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ABSTRACT 
 

 

 

DEVELOPING A STRATEGY FOR IDENTIFYING GENETICALLY IMPORTANT ANIMALS 
 

 

 

Livestock researchers often need to sample animals within a breed to serve as a representative 

sample of the breed. Identifying the most relevant animals to include in research for genotyping, 

building a reference population, or inclusion in a gene bank is a complex issue. A suboptimal sampling 

strategy can lead to biased results, the need for additional sampling, and can be costly. When using 

public funds (e.g., federal grant or federal appropriations) or member fees (e.g., breed association 

funds), we have a responsibility to efficiently spend these investments in a wise manner, optimizing 

which animals are sampled before the research, genotyping, or gene banking begins. 

The first objective was to develop a sampling strategy to maximize the genetic diversity 

captured for the sampled animals. Simulated data is ideal for this type of study as there is no limitation 

to the testing parameters. The primary benefit of simulation with this research was the opportunity to 

have known genotypes for every animal in the population. Since genotypes will almost never be 

available for the entire population in the real world, and identifying animals to genotype may in fact be 

the purpose of the sampling, pedigree-based sampling methods were chosen. Sampling methods tested 

included optimal contribution selection (OCS) and the genetic conservation index (GCI). The OCS selects 

parents based on constraining their co-ancestry rather than minimizing inbreeding. GCI seeks to 

maximize the number of founders in an animal’s pedigree. The sampling strategy developed in Objective 

1 was used to identify a subset of 100, 50, and 25 animals from each breed and the genetic diversity 

captured by each sampling method was assessed using both quantitative and molecular methods. 

AlphaSimR was used to simulate the population for sampling. After an initial randomly mating 

founder population was developed, an additional 15 years of selection for phenotypic weaning weight 
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was simulated and resulted in a fully genotyped population with 13,662 animals per year. The simulation 

was designed to represent a sheep population. After the sampling strategies were applied to the 

simulated population, they were next applied to Suffolk sheep and Simmental beef populations for 

further assessment of their ability to capture genetic diversity. To assess population structure based on 

molecular data, the Suffolk and Simmental populations were limited to genotyped animals and their 

ancestors. The simulated population represented a large purebred population (n=204,930) with a 

moderate number of markers (n=53,901).  The Suffolk population represented a small population 

(n=1,565) with many markers (n=606,006). Lastly, the Simmental population represented a large, 

admixed population (n=54,790) with a moderate number of markers (n=29,449). 

For the second objective, the population structure of the full populations, comprised of 

genotyped animals, was assessed, and compared to the population structure of the animals from each 

sampling strategy. Each sampling strategy selected 100, 50, and 25 animals. The measure of success of 

capturing the genetic diversity of the population was a molecular-based measure defined by capturing 

the available alleles in the population. Other population structure measures included a comparison of a 

phenotypic trait, breeding values, inbreeding levels, heterozygosity, minor allele frequency (MAF) 

category classification, runs of homozygosity (ROH), Ne, and model-based population structure to 

visualize subpopulations.  

While both sampling strategies were effective at capturing the available alleles in the 

population, OCS was more successful than GCI when comparing the same sample size. Success of 

capturing alleles decreased as sample size decreased from 100 to 50 to 25. Overall, OCS with a sample of 

100 animals (OCS 100) was the most successful at capturing the available alleles in the population, 

capturing 96.5, 99.3, and 99.9 percent of the alleles for the simulated, Suffolk, and Simmental 

populations, respectively. 
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For a sampling strategy to be useful, it needs to be effective across a variety of species and 

breeds with a variety of breed histories and population sizes. The third objective was to compare the 

three populations evaluated in this research and compare the effectiveness of the sampling strategies 

across these populations. Population structure was compared for the three populations. Then, the 

effectiveness of OCS 100 was compared. 

The three populations differed in population size and the amount of admixture present. The 

simulated population was characterized by a large number of low frequency alleles (n=5,339) that 

proved difficult to capture. The Suffolk population was small and consisted of 14 distinct 

subpopulations. The Simmental population had high levels of heterozygosity and less distinct 

subpopulation structure. Despite disparate populations, OCS 100 was the most robust across the three 

populations, consistently capturing the highest percentage of available alleles compared to the other 

sampling strategies. 

In summary, OCS 100 was the most effective sampling strategy across three different 

populations. A low-cost pedigree-based sampling strategy can be used to capture the genetic diversity in 

a population. Researchers will need to weigh the risk of a greater loss of alleles when selecting a smaller 

population size. Risk could be further reduced by increasing the selected population size. Knowledge of 

the prevalence of low frequency alleles in the population and the value of capturing them should be 

considered.  
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CHAPTER I 

INTRODUCTION AND OBJECTIVES 

 

 

 

1.1 Introduction 

 

The proportion of the world’s livestock breeds classified as being at risk of extinction increased 

from 15 percent to 17 percent between 2005 and 2014, with a further 58 percent of breeds classified as 

being of unknown risk status (FAO, 2015). Unprecedented improvements in reproductive technologies 

and genetic selection over the past 60 years have allowed U.S. livestock producers to dramatically 

increase meat production while simultaneously decreasing livestock inventory. This efficiency comes at 

a cost; the potential benefit of genomic selection is a doubling of genetic gain (van der Werf et al., 2014)  

which is also expected to double the rate of loss of within-breed genetic variation (Kristensen et al., 

2015). Since genetic variation is the avenue for future genetic change, there is an urgent need to capture 

genetic variation before it is lost from a population.   

Initiated in 1999, the mission of the USDA-ARS-National Animal Germplasm Program (NAGP) is 

to provide a ready supply of preserved germplasm for all major livestock species and develop a more 

comprehensive understanding of genetic diversity within U.S. breeds and within the NAGP collection. 

Capturing the existing genetic diversity within each breed is crucial before it is lost altogether. Within-

breed genetic variability accounts for 83 to 93 percent of the total variation (Plante et al., 2007; Nicoloso 

et al., 2015) which demonstrates how critical it is to properly sample within a breed when that sample is 

meant to represent the population. With this research, various sampling strategies will be assessed to 

identify the most genetically important animals for inclusion in the gene bank, for research purposes, or 

for building a reference population. The sum of the identified animals will need to capture both the 

range of genetic diversity in the breed and the genetic merit. Sampling strategies identified for further 
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evaluation include optimal contribution selection (OCS) and the Genetic Conservation Index (GCI). OCS 

controls the relationship of the parents while maximizing the mean breeding value. The attribute that 

drives OCS is that the emphasis is placed on the selection of parents based on co-ancestry rather than 

future inbreeding (Meuwissen, 2009). The GCI maximizes the effective number of founders in the 

selected population. The GCI is computed using the proportion of genes of each founder in the animal’s 

pedigree. A higher GCI is associated with maintaining higher genetic diversity within the breed 

(Alderson, 1992). 

 

1.2 Objectives 

 

 Objective 1 develops a sampling strategy to maximize the genetic diversity of the sampled 

animals. The sampling strategy will be developed with simulated data and validated with real pedigree 

and breeding value data.   

 Objective 2 assesses the population structure for a simulated breed, a sheep breed (Suffolk), 

and a beef breed (Simmental). Capturing the genetic diversity of a breed in as few animals as possible is 

efficient and cost effective. Therefore, the sampling strategy developed in Objective 1 will be used to 

identify a subset of 100, 50, and 25 animals from each breed. Then, the population structure for each 

subset will be compared to the breed using SNP data to determine how much of the allelic genetic 

diversity has been captured. 

 Objective 3 quantifies how well the sampling strategy works for each breed and species. The 

sampling strategy will be quantified to determine if it is robust for breeds and species that are expected 

to have substantially different breed histories and subsequent population structures.   

Since the sampling strategy could be validated using any livestock species, including a sheep 

breed provides the added value of drawing attention to a historically underserved industry and will 
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provide valuable information about the population structure and genotype data back to the industry. 

Assessing the population structure of U.S. sheep breeds has not been done at this level using a large 

quantity of SNP data (Ovine HD BeadChip = 606,000 SNP). This strategy is applicable for identifying 

animals for inclusion in research, gene banking, developing a reference population for genotyping, and 

for identifying redundant animals for culling. This project will produce a sampling procedure, population 

structure analyses for two breeds across two species, and validate with genotypic data to serve the 

livestock industry. This research will help efficiently secure animal genetic resources for the future and 

provide the genetic diversity for the livestock industry to continue to make reproductive and genetic 

gains. 
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CHAPTER II 

REVIEW OF LITERATURE 

 
 
 
2.1 Need for sampling strategy 

 

Obtaining the correct data set is the key to conducting a proper analysis; otherwise, the results 

may be misleading or incomplete (Ott and Longnecker, 2015). Livestock researchers often need to 

sample animals within a breed to serve as a representative sample of the breed. Identifying the most 

relevant reference animals to include in research for genotyping, culling, or inclusion in a gene bank is a 

complex issue. A suboptimal sampling strategy can lead to biased results, the need for additional 

sampling, and can be costly. When using public funds (e.g., federal grant or federal appropriations) or 

member fees (e.g., breed association funds), we have a responsibility to efficiently spend these 

investments in a wise manner, optimizing which animals are sampled before the research, genotyping, 

or gene banking begins. A definitive, logical process ensures these limited funds are spent in an efficient 

manner. Applications for this research include deciding which animals to sample for inclusion in 

research, gene banks, forming a reference population for genotyping, or which group of animals to keep 

and cull in the case of drought or other need to reduce herd or flock size.  

Much of conservation prioritization has focused on which breeds to conserve (Weitzman, 1992; 

Thaon D'arnoldi et al., 1998; Eding and Laval, 1999; Ruane, 1999; Karimi et al., 2016). However, within-

breed genetic variability accounts for more diversity than between breeds. Researchers have reported 

within-breed genetic variability to account for 83 to 93 percent of the total variation (Table 2.1). This 

demonstrates how critical it is to properly sample within a breed when that sample is meant to 

represent the entire population. 
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Table 2.1 Summary of within-breed genetic variation across studies 

Species Population Analytical Tool Within-Breed 

Genetic 

Variation (%) 

Source 

Equine 24 Canadian populations 38 microsatellites 86.7 (Prystupa et al., 2012) 

Equine 12 German breeds 30 microsatellites 88.4 (Aberle et al., 2004) 

Equine 6 breeds 50 microsatellites 90.0 (Glowatzki-Mullis et al., 
2006) 

Equine 21 breeds 12 microsatellites 83.0 (Plante et al., 2007) 

Caprine 14 Italian breeds 50K SNP chip 92.5 (Nicoloso et al., 2015) 

Ovine 22 breeds 11 microsatellites 87.2 (Paiva et al., 2011) 

Ovine 29 European breeds 23 microsatellites 87.0 (Handley et al., 2007) 

Ovine 5 U.S. breeds 50K SNP chip 88.8 (Zhang et al., 2013) 

 

Maximizing the genetic variation within a breed allows for adaptation to environmental change, 

whether that change is geographical, climate, management, or production environment. Part of the 

balance of maintaining genetic diversity while selecting for animals adapted to an environment is to 

minimize inbreeding, as inbreeding makes a population more homozygous, thereby reducing genetic 

variance within a population (Meuwissen, 2009). Selection for increased genetic merit also results in a 

loss of genetic diversity as favorable alleles are increased and unfavorable alleles are decreased or are 

eliminated from the population (Eynard et al., 2018b). 

 

2.2 Genetic diversity 

 

Genetic diversity exists as expressed (or adaptive) genetic diversity, which is at the coding 

regions of the genes, and neutral genetic diversity, which is at the non-coding regions (Eding and Laval, 

1999; Windig and Engelsma, 2010). Genetic diversity is also measured in terms of allelic diversity, or 

allelic richness. The ability of a population to respond to selection or environmental pressure depends 

on having different alleles. Genetic diversity is maximized when all alleles at a locus have the same 

frequency, thereby minimizing the loss of alleles to genetic drift (Fernández et al., 2004). Because SNP 
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markers are biallelic, Fernández et al. (2016) recommended defining genomic allelic diversity based on 

haplotypes to maximize polymorphism. A common measure of genetic diversity is heterozygosity, which 

does not account for the number of alleles at a locus. The loss of a rare allele will generally not affect 

heterozygosity, but does reduce allelic richness (Falconer and Mackay, 1996; Greenbaum et al., 2014).  

When determining the most genetically important animals to represent a breed, there is a 

conflict between maintaining the allelic frequencies that already exist in the breed or maximizing the 

allelic diversity, which will favor all alleles at the locus having the same frequency. The choice is between 

representing the existing population as it is or minimizing the chance of losing a rare allele (Fernández et 

al., 2004; Saura et al., 2008). Windig and Engelsma (2010) provide an example of selecting for genetic 

diversity resulting in an increase of the previously rare blond phenotype in a cattle population, which 

was considered a negative by the owners. For conservation programs, maintaining the allele frequencies 

as they exist in the population is preferred (Lacy, 2000).  

 

2.3 Gene banking 

 

With the world’s population expected to increase to more than 9 billion people by 2050 and 

continued increases in per capita income, demand for livestock products is expected to dramatically 

increase (Thornton, 2010). By 2050, the global cattle population may increase from 1.5 billion to 2.6 

billion, and the global goat and sheep population from 1.7 billion to 2.7 billion (Rosegrant et al., 2009). 

As mean climate change and increased climate variability are expected to occur, it is difficult to predict 

how a population will adapt to an altered environment. Adaptation is limited by the available genetic 

variation; hence ensuring genetic resources are available for the livestock industry to meet the world’s 

food needs is of utmost importance (Thornton, 2010; Templeton, 2021).  
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As explained by Engelsma et al. (2011), since all animals within a breed cannot be included in a 

gene bank, a method to identify those animals that captures as much genetic diversity as possible to 

conserve is needed. An excellent description of gene banking sampling was provided by (Eynard et al., 

2018b), “Sampling for gene bank collections should focus on collecting old individuals as representative 

as it can be of the former population, as well as individuals carrying unique diversity and to collect 

current individuals of potential interest for the future”. Gene banks are a major source of conservation 

of livestock genetic resources. The primary purpose of a gene bank is to decrease the risk for in situ live 

populations, which is why gene banks are logically a public entity because of the low present value 

associated with decreasing risk and capturing genetic diversity for the long-term (Oldenbroek, 1999; 

Weigel, 2001). In addition to the initial purpose of publicly owned gene banks, which is for 

reestablishment of breeds in case of a disease outbreak or other worst-case scenarios, the genetic 

resources can also be used for reintroduction of lost genetics, broadening the genetic base, research, 

and genetic studies. Additionally, in the U.S., live populations at land grant universities and other public 

entities have greatly been reduced, increasing the importance of having genetic resources in reserve for 

future research (Blackburn, 2018). 

On the surface, there appears to be a conflict between conservation activities, which aim to 

maximize genetic diversity, and production agriculture, which supports intense selection intensity for 

traits of economic relevance, thus rewarding phenotypic uniformity; this reduction in variation 

inherently leads to reduced genetic diversity (Kristensen et al., 2015). As the use of reproductive 

technologies (AI, ET, sexed semen) increased starting in the 1960’s, much higher selection intensity for 

superior males and females has been practiced, leading to an increase in inbreeding and reduced 

effective population size. More recent advances in genomic selection in the past decade further 

increases selection intensity and decreases generation interval, further reducing effective population 
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size. While the potential benefit of genomic selection is a doubling of genetic gain  (van der Werf et al., 

2014), it may also double the rate of loss of within-breed genetic variation (Kristensen et al., 2015).  

Despite these apparent conflicting interests between conservation activities of gene banks and 

production activities of the livestock industry, the opposite is true. Gene banks rely on contributions of 

genetics from the livestock industry to build a complete collection. If gene banks have sufficient genetic 

variation captured for each breed, industry will have cryopreserved genetics to draw from if additional 

genetic variation is needed in the future in the case of changing market demands, climate change, or 

deleterious mutations. The gene bank can then be replenished from the resulting offspring. This allows 

industry to maximize profit while also maintaining genetic variation. The livestock industry is primarily 

dominated by a few high-input/high-output breeds of high genetic merit. Maintaining the genetic 

diversity of these breeds is important to provide the opportunity to counter some of the negative effects 

in the future (e.g., selection for milk production in Holstein cattle has resulted in problems with fertility). 

Additionally, conservation of low-input/low-output breeds may benefit the high-input/high-output 

breeds as well (e.g., introgression of polled genes) (Windig and Engelsma, 2010).  

 

2.4 Core collection and Ne 

 

Blackburn (2009) described the animals selected for the Core Collection of the U.S. gene bank as 

taking into account genetic diversity, capturing rare alleles, and obtaining sufficient quantities for breed 

regeneration. For a gene bank, a Core Collection is the portion of the collection that is reserved for 

critical needs, including breed regeneration, reintroduction of genetic variation to overcome a 

bottleneck, or elimination of a deleterious mutation. Once the Core Collection has been established, it is 

meant to be dynamic and updated with current genetics to represent each breed. The Core Collection 

should contain 150% of the germplasm needed to reconstitute each breed (FAO, 2012). 
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If the Core Collection is needed for breed regeneration, the re-creation of a breed serves as the 

equivalent of a founder event, where a new population is established by only a few founders. General 

characteristics of a founder event include the loss of rare alleles, leading to decreased allelic diversity, 

reduced genetic variation, different allele frequencies than in the original population, and decreased 

heterozygosity (Halliburton and Halliburton, 2004; Campbell and Reece, 2008). Ideal sampling of animals 

for the Core Collection will minimize these negative attributes. Most populations behave as though they 

are smaller than their census size, a concept referred to as the effective population size (Ne). The 

effective population size is influenced by the breeding structure, sex ratio, mean and variance of number 

of offspring, variation in population size over time, and any other factor that causes the breed to deviate 

from the idealized population (Wright, 1931; Halliburton and Halliburton, 2004). 

In livestock populations, Meuwissen and Woolliams (1994) are often cited as recommending a 

range of effective population size of 31 to 250. The United Nations Food and Agriculture Organization 

(FAO) set guidelines for breed conservation stating that achieving a minimum effective population size 

of 50 animals per generation should be the first priority for managers. This effective size of 50 will result 

in an inbreeding rate of one percent per generation (FAO, 1998). Given a consensus that 50-100 is a 

viable effective population size, Meuwissen (2009) recommends 100 to err on the side of caution. NAGP 

has set a minimum collection goal of 50 males per breed (Blackburn, 2018). 

At present, gene banks throughout the world are primarily comprised of cryopreserved semen, 

as it is routinely collected and cryopreserved across most livestock species. Embryos pose a challenge 

because the mating decision has already been determined, reducing the flexibility of its future use. 

Additionally, embryos are more difficult and expensive to obtain when compared to semen (Blackburn, 

2018). In the future, as cryopreservation of ooctyes becomes routine in the livestock industry, there will 

be a paradigm shift in how Core Collections for gene banks are constructed. Backcrossing over multiple 

generations will be replaced by reconstitution in a single generation. For now, emphasis in gene banks is 
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placed on selecting males for breed re-establishment via backcrossing. The Core Collection should 

include animals that maximize genetic variation; for semen only storage, this variation will be maximized 

by minimizing the average co-ancestry among males (Toro and Mäki-Tanila, 1999). 

 

2.5 Sampling for research 

 

It is rare for all animals of interest to be included in a research study; therefore, some form of 

sampling strategy must be implemented. For the U.S. Meat Animal Research Center 2000 Bull Project, 

the research included understanding breed composition and allele frequencies of 16 cattle breeds. 

Selection of bulls for inclusion in the research study was determined by each breed association and they 

were not provided any limitations on relatedness, offspring counts, or EPD accuracy (Kuehn et al., 2011). 

Because it is unlikely each breed association applied the same selection criteria, the results may be 

biased. Other animal genetics studies selected influential bulls from three dairy cattle breeds (Hozé et 

al., 2014), minimally related animals across farms from goat breeds (Nicoloso et al., 2015), randomly 

sampled animals within horse breeds (Prystupa et al., 2012), and based on their marginal contribution to 

the population for cattle breeds (Hozé et al., 2013). 

 

2.6 Sampling for a reference population 

 

Advances in the use of genomic data require a reference population that can be used for 

genotype imputation (Hozé et al., 2013; van der Werf et al., 2014; Neuditschko et al., 2017) and to 

maximize the accuracy for genomic selection (Hozé et al., 2013; Pszczola et al., 2014). Developing a 

reference population consists of determining how large it should be and which animals to include (van 

der Werf et al., 2014). Various strategies have been described for selecting animals for a reference 
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population. Neuditschko et al. (2017) criticized the standard method of selecting animals based on key 

ancestors through the use of pedigree or genomic relationships because of a disregard for population 

substructure and the most influential progeny; they instead proposed using the Eigenvalue 

Decomposition of a genomic relationship matrix to select key contributors. This strategy inherently 

requires genomic data to be available for individuals in order to be considered. For genomic selection, 

Pszczola et al. (2014) described the need to update the reference population over time to maintain high 

accuracy of genomic breeding values. Rather than randomly selecting animals for updating the 

reference population, they suggest that a reference population that is minimally related to each other 

yet maximally related to the target population will lead to the highest accuracy. For imputation 

purposes, Hozé (2013) concluded the accuracy of imputation was related to the size of the reference 

population and the relationship between the reference population and target populations. van der Werf 

et al. (2014) further suggested a balance between genetic merit and diversity, where progeny of young 

sires of high genetic merit are included given that they are lowly related to each other. 

 

2.7 Sampling for culling 

 

Just as genetically unique animals need to be identified for conservation, they also need to be 

identified in the case of population reduction, or culling. Genetically unique animals need to be 

identified for retention and other individuals can be selectively culled to reduce overall inbreeding and 

increase genetic diversity. Windig and Engelsma (2010) provided an example from the Netherlands 

where a semi-wild cattle population was maintained by selectively removing animals with redundant 

genetics (e.g., one of a pair of full sibs). The resulting inbreeding was less than was expected based on 

the effective population size. The use of genomics further enhances the ability to identify animals to 
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maintain a high level of genetic diversity, even with reduced population size (Windig and Engelsma, 

2010). 

 

2.8 Population genetics related to identifying genetically unique animals 

 

 Population structure is defined as the amount and distribution of genetic variation within and 

among both local populations and the entire species. The primary determinant of population structure is 

the balance between genetic drift and gene flow. Genetic variation provides the raw material that 

makes evolutionary change possible (Templeton, 2021). 

 Population genetics theory is driven by four factors that cause populations to change over time; 

those factors are random drift, selection, mutation, and migration (Eding and Laval, 1999). As described 

by Meuwissen (1997), selection based on performance traits will lead to increased inbreeding and 

increase the likelihood of deleterious genes drifting to high frequency for traits that are not under 

selection. In particular, reproductive traits suffer from inbreeding depression and many of the positive 

reproductive genes will be lost before the breeding objective is changed to correct the reduced 

reproductive performance. Ruane (1999) and Eding and Laval (1999) state that genetic drift plays a 

greater role in domesticated breeds than mutation since domestication was a relatively recent event 

and mutation takes many generations to have a measurable impact. Genetic variability is primarily 

explained by random drift (Eding and Laval, 1999). Halliburton (2004) describes the key results of 

genetic drift as 1) the direction is unpredictable; 2) the magnitude of change from generation to 

generation is larger with small populations; 3) the long-term effect is to reduce genetic variation; and 4) 

the populations will diverge from each other. 

 According to Eding and Laval (1999), capturing the genetic diversity within a breed should not 

focus on specific traits, but on overall diversity. This removes the emphasis from capturing every allele 
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per locus to capturing the diversity of genotypes instead. Their claim is that for polygenic traits, diversity 

is measured in terms of genotypes and not alleles. If subpopulations within a breed are isolated, e.g., 

geographical isolation without the use of A.I., even though selection in all populations may be in the 

same direction, random drift of neutral genes may still show divergence between the subpopulations. In 

this case, SNP are useful for measuring the genetic differentiation between subpopulations, more so 

than performance measures. Gene flow between subpopulations, i.e., migration, reduces the genetic 

differences between populations. Of the evolutionary forces in population genetics, drift and selection 

lead to a decrease in genetic variation while mutation and migration lead to an increase. Understanding 

the role of each of these forces in a population is important to assessing the genetic diversity of the 

population through its history, its state currently, and its likely future direction. 

