatant was removed from each well, frozen at -80˚C,

and replaced with 1 ml of fresh culture media. The supernatant collected from each well and

each time point was then assayed for the detection of FIV p26 antigen by capture ELISA, mea-

sured at an absorbance of 450nm in 96-well flat bottom plates as previously described [58].

Percent inhibition was calculated from mean absorbance values (Abs) using the formula [(X −
Y)/X] × 100, where X is fraction of cells infected in the absence of saliva (positive control) and

Y is the fraction of cells infected in the presence of the saliva (1:100 or 1:50 saliva) [62]. For

each plate, a parallel set of wells containing cells without virus was incubated with correspond-

ing dilutions of saliva (1:100, 1:50, or no saliva (negative control)). GFox cells were visually

inspected at days 4, 6, 8, and 10 post-inoculation by inverted light microscopy for evidence of

cell growth, attachment, syncytial cell formation, detachment, and cell death.

Statistical analyses

Kruskal–Wallis test, Pearson correlations, ANOVA, and repeated-measures ANOVA (RM-A-

NOVA) were used to compare differences in salivary viral and/or proviral load among FIV-

infected individuals, between sample type (saliva, plasma/PBMC), for each tissue individually,

and between tissue types (lymphoid versus mucosal). RM-ANOVA was used to assess anti-

body responses over time and treatment after log10-transformation. For in vitro experiments,

RM-ANOVA with multiple comparisons was used to evaluate differences in mean absorbance

values and percent inhibition among treatment groups over time. For all significant results,

pair-wise comparisons were made by post-hoc analysis. Analyses were conducted in R (http://

www.r-project.org/) or using GraphPad Prism 6.0 software (La Jolla, CA). P-values < 0.05

were considered significant.
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Results

FIV viral RNA and proviral DNA is present in saliva of infected cats

Cats infected with FIVC36 experienced plasma viremia, CD4/CD8 inversion and other clinical

signs typically associated with acute pathogenic FIV infection [50]. Quantitative PCR analysis

of saliva from FIV-infected cats revealed levels of viral RNA equivalent to that of plasma, with

a trend for salivary viral load to be higher than plasma viremia over time (source p = 0.119,

interaction p = 0.165, Fig 1A). Although present in lower quantities, saliva from FIV-infected

cats also contained detectable quantities of proviral DNA (Fig 1B). Concurrent analysis of

housekeeping gene GAPDH in saliva indicated that cellular DNA was abundant in saliva, was

Fig 1. FIV viral RNA and proviral DNA are detected in saliva of infected cats. (A) Mean FIV viral RNA in saliva of infected cats is

greater than observed in plasma (Mean: 446,000 copies/ml saliva, 85,100 copies/ml plasma). There is a trend (p = 0.165) for salivary

viral load to be higher than plasma over the course of the study (RM-ANOVA). (B) Proviral DNA is present in saliva of infected cats,

although levels tended to be 10-fold lower than circulating PBMC (p = 0.214; RM-ANOVA). (C) The ratio of FIV RNA to DNA is

significantly higher in saliva than circulating levels in blood over the entire study (p = 0.036) and at each time point measured (day 43, p =

<0.001; day 64, p = 0.014; RM-ANOVA with multiple comparisons). (D) Saliva from FIV-infected cats contains infectious FIV virus, as

evidenced by FIV replication in GFox (CRFK) cells and the production of FIV viral particles following inoculation of saliva (day 21 post-

inoculation, positive Cutoff = Mean Naïve Abs + 3*SD).

https://doi.org/10.1371/journal.pone.0185138.g001
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used as a proxy to determine cell equivalents per ml of saliva (range 3.19x105-8.72x106 cells/

ml), and allowed us to calculate proviral DNA copies per saliva cell equivalent. FIV DNA levels

tended to be approximately 10-fold lower in saliva than in peripheral PBMCs, although this

trend did not differ over time (source p = 0.024, interaction p = 0.214). Interestingly, when

DNA proviral and RNA viral loads were normalized to the number of copies per 1ml of saliva,

the ratio of FIV RNA to DNA in saliva of infected cats was significantly higher over time than

in the peripheral circulation, suggesting the oral cavity is an important site for persistent and

enhanced FIV replication relative to peripheral circulation (source p = 0.001, interaction

p = 0.036, Fig 1C).

