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ABSTRACT

APPLICATION OF THE NEURAL DATA TRANSFORMER TO NON-AUTONOMOUS

DYNAMICAL SYSTEMS

The Neural Data Transformer (NDT) is a novel non-recurrent neural network designed to

model neural population activity, offering faster inference times and the potential to advance

real-time applications in neuroscience. In this study, we expand the applicability of the NDT to

non-autonomous dynamical systems by investigating its performance on modeling data from

the Chaotic Recurrent Neural Network (RNN) with delta pulse inputs. Through adjustments

to the NDT architecture, we demonstrate its capability to accurately capture non-autonomous

neural population dynamics, making it suitable for a broader range of Brain-Computer Inter-

face (BCI) control applications. Additionally, we introduce a modification to the model that

enables the extraction of interpretable inferred inputs, further enhancing the utility of the NDT

as a powerful and versatile tool for real-time BCI applications.
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Chapter 1

Introduction

A primary objective in neuroscience is to comprehend how the brain’s diverse sensory, mo-

tor, and cognitive abilities emerge from neural population activity or the combined electrical

signals generated by groups of neurons working together. Neural populations are essential

in processing sensory inputs, generating motor outputs, and performing cognitive tasks such

as decision-making, memory, and attention [1–5]. It has been theorized that the activity of

these neural populations evolve over time according to a set of underlying dynamical princi-

ples [2, 6–9]. Yet, these dynamical systems are not fully autonomous as we consistently receive

inputs from our senses and constantly drive control through intention.

Many studies have found that Recurrent Neural Networks (RNNs) exhibit similar dynamics

as those found in the motor regions of the brain [10–14]. Leveraging these synthetic systems

provides an effective approach to investigating the brain’s underlying dynamics. It is also ideal

for modeling how well a Latent Variable Model (LVM), a statistical model that relates a set of ob-

served variables to a set of latent (unobserved) variables, can predict the underlying dynamics

of the brain for a multitude of reasons.

These synthetic systems allow for precise control of the dynamics exhibited, the direct ma-

nipulation of the systems (e.g., external perturbations), providing unlimited freedom in the

amount (number of trials, conditions), and specifications (number of neurons, bins, and bin

size) of the data created. In the context of spiking data, synthetic systems also give us the ground

truth firing rates from the spiking activity, which was sampled from a Poisson Process [15].

As described in [7], modeling the latent factors behind the dynamics exhibited in the mo-

tor cortex is of high priority for improving the control of Brain-Computer Interfaces (BCIs) and

neural prostheses, two goals of which are crucial to improve the quality of life for those with

neurological issues of all types. LVMs have proven useful in this regard as they can reveal the

underlying states of the dynamical systems of interest and relate activity to behavior [16–19].
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One such LVM, the Neural Data Transformer (NDT) [20], offers a promising solution to the ap-

plication of nonlinear LVMs for real-time applications due to its non-recurrent architecture.

1.1 Neural Data Transformer

The NDT is a Transformer neural network based on the BERT [21] language model. Unlike

the original Transformer model [22], NDT uses a series of stacked encoders with no decoders.

It takes in neural spiking activity in the form of binned spikes and infers the underlying firing

rates that produced the observed spiking activity. The firing rates are a smoother, more con-

tinuous estimate of a neuron’s activity. The model is trained using masked language modeling

(with 0’s instead of mask tokens) and computes the Poisson negative log-likelihood between

the inferred rates and the observed spikes. The architecture, as seen in Figure 1.1, is very simple

as the transformer layers (light grey box) are only composed of multi-head attention, layer nor-

malization, and a multi-layer perceptron (Feed-forward). In RNN LVMs such as Latent Factor

Analysis via Dynamical Systems (LFADS) [23], each time step must be passed through the model

independently, however in Transformer models, inference (in each layer) can be run for all time

steps at once via the use of parallelization. The parallelized temporal routing of information is

accomplished through the use of multi-head attention.

The authors of the NDT paper found that it could model autonomous systems such as the

Lorenz system, spiking data from the monkey motor cortex, and an N-dimensional continuous

time nonlinear "vanilla" RNN with no inputs. However, one of the biggest issues found with the

model was that it could not model non-autonomous dynamical systems well. This was tested

via the application of the NDT to the vanilla RNN with delta pulse inputs studied in [23]. That

is,

τẏ(t ) =−y(t )+γWy tanh(y(t ))+Bq(t ) (1.1)

where the elements of the matrix Wy were drawn independently from a normal distribution

with zero mean and a variance of 1/N. In the test performed by the authors, the NDT was ap-

plied to a dataset with γ = 2.5, N = 50, τ = 0.025 s and used Euler integration with ∆t = 0.01 s.