 

2.9 Features of sampled populations - real and simulated data 

 

Genetic studies, and genomic research in particular, can be conducted using simulated or real 

data, or a combination of the two. Both approaches can be used for comparing analytical methods, 

comparing genomic breeding programs, evaluating genomic selection from the short- to long-term 

(Daetwyler et al., 2013), and modelling assumptions about population structures that impact genetic 

diversity (Hoggart et al., 2007). Real data is complex, while simulated data can be structured to allow for 

focused evaluation of a specific aspect of the population. Daetwyler et al. (2013) explain that exploring 

the source of variability, such as genetic drift, is better suited for simulated data than is real data. 

Additional limitations of real data are they provide a single, non-random sample of a population and a 

fixed sample size (Daetwyler et al., 2013). 

Simulated data is a low-cost option to test a variety of hypotheses, including evaluating long-

term impacts of a choice much more quickly than with real data (Daetwyler et al., 2013). Although 
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simulation is a “simplification of reality”, this can be beneficial by removing the noise of real data and 

highlighting important effects, particularly demonstrating these effects in graphical form to enhance 

understanding for livestock breeders (Leroy and Rognon, 2012; Windig and Oldenbroek, 2015). Windig 

and Oldenbroek (2015) discussed simulation uncovering unexpected results, specifically regarding ways 

to manage inbreeding within breeds. Windig and Doekes (2018) used simulation to investigate the 

effects of outcrossing to reduce inbreeding in a dog breed. They determined the impact of donor alleles 

being introduced to the recipient breed as a result of the outcross. These techniques can be utilized to 

identify outside alleles introduced into a breed as a result of a grading up program, as with Katahdin 

sheep in the U.S. Limitations of simulated data identified by researchers include the assumption that the 

population structure is consistent through time, that the population starts with unrelated, non-inbred 

animals, and that there is no selection against deleterious alleles. Other weaknesses identified include 

that a simulation may not consider the existence of subpopulations or lines, assumes an equal 

opportunity for mating between males and females, and all sires produce the same number of offspring 

(Windig et al., 2004; Windig and Oldenbroek, 2015). 

Simulation can be applied to evaluate the effectiveness of conservation strategies. Saura et al. 

(2008) compared methods with the objective of maintaining the allele frequencies at each locus to 

match the original population for a conservation program. Simulated markers included both neutral loci 

and QTL. Various scenarios included minimizing either the molecular or the pedigree co-ancestry at 

various levels of linkage, varying selection intensity, and including all pedigree relationships or only 

those from the current population, assuming previous relationships were unknown. In this study, 

recommendations for ex-situ conservation were possible because simulation allowed many scenarios to 

be tested that would not be possible with real data. 

In order to thoroughly evaluate research strategies, researchers have incorporated both real 

and simulated data. Neuditschko et al. (2017) evaluated a method for identifying key contributors to a 
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population using a simulated dataset to represent a highly structured population and two real datasets 

to represent complex population structures. Sánchez-Molano et al. (2016) developed a procedure to 

identify ancestral haplotypes using simulated data and then applied it to real data from several cattle 

breeds. Other researchers used real pedigree data to develop a simulation for ‘what if’ mating strategies 

to see how the current pedigree compared to the alternative simulated strategies for controlling genetic 

disorders and managing genetic diversity (Leroy and Rognon, 2012). Windig et al. (2004) used existing 

data from sheep breeds to replicate the population structure and then simulated various approaches for 

selecting against scrapie sensitive alleles determining the impact on inbreeding levels and allele 

frequencies. Windig and Oldenbroek (2015) used existing pedigrees for Golden Retriever dogs to 

simulate a population and optimize breeding strategies to manage inbreeding levels. 

Because of the complexity of simulating populations, animals, and their underlying genomes, 

there is no single model that can be applied for all research. Daetwyler et al. (2013) proposed ways to 

validate simulated data and standardize reporting of results so studies can be more readily compared. 

They recommend comparing population parameters for the simulated data, such as linkage 

disequilibrium and heterozygosity, to expectations reported in the literature. Additionally, the features 

of the genome and traits, the assumptions made, and the validation design should be described. To 

standardize reporting, population parameters, such as estimates of effective population size, genome 

length, number of phenotypes, family structure, and sample structure should be delineated. 

 

2.10 Data simulation 

 

 AlphaSimR software was developed to allow running stochastic simulations of whole breeding 

programs over multiple generations to model long-term genetic gain. AlphaSimR uses both the 

coalescent and gene drop methods. The coalescent is used for backwards-in-time simulations, where 



16 
 

whole chromosome haplotypes are generated for founders that match a defined genetic model with 

linkage disequilibrium and allele frequencies determined by the user. The gene drop method is then 

used for forwards-in-time simulations to create new haplotypes from the original founders (Hickey and 

Gorjanc, 2012; Gaynor et al., 2021). 

 Founder haplotypes are simulated using the Markovian Coalescent Simulator (MaCS) (Chen et 

al., 2009), which simulates haplotypes from moving from one end of the sequence to the other and 

models dependencies between recombination events that are close together but handles recombination 

events that are farther apart as independent. New genotypes are created by simulating meiosis and 

genetic recombination using the gamma model, which accommodates crossover interference (McPeek 

and Speed, 1995). Traits are classified according to the biological effects being modeled and include 

additive, dominance, epistatic, and genotype-by-environment (GxE). Biological effects can be combined 

for a trait, e.g., additive+dominant+epistatic. Modeling of dominance allows for directional dominance 

as well as degree of dominance ranging from partial dominance to overdominance. Epistasis is modeled 

as additive-by-additive epistasis effects between discrete pairs of loci. GxE effects are modeled as an 

additive effect whose value is a function of a single environmental covariate (Gaynor et al., 2021). 

 Selection can be modeled using various criteria, including phenotypes, genetic values, breeding 

values, estimated breeding values, and can be on one trait or an index of multiple traits. Selection can 

occur within families, between families, and over the entire population. A wide range of mating schemes 

can also be applied (Gaynor et al., 2021). 
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2.11 Optimal Contribution Selection (OCS) 

 

 According to Doekes et al. (2018), OCS is the “gold standard” for maximizing genetic gain (mean 

EBV) while restricting mean relatedness. As described by Meuwissen (2009), OCS controls the 

relationship of the parents while maximizing the mean breeding value. Computationally, OCS: 

maximizes: G = c’EBV 

while restricting: Āp = c’Ac 

and restricting: c’Q = 0.5, 

where G is the average genetic level of the parents weighted by their number of offspring; EBV is a 

vector of estimated breeding values of the parents; c is a vector of genetic contributions of the parents 

(fraction of offspring each parent obtains, scaled such that it sums to 0.5 for males and to 0.5 for 

females; ci=0 implies that animal i is not selected); Āp is the desired value of the average genetic 

relationships of the parents; A=matrix of genetic relationships of the selection candidates; and Q is a 

design matrix indicating the gender of the candidates (first column is 1 for male, 0 for females; second 

column is 1 for female, 0 for males). The c’Q = 0.5 restriction mathematically ensures that the genetic 

contributions of the males (females) add to 0.5 (in real life this is ensured by nature). The contributions 

of the selection candidates c are optimized by an optimization algorithm, e.g., by the Lagrangian 

multiplier method (Meuwissen, 2009). 

  Meuwissen (1997) used simulation to compare OCS to Best Linear Unbiased Prediction (BLUP) 

selection and demonstrated that OCS resulted in higher genetic gain at every level of inbreeding than 

BLUP selection (range of 21 to 60% greater selection response). OCS is far superior to BLUP selections 

when low rates of inbreeding are required. The attribute that drives OCS is that the emphasis is placed 

on the selection of parents based on co-ancestry rather than future inbreeding (Meuwissen, 1997). 
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Proper selection of parents is more important than mating decisions (Meuwissen, 2009). Nonrandom 

mating will not prevent inbreeding in the long term because the relationships between selected parents 

will eventually be converted to inbreeding (Meuwissen, 1997). Avoiding the mating of close relatives 

delays the accumulation of inbreeding, yet the rate stays the same: if inbreeding is plotted over time, 

the curve is shifted downwards but the slope is unchanged (Meuwissen, 2009). 

To demonstrate the importance of controlling the average relationship of the selected parents, 

Meuwissen (2009) provides an example where one male is unrelated to all females in a population, so 

he is chosen to mate to all females to produce non-inbred offspring. This strategy would be chosen if the 

objective was maximum avoidance of inbreeding in the current generation. However, the resulting 

offspring are all half sibs and the generations after that would have high levels of inbreeding. Using the 

OCS strategy, the male weighted by his number of offspring would be a heavy contributor to the 

average relationship of the parents, so selecting this single male would not be acceptable. In looking at 

the relationship of the selected parents in the current generation, the OCS strategy protects future 

generations from inbreeding. 

In the short-term, excessive use of elite animals to rapidly improve performance will narrow the 

gene pool and reduce the available genetic diversity for future generations. Ultimately, this would limit 

the long-term genetic potential of the population. OCS helps to avoid this by finding a balance between 

short and long-term genetic gain (Gorjanc and Hickey, 2018). 

 

2.12 Studies with OCS 

 

Gourdine et al. (2012b) used a simulation study to test selection strategies incorporating 

selecting for a single EBV in a small pig population. They compared random selection, truncation 

selection for EBV, and OCS. While genetic gain was slightly higher for truncation selection than OCS, 
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inbreeding rate was much higher. The researchers concluded OCS could be used to improve genetic 

merit in a small population while also maintaining an acceptable level of inbreeding. Other researchers 

used simulation to compare OCS strategies to those currently used fish breeding programs; they 

concluded OCS should be implemented (Skaarud et al., 2011). Windig and Oldenbroek (2015) used 

simulation of a Dutch dog breed and found OCS to be the most efficient breeding strategy to manage 

inbreeding for this population. However, they acknowledged that OCS is difficult to implement in 

practice when many individual breeders are involved. Avendaño et al. (2003) applied OCS to real 

livestock breeds in the UK. For both the beef and sheep breed, OCS resulted in greater genetic gain at a 

defined inbreeding rate than truncation BLUP selection. Like concerns expressed by Windig and 

Oldenbroek (2015), they recognized the additional genetic gain available through the use of selection 

tools, but realization of the gain will require coordination among breeders. Howard et al. (2014) applied 

OCS with a commercial pig population and concluded OCS improved genetic gain as predicted and 

agreed with the theory and simulation results presented by others. 

Selection based on QTL information causes diversity to vary over the genome. Simulations with 

OCS for a population selected using QTL information showed that the inbreeding rate in the region near 

the QTL was higher than the pedigree based inbreeding rate. The researchers suggested that selection 

based on overall average relatedness could result in a loss of diversity in and around QTLs under 

selection (Windig and Engelsma, 2010).  

 

2.13 Genetic conservation index (GCI) 

 

 According to Alderson (1992), capturing the genetic diversity of a population is best 

accomplished by retaining all the alleles in the original founder population. Moreover, this is achieved by 

an animal receiving equal contributions from all the founder ancestors. Computationally, the GCI for an 
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animal is the effective number of founders in its pedigree from 1/𝛴𝛴𝑃𝑃𝑖𝑖2, where 𝑃𝑃𝑖𝑖 is the proportion of 

genes of founder animal i in the pedigree (Alderson, 1992). Animals can be ranked based on GCI, with a 

higher GCI value representing a higher level of genetic diversity. The maximum GCI value is equal to the 

number of founder ancestors in the breed. Because GCI is based on the founder ancestors for each 

breed, the value cannot be compared across breeds. Because GCI is computed from pedigree data, 

incomplete to inaccurate pedigree recording will influence the results. 

 

2.14 Studies with GCI 

 

  Alderson used GCI to make selection and mating decisions for the rare White Park cattle breed. 

Mating decisions are made by computing the GCI for the next generation based on the selected parents 

(Alderson, 1992). For the Pantaneiro Horse in Brazil, GCI has increased over time with the female trend 

lagging behind males until 2005 (McManus et al., 2013). In the Italian Maremmano horse, GCI trend also 

increased over time; however, GCI has decreased among males in recent years while continuing to 

increase among elite females (Giontella et al., 2019). 

 Increased emphasis on genetic conservation among breeders and research institutions of the 

Morada Nova sheep breed in Brazil has led to an increase in GCI over time as well as an increase in the 

range of GCI values. However, incomplete pedigree data for this breed may influence the results 

(McManus et al., 2019). Boer goats in Brazil had an increasing GCI over time with a large range of GCI 

values among animals (Menezes et al., 2015). GCI was low for the Spanish Murciano-Granadina goat, 

suggesting the founder population is not being well represented in the current population. The authors 

found few influential animals representing the genetic diversity of the population and suggested this 

could cause a loss of genetic diversity over time if changes in sire use policy are not implemented 

(Oliveira et al., 2016). The GCI for this breed may be complicated by the merging of the herdbooks of the 
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Granadina and the Murciana breeds in the 1970s and the ongoing controversy of whether they are a 

single breed or two separate breeds. This exemplifies the importance of pedigree records and breed 

history on computations such as GCI that are based on pedigree data alone (Martinez et al., 2010). 

 

2.15 Pedigree- vs. marker-based diversity 

 

Marker-based diversity and pedigree-based diversity are measured on different scales, where 

pedigree-based diversity is a measure of the probability of an allele being identical by descent (IBD) from 

the founder population, which is considered to be unrelated, and marker-based diversity, which does 

not assume a founder population and all markers that are identical by state (IBS) are assumed to be IBD. 

Marker-based diversity considers Mendelian sampling and allows for evaluation in more detail at 

specific genome regions, neither of which are possible with pedigree-based diversity. The reported 

correlation between pedigree and marker-based diversity ranged from 0.39 in humans to 0.92 in Iberian 

pigs; Mendelian sampling ensures the correlation will never reach 1. Specific genome regions where 

direct selection for QTL has led to high inbreeding in specific genome regions is of particular concern for 

loss of genetic diversity. If the pedigree information is missing or unreliable, marker-based diversity 

would be particularly useful in conserving genetic diversity (Engelsma et al., 2011).   

 

2.16 The U.S. sheep industry 

 

 The U.S. lamb crop reached a record number of 32.6 million in 1941 and has been on the decline 

since that time, reaching a low of 3.2 million in 2020 (Figure 2.1) (NASS, 2021). The lambing rate was a 

low of 92% in 1978 and peaked at 113% in 2004-2005.  The most recent reported lambing rate (2018) 

was 107% (Figure 2.2) (NASS, 2021). The top ten sheep producing states in 2021 are shown in Table 
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2.2(NASS, 2021). While most sheep are owned by operations with fewer than 100 ewes, most breeding 

ewes are part of large flocks (Figures 2.3 and 2.4, respectively). Public funding for sheep research 

declined by 30 percent between 2002 and 2014 (Miller et al., 2016). The U.S. sheep industry continues 

to be productive, contributing $2.02 billion in sheep-related products that generated a total impact of 

$5.8 billion to the economy in 2016 (Stepanek Shiflett, 2017). The top ten breeds for number of 

registrations in 2020 are shown in Table 3 (Banner Sheep Magazine, 2021). 

 

 

Figure 2.1 U.S. lamb crop by year (Data from NASS, accessed 12/1/2021) 
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Figure 2.2 U.S. lambing rate by year (Data from NASS, accessed 12/1/2021) 

Table 2.2 Top ten states for sheep inventory including lambs, 2021 (Data from NASS, accessed 
12/1/2021) 

State Sheep Inventory 

including Lambs 

Texas 730,000 

California 555,000 

Colorado 445,000 

Wyoming 340,000 

Utah 285,000 

South Dakota 245,000 

Idaho 230,000 

Montana 200,000 

Iowa 160,000 

Oregon 155,000 
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Figure 2.3 Percent sheep operations by flock size (adapted from Miller et al., 2016) 

 

Figure 2.4 Percent breeding ewes by flock size (adapted from Miller et al., 2016) 
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Table 2.3 U.S. sheep breeds with highest number of registrations in 2020 

Breed Number of Registrations 

Dorper 10,581 

Katahdin 10,186 

Hampshire 6,001 

Dorset 5,625 

Southdown 5,020 

Suffolk 4,561 

Shropshire 1,823 

Shetland 1,743 

Rambouillet 1,628 

Babydoll Southdown 1,569 

 

2.17 Suffolk sheep 

 

The Suffolk breed was developed in England by crossing Southdown rams with Norfolk Horned 

ewes. They were imported into the U.S. in 1888. Rams weigh 115 to 160 kg and ewes weigh 80 to 115 

kg. Suffolk are the primary terminal sire breed for the U.S. sheep industry (USSA, 2021). In a study 

comparing terminal sire breeds, Suffolk-sired lambs were heavier at each weigh date, grew faster, and 

reached body weight end points with fewer days on feed than other breeds (Kirschten et al., 2013). 

Suffolk are a medium wool breed with a fiber diameter of 25.5 to 33 microns and a staple length of 5 to 

6.75 cm. An average ewe fleece weight is 2.25 to 3.6 kg. To meet the breed standard, Suffolk should 

have a distinctly black head, ears, and legs with a white fleece (USSA, 2021). In 2020, Suffolk were the 

6th most registered sheep breed in the U.S. with 4,561 registrations (Banner Sheep Magazine, 2021). 

Blackburn et al. (2011) used an FAO/ISAG panel of 31 microsatellites to assess the genetic 

diversity among and within 28 U.S. sheep breeds. The researchers found U.S. sheep breeds to have large 

amounts of observed heterozygosity and breeds were clustered more by production type than by 

geographical origin. Suffolk averaged 6.07 alleles per locus, which was higher than the average of 5.86 

across all breeds. Inbreeding (FIS), HO, and HE were reported as 0.139, 0.578, and 0.655, respectively. Of 
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the 28 breeds, only 8 had a higher FIS than Suffolk. For HO and HE, Suffolk was intermediate. The authors 

concluded the U.S. has a wide range of genetic diversity in its sheep breeds based on evidence provided 

by number of alleles, heterozygosity, and genetic distance. 

Zhang et al. (2013) used the Illumina OvineSNP50 BeadChip to compare within and between 

genetic diversity for five U.S. sheep breeds. The genetic differentiation using Wright’s FST between 

Suffolk and Rambouillet was 0.16. A neighbor-joining tree also showed Suffolk distinctly separated from 

Rambouillet and Rambouillet-related breeds. They reported Suffolk to have the lowest gene diversity, 

heterozygosity, and polymorphism information content when compared to the other breeds.   

The National Sheep Improvement Program (NSIP) computes EBV for the following traits for 

Suffolk: Birth Weight, Weaning Weight, Maternal Weaning Weight, Post Weaning Weight, Post Weaning 

Fat Depth, Post Weaning Eye Muscle Depth, Number of Lambs Born, Number of Lambs Weaned, Carcass 

Plus Index, and SRC$ Index. The Carcass Plus Index places emphasis on increasing post weaning weight 

and post weaning eye muscle depth while decreasing post weaning fat depth. The SRC$ Index is the Self 

Replacing Carcass Index and is designed for terminal breeds that keep replacements. Emphasis is placed 

on birth weight, weaning weight, maternal weaning weight, post weaning weight, post weaning fat, post 

weaning eye muscle depth, and number of lambs weaned (NSIP, 2021). Since 2004, Suffolk breeders 

have increased post weaning weight by 2 kg and 120 day weight by 3 kg (Wyoming Livestock Roundup, 

2021). 

 

2.18 The U.S. beef industry 

 

 Beef production in the U.S. has increased over time while beef cattle inventory has decreased 

due to increased reproductive efficiency and genetic selection (Figure 2.5) (FAS, 2021). The top ten beef 

producing states in 2021 are shown in Table 2.4 (NASS, 2021). 
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Figure 2.5 U.S. beef production and beef cattle inventory by year (Data from FAS, accessed 12/15/2021) 

Table 2.4 Top ten states for cattle inventory including calves (beef and dairy), 2021 (Data from NASS, 
accessed 12/14/2021) 

State Cattle Inventory 

including Calves 

Texas 13,100,000 

Nebraska 6,850,000 

Kansas 6,500,000 

Oklahoma 5,300,000 

California 5,150,000 

Missouri 4,300,000 

South Dakota 4,000,000 

Iowa 3,650,000 

Wisconsin 3,450,000 

Colorado 2,650,000 
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2.19 Simmental cattle 

 

Simmental cattle originated in Switzerland and are now distributed worldwide. There are 40 to 

60 million Simmental throughout the world, second only to Brahman in total numbers. They were 

thought to have been imported into the U.S. in the late 1800’s but did not have a lasting presence until 

the importation of the bull Parisien from France into Canada in 1967. Semen was imported into the U.S. 

in 1967 and the American Simmental Association (ASA) was started in 1968. The breed was originally 

multi-purpose, and was used for meat, milk, and draft. Currently, Simmental are dual-purpose 

throughout the world with the exception of the U.S. where emphasis is exclusively on beef production 

(ASA Beef Briefs, 2021). Registrations peaked at 89,730 in 1982, dropped to 43,054 in 1998, and 

increased to 75,122 in 2020. There are 129,859 animals with genomic information. Simmental rank 

second for U.S. beef semen sales and third in registrations after Angus and Hereford (ASA Annual 

Report, 2020; ASA, 2021).  

 In a pedigree analysis, Whitacre and Spangler (2012) determined Simmental has split into 

nucleus and multiplier levels, with few breeders driving genetic change for the breed. The top states for 

Simmental seedstock production are Montana, South Dakota, Texas, Kansas, North Dakota, and 

Nebraska. The authors suggested further improvements in generation interval would be valuable for 

improving the rate of genetic change. 

The American Simmental Association participates in a multi-breed genetic evaluation for single-

step genomic enhanced EPDs performed by International Genetic Solutions (IGS). EPDs are computed 

weekly. Traits evaluated include Calving Ease, Birth Weight, Weaning Weight, Yearling Weight, Average 

Daily Gain, Maternal Calving Ease, Maternal Milk, Maternal Weaning Weight, Stayability, Docility, 

Carcass Weight, Yield Grade, Marbling, Backfat, Ribeye Area, Shear Force, All-Purpose Index (Dollars per 
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cow exposed under an all-purpose-sire scenario), and Terminal Index (Dollars per cow exposed under a 

terminal-sire scenario) (ASA, 2021).  

 

2.20 SNP chips 

 

Given a sufficiently dense SNP chip, genetic diversity can be examined in greater detail than with 

pedigree data. With SNP data, a chromosomal region that may be differentiated can be compared 

between animals or breeds in a way that would not be possible with pedigree data alone. Specific 

markers, such as deleterious variants or signals of selection, can also be identified. SNP data provides 

the opportunity to identify genetically unique animals at the genomic level. High density SNP data 

provides a powerful tool to better understand breeds and estimate the relationship between individuals 

and breeds (Engelsma et al., 2012; Eynard et al., 2018a). The sheep and cattle genomes are estimated to 

be 2.86 Gb and 3 Gb in size, respectively (NIH, 2004; Zhang et al., 2013). 