FIV is recovered from saliva of infected cats

The presence of infectious virus in saliva was confirmed by FIV p26 ELISA of tissue culture

supernatants collected from GFox cells incubated for 21 days with saliva from 5 FIV-infected

cats collected at 28 days post-FIV-infection (Fig 1D) [56]. Cells from infected cultures also

exhibited characteristic cytopathic effect at this timepoint. This collection point correlated

with high plasma viremia in FIV-infected cats [50], and confirms results reported by Matteucci

et al. in 1993 [45] that infectious FIV is present in saliva of infected cats. FIV-negative saliva

collected from sham-inoculated (naïve) cat at the same timepoint was included as a negative

control.

FIV viral and proviral loads are higher in oral lymphoid tissues

The retropharyngeal lymph node, tonsil, tongue, buccal mucosa, and salivary gland of FIV-

infected cats contained appreciable quantities of viral RNA (Fig 2A). FIV RNA present within

oral lymphoid tissues (retropharyngeal lymph node, tonsil) was significantly higher than oral

mucosal tissues (p<0.001; tongue, buccal mucosa, salivary gland). Proviral DNA was also

detected in all oral tissues, and oral lymphoid tissues contained significantly more FIV DNA

than oral mucosal tissues (p<0.001) (Fig 2B), however, the quantity of FIV DNA in oral lym-

phoid tissues and mucosal tissues was lower than in circulating PBMC (p<0.001). Viral RNA

and proviral DNA were not detected in the saliva or oral tissues from naïve animals (data not

shown).

FIV infection induces pathological changes in oral tissues

All tissue sections from a sham-inoculated control animal were histologically unremarkable

(Fig 3A and S1 Table). Of the 16 FIV-infected animals, the retropharyngeal lymph node

(n = 10) (Fig 3B) and the palatine tonsil (n = 11) (Fig 3C) exhibited mild to moderate lymphoid

hyperplasia, characterized by multifocal enlarged germinal centers with thin mantle zones and

a frequent “starry-sky” appearance due to numerous tingible body macrophages. Eight FIV-

infected individuals exhibited mild (n = 7) to moderate (n = 1) lymphoplasmacytic and histio-

cytic glossitis. In three of these animals, the submucosa was multifocally expanded by mild to

moderate numbers of mast cells (Fig 3D). Additionally, 4 FIV-infected animals had a mild,

multifocal, lymphoplasmacytic stomatitis of the buccal mucosa, with scattered mast cell infil-

tration observed in the same 3 animals in which the tongue was similarly affected (Fig 3E).

Small numbers of scattered small lymphocytes and plasma cells were occasionally observed at

the periphery and surrounding individual acini of the salivary glands in 7 of the FIV-infected

cats (Fig 3F). Overall, the degree of histologic change in oral lymphoid tissues (retropharyngeal

lymph node and tonsil) was significantly higher than in non-lymphoid tissues (tongue, buccal

mucosa, and salivary gland; p<0.001, Fig 4). Individually, the degree of histologic change in

the retropharyngeal lymph node (p<0.001), palatine tonsil (p<0.001), and tongue (p = 0.002)
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Fig 2. FIV RNA and DNA in oral lymphoid tissues is significantly higher than levels in non-lymphoid oral tissues. (A) FIV

RNA levels in oral lymphoid tissues (retropharyngeal LN and tonsil) are significantly higher than non-lymphoid oral tissues

(tongue, buccal mucosa, salivary gland) (p<0.0001), suggesting that oral lymphoid tissues serve as the site of viral replication and

release into saliva. (B) FIV proviral DNA levels in oral lymphoid tissues are not as high as in circulating PBMC, but are significantly

greater than in non-lymphoid tissues (p<0.0001), indicating that lymphoid organs may serve as oral reservoirs of FIV latency and

persistence.