2



Figure 1.1: Architecture of the NDT

Spikes were generated by a Poisson process by first shifting and scaling tanh(y(t )) to give rates

lying between 0 and 30 spikes/sec that were then used as firing rates to produce the spikes. To

feed an input into the model, the components of B were independently sampled from a normal

distribution with µ = 0 and σ = 1. In each experiment, the network was perturbed by adminis-

tering a delta pulse with a magnitude of 50 (given by q(t ) = 50δ(t − tpulse) where δ is the Dirac

delta function) at a random moment tpulse between 0.25s and 0.75s (the total trial duration was

1s). This delta pulse influences the base rates generated by the data RNN, thereby altering the

spike production mechanism and dynamical trajectory of the model. Fig. 1.2 shows underlying

firing rates and spiking activity for a single trial. It can be seen that although the timing of the

input (black triangle) is obvious in the rates, it is not evident whatsoever when just looking at

the spikes (the input to NDT).
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Figure 1.2: Conversion from firing rates to spikes

1.2 Neural Latents Benchmark

The Neural Latents Benchmark (NLB) [24] was developed as a machine learning benchmark

to provide a standardized, quantitative evaluation of LVMs applied to neural data. The bench-

mark consists of four datasets of intracortical spiking data collected from non-human primates

that span a variety of tasks and brain areas. The objective of the benchmark was to maximize

the Poisson log-likelihood for an unseen or held-out set of neurons activity, given the activity of

a held-in set of neurons. The Poisson log-likelihood was normalized and converted to bits per

spike using the mean firing rates of each neuron as the baseline [25]. The normalized Poisson

log-likelihood is referred to as bits per spike (bps), or

bits/spike =
1

nsp log2

∑

n,t

(

L
(

λn,t ; ŷ n,t

)

−L

(

λn,:; ŷ n,t

))

(1.2)

where ŷ is the activity for the held-out neuron n at time point t and λ is the predicted firing

rates of that neuron. λn,: is the mean firing rate for the neuron n, and nsp is its total number of

spikes. If bps is positive, then the model is inferring a neuron’s time-varying activity better than

a flat mean firing rate. The term "co-smoothing" in neuroscience refers to the prediction of the

activity of held-out neurons based on the activity of held-in neurons on test data [26]. The main

metric is referred to as co-smoothing bits per spikes (co-bps).

On one of the datasets, the Area2 bump task, a monkey engaged in a visually guided reaching

task, wherein each trial involved reaching to a visually presented target via a manipulandum.
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Neural spiking activity was recorded from area 2 of the somatosensory cortex, an area that re-

ceives and processes proprioceptive information, or information about where the body is in

space relative to one’s self. To perturb the somatosensory area, in a random 50% of the trials,

the monkey’s arm was unexpectedly bumped in a random direction by the manipulandum be-

fore the reach cue, and it then had to perform a corrective response. This demonstrates that the

model needed to be able to model non-autonomous systems (which receive input) to correctly

describe the activity after the perturbation.

Table 1.1: Results from the Neural Latents Benchmark on the Area2 bump dataset

Model co-bps Velocity R2 PSTH R2 fp-bps

NDT 0.2623 0.8672 0.6619 0.1184

AutoLFADS 0.2569 0.8492 0.6318 0.1505

In Table 1.1, NDTs performance on the Area2 Bump dataset is compared with LFADS, one

of the most popular RNN-based LVMs. The Velocity R2 metric quantifies how well the true ve-

locity of the monkey’s arm can be linearly decoded, while the PSTH R2 metric quantifies how

well a PSTH (Peri-Stimulus Time Histogram) of the inferred rates matches one computed from

smoothed spikes. The last metric, fp-bps (forward pass bits per spike), is similar to co-bps, ex-

cept that it quantifies how well the models can predict future activity for all neurons. A surpris-

ing result is that the NDT outperformed LFADS on this dataset because the authors of the NDT

found, on a preliminary analysis using the chaotic RNN with delta pulse inputs studied in [23],

LFADS vastly outperformed the NDT. Interestingly, there were minimal changes between the

NDT models trained for the benchmark and the models trained on the synthetic data in the