The Illumina BovineHD BeadChip consists of 777,962 evenly distributed SNP with a median < 3 

kb gap spacing. The chip was developed using 20 Bos taurus, 3 Bos indicus, and 4 Bos taurus x Bos 

indicus breeds. Ten Simmental were included in the development of the SNP chip and had 624,820 

polymorphic loci and a mean minor allele frequency (MAF) of 0.22 (Illumina, 2015). Of the Bos taurus 

breeds, only 2 breeds had more polymorphic loci. For Simmental, the linkage disequilibrium (LD) at 70 

kb was 0.209; in comparison, LD at 70 kb for the breeds studied ranged from 0.16 to 0.26. The Illumina 

Bovine SNP50 includes 54,001 SNP and was developed using 576 animals from 21 cattle breeds and 6 

outgroup species. Three Simmental were included in the development of the chip (Matukumalli et al., 

2009). According to Wiggans et al. (2016), there are at least 18 different bovine chips that have been 

submitted for use in national genetic evaluation for dairy cattle. 
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The Illumina Infinium OvineHD BeadChip was developed by the International Sheep Genomics 

Consortium and includes 606,006 SNP with an average spacing of 5 kb. The chip was developed using 75 

animals from 41 breeds and wild sheep and includes 30,000 putative functional variants (Kijas et al., 

2014). Suffolk was not among the breeds included in the development of the chip, leading to the need 

to address potential ascertainment bias (Albrechtsen et al., 2010). One approach to removing 

ascertainment bias is to prune SNP in high LD (Kijas et al., 2012; Edea et al., 2017). The OvineHD chip has 

been used in genetic diversity studies (Edea et al., 2017), genomic selection (Brito et al., 2017), genome 

wide association studies (Kijas et al., 2016; Dolebo et al., 2019), and identification of QTL (Posbergh et 

al., 2019).   

 

2.21 Reference population size 

 

A reference population is generally discussed in terms of developing genomic enhanced 

breeding values for use in selection. Genomic selection will be feasible for sheep breeds only once 

sufficiently accurate genomic prediction is possible. This increase in accuracy can be achieved through a 

combination of increasing the reference population size, increasing marker density or using sequence 

data instead of SNP, improving statistical procedures, and incorporating phenotypic data. Most livestock 

breeds have a small Ne (< 200), which increases LD, thereby facilitating genomic selection (Goddard, 

2012). Because sheep have high genetic diversity within and between breeds, a larger number of 

animals are needed for the reference population than with dairy cattle, for example (van der Werf et al., 

2014). To evaluate the feasibility of using genomic selection in French dairy sheep, reference 

populations for each breed ranged from 281 to 2,887. A reference population of 2,000 animals was 

required for optimizing genetic improvement (Larroque et al., 2014). In French Simmental, (Hozé et al., 
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2014) improved accuracy of selection by 0.06 to 0.08 over pedigree-based genetic evaluation using only 

181 animals in the training population. 

When considering a reference population to represent a breed for genetic diversity studies, 

there are no clear guidelines. David et al. (2018) analyzed 61 Morada Nova sheep to evaluate genetic 

diversity of the breed. Al Mamun et al. (2015) had a range of 231 to 265 animals for three breeds and 

two crossbred populations in Australia when assessing genetic diversity. To assess the population 

structure of 18 Welsh sheep breeds, a range of 6 to 24 animals were genotyped with the Illumina 

OvineSNP50 array (Beynon et al., 2015). For genetic diversity studies using microsatellites, Blackburn et 

al. (2011) included a range of 7 to 46 for each of 28 U.S. sheep breeds. Zhang et al. (2013) evaluated 16 

to 22 animals per breed for five U.S. sheep breeds when assessing genetic diversity and differentiation. 

Kijas et al. (2012) evaluated 74 sheep breeds throughout the world, ranging from 3 to 120 animals per 

breed. To assess the origins of Caribbean hair sheep, Spangler et al. (2017) evaluated 10 sheep per 

breed for 29 breeds. Grasso et al. (2014) evaluated 10 to 110 animals for three sheep breeds in Uruguay. 

In goats, Brito et al. (2017) had a range of 48 to 403 for nine goat breeds to evaluate genetic diversity 

and detect signatures of selection. When evaluating 14 Italian goat breeds, Nicoloso et al. (2015) 

included a range of 15 to 32 goats per breed. Visser et al. (2016) determined genetic diversity and 

population structure of Angora goats from three countries, using 26 to 48 animals per population. In 

beef and dairy cattle, the genetic structure of 19 breeds was determined with a range of 12 to 53 

animals per breed (Gibbs et al., 2009). Among 24 equine and pony populations in Canada, animals 

sampled ranged from 11 to 60 per breed (Prystupa et al., 2012). When compared to the number of 

animals required for genomic selection, genetic diversity studies have relied on far fewer animals. As an 

industry, a set of guidelines based on experimental design (minimum number of breeders, minimum 

number of animals) needs to be established for use in population genetics studies. 
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2.22 Measures of within breed genetic diversity/population structure 

 

 Expected heterozygosity (HE) is the most used parameter for measuring genetic diversity within 

a population. Also called gene diversity, HE is the expected proportion of heterozygotes if the population 

were in Hardy-Weinberg equilibrium (Fernández et al., 2004). The actual number of heterozygous 

animals, HO, is related to inbreeding (Engelsma et al., 2012). A summary of HE and HO across cattle and 

sheep breeds is summarized in Table 2.5. 

 

Table 2.5 Expected (HE) and observed (HO) heterozygosity across studies 

Species Breed HE HO SNP Chip Source 

Cattle Angus  0.27 BovineHD (Porto-Neto et al., 2014) 

Cattle Hereford  0.31 BovineHD (Porto-Neto et al., 2014) 

Cattle Limousin  0.30 BovineHD (Porto-Neto et al., 2014) 

Cattle Shorthorn  0.25 BovineHD (Porto-Neto et al., 2014) 

Cattle Simmental  0.338 Bovine SNP50 (Curik et al., 2010) 

Cattle Angus 0.387 0.385 BovineHD (Kelleher et al., 2017) 

Cattle Charolais 0.381 0.381 BovineHD (Kelleher et al., 2017) 

Cattle Hereford 0.392 0.388 BovineHD (Kelleher et al., 2017) 

Cattle Limousin 0.380 0.379 BovineHD (Kelleher et al., 2017) 

Cattle Simmental 0.386 0.384 BovineHD (Kelleher et al., 2017) 

Sheep Rambouillet 0.36  Ovine SNP50 (Kijas et al., 2012) 

Sheep Suffolk (Australian) 0.37  Ovine SNP50 (Kijas et al., 2012) 

Sheep Suffolk (Irish) 0.33  Ovine SNP50 (Kijas et al., 2012) 

Sheep Suffolk 0.34  OvineHD (Kijas et al., 2014) 

Sheep Border Leicester 0.32  OvineHD (Kijas et al., 2014) 

Sheep Poll Dorset 0.33  OvineHD (Kijas et al., 2014) 

Sheep Border Leicester 0.30 0.30 Ovine SNP50 (Al-Mamun et al., 2015) 

Sheep Poll Dorset 0.34 0.34 Ovine SNP50 (Al-Mamun et al., 2015) 

Sheep Merino 0.38 0.38 Ovine SNP50 (Al-Mamun et al., 2015) 

Sheep Corriedale 0.355 0.355 Ovine SNP50 (Grasso et al., 2014) 

Sheep Creole 0.258 0.285 Ovine SNP50 (Grasso et al., 2014) 

Sheep Merino 0.362 0.377 Ovine SNP50 (Grasso et al., 2014) 

Sheep Suffolk  0.33 Applied 
Biosystems Axiom 
Ovine (50K) 

(Davenport et al., 2020) 
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The level of genetic diversity present within populations can be measured by the number of 

polymorphic loci and their allele frequencies distributions (Brito et al., 2015). Grasso et al. (2014) 

defined MAF categories as fixed (MAF = 0), rare (MAF < 0.01), and highly polymorphic (MAF 0.3 – 0.5). 

The MAF categories for three breeds are shown in Table 2.6. These results suggest either the Creole 

breed has less genetic diversity then the other two breeds or could be indicative of ascertainment bias 

of the Ovine SNP50 BeadChip.   

 

Table 2.6 Percentage of single nucleotide polymorphisms (SNP) in each minor allele frequency (MAF) 
category for Corriedale, Creole, and Merino sheep using the Ovine SNP50 BeadChip (Grasso et al., 2014) 
 

Breed 0 < 0.01 0.3 – 0.5 

Corriedale 1.8 4.4 50.1 

Creole 26.9 27.4 36.0 

Merino 2.9 3.4 50.9 

 

 Runs of homozygosity (ROH) are contiguous lengths of homozygous genotypes that are due to 

parents transmitting identical haplotypes to their offspring. Long ROH represent recent inbreeding, 

while shorter ROH are attributed to historical events, such as breed founder effects. A typical approach 

to measuring ROH using SNP is a sliding window of 50 SNP with a minimum length of 500 kb, a minimum 

of 25 SNP, allowing for 2 missing SNP, and allowing a maximum of 1 possible heterozygous SNP. ROH can 

be reported as the mean sum of ROH per animal and summarized by ROH length categories. Angus and 

Hereford had a high number of short (< 5 Mb) ROH while Holstein had a high number of long (> 20 Mb) 

ROH (Purfield et al., 2012). In sheep, Border Leicester, Poll Dorset, and Merino had 12,561, 9,875, and 

2,008 total ROH, respectively. Three Poll Dorset animals had a total ROH comprising almost 20% of the 

genome (Al-Mamun et al., 2015). Across the genome, there can be nonuniform patterns of ROH, 

referred to as hotspots and coldspots. Hotspots have frequent ROH and indicate a reduced level of 

diversity; coldspots have infrequent ROH. Possible reasons for these differences across the genome 
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include stochasticity in recombination events, demographic processes, and positive selection 

(Pemberton et al., 2012). 

 Linkage disequilibrium (LD) is the nonrandom association of alleles at two or more loci (Conner 

and Hartl, 2004), measured as the squared correlation (r2) between alleles (Hill and Robertson, 1968). 

Linkage disequilibrium ranges from 0 (no LD) to 1 (complete LD) between two markers. Linkage 

disequilibrium is strongly influenced by population history, starting with the bottleneck of domestication 

and continuing through evolutionary forces including genetic drift, migration, mutation, and selection 

(Brito et al., 2015). Linkage disequilibrium is typically reported as the r2 decay over distance or as the r2 

at a particular distance apart (e.g., 10 kb) (Al-Mamun et al., 2015). An r2 of > 0.2 is typically considered 

sufficient for use in genomic selection. Populations with a low LD will require a higher density SNP chip 

for genomic selection than those with a high LD (Brito et al., 2015). In beef cattle, LD (r2) at 10 kb was 

0.46, 0.49, and 0.25 for Angus, Hereford, and Brahman, respectively. At 70kb, LD (r2) had declined to 

0.20 for Angus, 0.23 for Hereford, and 0.13 for Brahman. The authors concluded the higher LD for Bos 

taurus breeds was due to a smaller ancestral population and a stronger bottleneck during breed 

formation than Bos indicus breeds (Porto-Neto et al., 2014). For sheep breeds, LD (r2) at 10 kb was 0.34, 

0.27, and 0.33 for Border Leicester, Merino, and Poll Dorset, respectively (Al-Mamun et al., 2015). Zhang 

et al. (2013) reported the highest to lowest LD for Suffolk, Columbia, Rambouillet, Targhee, and Polypay. 

For sheep breeds, Kijas et al. (2012) explained the low LD typically found for sheep breeds as caused by a 

broad sampling of wild ancestors, less severe bottlenecks during breed formation, and low levels of 

selection intensity relative to other livestock species. 

 Reported Ne for cattle and sheep breeds are presented in Table 2.7. Of the three breeds 

reported by Al-Mamun et al. (2015), the authors stated smaller Ne for Border Leicester and Poll Dorset 

relative to Merino was associated with bottlenecks during breed formation. 
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Table 2.7 Cattle and sheep breed effective population size (Ne) across studies 

Species Breed Ne Source 

Cattle Angus 136 (Gibbs et al., 2009) 

Cattle Charolais 110 (Gibbs et al., 2009) 

Cattle Hereford 97 (Gibbs et al., 2009) 

Cattle Limousin 174 (Gibbs et al., 2009) 

Cattle Red Angus 85 (Gibbs et al., 2009) 

Cattle Charolais* 198 – 958 (Leroy et al., 2013) 

Cattle Holstein* 49 – 93 (Leroy et al., 2013) 

Cattle Limousin* 168 – 740 (Leroy et al., 2013) 

Cattle Salers* 51 – 323 (Leroy et al., 2013) 

Cattle Simmental* 110 – 169 (Leroy et al., 2013) 

Sheep Border Leicester 140 (Al-Mamun et al., 2015) 

Sheep Merino 152 (Al-Mamun et al., 2015) 

Sheep Poll Dorset 348 (Al-Mamun et al., 2015) 

Sheep Dorset* 21 – 68 (Leroy et al., 2013) 

Sheep Finn* 35 – 96 (Leroy et al., 2013) 

Sheep Hampshire* 68 – 145 (Leroy et al., 2013) 

Sheep Southdown* 42 – 109 (Leroy et al., 2013) 

Sheep Suffolk* 69 – 310 (Leroy et al., 2013) 

*Range of Ne from multiple estimation methods 

 

2.23 Validation across species and breeds 

 

A sampling strategy designed to apply to all livestock species and breeds must consider the 

different breed histories and population structures for each population. Bos taurus breeds have been 

identified as having lower genetic diversity than Bos indicus breeds due to a smaller ancestral 

population and larger bottlenecks at breed formation (Gibbs et al., 2009). Sheep breeds are associated 

with higher genetic diversity than cattle breeds due to a large ancestral population and a lack of 

selection intensity (Kijas et al., 2012). 

When assessing methods to compute Ne, Leroy et al. (2013) found a significant interaction 

between computation method and species. The authors recommended attention to species and specific 

population structure when considering computation method. For example, when inbreeding is used as 
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an indicator of genetic diversity, it often failed to consider the substructure within a population, leading 

to biased conclusions. Since artificial insemination (A.I.) is a common practice in cattle, but not in sheep, 

unbalanced progeny sizes can also influence the preferred computation method for Ne. An additional 

factor to consider is the extent of pedigree knowledge or errors, which was also identified by Engelsma 

et al. (2011). 

For selection scenarios using markers with strong LD, the strategy was effective by “extending 

effects of the conservation criteria to the whole genome.” Without strong LD, marker-based selection 

scenarios were inferior to pedigree-based ones. The extent of LD among breeds may produce different 

results (Saura et al., 2008).   

 To compare the effectiveness of selection strategies, Engelsma et al. (2011) compared the 

results for kinship, MAF, and percentage fixed alleles. These measures were computed for the entire 

genome and for each chromosome. The measures were also compared based on sampling different 

numbers of animals. The same measures to compare the effectiveness of a sampling strategy within a 

breed can be used to evaluate the effectiveness of a sampling strategy across species and breeds, 

including percentage of alleles captured, MAF, HO, HE, ROH, LD, and Ne. 

 Studies have assessed genetic diversity measures between sheep and cattle, including 

population structure and genetic merit (Avendaño et al., 2003) and effective population size (Leroy et 

al., 2013). Genetic diversity has been evaluated between sheep breeds in many studies (Handley et al., 

2007; Grasso et al., 2014; Al-Mamun et al., 2015; Edea et al., 2017; Ahbara et al., 2018). Comparing 

cattle breeds for genetic diversity (Gibbs et al., 2009; Makina et al., 2015), population structure (Kelleher 

et al., 2017; Stronen et al., 2019), LD and effective number of founders (Hozé et al., 2013), and limiting 

migrant contributions (Wellmann et al., 2012) have all contributed to a greater understanding of how to 

evaluate differences between breeds. 
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2.24 Conclusion 

 

 Many sampling strategies have been developed and used for a wide variety of purposes across 

livestock species and breeds. Further, sampling strategies have been used to assess the capture of 

genetic diversity. Tools that use OCS have been developed and used to improve genetic merit in a small 

population (Gourdine et al., 2012b), in breeding programs (Skaarud et al., 2011), and to manage 

inbreeding (Windig and Oldenbroek, 2015). Computation of GCI has been incorporated into the ENDOG 

software package (Gutiérrez and Goyache, 2005) and has been used to evaluate the presence of founder 

alleles in the present population for cattle (Alderson, 1992), horses (McManus et al., 2013; Giontella et 

al., 2019), sheep (McManus et al., 2019), and goats (Menezes et al., 2015; Oliveira et al., 2016). 

 Although these sampling strategies have been used in a variety of ways, they have not been 

directly evaluated for the ability to capture all the genetic diversity of a population. The first objective of 

this research is to develop a sampling strategy using OCS and GCI using pedigree and breeding value 

data from a simulated population and validated with real data. The real data will include only animals 

with available pedigree and SNP data. The second objective uses the strategy developed in the first 

objective to identify a subset of 25, 50, and 100 animals from each breed. The population structure for 

each subset will be compared to the larger population using both quantitative and molecular measures 

to determine if the genetic diversity has been captured. In the third objective, the sampling strategies 

will be compared for efficacy across species and breeds.   
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CHAPTER III 

DEVELOP A SAMPLING STRATEGY TO MAXIMIZE THE GENETIC DIVERSITY OF SAMPLED ANIMALS 

 

 

 

3.1 Introduction 

 

 Research inherently requires a sampling of animals to be included in studies, whether it be 

within a herd or flock, or across a region, area, breed, or species. A formal sampling strategy to ensure 

the genetic diversity of the sampled animals is maximized will provide assurance that the sampled 

animals are representative of the entire population. Sampling strategies can be pedigree- or genomic-

based, although it is rare for every candidate to have available genomic data. In fact, the sampling 

procedure may be used to identify animals to be genotyped. Readily available pedigree data for most 

U.S. breeds makes sampling strategies using pedigree-based methods a cost-effective option.  

 Data simulation provides a low-cost opportunity to test sampling strategies using data where 

every factor is known, including parentage, measured traits, and, most importantly, the underlying 

genomic variants. A variety of populations can be simulated and tested, and the long-term impacts can 

be assessed more easily than with a real population. Once sampling strategies have been evaluated 

using a simulated population, the lessons learned can then be applied to real data (Leroy and Rognon, 

2012; Daetwyler et al., 2013; Windig and Oldenbroek, 2015). 

 Two sampling strategies designed to maintain genetic diversity in a population include optimal 

contribution selection (OCS) and the genetic conservation index (GCI). Traditionally, OCS has been used 

to restrict mean relatedness in the population while maximizing genetic gain. Studies have shown the 

superior combination of minimizing inbreeding while maximizing genetic gain for OCS when compared 

to other methods, such as truncation selection (Avendaño et al., 2003; Gourdine et al., 2012a; Howard 

et al., 2014). With OCS, emphasis is placed on selection of the parents based on constraining the extent 
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of co-ancestry. Attention to the current co-ancestry of parents is expected to minimize inbreeding in 

future generations (Meuwissen, 1997; Meuwissen, 2009). In this research, OCS was applied to manage 

co-ancestry without regard to the impact on genetic gain. The approach of GCI is to maintain the 

founder alleles in the population. If the founder alleles are maintained, the genetic diversity of the initial 

population will be maintained. The greater the number of founders represented in an animal’s pedigree, 

the higher the GCI index. The highest possible GCI index would be achieved by an animal having an equal 

contribution from all founder ancestors (Alderson, 1992). GCI has been successfully applied to select 

bulls in White Park cattle (Alderson, 1992) and to evaluate changes in founder representation over time 

(McManus et al., 2013; Menezes et al., 2015; Giontella et al., 2019). 

 The objectives of this study were to 1) simulate a population to use OCS and GCI as sampling 

strategies to capture the genetic diversity of the population; and 2) to use both the GCI and OCS 

sampling strategies investigated to capture the genetic diversity of two real populations, a sheep breed 

(Suffolk) and a beef breed (Simmental). 

  

3.2 Materials and Methods 

 

 Data simulation. Simulation of a sheep population was performed using AlphaSimR. Founder 

haplotypes were created by defining the length of each of the 26 autosomal chromosomes (Howe et al., 

2020). The chromosome lengths ranged from 42,034,648 bp (chromosome 24) to 275,406,953 bp 

(chromosome 1). Number of markers and quantitative trait loci (QTL) were defined based on 

chromosome length and as described by Vargas Jurado et al. (2021) for a total of 53,901 markers and 

2,449 QTL. Markers per chromosome ranged from 925 to 6,059 and QTL ranged from 42 to 275. A 

founder population of 1,000 animals was generated using Markovian Coalescent Simulation (MaCS) with 

an effective population size (Ne) of 250 (Chen et al., 2009). Weaning weight was simulated as a 
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phenotypic trait with a mean of 29 kg and a heritability of 0.15, which is the heritability used by the 

National Sheep Improvement Program in the sheep genetic evaluations. AlphaSimR first samples QTL 

effects from an initial standard normal distribution and then scales the values to the mean and variance 

defined by the user in the simulation (Gaynor et al., 2021).  

 The founder population was then increased in size over 30 years using random mating until 

reaching a population size of 13,880 lambs per year. Litter size was set to two with sex of lamb assigned 

randomly. Ewe lambs were randomly selected to replace 20 percent of the ewe flock each year plus an 

additional 10 percent were kept to increase the population size. There was one ram per 22 ewes, with a 

replacement rate of 60 percent. By year 30, there were 6,940 ewes and 315 rams in the flock.  

 The final data set was generated using phenotypic selection for weaning weight, which is 

representative of selection in the sheep industry for terminal sire breeds. Phenotypic selection was 

performed by sorting the phenotypic values from highest to lowest for the available pool of animals and 

selecting the required number of animals for each year based on the highest phenotypic values (Gaynor 

et al., 2021). Phenotypic selection for weaning weight was performed for 15 additional years after the 

founder population was established. Population size was fixed at 13,662 lambs per year with a 

replacement rate of 20 and 60 percent for ewes and rams, respectively, each year. Weaning weight 

estimated breeding values (EBV) and phenotypic weaning weight were reported for each animal. The 

average allele substitution effects were used to calculate the breeding values for each animal by 

summing the breeding values at each locus. The true genotypic value was calculated by summing its 

coded genetic value for its genotype across all quantitative trait nucleotide loci. A random residual 

deviate was added to each animal’s true genetic value to determine the phenotypic value (Faux et al., 

2016). Pedigree records were traced back until all ancestors were unknown, for a total of 211,951 

records. There were 1,600 unique sires with a range of 68 to 1020 offspring and 25,819 unique dams 

with a range of 2 to 32 offspring. Inbreeding coefficients were calculated using the Animal Breeders 
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Toolkit (ABTK) (Golden et al., 1992) and the trend in inbreeding determined. The rate of inbreeding was 

computed as:  

∆𝐹𝐹𝑖𝑖 =  
𝐹𝐹𝑖𝑖 −  𝐹𝐹𝑖𝑖−1
1−  𝐹𝐹𝑖𝑖−1 , 

where Fi and Fi-1 were the average inbreeding at i and i-1 years, respectively. The final dataset consisted 

of 204,930 animals, which included all lambs from 15 years of phenotypic selection. 

 Single nucleotide polymorphisms (SNP) for each animal were analyzed using PLINK (Purcell et al., 

2007). The probability that an individual will be heterozygous at a given locus, expected (HE) and 

observed heterozygosity (HO), were computed for the entire population and by year. Molecular 

inbreeding, FIS, measured as a heterozygote deficiency (or homozygote excess) across each sample 

(Wright, 1951), was computed as: 𝐹𝐹𝐼𝐼𝐼𝐼 = (𝐻𝐻𝐸𝐸 −𝐻𝐻0) 𝐻𝐻𝐸𝐸⁄  

The minor allele frequency (MAF) categories were determined as fixed (MAF = 0), rare (MAF < 0.01), 

moderate (MAF 0.01 - 0.3), and high (MAF 0.3 - 0.5) (Grasso et al., 2014; Wilson et al., 2022). Runs of 

homozygosity (ROH) were computed for year 15 animals using the detectRUNS package in R (Biscarini et 

al., 2019) with a sliding window of 50 SNP with a minimum length of 1,000 kb, a minimum of 30 SNP, 

allowing for 1 missing SNP, and allowing a maximum of 1 possible heterozygous SNP. The ROH class 

categories were determined as 1 - 5, 5 - 10, 10 - 20, 20 - 40, and > 40 Megabase pairs. Recent Ne was 

computed using the linkage disequilibrium method of Waples and Do (2008) as implemented in 

NeEstimator v2.1 (Do et al., 2014). The dataset was pruned to remove SNP with MAF < 0.01 and 

randomly reduce the number of markers by 75 percent using PLINK, leaving 10,202 markers, which were 

used to compute model-based population structure using ADMIXTURE (Alexander et al., 2009). The 

population substructure analysis used the genotype matrix to estimate the subpopulation proportions 

and the population allele frequencies to assign individuals to the subpopulations. The number of 

populations, K, can be determined using the lowest cross validation error compared to other K values 
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(Alexander et al., 2009). For the simulated population, the cross validation error continued to decline 

through K = 15. Because this was a within breed analysis, additional subpopulations were not computed. 