https://doi.org/10.1371/journal.pone.0185138.g002
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Fig 3. FIV induces mild to moderate pathology in oral tissues. (A) Retropharyngeal lymph node. Sham-inoculated control, HE stain,

40x. (B) Retropharyngeal lymph node and (C) palatine tonsil from FIV-infected cats exhibit moderate lymphoid hyperplasia with

multifocally enlarged germinal centers and thin mantle zones, 40x. Higher magnification (insets, 200x) demonstrates tingible body

macrophages (arrows). HE stain. The submucosa of the tongue (D) and buccal mucosa (E) are multifocally infiltrated by small to

moderate numbers of small lymphocytes and plasma cells (arrows, 100x), as well as small numbers of scattered mast cells (arrows,

inset, 200x). HE stain. (F) Submandibular salivary gland. Minimal numbers of small lymphocytes and plasma cells multifocally surround

acini (arrowheads). HE stain, 400x.

https://doi.org/10.1371/journal.pone.0185138.g003
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was significantly greater than in the salivary gland, and there were more histologic changes in

the retropharyngeal lymph node compared to the buccal mucosa (p<0.001) (Fig 4).

FIV-specific IgG increases in saliva of FIV+ cats, while IgA remains static

Saliva samples were collected from FIV-infected and negative control cats at four time points,

and total IgA and IgG antibodies from saliva were quantified by microsphere immunoassay

(MIA). The concentration of total IgG in FIV-infected cat saliva ranged from 0.001 to

0.037mg/ml over the course of infection, while the total IgA concentration in FIV-infected cat

saliva ranged from 0.005 to 0.026mg/ml. There was a slight trend for total salivary IgG to be

increased in FIV-infected cats compared to naive individuals (treatment p = 0.216), however,

total IgA antibody levels did not differ in saliva from FIV-infected and sham-inoculated cats

(treatment p = 0.999) (Fig 5). FIV-specific anti-SU and anti-CA IgG antibodies were consis-

tently detected in saliva of FIV-infected cats and increased significantly over time (anti-SU

interaction p<0.001; anti-CA interaction p<0.05, Fig 6A and 6B). Although anti-SU IgA anti-

bodies were elevated in saliva from FIV-infected cats (treatment p<0.05, Fig 6C), they did not

Fig 4. Oral lymphoid tissues exhibit a greater degree of histologic change than non-lymphoid tissues. The degree of histologic

change in oral lymphoid tissues (retropharyngeal lymph node and tonsil) was significantly higher than in non-lymphoid tissues (tongue,

buccal mucosa, and salivary gland) (p<0.001). The degree of histologic change was significantly greater in the retropharyngeal lymph

node (p<0.001), palatine tonsil (p<0.001), and tongue (P = 0.002) than in the salivary gland. A greater degree of histologic change was

also observed in the retropharyngeal lymph node compared to the buccal mucosa (p<0.001) (ANOVA with Tukey test for multiple

comparisons).

https://doi.org/10.1371/journal.pone.0185138.g004
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increase over time compared to the background of uninfected saliva (interaction p = 0.569).

Furthermore, anti-CA IgA antibodies were not significantly elevated in FIV-infected saliva

(treatment p = 0.809, Fig 6D).

Saliva exhibits an inhibitory effect on FIV infection in vitro

Naïve cat saliva significantly inhibited FIVC36 growth in GFox cells (CrFK cells overexpressing

feline receptor CD134) over time, indicated by lower FIV p26 ELISA absorbance values in the

presence of saliva (interaction p<0.001, Fig 7A). Percent viral inhibition compared to no-

saliva controls differed significantly over time, peaking at 8 days post-inoculation and declin-

ing slightly thereafter (interaction p<0.05, Fig 7B).