NDT paper. The most significant difference is the use of four NDT layers for the NLB models

and six layers for the synthetic data models. This led to the first aim of this thesis’s research, to

re-evaluate the claims that NDT cannot model non-autonomous dynamical systems using the

same number of layers as the top Area2 Bump NDT model.
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1.3 Inferring Inputs

One benefit that LFADS has over NDT is its ability to infer inputs when modeling non-

autonomous dynamical systems. LFADS uses 3 RNNs to model the dynamics of a system. First,

the bi-directional encoder extracts the inputs to the system as well as the initial condition for

the dynamics. Then, the dynamics of the model are simulated using the controller and the gen-

erator in tandem. The outputs of the controller, which are fed into the generator, are referred

to as the inferred inputs. In [23], it was found that if enough regularization was applied when

training LFADS, then the inputs could be interpretable if the timescale of the dynamics was low

(γ = 1.5). NDT, on the other hand, do not feature a separate model to feed in inputs. This means

that even though the model was successfully applied to data that requires inferring inputs, there

is no way of extracting the internal representation that the model uses to quantify the input at

each time step. This issue leads to the second aim of this thesis’s research, which is to force the

model to produce interpretable representations of the inputs via modifications to the architec-

ture. Inspired by the use of heavy regularization in LFADS to increase interpretability in LFADS,

we also aimed to explore if certain hyperparameter sets could elicit more interpretable input

representations with NDT.

While NDT lack a separate model to infer inputs, one unique feature of the model over

LFADS is the use of multi-head attention (MHA). MHA is how NDT temporally route informa-

tion throughout the input sequence in a non-autoregressive fashion. Each of the multiple atten-

tion heads apply scaled dot product attention, and because the information contained in each

head is independent, this computation can be run in parallel. Scaled dot product attention is

applied to example data, X, by first transforming it into queries, keys, and values via:

Qi = XW
Q

i
Ki = XWK

i Vi = XWV
i , (1.3)

where W
Q

i
, WK

i
, and WV

i
are the weight matrices of head i that linearly weight each the features

(spikes from each neuron) for all time steps. Following that, scaled dot product attention is then
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applied via:

Attention(Qi ,Ki ,Vi ) = AVi (1.4)

with

A = softmax

(

Qi K⊤
i

√

dk

)

. (1.5)

After this weighting, the queries (Qi ) and the keys (Ki ) are multiplied together to form the atten-

tion Matrix (A). The attention matrix is scaled by the dimensionality of the keys, dk . Row-wise

softmax is then applied to the attention matrix to get a probability distribution, that is, each row

will sum to one. In our case, there is a mask applied to the attention that limits the number of

time steps forward (in the future) and backward (in the past) that each time step can attend to.

This is done by adding -∞ to out-of-context time steps before the softmax (essentially zeroing

them out). The final attention matrix is then multiplied by the values matrix, Vi . The output

of the scaled dot product attention is a dynamically weighted combination (across time) of the

values.

1 50 100
Values Timestep

1

50

100

O
ut

pu
t T

im
es

te
p

1 50 100
Values Timestep

Backward 
Context

Forward 
Context

Out Of 
Context

0.0

0.1

0.2

0.3

0.4

Figure 1.3: Interpreting the attention matrix
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The attention matrix after softmax is illustrated in Figure 1.3, where we can see the post-

softmax attention matrix on the left and the output time step 50 on the right. The areas in black

represent an attention score of 0.0, while anything even minutely above that is dark purple. The

dashed white line indicates where the time step is the same for both the outputs and the values.

If we look at the right side of the figure, we can see how the value time steps are weighted to

form the output at time step 50. The area to the left of the dashed white line represents the

value time steps that are in the past (relative to output time step 50), and the values to the right

are those in the future. In this example, the output for time step 50 seems to be mainly sourced

from roughly five time steps in the past. This essentially pushes information further in time for

the next layers of the model.

1.4 Input Extraction

In our case, we are interested in finding the model’s representation for the input to the sys-

tem. Because these delta pulse inputs heavily distort the dynamical trajectory, the time step in

which these inputs occur should be relatively influential to all time steps that follow it. We use

the attention matrix after softmax to estimate how "important" the value time step is by taking

the mean across all output time steps, giving us a scalar value for each value time step. The

formula used is,

M = Mean(A) =
1

t

t
∑

i=1

Ai , j (1.6)

where M is the inferred input magnitude or the average attention score across output time steps.