For each replicate of the co-ancestry coefficient matrix, Q, the pophelper package in R was used to align 

and merge the runs (Francis, 2017). The output was visualized using STRUCTURE PLOT (Ramasamy et al., 

2014). 

 

 Optimal contribution selection. The optiSel package in R was used to select 100, 50, and 25 

animals using OCS (Wellmann, 2019). While OCS can be applied to maximize genetic gain while 

minimizing kinship, the objective of this research was to maximize genetic diversity. Therefore, animals 

were selected to minimize the average kinship without regard to genetic gain. Computationally, OCS 

maximizes G = c’EBV, while restricting: Āp = c’Ac, and restricting: c’Q = 0.5, where G was the average 

genetic level of the parents weighted by their number of offspring, EBV was a vector of estimated 

breeding values of the parents, c was a vector of genetic contributions of the parents (fraction of 

offspring each parent obtains, scaled such that it sums to 0.5 for males and to 0.5 for females; ci = 0 

implies that animal i was not selected), Āp was the desired value of the average genetic relationships of 

the parents where A was the numerator relationship matrix of the selection candidates, and Q was a 

design matrix indicating the gender of the candidates (first column is 1 for male, 0 for females; second 

column is 1 for female, 0 for males) (Meuwissen, 2009). OptiSel provides the option for five optimization 

solvers. The optimization solver selected was from the cccp package (Pfaff, 2014) for solving cone 

constrained convex programs and was recommended by the author for short run time and accuracy for 

minimizing kinships. Other solvers were recommended for different optimizations, for example, 

maximizing genetic gain at native alleles. The complete pedigree was included (n = 211,951), with all 

animals in year 15 (n = 13,662) being designated as candidates for selection for sampling.  
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 Genetic conservation index. The ENDOG software package (Gutiérrez and Goyache, 2005) was 

used to compute the GCI for all animals in the pedigree (n = 211,951). The GCI for an animal was 

computed as 1/𝛴𝛴𝑃𝑃𝑖𝑖2, where 𝑃𝑃𝑖𝑖 was the proportion of genes of founder animal i in the pedigree 

(Alderson, 1992). The highest 100 (GCI 100), 50 (GCI 50), and 25 (CGI 25) indexing animals from year 15 

were selected (Gutiérrez and Goyache, 2005).  

 

Suffolk sheep. Pedigree data were obtained from the National Sheep Improvement Program 

(NSIP). These data contained 244 Suffolk sheep genotyped with the Illumina OvineHD BeadChip, which 

includes 606,006 SNP markers (Illumina, 2015). Sheep for genotyping were selected based on pedigree 

relationships to maximize the genetic diversity available among the animals with an available DNA 

sample (Wilson et al., 2022). Pedigree records were traced back for the 244 sheep until all ancestors 

were unknown, resulting in a total of 1,565 animals in the full pedigree. There were 496 unique sires 

with a range from 1 to 20 offspring and 929 dams with a range from 1 to 8 offspring. To evaluate how 

well the subset of the Suffolk breed represented the entire Suffolk breed, pedigree-based measures of 

effective population size were compared for the subset and full breed for increase in inbreeding by 

maximum generations, complete generations, and equivalent generations (Gutiérrez and Goyache, 

2005). Pedigree records for the full Suffolk breed included those recorded in NSIP, with birth years 

ranging from 1973 to 2019. Pedigree records were traced back until all ancestors were unknown, 

resulting in a total of 64,310 animals (Wilson et al., 2022). 

 Individual inbreeding coefficients were computed (Gutiérrez and Goyache, 2005) and inbreeding 

trend and rate of inbreeding were reported. Weaning weight EBV, Carcass Plus Index, and phenotypic 

weaning weight, obtained from NSIP, were plotted over time. The Carcass Plus Index includes post-

weaning weight, fat depth, and eye muscle depth in a 60:20:20 ratio (Emenheiser and Notter, 2011).   
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 Quality control measures performed for the molecular analyses were conducted using the PLINK 

software package (Purcell et al., 2007). Only autosomal chromosomes and markers mapped to the 

genome were retained for further analysis, leaving 577,401 markers. One animal was removed for 

having a call rate < 0.95. This data set was used to compute heterozygosity and molecular inbreeding 

(FIS) measures with PLINK. Runs of homozygosity were computed using the detectRUNS package in R as 

described for the simulated population (Biscarini et al., 2019). Current Ne was estimated using the 

linkage disequilibrium method in NeEstimator (Waples and Do, 2008; Do et al., 2014). Minor allele 

frequencies were computed using PLINK with a dataset further reduced to remove markers with a call 

rate < 0.80, leaving 546,938 markers. The dataset was pruned in PLINK to randomly reduce the number 

of markers (n = 49,773) and was used to compute model-based population structure using ADMIXTURE 

(Purcell et al., 2007; Alexander et al., 2009). 

 Molecular analyses used to quantify the full population included measures of heterozygosity (HE 

and HO), Wright’s inbreeding coefficient (FIS), MAF categories, Ne, ROH by size class, ROH by 

chromosome, ROH by animal, and model-based population substructure using ADMIXTURE. For the 

substructure analysis, the number of populations, K, was determined using the lowest cross validation 

error compared to other K values (Alexander et al., 2009). For each replicate of the co-ancestry 

coefficient matrix, Q, produced by ADMIXTURE, the CLUMPP program using CLUMPAK software was 

used to permute the matrices to find a close match among iterated runs (Jakobsson and Rosenberg, 

2007; Kopelman et al., 2015). The output from CLUMPAK was summarized using STRUCTURE PLOT, 

allowing visualization of the results in bar plots (Ramasamy et al., 2014). 

 

Simmental cattle. Pedigree, performance, and genotypic (SNP) data were obtained from the 

American Simmental Association (ASA). Animals that were 84 percent and higher Simmental were 

included in the analyses; lower percentage Simmental were used in pedigree building and computation 
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of inbreeding coefficients. Genotypic data was obtained from a variety of SNP chips. All genotypic data 

files were merged and overlapping SNP across chips were identified by comparing the associated map 

files for each chip, with as many SNP and animals as possible retained. After merging, there were 5,613 

Simmental genotyped with 29,449 SNP markers. Pedigree records were traced back for the 5,613 cattle 

until all ancestors were unknown, resulting in a total of 54,790 animals in the full pedigree. Pedigree 

animals less than 84 percent Simmental were excluded from further computations, e.g., mean weaning 

weight, but were included as pedigree animals. There were 3,645 breeder codes present in the full 

dataset. There were 9,118 males and 25,344 females included in the pedigree that were 84 percent 

Simmental and above. There were 8,512 unique sires with a range of 1 to 349 offspring and 23,906 

unique dams with a range of 1 to 24 offspring. The unique sires and dams could be a lower percentage 

animal with a higher percentage mate. 

Individual inbreeding coefficients were computed using the ENDOG software package (Gutiérrez 

and Goyache, 2005) and the inbreeding trend and rate of inbreeding was calculated. Weaning weight 

Expected Progeny Difference (EPD), All-Purpose Index (API), and phenotypic weaning weight were 

plotted over time. The API is for use in herds where daughters are kept as replacements with the rest of 

the heifers and steers sold based on yield and grade and includes birth weight, calving ease, weaning 

weight, and yearling weight (Saad et al., 2020; ASA Beef Briefs, 2021).   

 Quality control measures performed for the molecular analyses were conducted using 

PLINK.The final sifted data set consisting of 5,613 individuals was used to compute heterozygosity and 

molecular inbreeding (FIS) measures with PLINK. Runs of homozygosity measures were computed using 

the detectRUNS package in R (Biscarini et al., 2019). Current Ne was computed using the linkage 

disequilibrium method in NeEstimator v2.1 (Waples and Do, 2008; Do et al., 2014). The data set was also 

used to compute the model-based population structure using ADMIXTURE (Alexander et al., 2009).  
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 The population structure of the full Simmental population was assessed by measuring the levels 

of heterozygosity, Wright’s inbreeding coefficient, MAF categories, Ne, and ROH by size class, 

chromosome, and animal. Population substructure was determined using ADMIXTURE. The number of 

populations, K, can be determined using the lowest cross validation error compared to other K values 

(Alexander et al., 2009). For the Simmental population, the cross validation error continued to decline 

through K = 15; because this was a within breed analysis, additional subpopulations were not computed. 

For each replicate of the co-ancestry coefficient matrix, Q, produced by ADMIXTURE, the pophelper 

package in R was used to align and merge the runs (Francis, 2017). The CLUMPAK package, which was 

used for the Suffolk ADMIXTURE analysis, is limited to 5,000 animals. The output from pophelper was 

summarized using STRUCTURE PLOT, allowing visualization of the results in bar plots (Ramasamy et al., 

2014). 

 

3.3 Results 

 

Data simulation. Chromosome length (bp), number of markers, and number of QTL per 

chromosome are shown in Table 3.1. Inbreeding was low, with a mean of 0.002 and a range of 0 to 0.31. 

The rate of inbreeding was 0.0002 per year. Inbreeding trend by year is shown in Figure 3.1. Weaning 

weight EBV and phenotypic weaning weight trend by year are shown in Figures 3.2 and 3.3, respectively. 

A linear regression of weaning weight EBV on year was calculated. The estimated slope corresponding to 

weaning weight EBV was 0.123 kg (SE = 0.003, P < 0.001). Similarly, a linear regression of phenotypic 

weaning weight on year was calculated. The estimated slope for weaning weight was 0.124 kg (SE = 

0.003, P < 0.001). 
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Table 3.1 Chromosome length (bp), number of markers, and number of QTL per chromosome for the 
simulated population 
 

Chromosome Chromosome length Number of markers Number of QTL 

1 275406953 
 

6059 
 

275 
 2 248966461 

 
5477 

 
249 

 3 223996068 
 

4928 
 

224 
 4 119216639 

 
2623 

 
119 

5 107836144 
 

2372 
 

108 
 6 116888256 

 
2572 

 
117 

7 100009711 
 

2200 
 

100 

8 90615088 
 

1994 
 

91 

9 94583238 
 

2081 
 

95 
 10 86377204 

 
1900 86 

11 62170480 
 

1368 
 

62 
 12 79028859 

 
1739 79 

13 83079144 
 

1828 
 

83 
 14 62568341 

 
1377 63 

15 80783214 
 

1777 
 

81 
 16 71693149 

 
1577 72 

17 72251135 
 

1590 
 

72 

18 68494538 
 

1507 68 
 19 60445663 

 
1330 

 
60 

20 51176841 
 

1126 
 

51 

21 49987992 
 

1100 50 

22 50780147 
 

1117 
 

51 

23 62282865 
 

1370 62 

24 42034648 
 

925 
 

42 

25 45223504 
 

995 45 

26 44047080 
 

969 
 

44 
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Figure 3.1 Inbreeding trend by year for the simulated population 

 

 

 

Figure 3.2 Weaning weight estimated breeding value (EBV) trend by year for the simulated population 
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Figure 3.3 Phenotypic weaning weight trend by year for the simulated population 

 

 Overall, HE and HO were both 0.257; the values were expected to be the same for a simulated 

population. Over time, both HE and HO increased from 0.255 in year 1 to 0.259 in year 15. The number of 

fixed alleles increased each year, as expected in a population undergoing selection (Table 3.2) (Eynard et 

al., 2018b). Molecular inbreeding (FIS) for year 15 ranged from -0.10 to 0.31 with a mean of 0.00, where 

negative values indicate a heterozygote excess and positive values indicate a heterozygote deficiency. 

The SNP in MAF categories for year 15 are presented in Table 3.3. There were 14.2 percent of SNP in the 

fixed category (MAF = 0) and 9.9 percent in the rare category (< 0.01). The majority of SNP were in the 

moderate and high categories. The ROH were summarized by class size (Mbps) and percentage (Table 

3.4) and by chromosome for year 15, where chromosome 1 contained the most total runs (13.4%) and 

chromosome 24 had the fewest (1.0%) (Table 3.5). The majority of ROH were short runs of less than 5 

Mbps with less than 1 percent of the runs being 20 Mbps or greater. The ROH per animal ranged from 

75 to 140 with a mean of 107.6. The current Ne was computed as 289.8 for the population. Fifteen 
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subpopulations were visualized for year 15 animals where the proportional assignment of each animal 

was represented as a column (Figure 3.4). 

 

Table 3.2 Number of fixed alleles by year for the simulated population 

Generation No. fixed alleles 

1 6,647 

2 6,704 

3 6,838 

4 6,965 

5 7,065 

6 7,123 

7 7,205 

8 7,306 

9 7,337 

10 7,433 

11 7,471 

12 7,522 

13 7,534 

14 7,607 

15 7,644 

 

Table 3.3 Percentage of single nucleotide polymorphisms (SNP) in each minor allele frequency (MAF) 
category for the simulated population for year 15 
 

MAF Category % of SNP 

Fixed (0) 14.2 

Rare (< 0.01) 9.9 

Moderate (0.01 – 0.3) 52.1 

High (0.3 - 0.5) 23.8 

 

Table 3.4 Runs of homozygosity (ROH) by size class and total ROH percentage for the simulated 
population for year 15 
 

ROH Class Category (Mbps) No. ROH Percent Total ROH 

1 - 5 1,161,438 
 

79.0 

5 - 10 241,548 
 

16.4 

10 - 20 56,807 3.9 

20 - 40 9,644 
 

0.7 

> 40 1,221 0.1 
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Table 3.5 Runs of homozygosity (ROH) count and percentage by chromosome for year 15 

Chromosome ROH Count ROH Percentage 

1 197,233 
 

13.4 

2 190,456 
 

13.0 

3 187,092 
 

12.7 

4 79,550 
 

5.4 

5 62,340 4.2 

6 71,146 
 

4.8 

7 63,814 
 

4.3 

8 44,376 
 

3.0 

9 51,722 
 

3.5 

10 52,542 
 

3.6 

11 28,509 
 

1.9 

12 39,895 
 

2.7 

13 56,154 
 

3.8 

14 30,208 
 

2.1 

15 40,477 
 

2.8 

16 39,758 
 

2.7 

17 30,295 
 

2.1 

18 32,241 
 

2.2 

19 25,733 
 

1.7 

20 23,344 
 

1.6 

21 18,449 
 

1.3 

22 21,479 
 

1.5 

23 32,553 
 

2.2 

24 14,982 
 

1.0 

25 20,148 
 

1.4 

26 16,162 
 

1.1 
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Figure 3.4 Model-based population structure of the simulated population (n = 13,662), displaying the 
proportional assignment of each animal as a column and sorted by highest proportional assignment to a 
subpopulation 
 

 Optimal contribution selection. The OCS optimization converged after 28 iterations. From the 

13,662 selection candidates, the animals with the highest 25, 50, and 100 optimal contributions were 

identified. The optimal contributions ranged from 0.003 to 0.008 for OCS 100, 0.004 to 0.008 for OCS 50, 

and 0.005 to 0.008 for OCS 25. 

 

 Genetic conservation index. The GCI for the entire population was computed and animals were 

selected from year 15. The top GCI value was 93.1 for all GCI samples and the low was 69.1, 73.8, and 

78.1 for GCI 100, GCI 50, and GCI 25, respectively. In comparison, the lowest value for year 15 was 2.0. 

 

Suffolk sheep. The full pedigree represents 36 flocks. Genotyped animals included 115 ewes and 

129 rams. The mean pedigree-based inbreeding coefficient was 0.011 with a range from 0 to 0.257. The 

inbreeding trend by birth year was shown in Figure 3.5. Inbreeding was low, with a slight increase over 

time. Unknown parentage in early years contributed to low and fluctuating inbreeding levels in the first 

few years. The rate of inbreeding was 0.0003 per year. Weaning weight EBV, Carcass Plus Index, and 

phenotypic weaning weight trend by birth year were shown in Figures 3.6, 3.7, and 3.8, respectively. Of 

the 1,565 animals in the pedigree, 894 contributed phenotypic data to the EBV and Index calculations. A 
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linear regression of each trait on year was calculated. The estimated slope for weaning weight EBV was 

0.146 (SE = 3.030, P < 0.001). The estimated slope corresponding to Carcass Plus Index was 0.428 (SE = 

0.193; P < 0.001). The estimated slope for phenotypic weaning weight was 0.008 (SE = 0.781; P = 0.82). 

The average Carcass Plus Index trended upward with a maximum value of 162.46 in the most recent 

year. Phenotypic weaning weight trend remained relatively consistent. 

 

Figure 3.5 Suffolk inbreeding trend by birth year 
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Figure 3.8 Suffolk phenotypic weaning weight trend by birth year 

 

 For the 244 genotyped sheep, HE was 0.318 and HO was 0.308. Overall, FIS was 0.03 with a range 

of -0.16 to 0.23. MAF categories were summarized in Table 3.6. Of the MAF categories, 7.2 percent were 

fixed (MAF = 0) and 3.4 percent were present in the rare category (< 0.01). Most of the SNP were in the 

moderate and high categories. The ROH were summarized by class size (Mbps) and percentage (Table 

3.7), and by chromosome (Table 3.8). Chromosome 1 contained the most total runs (12.2%) and 

chromosome 20 had the fewest (1.7%). The majority of ROH were short runs of less than 5 Mbps 

(95.9%) with only 0.3 percent of the runs in the 10 to 20 Mbps category. High recombination rates have 

been reported in sheep relative to other livestock species, making long runs of ROH less likely to persist 

in the population (Fröhlich et al., 2015). ROH per animal ranged from 38 to 252 with an average of 

114.9. The current Ne was computed as 58.3. Model-based population structure determined there were 

14 subpopulations within the genotyped Suffolk population. A visual representation of the proportional 

assignment of each animal (column) is represented in Figure 3.9. 
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Table 3.6 Percentage of single nucleotide polymorphisms (SNP) in each minor allele frequency (MAF) 
category for the Suffolk population 
 

MAF Category % of SNP 

Fixed (0) 7.2 

Rare (< 0.01) 3.4 

Moderate (0.01 – 0.3) 55.2 

High (0.3 - 0.5) 34.3 

 

Table 3.7 Runs of homozygosity (ROH) by size class and total ROH percentage for the Suffolk population 

ROH Class Category (Mbps) No. ROH Percent Total ROH 

1 - 5 26,770 95.9 

5 - 10 1,072 
 

3.8 

10 - 20 71 0.3 
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Table 3.8 Runs of homozygosity (ROH) count and percentage by chromosome for the Suffolk population 

Chromosome ROH Count ROH Percentage 

1  3,402 12.2 

2 2,906 
 

10.4 

3 2,705 9.7 

4 1,462 
 

5.2 

5 991 3.6 

6 1,383 5.0 

7 973 
 

3.5 

8 943 
 

3.4 

9 1,034 
 

3.7 

10 1,105 
 

4.0 

11 735 
 

2.6 

12 807 
 

2.9 

13 972 
 

3.5 

14 753 
 

2.7 

15 857 
 

3.1 

16 960 
 

3.4 

17 651 
 

2.3 

18 811 
 

2.9 

19 658 
 

2.4 

20 462 
 

1.7 

21 532 
 

1.9 

22 585 
 

2.1 

23 577 
 

2.1 

24 492 
 

1.8 

25 595 
 

2.1 

26 562 
 

2.0 
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Figure 3.9 Model-based population structure of Suffolk (n = 244), where the proportional assignment of 
each animal was represented as a column and the animals are sorted by highest proportional 
assignment to a subpopulation 

 

Optimal contribution selection. The OCS optimization converged after 17 iterations. Animals 

with the highest optimal contribution values were selected for the highest 100 (OCS 100), 50 (OCS 50), 

and 25 (OCS 25) animals. From the 244 selection candidates, the OCS 100 values ranged from 0.0007 to 

0.0362, OCS 50 ranged from 0.0074 to 0.0362, and OCS 25 ranged from 0.0128 to 0.0362. 

 

 Genetic conservation index. Animals and their corresponding GCI index were extracted from the 

ENDOG results. Animals were ranked by index and subset into the highest 100 (GCI 100), 50 (GCI 50), 

and 25 (GCI 25). Because this sampling procedure is a ranking by index, animals present in GCI 50 were 

also present in GCI 100; similarly, animals present in GCI 25 were also present in GCI 100 and GCI 50. The 

GCI 100 ranged from 4.1 to 16.2, GCI 50 ranged from 6.2 to 16.2, and GCI 25 values ranged from7.9 to 

16.2; in comparison, the lowest GCI value in the population was 1.0. 

 

Simmental cattle. Genotyped animals in the final dataset included 949 males and 4,664 females. 

The mean pedigree-based inbreeding coefficient was 0.024 with a range from 0 to 0.375. The rate of 

inbreeding was computed as 0.0007 per year, or 0.0032 per generation, which is less than the critical 
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value of 1 percent per generation as defined by the FAO (1998). Inbreeding trend by birth year is shown 

in Figure 3.10. Inbreeding remained low but steadily increased after 1972. Prior to that time, unknown 

parentage information is reflected in very low levels of inbreeding. Few weaning weights were reported 

before 1974 with a total of 17,757 weaning weights available for the 84 percent and greater Simmental 

population (n = 34,462). Weaning weight EPD, API, and phenotypic weaning weight trend by birth year 

are shown in Figures 3.11, 3.12, and 3.13, respectively. Weaning weight EPD and API increased over time 

while phenotypic weaning weight remained flat. A linear regression of each trait on birth year was 

calculated. The estimated slope for weaning weight EPD was 0.629 (SE = 0.018, P < 0.001). The 

estimated slope corresponding to API was 0.698 (SE = 0.029, P < 0.001). The estimated slope for 

phenotypic weaning weight was 0.553 (SE = 0.124, P < 0.001). 