Discussion

Our findings document that: (1) FIV infection predominates in oral lymphoid tissues versus

mucosal and salivary gland, resulting in mild to moderate histologic pathology (Figs 2–4,

Fig 5. Limited IgA mucosal antibody response during FIV infection. There is a trend for salivary IgG concentrations to be slightly

increased in FIV-infected cats following infection (solid blue line/squares) (mean ±SE; p = 0.216, RM-ANOVA). Salivary IgG remained

constant in naïve animals (blue dashed line/clear squares). Salivary IgA concentrations did not differ significantly between FIV-infected

cats (solid green line/circles) and naïve cats (dashed line/clear circles) over time (p = 0.969), but as expected, levels of IgA were higher in

saliva than IgG.

https://doi.org/10.1371/journal.pone.0185138.g005
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S1 Table), and provide evidence of a site of viral persistence and chronic immune dysregula-

tion; (2) FIV viral RNA ratio to proviral load, a surrogate for viral replication rate, is signifi-

cantly higher in saliva than in plasma/circulating PBMC (Fig 1C), suggesting enhanced FIV

replication occurs at a site where viral shedding is thought to take place; (3) though FIV-spe-

cific IgG antibodies increase in saliva during infection, secretion of FIV-specific IgA in saliva

Fig 6. FIV specific IgG and IgA antibodies are detected in saliva of infected cats. (A) Anti-SU IgG and (B) anti-CA IgG antibody

levels in saliva of FIV infected cats (solid blue lines) were significantly elevated (mean ±SE; treatment p<0.01 and p<0.001, respectively)

compared to naïve animals (dotted blue lines) and increased significantly over time compared to naïve saliva (interaction anti-CA:

p<0.05; anti-SU: p<0.001; RM-ANOVA). (C) Anti-SU IgA antibody levels in saliva of FIV infected cats (solid green lines) were

significantly elevated compared to naïve animals (dotted green lines) (treatment p<0.01), but did not increase significantly over time

compared to naïve saliva (interaction p = 0.569; RM-ANOVA). (D) No difference in salivary anti-CA IgA antibody levels was observed

between FIV-positive animals and naïve animals.

https://doi.org/10.1371/journal.pone.0185138.g006
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Fig 7. Naïve cat saliva inhibits FIV replication. FIVC36 was incubated with 1:50 or 1:100 dilutions of naïve cat

saliva in duplicate and inoculated onto CRFK cultures as described in the text. A ‘No Saliva’ virus-only positive

control represented 100% FIV growth as measured by ELISA absorbance. (A) Mean ELISA absorbance values

increased for all treatments except for virus-negative control (blue-checkered bars). Absorbance values for FIV

pre-incubated with saliva at both 1:100 and 1:50 dilutions were significantly lower (p<0.001; RM-ANOVA) than

the no saliva control (gray-striped bars), indicating a lower FIV replication rate in the presence of saliva. (B)

Analysis of percent inhibition over time revealed a significant inhibitory effect with saliva treatments differing over

time (p<0.05; RM-ANOVA) and at individual time points (days 4 and 8 post-inoculation) relative to the ‘No Saliva’

virus-only positive controls.

https://doi.org/10.1371/journal.pone.0185138.g007
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is impaired (Figs 5 and 6), suggesting one potential mechanism for chronic oral infection, the

development of opportunistic oral disease, and transmission of FIV via oral secretions; and,

(4) saliva from uninfected SPF cats harbors in vitro anti-viral properties (Fig 7), which may be

an important mechanism for limiting ‘passive’ FIV transmissions among FIV-infected and

uninfected cats in stable social structures.

Collectively, these data provide a descriptive analysis of viral, immunological, and patho-

genic features of oral FIV infection, and highlight a continuum between salivary and periph-

eral viral kinetics that is represented in Fig 8. Initial events of FIV infection occur systemically,

resulting in peripheral lymphocyte infection, viremia, and an anti-FIV antibody response in

which IgG antibodies predominate over IgA [39, 51, 52, 63]. During HIV and SIV infection,

CD4+ T-cells are rapidly infected and severely depleted from the intestinal mucosal surface,

resulting in loss of mucosal integrity, reduced capacity to control potential pathogens at muco-

sal surfaces, and subsequent triggering of pro-inflammatory responses [25, 26, 28, 29, 31, 32].