This is illustrated in Figure 1.4, where we can see the attention matrix on the left, and the cor-

responding inferred input magnitude on the right. This example shows a strong inferred input

pulse just before time step 50, which we can see on the left represents multiple output time

steps in a row pulling all of their information from the same value time step. An inferred in-

put value of 0.01 at each time step would mean that all output time steps are sourcing their

information equally and that all time steps are of equal importance.
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Figure 1.4: Extraction of inputs from the attention matrix

1.5 Normalized Inferred Input Magnitude

To quantify the signal-to-noise ratio of the inferred inputs, we created a metric that we will

refer to as Normalized Inferred Input Magnitude (NIIM). The formula is,

NIIM(M) =
Mk −µMt |t ̸=k

σMt |t ̸=k

(1.7)

where Mk is the magnitude of the inferred input at the time k in which the delta pulse occurred.

µMt |t ̸=k is the mean of the inferred inputs, excluding the time in which the delta pulse occurred,

and σMt |t ̸=k is the standard deviation of the inferred inputs, excluding the time in which the

delta pulse occurred. Figure 1.5 visually describes the formulation of the metric. In Figure 1.6,

three examples of the metric are presented to give some intuition behind the scalar values. In

both figures, the black triangle represents the time step in which the input occurred.
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Chapter 2

Methods

To re-evaluate the claims that NDT cannot model non-autonomous dynamical systems, we

applied the model to the same non-autonomous dynamical system used by the NDT authors.

That is, the chaotic RNN with delta pulse inputs studied in [23]. While LFADS was only applied

to chaotic RNNs with inputs at γ = 1.5 and γ = 2.5 in [23], in this analysis, a third timescale

was included, γ = 3.5. The third gamma is meant to push the ability to infer the inputs to the

limit, as the difficulty of separating the input from the dynamics increases with the timescale

of the dynamics. That is to say, as the changes in the RNN become more rapid, it can be hard

to distinguish the input from the underlying dynamics of the network when using binned spike

counts.

To verify the results in [20], we also applied NDT to a chaotic RNN with no inputs. However,

in this analysis, the same number of samples was used as in [23]. Lastly, to ensure that the ability

to model non-autonomous dynamics was not limited to just one-dimensional inputs, NDT was

applied to a chaotic RNN with two inputs, one of magnitude 5 and the other of magnitude 10.

An example trial worth of Poisson rates produced by each of these chaotic RNNs is presented in

Figure 2.1. As with [23], the Poisson rates were then sampled to get spiking activity, which was

then fed into the NDT model.

In [23], the synthetic RNN data consisted of 400 conditions with 10 spiking trials sampled for

each condition. To ensure the model was evaluated on unseen data, another 10 trials for each

of the 400 conditions were sampled for use in the test set. This provided a total of 8000 trials,

with 3200 used for training, 800 used for validation, and 4000 used for testing the final models.

All results, tables, and figures throughout this work are from the test set (apart from Figure 3.1).

To successfully train a NDT model, a hyperparameter search must be performed. A random

search (1000 runs) was performed on the simplest dataset, γ = 1.5, over the parameters found

in Table 2.1. The uniform(x, y) found in the table represents values sampled from a uniform
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Figure 2.1: Overview of the datasets

distribution with minimum value x and maximum value y. To make sure that the architecture

chosen was not a statistical fluke, three models were trained with different random seeds for

each sampled hyperparameter set. Note that one run for a random search is equivalent to 3

models trained.

After the initial random search, two additional random searches were performed to find

ways that NDT might be optimized to represent the inputs in a repeatable way. This was done

by choosing the top model based on its average NIIM across three training seeds. The first ran-

dom search (2000 runs) swept over the forward context, the backward context, and the head di-

mensionality. The exact parameters swept over can be found in Table 2.2. The context forwards

was limited in the later layers to promote a more interpretable input. The intuition behind this

being that we are interested in "important" time steps that have a large impact on the proceed-

ing time steps, not the past. Lastly, a random search (1000 runs) over dropout was performed.