 

 

 

 

Figure 3.10 Simmental inbreeding trend by birth year 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

19
45

 (
n

=4
)

19
46

 (
n

=4
)

19
47

 (
n

=2
)

19
48

 (
n

=2
6

)
19

49
 (

n
=9

)
19

50
 (

n
=6

0
)

19
51

 (
n

=3
9

)
19

52
 (

n
=3

8
)

19
53

 (
n

=4
8

)
19

54
 (

n
=8

5
)

19
55

 (
n

=1
1

6)
19

56
 (

n
=7

1
)

19
57

 (
n

=8
5

)
19

58
 (

n
=9

3
)

19
59

 (
n

=1
1

2)
19

60
 (

n
=1

6
1)

19
61

 (
n

=1
1

9)
19

62
 (

n
=1

2
3)

19
63

 (
n

=1
6

3)
19

64
 (

n
=1

7
8)

19
65

 (
n

=2
2

5)
19

66
 (

n
=2

0
6)

19
67

 (
n

=2
2

4)
19

68
 (

n
=3

0
9)

19
69

 (
n

=2
4

6)
19

70
 (

n
=3

0
6)

19
71

 (
n

=2
8

4)
19

72
 (

n
=2

9
8)

19
73

 (
n

=3
5

0)
19

74
 (

n
=3

6
3)

19
75

 (
n

=4
5

9)
19

76
 (

n
=4

6
7)

19
77

 (
n

=4
7

8)
19

78
 (

n
=5

3
2)

19
79

 (
n

=5
1

0)
19

80
 (

n
=5

3
0)

19
81

 (
n

=5
0

5)
19

82
 (

n
=5

1
2)

19
83

 (
n

=4
8

7)
19

84
 (

n
=4

7
3)

19
85

 (
n

=4
9

6)
19

86
 (

n
=4

8
2)

19
87

 (
n

=4
9

7)
19

88
 (

n
=5

3
2)

19
89

 (
n

=5
3

8)
19

90
 (

n
=5

0
8)

19
91

 (
n

=5
6

7)
19

92
 (

n
=6

0
3)

19
93

 (
n

=5
6

9)
19

94
 (

n
=6

5
5)

19
95

 (
n

=6
4

9)
19

96
 (

n
=6

4
5)

19
97

 (
n

=5
9

9)
19

98
 (

n
=6

1
6)

19
99

 (
n

=6
5

0)
20

00
 (

n
=6

0
3)

20
01

 (
n

=6
1

5)
20

02
 (

n
=6

2
7)

20
03

 (
n

=6
0

0)
20

04
 (

n
=6

1
4)

20
05

 (
n

=6
2

7)
20

06
 (

n
=6

1
2)

20
07

 (
n

=6
7

6)
20

08
 (

n
=6

6
9)

20
09

 (
n

=6
3

0)
20

10
 (

n
=6

9
6)

20
11

 (
n

=6
6

8)
20

12
 (

n
=7

3
5)

20
13

 (
n

=7
0

4)
20

14
 (

n
=6

9
5)

20
15

 (
n

=5
6

3)
20

16
 (

n
=5

5
0)

20
17

 (
n

=5
4

8)
20

18
 (

n
=4

7
1)

20
19

 (
n

=2
9

5)
20

20
 (

n
=5

0
5)

20
21

 (
n

=3
8

7)

In
b

re
ed

in
g 

co
ef

fi
ci

en
t

Birth Year

Inbreeding Trend



60 
 

 

 

 

Figure 3.11 Simmental weaning weight expected progeny differences (EPD) trend 

 

 

 

Figure 3.12 Simmental All Purpose Index (API) trend 

 

0

20

40

60

80

100

120

140
1

9
4

5

1
9

4
8

1
9

5
1

1
9

5
4

1
9

5
7

1
9

6
0

1
9

6
3

1
9

6
6

1
9

6
9

1
9

7
2

1
9

7
5

1
9

7
8

1
9

8
1

1
9

8
4

1
9

8
7

1
9

9
0

1
9

9
3

1
9

9
6

1
9

9
9

2
0

0
2

2
0

0
5

2
0

0
8

2
0

1
1

2
0

1
4

2
0

1
7

2
0

2
0

W
ea

n
in

g 
W

ei
gh

t 
EP

D

Birth Year

Weaning Weight EPD Trend

Weaning Weight EPD EPD min EPD max

0
20
40
60
80

100
120
140
160
180
200

1
9

4
5

1
9

4
8

1
9

5
1

1
9

5
4

1
9

5
7

1
9

6
0

1
9

6
3

1
9

6
6

1
9

6
9

1
9

7
2

1
9

7
5

1
9

7
8

1
9

8
1

1
9

8
4

1
9

8
7

1
9

9
0

1
9

9
3

1
9

9
6

1
9

9
9

2
0

0
2

2
0

0
5

2
0

0
8

2
0

1
1

2
0

1
4

2
0

1
7

2
0

2
0

In
d

ex
 V

al
u

e

Birth Year

All Purpose Index Trend

API API min API max



61 
 

 

 

Figure 3.13 Simmental weaning weight (kg) trend 

 

 For the 5,613 genotyped Simmental, the overall HE was 0.416 and HO was 0.408. Overall, FIS was 

0.02 and ranged from -0.72 to 0.41. Table 3.9 summarizes the MAF categories. Few SNP were in the 

fixed (0.05 percent) and rare (0.56 percent) categories with the vast majority in the high category. The 

ROH were summarized by class size (Mbps) and percentage (Table 3.10) and by chromosome (Table 

3.11). Chromosome 5 had the most total runs (8.4%) and chromosome 27 had the fewest (0.8%). Only 

1.1 percent of the ROH were in the 10 to 20 Mbps category with 30.5 percent in the 5 to 10 Mbps 

category. The majority of the ROH were short runs in the 1 to 5 category (68.4%). The ROH per animal 

averaged 5.9 with a range from 0 to 44. Current Ne was computed as 153.8. Fifteen subpopulations were 

determined from the model-based population structure within the genotyped Simmental population. A 

visual representation of the proportional assignment of each animal (column) is represented in Figure 

3.14. 
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Table 3.9 Percentage of single nucleotide polymorphisms (SNP) in each minor allele frequency (MAF) 
category for the Simmental population 
 

MAF Category % of SNP 

Fixed (0) 0.05 

Rare (< 0.01) 0.56 

Moderate (0.01 – 0.3) 34.06 

High (0.3 - 0.5) 65.33 

 

Table 3.10 Runs of homozygosity (ROH) by size class and total ROH percentage for the Simmental 
population 
 

ROH Class Category (Mbps) No. ROH Percent Total ROH 

1 - 5 21,253 68.4 

5 - 10 9,475 
 

30.5 

10 - 20 353 1.1 
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Table 3.11 Runs of homozygosity (ROH) count and percentage by chromosome for the Simmental 
population 
 

Chromosome ROH Count ROH Percentage 

1 1,951 6.3 

2 2,239 7.2 

3 1,863 6.0 

4 746 2.4 

5 2,603 8.4 

6 1,486 4.8 

7 1,698 5.5 

8 1,197 3.9 

9 1,006 3.2 

10 2,083 6.7 

11 576 1.9 

12 816 2.6 

13 1,207 3.9 

14 1,315 4.2 

15 538 1.7 

16 1,162 3.7 

17 682 2.2 

18 525 1.7 

19 1,338 4.3 

20 1,007 3.2 

21 400 1.3 

22 388 1.2 

23 794 2.6 

24 778 2.5 

25 524 1.7 

26 735 2.4 

27 262 0.8 

28 708 2.3 

29 454 1.5 
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Figure 3.14 Model-based population structure of Simmental (n = 5,613), where the proportional 
assignment of each animal was represented as a column and the animals are sorted by highest 
proportional assignment to a subpopulation 

 

Optimal contribution selection. The OCS optimization converged after 24 iterations. From the 

5,613 selection candidates, the animals with the highest 100, 50, and 25 optimal contribution values 

were selected. The optimal contribution values ranged from 0.0000002 to 0.037 for OCS 100, 0.008 to 

0.037 for OCS 50, and 0.015 to 0.037 for OCS 25. The low optimal contribution for most animals suggests 

there are few unique animals based on pedigree that are necessary to select. 

 

 Genetic conservation index. Selection candidates were sorted by GCI and the top 100, 50, and 

25 animals were selected. The GCI 100 ranged from 182.6 to 323.0, GCI 50 ranged from 208.6 to 323.4, 

and GCI 25 values ranged from 232.8 to 323.4. The lowest GCI value among the selection candidates was 

1.1. 

 

3.4 Discussion 

 

Data simulation. Simulation of the sheep population created the underlying genome for the 

entire population, which is the primary advantage of simulated over real populations. Recommended 

reporting for simulated populations included the size of the genome, number of markers, number of 
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QTL, distribution of QTL effects, simulation of genetic values, chosen heritability, heterozygosity, and 

number of generations of mating (Daetwyler et al., 2013). In addition to reporting these values, the Ne, 

MAF categories, ROH, inbreeding levels, relationships among animals, and model-based population 

structure were evaluated.  

The Ne was simulated to be 250. Post hoc evaluation of the final year of selection estimated 

molecular-based Ne as 289.8. Phenotypic weaning weight was initially set at 29 kg for the randomly 

mating population. After 30 years of random mating, the mean weaning weight was 29.2 kg. Phenotypic 

selection for 15 years for weaning weight resulted in a positive trend for both weaning weight and 

weaning weight EBV. The number of fixed alleles increased over time, as expected in a population 

undergoing selection. MAF categories show how the allele frequencies of the population were 

distributed, and the simulated population had 14.2 percent classified as fixed and 9.9 percent of alleles 

classified as rare. Other sheep breeds were reported to have fixed alleles ranging from 3.9 percent for 

Merinos to 23.3 percent for Border Leicester (Kijas et al., 2014). The fixed and rare allele percentages for 

the simulated population were higher than Corriedale and Merino but lower than Creole sheep reported 

by Grasso et al. (2014). For a simulated dataset using similar parameters to this simulation, Vargas 

Jurado et al. (2021), removed 26 percent of the markers because they had a MAF < 0.01. A high number 

of fixed and rare alleles are typical in simulated datasets and are typically managed by removing these 

markers as a quality control step. The low frequency alleles were retained here to not to be more 

representative of a real breed, but to increase the challenge of capturing the alleles in a population. For 

the ADMIXTURE analysis, there were high levels of admixture of subpopulations for most animals; the 

highest proportional assignment of an animal to any subpopulation was 0.89 (Figure 3.3). While the goal 

was not to model a specific sheep breed, it was to generate a population structure that could be defined 

and to evaluate the ability of sampling procedures to capture that population structure. 
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There were no animals in common for OCS and GCI sampling strategies. While the methods for 

selecting animals differ between the two strategies, at least some genetically important animals in 

common would be expected to be identified by both methods. 

 

 Suffolk sheep. The subset of the Suffolk population analyzed in this study was characterized by 

low levels of inbreeding and high levels of polymorphic alleles. Weaning weight EBV and phenotypic 

weaning weight show minimal improvement over time for this breed while the Carcass Plus Index has 

seen more improvement. Since a high level of selection leads to decreased genetic variation, the lack of 

intense selection for the measured traits may have contributed to the high level of genetic diversity 

present in the population. 

Heterozygosity measures, HE and HO, were 0.318 and 0.308, respectively. The percentage of 

fixed and rare alleles were 7.2 and 3.4, respectively. High heterozygosity and low fixed alleles suggest 

the population has plenty of diversity. It also makes sampling the population to retain all alleles less 

challenging. ROH were dominated by short ROH, which are attributed to ancient inbreeding or founder 

breed effects and influenced by high recombination rates observed in sheep (Fröhlich et al., 2015). Since 

they have been maintained in the population throughout time, it is important to make sure the sampled 

populations reflect a similar pattern of ROH. Additionally, a lack of long ROH suggest no major recent 

inbreeding events have occurred (Purfield et al., 2012).  

Ne was computed as 58.3. Given a range of Ne of 50 to 100 for a population to be considered 

stable, the Suffolk population has sufficient genetic diversity (FAO, 1998; Meuwissen, 2009). Wilson et 

al. (2022) reported an Ne of 79.5 using a larger Suffolk population from which this data is a subset; this 

also demonstrates the importance of selecting animals for research purposes to minimize biased results. 

Caution should be exercised when using relatively few genotyped animals as representative of an entire 

breed. Fourteen subpopulations or ancestral populations were identified in the model-based population 
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structure analysis; Wilson et al. (2022) identified 7 subpopulations. The presence of distinct 

subpopulations within the breed maintains different allelic combinations across the breed. Effective 

sampling of the breed will need to capture each of these subpopulations. There were 36 animals in 

common for OCS 100 and GCI 100 sampling strategies. 

 

 Simmental cattle. The Simmental population included in this analysis had a low overall 

inbreeding level, with an average inbreeding coefficient of 0.05 in the most recent generation. 

Inbreeding began to increase in the 1970s when more parents were known and steadily increased after 

that point. The sires of this population had a range from 1 to 349 offspring and the dams had a range 

from 1 to 24. The upper end of these numbers indicates the use of artificial reproductive techniques, 

such as artificial insemination and embryo transfer. Extensive use of such techniques can lead to fewer 

sires and dams, a narrowing of the genetic base, and decreased genetic diversity; this is not yet 

indicated in this population (Funk, 2006; Melka et al., 2013). Weaning weight EPD has increased steadily 

over time, doubling during the time period evaluated. Weaning weight EPD in early years had a narrow 

range of values and increased over time. The API trend has increased over time with a wider range of 

values in recent years. Phenotypic weaning weight has remained stable over time even as weaning 

weight EPD has increased.  

 Heterozygosity in this population was high for both HE and HO, with values of 0.416 and 0.408, 

respectively. High levels of heterozygosity were observed in other Simmental populations (Curik et al., 

2010; Kelleher et al., 2017). FIS was 0.02, which closely matches the pedigree inbreeding value of 0.024. 

For the MAF categories, 0.05 and 0.56 percent of the alleles were fixed and rare, respectively. Because 

the SNP dataset included markers from multiple SNP chips, the overlapping markers across chips may be 

those that are highly polymorphic and, therefore, chosen with the potential to be more informative than 

less polymorphic SNP. The moderate category included 34.1 percent of the SNP while the high category 
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included 65.3 percent. These high frequency alleles in the population make it more likely to capture the 

genetic diversity in the population when compared to those with many low frequency alleles. The 

majority of ROH were in the 1 - 5 category (68.4%) with an additional 30.5 percent in the 5 - 10 category. 

Since shorter runs are generally associated with ancient inbreeding, this population has a mix of ancient 

and more recent inbreeding. This increase in recent inbreeding indicated by ROH aligns with the 

inbreeding trend that is linearly increasing in recent generations. 

 Ne was reported as 153.8. This value is well above the minimum of 50 recommended by the 

FAO (1998) and 100 recommended by Meuwissen (2009). Based on the results from this research, the 

more conservative estimate of 100 is recommended moving forward. Including Simmental above 84 

percent rather than strictly limiting to fullbloods likely contributes to added genetic diversity of the 

population and prevents a greater loss of Ne. The inclusion of other breeds in the Simmental registry 

may also explain why there are many subpopulations within the breed. For practical purposes, the 

ADMIXTURE analysis was limited to 15 subpopulations, which all have much admixture within the 

subpopulations rather than being assigned to a single distinct population (Figure 3.14). Less than 1 

percent of the animals (n = 55) had a proportional assignment above 0.99 to any subpopulation. High 

levels of heterozygosity coupled with admixture in the Simmental population are expected to be 

favorable for capturing the alleles present in the population. There were no animals in common for OCS 

and GCI sampling strategies. 

 

 

3.5 Conclusion 

 

 A simulated population was developed to allow for a comparison of sampling strategies for 

identifying genetically important animals to capture the genetic diversity of the population. The two 

sampling strategies, OCS and GCI, use pedigree-based selection strategies and the assessment of the 
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success of capturing the genetic diversity available in the population was measured using both 

molecular and quantitative methods. The primary advantage of the simulated population was the ability 

to know the underlying genotypes for every animal in the population. A thorough assessment of the 

entire population was performed by evaluating a phenotypic trait, breeding values, inbreeding, and 

molecular measures of heterozygosity, minor allele frequency categories, effective population size, and 

population substructure. Then, the sampling strategies were applied, with 100, 50, and 25 animals 

sampled from the respective strategies. The simulated population represented a large purebred sheep 

population with a moderate number of markers. 

 Once the simulated population was sampled, the real populations were evaluated and included 

a sheep population and a beef population. The Suffolk sheep population was small but included a large 

number of markers to capture the allelic diversity from. The Simmental cattle population was of 

moderate size with an admixed population and a moderate number of markers to capture. 

 The simulated population had low levels of inbreeding and a low rate of inbreeding. This was 

similar for the Suffolk and Simmental populations. The simulated population had the lowest levels of 

heterozygosity of the three populations, making capturing the genetic diversity in the simulated 

population the most challenging. Similarly, the simulated population had the highest percentage of fixed 

and rare alleles of the three populations. Capturing rare alleles are the most challenging and comprised 

9.9 percent of the simulated population and only 3.4 and 0.6 percent of the Suffolk and Simmental 

populations, respectively. The simulated population had the majority of ROH as short runs (< 5 

megabase pairs) as was the case for the Suffolk and Simmental populations. In the model-based 

population structure analysis, the simulated population had many subpopulations. The Suffolk 

population had much more distinct subpopulations while the Simmental subpopulations were similar to 

the simulated population where the subpopulations were much less defined.  
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 Sampling of the simulated population resulted in OCS samples with low levels of contributions 

with the highest contribution of 0.008. The highest contributions were 0.036 and 0.037 for Suffolk and 

Simmental, respectively. Since GCI is based on the number of founders, direct comparisons across 

populations cannot be made. Only the Suffolk population had selected animals in common between OCS 

100 and GCI 100. This may have been due to the small population size since no animals were in common 

for the larger populations. The OCS sampling strategy places emphasis on minimizing the kinship of 

selected animals while the GCI sampling strategy maximizes the representation of founder animals in 

the selected animals. Because these selection strategies differ in their purpose, it perhaps should not be 

surprising that there are not more overlapping selected animals between the two strategies. However, 

intuitively, the most genetically important animals selected to represent a population would be 

expected to be the same. The simulated population provided a structure for testing the two sampling 

strategies, which were then applied to the two real populations. 
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CHAPTER IV 

ASSESS THE POPULATION STRUCTURE FOR A SIMULATED BREED, A SHEEP BREED (SUFFOLK), AND A 

BEEF BREED (SIMMENTAL) 

 

 

 

4.1 Introduction 

 

 Population structure is defined by the amount and distribution of genetic variation in a 

population. Changes to population structure occur through random genetic drift, selection, mutation, 

and migration, all of which drive the amount of genetic variation within the population (Eding and Laval, 

1999). Various molecular tools and measures that help to define population structure include observed 

(HO) and expected heterozygosity (HE), minor allele frequencies (MAF), runs of homozygosity (ROH), and 

parametric subpopulation structure. For quantitative measures, the variation of measured traits and 

trends over time can be examined. 

 The effective population size, Ne, is defined as the number of individuals that would give rise to 

the same rate of inbreeding if they bred in the manner of the idealized population. Another definition is 

the size of an "ideal" population of animals that would have the same decrease in genetic diversity due 

to genetic drift as the real population of interest (Wright, 1931; Halliburton and Halliburton, 2004). The 

United Nations Food and Agriculture Organization (FAO) recommends breed conservation efforts 

maintain a minimum Ne of 50, which is expected to result in an inbreeding rate of one percent per 

generation while Meuwissen (2009) recommends a more conservative Ne of 100.  

 Genetic diversity can be measured as pedigree-based or marker-based. Pedigree-based diversity 

is a measure of the probability of an allele being identical by descent (IBD) from the founder population, 

which is assumed unrelated. Marker-based diversity does not assume a founder population and 

considers all markers that are identical by state (IBS) to be IBD. This research uses a pedigree-based 
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sampling strategy to identify animals and then uses marker-based population assessments to evaluate 

sampling success.  

 This research has the objective of capturing all allelic genetic diversity in a population; however, 

there is not strict agreement among conservationists about what capturing the genetic diversity of a 

population means. Eding and Laval (1999) argue that overall diversity is more important than capturing 

specific alleles and an emphasis on diversity of genotypes was more important for polygenic traits than 

the alleles that make up those traits. The objective of this research is to capture the genetic diversity of 

the population with as few animals as possible and determine success by assessing the population 

structure of the selected animals compared to the full population. 

 

4.2 Materials and Methods 

 

 Optimal contribution selection (OCS) and Genetic Conservation Index (GCI). For the simulated 

population followed by the real populations of Suffolk sheep and Simmental cattle, sampling strategies 

included optimal contribution selection (OCS) (Meuwissen, 2009) and the Genetic Conservation Index 

(GCI) (Alderson, 1992). In the respective sampling strategies, 100, 50, and 25 animals were selected. The 

six samples are reported as OCS 100, OCS 50, OCS 25, GCI 100, GCI 50, and GCI 25, referring to the 

sampling strategy and the number of animals sampled. 

The optiSel package in R was used to select 100, 50, and 25 animals using OCS (Wellmann, 

2019). OCS typically is used to select animals to minimize the average kinship for selected animals while 

maximizing genetic gain. Computationally, OCS maximizes G = c’EBV, while restricting: Āp = c’Ac, and 

restricting: c’Q = 0.5, where G was the average genetic level of the parents weighted by their number of 

offspring, EBV was a vector of estimated breeding values of the parents, c was a vector of genetic 

contributions of the parents (fraction of offspring each parent obtains, scaled such that it sums to 0.5 for 
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males and to 0.5 for females; ci=0 implies that animal i was not selected), Āp was the desired value of the 

average genetic relationships between the parents where A is the numerator relationship matrix of the 

selection candidates, and Q was a design matrix indicating the gender of the candidates (first column is 

1 for male, 0 for females; second column is 1 for female, 0 for males) (Meuwissen, 2009). Since 

maximizing genetic gain was not the goal of the sampling strategy, only minimizing kinship was 

considered here. 

The ENDOG package was used to compute GCI (Gutiérrez and Goyache, 2005), which seeks to 

maintain equal contributions from all the founder ancestors in each animal. Computationally, the GCI for 

an animal is the effective number of founders in its pedigree from 1/𝛴𝛴𝑃𝑃𝑖𝑖2, where 𝑃𝑃𝑖𝑖 is the proportion of 

genes of founder animal i in the pedigree (Alderson, 1992). Animals can be ranked based on GCI, with a 

higher GCI value representing a higher level of genetic diversity. 

 

 Simulated population. Weaning weight means, ranges, standard deviations, and coefficients of 

variation from the OCS and GCI samples were compared to the year 15 population (n = 13,662). 

Weaning weight EBV statistics were also compared. Differences between the means of weaning weight 

for year 15 and the OCS and GCI samples were analyzed using a one-way ANOVA test. Pairwise 

comparisons of the means were performed using the Tukey-Kramer procedure. Similar analyses were 

conducted for weaning weight EBV. 

The SNP for each animal were analyzed using PLINK (Purcell et al., 2007). Expected (HE) and 

observed heterozygosity (HO) were computed as well as molecular inbreeding, FIS. Pairwise comparisons 

of the means were performed using the Tukey-Kramer test for HE, HO, and FIS. The minor allele frequency 

(MAF) categories were determined as fixed (MAF = 0), rare (MAF < 0.01), moderate (MAF 0.01 - 0.3), 

and high (MAF 0.3 - 0.5) (Grasso et al., 2014; Wilson et al., 2022). A Chi-square Goodness of Fit test was 

performed to determine whether the proportions in the MAF categories were equal between year 15 
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and each OCS and GCI sampled population. Runs of homozygosity (ROH) were computed using the 

detectRUNS package in R (Biscarini et al., 2019) with a sliding window of 50 SNP with a minimum length 

of 1,000 kb, a minimum of 30 SNP, allowing for 1 missing SNP, and allowing a maximum of 1 possible 

heterozygous SNP. The ROH class categories were determined as 1 - 5, 5 - 10, 10 - 20, 20 - 40, and > 40 

Megabase pairs. A Chi-square Goodness of Fit test was performed to determine whether the 

proportions in the ROH categories were equal between year 15 and each OCS and GCI sampled 

population. Recent Ne was computed for each sampled population using the linkage disequilibrium 

method of Waples and Do (2008) as implemented in NeEstimator v2.1 (Do et al., 2014) for comparison 

with the full population. The alleles not captured from each sampling strategy were computed from the 

results of this analysis based on the entire year 15 population and when only alleles with a MAF > 0.01 

were considered. The allelic frequencies of the missing alleles were computed. Model-based population 

structure was compared for the full population and the sampled animals. 

 

Suffolk sheep. Phenotypic weaning weight means, ranges, standard deviations, and coefficients 

of variation from the OCS and GCI samples were compared to the entire genotyped Suffolk population 

(n = 244). Weaning weight EBV and Carcass Plus Index statistics were also compared. A one-way ANOVA 

was used to compare differences between the means for the full population and each OCS or GCI 

population, followed pairwise comparisons of the means using the Tukey-Kramer procedure for weaning 

weight, weaning weight EBV, and Carcass Index Plus. 

The HE, HO, FIS, and MAF for the sampled populations were computed using PLINK (Purcell et al., 

2007). Pairwise comparisons of the means for HE, HO, and FIS were performed using the Tukey-Kramer 

test. The MAF for each marker were compared to the full population for each sample method to 

compute the missing alleles. The allele frequencies of the missing alleles were computed. An additional 

count of missing alleles was performed, considering only alleles with a MAF > 0.01. The MAF categories 
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were compared for the full population and each sampling strategy using A Chi-square Goodness of Fit 

test. The ROH classes were compared for the full population and each sampling strategy using A Chi-

square Goodness of Fit test. Recent Ne was compared for the full population and each sampled 

population. Model-based population structure was compared for the full population and the sampled 

animals. 