Comparatively, we demonstrate that FIV exhibits a significant tropism for oral lymphoid tis-

sues, which may potentially serve as initial sites for circulating virus to infect resting T-lym-

phocytes and dendritic cells (Fig 8A). As an extension of the digestive tract, similar effects of

viral-induced immunosuppression may likely occur at the oral mucosa, resulting in a chronic

cycle of lymphocyte depletion, microbial translocation, immune stimulation, and leukocyte

recruitment and consequent infection (Fig 8B), as evidenced by FIV accumulation and histo-

logic changes in oral tissues.

FIV virus particles and/or infected cells traffic to oral lymphoid tissues via circulation (Fig

8C) or by direct migration to the tonsils from the oral mucosa (Fig 8D), subsequently infecting

resident leukocytes and establishing a reservoir of persistent FIV replication in latently

infected T-lymphocytes within oral lymphoid tissues. Viral RNA and proviral DNA are also

detected in non-lymphoid oral tissues, but at a much lower quantity than in lymphoid tissues,

indicating that these sites (tongue, buccal mucosa, salivary gland) are not a primary site of FIV

persistence. However, accumulation of proviral DNA in these tissues suggests that passive

migration of FIV-infected cells may occur from the periphery to non-lymphoid oral tissues,

which may then perpetuate FIV-infection at these sites.

Although detectable, the quantity of FIV DNA is lower in saliva than in circulating PBMCs,

and reflects the concept that the FIV-infected cells being shed into saliva may be shed via the

oral mucosal epithelium in lieu of oral lymphoid reservoirs (Fig 8E), which contain larger

amounts of FIV proviral DNA. In contrast, FIV RNA appears later in saliva than in plasma

[63], but salivary FIV RNA concentration is equivalent to plasma, and FIV RNA is present in

high quantities in oral lymphoid tissues (Fig 1). Our finding that FIV RNA is proportionally

higher (compared to proviral load) in saliva than in plasma suggests that the oral cavity is a

preferential site for viral RNA transcription. The observed predilection of FIV for oral lym-

phoid tissues indicates that these tissues may serve as an important reservoir and primary

source of viral replication and shedding of viral RNA into the saliva (Fig 8F). Systemic hyper-

plasia of lymphoid structures is a prominent feature of FIV infection, and the histologic

changes observed support an analogous impact on oral lymphoid tissues; thus supplying an

ample source of target cells for persistent FIV replication [39, 64–66]. Moreover, the anatomic

distribution of the palatine, paraepiglottic, pharyngeal and lingual tonsils provides an intimate

association with the overlying oral mucosa, and highlights the potential for these organs to

serve as sites of extrusion of FIV into saliva through trafficking of infected cells across the adja-

cent mucosal epithelium [67].

IgA represents the primary mucosal antibody that limits numbers of mucosa-associated

bacteria and prevents bacterial penetration of host tissues. This is best demonstrated by IgA

deficiency, which results in increased penetration of symbiotic bacteria into the host tissues
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and consequent inflammation [68–71]. In the oral cavity and gastrointestinal tract, differenti-

ated plasma cells secrete IgA, which then transcytoses across the epithelial layer to the apical

surface of the epithelium where it works to crucially maintain homeostasis through luminal

compartmentalization of intestinal bacteria [68]. However, during FIV infection, IgG antibod-

ies increase in saliva and in the peripheral circulation of infected cats [51], but the IgA anti-

body response remains static at both of these sites. Furthermore, FIV-specific IgA antibodies