The exact parameters swept over can be found in Table 2.3. The dropout ranges were altered to

minimize the number of models that failed to converge.
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Table 2.1: Initial random search hyperparameter search space

Hyperparameter Search Space

Embedding Dimensions 128,  256

Hidden Size 128,  256,  512

Max Learning Rate 0.05,  0.01,  0.005

Context Forwards 5,  10,  20,  30,  50

Context Backwards 5,  10,  20,  30,  50

Weight Decay 5.0e-03,  5.0e-04,  5.0e-05

Dropout Uniform( 0.1,  0.5 )

Dropout Rates Uniform( 0.1,  0.5 )

Dropout Embedding Uniform( 0.1,  0.5 )

Dropout Attention Uniform( 0.1,  0.7 )

Table 2.2: Context and dimensionality random search hyperparameter search space

Hyperparameter Search Space

Context Forwards

      Layer 1 0,  1,  50

      Layers 2 - 4 0,  1

Context Backwards 1,  5,  10,  20,  50

Head Dimensionality 4,  8,  16,  32,  50,  64

To train the models, 5 NVIDIA A40 GPUs and 1 NVIDIA A100 GPU were used with 128 AMD

EPYC 7452 32-Core CPUs. To run the random searches, Weights and Biases [27] was used. The

total compute time (sum of training times for all models) for all random searches combined

is 158 days, original NDT sweep: 49 days, modified context dimensionality sweep: 61 days,

modified dropout sweep: 48 days.
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Table 2.3: Dropout hyperparameter search space

Hyperparameter Search Space

Dropout Uniform( 0.1,  0.5 )

Dropout Rates Uniform( 0.1,  0.3 )

Dropout Embedding Uniform( 0.1,  0.4 )

Dropout Attention Uniform( 0.1,  0.8 )
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Chapter 3

Results

3.1 Original NDT Random Search

As a verification of the results found in [20], we looked at the validation set inferred rates R2

vs. bits per spike to validate that the primary metric used to select models (bits per spike) was

truly finding models that infer the underlying rates well. Bits per spike was defined in equation

(1.2) and inferred rates R2 is defined as:

Inferred Rates R2
=

1

N

N
∑

n=1

(

1−

∑T
t=1(ynt − ŷnt )2

∑T
t=1(ynt − yn)2

)

, (3.1)

where N is the number of neurons, T is the number of time steps, ynt is the true firing rate of

neuron n at time step t , ŷnt is the inferred firing rate of neuron n at time step t , and yn is the

mean firing rate of neuron n over all time steps. As shown in Figure 3.1, there is a strong relation-

ship between bits per spike and inferred rates R2 for all 3000 models from the random search.

Following the same procedure as in [20], we compared NDT’s performance to AutoLFADS [28].

AutoLFADS improves upon the training procedure in LFADS by using population-based train-

ing instead of a random search to select hyperparameters. Another improvement is the use

of coordinated dropout, which essentially restricts the model to only back-propagate the loss

for channels that were dropped out (zeroed out). This procedure is used to avoid the problem

of identity overfitting (estimating firing rates that are identical to the spiking activity) by forc-

ing the model to rely on the population activity as a whole to predict the activity of individual

channels.

The top model was chosen for its average performance on the validation set across the three

models trained for each HP set. The chosen parameters for the top model can be seen in Table

3.1 below.
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Figure 3.1: Validation set bits per spike vs inferred rates R2

It can be seen visually in Figure 3.2 that NDT and LFADS perform similarly across the three

levels of inputs (No inputs, one input, two inputs). This difference is quantified across the three

models trained for both NDT and LFADS in Table 3.2. The NDT models were found to have re-

markably similar performance across seeds (apart from the two inputs model, which had some

low performing models).

Again in Figure 3.3, NDT and LFADS perform similarly across the three levels of gamma (1.5,

2.5, 3.5). NDT even performed slightly better in the higher gamma cases, where LFADS would

often have spurious outliers after larger changes in the rates. This difference is quantified across

the three models trained for both NDT and LFADS in Table 3.3. NDT does slightly better than

LFADS across all timescales tested.

3.2 Modified NDT

In Figure 3.4, we can see that the model is predicting inputs in layer four because, at that

time step, it begins to pull information from the future to the time step where the input oc-
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Table 3.1: Unmodified NDT best architecture from random search

Hyperparameter Value

Context Backwards 50

Context Forwards 10

Head Dimensions 50

Dropout 0.3774

Dropout Attention 0.2182

Dropout Embedding 0.1583

Dropout Rates 0.1428

Table 3.2: Unmodified NDT rate reconstruction across inputs

# of Inputs NDT (R2 ) AutoLFADS (R2 )

0 0.873 ± 0.000 0.854 ± 0.009

1 0.886 ± 0.001 0.878 ± 0.002

2 0.841 ± 0.017 0.854 ± 0.002

0.0

0.4

0 Inputs

Neuron 15 Neuron 30 Neuron 45

0.0

0.4

1 Input

0.0

0.4

2 Inputs

0.1 s 0.1 s 0.1 s

Ground Truth NDT AutoLFADS

Figure 3.2: Best unmodified NDT model from random search vs. LFADS across three levels of Inputs for

three neurons. The y-axis is the neurons firing rate and the x-axis is time
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Table 3.3: Best unmodified NDT model from random search vs. LFADS across three levels of gamma