 

Simmental cattle. Means, ranges, standard deviations, and coefficients of variation from the 

OCS and GCI samples were compared to the entire genotyped Simmental population (n = 5,613) for 

phenotypic weaning weight, weaning weight EPD and the All-Purpose Index. For each trait, a one-way 

ANOVA was used to compare the means for the full population and each OCS or GCI population. Then, 

the Tukey-Kramer test was used to perform pairwise comparisons of the means for the full population 

and each OCS or GCI population. 

The HE, HO, FIS, and MAF for the sampled populations were computed using PLINK (Purcell et al., 

2007). Pairwise comparisons of the means for HE, HO, and FIS were performed using the Tukey-Kramer 

test. Missing alleles from the sampled populations were computed using MAF for each marker when 

compared to the full population. The allele frequencies of the missing alleles were computed for all 

markers and when including only alleles with a MAF > 0.01. Assignment to MAF categories was 

compared for the full population and each sampling strategy. A Chi-square Goodness of Fit test was 

performed to determine whether the proportions in the MAF categories were equal between the full 

population and each OCS and GCI sampled population. A Chi-square Goodness of Fit test was performed 

to determine whether the proportions in the ROH categories were equal between the full population 

and each OCS and GCI sampled population. Recent Ne was computed for each sampled population and 

compared to the full population. Model-based population structure was compared for the full 

population and the sampled animals. 
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4.3 Results 

 

 Simulated population. A comparison of the minimum, mean, maximum, standard deviation, and 

coefficient of variation for phenotypic weaning weight and weaning weight EBV for the full year 15 

population and OCS 100, OCS 50, and OCS 25 sampled populations was presented in Table 4.1. Based on 

both ANOVA and the Tukey-Kramer tests, mean weaning weight EBV in the year 15 population differed 

from that in each OCS population (P < 0.001). Phenotypic weaning weight in year 15 differed from that 

in OCS 100 (P < 0.001), but not OCS 50 (P = 0.09), and OCS 25 (P = 0.07). The full year 15 population 

consisted of 6,817 males and 6,845 females. OCS 100 selected 59 rams and 41 ewes, OCS 50 selected 26 

rams and 24 ewes, and OCS 25 selected 14 rams and 11 ewes. The HE was 0.259 for generation 15 and 

for all three sampled populations. The HO was 0.259 for generation 15 and was 0.260, 0.259, and 0.261 

for OCS 100, OCS 50, and OCS 25, respectively. Molecular inbreeding, measured as FIS, averaged 0 for all 

sampled and the year 15 population. Based on the ANOVA and Tukey-Kramer tests, the means for HE, 

HO, and FIS did not differ between populations, indicating the sampled populations represented the full 

population for these measures (Table 4.2).  
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Table 4.1 Minimum (Min), mean, maximum (Max), standard deviation (St Dev), and coefficient of 
variation (CV %) for weaning weight (WWT) estimated breeding values (EBV) and phenotypic weaning 
weight (WWT) for the year 15 population and the three optimal contribution selection (OCS) sampled 
populations 
 

 Year 15 OCS 100 OCS 50 OCS 25 

Min WWT EBV 28.1 28.4 28.4 28.4 

Mean WWT EBV 31.0a 30.1b 30.0b 30.0b 

Max WWT EBV 33.5 32.0 32.0 32.0 

Std Dev WWT EBV   0.8   0.7   0.7   0.8 

CV % WWT EBV   2.5   2.2   2.3   2.6 

Min WWT 20.2 21.5 25.5 25.5 

Mean WWT 31.0a 30.0b 30.1ab 30.0ab 

Max WWT 41.8 34.6 33.8 33.7 

Std Dev WWT   2.5   2.4   2.2   2.2 

CV % WWT   8.1   8.0   7.4   7.4 

Means sharing the same superscript within a row are not significantly different from each other (Tukey-
Kramer, P < 0.05) 
 

Table 4.2 Average expected heterozygosity (HE), observed heterozygosity (HO), and molecular inbreeding 
(FIS) for the year 15 population and the three optimal contribution selection (OCS) sampled populations 
 

 Year 15 OCS 100 OCS 50 OCS 25 

HE 0.259a 0.259a 0.259a 0.259a 

HO 0.259a 0.260a 0.259a 0.261a 

FIS -0.001a -0.006a -0.002a -0.006a 

Means sharing the same superscript within a row are not significantly different from each other (Tukey-
Kramer, P < 0.05) 
 

 

 The aim of the sampling is to capture the full range of alleles in the population. Table 4.3 shows 

the percentage of year 15 alleles that were captured by each sampling method and the frequency of the 

alleles that were not captured. When alleles with a MAF < 0.01 were excluded, 99.6, 98.5, and 96.7 

percent of alleles were captured by OCS 100, OCS 50, and OCS 25, respectively. Table 4.4 shows the MAF 

categories for year 15 and for the OCS samples. All sampling methods had a higher percentage of fixed 

alleles than the full population, indicating a loss of variation. The percentage of fixed alleles increased as 

the number of animals sampled decreased. The percentage of alleles in the moderate and high 
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categories is similar across sampling methods, with the rare category being the most impacted. Based 

on Chi-square analyses, the proportions differed by MAF category when the full population was 

compared to each OCS sampled population (P < 0.001). 

 

Table 4.3 Percentage of year 15 alleles captured and frequency of missing alleles using optimal 
contribution selection (OCS) sampled populations 
 

  Frequency of Missing Alleles 

Selection Category % Alleles Captured Minimum Average Maximum 

OCS 100 96.4 0.00004 0.0035 0.0497 

OCS 50 94.7 0.00004 0.0073 0.1302 

OCS 25 92.5 0.00004 0.0135 0.1945 

 

 

Table 4.4 Percentage of single nucleotide polymorphisms (SNP) in each minor allele frequency (MAF) 
category for year 15 and the optimal contribution selection (OCS) sampled populations 
 

MAF Category: % of SNP Year 15 OCS 100 OCS 50 OCS 25 

Fixed (0) 14.2 20.8 24.0 28.2 

Rare (< 0.01) 9.9 2.7 0.0 0.0 

Moderate (0.01 – 0.3) 52.1 52.5 52.0 47.3 

High (0.3 - 0.5) 23.8 24.0 24.0 24.5 

 

For year 15 and the sampled populations, the shortest ROH class has the highest percentage of 

runs (Table 4.5). There are few runs in the longest ROH classes. Short runs are generally attributed to 

ancient inbreeding while long runs are due to more recent inbreeding. Since the ancient inbreeding has 

persisted over time, it is considered less of a concern than more recent inbreeding. Based on Chi-square 

analyses, the proportions of total ROH in each class size did not differ for year 15 and each sampled 

population (P > 0.05). The average number of ROH per animal was also similar between year 15 and the 

sampled populations (Table 4.6). Recent Ne was computed as 289.8 for the full population and the OCS 

sampled populations were 88.5, 52.2, and 23.6 for OCS 100, OCS 50, and OCS 25, respectively.  
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Table 4.5 Runs of homozygosity (ROH) by size class and total ROH percentage for year 15 and the 
optimal contribution selection (OCS) sampled populations 
 

ROH Class Category (Mbps) Percent Total ROH in each Class Size 

 Year 15 OCS 100 OCS 50 OCS 25 

1 – 5 79.0 79.6 79.5 79.3 

5 – 10 16.4 15.7 15.8 16.2 

10 – 20 3.9 3.9 3.9 3.8 

20 – 40 0.7 0.8 0.8 0.7 

> 40 0.1 0.1 0.0 0.0 

 

Table 4.6 Average number of runs of homozygosity (ROH) per animal for year 15 and the optimal 
contribution selection (OCS) sampled populations 
 

 Average ROH 

Year 15 107.6 

OCS 100 106.5 

OCS 50 107.7 

OCS 25 107.0 

  

Model-based population structure was compared for the full genotyped population and each 

OCS sampled population. All 15 subpopulations identified in the model-based population structure 

analysis were represented in each of the OCS sampled populations, but each subpopulation becomes 

less distinct as the sampling progresses from the full population to OCS 100, OCS 50, and OCS 25. Figure 

4.1 shows the proportional assignment of each animal for the full population (Figure 4.1(a)) and each 

OCS sampled population (Figure 4.1(b-d)). 
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Figure 4.1 Model-based population structure for the simulated population for optimal contribution 
(OCS) and Genetic Conservation Index (GCI) strategies for the full population (a), OCS 100 (b), OCS 50 (c), 
OCS 25 (d), GCI 100 (e), GCI 50 (f), and GCI 25 (g) displaying the proportional assignment of each animal 
as a column and sorted by highest proportional assignment to a subpopulation 
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Phenotypic weaning weight and weaning weight EBV were compared for the full year 15 

population and the GCI sampled populations in Table 4.7. Means differed between the year 15 and each 

GCI population for weaning weight EBV for both the one-way ANOVA and the Tukey-Kramer test (P < 

0.001). For phenotypic weaning weight, the Tukey-Kramer test indicated different means for year 15 

when compared to GCI 100 (P = 0.01), but not GCI 50 (P = 0.39) or GCI 25 (P = 0.52). The GCI 100 

included 53 females and 47 males, GCI 50 included 28 females and 22 males, and GCI 25 included 15 

females and 10 males. The HE was 0.259 for year 15 and for all three GCI sampled populations. The HO 

was 0.259 for year 15 and 0.259, 0.258, and 0.258 for GCI 100, GCI 50, and GCI 25, respectively. 

Molecular inbreeding (FIS) averaged 0 for all sampled populations. Based on the ANOVA and Tukey-

Kramer tests, the means for HE, HO, and FIS did not differ between populations (Table 4.8). 

 
 
Table 4.7 Minimum (Min), mean, maximum (Max), standard deviation (St Dev), and coefficient of 
variation (CV %) for weaning weight (WWT) estimated breeding values (EBV) and phenotypic weaning 
weight (WWT) for the year 15 population and the three Genetic Conservation Index (GCI) sampled 
populations 
 

 Year 15 GCI 100 GCI 50 GCI 25 

Min WWT EBV 28.1 30.1 30.2 30.5 

Mean WWT EBV 31.0a 31.7b 31.8b 31.9b 

Max WWT EBV 33.5 33.5 33.3 33.3 

Std Dev WWT EBV 0.8 0.7 0.7 0.7 

CV % WWT EBV 2.5 2.3 2.1 2.3 

Min WWT 20.2 23.9 26.4 28.4 

Mean WWT 31.0a 31.7b 31.5ab 31.7ab 

Max WWT 41.8 38.2 34.4 34.4 

Std Dev WWT 2.5 2.4 1.7 1.7 

CV % WWT 8.1 7.7 5.5 5.4 

Means sharing the same superscript within a row are not significantly different from each other (Tukey-
Kramer, P < 0.05) 
 

 
 



82 
 

Table 4.8 Average expected heterozygosity (HE), observed heterozygosity (HO), and molecular inbreeding 
(FIS) for the year 15 population and the three Genetic Conservation Index (GCI) sampled populations 
 

 Year 15 GCI 100 GCI 50 GCI 25 

HE 0.259a 0.259a 0.259a 0.259a 

HO 0.259a 0.259a 0.258a 0.258a 

FIS -0.001a 0.001a 0.004a 0.003a 

Means sharing the same superscript within a row are not significantly different from each other (Tukey-
Kramer, P < 0.05) 
 

Table 4.9 shows the percentage of year 15 alleles that were captured by each GCI sampling 

method and the frequency of the alleles that were not captured. When alleles with a MAF < 0.01 were 

excluded, 99.3, 98.1, and 95.9 percent of the alleles were captured by GCI 100, GCI 50, and GCI 25, 

respectively. The MAF categories for year 15 and for the GCI samples are shown in Table 4.10. The 

percentage of fixed alleles increased as the number of sampled animals decreased. This indicates a loss 

of alleles in the sampled populations. The increase in fixed alleles corresponded to a decrease in the rare 

and moderate alleles categories. Based on Chi-square analyses, the proportions differed by MAF 

category when the full population was compared to each GCI sampled population (P < 0.001). 

 

Table 4.9 Percentage of year 15 alleles captured and frequency of missing alleles from the Genetic 
Conservation Index (GCI) sampling strategies 
 

  Frequency of Missing Alleles 

Selection Category % Alleles Captured Minimum Average Maximum 

GCI 100 95.2 0.00004 0.0043 0.0665 

GCI 50 93.6 0.00004 0.0085 0.0914 

GCI 25 91.4 0.00004 0.0157 0.2145 

 

Table 4.10 Percentage of single nucleotide polymorphisms (SNP) in each minor allele frequency (MAF) 
category for year 15 and the Genetic Conservation Index (GCI) sampled populations 
 

MAF Category: % of SNP Year 15 GCI 100 GCI 50 GCI 25 

Fixed (0) 14.2 23.1 26.2 30.2 

Rare (< 0.01) 9.9 2.0 0.0 0.0 

Moderate (0.01 – 0.3) 52.1 51.1 49.8 45.3 

High (0.3 - 0.5) 23.8 23.7 24.0 24.4 
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The percentage of ROH in each class size were comparable among the full population and each 

sampled population, as confirmed by Chi-square analyses (P > 0.05) (Table 4.11). The majority of ROH 

were in the 1 - 5 Mbps category with less than 1 percent in the 20 Mbps and higher classes. The number 

of ROH per animal were also comparable among the full population and the sampled populations (Table 

4.12). Recent Ne for the GCI 100, GCI 50, and GCI 25 was 50.3, 31.3, and 17.4, respectively, while the full 

population had an Ne of 289.8. 

 

Table 4.11 Runs of homozygosity (ROH) by size class and total ROH percentage for year 15 and the 
Genetic Conservation Index (GCI) samples 
 

ROH Class Category (Mbps) Percent Total ROH in each Class Size 

 Year 15 GCI 100 GCI 50 GCI 25 

1 - 5 79.0 79.3 79.4 80.0 

5 - 10 16.4 16.1 15.6 15.2 

10 - 20 3.9 3.9 4.1 4.2 

20 - 40 0.7 0.7 0.8 0.5 

> 40 0.1 0.0 0.1 0.0 

 

Table 4.12 Average number of runs of homozygosity (ROH) per animal for year 15 and the Genetic 
Conservation Index (GCI) samples 
 

 Average ROH 

Year 15 107.6 

GCI 100 107.2 

GCI 50 107.7 

GCI 25 109.5 

 

Model-based population structure was compared for the full genotyped population and each 

GCI sampled population. All 15 subpopulations identified by the model-based population structure 

analysis were represented in each of the GCI sampled populations. The proportional assignment of each 

animal for the full population and each GCI sampled population is represented in Figure 4.1. When 
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compared to the full population (Figure 4.1(a)), some of the GCI sampled populations had minimal 

representation (4, 6, and 13) while subpopulation 7 was well represented (Figure 4.1(e-g)). 

 
  

 Suffolk sheep. For the weaning weight metrics (EBV and phenotype) and for the Carcass Plus 

Index, the full genotyped population was compared to the animals selected in OCS 100, OCS 50, and OCS 

25 to determine if the full range of variation was captured (Table 4.13). Based on both the ANOVA and 

the pairwise comparison of means using the Tukey-Kramer test, means did not differ for the full 

population and the OCS sampled populations (P > 0.05) for weaning weight EBV, Carcass Plus Index, or 

phenotypic weaning weight. The average coefficient of relationship among the genotyped population 

was 0.02. In comparison, the OCS 100, OCS 50, and OCS 25 animals had an average relationship amongst 

themselves of 0.01, 0.01, and 0.00, respectively. The OCS 100, OCS 50, and OCS 25 selected 59, 29, and 

13 males and 41, 21, and 12 females, respectively.  
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Table 4.13 Minimum (Min), mean, maximum (Max), standard deviation (St Dev), and coefficient of 
variation (CV %) for weaning weight (WWT) estimated breeding values (EBV), phenotypic weaning 
weight (WWT), and Carcass Plus Index (CPI) for the genotyped Suffolk population and the three optimal 
contribution selection (OCS) sampled populations 
 

 Suffolk population OCS 100 OCS 50 OCS 25 

Min WWT EBV     -3.7     -2.6 -1.8    -1.3 

Mean WWT EBV      0.8a      0.8a 0.6a     0.7a 

Max WWT EBV      7.5      4.8 3.3     2.3 

Std Dev WWT EBV      1.6      1.3 1.0     0.9 

CV % WWT EBV 200.1 162.0 152.5 129.3 

Min WWT   19.7   19.7 19.7   30.3 

Mean WWT   32.7a   32.7a 32.4a   33.5a 

Max WWT   53.8   52.0 46.1   37.3 

Std Dev WWT     5.0     5.3 5.2     2.1 

CV % WWT   15.1   16.2 16.1     6.2 

Min CPI   59.4   83.5 85.4   89.2 

Mean CPI 110.0a 113.0a 111.7a 110.5a 

Max CPI 176.5 162.5 162.5 132.2 

Std Dev CPI   17.8   15.2 15.5   10.1 

CV % CPI   16.1   13.5 13.8     9.2 

Means sharing the same superscript within a row are not significantly different from each other (Tukey-
Kramer, P < 0.05) 
   

 Average HE and HO were both higher for the sampled populations than for the genotyped Suffolk 

population, which was confirmed by ANOVA and Tukey-Kramer tests. Similarly, average FIS was lower for 

the sampled populations (Table 4.14). The success of the sampling strategy is measured by capturing the 

alleles available in the full population. The OCS 100, OCS 50, and OCS 25 captured 99.3, 98.7, and 97.4 

percent of the alleles in the population (Table 4.15). If MAF < 0.01 were excluded, OCS 100, OCS 50, and 

OCS 25 captured 99.9, 99.6, and 98.6 percent of the alleles, respectively. 
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Table 4.14 Average expected heterozygosity (HE), observed heterozygosity (HO), and molecular 
inbreeding (FIS) for the genotyped Suffolk population and the three optimal contribution selection (OCS) 
sampled populations 
 

 Suffolk population OCS 100 OCS 50 OCS 25 

HE 0.318a 0.321b 0.325c 0.330d 

HO 0.308a 0.315b 0.321bc 0.328c 

FIS 0.030a 0.019ab 0.012b 0.006b 

Means sharing the same superscript within a row are not significantly different from each other (Tukey-
Kramer, P < 0.05) 
 

Table 4.15 Percentage of Suffolk population alleles captured and frequency of missing alleles from the 
optimal contribution selection (OCS) sampling strategies 
 

  Frequency of Missing Alleles 

Selection Category % Alleles Captured Minimum Average Maximum 

OCS 100 99.33 0.0020 0.0045 0.0512 

OCS 50 98.72 0.0020 0.0089 0.1414 

OCS 25 97.35 0.0020 0.0170 0.1926 

 

The MAF categories show the percentage of fixed, rare, moderate, and high frequency SNP for 

the full and OCS sampled populations (Table 4.16). The sampled populations had more fixed alleles than 

the full population with a higher percentage of fixed alleles when fewer animals were sampled. Across 

the full and sampled populations, the moderate and high categories contained the highest percentage of 

alleles. Based on Chi-square analyses, the proportions differed by MAF category when the full 

population was compared to each OCS sampled population (P < 0.001). 

 

Table 4.16 Percentage of single nucleotide polymorphisms (SNP) in each minor allele frequency (MAF) 
category for the genotyped Suffolk population and the optimal contribution (OCS) sampled populations 
 

MAF Category: % of SNP Suffolk population OCS 100 OCS 50 OCS 25 

Fixed (0) 7.2 8.5 9.6 12.3 

Rare (< 0.01) 3.4 1.8 0 0 

Moderate (0.01 – 0.3) 55.2 55.3 55.5 52.4 

High (0.3 - 0.5) 34.3 34.5 34.9 35.3 
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The ROH were compared by size class for the full population and the OCS sampled populations 

(Table 4.17). The majority of ROH were in the smallest class size across all populations. The largest class 

size was 10 to 20 Mbps and included 0.3 percent of the full genotyped population and 0.1 to 0.2 percent 

of the OCS sampled populations. Chi-square analyses indicated the proportions for each ROH class 

differed for OCS 50 when compared to the full population (P = 0.03), but not for OCS 100 or OCS 25 (P > 

0.05). The average number of ROH per animal was 114.9 for the full genotyped population and ranged 

from 104.6 to 109.1 for the OCS sampled populations (Table 4.18). The range of ROH per animal was 

variable, with a range of 38 to 252 ROH for the full population. Both OCS 100 and OCS 50 had a range of 

38 to 201 per animal, while OCS 25 had a range of 70 to 201 runs per animal. For the full population, 

recent Ne was computed as 58.3 and the OCS sampled populations were 52.1, 52.9, and 51.6 for OCS 

100, OCS 50, and OCS 25, respectively. 

 

Table 4.17 Runs of homozygosity (ROH) by size class and total ROH percentage for the genotyped Suffolk 
population and the optimal contribution selection (OCS) sampled populations 
 

ROH Class Category (Mbps) Percent Total ROH in each Class Size 

 Suffolk population OCS 100 OCS 50 OCS 25 

1 - 5 95.9 96.2 96.6 96.8 

5 - 10 3.8 3.6 3.2 3.1 

10 - 20 0.3 0.2 0.2 0.1 

 

Table 4.18 Average number of runs of homozygosity (ROH) per animal for the genotyped Suffolk 
population and the optimal contribution selection (OCS) sampled populations 
 

 Average ROH 

Suffolk population 114.9 

OCS 100 109.1 

OCS 50 104.6 

OCS 25 108.7 
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 Model-based population structure was compared for the full genotyped population and each 

OCS sampled population. All 14 subpopulations were represented in each of the OCS sampled 

populations. For the full genotyped population, there were 30 animals assigned to only one 

subpopulation. For OCS 100, OCS 50, and OCS 25, there were 8, 4, and 2 animals assigned to only one 

subpopulation, respectively. Figure 4.2 shows the proportional assignment of each animal for the full 

population (Figure 4.2(a)) and each OCS sampled population (Figure 4.2(b-d)). Although all 14 

subpopulations are represented in each OCS sampled population, the graph shows how the proportions 

have changed with sampling when compared to the full population, with minimal representation of 

some populations in the OCS 25 sampling. 
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Figure 4.2 Model-based population structure for the genotyped Suffolk population for the optimal 
contribution (OCS) and Genetic Conservation Index (GCI) strategies for the full population (a), OCS 100 
(b), OCS 50 (c), OCS 25 (d), GCI 100 (e), GCI 50 (f), and GCI 25 (g), displaying the proportional assignment 
of each animal as a column and sorted by highest proportional assignment to a subpopulation 
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Comparisons of the full genotyped Suffolk population and each GCI sampled population are 

shown in Table 4.19. Based on both ANOVA and Tukey-Kramer tests, mean weaning weight EBV in the 

full population differed from that in each GCI population (P < 0.001). Similarly, the Carcass Plus Index in 

the full population differed from that in each GCI population (P < 0.001). In contrast, the means between 

phenotypic weaning weight from the full population did not differ from each GCI population (P > 0.05). 

The average coefficient of relationship between the genotyped population was 0.02; the GCI sampled 

populations have higher relationships ranging from 0.03 for GCI 100 to 0.09 for GCI 25. For the selected 

populations, GCI 100 had 59 males and 41 females, GCI 50 had 31 males and 19 females, and GCI 25 had 

15 males and 10 females.  