Fig 8. Proposed model of oral FIV pathogenesis. Similar to the gastrointestinal tract, FIV exhibits a tropism for oral tissues, providing

a pathway for circulating virus to extravasate and infect resting T-lymphocytes (rT) and dendritic cells (DC). (A) As documented in the

intestinal mucosa, infection and depletion of resting mucosal lymphocytes in the oral mucosa may cause inflammation, damage mucosal

barriers, and subsequent translocation of oral microbes; resulting in lymphocyte activation and recruitment to oral mucosal tissues. (B)

Mucosal injury initiates a chronic cycle of immune activation and provides a renewable source for target cell infection by recruiting

susceptible cells to the site of injury. Peripheral FIV-infected cells traffic to oral lymphoid tissue via lymphatics (C) or direct migration to

tonsils (D) resulting in antigen presentation, T-lymphocyte activation (aT), and infection of resident leukocytes, establishing a reservoir of

persistent FIV replication in latently infected T-lymphocytes (iT) in oral lymphoid tissues. (E) FIV infected cells are likely shed from oral

mucosal sites into saliva, resulting in the presence of salivary proviral DNA. Cells within oral lymphoid tissues have enhanced FIV

replicative activity, resulting in a higher ratio of FIV viral RNA to proviral DNA than noted in the peripheral circulation. (F) FIV RNA in

saliva may be achieved by direct release of virus particles from infected cells into saliva via the intimate association of tonsillar lymphoid

tissue with the oral mucosa. (G) While FIV specific IgG responses are detected in saliva, anti-FIV IgA antibodies are not specifically

enhanced, allowing FIV virus and infected cells to persist in saliva at high levels.

https://doi.org/10.1371/journal.pone.0185138.g008
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against capsid are undetectable in saliva, and anti-SU IgA does not increase over time. In con-

trast, both anti-SU and anti-CA IgG antibodies increase significantly in saliva during FIV

infection (Figs 6B and 8G). These results indicate a failure to mount an effective mucosal anti-

body response during FIV infection, which may perpetuate oral mucosal viral infection as well

as changes in the oral microbiome, thus contributing to microbial translocation and a cycle of

immune dysfunction.

Currently, FIV infection is diagnosed clinically by either lateral-flow serum ELISA or

microwell, and western blot and immunofluorescent antibody (IFA) assays are frequently used

as confirmatory tests following positive ELISA results [72]. Unfortunately, these assays require

blood samples to screen for serum FIV-specific antibodies, which may be impractical to

acquire in intractable patients, or during field operations to capture and control the feral cat

population. The presence of anti-FIV IgG antibodies in saliva suggests that a reliable alterna-

tive diagnostic assay can be developed based upon saliva sampling, and may allow for methods

to differentiate between vaccinated and un-vaccinated cats as previously suggested by Wood

et al. [51]. Microsphere immunoassay technology or other sensitive antibody detection assays

may be of great use in clinical applications to test for FIV in a less invasive manner, as these

assays only require passage of an oral swab along the interior of the oral cavity. Furthermore,

optimization to detect FIV in saliva may be directly adapted to test human saliva for HIV with-

out the need for blood sampling, thus increasing the capacity to screen large numbers of

patients in endemic areas.

Results of this study demonstrate that uninfected feline saliva contains a component with

anti-FIV properties, a feature that may have implication for FIV transmission in natural set-

tings. Prolonged contact between animals is typically required for transmission of FIV, and

feral male cats are most at risk for FIV infection. Numerous studies have indicated that hori-

zontal transmission through casual contact such as grooming is extremely inefficient and

rarely occurs in the absence of biting, i.e. amongst cats maintained indoors or in stable groups

[47, 73–75]. Our findings suggest that cats which groom each other may be less susceptible to

FIV transmission via fomites and cat to cat oral contact because of unidentified innate factors

in saliva, which inhibit infection via the oral route. While experimental transmission studies

have documented potential for oral transmission by inoculation of virus into the oral cavity

[76, 77], these studies provided an artificially high dose of concentrated virus, which would be

an unusual situation to encounter in a natural transmission setting.