NDT (R2 ) AutoLFADS (R2 )

1.5 0.886 ± 0.001 0.878 ± 0.002

2.5 0.897 ± 0.000 0.884 ± 0.004

3.5 0.876 ± 0.000 0.857 ± 0.002

0.0

0.4

 = 1.5

Neuron 15 Neuron 30 Neuron 45

0.0

0.4

 = 2.5

0.0

0.4

 = 3.5

0.1 s 0.1 s 0.1 s

Ground Truth NDT AutoLFADS

Figure 3.3: Best unmodified NDT model from random search vs. LFADS across three levels of gamma for

3 neurons. The y-axis is the neurons firing rate and the x-axis is time

curred. However, our method of extracting inputs looks at which time steps are pulling infor-

mation from the input, so this would not get picked up as successfully inferring the input. When

looking at Figure 3.5, we can see that the inputs were most likely to occur in the last layer, but

in that layer, its location was split between the two heads. This results in training with different

seeds leading to input localization in different heads. For reference, the NIIM for the best (vali-

dation bps) model from the initial unmodified NDT random search was µ=0.0614, σ=0.4926.

To address the issue of the input representation relocating heads across random initializa-

tions, the second head in the last layer was moved to the first layer. The location (layer one)

of the last layer’s second head was based on preliminary testing with the other layers as the
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destination. After the two random searches to improve the interpretability of the inputs, the

final model architecture can be found in Table 3.4. The changes are extremely evident when

comparing the attention matrices between the modified model, found in Figure 3.6, and the

unmodifed model from Figure 3.4. When looking at the attention matrix in layer 4 of the mod-

ified model, the timing of the input is visually evident even without performing any processing

(such as averaging).

Table 3.4: Best modified model vs. LFADS across three levels of gamma

Hyperparameter Value(s)

Context Backwards 50,  5,  5,  14

Context Forwards 50,  0,  0,  0

Dropout 0.3652

Dropout Attention 0.1420

Dropout Embedding 0.3828

Dropout Rates 0.2692

As verification that the changes made to elicit interpretability did not harm the performance

of the model, we compared the results to the original model and found minimal impacts. The

differences across the three levels of input can be found in Table 3.5. We can see that the mod-

ifications actually help the model when it comes to 2 inputs. The differences across the three

different levels of gamma can be found in Table 3.6. It is evident that the modifications do

appear to hurt NDT performance the most on the fastest timescale dynamics; However, the

modified NDT is still outperforming LFADS.

For Figure 3.7, the analyses performed in [23] were followed. We calculated the average

inferred input strength around the delta pulses (averaged across all trials), as well as the av-

erage inferred input strength at time steps in which the delta pulse was not near it. That was

compared against the inferred input strength for a model trained on data with no delta pulses

applied. It was found that the NDT was much better at inferring inputs than LFADS, so we ex-
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Table 3.5: Modified NDT vs. original NDT vs. LFADS across three levels of Inputs

# of Inputs Original NDT (R2 ) Modified NDT (R2 ) AutoLFADS (R2 )

0 0.873 ± 0.000 0.864 ± 0.000 0.854 ± 0.009

1 0.886 ± 0.001 0.881 ± 0.000 0.878 ± 0.002

2 0.841 ± 0.017 0.845 ± 0.000 0.854 ± 0.002

Table 3.6: Modified NDT vs. original NDT vs. LFADS across three levels of gamma

Original NDT (R2 ) Modified NDT (R2 ) AutoLFADS (R2 )

1.5 0.886 ± 0.001 0.881 ± 0.000 0.878 ± 0.002

2.5 0.897 ± 0.000 0.888 ± 0.000 0.884 ± 0.004

3.5 0.876 ± 0.000 0.863 ± 0.000 0.857 ± 0.002

tended the analysis performed to include γ=3.5. Similar to the results found in [23], it was clear

that as the timescale of the dynamics increases, the inputs get less and less distinct.