 

Table 4.19 Minimum (Min), mean, maximum (Max), standard deviation (St Dev), and coefficient of 
variation (CV %) for weaning weight (WWT) estimated breeding values (EBV), phenotypic weaning 
weight (WWT), and Carcass Plus Index (CPI) for the genotyped Suffolk population and the three Genetic 
Conservation Index (GCI) sampled populations 
 

 Suffolk population GCI 100 GCI 50 GCI 25 

Min WWT EBV     -3.7    -3.2  -3.2  -0.5 

Mean WWT EBV      0.8a     1.6b   2.3bc   2.8c 

Max WWT EBV      7.5     6.7   6.7   5.9 

Std Dev WWT EBV      1.6     2.0   2.1   2.0 

CV % WWT EBV 200.1 121.2 92.5 69.4 

Min WWT   19.7   19.7 19.7 27.5 

Mean WWT   32.7a   32.8a 33.4a 34.4a 

Max WWT   53.8   51.3 51.3 51.3 

Std Dev WWT     5.0     5.3   5.4   5.4 

CV % WWT   15.1   16.2 16.1 15.8 

Min CPI   59.4   86.6   86.6   86.6 

Mean CPI 110.0a 121.4b 121.8b 127.1b 

Max CPI 176.5 167.3 162.2 155.8 

Std Dev CPI   17.8   21.4   23.4   20.7 

CV % CPI   16.1   17.6   19.2   16.3 

Means sharing the same superscript within a row are not significantly different from each other (Tukey-
Kramer, P < 0.05) 
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 Heterozygosity of the GCI sampled populations was higher than the full population for both HE 

and HO (Table 4.20). These differences were confirmed by ANOVA and Tukey-Kramer tests with the 

exception of HO when comparing the full population and GCI 100 (P = 0.72). Only GCI 25 differed from 

the full population for molecular inbreeding (P = 0.05). The percentage of alleles captured by GCI 100, 

GCI 50, and GCI 25 was 99.0, 97.6, and 95.7, respectively (Table 4.21). If MAF < 0.01 were excluded, the 

percentage of alleles captured increased to 99.8, 98.8, and 97.1 for GCI 100, GCI 50, and GCI 25, 

respectively.  

 

Table 4.20 Average expected heterozygosity (HE), observed heterozygosity (HO), and molecular 
inbreeding (FIS) for the genotyped Suffolk population and the three Genetic Conservation Index (GCI) 
sampled populations 
 

 Suffolk population GCI 100 GCI 50 GCI 25 

HE 0.318a 0.321b 0.323c 0.327d 

HO 0.308a 0.310ab 0.316b 0.327c 

FIS 0.030a 0.034a 0.023ab 0.002b 

Means sharing the same superscript within a row are not significantly different from each other (Tukey-
Kramer, P < 0.05) 
 

Table 4.21 Percentage of Suffolk population alleles captured and frequency of missing alleles from the 
Genetic Conservation Index (GCI) sampling strategies 
 

  Frequency of Missing Alleles 

Selection Category % Alleles Captured Minimum Average Maximum 

GCI 100 99.02 0.0020 0.0060 0.0779 

GCI 50 97.56 0.0020 0.0146 0.1578 

GCI 25 95.67 0.0020 0.0310 0.4978 

 

The MAF categories were compared for the full Suffolk population and the GCI sampled animals 

(Table 4.22). Based on Chi-square analyses, the proportions differed by MAF category when the full 

population was compared to each GCI sampled population (P < 0.001). The percentage of fixed alleles 

was higher for the sampled populations and increased as the number of sampled animals decreased. 



92 
 

Moderately and highly polymorphic SNP made up most of the Suffolk population and the GCI sampled 

populations.  

 

Table 4.22 Percentage of single nucleotide polymorphisms (SNP) in each minor allele frequency (MAF) 
category for the genotyped Suffolk population and the Genetic Conservation Index (GCI) sampled 
populations 
 

MAF Category: % of SNP Suffolk population GCI 100 GCI 50 GCI 25 

Fixed (0) 7.2 9.1 11.9 15.5 

Rare (< 0.01) 3.4 1.8 0.0 0.0 

Moderate (0.01 – 0.3) 55.2 54.8 54.2 50.8 

High (0.3 - 0.5) 34.3 34.3 33.9 33.7 

 

 The ROH by size class were comparable between the full population and each GCI sampled 

population (Table 4.23) and did not differ based on Chi-square analyses comparing the proportions 

within each ROH class (P > 0.05). However, the average number of ROH per animal were higher for the 

GCI sampled populations than the full Suffolk population (Table 4.24). Recent Ne was computed as 58.3 

for the full population and the GCI sampled populations were 39.8, 29.5, and 21.6 for GCI 100, GCI 50, 

and GCI 25, respectively. 

 

Table 4.23 Runs of homozygosity (ROH) by size class and total ROH percentage for the genotyped Suffolk 
population and the Genetic Conservation Index (GCI) sampled populations 
 

ROH Class Category (Mbps) Percent Total ROH in each Class Size 

 Suffolk population GCI 100 GCI 50 GCI 25 

1 – 5 95.9 95.6 95.5 95.2 

5 – 10 3.8 4.1 4.1 4.5 

10 – 20 0.3 0.3 0.3 0.3 
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Table 4.24 Average number of runs of homozygosity (ROH) per animal for the genotyped Suffolk 
population and the Genetic Conservation Index (GCI) sampled populations 
 

 Average ROH 

Suffolk population 114.9 

GCI 100 123.7 

GCI 50 132.5 

GCI 25 136.6 

 

Model-based population structure was compared for the full genotyped population and the GCI 

sampled populations. Each of the GCI sampled populations included all 14 subpopulations. For the full 

genotyped population, there were 30 animals assigned to only one subpopulation. For GCI 100, GCI 50, 

and GCI 25, there were 16, 12, and 6 animals assigned to only one subpopulation, respectively. The 

proportional assignment of each animal for the full population and each GCI sampled population is 

shown in Figure 4.2(a, e-g). From the graphs, it is clear the proportional assignment to each 

subpopulation changes as the number of sampled animals decreases with GCI 25 having only four 

predominant subpopulations. 

 

 Simmental cattle. For the weaning weight (EPD and phenotype) and the All-Purpose Index 

metrics, the full genotyped population was compared to the animals selected in OCS 100, OCS 50, and 

OCS 25 to see if the full range of variation was captured (Table 4.25). The mean of the Simmental 

population differed from each OCS sampled population based on both ANOVA and Tukey-Kramer tests 

(P ≤ 0.01) for phenotypic weaning weight. For weaning weight EPD, the Simmental population mean 

differed only from the OCS 100 (P = 0.03), but not OCS 50 (P = 0.96) or OCS 25 (P = 0.23). For API, the 

mean of the Simmental population differed from each OCS sampled population based on both ANOVA 

and Tukey-Kramer tests (P < 0.001). The average coefficient of relationship among the genotyped 

population was 0.03. In comparison, the OCS 100, OCS 50, and OCS 25 animals had an average 
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relationship of 0.01, 0.01, and 0.00, respectively. The genotyped population included 949 males and 

4,664 females. OCS 100, OCS 50, and OCS 25 selected 11, 6, and 4 males and 89, 44, and 21 females, 

respectively.  

 
Table 4.25 Minimum (Min), mean, maximum (Max), standard deviation (St Dev), and coefficient of 
variation (CV %) for weaning weight (WWT) expected progeny differences (EPD), phenotypic weaning 
weight (WWT), and All-Purpose Index (API) for the genotyped Simmental population and the three 
optimal contribution selection (OCS) sampled populations 
 

 Simmental population OCS 100 OCS 50 OCS 25 

Min WWT EPD   36.7   49.3   49.3   55.6 

Mean WWT EPD   75.0a   71.8b   75.8ab   79.2a 

Max WWT EPD 123.3 104.6 104.6 104.6 

Std Dev WWT EPD   11.1   13.0   15.1   15.1 

CV % WWT EPD   14.7   18.1   19.9   19.0 

Min WWT   94.5 167.7 172.7 172.7 

Mean WWT 292.0a 261.2b 253.9b 234.6b 

Max WWT 473.2 363.6 322.7 272.7 

Std Dev WWT   49.2   44.5   34.4   34.2 

CV % WWT   16.9   17.0   13.5   14.6 

Min API   46.0   56.0   66.2   73.5 

Mean API 115.5a   90.5b   92.4b   94.0b 

Max API 169.4 116.3 116.3 116.3 

Std Dev API   18.2   13.1   12.4   13.1 

CV % API   15.7   14.5   13.4   13.9 

Means sharing the same superscript within a row are not significantly different from each other (Tukey-
Kramer, P < 0.05) 
 

Both ANOVA and Tukey-Kramer tests confirmed differences in the means for the full population 

and the sampled populations for HE and HO (P > 0.05). Average HE and HO were both higher for the 

sampled populations than for the Simmental population. Average FIS did not differ for the sampled and 

full genotyped populations (P > 0.05). (Table 4.26). The OCS 100, OCS 50, and OCS 25 captured 99.93, 

99.78, and 99.71 percent of the alleles in the population (Table 4.27). If SNP with a MAF < 0.01 were 

excluded, OCS 100, OCS 50, and OCS 25 captured 99.99, 99.96, and 99.91 percent of the alleles, 

respectively. 
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Table 4.26 Average expected heterozygosity (HE), observed heterozygosity (HO), and molecular 
inbreeding (FIS) for the genotyped Simmental population and the three optimal contribution selection 
(OCS) sampled populations 
 

 Simmental population OCS 100 OCS 50 OCS 25 

HE 0.416a 0.422b 0.429c 0.431d 

HO 0.408a 0.413b 0.419bc 0.426c 

FIS 0.019a 0.021a 0.024a 0.012a 

Means sharing the same superscript within a row are not significantly different from each other (Tukey-
Kramer, P < 0.05) 
 

Table 4.27 Percentage of Simmental population alleles captured and frequency of missing alleles from 
the optimal contribution selection (OCS)sampling strategies 
 

  Frequency of Missing Alleles 

Selection Category % Alleles Captured Minimum Average Maximum 

OCS 100 99.93 0.0128 0.0186 0.0244 

OCS 50 99.78 0.0117 0.0243 0.0679 

OCS 25 99.71 0.0100 0.0384 0.3587 

 

The MAF categories show the percentage of fixed, rare, moderate, and high SNP for the full and 

OCS sampled populations (Table 4.28). The full genotyped population and the sampled populations had 

few fixed alleles. However, the smaller the sampled population, the higher the percentage of fixed 

alleles. Across the full and sampled populations, the moderate and high categories contained the 

highest percentage of alleles. Based on Chi-square analyses comparing the MAF categories of the full 

population to each sample population, the proportions differed (P > 0.05). 

 
Table 4.28 Percentage of single nucleotide polymorphisms (SNP) in each minor allele frequency (MAF) 
category for the genotyped Simmental population and the optimal contribution selection (OCS) sampled 
populations 
 

MAF Category: % of SNP Simmental population OCS 100 OCS 50 OCS 25 

Fixed (0) 0.05 0.18 0.48 0.62 

Rare (< 0.01) 0.56 0.12 0.00 0.00 

Moderate (0.01 – 0.3) 34.06 32.30 28.54 26.69 

High (0.3 - 0.5) 65.33 67.39 70.97 72.68 
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Table 4.29 shows the ROH by size class for the full population and the OCS sampled populations. 

The smallest class size included approximately 70 percent of the ROH and the intermediate class size 

included approximately 30 percent across all populations. The largest class size was 10 to 20 Mbps and 

included 1.1 percent of the full genotyped population and 0.5 to 1.1 percent of the OCS sampled 

populations. When comparing the ROH classes from the full population to each sampled population, the 

proportions did not differ (P > 0.05). The average number of ROH was 5.9 for the full genotyped 

population and ranged from 3.6 to 4.5 for the OCS sampled populations (Table 4.30). The range of ROH 

per animal was variable, with a range of 0 to 44 ROH for the full population. Both OCS 100 and OCS 50 

had a range of 0 to 17 per animal while OCS 25 had a range of 0 to 11 runs per animal. Recent Ne was 

computed as 153.8 for the full population and the OCS sampled populations were 89.2, 61.9, and 58.9 

for OCS 100, OCS 50, and OCS 25, respectively. 

 
Table 4.29 Runs of homozygosity (ROH) by size class and total ROH percentage for the genotyped 
Simmental population and the optimal contribution selection (OCS) sampled populations 
 

ROH Class Category (Mbps) Percent Total ROH in each Class Size 

 Simmental population OCS 100 OCS 50 OCS 25 

1 – 5 68.4 69.2 71.0 69.6 

5 – 10 30.5 29.7 28.5 29.5 

10 – 20 1.1 1.1 0.5 0.9 

 

Table 4.30 Average number of runs of homozygosity (ROH) per animal for the genotyped Simmental 
population and the optimal contribution selection (OCS) sampled populations 
 

 Average ROH 

Simmental population 5.9 

OCS 100 3.6 

OCS 50 4.4 

OCS 25 4.5 

 

Model-based population structure is shown in Figure 4.3 and compares the full genotyped 

population (Figure 4.3(a)) and each OCS sampled population (Figure 4.3(b-d)). All 15 subpopulations 
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were represented in each of the OCS sampled populations. For the full genotyped population, there 

were 55 animals assigned to only one subpopulation, but no animals from the sampled populations 

were assigned to only one subpopulation. Although all 15 subpopulations are represented in each OCS 

sampled population, the figure shows how the proportions have changed with sampling when compared 

to the full population. Subpopulations 5, 8, and 13 have a high level of representation in the sampled 

populations. Subpopulation 8 includes a high number of lower percentage (admixed) Simmental 

animals. 
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Figure 4.3 Model-based population structure for the genotyped Simmental population for the optimal 
contribution (OCS) and Genetic Conservation Index (GCI) strategies for the full population (a), OCS 100 
(b), OCS 50 (c), OCS 25 (d), GCI 100 (e), GCI 50 (f), and GCI 25 (g), displaying the proportional assignment 
of each animal as a column and sorted by highest proportional assignment to a subpopulation 
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The full genotyped Simmental population and the GCI sampled populations were compared for 

the quantitative traits of weaning weight EPD, phenotypic weaning weight, and All-Purpose Index (Table 

4.31). For both phenotypic weaning weight and weaning weight EPD, the mean of the Simmental 

population differed from the GCI 100 population but not GCI 50 or GCI 25. For the All Purpose Index, the 

mean of the Simmental population differed from each of the GCI populations (P < 0.001). The average 

coefficient of relationship between the genotyped population was 0.03 while the GCI sampled 

populations have higher relationships ranging from 0.06 for GCI 100 to 0.09 for GCI 25. For the selected 

populations, GCI 100 had 28 males and 72 females, GCI 50 had 15 males and 35 females, and GCI 25 had 

9 males and 16 females.  

 

Table 4.31 Minimum (Min), mean, maximum (Max), standard deviation (St Dev), and coefficient of 
variation (CV %) for weaning weight (WWT) expected progeny differences (EPD), phenotypic weaning 
weight (WWT), and All Purpose Index (API) for the genotyped Simmental population and the three 
Genetic Conservation Index (GCI) sampled populations 
 

 Simmental population GCI 100 GCI 50 GCI 25 

Min WWT EPD   36.7   52.4   52.8   54.5 

Mean WWT EPD   75.0a   70.3b   71.6ab   71.2ab 

Max WWT EPD 123.3   95.2   95.2   95.2 

Std Dev WWT EPD   11.1     9.4   10.4   10.5 

CV % WWT EPD   14.7   13.3   14.5   14.8 

Min WWT   94.5 184.5 184.5 186.4 

Mean WWT 292.0a 264.6b 274.1ab 289.5ab 

Max WWT 473.2 381.8 381.8 381.8 

Std Dev WWT   49.2   43.8   48.9   67.1 

CV % WWT   16.9   16.5   17.9   23.2 

Min API   46.0   63.1   76.7   76.7 

Mean API 115.5a   99.0b   99.2b   97.2b 

Max API 169.4 153.2 123.0 121.2 

Std Dev API   18.2   13.6   10.4   10.9 

CV % API   15.7   13.8   10.5   11.2 

Means sharing the same superscript within a row are not significantly different from each other (Tukey-
Kramer, P < 0.05) 
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The HE for the GCI sampled populations was lower than the full genotyped population (P < 0.05) 

(Table 4.32). The HO differed between the full population and the GCI 25 sampled population (P = 0.008) 

but not for GCI 100 (P = 0.40) or GCI 50 (P = 0.24). Molecular inbreeding was lower for the GCI sampled 

populations than the full genotyped population (P < 0.05). The percentage of alleles captured by GCI 

100, GCI 50, and GCI 25 was 99.7, 99.5, and 99.2, respectively (Table 4.33). If MAF < 0.01 were excluded, 

the percentage of alleles captured increased to 99.9, 99.7, and 99.4 for GCI 100, GCI 50, and GCI 25, 

respectively.  

 

Table 4.32 Average expected heterozygosity (HE), observed heterozygosity (HO), and molecular 
inbreeding (FIS) for the genotyped Simmental population and the three Genetic Conservation Index (GCI) 
sampled populations 
 

 Simmental population GCI 100 GCI 50 GCI 25 

HE 0.416a 0.403b 0.399c 0.396d 

HO 0.408a 0.411ab 0.413ab 0.421b 

FIS 0.019a -0.019b -0.036bc -0.062c 

Means sharing the same superscript within a row are not significantly different from each other (Tukey-
Kramer, P < 0.05) 
 

Table 4.33 Percentage of Simmental population alleles captured and frequency of missing alleles from 
the Genetic Conservation Index (GCI)sampling strategies 
 

  Frequency of Missing Alleles 

Selection Category % Alleles Captured Minimum Average Maximum 

GCI 100 99.7 0.0100 0.0365 0.1162 

GCI 50 99.5 0.0100 0.0517 0.2521 

GCI 25 99.2 0.0100 0.0742 0.3261 

 

Table 4.34 shows the MAF categories for the percentage of fixed, rare, moderate, and high SNP 

for the full and GCI sampled populations. The full genotyped population and the sampled populations 

had few fixed alleles, but the number of fixed alleles increased as the number of sampled animals 

decreased. All populations had most of their alleles in the moderate and high categories. Based on Chi-
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square analyses comparing the MAF categories of the full population to each sample population, the 

proportions differed (P > 0.05). 

 

Table 4.34 Percentage of single nucleotide polymorphisms (SNP) in each minor allele frequency (MAF) 
category for the genotyped Simmental population and the Genetic Conservation Index (GCI) sampled 
populations 
 

MAF Category: % of SNP Simmental population GCI 100 GCI 50 GCI 25 

Fixed (0) 0.05 0.65 1.08 1.61 

Rare (< 0.01) 0.56 0.32 0.00 0.00 

Moderate (0.01 – 0.3) 34.06 38.42 39.84 40.10 

High (0.3 - 0.5) 65.33 60.61 59.08 58.29 

 

When comparing the ROH classes from the full population to each sampled population, the 

proportions did not differ (P > 0.05) (Table 4.35). The average number of ROH was 5.9 for the full 

genotyped population and ranged from 0 to 44 (Table 4.36). The ROH per animal was similar for GCI 100 

and GCI 50 with an average of 3.6 per animal with a range of 0 to 16. The GCI 25 had an average of 2.4 

runs per animal with a range of 0 to 8. Recent Ne was 57.9, 30.6, and 31.5 for GCI 100, GCI 50, and GCI 

25, respectively; in comparison, the full population had an Ne of 153.8. 

 

Table 4.35 Runs of homozygosity (ROH) by size class and total ROH percentage for the genotyped 
Simmental population and the Genetic Conservation Index (GCI) sampled populations 
 

ROH Class Category (Mbps) Percent Total ROH in each Class Size 

 Simmental population GCI 100 GCI 50 GCI 25 

1 – 5 68.4 72.1 77.7 83.6 

5 – 10 30.5 26.8 20.7 16.4 

10 – 20 1.1 1.1 1.7 0.0 
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Table 4.36 Average number of runs of homozygosity (ROH) per animal for the genotyped Simmental 
population and the Genetic Conservation Index (GCI) sampled populations 
 

 Average ROH 

Simmental population 5.9 

GCI 100 3.6 

GCI 50 3.6 

GCI 25 2.4 

 

Model-based population structure is shown in Figure 4.3 and compares the full genotyped 

population (Figure 4.3(a)) and each GCI sampled population (Figure 4.3(e-g)). All 15 subpopulations were 

represented in each of the GCI sampled populations, but they are dominated by subpopulations 5 and 

13 with minimal representation of the other subpopulations. In contrast to the OCS sampled 

populations, assignment to subpopulations was not influenced by percentage Simmental. This is 

consistent across GCI 100, GCI 50, and GCI 25 sampled populations.  There were no animals from the 

sampled populations assigned to only one subpopulation. 

4.4 Discussion 

 

 Simulated population. The success of the sampling methods depends upon capturing the 

available variation in the population, including the full range of phenotypic traits. In comparison to the 

GCI sampling, the OCS sampling performed better at capturing the lower end of the weaning weight 

range with OCS 100 performing the best. The GCI sampling performed better at capturing the upper end 

of the weaning weight range with GCI 100 performing the best. Similarly, the OCS sampling performed 

better at sampling the lower end of the weaning weight EBV range and the GCI sampling performed 

better at sampling the higher end. Significant differences between the means of the year 15 animals and 

the OCS sampled populations indicate the sampling procedures did not fully reflect the full population 

for weaning weight and weaning weight EBV. 
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 Measures of gene diversity via HE and HO were higher for all sampled populations than the full 

populations. Higher heterozygosity would be expected from a successful genetic diversity sampling 

strategy. This suggests overall heterozygosity is being maintained in the sampled populations. ROH 

samples were similar when comparing the full population and all sampled populations. Subsampling of 

this population has maintained the ROH within the population. The MAF category proportions differed 

between the full population and each sampled population with the fixed alleles increasing as the 

sampled population size decreased, indicating a loss of alleles in the sampled populations. Recent Ne 

was lower for all sampled populations when compared to the full population and decreased as the 

number of sampled animals decreased. At each sampling size, OCS had a higher Ne than GCI. 

The primary indicator of sampling success is capturing all available alleles in the population. In 

the simulated population, there was a high percentage of low frequency alleles. The OCS sampling did 

not capture all the available alleles, with OCS 100, OCS 50, and OCS 25 capturing 95.4, 93.4, and 90.6 

percent of the alleles, respectively. If rare alleles were excluded (MAF < 0.01), the percentage of alleles 

captured increased to 99.6, 98.5, and 96.7 for OCS 100, OCS 50, and OCS 25, respectively. In a real 

population, a MAF < 0.01 would typically be filtered during the quality control process because it is 

difficult to determine if these are real rare alleles or genotyping errors. In this simulated population, 

these are true rare alleles because there are no genotyping errors. The GCI sampling also did not 

capture all available alleles, with 95.2, 93.6, and 91.4 percent of the alleles being captured by GCI 100, 

GCI 50, and GCI 25, respectively, With MAF < 0.01 excluded, 99.3, 98.1, and 95.9 percent of the alleles 

were captured by GCI 100, GCI 50, and GCI 25, respectively. Overall, OCS 100 captured the most alleles 

whether MAF < 0.01 was excluded or not. When comparing OCS and GCI for the same number of 

sampled animals (e.g., OCS 100 vs GCI 100), OCS captured more alleles than the GCI counterpart across 

all three sample sizes whether MAF < 0.01 was excluded or not. 
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For the model-based population structure (Figure 4.1), all sampling methods included animals 

from the 15 subpopulations. The OCS 100 (b) most closely resembles the subpopulation structure of the 

full population (a) followed by GCI 100 (e). When comparing the OCS plots (b – d) to the GCI plots (e – g), 

it is clear the subpopulations are represented in different proportions depending on the sampling 

method. 

 

Suffolk sheep. A comparison of means for the full genotyped Suffolk population and the OCS 

sampled populations were not significantly different for weaning weight EBV, Carcass Plus Index, or 

phenotypic weaning weight. The GCI sampled populations differed from the full population for weaning 

weight EBV and Carcass Plus Index, but not phenotypic weaning weight. This suggests the OCS sampled 

populations better reflected the full population than the GCI sampled populations. The average 

coefficient of relationship among each of the OCS sampled animals was lower than the average 

coefficient of relationship of the full population while the GCI sampled animals were higher. Since the 

OCS sampling strategy places emphasis on minimizing kinship, a below average coefficient of 

relationship was expected. Alternatively, GCI focuses on maximizing founder alleles in each animal 

without regard to relationship. 