Previous studies in humans infected with HIV have demonstrated that significant anti-viral

activity in human saliva is conferred by numerous cofactors and immune modulators, such as

anti-HIV antibodies, defensins, thrombospondin-1, proline-rich proteins, salivary agglutinin,

and secretory leukocyte protease inhibitor (SLPI) [14, 15]. It is possible that naïve feline saliva

may confer anti-viral activity in vivo by similar mechanisms and effector molecules. However,

the capacity of FIV to be transmitted via saliva despite its potential inhibitory properties may

indicate alterations in the composition of saliva in infected cats, or perhaps other viral-induced

mechanisms by which FIV may overcome these inhibitory effects. Further investigation is war-

ranted to determine whether feline saliva contains inhibitory molecules similar to those in

human saliva and how the composition of feline saliva changes following FIV infection.

Although HIV transmission typically occurs via parenteral or transmucosal venereal routes,

recent epidemiological studies have provided definitive evidence that HIV can be transmitted

by receptive oral intercourse, and occasional cases of transmission by biting have been docu-

mented [7–13]. Furthermore, significant quantities of both HIV viral RNA and proviral DNA

have been detected in saliva of infected individuals, with significant correlations between sali-

vary and plasma RNA levels [16, 17]. Oral HIV transmission occurs less frequently than in FIV

transmission, likely due to the absence of aggressive biting in human populations versus cat
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populations [7, 11, 21, 78]. The use of SIV animal models has provided further proof that oral

transmission of primate lentiviral infections is possible, and experimental SIV studies have

helped to understand the oral immune response during infection [13, 79–81]. Moreover, retro-

viral-induced oral disease continues to affect a high proportion of individuals despite the suc-

cess of highly active antiretroviral therapy (HAART), and is a common manifestation of both

HIV and FIV infection [38, 41–43, 76]. Oral lesions are not typically observed during SIV

infection and may highlight significant limitations of the SIV model to study HIV-induced

oral disease [82, 83]. In contrast, FIV produces oral lesions in cats that closely resemble Linear

Gingival Erythema and Necrotizing Ulcerative Gingivitis in humans with HIV-induced dis-

ease, and opportunistic microorganisms detected in saliva of HIV-positive individuals (Can-
dida albicans, Fusobacterium sp., Streptococcus sp., Prevotella sp., Campylobacter sp., and

Porphyromonas gingivalis) are also implicated in feline oral disease [1, 6, 31, 38, 39, 41–43, 47,

84–88]. Indeed, shifts in oral microbial structure during HIV and FIV infection have been

increasingly linked to disease phenotypes, and the use of a feline animal model is a pragmatic

solution to assess the impact of novel therapeutic strategies [1, 25, 38, 41, 84, 86, 89, 90]. An

effective anti-HIV vaccine or prophylactic therapeutic agent that will cure or prevent HIV

infection will likely need to function at the mucosal surface, and FIV provides a relevant ani-

mal model that might be exploited to specifically assess oral mucosal lentiviral disease and

interventions [13, 91, 92].

The results of this study provide new evidence for unique pathogenic features of oral FIV

infection and suggest mechanisms that overcome host resistance. Manipulation of constituents

of saliva, inhibition of viral replication at oral lymphoid sites, or enhancement of anti-viral IgA

production may represent novel therapeutic interventions to reduce or eliminate oral FIV

infection, as well as the potential to treat HIV-induced oral disease. Our results additionally

provide a plausible hypothesis linking site-specific viral replication, mucosal immune defi-

ciency, and salivary inhibition to the natural transmission and infection cycle of FIV.

Supporting information

S1 Table. Histopathologic changes are observed in FIV-infected cats. Histologic scores of

oral tissues from FIV positive animals on a scale of 0–4 (described in text). Most prominent

pathologic changes are demonstrated in Fig 3, and consist of moderate lymphoid hyperplasia

in the retropharyngeal lymph node (RP LN) and tonsil, followed by mild to moderate glossitis

and stomatitis in the tongue and buccal mucosa. Differences in the degree of histologic change

between oral tissues are summarized in Fig 4.
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