As a follow-up analysis, the average response near the delta pulse was split into three time

steps that comprise it, the time step before the delta pulse, the time step of the delta pulse, and

the time step after the delta pulse. The results of this are pictured in Figure 3.8. That analysis

was then expanded out to 20 time steps around the delta pulse (Figure 3.9), and it can be seen

that the model is giving a strong signal at the input relative to the surrounding time steps, the

difference decreases as the gamma increases. Single-trial responses are remarkably consistent

(Figure 3.10); however, the time step before the delta pulse seems to often be mistaken as the

true input time. This is confirmed by looking at the true delta pulse vs. predicted delta pulse

time (Argmax of inferred inputs) in Figure 3.11.
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Figure 3.4: Attention matrices for all Layers and heads for one trial

21



Layer 1 Layer 2 Layer 3 Layer 4

2

0

2

4

6
M

ea
n 

N
or

m
al

iz
ed

 In
fe

rr
ed

 In
pu

t M
ag

ni
tu

de
Head 1 Head 2

Figure 3.5: Histogram of input representation across heads and layers for all models in random search
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Figure 3.6: Attention matrices for modified model for all layers and heads for one trial
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Figure 3.7: Inferred input magnitude strength for three levels of gamma
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Figure 3.8: Inferred input magnitude strength before, at, and after the delta pulse for three levels of

gamma
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Figure 3.9: Average distribution of inferred inputs around the time of delta pulse
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Figure 3.10: Inferred inputs for trials with a delta pulse at 500ms
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Figure 3.11: Predicted vs. true delta pulse times
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3.3 Ablations

To test what specific change in the modified model resulted in the ability to infer inputs, we

removed specific changes and compared them to the original model (Figure 3.12). Note that to

quantify NIIM for NDT with the original number of heads (as well as the unmodified/original

NDT), the head with the greatest NIIM was used (layer 4, head 1). The ability to infer inputs

benefited the most from a combination of both the layer-specific context and the moving of the

attention head from the last to the first layer. Dropout had a slight but insignificant effect on

interpretability.

We looked at how the inferred rates R2 were affected by the changes and found that the in-

dividual modifications had little impact on the R2 score (Figure 3.13). To test how the modified

architecture does across different dynamics, we applied it to a chaotic RNN with a different

seed. We found that the model did well on this new dataset in terms of NIIM (Figure 3.7) and

inferred rates R2 (Figure 3.8). To test if the NDT was truly learning dynamics or if it was simply

applying an advanced smoothing technique, we also applied the model to the RNN with differ-

ent dynamics and found that it did worse than LFADS (also Figure 3.8). However, when testing

the NIIM on this new seed, the NIIM was extremely low. To further investigate, we applied the

same analyses performed on the seed 5 dataset and found that the model still could predict the

timing of the inputs but strangely predicted it early very consistently (Figure 3.14, Figure 3.15,

Figure 3.16, Figure 3.17, Figure 3.18). The NIIM is very sensitive to these early predictions, and

they are heavily penalized, leading to the low score found above.

Table 3.7: Dataset seed and its impact on Normalized Inferred Input Magnitude for the modified NDT

model

Dataset seed
trained on

Dataset seed
tested on NIIM

5 5 10.329 ± 0.326

678 678 3.283 ± 0.056

5 678 0.028 ± 0.024
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Figure 3.12: Ablations and their impact on Normalized Inferred Input Magnitude
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Figure 3.13: Ablations and their impact on inferred rates R2

Table 3.8: Dataset seed and its impact on inferred rates R2

Dataset seed
trained on

Dataset seed
tested on Original NDT (R2 ) Modified NDT (R2 ) AutoLFADS (R2 )

5 5 0.886 ± 0.001 0.881 ± 0.000 0.878 ± 0.002

678 678 0.885 ± 0.000 0.875 ± 0.000 0.877 ± 0.001

5 678 -0.710 ± 0.006 -0.691 ± 0.003 -0.512 ± 0.030
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Figure 3.14: Inferred input magnitude strength for three levels of gamma for the dataset with a seed of

678
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Figure 3.15: Inferred input magnitude strength before, at, and after the delta pulse for three levels of

gamma for the dataset with a seed of 678
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Figure 3.16: Average distribution of inferred inputs around the time of delta pulse for the dataset with a

seed of 678
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Figure 3.17: Inferred inputs for trials with a delta pulse at 500ms for dataset with seed of 678
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Figure 3.18: Predicted vs. true delta pulse times for the dataset with a seed of 678
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Chapter 4