 Heterozygosity (HE and HO) were higher for the sampled populations than the full population 

with the exception of GCI 100 for HO. This suggests overall heterozygosity is being maintained in the 

sampled populations. The MAF categories differed for each sampled population when compared to the 

full population. This was expected as the number of fixed alleles increased as alleles were lost from each 

successively smaller sampled population. The ROH class sizes were similar when comparing the full 

population and all sampled populations, except for OCS 50. The average number of ROH per animal for 

the GCI sampled populations were higher than the full population while the OCS sampled populations 
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were lower. For recent Ne, the OCS sampled populations were similar to the full population, and the GCI 

sampled populations were lower. 

 The primary measure of interest for sampling success is capturing all the alleles available in the 

full population. The OCS 100, OCS 50, and OCS 25 captured 99.3, 98.7, and 97.4 percent of the available 

alleles, respectively. The GCI 100, GCI 50, and GCI 25 captured 99.0, 97.6, and 95.7 percent of the 

available alleles, respectively. Of the missing alleles, the GCI sampled populations missed alleles with a 

higher average and maximum allele frequency than the OCS sampled populations. For example, GCI 25 

did not capture an allele that was present at an allele frequency of 0.50. The highest missing allele 

frequency for OCS 25 was 0.19. If MAF < 0.01 was excluded, OCS 100, OCS 50, and OCS 25 captured 99.9, 

99.6, and 98.6 percent of the available alleles, respectively while GCI 100, GCI 50, and GCI 25 captured 

99.8, 98.8, and 97.1 percent of the available alleles, respectively. When comparing the sampling 

methods for the same number of selected animals, OCS outperformed GCI at each level. However, all 

sampling methods performed well at capturing the available alleles. 

 When comparing model-based population structure (Figure 4.2), all sampling methods included 

animals from the 14 subpopulations. Of the 30 animals from the full population that were assigned to a 

single subpopulation, OCS 100, OCS 50, OCS 25, GCI 100, GCI 50, and GCI 25 had 8, 4, 2, 16, 12, and 6 

animals assigned to a single subpopulation, respectively. Because the sampling strategy defining GCI 

includes maximizing founders for each animal, more admixed animals from many subpopulations was 

anticipated. However, the opposite occurred, where OCS strategies sampled more broadly from the 

subpopulations. Figure 4.2 shows OCS 100 (b) most closely resembles the subpopulation structure of the 

full population (a). 

 

 Simmental cattle. For weaning weight EPD, phenotypic weaning weight, and API, the sampled 

populations did not capture the full range of variation available in the population. When means were 
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compared for the full population and each OCS or GCI sampled population, only OCS 100 and GCI 100 

differed from the full population for weaning weight EPD. For phenotypic weaning weight, all OCS 

populations and GCI 100 differed from the full population. For API, all OCS and GCI populations differed 

from the full population. The population average was 0.03 for the pedigree-based coefficient of 

relationship. The three OCS sampled populations were lower than the full genotyped population, while 

the three GCI sampled populations were higher.  

 The HE was higher for the OCS sampled populations and lower for the GCI sampled populations 

when compared to the full genotyped Simmental population. The HO was higher for the OCS and GCI 

sampled populations than the full genotyped Simmental population. High levels of heterozygosity exist 

in the full and sampled populations. Pedigree-based inbreeding levels and molecular-based inbreeding 

(FIS) were similar for both the full genotyped Simmental population and the OCS sampled populations. In 

contrast the pedigree-based GCI inbreeding levels ranged from 0.06 to 0.09 while the FIS values for these 

populations were negative. This suggests the observed SNP for these animals showed more 

heterozygosity than expected based on their pedigrees. The percentage of ROH by class size were 

similar for the full genotyped Simmental population and the OCS sampled populations. The percentage 

of ROH for the intermediate class size was lower for the GCI sampled populations. Since shorter ROH 

tend to represent historical inbreeding and breed founder effects, it is important for the sampled 

populations to closely mirror the full population for the smaller class sizes. The full and sampled 

populations collectively had few ROH per animal. The Ne of the full population was higher than the 

sampled populations, but the OCS sampled populations were higher than the GCI sampled populations 

at each sampling size.  

 All the OCS and GCI sampled populations captured more than 99 percent of the available alleles 

in the population. This shows a population with a high level of heterozygosity and few fixed alleles can 

be captured in as few as 25 animals with strategic sampling. Of the missing alleles for the OCS samples, 
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the maximum MAF was 0.02, 0.07, and 0.36 for OCS 100, OCS 50, and OCS 25, respectively. Of the 

missing alleles for the GCI samples, the maximum MAF was 0.12, 0.25, and 0.33 for GCI 100, GCI 50, and 

GCI 25, respectively. OCS 25, GCI 50, and GCI 25 sampled populations all missed alleles that exist at a 

frequency of 0.25 and higher. The OCS 100 captured the highest percentage of available alleles and only 

missed alleles that existed at a MAF of 0.02 or less. While OCS 100 is the best sampling strategy for this 

population, any of the OCS and GCI sampling strategies would capture at least 99 percent of the 

available alleles in the population.  

 Model-based population structure (Figure 4.3) shows the proportional assignment of each 

animal for full genotyped population, the OCS sampled populations, and the GCI sampled populations. 

While all 15 subpopulations are represented in each of the sampled populations, the proportional 

assignments of the sampled populations do not match the full genotyped Simmental population. The 

three OCS sampled populations (b-d) are primarily represented by subpopulations 5, 8, and 13 while the 

three GCI sampled populations (e-g) are primarily represented by subpopulations 5 and 13. Although 

more than 99 percent of the available alleles were captured by all sampling strategies, the model-based 

population structure suggests the subpopulations were not proportionally represented. 

 

4.5 Conclusion 

 

 While overall population structure was assessed for each selection strategy within each breed, 

the measure of success was capturing the available alleles in the population. For the simulated 

population, OCS 100 captured the most alleles followed by GCI 100. GCI 25 was the least successful and 

captured only 91.4 percent of the alleles. For the Suffolk population, OCS 100 captured the most alleles 

followed by GCI 100. GCI 25 captured the fewest alleles. For the Simmental population, all sampling 

strategies captured more than 99 percent of the available alleles. The OCS 100 captured the most alleles 
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followed by OCS 50. The GCI 25 was the least successful.  Across recent Ne values, the OCS 100 samples 

were the highest when compared to all other sampled populations.  

 While no studies have compared these two selection strategies, Engelsma et al. (2011) used OCS 

to sample a range of 5 to 80 animals and compare the selected animals to the full population. The 

authors evaluated kinship, MAF, and percent of fixed alleles. While they did not make specific 

recommendations for the number of animals to sample, they did acknowledge the superiority of OCS for 

selecting animals. Based on the findings from the simulated, Suffolk, and Simmental populations studied 

here, OCS 100 is the recommended selection strategy for capturing the genetically important animals in 

a population using pedigree-based methods.  
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CHAPTER V 

ASSESS THE ROBUSTNESS OF SAMPLING STRATEGIES ACROSS SPECIES AND BREEDS 

 

 

 

5.1 Introduction 

 Developing a sampling strategy that captures the genetic diversity available in a breed is 

important for a variety of purposes, including research, gene banking, building a reference population, 

and determining which animals to keep or cull. Sampling becomes even more challenging when 

considering the wide range of livestock species and breeds throughout the world. Species and breeds 

have been shaped by their original formation, including how many founder animals there were and if 

any additional animals have been added over time. Bottlenecks throughout the history of the population 

will narrow the genetic base. The direction of selection pressure and the selection intensity will shape 

the population and will influence the extent of linkage disequilibrium in the population (Gibbs et al., 

2009; Kijas et al., 2012). The physical distribution of the animals, the male to female ratio, and the 

exchange of genetics among breeders also impacts the population structure. For example, Wilson et al. 

(2022) found divergence among Suffolk breeders even in close physical proximity to each other, likely 

due to differing breeding objectives.  

Sampling strategies to capture genetic diversity have been developed primarily to enhance 

genetic selection programs and minimize inbreeding, particularly for conservation of small populations 

or for gene banking (Gourdine et al., 2012b; Windig and Oldenbroek, 2015; van Breukelen et al., 2019). 

Avendaño et al. (2003) successfully used OCS to constrain inbreeding while increasing genetic gain for 

both a sheep and beef breed with different breed histories. van Breukelen et al. (2019) used OCS to 

develop core collections for cattle breeds within the Dutch gene bank. Machová et al. (2021) used GCI to 

assess the genetic diversity of two sheep breeds with different breed histories. Comparison of selection 
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strategies within a breed can be compared by evaluating the kinship, MAF, and percent of fixed alleles 

(Engelsma et al., 2011). 

For a selection strategy to be effective, it must meet a variety of uses across species and breeds 

while capturing the genetic diversity of each population. Using pedigree-based methods to select 

animals and then quantifying the overall genetic diversity captured using both quantitative and 

molecular tools was used to validate the selection strategies. The three populations included a 

simulated population where the genotypes of every animal in the population was known and included a 

moderate number of markers, a sheep population with a small population size with many markers, and 

a beef cattle population with a large population with a moderate number of markers. The objectives of 

this study were to 1) summarize the population structure of the selection candidates for the three 

populations, and 2) since OCS 100 was the most effective at capturing the available alleles in each of the 

three populations, describe the ability of this selection strategy to capture the genetic diversity of each 

population.  

 

5.2 Materials and Methods 

 

 For the simulated population, the full pedigree included 204,930 animals with 13,662 animals 

from the 15th year considered as the selection candidates, and 53,901 markers used to assess genetic 

diversity. For the Suffolk sheep population, the full pedigree included 1,565 animals and included the 

ancestors of the 244 genotyped animals that were considered the selection candidates. From the 

OvineHD BeadChip, 577,401 autosomal markers were included in the analyses. For the Simmental 

population, 5,613 animals with overlapping markers from a variety of SNP chips were included as 

selection candidates. The full pedigree included the ancestors of these animals and was comprised of 

54,790 animals. Because of the grading up allowed in the Simmental registry, non-Simmental animals 
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were included in the computation of relationships. All other quantitative comparisons included animals 

that were at least 84 percent Simmental (n = 34,462). There were 29,449 autosomal markers included to 

assess genetic diversity. 

 The population structure for the selection candidates was described for each population. This 

included the average and range of pedigree-based inbreeding, heterozygosity measures, and molecular 

inbreeding. MAF categories, ROH, and Ne were also reported. Model-based population structure was 

plotted. 

 Diversity assessments of OCS 100 across the three populations included capturing the range of a 

phenotypic trait, weaning weight, and a breeding value, weaning weight EBV or EPD. Heterozygosity, 

MAF categories, and ROH were compared. Model-based population structure plots were compared. 

Finally, the percentages of alleles captured for each population were summarized. 

 

5.3 Results 

 

 Population structure. The average and range of inbreeding for the selection candidates for each 

population are presented in Table 5.1. The average inbreeding of each population was low with some 

individual animals with high inbreeding coefficients. Heterozygosity and molecular inbreeding were 

summarized in Table 5.2 for each population. High levels of heterozygosity and low levels of molecular 

inbreeding exist in each population. Direct comparisons of heterozygosity across the three populations 

should not be made since different SNP chips were used for each population. 

MAF categories were summarized for the selection candidates in each population as fixed, rare, 

moderate, and high (Table 5.3). When comparing the population structure for the three populations, 

those with a higher percentage of rare alleles are more challenging to capture the available alleles. The 

simulated population followed by the Suffolk population have a higher percentage of low frequency 
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alleles in the population when compared to Simmental. Percentage of ROH by class size are summarized 

in Table 5.4. As with heterozygosity measures, direct comparisons of ROH should not be made due to 

differing SNP chips used for each population; however, some general conclusions can be made. Most 

importantly, the majority of ROH for the three populations are in the smallest class size, which is 

generally considered to be from historical events such as breed founder events. Maintenance of these 

ROH in the sampled populations is desirable as they reflect the history of the population. The Simmental 

population includes a higher percentage of ROH from the intermediate size class than the other 

populations; this may be indicative of more recent inbreeding. 

Current Ne for the three populations was 289.8, 58.3, and 153.8 for the simulated, Suffolk, and 

Simmental populations, respectively. Model-based population structure was summarized as 15, 14, and 

15 subpopulations for the simulated, Suffolk, and Simmental population, respectively (Figure 5.1). The 

Suffolk population (b) showed more distinct population substructure than the simulated (a) and 

Simmental (c) populations. 

 

Table 5.1 Mean, minimum (Min), and maximum (Max) inbreeding (F) for the selection candidates for the 
Simulated, Suffolk, and Simmental populations 
 

Inbreeding category Simulated Suffolk Simmental 

Mean F 0.003 0.011 0.050 

Min F 0.000 0.000 0.000 

Max F 0.257 0.257 0.306 

 

Table 5.2 Average expected heterozygosity (HE), observed heterozygosity (HO), and molecular inbreeding 
(FIS) for the selection candidates for the Simulated, Suffolk, and Simmental populations 
 

 Simulated Suffolk Simmental 

HE 0.259 0.318 0.416 

HO 0.259 0.308 0.408 

FIS -0.001 0.030 0.019 
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Table 5.3 Percentage of single nucleotide polymorphisms (SNP) in each minor allele frequency (MAF) 
category for the selection candidates for the Simulated, Suffolk, and Simmental populations 
 

MAF Category: % of SNP Simulated Suffolk Simmental 

Fixed (0) 14.2 7.2 0.05 

Rare (< 0.01) 9.9 3.4 0.60       

Moderate (0.01 – 0.3) 52.1 55.2 34.10 

High (0.3 - 0.5) 23.8 34.3 65.30 

 

Table 5.4 Runs of homozygosity (ROH) by size class and total ROH percentage for the selection 
candidates for the Simulated, Suffolk, and Simmental populations 
 

ROH Class Category (Mbps) Percent Total ROH in each Class Size 

 Simulated Suffolk Simmental 

1 – 5 79.0 95.9 68.4 

5 – 10 16.4 3.8 30.5 

10 – 20 3.9 0.3 1.1 

20 – 40 0.7 0.0 0.0 

> 40 0.1 0.0 0.0 
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Figure 5.1 Model-based population structure for the selection candidates for the Simulated (a), Suffolk 
(b), and Simmental (c) populations, displaying the proportional assignment of each animal as a column 
and sorted by highest proportional assignment to a subpopulation 
 

 OCS 100. When comparing the means of OCS 100 to the full simulated population, the means 

were significantly different for both phenotypic weaning weight and weaning weight EBV, indicating the 

sampled population did not completely reflect the full population. This was also observed for the 

Simmental population where the means were different between OCS 100 and the full population for 

phenotypic weaning weight, weaning weight EPD, and the All-Purpose Index. When comparing the 

means for the Suffolk population and the OCS 100 sampled population, they were not different for 

phenotypic weaning weight, weaning weight EBV, or the Carcass Plus Index. This suggests the OCS 100 

samples reflect these traits as they exist in the full Suffolk population.  

 Heterozygosity for the selection candidates and the OCS 100 sampled populations are presented 

for the three populations in Table 5.5. Heterozygosity of the OCS 100 sampled populations had as much 
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heterozygosity or more for each of the three populations as was available in the selection candidates. 

Representation in MAF categories is compared for the selection candidates and the OCS 100 sampled 

populations for the three populations (Table 5.6). The number of fixed alleles increased in all OCS 100 

sampled populations. This was most evident in the simulated population as the number of rare alleles 

decreased and the number of fixed alleles increased, indicating a loss of rare alleles. 

 

Table 5.5 Average expected heterozygosity (HE) and observed heterozygosity (HO) for the selection 
candidates and optimal contribution selection (OCS) OCS 100 population for the Simulated, Suffolk, and 
Simmental populations 
 

 Simulated Suffolk Simmental 

 Selection candidates OCS 100 Selection candidates OCS 100 Selection candidates OCS 100 

HE 0.259 0.259 0.318 0.321 0.416 0.422 

HO 0.259 0.260 0.308 0.315 0.408 0.413 

 

Table 5.6 Percentage of single nucleotide polymorphisms (SNP) in each minor allele frequency (MAF) 
category for the selection candidates and optimal contribution selection (OCS) OCS 100 population for 
the Simulated, Suffolk, and Simmental populations 
 

 Simulated Suffolk Simmental 
MAF Category: % of SNP Selection 

candidates 
OCS 100 Selection 

candidates 
OCS 100 Selection 

candidates 
OCS 100 

Fixed (0) 14.2 20.8 7.2 8.5 0.05 0.2 
Rare (< 0.01) 9.9 2.7 3.4 1.8 0.60 0.1 
Moderate (0.01 – 0.3) 52.1 52.5 55.2 55.3 34.10 32.3 
High (0.3 - 0.5) 23.8 24.0 34.3 34.5 65.30 67.4 

 

 Total percentage of ROH by class size were summarized for the selection candidates and OCS 

100 sampled populations for the three populations (Table 5.7). The percentage of ROH assigned to each 

class category varied by population. Within each population, the OCS 100 sampled population closely 

matched the selection candidates. For recent Ne, OCS 100 had the highest values when compared to the 

other sampled populations. Model-based population structure was compared for the selection 

candidates and the OCS 100 sampled population for the simulated population (Figure 5.2), the Suffolk 
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population (Figure 5.3), and the Simmental population (Figure 5.4). All subpopulations were represented 

in the OCS sampled populations for the three populations. The simulated and Suffolk populations had a 

more representative sampling of the subpopulations than the Simmental population. This may be due to 

the highly admixed overall Simmental population. 

 

Table 5.7 Runs of homozygosity (ROH) by size class and total ROH percentage for the selection 
candidates and optimal contribution selection (OCS) OCS 100 population for the Simulated, Suffolk, and 
Simmental populations 
 

 Simulated Suffolk Simmental 
ROH Class Category 
(Mbps) 

Selection 
candidates 

OCS 100 Selection 
candidates 

OCS 100 Selection 
candidates 

OCS 100 

1 - 5 79.0 79.6 95.9 96.2 68.4 69.2 
5 - 10 16.4 15.7 3.8 3.6 30.5 29.7 
10 - 20 3.9 3.8 0.3 0.2 1.1 1.1 
20 - 40 0.7 0.8 0.0 0.0 0.0 0.0 
> 40 0.1 0.1 0.0 0.0 0.0 0.0 

 

        

Figure 5.2 Model-based population structure for the Simulated population for selection candidates (a) 
and optimal contribution selection (OCS) OCS 100 (b) populations, displaying the proportional 
assignment of each animal as a column and sorted by highest proportional assignment to a 
subpopulation 
 

k (subpopulation) 

P
ro

p
o

rt
io

n
al

 a
ss

ig
n

m
en

t 
to

 e
ac

h
 k

 



117 
 

             

 
Figure 5.3 Model-based population structure for the Suffolk population for selection candidates (a) and 
optimal contribution selection (OCS) OCS 100 (b) populations, displaying the proportional assignment of 
each animal as a column and sorted by highest proportional assignment to a subpopulation 
 
 

             

 
Figure 5.4 Model-based population structure for the Simmental population for selection candidates (a) 
and optimal contribution selection (OCS) OCS 100 (b) populations, displaying the proportional 
assignment of each animal as a column and sorted by highest proportional assignment to a 
subpopulation 
 

 Capturing the available alleles in the population is the most important measure of the success of 

the sampling strategies. Across the three populations, OCS 100 captured almost all available alleles and 
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only missed alleles at a low frequency in the population (Table 5.8). OCS 100 captured more than 99 

percent of the available alleles in the population except for the simulated population, which had a high 

frequency of rare alleles in the population. 

 

Table 5.8 Percentage of Simulated, Suffolk, and Simmental population alleles captured, alleles captured 
when minor allele frequency (MAF) > 0.01, and maximum frequency of missing alleles from the optimal 
contribution selection (OCS) OCS 100 sampling strategy 
 

 Simulated population Suffolk Simmental 

% Alleles Captured 96.45 99.33 99.93 

% Alleles Captured MAF > 0.01 99.60 99.93 99.99 

Max Frequency of Missing Alleles 0.05 0.05 0.02 

 

5.4 Discussion 

 The three populations were characterized by 1) many purebred animals with a moderate size 

SNP chip in the simulated population, 2) few animals with a large SNP chip in the Suffolk population, and 

3) many percentage animals with a moderate size SNP chip in the Simmental population. The 

populations had low levels of inbreeding, high levels of heterozygosity, and large Ne. The simulated 

population had a larger percentage of low frequency alleles, which were challenging to capture when 

sampling. Model-based population structure had distinct subpopulations for Suffolk with more 

admixture for the simulated and Simmental populations. 

 The OCS 100 failed to capture the phenotypic variation available for quantitative traits for both 

the simulated population and the Simmental population. The variation was, however, captured for the 

Suffolk population. The Suffolk population was small, resulting in 100 of the 244 animals from the full 

population being sampled for OCS 100. The OCS 100 sampling resulted in at least as much 

heterozygosity as in the full populations. However, the number of fixed alleles was higher for the OCS 

100 samples than the full populations. This tended to result in a loss of rare alleles and an increase in 
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high frequency alleles. The percentages of ROH per class size were similar between each full population 

and the OCS 100 populations. For model-based population structure, the OCS 100 population reflected 

the subpopulations of the full population for the simulated and Suffolk populations, but not for the 

Simmental population. 

 The OCS 100 successfully captured most available alleles for each population. The sampling 

strategy captured more than 99 percent of the alleles for the Suffolk and Simmental population. It was 

less successful for the simulated population, which was characterized by high levels of low frequency 

alleles. The simulated population had 13,662 selection candidates and selecting 100 of the animals 

represents 0.7 percent of the total population. In a large population with many low frequency alleles, 

either more animals will need to be sampled or some loss of alleles will need to be accepted. Even 

though OCS 100 did not capture all available alleles in the population, the maximum MAF of the missing 

alleles was 0.05.  

Information about the low frequency alleles in the population is needed to make informed 

decisions about sampling. If the alleles are decreasing in frequency in the population because they are 

associated with decreased fitness, the loss of those alleles may not be genetically important. This study 

evaluated capturing the genetic diversity of a population by selecting relatively few animals, which 

would be relevant in research or gene banking. For other purposes, the ability to select more animals 

would increase the opportunity to capture every allele. 

Based on these results, a process for sampling animals is presented. First, the objective of the 

sampling needs to be defined as research, gene banking, reference population, or cull/keep animals. The 

objectives of the research will also determine the next step, which is to define the number of animals 

needed to sample. For gene banking, a recommendation of 50 to 100 males per breed is standard 

practice under current models (FAO, 2012; Blackburn, 2018). In contrast, development of a reference 

population for genomic selection may include a minimum of several thousand animals (Larroque et al., 
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2014). The number of animals needed for research or keep/cull will vary. Then, the number of available 

animals needs to be determined and their pedigree records obtained. While the optiSel package in R 

was used with this research to compute optimal contributions, other software packages are available 

that employ the same methodology, including EVA software (Berg et al., 2006) and Gencont2 

(Dagnachew and Meuwissen, 2016). The optimal contributions then provide a list of the most genetically 

unique combination of animals for use in research, gene banking, reference populations, or to meet 

other selection needs. 

 

5.5 Conclusion 

 

 The three populations represented varying population sizes, number of markers, number of low 

frequency alleles, and breed history. Evidence of different breed histories can be seen by different Ne, 

ROH percentages by class size, and model-based population substructure. OCS 100 successfully sampled 

animals that are representative of the entire population using pedigree data for each of the three 

populations. OCS provides the opportunity to use pedigree data to effectively capture the genetic 

diversity available in a population and continues to be the “gold standard” for sampling animals.  
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