Conclusions

4.1 Summary

Contrary to [20], the results of this work suggest that the NDT can, given the proper hy-

perparameters, model non-autonomous dynamical systems. We found that the NDT can be

successfully applied to chaotic RNNs with delta pulse inputs by using the changes made to

the architecture for the NLB (four layers vs. six layers), along with an extensive hyperparam-

eter search. This finding opens the gates to a vast number of BCI applications that were once

thought to be impossible with this model. One of the reasons that LFADS was considered a

more likely target for online use was the fact that it could model motor cortex dynamics in the

context of perturbations. Now that it has been shown that the NDT can indeed model dynamics

under this regime, the fast inference speeds, along with the performance on the NLB, makes the

NDT a very likely contender for online BCI use.

We also found that specific arrangements of the attention heads, and their context windows,

can evoke consistently interpretable representations of the inputs to the modeled system. As

with LFADS, the magnitude of these inferred inputs shrink as the timescale of the dynamics

increases (as bigger jumps are taken between steps). One difference though, is that under

these fast timescale dynamics LFADS seems to completely fail to infer the inputs, while the

NDT maintains a consistent inferred input magnitude across all time steps where the input was

applied. We found that the changes made in the dropout (to improve interpretability) seemed

to negatively impact the inferred rates R2 the most and had the least impact on normalized in-

ferred input magnitude, making it a likely candidate for removal in order to maximize the rate

reconstruction performance. The ability of NDTs to infer inputs much better than LFADS is sur-

prising, due to the fact that LFADS has an entire RNN model dedicated to just this task. Inferring

inputs in an online setting is not something that has been explored yet, possibly due to the lim-
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itations that LFADS faces when trying to infer fast timescale dynamics. The results found here

offer an exciting possibility into the online estimation of error signals or perturbations, which

may aid in the ability to correct for mistakes made during BCI control.

4.2 Limitations

One limitation is that the inferred inputs are from an attention matrix that can only see

backward in time, so there will be a bias for the first and last 14 time steps (size of the backward

context) due to the nature of Softmax. The first 14 do not have as big of a context, so the time

steps that are seen will have an overinflated importance. The reverse is true for the last 14

time steps, they do not have as many time steps that can attend to them because there is only

backward attention, so the importance of these time steps will be over deflated.

Another limitation of the method used for extracting inputs is its inability to extract time-

varying inputs or multidimensional inputs. The inferred input extraction takes place via a sim-

ple column-wise averaging of the attention matrix. While this extraction procedure is simple,

there is a trade-off between the simplicity of the method and the types of inputs can be inferred

from the extracted "importance" signal. This inferred input signal may be useful to locate dis-

crete events, such as an error signal, but without any information about the content of the event,

it would be hard to interpret what the even was or why it was important.

To successfully apply this technique in vivo spiking data from either humans or animals, the

amount of training data needed for this approach to successfully train must also be fully under-

stood. In this study, a rather large (4000 trials) amount of training data was used to follow the

procedure outlined in [23]. In real-world situations, you are often limited to a relatively small

number of trials (sometimes less than 100), which would necessitate an entirely new approach

to training the model as transformers often do not train well with limited data [29]. To under-

stand how the modified NDT scales to different size datasets, one could simply run a similar

analysis as performed in this study, but while also sweeping across a suite of training set sizes.

The synthetic example used here also only used 50 neurons, while modern BCI implants may
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soon have thousands of channels [30]. It is unknown how these techniques used will scale to

larger channel counts, and methods such as dimensionality reduction may need to be applied.

4.3 Future Directions

A crucial direction for the future of this work would be the development of methods in which

the inferred input could be extracted from the keys, or K from equation (1.3). These vectors rep-

resent the information contained in each time step in high dimensional space, so a successful

extraction from them would elevate all limitations that stem from the simplicity of the extrac-

tion procedure, and may even give a cleaner signal. This, of course, relies on being able to fit

in a supervised fashion, which would mean that known perturbations must be made to the dy-

namical system of interest. Another important future direction would be an investigation into

the circumstances under which the model might fail to train. For example, this might involve

training models across a wide range of dataset sizes or number of channels used. Lastly, a suc-

cessful application of this work in an online setting would involve the use of a sliding window of

spiking activity as the input. It is currently unknown what effect this may have on the inferred

firing rates and inputs, making this a prime target for future works to explore.
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